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Introduction 
 
The Basic Equation; Pharmacokinetics, Pharmacodynamics and Training. 
 
Basic research in anesthesia has given anaesthesiologist a new window of opportunity to 

further improve management of patients. The introduction of Target Controlled Infusion (TCI) 

has proven to be one of the key elements with which can (visually) help the anaesthesiologist 

understand the action-reaction chain of events when inducing and maintaining anesthesia. 

With increasing possibilities for the anaesthesiologist to incorporate pharmacokinetic 

principles in the operating theatre, one must seek new possibilities to incorporate all of this 

information into a practical tool. 1 

Even though basic research is not in the spotlights, it is essential for every day practice 2. 

Knowledge of pharmacokinetic parameters of different drugs will give the anaesthesiologist 

the advantage of knowing how and when to differ in strategy.  In current practice, intravenous 

drugs are commonly administered using standard dosing guidelines, an approach which 

ignores inter- and intra-individual variability in the dose-response relation. It has been proven 

that incorporating pharmacokinetic-dynamic information as an additional input to guide 

clinical anaesthesia can result in better patient care.3  

This research will partially open the so-called “black box”. Understanding interactions 

between different drugs is the fundament for patient safety.  

 

In this thesis we have studied hypnotic-hypnotic interaction. Medication given to patients to 

decreases preoperative stress interacts with induction of anesthesia, and although this is 

taken into consideration when inducing anesthesia, the interaction has never been studied. 

Knowledge of this interaction helps to redefine the induction dose needed for a safe and 

efficient induction with the least hemodynamic changes. 

TCI can further improve safety for a wide range of patients. Incorporating Bispectral indexing 

(BIS) completes this equation. Not only a comprehensive understanding of the 

pharmacokinetic, but also the dynamic principles, of intravenous medication is needed to 

understand the hemodynamic alterations during induction and maintenance of anesthesia. 

BIS has developed into a basic tool in the operating theatre, which can visually help guide 

the anaesthesiologist in dosing the necessary medication needed for the operation, although 

a low BIS value itself is not a full guarantee for a deep anaesthesia 4  

With increasing number of patients who can benefit from the pharmacokinetic and dynamic 

interactions now being researched and published it is essential to dedicate more time in 

schooling residents in this field. It is therefore essential to optimize and broaden the training 

of residents in anesthesia in PK-PD. Increasing knowledge of PK-PD principles ensures 

increasing patient safety. 1 



 

In chapter 1 we describe the optimization of opioid drug combinations. For every 

combination an optimal dose has been described and a TCI model has been developed. In 

this review we also give a comprehensive overview of the use of BIS monitoring.  

 

In chapter 2 we have studied the influence of midazolam on the pharmacokinetics of 

propofol. Volunteers were studied in a randomized crossover manner during two separate 

sessions with a minimum of two weeks between the two sessions. During the first session 

they were given a bolus of propofol of 1 mg.kg-1, and an infusion of 2 mg.kg-1, for 59 minutes. 

In the second session we have given midazolam with a target controlled infusion to reach a 

steady state and the same dosing scheme of propofol. Blood samples were drawn to 

measure midazolam and propofol levels. Additional hemodynamic measurements were 

recorded using the LiDCO® non invasive hemodynamic monitor and stored for later use. With 

these data we constructed a model for the pharmacokinetic influence of midazolam on 

propofol, with the use of additional parameters. 

 

In Chapter 3 we describe three case reports from our study. Volunteers were deeply 

sedated, resulting in low BIS values but were able to answer simple questions. Hypnotic – 

hypnotic interaction without the use of muscle relaxants can cause this phenomenon. 

 

In Chapter 4 we have studied the influence of propofol on the pharmacokinetics of 

midazolam. Volunteers were studied in a randomized crossover manner during two separate 

sessions with a minimum of two weeks between the two sessions In one session they were 

given midazolam in a bolus and a continuous infusion. In the second sessions they received 

an additional infusion with propofol guided by TCI. Blood samples were drawn to measure 

midazolam and propofol levels. Additional hemodynamic measurements were recorded using 

the LiDCO® non-invasive monitor and stored for later use. With these data we constructed a 

model for the pharmacokinetic influence of propofol on midazolam with the use of additional 

parameters. 

 

 In Chapter 5 studies 1 and 2 are combined. All pharmacokinetic and pharmacodynamic 

measurements of studies 1 and 2 are combined to research the interaction of propofol and 

midazolam on hemodynamic endpoints. The combination of the two previous studies allows 

the researchers to define an optimal dosing scheme for induction and maintenance of 

anesthesia with as few as possible side effects. Three-dimensional surface modelling was 

used for the interaction of midazolam and propofol on different hemodynamic parameters.  

 



 

In Chapter 6 a comprehensive review is given regarding the current concepts in PK-PD with 

regards to the BIS, learning curve of residents and future perspective of PK-PD. New 

developments with respect to visual display of concentration time curves of anaesthetic 

agents for use in the operating theatre are described. 
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Introduction 

Anaesthesia facilitates a wide variety of surgical procedures. Patients generally receive a 

combination of anaesthetic and analgesic agents to induce and maintain an adequate depth 

of anaesthesia and analgesia. In addition to anaesthesia and analgesia, muscle relaxation is 

provided using muscle relaxants, facilitating the surgical procedure. Next to the positive 

effects of anaesthetic agents in maintaining unconsciousness, analgesia and muscle 

relaxation, these agents potentially compromise the autonomic stability of the patient. 

Thorough knowledge of the pharmacokinetics and pharmacodynamics of these agents 

enables the anaesthesiologist to administer a combination that offers the most stable 

anaesthetic with the shortest possible induction and recovery times and optimal operating 

conditions with the least incidence of adverse effects. 

 

In contrast to the past practice of administering anaesthesia on the basis of knowledge of the 

needs of the population, modern anaesthesia focuses on the individual needs of the patient. 

To focus the administration of intravenous anaesthetics on the individual needs of the 

patient, the anaesthesiologist has three strategic tools. 

 

The first and most important tool is the pharmacological knowledge that has been gathered 

over the past 20-30 years. From this body of knowledge, the anaesthesiologist may take data 

that allows him or her to adjust the administration of the various anaesthetic agents to the 

specific need of the individual patient. In this way, each individual patient may experience 

rapid induction, stable maintenance and rapid recovery from anaesthesia without serious 

adverse effects. 

 

The second tool to optimize intravenous anaesthesia is the application of state-of-the-art 

intravenous drug administration techniques. Until recently, intravenous anaesthetic agents 

were administered either as a bolus doses or by manually controlled infusion pumps, but now 

target-controlled infusion is the state of the art and is increasingly gaining interest from the 

clinical anaesthesiologist. Target controlled infusion offers significant advantages over 

conventional administration methods for intravenous agents and thereby allows for further 

optimization and individualization of intravenous anaesthesia. 

 

The third and last tool to optimize intravenous anaesthesia is the use of the most recent CNS 

monitoring techniques. The past 20-30 years saw an intense search for a reliable parameter 

to track the depth of anaesthesia. So far, monitoring the depth of anaesthesia is still a utopia. 

However, with respect to the monitoring of the level of (un)consciousness, considerable 

progress has been made. This has resulted in the clinical introduction of the bispectral index 



 

monitoring (BIS). The bispectral index, a mathematical derivative of the 

electroencephalogram (EEG), closely correlates with the state of the unconsciousness and 

the concentration of various anaesthetic agents. As such, it may be used to guide the 

administration of intravenous agents and may thus lead to a more controlled anaesthesia 

that again is better tailored to the individual needs of the patient. 

 

This manuscript describes the current status of the application of these three strategic tools 

to optimize the administration of propofol-opioid anaesthesia. 



 

1. Pharmacokinetic-Pharmacodynamic Knowledge 

 

In everyday clinical practice, anaesthesiologists are faced with dose-effect relationships of 

both opioids and intravenous anaesthetic agents that exhibit a wide interindividual variability. 

This interindividual dose-effect variability of anaesthetic agents is caused by both 

pharmacokinetic and pharmacodynamic differences between patients. The pharmacokinetic 

variability is in the order op 70%. With a propofol infusion rate of 10 mg/kg/h, blood propofol 

concentrations may vary between patients between 3 and 5 mg/L. Differences in cardiac 

output, hepatic perfusion, protein binding and enzyme activity are responsible for these 

interindividual pharmacokinetic differences.(1-6) 

The pharmacodynamic variability is much larger, in the order of 300-400%. During induction 

of anaesthesia with a target-controlled infusion of propofol, some patients already lose 

consciousness at a target of 1mg/L, whereas others need 4-5 mg/L to experience the same 

effect. Factors that are responsible for this huge pharmacodynamic interindividual variability 

still remain obscure, but genetic differences in receptor pharmacology may play an important 

role. (4) 

Next to the pharmacokinetic and pharmacodynamic variability of single agents, the 

administration of two or more agents together gives rise to pharmacokinetic and 

pharmacodynamic interactions. Anaesthesiologists combine anaesthetic agents on a daily 

basis because the provision of anaesthesia on the basis of a single agent is associated with 

significant adverse effects compromising hemodynamic and/ or respiratory function, affecting 

operating conditions, and/or postponing postoperative recovery. Because of the small 

therapeutic window, a detailed characterization of anaesthetic agents and their interactions is 

required to allow a proper selection of the various intravenous agents and their combinations, 

and to obtain an optimal therapeutic pharmacological effect in the absence of significant 

adverse effects. 

In this section we describe the pharmacology of propofol and the four most uses opioids 

(fentanyl, remifentanil, alfentanil and sufentanil) when given as sole agents and when given 

in combination. Finally, the optimal concentration combinations of propofol with the various 

opioids are defined for various endpoints.(7,8) 



 

1.1 Pharmacology of propofol 

 

Propofol, a lipophilic agent, has a fast onset and short duration of action due to a rapid 

penetration through the blood-brain barrier and distribution to and from the CNS followed by 

redistribution to inactive tissue depots such as muscle and fat. (9) Propofol pharmacokinetics 

are best described on the basis of a three compartment model (table I). The short effect-site 

equilibration half-life and the small central compartment are responsible for its time peak 

effect of only two minutes. The larger volumes of distribution, combined with a clearance that 

equals hepatic perfusion, are associated with a context sensitive half-time that only increases 

from about 20 to about 30 minutes with infusion durations increasing from 2 to 8 hours. 

Consequently, propofol is very well suited for continuous infusion techniques. Its high 

clearance and redistribution, even after prolonged infusion, allow for a rapid return to 

consciousness even after many hours of anaesthesia. Propofol as a single agent for 

anaesthesia, without opioid pre-treatment, causes loss of consciousness in 50% of the 

patients (EC50) at a blood concentration of 3.4 mg/L. Propofol may be used as a 

monoanaesthetic agent during surgery. Then blood concentrations in excess of 10-12 mg/L 

are required to suppress responses evoked by surgical stimulation. (10-12) 

Propofol dosage schemes should be adjusted for age and sex. Schnider et al. (13) described 

the relation ship between dose, age and blood concentrations for loss of consciousness in 

healthy non –premedicated volunteers. In this study, the EC50 for loss of consciousness was 

2.4, 1.8 and 1.3 mg/L in volunteers aged 25, 50 and 75 years, respectively(13). Children 

require a higher induction dose as result of a larger central compartment, (14) whereas elderly 

patients require a lower induction dose as a result of smaller central compartment and a 

reduced clearance. (15,16) As well as the relatively larger central compartment in children, the 

clearance is increased to a lesser extent. The application of target-controlled infusions of 

propofol in children using adult pharmacokinetic parameter sets will therefore cause a 

divergence of the blood concentration from the desired target concentration. Elderly female 

patients need a higher dosage of propofol compared with males because of a higher 

clearance rate. (17) 

Cytochrome P450 (CYP) 2B6 is predominantly involved in the oxidation of propofol, (18) 

whereas part of the propofol hydroxylase activity is mediated by CYP2C9 in human liver, 

especially in lower substrate concentrations. Moreover, propofol is metabolized by additional 

isoforms such as CYP2A6, 2C8, 2C18, 2C19 and 1A2, especially when substrate 

concentrations are high. This low specificity of CYP isoforms may contribute to low 

pharmacokinetic interindividual variability of propofol (70%) and to the low level of metabolic 

drug interactions observed with propofol. (19) 



 

Table I. Pharmacokinetic and pharmacodynamic parameters of propofol and the opioids. Various pharmacokinetic parameter sets are available 

in the literature for all of these agents, but population pharmacokinetic data are available only for propofol, remifentanil and alfentanil. These 

population pharmacokinetic parameter sets may therefore be best applicable in a population that varies greatly in age, weight and gender. 

Parameter and unit Propofol(20)a   Fentanyl(21) Remifentanil(22) Alfentanil(23) Sufentanil(24) 

V1 (L) 

V2 (L) 

V3 (L) 

CL1 (L/min) 

CL2 (L/min) 

CL3 (L/min) 

t½,keO (min) 

EC50 (µg/L) 

4.27 

24.0 

238 

0.68 

1.60 

0.836 

2.40 

3400b 

8.9 

50.3 

295.5 

0.63 

4.83 

2.23 

4.70 

1.1c 

4.98 

9.01 

6.54 

2.46 

1.69 

0.065 

0.90 

4.7c 

8.9 

13.8 

12.1 

0.36 

0.93 

0.15 

1.10 

90c 

14.3 

63.1 

261.6 

0.92 

1.55 

0.33 

5.87 

0.14c 

 

a  Model estimation for patient 40 years, 180 cm and 80 kg. 

b  For loss of consciousness 

c  Optimal EC50 in the presence of propofol 

Cl1 = elimination clearance; Cl2 = rapid distribution clearance; Cl3 = slow distribution clearance; EC50 = 50% effective concentration for loss of 

consciousness (propofol) or adequate analgesia (opioids); t½½½½keO = effect site equilibration half-time; V1 = volume of central compartment;  

V2 = volume of rapidly equilibrating peripheral compartment; V3 = volume of slow equilibrating peripheral compartment.  



 

Propofol inhibits CYP 2A1 (phenacetin O-de-ethylation), CYP2C9 (tolbutamide 4’-

hydroxylation), CYP2D6 (dextromethorphan O-demethylathion) and CYP3A4 (testosterone 

6β-hydroxylation) activities with 50% inhibitory concentrations (IC50) of 40, 49, 213 and 32 

µmol/L, respectively. (25)  

Propofol induces a marked loss of sympathetic tone in healthy volunteers. Cardiac and 

sympathetic baroslopes are significantly reduced with propofol, especially in response to 

hypotension, suggesting that propofol induced hypotension may be mediated by an inhibition 

of the sympathetic nervous system and impairment of baroreflex regulatory mechanisms. (26) 

Loss of vascular tone in arteries, as a result of a reduced Ca2+ influx, may also contribute to 

the hypotension following induction with propofol. (27) Reduction of cardiac muscle contraction 

is a result of reduced free systolic Ca2+ concentration in myocardial cells (28) resulting in a 

negative inotropic state of the cardiac muscle by propofol. Especially in elderly patients, this 

may contribute to propofol induced hypotension, giving rise to the need for adjusted induction 

schemes for propofol in the elderly. Propofol, even at low doses, depresses the ventilatory 

response to acute hypoxic incidents. The depression of the acute hypoxic response results 

from an exclusive effect within the central chemoreflex loop at the central chemoreceptor. 
(29,30) 

These adverse effects of propofol may lead to severe haemodynamic and respiratory 

depression, especially in patients with a more fragile homeostatic balance such as elderly 

and those with cardiovascular and respiratory diseases. This furthermore stresses the 

importance of individualisation of anaesthetic drug administration. 



 

1.2. Pharmacology of Opioids 

 

The pharmacology of the four most commonly used opioids, fentanyl, alfentanil, remifentanil 

and sufentanil, has been studied extensively. The opioids differ in their pharmacokinetics but, 

by acting at similar receptor sites, exhibit comparable pharmacodynamics. Table I gives an 

overview of representative pharmacokinetic parameters of the four opioids. The effect site 

equilibration half time (t½,keO) is fastest for alfentanil and remifentanil. (Table I)  The context 

sensitive half time of the four opioids gives an indication of the suitability of these agents to 

be given by prolonged infusion. 

Remifentanil has the most rapid pharmacokinetics of the four opioids. It has the shortest time 

to peak effect as a result of its small central compartment and short t½,keO. As a result of its 

high rate of clearance of tissue esterases, remifentanil the shortest context-sensitive half-

time of only a few minutes even after continuous infusion for many hours or days. The 

measured context-sensitive half-time of remifentanil after a 3 hour infusion was 3 minutes, 

with an offset of respiratory depressant effect of about 5 minutes, whereas the measured 

context-sensitive half-time of alfentanil was 47 minutes with an offset of about 54 minutes. (31) 

Increasing the infusion duration hardly increases the time to a 50% reduction in the blood 

remifentanil concentration after termination of the infusion. This is caused by the fact that 

remifentanil reaches steady state very rapidly and thus becomes context-insensitive. 

Alfentanil an sufentanil become context-insensitive after a few hours of infusion (figure 1), 

whereas in the clinical situation fentanyl does not reach this state. Consequently, remifentanil 

is generally administered by continuous infusion. 

Remifentanil is eliminated from the blood through hydrolysis by blood and tissue esterases. 

The metabolites formed do not contribute to the total effect of remifentanil. (32) In patients with 

liver disease, even severe, the elimination half-life is not different from healthy volunteers, (33) 

but with renal failure the main metabolite of remifentanil is excreted more slowly, may 

accumulate and reach active concentrations. (34) The other opioids are metabolised through 

the CYP enzyme system and clearance can not exceed hepatic perfusion. Due to differences 

in redistribution and clearance, the context-sensitive half time increases in the order 

sufentanil<alfentanil<<fentanyl (figure 1). Similarly, due to differences in effect site 

equilibration and initial distribution, the time to peak effect after a bolus increases in the order 

remifentanil<alfentanil<fentanyl<sufentanil (figure 2). Consequently, fentanyl, sufentanil and 

alfentanil are given predominantly by bolus administration, with fentanyl being the least 

suitable for use in continuous infusion techniques



 

 

 
Figure 1: Context-sensitive Half-times (CSHT; the time required after termination of an infusion for the 
blood concentration to drop by 50%) for the opioids fentanyl, alfentanil, sufentanil and remifentanil. 
 

 
Figure 2: Computer simulations using the pharmacokinetic parameters as described in table I to 
determine the time to peak effect for the four opioids when given as equipotent bolus in 15 seconds. 
 
 
 



 

Age and lean body mass significantly influence opioid distribution and clearance. With 

increasing age from 20 to 80 years, t½keO increases by approximately 50%; effect site 

equilibration is thus considerable slower in the elderly. (35) Lean body mass is also a 

significant covariate in the distribution of remifentanil. In both young and elderly obese 

patients, remifentanil dosage should be based on lean body mass rather than total body 

mass. (22,36) 

Pharmacodynamically, opioids are very much alike; they all produce physiological changes 

consistent with potent µ opioid receptor agonist activity, including analgesia and sedation. 

The adverse effect profile (like that of other drugs in this class) includes ventilatory 

depression, nausea, vomiting, muscular rigidity, bradycardia and pruritis. (37) The potency 

ratio between the opioids, although showing some variation throughout the literature, is such 

that 1 µg/L of fentanyl is approximately equipotent to 0.1 µg/L of sufentanil, 70 µg/L alfentanil 

and 2 µg/L remifentanil. This is not only for the major desired effect, analgesia, but also for 

the adverse effects such as respiratory depression. 



 

1.3 Pharmacokinetic interactions between Propofol and Opioids 

 

The first suggestion of pharmacokinetic interactions between propofol and the various 

opioids go back to 1993 when Schütller and Ihmsen (16), revealed, on the basis of a mixed 

effects modelling population pharmacokinetic analysis, that fentanyl and alfentanil both 

decreased the volume of the central compartment and the clearance of propofol.  More 

recently, Pavlin et al. (38) showed that in the presence of alfentanil at plasma concentrations 

of 40 µg/L, with patients still breathing spontaneously, blood propofol concentrations were 

increased by 20%. Furthermore, Matot et al. (39) showed that the first pass pulmonary uptake 

reduced from 60-40% after pretreatment with fentanyl. A reduced first-pass uptake of 

propofol may indeed increase the initial blood propofol concentration after bolus dose 

administration. 

Conversely, both Gepts et al. (40) and Pavlin et al.(38) reported increased alfentanil 

concentrations in the presence of propofol. This may be the result of inhibition by propofol of 

the oxidative metabolism of alfentanil by CYP, which so far has only been described in vitro. 
(41,42) Also, sufentanil metabolism appears to be inhibited in the presence of propofol. Other 

sedative agents that interfere with the metabolism of opioids are midazolam and 

dexmedetomidine, which have been shown to inhibit the metabolism of alfentanil and 

eltanolone (pregnanolone). (41,43) 

Recently, two pure pharmacokinetic interaction studies have shed more light on interactions 

between propofol and opioids. In the presence of a constant blood propofol concentration of 

1.5 mg/L, the pharmacokinetics of alfentanil were significantly altered.(44) Propofol increased 

mean plasma alfentanil concentrations by approximately 15%. Propofol decreased the 

elimination clearance (Cl1) of alfentanil by 15%, rapid distribution clearance (CL2) by 68%, 

slow distribution clearance (CL3) by 51% and lag-time by 62%. Mean arterial pressure and 

systemic vascular resistance were significantly lower in the presence of propofol, suggesting 

that the hemodynamic changes induced by propofol may be the cause of the 

pharmacokinetic interaction. This pharmacokinetic interaction was furthermore expressed by 

the prolonged context-sensitive half-time of alfentanil during combined infusion with propofol. 

Propofol increased the context sensitive half time of alfentanil by 10-15% on average for 

durations of infusion from 6-240 minutes, at which time alfentanil reaches a steady state and 

decay becomes context insensitive.   

Similarly, in the presence of alfentanil, propofol concentrations also increase. Alfentanil 

reduces the metabolic clearance of propofol and increases the slow distribution volume. Next 

to alfentanil, heart rate also proved a significant covariate on the mixed effects analysis of the 

pharmacokinetics of propofol in this study. Tachycardia reduced the blood propofol 

concentrations because of increased hepatic blood perfusion, whereas in the presence of 



 

bradycardia blood propofol concentrations tended to be elevated. The authors conclude that 

propofol has a flow limited clearance; all processes that influence liver blood flow might 

influence blood propofol concentration. Tachycardia induced by perioperative stress or fever, 

or bradycardia induced by β-adrenoreceptor agonists or co administered opioids, may, 

through changes in cardiac output, significantly affect dose-concentration relationship for 

propofol, thereby affecting its dose-effect relationship.(45) 

In conclusion, it becomes increasingly evident that propofol and the opioids affect each 

other’s distribution and elimination. Further studies are necessary to evaluate the precise 

mechanisms that cause these pharmacokinetic interactions. 



 

1.4 Pharmacodynamic interactions between propofol and opioids. 

 
1.4.1 Terminology  

Bovill(46) reviewed the methodology of the study of drug interactions in anaesthesia and 

described four methods of interaction analysis: fractional analysis, isobolographic analysis, 

the method of Plummer and Short and the parallel line assay. The response surface 

modelling technique described recently by Minto et al.(47) is the latest branch of the 

pharmacodynamic modelling tree. Each of these modelling techniques uses more or less the 

same terminology. In general, four classes of drug interactions can be defined as 

follows.(48,49) 

 

Zero interaction is said to occur when the effect of the combination of two drugs is exactly the 

sum of the individual agents. This is more often referred as an additive interaction. This 

occurs when two agents do not really interact but simply provide their action next to one 

another without influence. Inhalational anaesthetic agents generally exhibit an additive 

interaction. 

When the effect of the combination is greater than expected, as based on the concentration-

effect relationships of the individual agents, the interaction is said to be synergistic. Supra-

additivity or potentiation are often used as synonyms for synergism. One then needs 

relatively less of the combination obtain a certain effect compared to when the agents are 

given alone.  

An infra-additive interaction is said to occur when the effect of the combination is less than 

the sum of the effects of the individual agents. One needs relatively more of the combination 

to obtain a certain effect to when the agents are give alone. 

Lastly, antagonism is the situation where the effect of the combination is less than that of one 

of the constituents. For example, the combined effect of alfentanil and nalaxone is less than 

that of alfentanil alone. 

 

1.4.2 Interactions is practice 

Combinations of propofol (0.1-1 mg/L) and fentanyl (40µg/L) have enhanced the sedative 

and analgesic properties. Although propofol has no analgesic properties, it can be used as a 

monoanaesthetic agent at blood concentrations exceeding 10-12 mg/L in the absence of 

opioids. Furthermore, propofol offsets the emetic effects of alfentanil (EC50 0.5 mg/L), 

whereas alfentanil induced pruritis persists.(38) With these concentrations, ventilation is only 

moderately affected. Resting minute ventilation decreases by approximately 25%, in the 

presence of a somewhat smaller reduction in CO2 production of approximately 15%, resulting 

in a moderate increase (41-46 mmHg) in the end-tidal partial pressure of CO2. 



 

Both fentanyl and alfentanil have been shown to decrease propofol requirements for 

induction of anaesthesia in a synergistic manner.(10,50) A fentanyl concentration of 3 µg/L and 

a plasma alfentanil concentration of 122 µg/L both reduce the blood propofol EC50 for loss of 

consciousness by 40%. Although alfentanil reduces propofol requirements, the reduced 

dosage requirements of propofol do not assure a more haemodynamically stable induction of 

anaesthesia in American Society Anaesthesiology (ASA) status classification 1-2 patients, 

because alfentanil potentiates the haemodynamically depressant effects of propofol to a 

similar degree as it potentiates the its sedative effects. The interaction between fentanyl and 

propofol is also a source of hemodynamic changes. Billard et al.(51) have shown that the 

mean decrease in systolic pressure after induction with propofol alone was 28 mm Hg, but 53 

mmHg in the presence of fentanyl 2µg/kg. Hemodynamic changes post-intubation were not 

different with increasing doses of propofol.(51) 

Intraoperative, propofol is also potentiated by opioids.(8,12) Propofol concentrations required to 

blunt motor responses to skin incision in 50% of the patients (EC50,INC) diminished greatly 

with plasma fentanyl concentrations increasing from 0 to 3μg/L.(10) Higher plasma fentanyl 

concentrations, did not further reduce the EC50,INC of propofol, demonstrating a ceiling effect 

for propofol dosage reduction by fentanyl. Intraoperatively, with a 5-fold increase in the 

propofol concentration from 2-10 mg/L, alfentanil requirements were reduced by over 10-fold 

in female patients undergoing gynaecological surgery.(8,12) For both alfentanil and fentanyl, 

the magnitude of the interaction with propofol increases with the strength of the stimulus (the 

concavity of the isobole for loss of eyelash reflex or loss of consciousness < skin incision < 

intra-abdominal surgery). Lastly, alfentanil has been shown to affect the propofol 

concentrations at which patients awake postoperatively. In the presence of still significant 

alfentanil concentrations of 150µg/L, the blood propofol concentration had to decrease to 

0.5-1 mg/L before patients regained consciousness, whereas with plasma concentrations of 

alfentanil below 50 µg/L patients awoke at blood propofol concentrations of 2-3 mg/L.(8) For 

remifentanil and propofol, the interaction for intraoperative endpoints and awakening run 

parallel to those between alfentanil and propofol. In general, one may conclude that propofol 

concentrations at which patients regain consciousness are affected by the degree of painful 

stimulation postoperatively and the opioid concentration. The extend of reduction in propofol 

EC50 for intraoperative anaesthetic stability is similar for alfentanil and remifentanil, with a 

potency ratio of alfentanil to remifentanil of 35:1.(8,12) 

 

By computer simulation, based on both pharmacokinetic and pharmacodynamic interaction 

data, the optimal propofol-alfentanil concentration combination has been defined that 

assures both adequate anaesthesia and the most rapid possible recovery in 50% of 



 

patients.(8) This optimal propofol-alfentanil concentration combination has been determined to 

be a blood propofol concentration of 3.5 mg/L in the presence of 85 µg/L alfentanil. After 

termination of a 5-hour target controlled infusion with these concentrations, 50% of the 

patients will regain consciousness after 16 minutes. With higher propofol concentrations the 

postoperative surplus of propofol will postpone recovery, whereas in the presence of lower 

propofol concentrations the higher intraoperative alfentanil concentrations will delay 

recovery. With the use of pharmacokinetic-pharmacodynamic computer simulation, this 

optimal propofol concentration is affected by both the choice of the opioid as well as the 

infusion duration. The steeper the decay in the opioid concentration relative to the decay in 

the propofol concentration, the more the optimal propofol-opioid concentration shifts to a 

lower propofol and a higher opioid concentration. As a consequence, the optimal propofol 

concentration is much lower when it is combined with remifentanil compared when it is 

combined with fentanyl, sufentanil or alfentanil. For example, the optimal propofol 

concentration (EC95 for no response to surgical stimuli) when combined with fentanyl is in the 

order of 5 mg/L, whereas the optimal propofol concentration when combined with 

remifentanil is 2.5 mg/L.(8) The exact optima of these propofol-opioid concentrations are 

defined on the basis of steepness of the concentration decay of propofol relative to those of 

the opioids, as well on the position of the interaction curves associated with a 50 or 95% 

probability of no response to a surgical stimulus, relative to the position of the interaction 

curve associated with a 50% probability of return of consciousness postoperatively. 

Consequently, the optimal propofol concentration decreases in the presence of various 

opioids in the order of fentanyl > alfentanil > sufentanil >> remifentanil (with the order of 

alfentanil and sufentanil changing after approximately 180 minutes (see figure 1)). The 

duration of infusion is the second factor influencing the decay of the two agents and thereby 

the optimal propofol-opioid concentrations. However, with increasing duration of infusion the 

optimal effect-site concentrations change only marginally. 

 

Although the concept of the context-sensitive half-time has improved our understanding of 

the clinical implications of the pharmacokinetics of anaesthetic agents much more than has 

the elimination half-life, one should keep in mind that concentrations not always need to 

decrease by 50% to achieve return of consciousness or spontaneous breathing. It is clear 

that at suboptimal concentrations (not associated with adequate anaesthesia and the most 

rapid possible recovery), as often will occur in clinical practice due to the interindividual 

variability in pharmacokinetics, recovery is much more postponed after propofol-fentanyl 

anaesthesia than when propofol is combined with alfentanil, sufentanil or remifentanil. It is 

also clear that the optimum for the propofol-remifentanil combination is less important than 

for the other propofol-opioid combinations, because even at suboptimal propofol-remifentanil 



 

concentrations recovery, even after prolonged infusion, is still rapid. To avoid a delayed 

return to consciousness, these data suggest that intraoperative responses may be best 

counteracted by additional propofol in combination with fentanyl, alfentanil or sufentanil and 

by additional remifentanil during propofol remifentanil anaesthesia. 

Furthermore, when spontaneous breathing is desired, lower (than optimal) effect-site opioid 

concentrations (e.g. effect-site alfentanil concentrations, < 50 µg/L) in the presence of 

corresponding higher (than optimal) effect-site propofol concentrations should be given. In 

contrast, in the cardiovascular compromised patient, haemodynamic function may become 

less depressed in the presence of higher (than optimal) effect-site opioid and 

correspondingly lower (than optimal) effect-site propofol concentrations. In spontaneously 

breathing patients and cardiovascular compromised patients, suboptimal (with respect to 

speed of recovery) propofol-opioid concentrations thus are indicated intraoperatively at the 

expense of a prolonged recovery. 

From the optimal propofol-opioid concentrations, optimal propofol and opioid infusion 

schemes have been derived that assure adequate anesthesia and the most rapid return of 

consciousness after termination of the infusion when propofol is combined with one of the 

opioids fentanyl, alfentanil, sufentanil or remifentanil (table II). These infusion schemes 

should be used as guidelines and adjustments must be made to the meet the individual 

needs in anticipation of factors such as age, sex, and stimulus intensity related to the type of 

surgery. 

 

1.5 Can We Benefit From Drug Interactions?  

For various clinical endpoints one may now evaluate, on the basis of existing 

pharmacokinetic-dynamic interactions data, if it is possible to benefit clinically from the 

interactions between propofol and the various opioids. 

1. Is it possible to increase the speed of induction on the basis of propofol-opioid 

interactions? Two factors govern speed of induction with a single agent. These are the speed 

of administration and time to peak effect. Time to peak effect is determined by the initial 

distribution of a drug (V1, K12, and K13 with a three compartment model) and the equilibration 

rate between blood and effect site (ke0). It is possible to improve speed of induction using 

propofol opioid combinations, simply because in the presence of high opioid concentrations   



 

Table II. Infusion schemes of propofol and opioids required to maintain effect site concentrations of these agents, when given in combination, with ±15% of 

the effect-site concentrations that are associated with a 50% and 95% probability of no response to surgical stimuli (EC50 and EC95) and the most rapid 

return of consciousness after termination of the infusions. These optimal infusion schemes have been derived from data in female patients undergoing lower 

abdominal surgery. They should be uses as guidelines and be adjusted to the individual needs of the patients. (vuyk et al. (8)) 

 Alfentanil Fentanyl Sufentanil Remifentanil 

Opioid     

EC50-EC95 (µg/L) 90-130 1.1-1.6 0.14-0.20 4.7-80 

Bolus (µg/kg in 30 sec) 25-35 3 0.15-0.25 1.5-2 

Infusion 1 (µg/kg/h) 50-75 x 30 min 1.5-2.5 x 30 min 0.15-0.22 thereafter 13-22 x 20 min 

Infusion 2 (µg/kg/h) 30-42.5 thereafter 1.3-2 x 150 min  11.5-19 thereafter 

Infusion 3 (µg/kg/h)  0.7-1.4 thereafter   

     

Propofol     

EC50-EC95 (mg/L) 3.2-4.4 3.4-5.4 3.3-4.5 2.5-2.8 

Bolus (mg/kg in 30 sec) 2.0-2.8 2.0-3.0 2.0-2.8 1.5 

Infusion 1 (mg/kg/h) 9-12 x 40 min 9-15 x 40 min 9-12 x 40 min 7-8 x 40 min 

Infusion 2 (mg/kg/h) 7-10 x 150 min 7-12 x 150 min 7-10 x 150 min 6-6.5 x 150 min 

Infusion 3 (mg/kg/h) 6.5-8 thereafter 6.5-11 thereafter 6.5-8 thereafter 5-6 thereafter 

 



 

lower effect-site propofol concentrations are needed for loss of consciousness and these are 

reached more rapidly. Because the time to peak effect differs for propofol and the various opioids, 

the timing of the opioid bolus relative to that of propofol is critical in this respect. Times to peak effect 

for propofol, remifentanil, alfentanil, fentanyl and sufentanil are 2, 1.2, 2.3, 4.3 and 7.5 minutes, 

respectively (figure 2). To benefit most from the ability opioids to reduce anesthetic requirements, 

sufentanil should be given well in advance of propofol, more so than remifentanil or alfentanil.  

2. Is it possible to increase the hemodynamic stability of the induction or maintenance of 

anaesthesia on the basis of the current knowledge of propofol-opioid interactions? Opioids reduce 

the anaesthetic dose requirements for induction of anaesthesia. In theory, this may lead to an 

improved hemodynamic profile of the induction of anaesthesia. However in ASA 1-2 patients this 

dose reduction does not leas to a more stable induction of anaesthesia. (12) In elderly patients or 

patients with cardiovascular instability, high opioid/low propofol anaesthesia may be associated with 

increased hemodynamic stability during induction of anaesthesia. However, not data are yet 

available to support this supposition. 

3. Is it possible to decrease the time to awakening postoperatively on the basis of propofol-opioid 

interactions? With the use of optimal propofol-opioid concentrations, it is clearly possible to optimize 

intravenous, anaesthetic drug delivery. The propofol and opioid infusion regimens described in table 

II can be used as guidelines and will allow adequate anesthesia associated with a rapid recovery 

after termination of the propofol and opioid infusions. (8) In general, propofol-remifentanil anesthesia 

is associated with the most rapid return of consciousness after any infusion duration compared with 

fentanyl, alfentanil or sufentanil. Another benefit of remifentanil is that even at suboptimal high 

concentrations, return of consciousness is only marginally postponed. 

4. What are the optimal propofol-opioid concentrations for anesthesia that allow spontaneous 

respiration? So far, no clinical relevant data regarding propofol-opioid interactions for spontaneous 

respiration have been described.  Bouillon et al. (52) described for a single agent, alfentanil, the clinical 

profile in this respect. The EC50 for adequate ventilation during normocapnia is 60 µg/L. With higher 

plasma alfentanil concentrations, the arterial pressure of CO2 has to increase considerable to 

maintain adequate ventilation. Similarly, for propofol is has been shown that with increasing 

concentrations the responses to both hypercapnia and hypoxia are diminished.(30) This means that in 

the presence of propofol hypoxia will be deeper and hypercapnia more severe before a ventilatory 

response will be evoked by these stimulants. Because no interaction data exist, and nor are data 

available regarding the effect of nociception on propofol-opioid respiratory depression, optimal 

propofol-opioid concentrations that assure adequate anesthesia and adequate respiration cannot yet 

be defined. 

5. Lastly, the level of postoperative pain a patient experiences is not only influenced by the 

type of surgery but also by the propofol-opioid concentrations used intraoperatively. When 

propofol is given at high concentrations, intraoperative opioid needs are low. At the end of 



 

surgery, when the propofol infusion is discontinued, the opioid concentration may appear to 

be insufficient for adequate postoperative analgesia. To prevent this from happening, in 

anticipation, intraoperative low opioid concentrations may be avoided or intravenous 

morphine may be administered well in advance of skin closure. 

 



 

2. State-of-the-art Administration Techniques 

  

Target-controlled infusion as used in modern anaesthetic practice refers to the use of an 

infusion pump with an integrated pharmacokinetic dataset. With this technique, the user does 

not set an infusion rate but rather sets the desired blood concentration, i.e. the so-called 

target-concentration. The computer then uses the incorporated pharmacokinetic dataset to 

calculate the infusion rate required to reach and maintain the desired blood concentration. 

Next, the computer triggers the infusion pump to actually administer the infusion rate 

calculated. The pump will initially at a high infusion rate, thus giving a loading dose. In 

addition, the pump will repeatedly calculate the running rate required to maintain a constant 

blood concentration. After the initial loading dose, the calculated maintenance infusion rate 

decreases logarithmically to maintain a constant blood concentration. The logarithmic 

decrease in infusion rate is the result of the gradual saturation of the various pharmacokinetic 

compartments. When a lower target is set, the computer will stop the infusion of the drug 

until, as a result of clearance and redistribution, the desired concentration is reached. 

The development of computer-controlled infusion systems date back to 1983 when Schüttler 

et al. (53) described the use of a computer to perform the ‘bolus elimination and transfer’ 

infusion scheme with a system called CATIA (computer assisted total intravenous 

anesthesia). Many other systems followed, including that of Alvis et al. (54) who compared 

target-controlled infusion-controlled anesthesia with that from a manual administration 

scheme. This has led to the introduction of the clinically available target-controlled infusion 

pump registered for the administration of propofol, the Diprifusor®. The Diprifusor® is provided 

with prefilled propofol syringes containing either 10 or 20 mg/mL of propofol. The prefilled 

syringes are equipped with a passive magnetic device that serves as a recognition tag for the 

target-controlled infusion device to indentify the drug and the solution of the drug in the 

syringe. Two important features of the Diprifusor® are the display of the predicted effect-site 

concentration and the prediction of the time to reach a lower blood concentration. With this 

last feature, anaesthesiologist now is capable of predicting the time to recovery in patient 

irrespective of the infusion duration. 

The accuracy in the prediction of the actual blood concentration (55) by target controlled 

infusion depends on the match between the pharmacokinetic dataset integrated in the 

software and the in vivo distribution and elimination of the drug in the patient. Vuyk et al. (56) 

compared five different pharmacokinetic parameter sets of propofol for their effect on the 

predictive accuracy of propofol target-controlled infusion systems in female patients. In this 

study, the measured propofol concentrations exceeded the concentrations predicted by the 

target-controlled infusion device on average by 20%. The median performance error of the 



 

five datasets tested varied between 20% and 100%, stressing the importance of installing a 

proper pharmacokinetic parameter set.  

Similarly, Mertens reported on the predictive performance of remifentanil target-controlled 

infusion using the Minto parameter set. In general, measured remifentanil concentrations 

were on average 18% lower than predicted by the target-controlled infusion device. In an 

offline analysis, Mertens and colleagues reported on the improved predictive performance 

with the Egan remifentanil pharmacokinetic parameter dataset.(57) Although the parameter set 

of Egan and colleagues(58) performed best in in the analysis of Mertens et al., a population 

pharmacokinetic parameter set like that of Minto(35) may prove to beneficial in a more 

heterogeneous group of patients.  

In conclusion, target-controlled infusion devices have been shown to be capable of predicting 

the actual measured concentrations quite closely, although proper selection of a matching 

pharmacokinetic parameter set remains important. The Diprifusor® has been shown to 

accurately predict the measured concentration in a wide variety of patients.  

In general, the target-controlled infusion mode of administration of drugs provides a number 

of practical advantages to the user compared with conventional infusion; 

• Improved control and predictability of pharmacodynamic effect achieved; 

• Therapeutic concentration achieved rapidly and maintained constant; 

• Control over onset time by slow upward titration of target if desired in the elderly; 

• Proportional changes in blood concentration rapidly achieved; 

• Improved titratability; 

• Avoidance of peak blood concentrations and possible risk of toxicity; 

• No need for calculating of infusion rates; 

• Automatic adjustment for differences in body weight, lean body mass, age or sex if 

complex model available; 

• Displayed effect-site concentration facilitates titration of the blood concentrations; 

• Estimation of the time required to reach a lower plasma concentration; 

• Target concentration regained automatically after syringe change; 

• A more logical and modern approach. 

 

However, may of these advantages have not been proven in outcome studies. Lastly, target-

controlled infusion systems can either target the blood concentration or the effect 

compartment concentration. The only clinically available system, the Diprifusor®, targets and 

controls the blood concentration.  

In conclusion, through target-controlled infusion, the anaesthesiologist is capable of providing 

anaesthetic drugs in a more controlled manner, allowing a more rapid titration of effect to the 



 

individual needs of the patient.



 

3. Bispectral Index Monitoring 

 

In 1875, Richard Caton (59) described the EEG as a way of determining cerebral activity on 

the cortical surface of the skull of animals. Then, in 1937, Gibbs and colleagues(60) 

discovered that the EEG activity was affected by the administration of anesthetic agents. 

Because the raw EE is hardly interpretable online, this quest for a clinically useful parameter 

derived from the EEG has great importance. 

In this search, time domains, frequency domain and higher order statistical analysis 

techniques have been evaluated for their usefulness in the analysis of a depth of anesthesia 

parameter. Time domain-derived parameters are, for example, the change in total power or 

median frequency in time, the occurrence of activity in time in certain EEG frequency bands 

or the frequency of occurrence of burst-suppression. The effect of various anesthetic agents 

on time domain-derived EEG parameters have been described and claimed to be clinically 

useful.(61,62) 

However, apart from various publications in this field, time domain EEG parameters have 

never been exploited on a large scale in clinical practice.  

The most often used frequency domain analytical method for EEG data is the Fast Fourier 

Transformation (FFT). During FFT, the EEG signal is sliced into small time period of a few 

seconds, called epochs. The FFT analysis then results in the projection of the power 

spectrum versus the EEG frequency in, e.g. the 0-30 Hz range, during each epoch. The FFT 

in its turn gives rise to the derivation of clinically useful parameters. Two of the most studied 

FFT derived EEG parameters are the spectral edge and the median frequency. The spectral 

edge (SE95) is the FFT-derived frequency below which 95% of the power spectrum in the 

FFT spectrum is found; the median frequency (SE50) is defined as the frequency below which 

50% of the power in the FFT spectrum is found. Both SE95 and SE50 decrease with 

increasing depth of anaesthesia and increasing blood and CNS concentrations of 

anaesthetic agents. 

Opioid Concentrations correlates very well with the FFT derived parameters. (63,64) With 

increasing opioid concentration, the EEG changes from a low amplitude high frequency 

signal to a high amplitude low frequency signal. This results in the FFT as an increase in 

power at lower frequencies (0-5Hz) with a reduction of power at higher frequencies (10-

30Hz) and results in a decrease of the SE95 and SE 50. 

Intravenous anaesthetic agents such as propofol etomidate and methohexitone also 

correlate very well with frequency domain-derived EEG parameters. With propofol, the EEG 

amplitude shows a characteristic biphasic response to increasing blood propofol 

concentrations in all frequency bands.(65) Again, although claimed clinically useful, frequency 



 

domain-derived parameters have never been used on a broader scale in clinical practice. 

Consequently, the search went on an resulted in the application of higher order statistical 

analysis of the EEG in recent years, which in the end has resulted in the introduction of the 

BIS monitor. 

 

Bispectral analysis focuses on the correlation between the phases of the various wave 

components of which the raw EEG is built. It is a computation of the burst suppression ratio 

(BSR) and QUAZI, two time domain-derived parameters, the β-ratio, a frequency domain 

parameter defining the power in the 30-47Hz band relative to the 11-20Hz band, and lastly 

the SyncFastSlow parameter determined from the bispectrum peaks in the 0.5-47Hz band 

relative to the 40-47Hz frequency band.(66) An important feature in the calculation of the 

bispectral index is that the weight of any of these four subparameters in the final calculation 

(BSR, QUAZI, β-ratio and SyncFastSlow) changes with the level sedation. The β-ratio 

weighs heavier in the final computation at levels of light sedation, the SyncFastSlow 

parameter dominates at excitation and surgical levels of anaesthesia and the BSR and 

QUAZI are more important in the calculation at the most deep levels of EEG depression. The 

specific weight of the parameters of the BIS at various clinical states has been determined, 

during the development of the BIS by Aspect Medical Systems, on the basis of a dataset 

gathered from a group of patients that received various anaesthetics while EEG and 

behavioral data were collected. In practice, the BIS is determined as a running average over 

15-30 seconds of EEG signal collection and visualized as a dimensionless nonlinear 

parameter between 0 and 100, with 0 equalling no electrical activity and 100 defining the 

awake state (figure 4). The BIS reflects the awake state at values exceeding 95, a state of 

sedation at BIS values 65-85, an arousal state depression suited for general anaesthesia at 

BIS values of 40-65 and burst suppression patterns become evident al BIS levels below 

40.(67) 

The effect of various anaesthetic agents on the BIS appears to be agent-specific. In general, 

anaesthetic agents such as propofol, midazolam or thiopental have a strong depressant 

effect on BIS. Blood propofol concentrations of 2 mg/L decrease the BIS to 60-80, propofol 

concentrations of 3-6 mg/L the BIS becomes 40-50 and with propofol concentrations 

exceeding 10 mg/L  burst suppression patterns become apparent and the BIS gets close to 

0.(68) Pharmacodynamic interactions between agents combined during anaesthesia also 

affect BIS values. Only very few data describe the effect of combinations on BIS. As already 

described, opioids reduce propofol requirements for induction of anaesthesia. Parallel to this 

observation, loss of consciousness with propofol occurs at higher BIS values when opioids 

are administered prior to propofol than when propofol is given as a sole agent.(69) The 

significance of this observation is yet unclear.  



 

The most promising application of the BIS may be as a monitor of awake-sedation-

unconsciousness levels. In the absence of CNS monitoring, anaesthetic agents are often 

administered on the basis of the prescribed administration regimens (12-10-8 mg/kg/h step 

down propofol infusion scheme) that may be adjusted to the response of the individual 

patient. The prescribed regimens do not take into account the pharmacokinetic of ± 70% or 

the pharmacokinetic variability of ± 300-400% between patients. This huge interindividual 

pharmacokinetic-dynamic variability, next to the sometime poor predictability of the surrogate 

measures of sedation and anaesthesia (e.g. hemodynamic parameters, movement 

responses to nociception), is the cause of frequent overdosage or underdosage of individual 

patients during sedation and general anaesthesia. Monitoring of the BIS allows for almost 

instant focusing, out of the huge inter- and intraindividual pharmacokinetic-pharmacodynamic 

variability, on the specific needs of the individual patient at any time. 

 

Lastly, BIS monitoring has been incorporated in closed loop systems with a target-controlled 

infusion device for anaesthesia drug administration with BIS value as the control parameter. 

In these systems, the target-controlled infusion system thus determines the infusion rate on 

the basis of the difference between the measured and desired BIS value. Using this system 

provided safe and reliable anaesthesia, although an initial overshoot in BIS value occurred 

during induction of anaesthesia (70,71) as well as some oscillation around the set BIS. (72) 

 

The use of BIS has some limitations. Some agents like nitrous oxide and ketamine, induce 

their effects by mechanisms that the BIS monitor is unable to track. Adding ketamine or 

nitrous oxide deepens the anaesthetic level but increases the BIS. In the presence of these 

agents, the BIS monitor should not be used. Electrocautery will make the BIS disappear or 

increase; pacemakers have also been described to increase the BIS. Electromyographic 

activity has been claimed to increase the BIS, but later versions like the XP may be less 

susceptible to this. Lastly, hypothermia decreases the BIS by 1.12 units per ºC decline in 

body temperature.  

 

As well as articles discussing the commercially available BIS monitor, there is increasing 

attention in the literature on auditory evoked potentials as a parameter to track changes in 

the anaesthetic state. Several studies suggest that mid-latency (73) auditory evoked potentials 

(MLAEP) have potential to be an effective discriminator between the anaesthetised and 

conscious state. (74,75)  These studies even suggest that the distinction between the 

anaesthetised and awake state is sharper, with less overlap in the ranges of conscious and 

unconscious values, with MLAEP derivatives than is the case with the BIS. However, 



 

although monitoring of auditory evoked potentials has proven to be be of value for research 

purposes, at this moment its clinical value remains unclear. 

 

As with the other two strategic tools, the implementation of EEG monitoring by means of the 

bispectral index, or perhaps in the future through monitoring the auditory evoked potentials, 

further enhances the ability of the anaesthesiologist to rapidly obtain information on the 

specific needs of the individual patient 

 

4. Conclusion 

This review provides an overview of how intravenous anaesthetic practice has changed over 

the past 20-30 years, from the administration of anaesthetic agents on the basis of imprecise 

population data in a more or less “black box” type of patient into a anaesthesia on the basis 

of individualised pharmacokinetic-pharmacodynamic data with advanced administration 

devices in a carefully monitored and more “transparent” patient. Increased pharmacokinetic-

pharmacodynamic knowledge of anaesthetic agents, together novel administration and 

monitoring techniques has improved the level of control flexibility and the safety of 

anaesthetic practice. 
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INTRODUCTION 

Previously, we studied the influence of midazolam on the pharmacokinetics of propofol (1). 

The most important finding of that study was that midazolam increased blood propofol 

concentrations by 25% through a reduction in the metabolic, rapid, and slow distribution 

clearances of propofol. In addition, a reduction in mean arterial blood pressure was 

associated with propofol pharmacokinetic alterations that increased the blood propofol 

concentrations even further. In that study, the plasma midazolam concentration, as controlled 

by target-controlled infusion (TCI), was increased when administered in the presence of 

propofol, indicative of a possible influence of propofol on the pharmacokinetics of midazolam. 

 

In clinical practice, midazolam is used for preoperative anxiolysis, to assure sedation during 

regional anesthesia and during ventilation in the intensive care unit and during prolonged 

procedures to induce and maintain surgical hypnosis perioperatively. In these settings, 

midazolam is occasionally combined with other sedatives and/or opioids to obtain the desired 

effect (hypnosis) and limit the side effects (hemodynamic or respiratory depression) (2-5). 

Various combinations of hypnotic drugs and/or opioids have been shown to exhibit both 

pharmacokinetic and pharmacodynamic interactions (6), often increasing the effect of the 

combination. (7-9) 

Researchers studying the effect the propofol-midazolam interaction predominantly evaluated 

the pharmacodynamic interaction. (3,4,10,11) Only 1 study described the pharmacokinetic 

interaction between propofol and midazolam and reported that propofol affected the 

clearance of midazolam through a possible competitive inhibition of hepatic CYP 3A4.(8) 

However in that study, clearance was determined on the basis of the influence of just a 1-

hour infusion of propofol on the pharmacokinetics of midazolam that was given as just a 

single bolus dose. Because propofol and midazolam are at times combined for prolonged 

periods of time, e.g., for intensive care unit sedation (10), we evaluated this interaction during 

prolonged infusion.  

We hypothesized that prolonged infusion op propofol would affect the pharmacokinetics of 

midazolam and that hemodynamic factors might play a role in this pharmacokinetic 

interaction. Therefore, we studied the influence of a 7-hour infusion of propofol on the 

pharmacokinetics of midazolam and evaluated the influence of various hemodynamic 

variables.  



 

MATERIALS AND METHODS 

Volunteers and Study Protocol 

After obtaining approval of the Medical Ethics Committee of the Leiden University Medical 

Centre and written informed consent, 8 healthy male volunteers, were studied. All volunteers 

were within 30% of ideal body weight, had no history of renal or hepatic disease standards 

and were not taking medication within 6 months before or during the investigation. All 

volunteers denied smoking or consumption of more than 20 g of alcohol per day. Before the 

investigation, a blood sample was taken for screening of renal or hepatic disease in 

accordance with Leiden University Medical Centre standards.  

Volunteers were studied in a randomized cross-over manner during two sessions. During the 

first session volunteers received a midazolam bolus dose of 0.035 to 0.05 mg.kg-1 in 1 min 

followed by an infusion of 0.035 to 0.05 mg.kg-1.h-1 for 59 min (session A, control). During the 

second study session (session B) the volunteers received the same midazolam infusion 

scheme as during session A, but now in the presence of a TCI of propofol for 7 hours at a 

constant propofol target concentration (CT) of 0.6 or 1.0 µg.ml-1 using the Diprifusor®. The 

target controlled infusion of propofol was started 15 min before to the start of the midazolam 

administration to ensure a semi steady state concentration of propofol at the beginning of the 

midazolam infusion. 

The 2 sessions were separated by a period of at least 2 weeks. Both the CT (0.6 or 1.0 

µg.mL-1) and the order of the 2 sessions were randomized, such that in half of the volunteers 

the control sessions preceded the other session and half of the volunteers received a CT of 

0.6 µg.mL-1 and the other half 1.0 µg.mL-1.  Volunteers fasted from midnight on the night 

before the study until the last blood sample had been collected. During the administration of 

propofol, they breathed 30% oxygen in air. When indicated, ventilation was assisted using a 

face mask to maintain the end-tidal CO2 partial pressure at <50 mm Hg. After termination of 

session A and B, the subjects were monitored for another 4 h during which they could 

recover from residual sedation and then received a light meal before they were escorted to 

their homes.  



 

Materials 

The studies were performed in an operating room. An IV cannula was inserted into a large 

forearm vein for the infusion of propofol and midazolam and an arterial cannula was inserted 

into a radial artery for collection of hemodynamic data and blood samples. The 

electrocardiogram, respiratory rate, peripheral oxygen saturation, the bispectral index and 

intra-arterial blood pressure were monitored continuously throughout the study. Furthermore, 

the cardiac output was determined using the pulsecontour methodology on the basis of the 

intra-arterial blood pressure curve with the LiDCOplus monitor (LiDCOgroup plc, London). 

The LiDCO monitor was calibrated before each experiment. For this purpose, a lithium 

sensor was connected to the arterial cannula. After 0.2mmol lithium was injected IV, the 

LiDCO monitor was calibrated on the basis of the non-invasive online-determined arterial 

lithium concentration-time curve and the cardiac output calculated. The LiDCO has been 

found reliable for cardiac output monitoring when compared with traditional thermodilution 

cardiac output monitoring for up to 8 hours after calibration (LiDCO versus thermodilution; r = 

0.86).(12) Blood samples were drawn from the arterial cannula, after calibration of the 

LiDCO. 

Heart rate; cardiac output; cardiac index; systemic vascular resistance, the systolic, mean 

and diastolic arterial blood pressure were all recorded online and saved for further analysis. 

All volunteers received an infusion of saline of 2 ml.kg-1.h-1 during each session.  

 

Blood Samples and Assays 

During session A, a blank blood sample (10 mL) was obtained. This sample was used for 

calibration purposes. Additional arterial blood samples (5 mL) for the determination of the 

plasma midazolam concentration, were taken 1, 3, 5, 10, 20, 30, 45 and 60 min after the start 

of the midazolam infusion, and 1, 2, 3, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300 and 360 

min after termination of the midazolam infusion. Blood samples were taken into heparinised 

syringes for determination of the plasma midazolam concentration. These samples were 

centrifuged to obtain plasma which was subsequently stored at -20 °C until analysis. The 

concentration of midazolam in plasma was determined by reversed-phase high-performance 

liquid chromatography-UV detection at 216 nm (HPLC).(13) The intra- and interassay 

coefficients of variation of this method were 2.2% and 2.0 % respectively, for midazolam in 

plasma in the concentration range of 9.7-1120 ng.mL-1. Midazolam assays were conducted 

within 12 weeks. 

During session B, in addition to the sample scheme in session A, an additional arterial blood 

sample (3 ml) was taken every 60 minutes for determination of the whole blood propofol 

concentration. These blood samples were stored at 4 °C. Propofol assays were carried out 

within 12 weeks. Propofol concentrations in blood were measured by HPLC-fluorescence at 



 

276 nm.(14) The intra- and interassay coefficients of variation of this method were 4.3% and 

3.7 % respectively, for propofol in blood in the concentration range of 0.06-6.8 µg.mL-1. The 

assays of midazolam and propofol did not interfere because the fluorescence wavelengths of 

midazolam (217 nm) and propofol (276 nm) do not overlap. This allows a distinct and 

accurate estimation of the 2 drug concentrations. Measured and predicted propofol 

concentrations were compared using the Wilcoxon signed rank test. 

 

Statistical Analysis 

A first exploratory analysis of hemodynamic differences between sessions 1 and 2 was 

performed using the Wilcoxon signed rank test (SPSS version 12.5 for windows; SPSS, 

Chicago, IL). A probability level <0.05 was considered significant. The aim of this analysis 

was to explore the significance of the hemodynamic changes by propofol and limit the 

number of hemodynamic variables to be tested as covariate in the population 

pharmacokinetic analysis by NONMEM (version VI 1.2) 

Population pharmacokinetic parameters were estimated using the first-order conditional 

estimation method with η ε interaction for a 3-compartment model (ADVAN11). A 

proportional error model was used with variance σ2 of the intraindividual variability terms (ε). 

The interindividual variability of each model parameter was specified using a log-normal 

variance model:  with 

  

 

Where Φi  is the population value and ΦTV i(t) is the typical value with fixed effects taken into 

account of the pharmacokinetic parameter in individual i at time t.  is the Bayesian 

estimate of the normally distributed random variable η (with mean zero and variance ω2) in 

the individual i (which is estimated by NONMEM),typical (population) m is the number of 

covariates considered, αj is the value of a coefficient parameter describing the dependence 

of the pharmacokinetic parameter on covariate j, and MDcovj is the median of the covariate j 

in the population. MDcovj is the median of 16 observations (8 volunteers times 2 sessions), 

except for the propofol concentration (only session B). 

Coefficients of variation (CV%) were calculated as 100 times the square root of the variance 

ω2 of η and, parameter distributions being asymmetric, are only approximately the 

coefficients of variation as usually defined. 

 

 

 



 

Pharmacokinetic Data Analysis and Inclusion Procedure for Covariates 

 A pharmacokinetic parameter set was determined on the basis of the plasma 

midazolam concentration-time data alone (without covariates) of the 16 sessions. Three 

compartment models were fitted to the data (number of components based on literature and 

experiment design) with parameters V1-V3 and Cl1-Cl3 (central volume of distribution [V1], 

shallow peripheral volume of distribution [V2], deep peripheral volume of distribution [V3], 

elimination clearance [Cl1], rapid distribution clearance [Cl2], and slow distribution clearance 

[Cl3]).  

 To determine the influence of propofol on the 6 midazolam pharmacokinetic 

parameters, all 64 (64 = 26, 2 referring to the presence or absence of the covariate, 6 

referring to the 6 possible pharmacokinetic parameters) possible combinations for the 

covariate propofol were evaluated. Propofol was treated as a time-independent covariate. 

The model with the lowest Akaike’s Criterium (AIC) value was considered best. 

 The hemodynamic parameters that differed significantly between sessions A and B 

were evaluated as potential covariates to further improve the predictability of the midazolam 

pharmacokinetic parameter set. The arrhythmic mean of these hemodynamic parameters of 

the time periods before a blood sample was taken for plasma midazolam concentration 

analysis were calculated. These data then were treated as time-dependent variables in the 

analysis. For each hemodynamic parameter, another 64 analysis runs were performed on 

the basis of the pharmacokinetic parameter set of midazolam with propofol as covariate 

included. Again, the combination with the lowest value for AIC was considered best.(15) 

 To assess the accuracy of the model, we calculated the weighted residual (WR) and 

the absolute weighted residual (AWR) for each sample.  

         

In which Cmeas,ij is the jth measured concentration of the ith individual, and the Cpred,ij 

denotes the corresponding predicted value. The median values of the weighted 

residuals (MDWR) and the absolute weighted residuals (MDAWR) were used as 

overall measures of goodness of fit.  

The likelihood profile method was used to assess statistical significance of the 

covariate coefficients. In this method, each coefficient is fixed to a range of values at 

which the -2 log likelihood (-2LL) is determined (by optimizing the remaining 

parameters). The 2 values of each coefficient that yield an increase of 3.84 in -2LL 

constitute the 95% confidence intervals. Finally, internal model selection validation 

was performed using the bootstrap. In this approach, 1000 bootstrap data sets were 

subjected to analysis with a set of models and the number of time each model was 



 

selected was counted to asses replication stability.(16) The set of models consisted of 

those with 1 covariate model added at a time in order of importance according to the 

objective function values. The final model parameter estimates were also used to 

obtain 95% confidence intervals (using the percentiles method). 

 

Computer Simulations 

The clinical consequences of the influence of propofol on midazolam pharmacokinetics were 

explored by computer simulation using the final midazolam pharmacokinetic parameter with 

propofol and heart rate as covariates in a 85-kg male. 

Three computer simulations were performed. (1) A computer simulation exploring the 

influence of the blood propofol concentration of 0 or 1.5 µg.mL-1 (1.5 µg.mL-1 was the 

maximal blood propofol measured in this study) on the midazolam concentration-time profile 

in the presence of a stable heart rate of 63 beats/min. (2) A computer simulation to evaluate 

the effect of heart rate on the midazolam concentration-time relationship. For this purpose we 

explored the influence of a heart rate of 40 and 90 bpm on the midazolam concentration-time 

profile in the absence of propofol. (3) A computer simulation evaluating the influence of 

propofol on 50% (the context sensitive half-time) and the 80% decrement time of midazolam. 

For this purpose we used the final midazolam pharmacokinetic parameters in the presence 

of a blood propofol concentration of 0 or 1.5 µg.mL-1 with a stable heart rate of 63 bpm. 



 

RESULTS 

All volunteers completed the study without adverse events. Volunteers that received propofol 

in addition to midazolam were sedated for a longer period of time after the ending of the 

study. All volunteers stayed in the hospital for 4 h after the end of the study and then were fit 

to leave the hospital. The mean (± SD) age, weight and height of the volunteers were 25.5 ± 

5.8 yr, 85 ± 8.2 kg and 188 ± 5 cm.   

 

 

 

 

 

 

 

Blood propofol concentration analyses and plasma midazolam concentration analyses were 

performed within 12 weeks after the end of the study. Blood propofol concentrations were 

stable in each participant (fig. 1) and were similar as predicted (+2%, P = 0.378) in those who 

received a CT of 0.6 µg.mL-1 and significantly higher than predicted (+23%, P <0.001) in 

those who received a CT of 1.0 µg.mL-1. None of the volunteers experienced significant 

respiratory depression and the end-tidal partial CO2-pressure never exceeded 50 mm Hg.  

Figure 1. Blood propofol concentration-time curves of the 

individual subjects during session B. The continuous lines indicate 

subjects who received a target-controlled infusion of propofol with 

a target concentration of 0.6 µg/mL; the dashed lines indicate 

those who received a target of 1.0 µg/mL. 



 

During the 16 study sessions 470 blood samples were collected for both midazolam and 

propofol concentration determination. The analysis of the pharmacokinetics of midazolam in 

this study is based on 368 measured plasma midazolam concentrations. In the presence of 

propofol mean arterial pressure, cardiac output and stroke volume were significantly lower 

and heart rate higher than when midazolam was given as sole drug (table 1). Because of a 

power failure, hemodynamic data were lost in 1 session. Consequently the pharmacokinetic 

parameter sets of midazolam without covariates (the naively pooled) and with propofol as 

covariate are based on the concentration time data of 16 sessions, whereas those with an 

additional hemodynamic parameter as covariate are bases on hemodynamic data of 15 

sessions. 

 

Table 1 Median (range) Hemodynamic parameters obtained during the 420 min study in 

session A (without propofol) and session B (in the presence of propofol) 

Parameter Session A median 

(range) 

Session B median 

(range) 

Difference (%) Significance P-

value 

HR (beats/min) 63.6 (42.5-79.2) 64.4 (49.1-84.0) +1.2 0.003 

MAP (mm Hg) 72.8 (60.6-91.4) 70.3 (55.7-93.0) -3.5 <0.001 

SVR (dynes.s-1.cm-5 664.6 (463.7-1934.6) 759.1 (524.5-1552.0) +14.2 0.039 

SV (mL/beat) 128.7 (49.8-174.4) 98.8 (69.9-170.8) -23.0 <0.001 

CO (l/min) 7.78 (3.1-11.6) 6.39 (4.1-10.2) -17.8 <0.001 

 

Figure 2 shows the measured plasma midazolam concentrations in the presence and 

absence of propofol when targeted at a target propofol concentration (CT) of 0.6 and 1 

µg.mL-1, respectively. In the presence of a CT: 0.6 µg.mL-1 (mean measured blood propofol 

concentration of 0.62 µg/mL-1) and CT 1.0 µg.mL-1(mean measured blood propofol 

concentration of 1.2 µg.mL-1) the plasma midazolam concentrations were 5.0 ± 14.7% and 

26.9 ± 9.4% higher than when midazolam was given as sole drug (P = 0.115 and <0.001, 

respectively).  

The addition of propofol as covariate significantly improved the pharmacokinetic model of 

midazolam according to the AIC (Table 2). The pharmacokinetic parameters of midazolam 

influenced that were influenced by propofol were V1, Cl1 and Cl2. With a blood propofol 

concentration increasing from 0 to 1.2 µg.mL-1, V1 of midazolam decreased from 5.37 to 2.98 

L, Cl1 decreased from 0.39 to 0.31 L.min-1 and Cl2 from 2.77 to 2.11 L.min-1 (fig. 3). Various 

hemodynamic parameters, when included in the midazolam pharmacokinetic model, reduced 

the AIC and residual error (σ2) significantly. Of these hemodynamic covariates, heart rate 



 

contributed most according to the AIC. Midazolam pharmacokinetic parameters influenced by 

heart rate were V3, Cl1 and Cl2 (table 2, figure 4). Figure 5 shows the results of the 

optimization process and displays the measured versus the predicted midazolam 

concentrations for the model without any covariates (Fig 5A) and the population predicted 

(Fig. 5B) and the individual predicted (Fig. 5C) midazolam concentrations for the model with 

propofol and heart rate as covariates. In figure 6, the log likelihood profiles are shown. The 

plots contain lines that denote a 3.84 increase in -2LL from which the 95% confidence 

intervals for the parameters can be read. 

The bootstrap model selection validation resulted in 0%, 10.2% 25.6%, and 64.1% selection 

frequencies for propofol as covariate on no parameters, V1, V1 and Cl1, V1, Cl1 and Cl2, and 

0%, 13.2%, 36.6% and 50.1% with, in addition, heart rate on no parameters, Cl2, Cl2 and V3 

and Cl2 V3 and Cl1. The 95% confidence intervals obtained from the bootstrap and likelihood 

profiles were similar to those that would be obtained by the normal approximations using 

values and SEs from table 2. 

 
Figure 2. The mean (SE) plasma midazolam concentration-time curves in the volunteers in the 
presence (continuous line) or absence (dashed line) of a target controlled infusion of propofol of 0.6 

μg.mL-1 (A) or 1 μg.mL-1 (B). The plasma midazolam concentration-time curves have been normalized 
to the same midazolam dosing scheme of 0.05 mg.kg-1 in 1 minute followed by an infusion of 0.05 
mg.kg-1.hr-1 for 59 minutes. 



 

Values in parenthesis are -2LL and AIC for 15 volunteers. Parameters V1-Cl3 are the parameters of an individual with median covariate values. The median covariate values are 
461.697 ng.mL-1 for propofol and 63.421 beats/min for heart rate. For example Cl1=0.36 X e((-0.000188(C

prop
-461.697) + (0.00895 (HR-63.241))).  

HR = Heart Rate, V1 = central volume of distribution, V1 = rapidly equilibrating peripheral volume of distribution, V3 = slowly equilibrating peripheral volume of distribution, Cl1 = 

elimination clearance, Cl2 = rapid distribution clearance, Cl3 = slow distribution clearance; CV = coefficient of variations; SE = standard error of estimate; α = measure of covariate 
importance (when omitted the covariate is not significant); Prop = concentration of propofol; -2LL = -2 X log likelihood; AIC = -2 LL + 2P, where P is the number of nonfixed 

parameters; AIC = Akaike’s Information-theoretic Criterion; MDWR = Median Weighted Residual; MDWAWR = Median Absolute Weighted Residual; σ2 = relative residual error  
(a) Significant covariate  (95% confidence interval obtained from the likelihood profile does not contain 0) 

Table 2. Population Pharmacokinetic Parameters of Midazolam in the absence of any Covariates (First 3 columns), in the presence of Propofol as covariate 

(second 3 columns) and with Propofol and Heart Rate as covariates (last 3 columns) 

Midazolam Pharmacokinetic Parameters 
 No covariates Propofol as covariate Propofol and Heart Rate as covariate 

 Value SE CV% Value SE CV% Value SE CV% 
Parameter          

V1     4.03 0.35 34.5    4.03 0.26 25.3    4.28 0.30 22.9 
V2 26.9 1.12 15.7 26.9 1.14 15.8 26.2 1.13 15.4 
V3  54.2 3.65 23.2 54.1 3.61 22.4 48.6 2.85 19.0 
Cl1     0.36 0.02 17.5    0.36 0.01 14.0    0.36 0.01 12.6 
Cl2    2.90 0.18 26.4    2.90 0.19 23.4    2.49 0.16 20.1 
Cl3    0.38 0.02 14.0    0.38 0.02 14.2    0.36 0.02 11.5 

Covariates          

αpropofol, V1    -4.53 X 10-4 1.27 X 10-4  -4.90 X 10-4 1.29 X 10-4 (a)  
αpropofol, V2          

αpropofol, V3          
αpropofol, Cl1    -2.05 X 10-4 7.69 X 10-5  -1.88 X 10-4 7.04 X 10-5 (a)  
αpropofol, Cl2    -2.32 X 10-4 1.43 X 10-4  -2.27 X 10-4 1.32 X 10-4 (a)  

αpropofol, Cl2          
αpropofol, Cl3          

αHR, V1          
αHR, V2          
αHR, V3       -1.54 X 10-2    3.50 X 10-3 (a)  

αHR, Cl1       8.95 X 10-3 6.08 X 10-3  
αHR, Cl2       3.10 X 10-3 6.69 X 10-3 (a)  
αHR, Cl2          

αHR, Cl3          
Performance measures         

-2LL 1622.991   1604.449 (1495.260)  1473.541   
AIC 1648.991   1636.449 (1527.260)  1511.541   
MDWR (%)     0.62         1.55      0.98   
MDAWR (%)   10.82       10.46    9.87   
σ2         0.00515        0.00516     0.0048   



 

 
Figure 3. Individual estimates of the initial volume of distribution (V1), elimination clearance 

(Cl1), and rapid distribution clearance (Cl2) of midazolam obtained from the model without 

covariates as function of the blood propofol concentration. The regression line results from 

the NONMEM analysis. 



 

  
Figure 4.  Individual estimates of the slowly equilibrating volume of distribution (V3), 

elimination clearance (Cl1), and the rapid distribution clearance (Cl2) of midazolam obtained 

from the model without covariates as function of the heart rate. The regression line results 

from the NONMEM analysis. 



 

 

Figure 5. The measured versus the predicted midazolam concentrations for the 

pharmacokinetic model without covariates (A) and the population predicted (B) and the 

individual predicted  (C) midazolam concentrations for the model with propofol and heart rate 

as covariates. The straight line indicates x=y 



 

Computer Simulations 

The 3 computer simulations using the final pharmacokinetic parameter set offer a clear view 

of the consequences of the propofol midazolam interaction on the midazolam dose-

concentration relationship. (Table 3) In the presence of a blood propofol concentration of 1.5 

µg.mL-1, midazolam concentrations are increased (Fig.7). The simulations revealed that in 

the presence of propofol the bolus dose of midazolam should be reduced by 25% for short 

term midazolam dosing schemes to obtain a similar midazolam plasma concentration-time 

profile as in the absence of propofol. When midazolam is given for an infusion of several 

hours the simulation suggest that an additional reduction of 15% in the midazolam infusion 

rate is required to obtain equal midazolam concentrations in the presence of and absence of 

propofol. 

In figure 8 the influence of heart rate on midazolam pharmacokinetics is explored. The 

computer simulations show that varying the heart rate from 45 to 90 bpm the predicted 

midazolam concentration changes to a limited degree. Heart rate affects predominantly the 

initial distribution of midazolam. The influence of propofol on the pharmacokinetics of 

midazolam furthermore becomes evident in Figure 9. The concomitant administration of 

propofol at a blood concentration of 1.5 µg.mL-1 (the maximal measured blood propofol 

concentration in this study) leads to a slight increase in the CSHT and a significant 

lengthening of the 80% decrement time of midazolam. 

 

Table 3. Pharmacokinetic parameters of Midazolam (based on the final Pharmacokinetic 
Parameter Set with Propofol and Heart Rate as covariates) for various Propofol and Heart Rate 
Values as used in the Computer Simulations 

Propofol (μg/mL) 0 1.5 0 0 

Heart Rate (min-1) 63 63 40 90 

V1 5.37 2.57 5.37 5.37 

V2 26.2 26.2 26.2 26.2 

V3 48.9 48.9 69.7 32.3 

Cl1 0.39 0.30 0.32 0.50 

Cl2 2.73 1.94 1.34 6.30 

Cl3 0.36 0.36 0.36 0.36 

 

 



 

 
Figure 6. Likelihood profiles for the 6 covariate coefficients of the final model. The plots 

contain lines that denote a 3.84 increase in -2 log likelihood  (-2LL) from which the 95% 

confidence intervals for the parameters can be read. The values for the x-axes have been 

multiplied with a value of 1000 for clarity. 



 

 
Figure 7. The concentration-time profile of a simulated midazolam infusion scheme (0.05 mg.kg-1 in 1 
minute followed by a continuous infusion of 0.05 mg.kg-1.hr-1for 59 minutes) in the presence of a blood 

concentration of 0 and 1.5 μg.mL-1, with a steady heart rate of 63 bpm. 

 
Figure 8. The concentration-time profile of a simulated midazolam scheme (0.05 mg.kg-1 in 1 minute 
followed by a continuous infusion of 0.05 mg.kg-1.hr-1for 59 minutes) in the presence of a heart rate of 40 
and 90 bpm, with a constant blood propofol concentration of 1.2µg.mL-1. Simulation for the time span of 
120 minutes (A) and for the initial 12-minute time period (B).



 

DISCUSSION 

We studied the influence of propofol on the pharmacokinetics of midazolam. We 

hypothesized that propofol would alter the pharmacokinetics of midazolam. The results of 

this study confirmed our hypothesis. The most important finding of this study is that propofol 

(Cblood: 1.2 µg.mL-1) increased midazolam concentrations by 26.9%. In the presence of 

propofol midazolam is administered in a smaller central compartment from which midazolam 

is cleared and distributed less rapidly to peripheral tissues.  

Next to the primary findings of this study, we identified heart rate as the hemodynamic 

parameter that further improved the pharmacokinetic dataset of midazolam. Although heart 

rate improved the pharmacokinetic model of midazolam (as based on the AIC), computer 

simulations revealed this effect to be of limited clinical importance. 

 

Interaction Mechanisms 

The pharmacokinetic parameter set of midazolam without covariates described in this study 

corresponds well with midazolam pharmacokinetic parameter sets in the literature.(17-20) 

Our pharmacokinetic parameter set corresponds most closely with that by Buhrer et al.(18) 

probably because of similarities in the study design and the population studied, with 

comparable midazolam dose regimen.  

Midazolam, with its metabolism mainly through cytochrome 3A3, 3A4 and 3A5, (21-23) is 

subject to numerous pharmacokinetic interactions on the basis of enzyme inhibition or 

induction in the liver and possibly the kidneys (24-26) The concentration shifts caused by 

these CYP 450 interactions that affect the clearance of midazolam are huge (up to 1000%), 

but in practice these interactions occur infrequently. (27) The interactions between 

anaesthetic drugs, however, occur more frequently, even daily, but induce concentration 

shifts that are less significant. (8,26) 

In general, interactions between anaesthetic agents lead to an increase in the concentrations 

of the drugs combined. For example, alfentanil has been shown to increase blood propofol 

concentrations through a decrease in the elimination clearance and distribution clearance of 

propofol.(28) Propofol has been shown to increase alfentanil concentrations by decreasing 

the elimination clearance, rapid and slow distribution clearances of alfentanil.(29) Co-

administration of propofol increased remifentanil concentrations through both a decrease in 

the central volume of distribution and distributional clearance of remifentanil by 41% and 

elimination clearance by 15%.(30)  

The results of our study follow the above described patterns such that in the presence of 

propofol (Cblood: 1.2 µg.mL-1), plasma midazolam concentrations were increased (26.9%). 

Both hemodynamic and enzymatic factors may be responsible for this interaction. 

In contrast, to propofol that is known for its high hepatic extraction ratio (>0.9),(31) 

midazolam is a drug with an intermediate extraction ratio of 0.55(23). Therefore, the 



 

clearance of midazolam may be affected by changes in hepatic blood flow, free fraction, and 

intrinsic hepatic enzyme activity. Propofol is generally known for its hemodynamic 

depressant effects an may reduce hepatic blood flow(32). In addition, in our study, the mean 

arterial pressure, stroke volume, and cardiac output were reduced in the presence of 

propofol (Table 1). This suggests that, at least to some extent, the reduction in clearance 

described in this study (Cl1 from 0.40 to 0.31 L.min-1 -20%) may be caused by a propofol 

induced reduction in hepatic blood flow. 

In addition, propofol is known as a CYP450 3A4 inhibitor (33). In contrast to enzyme 

induction that may take several weeks to develop, competitive inhibition of CYP activity may 

occur almost instantaneously because of the competition of two drugs (e.g. propofol and 

midazolam) for the enzyme’s active site. A short-term exposure to propofol at blood 

concentrations of 3 µg.mL-1 reduced the CYP 3A4 activity by approximately 37%.(8) 

Therefore we conclude that the propofol induced reduction in the metabolic clearance of 

midazolam likely is the result of both the hemodynamic depressant and enzymatic inhibitory 

effects of propofol. 

In addition to the propofol related reduction in midazolam clearance, hemodynamic 

alterations induced by propofol also influence the distribution pharmacokinetics of 

midazolam. Next to the influence of heart rate on the initial distribution, the hemodynamic-

depressant effects of propofol are also responsible for the reduced transfer of midazolam to 

the peripheral tissues by reduction in Cl2 by 44.5% from 2.77 L.min-1 to 2.11 L.min-1 in the 

controls. From table 1, the difference in heart rate between sessions A and B seems obscure 

and only significantly different between sessions because of the power of paired testing. 

Nevertheless, the addition of heart rate significantly reduced AIC (∆-AIC, Table 2) the 

residual error (σ2, Table 2) and the interindividual variability (CV%, Table 2) 

Observation of the raw heart data and the residual errors in each individual finally taught us 

that this apparent discrepancy is explained by the fact that heart rate does not so much 

reduce the interindividual variability or the variability between sessions A and B but 

minimizes variability within each individual.  

Finally model selection stability as assessed by the bootstrap showed that the replication 

stability was robust; in other words, the final models presented have a higher probability of 

being selected than simpler ones. The 95% confidence intervals as derived from the log 

likelihood profiles (Fig. 6) for the covariate effect on propofol on Cl2 and heart rate on Cl1, 

included 0. Although these covariate effects did not attain statistical significance, inclusion of 

those effects may be still of importance for prediction because they were selected by AIC. 

This is in agreement with the arguments for predictor selection as described by Steyerberg. 

(34) 

In conclusion when midazolam and propofol are combined, (3-5,35) propofol increases the 

midazolam concentrations by a reduction in the central volume of distribution and the 



 

metabolic and rapid distribution clearances of midazolam in a concentration dependent 

manner. Inclusion heart rate significantly improved the predictive performance of the 

midazolam pharmacokinetic model affecting the initial distribution of midazolam and reducing 

the intraindividual variability. The propofol-midazolam pharmacokinetic interaction allows for 

a 25% reduction of the midazolam bolus dose during short-term combined administration (2-

3 hours). Although the influence of midazolam on propofol pharmacokinetics is 

predominantly by hemodynamic alterations (1), the results of this study suggest that propofol 

affects midazolam pharmacokinetics both through enzyme inhibition and hemodynamic 

alterations. 

 

 
Figure 9. Context sensitive half-time (CSHT = 50 decrement time) and 80% decrement time of 

midazolam in the absence (continuous line) and in the presence of a blood propofol concentration of 

1.5 µg.mL-1 (dashed lines), using the final midazolam pharmacokinetic data set in the presence of a 

blood propofol concentration of 0 or 1.5 µg.mL-1 with a stable heart rate of 63 bpm. 
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Introduction 
 
The Bispectral index (BIS) is increasingly used to monitor the level of unconsciousness 

during surgical anaesthesia and consciousness sedation.1 Generally, an intraoperative BIS 

of 40-60 is considered sufficient to maintain adequate hypnosis for surgery. 2, 3 Recently, a 

new version of the BIS®  monitor has been introduced: the BIS-XP® (Aspect Medical 

Systems, Newton, MA). The BIS-XP® is said to exhibit improved resistance to artifacts form 

electrocautery devices and to detect and filter interference from electromyographic activity 

and other conditions commonly encountered during monitored anesthesia care sedation that 

may cause artifacts. 

 

We report three cases in which volunteers receiving combinations of propofol and midazolam 

as a part of a pharmacokinetic-dynamic interaction study remained responsive to verbal 

command, although the BIS-XP values were at, or just above 40.  

 
CASE REPORTS; 
 
With the approval of the Leiden University Medical Center ethics committee and informed 

consent from the subjects, a study on the pharmacokinetic-dynamic interaction between 

propofol and midazolam at varying concentration combinations was performed. For each 

subject, the electroencephalogram was recorded continuously using the BIS® Quatro sensor 

(Aspect Medical Systems), placed as prescribed on the left side of the skull and connected to 

the BIS-XP®. For all subjects, the impedance was low (on the order of 2–4 kΩ), and the 

signal quality index was high (0–100; well above 50) at the times of sedation assessments. 

The processed electroencephalogram variables were stored on a disk for off-line analysis. In 

addition, the electrocardiogram, transcutaneous arterial oxygen saturation, end-tidal carbon 

dioxide concentration, respiratory rate, and arterial blood pressure were monitored 

continuously throughout the study. 

The volunteers breathed spontaneously through a mask with an inspiratory oxygen fraction 

of 40%. All three volunteers maintained adequate spontaneous respiration and were 

hemodynamically stable throughout the study. After a 10-min baseline recording period, a 

target-controlled infusion of propofol was started using the Diprifusor® (AstraZeneca, 

Macclesfield, United Kingdom) with maintenance of a constant target propofol concentration 

for 435 min. Fifteen minutes after the start of the target-controlled infusion of propofol, 

midazolam was given as a rapid infusion for 1 min, followed by a slower continuous infusion 

for 59 min. At regular intervals, when blood samples were taken from the arterial line for 

analysis of blood midazolam and propofol concentrations, the level of sedation was assessed 

by verbal command and/or mild prodding. 

 



 

Case 1 

The first subject was a 27-yr-old man who weighed 85 kg and was 185 cm tall. The target 

propofol concentration for this subject was 0.6 µg/ml, and the initial and secondary 

midazolam infusion rates were 0.05 mg · kg−1 · min−1 and 0.05 mg · kg−1 · h−1, respectively 

(total midazolam dose in 60 min, 8.5 mg). For the awake volunteer, the BIS exceeded 95 in 

the absence of any medication. Then, with the target propofol concentration of 0.6 µg/ml, the 

BIS was maintained at 97 after blood-effect site equilibration (fig 1).Thereafter, during the 

first 40 min after the start of the midazolam administration, the BIS decreased to ≈ 60 during 

unstimulated periods and increased to 98 after verbal stimulation. Forty minutes after the 

start of the midazolam infusion, the BIS gradually decreased further to 40 at the end of the 

midazolam infusion. Unexpectedly, throughout the study period the volunteer remained 

responsive to verbal commands and/or mild prodding at the shoulder to a degree equivalent 

to an Observer’s Assessment of Alertness/Sedation score between 2 and 4, even at BIS 

levels of 40–45. 

 

 

Fig 1. The Bispectral Index (BIS) versus time in case 1. Time 0-5 min displays the last 5 min (i.e., the time after 

blodd-effect site equilibration) of the 15 min period, when only propofol was given by a target concentration of 0.6 

µg/ml. At time 5 midazolam was added at 0.05mg.kg-1 for 1 min followed by a continuous infusion of 0.05mg.kg-

1.h-1 for 59 minutes. All three volunteers maintained adequate spontaneous respiration and hemodynamic stability 

throughout the study period. At time 65 min, the midazolam infusion was terminated, but the target-controlled 

infusion of propofol was still continued. The area considered to be associated with adequate hypnosis for surgery 

(BIS 40-60) is shown within the gridlines. The volunteer was responsive to verbal command and/or mild prodding 

at all times. 



 

Case 2 
 

The second subject was a 25-yr-old man who weighed 100 kg and was 195 cm tall. The 

target propofol concentration for this subject was also 0.6 µg/ml, and the initial and 

secondary midazolam infusion rates were 0.05 mg.kg−1.min−1 and 0.05 mg.kg−1.h−1, 

respectively (total midazolam dose in 60 min, 10 mg). For the awake volunteer, the BIS 

exceeded 95 in the absence of any medication. Then, with propofol at a target concentration 

of 0.6 µg/ml, the BIS was maintained at 97 after blood-effect site equilibration (fig 2.) 

Thereafter, within 3 min after the start of the midazolam administration, the BIS decreased to 

67 and gradually decreased further to as low as 40 at the end of, and just after termination 

of, the midazolam infusion. Again, throughout the study period the volunteer remained 

responsive to verbal commands and/or mild prodding at the shoulder to a degree equivalent 

to an Observer’s Assessment of Alertness/Sedation score between 2 and 4, even at BIS 

levels of 40–45. We then decided to monitor the next volunteer even more closely and to 

record the next session on videotape. 

 

 
Fig 2. The Bispectral Index (BIS) versus time in case 2. Time 0-5 min displays the last 5 min (i.e., the time after 

blodd-effect site equilibration) of the 15 min period, when only propofol was given by a target concentration of 0.6 

µg/ml. At time 5 midazolam was added at 0.05mg.kg-1 for 1 min followed by a continuous infusion of 0.05mg.kg-

1.h-1 for 59 minutes. All three volunteers maintained adequate spontaneous respiration and hemodynamic stability 

throughout the study period. At time 65 min, the midazolam infusion was terminated, but the target-controlled 

infusion of propofol was still continued. The area considered to be associated with adequate hypnosis for surgery 

(BIS 40-60) is shown within the gridlines. The volunteer was responsive to verbal command and/or mild prodding 

at all times. 



 

Case 3 
 
The third subject was a 25-yr-old man who weighed 87 kg and was 187 cm tall. The target 

propofol concentration for this subject was 1 µg/ml, and the initial and secondary midazolam 

infusion rates were 0.035 mg.kg−1.min−1 and 0.035 mg.kg−1.h−1, respectively (total midazolam 

dose in 60 min, 6 mg). With written informed consent and Leiden University Medical Center 

Ethics Committee approval, we gathered digital video data from this session until the 

termination of the midazolam infusion. For the awake volunteer, the average BIS was 96 in 

the absence of any medication. With a target-controlled infusion of propofol of 1 µg/ml, the 

BIS decreased to a mean level of 92 after blood-effect site equilibration (fig 3) Then, within 3 

min after the start of midazolam administration, the BIS decreased to values as low as 44. 

During midazolam administration, the BIS varied between 40 and 60. Again, throughout the 

study period the volunteer remained responsive to verbal commands and/or mild prodding to 

a degree equivalent to an Observer’s Assessment of Alertness/Sedation score between 2 

and 4, even with BIS levels of 40–45. The videotape, displayed as a Web enhancement, 

furthermore provides data on the responsiveness of this volunteer at low BIS levels. 

 

 

Fig 3. The Bispectral Index (BIS) versus time in case 3. Time 0-5 min displays the last 5 min (i.e., the time after 

blood-effect site equilibration) of the 15 min period, when only propofol was given by a target concentration of 1 

µg/ml. At time 5 midazolam was added at 0.035mg.kg-1 for 1 min followed by a continuous infusion of 0.035mg.kg-

1.h-1 for 59 minutes. All three volunteers maintained adequate spontaneous respiration and hemodynamic stability 

throughout the study period. At time 65 min, the midazolam infusion was terminated, but the target-controlled 

infusion of propofol was still continued. The area considered to be associated with adequate hypnosis for surgery 

(BIS 40-60) is shown within the gridlines. The volunteer was responsive to verbal command and/or mild prodding 

at all times. 

 



 

Discussion 

We describe three cases in which the BIS-XP® provided BIS values of 40–50 for volunteers 

who were responsive to verbal commands while receiving a combination of propofol and 

midazolam. In our hospital, we tend to administer propofol infusion regimens during propofol-

opioid anesthesia on the basis of the BIS level. Based on the current literature, we advise our 

residents to maintain the BIS level between 40 and 60 intraoperatively2. Most of our patients 

receive midazolam for premedication. The observations described herein therefore raise 

various questions that are relevant to our daily clinical practice. 

Two issues must be considered when interpreting our observations in relation to data from 

the current literature. First, most data in the literature were determined using earlier versions 

of the BIS® monitor. Second, few data exist from careful evaluation of the effect of 

combinations of agents on the BIS. 

Regarding the first issue, it may well be that the BIS-XP® provides lower BIS values than 

previous versions at similar hypnotic levels in similar subjects. As stated earlier, the BIS-XP® 

is claimed to be less sensitive to artifacts of the electromyographic activity than earlier 

versions of the BIS® monitor4. Previously, it was reported that electromyographic activity 

falsely elevates the BIS. Introducing a version that is less sensitive to this may thus result in 

lower BIS levels in the absence of full muscle relaxation (as occurs in most patients). 

Regarding the second issue, we note that the electroencephalographic activation induced by 

both propofol and midazolam has been difficult to interpret and model in the past56. It may 

well be that the particular combination of propofol and midazolam at these low 

concentrations is not part of the BIS-behavioral database on which the BIS calculation is 

based. As a result, the electroencephalographic pattern induced by this combination may 

well be misinterpreted by the BIS® monitor as an electroencephalographic pattern 

associated with a patient experiencing a surgical hypnotic sedation level instead of actually 

being responsive to verbal commands. However, to our knowledge, no controlled studies 

have been done to examine hypnotic drug interactions and their effect on BIS, especially not 

using the BIS-XP®. 

In conclusion, we report on the responsiveness of three volunteers with BIS-XP® values of 

40–50 while receiving a combination of propofol and midazolam. The case reports draw 

attention to the relationship between the BIS and the responsiveness of patients as derived 

by the BIS-XP® in the presence of a combination of two hypnotic agents. The BIS user 

should be aware that the BIS is a measure of drug effect, not an independent measure of 

brain function. Consequently, the clinical anesthesiologist has no guarantee that a particular 

BIS will relate to the desired effect when a particular drug, or combination of drugs, is not 

part of the data file used to train the algorithm of the BIS calculation. As such, the case 

reports stress the need for further investigation of both the BIS-XP® itself and the effect of 

combinations of hypnotic agents on the BIS-XP®. Furthermore, the case reports stress the 



 

need for careful interpretation by the anesthesiologist of the BIS-XP® values in the clinical 

setting as long as the scientific basis for the clinical application of the BIS-XP® is not yet 

completely clear. 
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INTRODUCTION 

In clinical practice patients often receive midazolam to reduce preoperative anxiety, to 

ensure perioperative sedation during locoregional anesthesia or to strengthen the effect of 

intraoperative administered anaesthetics. The influence of midazolam on the 

pharmacodynamics of various anaesthetic agents has been described in detail(1-4). These 

studies show that midazolam increases the sedative levels induced by other hypnotic agents 

and often interacts synergistically at the γ-aminobutyric acid receptor type A. 

Various studies describe the pharmacokinetic interaction between anaesthetic agents and 

pharmacodynamic interactions.(5) In general, the interaction between anaesthetics leads to 

an increase in the blood or plasma drug concentration. Next to cytochrome P450 enzyme 

induction, hemodynamic alterations may be responsible for these pharmacokinetic 

interactions.  

Midazolam is frequently used as preoperative sedative and accordingly is often present when 

intraoperatively hypnotics such as propofol are administered. Propofol is known as a high 

extraction ratio drug and its clearance may thus be susceptible to hemodynamic alterations 

when hepatic blood flow is affected. Previous studies already indicate that the 

pharmacokinetics of other anaesthetic agents than propofol are affected by hemodynamic 

alterations (6) and hypovolemia has been found to influence the pharmacokinetics of 

propofol itself.(7)  

To our knowledge there are no data that describe whether, and to what degree, midazolam 

affects the pharmacokinetics of intraoperatively administered opioids or intravenous 

hypnotics like propofol. We hypothesized that midazolam affects the pharmacokinetics of 

propofol and that hemodynamic parameters indeed are involved. We therefore studied the 

influence of midazolam on the pharmacokinetics of propofol and measured hemodynamic 

parameters in a group of healthy volunteers. 



 

METHODS 

VOLUNTEERS AND STUDY PROTOCOL 

After obtaining approval of the Medical Ethics Committee of the Leiden University Medical 

Centre and written informed consent, eight healthy male volunteers, aged 20-30 years, were 

studied to obtain 16 propofol concentration-time data sets in the absence and presence of 

midazolam. All volunteers were within 30% of ideal body weight, had no history of renal or 

hepatic disease and were not taking medication within 6 months prior, or during, the 

investigation. All volunteers denied smoking or consumption of more than 20 g of alcohol per 

day. 

Before the investigation a blood sample was taken for screening of renal or hepatic disease. 

Volunteers were studied on two occasions using a randomized cross-over design. On one 

occasion (session A) the volunteers received a propofol bolus dose of 1 mg/kg in 1 min 

followed by an infusion of 2.5 mg.kg-1.h-1 (= 41.7 µg kg-1.min-1) for 59 min. On another 

occasion (session B) the volunteers received the same propofol infusion scheme as during 

session A, but now on top of a midazolam target controlled infusion (TCI) aimed at a target 

midazolam concentration (CT) of 125 ng/ml that was started 15 min the propofol 

administration. The TCI midazolam was maintained constant in this session for up to 6 h 

after termination of the propofol infusion. 

The two sessions were separated by a period of at least two weeks. The order of the two 

sessions was randomized, such that in half of the volunteers, the control session preceded 

the midazolam session and vice versa. Volunteers fasted from midnight of the night before 

the study until the last blood sample had been collected. During the administration of 

midazolam, the volunteers breathed 30% oxygen in air. When indicated, ventilation was 

assisted using a face mask to maintain the end-tidal CO2 partial pressure below 50 mmHg. 

After termination of session A and B, the subjects were monitored for another 4 h and 

received a light meal before they were escorted to their home.  

 

MATERIALS 

The studies were performed in a designated room in the OR complex. An IV cannula was 

inserted into a large forearm vein for the infusion of propofol and midazolam and an arterial 

cannula was inserted in the contralateral radial artery for collection of blood samples and 

hemodynamic data. The electrocardiogram, respiratory rate, peripheral oxygen saturation, 

the Bispectral index and intra-arterial blood pressure were monitored continuously 

throughout the study. Furthermore, the cardiac output was determined using the pulse-

contour methodology on the basis of the intra-arterial blood pressure curve with the 

LiDCOplus monitor (LiDCOgroup plc, London (8)). The LiDCO cardiac output measurement 

is comparably reliable to traditional thermodilution cardiac output measurement for up to 8 h 

after calibration (LidCO versus thermodilution: r = 0.86).(9) In the light of the described 



 

reliability of the LiDCO and the invasiveness of pulmonary artery catheterisation, non-

invasive cardiac output monitoring by the LiDCO offered the best option for hemodynamic 

monitoring in this study in volunteers. The LiDCO monitor was calibrated before each 

experiment. For this purpose, a lithium sensor was connected to the arterial cannula. Next, 

after 0.2 mmol lithium was injected intravenously, and the LiDCO monitor was calibrated on 

the basis of the non-invasive online determined arterial lithium concentration-time curve and 

the cardiac output calculated. Blood samples were drawn from the arterial cannula, after 

calibration of the LiDCO.  

Heart rate, cardiac output, cardiac index, systemic vascular resistance, the systolic, mean 

and diastolic arterial blood pressure were all recorded online at every heart beat and saved 

for further analysis. All volunteers received an infusion of saline of 2 ml.kg-1.h-1 during each 

session.  

Propofol was administered with a conventional infusion pump. A Psion pocket computer, 

provided with a 3-compartment pharmacokinetic parameter set of midazolam(10) was used 

to control an infusion pump for the target-controlled infusion of midazolam. 

 

BLOOD SAMPLES AND ASSAYS 

During session A, a blank blood sample (10 ml) was obtained. This sample was used for 

calibration purposes. Additional arterial blood samples (3 ml) for the determination of the 

blood propofol concentration, were taken at 1, 3, 5, 10, 20, 30, 45 and 60 min after the start 

of the propofol infusion, and at 3, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300 and 360 min 

after termination of the propofol infusion. Blood samples were collected in syringes coated 

with potassium-oxalate for determination of the blood propofol concentration. These blood 

samples were stored at 4 °C. Propofol assays were c arried out within 12 weeks. Propofol 

concentrations in blood were measured by HPLC-fluorescence at 276 nm.(11) The intra- and 

inter-assay coefficients of variation were 4.3% and 3.7% for propofol in blood in the 

concentration range of 0.06 – 6.8 µg/mL.  

During session B, in addition to the sample scheme in session A, every 60 min an additional 

arterial blood sample (3 ml) was taken for determination of the plasma midazolam 

concentration. These samples were centrifuged to obtain plasma which was subsequently 

stored at -20 °C until analysis. The concentration of midazolam in plasma was determined by 

reversed-phase high-performance liquid chromatography-UV detection at 216 nm 

(HPLC).(12) The intra- and inter-assay coefficients of variation were 2.2% and 2.0% for 

midazolam in plasma in the concentration range of 9.7-1120 ng/ml. Midazolam assays were 

conducted within 12 weeks. The assays of midazolam and propofol did not interfere as the 

fluorescence wavelengths of midazolam (217 nm) and propofol (276 nm) do not overlap. This 

allows a distinct and accurate estimation of the two drugs. 

 



 

STATISTICAL ANALYSIS 

A first exploratory analysis of differences in mean arterial pressure, heart rate, cardiac 

output, systemic vascular resistance and stroke volume between sessions 1 and 2 was done 

with the Wilcoxon signed rank test (SPSS version 12.5 for Windows). A probability level < 

0.05 was considered significant. The goal of this analysis was to limit the number of 

hemodynamic variables to be tested as covariate in the population pharmacokinetic analysis 

which was performed using NONMEM (version VI 1.2). Population pharmacokinetic 

parameters were estimated using the first-order conditional estimation method with η-ε 

interaction for a 3-compartment model (ADVAN11). A proportional error model was used with 

variance σ2 of the intraindividual variability terms (ε). The interindividual variability of each 

model parameter was specified using a log-normal variance model: 

    with 

 

 

  

Where Φi is the population value and ΦTV i(t) is the typical value with fixed effects taken into 

account of the pharmacokinetic parameter in individual i at time t.  is the Bayesian 

estimate of the normally distributed random variable η (with mean zero and variance ω2) in 

the individual i (which is estimated by NONMEM), m is the number of covariates considered, 

αj is the value of a coefficient parameter describing the dependence of the pharmacokinetic 

parameter on covariate j, and MDcovj is the median of the covariate j in the population. 

MDcovj is the median of 16 observations (8 volunteers times 2 sessions), except for the 

midazolam concentration (only session B).  

Coefficients of variation (CV%) were calculated as 100 times the square root of the variance 

ω2 of η and, parameter distributions being asymmetric, are only approximately the 

coefficients of variation as usually defined. 

 



 

PHARMACOKINETIC DATA ANALYSIS AND INCLUSION OF COVARIATES 

 A pharmacokinetic parameter set was determined on the basis of the blood propofol 

concentration-time data alone (without covariates) of the 16 sessions. Three compartment 

models were fitted to the data (number of components based on literature and experiment 

design) with parameters V1-V3 and Cl1-Cl3 (central volume of distribution [V1], shallow 

peripheral volume of distribution [V2], deep peripheral volume of distribution [V3], elimination 

clearance [Cl1], rapid distribution clearance [Cl2], and slow distribution clearance [Cl3]).  

2.  To determine the influence of midazolam on the 6 propofol pharmacokinetic parameters, 

all 64 possible combinations for the covariate midazolam were evaluated (64 = 26, 2 

referring to presence or absence of the covariate, 6 referring to the 6 possible 

pharmacokinetic parameters). Midazolam was treated as a time-independent covariate. 

The model with the lowest Akaike’s Information Criteria (AIC) value was considered 

best.(13) 

3. The hemodynamic parameters that differed significantly between sessions A and B were 

evaluated as potential covariates to further improve the predictability of the propofol 

pharmacokinetic parameter set. The arithmetic means of these hemodynamic 

parameters prior to each measured plasma midazolam concentration were calculated. 

These data then were treated as time-dependent variables in the analysis. For each 

hemodynamic parameter another 64 analysis runs were performed on the basis of the 

pharmacokinetic parameter set of propofol with midazolam as covariate included. Again, 

the combination with the lowest AIC was considered best.  

4.  To assess the accuracy of the model, we calculated the weighted residual (WR) and the 

absolute weighted residual (AWR) for each sample.  

         

In which Cmeas,ij is the jth measured concentration of the ith individual, and the Cpred, j denotes 

the corresponding population predicted values. The median values of the weighted residuals 

(MDWR) and the absolute weighted residuals (MDAWR) were used as overall measures of 

goodness of fit.  

 

Computer Simulations 

The clinical consequences of the influence of midazolam on propofol pharmacokinetics were 

explored by computer simulation using TIVAtrainer1 with the final propofol pharmacokinetic 

parameter with midazolam and mean arterial pressure as covariates in a 74 kg male. 

Three computer simulations were performed. 1) A computer simulation exploring the 

influence of the plasma midazolam concentration (0 or 225 ng/ml) on the propofol 
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concentration-time profile in the presence of a mean arterial pressure of 78 and 68 mmHg. 

This most closely resembles the actual study conditions. 2) We then performed 2 simulations 

to distinguish between the effects of midazolam and mean arterial pressure on the propofol 

concentration-time relationship. For this purpose we first explored the influence of midazolam 

(0 and 225 ng/ml) on the propofol concentration-time profile in the presence of a stable mean 

arterial pressure of 74 mmHg. Next a computer simulation was performed to explore the 

influence of mean arterial pressure (50, 75 and 100 mmHg) on the propofol concentration-

time profile in the absence of midazolam. 3) Finally, a computer simulation evaluated the 

influence of midazolam on the 50% (i.e., the context sensitive half-time) and the 80% 

decrement time of propofol. For this purpose we used the final propofol pharmacokinetic data 

set in the presence of a plasma midazolam concentration of 0 or 225 ng/ml with a mean 

arterial pressure of 78 and 68 mmHg (Table 3). 

Data are presented as mean (SD) unless stated otherwise. 

 



 

RESULTS 

All volunteers completed the study without adverse events. The mean ± SD age, weight and 

height of the volunteers were 21.8 ± 1.8 years, 73.6 ± 9.7 kg and 182.1 ± 6.0 cm. The 

midazolam TCI system administered 13.1 ± 2.1 mg of midazolam in the first hour of infusion 

and administered another 6-8 mg to maintain the target concentration of 125 ng/ml.(10) The 

mean total midazolam dose given was 49.25 ± 5.32 mg. The plasma midazolam 

concentration (mean ± SD: 224.8 ± 41.6 ng/ml) proved sufficiently stable in all volunteers 

(Figure 1). None of the volunteers experienced significant respiratory depression and the 

end-tidal partial CO2 pressure never exceeded 50 mmHg. 

During the 16 study sessions a total of 470 blood samples were collected for both midazolam 

and propofol concentration determination. Of these, 368 were used for blood propofol 

concentration determination and analysis of the propofol pharmacokinetics. An exploratory 

analysis of the hemodynamic data showed that in the presence of midazolam MAP and 

stroke volume were significantly lower while heart rate was significantly more rapid compared 

with the controls when propofol was given as sole agent (table 1). 

The propofol concentrations in the presence of a mean midazolam concentration of 224.8 ± 

41.6 ng/ml were on average 25.1 ± 13.3 % higher compared to when propofol was given as 

sole agent (Figure 2). 

The population pharmacokinetic analysis of the propofol concentration-time data revealed 

that a 3-compartment model best fitted the data. First the pharmacokinetics of propofol were 

determined without consideration of any covariate (first column Table 2). When midazolam 

was introduced as covariate the AIC decreased significantly (second column Table 2). 

Midazolam was a significant covariate on Cl1, Cl2 and Cl3 of propofol such that a plasma 

midazolam concentration of 225 ng/ml reduced Cl1 from 1.94 to 1.61 L/min, Cl2 from 2.86 to 

1.52 L/min. and Cl3 from 0.95 to 0.73 L/min.  

In addition to midazolam, the hemodynamic parameters that significantly differed between 

sessions were tested to determine if any of these additional hemodynamic parameters could 

further clarify still existent variability in the propofol concentration-time data. Of the studied 

hemodynamic parameters, MAP resulted in the most significant decrease in AIC thus 

contributing most to improve the propofol pharmacokinetic model that already included 

midazolam as covariate, (third column Table 2). The propofol pharmacokinetic parameters 

that were influenced by MAP were V1, V2 and Cl3 (Table 2). In accordance with this model a 

decrease in mean arterial pressure is associated with an increase in the blood propofol 

concentration when the propofol dosage scheme is left unchanged. Figure 3 gives an 

overview of the optimization process of the analysis. Inclusion of midazolam and mean 

arterial pressure in the final model resulted in the lowest AIC and the narrowest window for 

MDWR and MDAWR. Figures 4 and 5 display the individual estimates of the various 



 

pharmacokinetic parameters that were significantly affected by midazolam and mean arterial 

pressure, respectively. 

 

Table 1. Median hemodynamic parameters obtained during the 420 min study period in 
session A (no midazolam) and session B (in the presence of midazolam). Data were 
compared using the Wilcoxon signed rank test. 
 

Parameter Session A  median 

(range) 

Session B median 

(range) 

Difference (%) P-Value 

HR (beats/min) 61.8 (49.3-85.4) 64.7 (46.3-94.7) + 3.5 < 0.001 

MAP (mmHg) 78.3 (63.3-101.9) 68.4 (53.5-97.1) - 12.5 < 0.001 

SVR (dyn.sec-1.cm-5) 909.2 (611.8-1751.0) 830.3 (368.6-1444.8) - 4.4 0.12 

SV (ml/beat) 107.7 (55.9-132.9) 91.1 (63.1-148.5) - 9.4 < 0.001 

CO (L/min) 6.6 (4.0-9.0) 5.5 (3.5-13.6) - 4.0 0.15 

 
HR = heart rate; MAP = mean arterial pressure; SVR = systemic vascular resistance; SV = stroke volume; CO = 
cardiac output. 
 



 

 

 

 

Figure1. Plasma Midazolam Concentration-time data of the individual subjects during session B when 

midazolam was given at a constant target midazolam of 125 ng/mL. 

 

Figure 2. Mean (SE) blood propofol concentration-time curves in the volunteers in the presence 

(continuous line, closed circles) or absence (discontinuous lines, open circles) of a target-controlled 

infusion of midazolam with a target concentration of 125 ng/ml



 

 

 
Table 2. population Pharmacokinetic Models of Propofol 

Parameters V1, V2…. Cl3 are the parameters of an individual with median covariate values. The median covariate 

values are 112.375 ng/ml for midazolam and 74.017 mmHg for mean arterial pressure. For example: Cl1 = 1.77 * 

e(-0.000818*(C
MID

 – 112.375)) 

MAP = mean arterial pressure (mmHg); V1 = central volume of distribution; V2 = rapidly equilibrating peripheral 

volume of distribution; V3 = slowly equilibrating peripheral volume of distribution; Cl1 = elimination clearance; Cl2 

= rapid distribution clearance; Cl3= slow distribution clearance ; CV = coefficient of variation (CV V2 : - = not 

estimable); SE; standard error of estimate; α = measure of covariate importance (when omitted, the covariate is 

not significant); MID = concentration of  midazolam; –2LL = –2 x log likelihood; AIC = -2LL + 2P, where P is the 

number of nonfixed parameters; AIC  is the Akaike’s information-theoretic criterion10; MDWR = median weighted 

residual; MDAWR = median absolute weighted residual; σ2 = relative residual error.

 No Covariates  Midazolam  Midazolam + MAP 
Parameter Value %CV SE  Value %CV SE  Value %CV SE 

V1 (L) 4.87 30 0.67  4.90 32 0.44  5.29 30 0.51 
V2 (L) 26.4  - 1.77  26.9 -  1.67  29.9 - 1.96 
V3 (L) 137 18 9.86  139 18 9.79  144 21 11.3 

Cl1 (L/min) 1.76 15 0.07  1.75 12 0.06  1.77 12 0.06 

Cl2 (L/min) 2.13 31 0.25  2.11 16 0.18  2.09 27 0.21 
Cl3 (L/min) 0.84 22 0.56  0.83 16 0.04  0.85 18 0.05 

            

Covariates  

1,VMIDα             

2,VMIDα             

3,VMIDα             

1,ClMIDα      -8.20*10-4  3.19*10-4  -8.18*10-4  3.21*10-4 

2,ClMIDα      -2.74*10-3  7.82*10-4  -2.80*10-3  8.81*10-4 

3,ClMIDα      -1.42*10-3  4.88*10-4  -5.23*10-4  5.54*10-4 

1,VMAPα          -2.46*10-2  8.61*10-3 

2,VMAPα          1.07*10-2  4.68*10-3 

3,VMAPα             

1,ClMAPα             

2,ClMAPα             

3,ClMAPα          1.40*10-2  7.88*10-3 

Performance measures 

-2LL -1433.74    -1461.12    -1484.59   

AIC -1409.74    -1431.12    -1448.59   

MDWR (%) -1.34    -1.23    -1.42   

MDAWR(%) 16.4    15.9    15.7   

σ
2 0.0192    0.0191    0.0168   



 

 

 
Figure 3.  Population median weighted residuals (MDWR) and median absolute weighted residuals 

(MDAWR) (lower panel) determined for the pharmacokinetic models displayed in Table 2. 



 

 

 

 

Figure 5. Individual estimates of (A) 
the central volume of distribution (V1), 
(B) rapidly equilibrating peripheral 
volume of distribution (V2), and (C) 
slow distribution clearance (CL3), 
obtained from the model without 
covariates as function of the MAP. The 
regression line results from the 
NONMEM analysis. 

Figure 4. Individual estimates of (A) 
the elimination clearance (CL1), (B) 
rapid distribution clearance (CL2) and 
(C) slow distribution clearance (CL3), 
obtained from the model without 
covariates as function of the plasma 
midazolam concentration. The 
regression line results from the 
NONMEM analysis. 



COMPUTER SIMULATIONS 

With the use of the final pharmacokinetic parameter set obtained from NONMEM (Table 3) 

we performed three computer simulations to reveal the influence of alterations in midazolam 

and mean arterial pressure on the blood propofol concentrations. (1). In Figure 6 the 

influence of midazolam in the presence of a slight reduction of mean arterial pressure 

(resembling the clinical conditions during the study) is clearly visible. In the presence of a 

plasma midazolam concentration the blood propofol concentration is elevated, particularly 

during infusion. Furthermore, the blood propofol concentration appears to decrease more 

rapidly in the presence of midazolam. (2). In figure 7 the separate influences of midazolam 

and mean arterial pressure are made clear. Both covariates induce an increase in the blood 

propofol concentration. Using the same dosing strategy as in the study, alteration of the 

mean arterial pressure from 50 to 100 mmHg in steps of 25 mmHg leads to a marked 

decrease in the simulated blood propofol concentration (Figure 7B). (3). Finally, we studied 

the alterations in 50% (the context-sensitive half-life) and 80% decrement time using the final 

pharmacokinetic parameter data set. Figure 8 shows that the context-sensitive half-time of 

propofol in the presence and absence of midazolam in these young male volunteers, remains 

relatively short for up to a 4 hours infusion. Both the 50% and 80% decrement times of 

propofol are reduced in the presence of midazolam.  

Finally, we calculated that when a propofol infusion is given in the presence of midazolam, 

the propofol bolus dose needs to be reduced by 25% and the infusion rate by 20% to obtain 

similar plasma propofol concentrations compared to a condition in which propofol is given as 

a sole agent. 

 

Midazolam (ng/mL) MAP (mm Hg) V1 (L) V2 (L) V3 (L) Cl1 (L/min) Cl2 (L/min) Cl3 (L/min) 

0 78 4.80 31.20 144.00 1.94 2.86 0.95 

225 68 6.13 28.04 144.00 1.61 1.52 0.73 

0 50 9.55 23.12 144.00 1.94 2.86 0.64 

0 75 5.16 30.22 144.00 1.94 2.86 0.91 

0 100 2.97 39.48 144.00 1.94 2.86 1.29 

 
Table 3. The pharmacokinetic parameters of propofol (based on the final pharmacokinetic parameter 
set with midazolam and mean arterial pressure as covariates) for various midazolam and mean 
arterial pressure values as used in the computer simulations. 
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Figure 6. Computer simulation of the influence of midazolam at a concentration of 0 (discontinuous 

line) and 225 ng/mL (continuous line) on the propofol concentration-time relationship with a propofol 

infusion scheme as used in this study (1mg/kg in 1 min followed by a 2.5 mg/kg/hr infusion for 59 

minutes) using the final propofol pharmacokinetic data set with a mean arterial blood pressure of 78 and 

68 mm Hg, respectively.  

 



 

 

 
Figure 7. (A) the concentration-time profile of a simulated propofol infusion scheme (1 mg/kg in 1 min followed 

by 2.5 mg.kg-1.h-1 for 59 min) in the presence of a plasma midazolam concentration of 0 and 225 ng/mL at a 

stable MAP of 74 mm Hg.  

(B) the concentration-time profile of a simulated propofol infusion scheme (1 mg/kg in 1 min followed by 2.5 

mg.kg-1.h-1 for 59 min) in the presence of a MAP of 50, 75 and 100 mm Hg in the absence of midazolam.  



 

 

DISCUSSION 

We examined the influence of midazolam on the pharmacokinetics of propofol. The results of 

the study confirm our hypothesis that midazolam alters propofol’s pharmacokinetics, causing 

a 25% increase in blood propofol concentration, and further that hemodynamics are involved 

such that a reduction in mean arterial pressure is associated with an increase in the blood 

propofol concentration.   

 

INTERACTION MECHANISMS AND PHARMACOKINETIC MODEL PARAMETERS. 

We observed a marked decrease in the metabolic and rapid and slow distribution clearances 

of propofol in the presence of midazolam. The decrease in propofol metabolism may be 

either an effect of midazolam on enzymatic function or the result of a reduction in hepatic 

perfusion. Tanaka et al. showed that midazolam did not affect the enzyme activity associated 

with propofol clearance in human liver microsomes in an in vitro study.(14) An effect of 

midazolam on propofol metabolism through enzyme inhibition therefore seems unlikely. 

Furthermore, the high extraction ratio of propofol of 0.79-0.92(15) suggests that the 

clearance of propofol may not be affected by enzyme inhibition but rather be susceptible to 

changes in hepatic perfusion. The relationship between hepatosplanchnic blood flow and 

propofol pharmacokinetics has been described previously in detail. In various studies 

changes in the metabolic clearance of propofol were closely related to hepatic blood flow. 

(16-18) Leslie et al. even suggested that propofol itself reduced liver blood flow and may thus 

impair its own clearance. (16) In our study, the addition of midazolam resulted in a significant 

decrease in the mean arterial pressure and stroke volume and a tendency for a reduced 

cardiac output (table 1). From these data and the referred manuscripts we therefore 

conclude that the changes in the pharmacokinetics of propofol induced by midazolam are the 

result of these hemodynamic alterations.  

The influence of hemodynamics on propofol pharmacokinetics is furthermore stressed by our 

finding that next to the inclusion of midazolam mean arterial pressure as covariate further 

improved the propofol pharmacokinetic model (Figure 5). The clinical consequences of 

changes in mean arterial pressure on the propofol dose-concentration relationship was 

further explored using computer simulations. Figure 7B shows that a decrease in mean 

arterial pressure is associated with an increase in the blood propofol concentration while 

propofol dosing remained unchanged. This is in accordance with the work by Egan and 

colleagues (19,20) on the influence of hemodynamic shock on the pharmacokinetics of 

various anesthetic agents including propofol. In these studies a reduction in cardiac output 

and mean arterial pressure was evident in animals after blood loss. In the presence of a 

reduced cardiac output and mean arterial pressure the blood propofol concentrations were 

significantly elevated with an unchanged propofol dosing regimen. The population 



 

 

pharmacokinetic analysis of the Egan study revealed that in the presence of these 

hemodynamic perturbations the elimination clearance as well as the rapid and slow 

distribution clearances of propofol was reduced in a similar fashion as we observed in our 

study. From the above we do not conclude that midazolam infusion resembles a state of 

hemorrhagic shock but rather that hemodynamic alterations induced by the combined 

infusion of propofol and midazolam significantly affect the propofol dose-concentration 

relationship such that a reduction in blood pressure, as sign of a reduction of blood flow, is 

associated with an increase in the blood propofol concentration when the propofol dose 

regimen is not altered. This is in analogy with the pharmacokinetic interactions between other 

anesthetic agents and/or opioids that also appear to be driven,(21-23) at least in part, by 

hemodynamic alterations.  

The fact that the measured plasma midazolam concentrations significantly exceeded the 

predicted (Figure 1) may be, at least to some extent, the result of a pharmacokinetic 

interaction between midazolam and propofol in which propofol may have induced a rise in 

the plasma midazolam concentration. The difference in the characteristics between our study 

population (healthy volunteers, no surgery) and those in whom Zomorodi et al.(10) defined 

the pharmacokinetics of midazolam (patients after CABG surgery) may also have contributed 

to the significant midazolam measured-predicted difference. Further studies are needed to 

evaluate whether propofol indeed affects the pharmacokinetics of midazolam to this degree.   

We explored the influence of midazolam on the 50% and 80% decrement times of propofol. 

Intuitively, one might expect, because propofol concentrations are elevated in the presence 

of midazolam, that the context-sensitive half-time (= 50% decrement time) of propofol would 

be prolonged in the presence of midazolam. However, this was not the case. In contrast, 

Figure 8 shows that in the presence of midazolam the context-sensitive half-time of propofol 

is reduced, as is the 80% decrement time. This counterintuitive observation has a simple 

explanation. According to the findings in this study, less propofol is required to reach and 

maintain a given propofol concentration in the presence of midazolam than when propofol is 

given alone. Consequently, upon the termination of the propofol infusion, the plasma 

concentration will drop faster compared to a condition in which the peripheral stores contain 

more propofol, as occurs when propofol is given as sole agent. The data in figures 2 and 6 

showing that the difference in plasma propofol concentration between the two study groups 

is reduced upon termination of the infusion is in agreement with a reduced decrement 

propofol time when propofol is combined with midazolam. This counterintuitive 

pharmacokinetic behavior of propofol closely resembles the examples described by Shafer 

and Stanski (on Duzitol)(24) as well as that described by Schnider et al. (25) (on propofol in 

the elderly). We further like to stress the importance of computer simulation as an offline tool 



 

 

in the exploration of the concentration-time relationship of new agents, or old agents in a new 

environment.  

The findings on the pharmacokinetics of propofol in the presence of midazolam may be 

advantageous as it indicates that in the presence of midazolam propofol concentrations are 

elevated but also decrease more rapidly after termination of the propofol infusion than when 

propofol is given as sole agent. The clinical consequences, though, remain yet unsure.  

In conclusion, we studied the influence of midazolam on propofol pharmacokinetics. 

Midazolam causes an increase in the blood propofol concentrations through a reduction in 

Cl1, Cl2 and Cl3 of propofol. Mean arterial pressure additionally affects the pharmacokinetics 

of propofol such that a reduction in mean arterial blood pressure is associated with an 

increase in the blood propofol concentration. 

 

Figure 8. Context sensitive half time (CSHT = 50% decrement time) and 80% decrement time of 

propofol in the absence (continuous line) and in the presence of a plasma midazolam concentration of 

225 ng/mL (discontinuous line) using the final propofol pharmacokinetic parameter set with a MAP of 

78 and 68 mm Hg respectively (Table 3).  
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IMPLICATIONS STATEMENT 

Sedative potency of midazolam (EC50,M BIS = 532 ng/ml) was 13.1 times that of propofol 

(EC50,P BIS = 6.98 µg/ml). At these equihypnotic concentrations, propofol depressed 

hemodynamics (MAP and CO) 3.1 times more compared to midazolam. Propofol and 

midazolam exhibit a synergistic interaction for sedative endpoints but an additive interaction 

for hemodynamic endpoints. The use of an optimal propofol-midazolam combination (CP 

(ng/ml) = 4.688 * CM (ng/ml)) assures sedation or unconsciousness in the presence of 

minimal hemodynamic depression. 



 

 

 

INTRODUCTION 

Benzodiazepines may well be the hypnotic agents most often used preoperatively to reduce 

anxiety in patients scheduled for surgical procedures. Intraoperatively, propofol is the 

intravenous hypnotic most often used to induce and maintain unconsciousness. As such, 

benzodiazepines like midazolam and intravenous hypnotics like propofol are often 

administered in combination to reduce anxiety preoperatively and induce unconsciousness 

perioperative and thus facilitate therapeutic or diagnostic procedures.1  

The detailed study of the pharmacokinetic and pharmacodynamic interactions2-5 of other 

anesthetic combinations has allowed for a selection of concentration- or dose-combinations 

that exert an optimal anesthetic effect in the presence of only minimal hemodynamic or 

respiratory side effects. In contrast, for the combination of midazolam and propofol that is 

used so often in anesthetic practice we noticed a lack of data that described both the 

pharmacokinetic and pharmacodynamic interaction between these agents. 

Over the past years we described the pharmacokinetic interaction between propofol and 

midazolam. We found that propofol and midazolam affect each other’s distribution and 

clearance such that in the presence of sedative concentrations of midazolam the blood 

propofol concentrations become elevated by 25%, while the same holds true for the plasma 

midazolam concentrations in the presence of propofol.6;7 

The pharmacodynamic interaction between benzodiazepines and propofol has been 

described previously. These data show that midazolam strengthens the sedative properties 

of other hypnotic agents and interacts synergistically at the GABAA-receptor.8-10 However, 

due to the methodology and analysis of these studies no conclusions can be drawn for 

midazolam-propofol combinations other than those precisely studied and no selection is 

possible of the propofol-midazolam combination that assures unconsciousness in the 

presence of optimal hemodynamic stability. 

We therefore studied the pharmacodynamic interaction between propofol and midazolam in 

healthy male volunteers. We hypothesized that midazolam would affect the 

pharmacodynamics of propofol and vise versa, both regarding the sedative effects as well as 

the hemodynamic effects. Our main objective for this study was to define the optimal 

propofol-midazolam combination that assures unconsciousness in the presence of minimal 

hemodynamic side effects. 



 

 

METHODS 

 

VOLUNTEERS AND STUDY DESIGN 

The concentration-time-effect data used in this study were gathered during 2 studies 

evaluating the pharmacokinetic interaction between propofol and midazolam as described 

elsewhere.6;7 In these studies, after obtaining approval of the Medical Ethics Committee of 

the Leiden University Medical Center and written informed consent, the propofol-midazolam 

interaction data of healthy male volunteers, aged 20-30 yr were studied. The volunteers were 

studied twice to obtain 8 midazolam concentration-time-effect data sets in the absence (M1) 

and 8 midazolam concentration-time-effect data sets in the presence of propofol (M2) next to 

8 propofol concentration-time-effect data sets in the absence (P1) and 8 propofol 

concentration-time-effect data sets in the presence of midazolam (P2). The volunteers were 

within 30% of ideal body weight, had no history of renal or hepatic disease and were not 

taking medication within 6 months prior, or during, the investigation. All volunteers denied 

smoking or consumption of more than 20 g of alcohol per day. 

In studies M1 and M2 the influence of a constant target propofol concentration11 of 0, 0.6 or 1 

µg/ml, when given for 435 min, was studied on the pharmacokinetics and pharmacodynamics 

of midazolam in volunteers receiving a midazolam bolus dose of 0.035-0.05 mg/kg in 1 min 

followed by an infusion of 0.035-0.05 mg.kg-1.h-1 for 59 min.7 In studies P1 and P2  the 

influence of a constant target midazolam concentration12 of 0 or 125 ng/ml, when given for 

435 min, was studied on the pharmacokinetics and pharmacodynamics of propofol in 

volunteers receiving a propofol bolus dose of 1 mg/kg in 1 min followed by an infusion of 2.5 

mg.kg-1.h-1 for 59 min.6 During the studies the volunteers breathed 30% oxygen in air. When 

indicated, ventilation was assisted using a face mask to maintain the end-tidal CO2 partial 

pressure below 6.5 kPa. After termination of study the subjects were monitored for another 4 

h and received a light meal before they were escorted to their home. 



 

 

 

Pharmacodynamic data  

During the studies the volunteers remained on a hospital bed in an operating theatre. The 

ECG, heart rate (HR), respiratory rate, ET-CO2 and SaO2 were recorded continuously to 

assure adequate ventilation. Both sedative and hemodynamic end points were recorded.  

The bispectral index ((BIS), BIS®, Aspect Medical Systems, Newton, MA) as determined over 

a 15 sec period and the Ramsay sedation score were recorded at 1, 3, 5, 10, 20, 30, 45 and 

60 min after the start of the propofol or midazolam infusion and at 3, 5, 10, 20, 30, 45, 60, 90, 

120, 180, 240, 300 and 360 min after termination of the propofol or midazolam infusion, 

when blood was sampled for midazolam and propofol concentration determination. The 

Ramsay sedation score has the following levels: score 1, volunteer anxious and restless; 

score 2, volunteer cooperative, oriented, and tranquil; score 3, volunteer drowsy or asleep, 

responds easily to commands; score 4, volunteer asleep, brisk response to a light glabellar 

tap; score 5, volunteer asleep, sluggish response to a light glabellar tap; and score 6, 

volunteer asleep, no response to a light glabellar tap.13  

The cardiac output (CO) and systemic vascular resistance (SVR) were determined using the 

pulse-contour methodology on the basis of the intra-arterial blood pressure curve with the 

LiDCOplus monitor (LiDCOgroup plc, London14). The LiDCO monitor was calibrated before 

each experiment. For this purpose, a lithium sensor was connected to the arterial cannula. 

Then, after 0.2 mmol lithium was injected intravenously, the LiDCO monitor was calibrated 

on the basis of the non-invasive online determined arterial lithium concentration-time curve 

and the cardiac output calculated. The LiDCO has been found reliable in cardiac output 

monitoring when compared with traditional thermodilution cardiac output monitoring for up to 

8 h after calibration (LidCO versus thermodilution: r = 0.86) in relatively stable hemodynamic 

conditions like in this study.15 The heart rate, cardiac output, systemic vascular resistance 

and the mean arterial blood pressure were all online recorded at every heart beat and saved 

for further analysis. Off-line, the arithmetic means of these hemodynamic parameters were 

calculated for the time periods before a blood sample was taken for blood propofol or plasma 

midazolam concentration determination and used in the analysis. 



 

 

 

BLOOD SAMPLES AND ASSAYS 

As described elsewhere6;7 frequent arterial blood samples were taken for blood propofol and 

plasma midazolam concentration analysis. Propofol concentrations in blood were measured 

by HPLC-fluorescence at an excitation wavelength of 276 nm with emission wavelength of 

310 nm.16 The intra- and inter-assay coefficients of variation were 4.3% and 3.7% for propofol 

in blood in the concentration range of 0.06 – 6.8 µg/ml. The concentration of midazolam in 

plasma was determined by reversed-phase high-performance liquid chromatography-UV 

detection at 216 nm (HPLC).17 The intra- and inter-assay coefficients of variation were 2.2% 

and 2.0% for midazolam in plasma in the concentration range of 9.7-1120 ng/ml. Propofol 

assays were conducted within 12 weeks. The assays of midazolam and propofol did not 

interfere with each other due to the differences in detection. Midazolam is not detectable 

using fluorescence at the excitation wavelength of 276 nm with emission wavelength of 310 

nm (the way propofol is detected). Vice versa propofol is detectable using UV at 217 nm (the 

way midazolam is detected) but is clearly separated in our hands using a C8 column and a 

mobile phase that consisted of methanol-buffer at a pH of 7,05. 

 

DATA ANALYSIS  

A population pharmacokinetic-pharmacodynamic analysis was performed on the Ramsay 

sedation score and bispectral index (BIS) as recorded at the time a blood sample was taken, 

and the mean values of MAP, heart rate, CO and SVR as calculated for the time period prior 

to the time a blood sample was taken, versus the arterial blood propofol and arterial plasma 

midazolam concentrations. The pharmacodynamic model used was based on receptor 

binding theory with extensions to account for interaction.18-21   

In the analysis, the pharmacokinetic parameters of propofol and midazolam as determined in 

the previous 2 pharmacokinetic studies were used. Midazolam and MAP were used as 

covariates affecting the pharmacokinetics of propofol.6 Propofol and heart rate were used as 

covariates affecting the pharmacokinetics of midazolam.7 In the analysis of the 

pharmacodynamic effect of propofol and midazolam a kon and a koff were introduced to model 

the sometimes slow return to baseline of sedative and hemodynamic effects properly. The 

kon and koff incorporate ke0, receptor binding kinetics as well as control system dynamics and 

indirect response dynamics. In the combined analysis kon/koff estimated from experiments 

with a primary drug were also used for estimation in experiments where this drug was the 

second drug in the background.  

The receptor occupancies of propofol (RP) and midazolam (RM) are governed by 

 

dRP/dt = kon,p . CP . (1 - Rp - Rm) - koff,p . RP     (1) 



 

 

 

dRM/dt = kon,m . CM . (1 - Rm - Rp) - koff,m . RM,    (2) 

 

where kon,p = receptor binding rate of propofol, koff,p = receptor dissociation rate of propofol, 

kon,m = receptor binding rate of midazolam, koff,m = receptor dissociation rate of midazolam 

and CP and CM the blood propofol concentration and the plasma midazolam concentration, 

respectively, obtained using empirical Bayesian individualization of the pharmacokinetic 

models established earlier.6;7 

We assume the effect of the drugs in combination is related to E = RP + RM (cf. Ref.22) 

At steady-state this gives effect E as:  

 

,     (3) 

 

where C50P and C50M are the blood propofol and plasma midazolam concentrations that 

correspond to 50% receptor occupancy and UA and UB are the normalized concentrations of 

propofol and midazolam.19 

Then, groups of “drugs” of combinations of propofol and midazolam can be defined each 

having a unique ratio of UA and UB. Each “drug” will be defined in terms of Q,  

 

         (4) 

 

Q ranges from 0 (only drug A) to 1 (only drug B). The “drug” concentration equals UA + UB. 

An U50(θ) was incorporated according to Minto et al.19 by dividing the kon of both drugs by an 

interaction function I(Q).20 This affects potency but, as desired, not koff. For mutually non-

exclusive drugs a term UA.UB should be added.23 This term implies that the drugs have 

more effect than expected from additivity. The receptor binding equations (1) then do not 

incorporate the background drug (RM in the first differential equation and RP in the second) 

and the desired steady-state equation is obtained by using (see Appendix): 

 

 E = RP + RM – RP.RM  rather than  RP + RM.      (5) 

 

An inhibitory Emax model was used to convert receptor binding to the effect parameter  



 

 

(EP): EP = Emax (1-Eγ)       (6) 

 

So it was assumed that values of 0 could be approached for all these parameters. This 

makes SVR = MAP/CO always well-defined. It should be noted that the effect of γ as 

incorporated here is somewhat different from usual.24 When the concentration of a drug 

equals koff/kon and E = ½, the effect parameter EP is not necessarily Emax/2. Therefore EC50 

was calculated according to: 

      (7) 

For Ramsay score (RS), a proportional odds model was used,25 where RA+RB = 1 was 

related to score 3 and the receptor binding values for the remaining scores were parameters 

to be estimated (see Appendix for details). For plots of fits, the expected value was 

calculated.  

For systemic vascular resistance often a triphasic response was observed in time (decrease, 

increase, decrease). A single concentration-effect relationship would not be able to 

adequately model this triphasic response. The interaction of propofol and midazolam on SVR 

was therefore modeled via the ratio of MAP and CO, with a conversion factor (to be 

estimated) to account for the residual error and conversion from mmHg/L/min (woods units) 

to absolute resistance units; dynes.sec-1.cm5  Response surfaces were constructed even 

though concentrations were known only on, or near, about four lines (varying concentrations 

of the primary drugs with zero or approximately fixed concentrations of the secondary drug, 

from the two complementary PK studies; propofol had two secondary targets, and there was 

also some variability in the attained concentrations).  

The sedative and hemodynamic responses to the exclusive, and suboptimal, use of propofol 

or midazolam given as single agents were determined using the equation:  

 

 ,     (8) 

where Emax = the maximum sedative or hemodynamic effect, koff,P,M = receptor dissociation 

rate of propofol or midazolam, kon,P,M = receptor binding rate of propofol or midazolam, γ = 

the steepness of the concentration-response relation and CP,M = the concentration of propofol 

or midazolam. The sedative and hemodynamic responses to the optimal combination of 

propofol and midazolam were determined using the equation:  



 

 

    (9),            with 

  ,       (10) 

where I(Q) = 1 for additive interactions and I(Q) < 1 for synergistic interactions. 

  

Statistical analysis 

Data analysis was performed using NONMEM (version VI 1.2) (Nonlinear Mixed-Effects 

Modeling; Icon Development Solutions, Ellicott City, Maryland, USA, 1989-2010). A 

probability level of < 0.01 was considered significant in hypothesis testing (nonlinearity, 

synergism, ω2). Lognormal interindividual error (ω2) except Emax additive; additive intra-

interindividual error (σ2) except for Ramsay score for which the maximum likelihood method 

was used.25 



 

 

 

Results. 

All volunteers completed the study without adverse events. During one session on the 

influence of propofol on the pharmacokinetics and pharmacodynamics of midazolam, 

hemodynamic data were lost due a storage malfunction of the LidCO. The mean + SD age, 

weight and length of the male volunteers were 24.1 + 4.6 yr, 80.2 + 9.9 kg and 185 + 5.7 cm. 

Propofol pharmacokinetics and pharmacodynamics were studied in the presence of a 

constant measured arterial midazolam concentration that ranged from 0 – 334 ng/ml. 

Midazolam pharmacokinetics and pharmacodynamics were studied in the presence of a 

constant measured arterial blood propofol concentration that ranged from 0 – 1.5 µg/ml. 

During the 32 sessions a total of 940 arterial blood samples were taken for plasma 

midazolam and blood propofol concentration determinations. 

Figure 1 shows a typical example (mean measured arterial plasma midazolam concentration 

of 289 ng/ml) of the sedative (Ramsay sedation score and BIS) and hemodynamic variables 

(MAP, HR, CO and SVR) in the presence of a combination of propofol and midazolam in a 

single volunteer. In the presence of a constant mean measured arterial plasma midazolam 

concentration of midazolam (CM: 289 ng/ml) the bolus and 1 h infusion of propofol induced 

an increase in this typical volunteer in the Ramsey score up to 6, parallel to a reduction in 

BIS from 98 to 31. Simultaneously, the MAP dropped from 77 to 54 mmHg, heart rate 

decreased from 78-61 min-1, cardiac output decreased from 6.6 – 4.5 L/min and SVR 

decreased from 1150-590 dyn.s-1.cm-5. Termination of the 1 h propofol infusion in the 

presence of a continuing background infusion of midazolam at a mean measured arterial 

plasma concentration of 289 ng/ml then resulted in a partial recovery of consciousness 

characterized by a decrease in the Ramsay score from 6 to 3 parallel to an increase in the 

BIS from about 35 to up to 75. The declining measured arterial blood propofol concentration 

furthermore was associated with a partial return of MAP to pre-induction levels, a continued 

reduced heart rate and cardiac output and a rise in SVR up to and above pre-induction 

values.  

The interaction between propofol and midazolam was successfully modeled for sedative and 

hemodynamic endpoints. Table 1 and 2 display the pharmacodynamic parameter estimates 

for the interaction between propofol and midazolam with regard to the sedative and 

hemodynamic end points. Figure 2 displays the measured versus predicted values for BIS, 

the Ramsay sedation score, MAP, HR, CO and SVR. Figures 3 and 4 display the response 

surfaces and iso-effect curves for the interaction between propofol and midazolam with 

respect to the Ramsay sedation score and BIS. For both sedative end points the interaction 

was found synergistic that could be explained by mutually nonexclusive drug binding or via 

an interaction function I(Q), respectively. 



 

 

Figures 5, 6, 7 and 8 display the response surfaces and iso-effect curves for the interaction 

between propofol and midazolam on the hemodynamic parameters MAP, heart rate, cardiac 

output and SVR. For none of the hemodynamic parameters synergism or mutually 

exclusiveness could be identified. The γ was greater than 1 for all hemodynamic parameters 

except for cardiac output.  

 

 
Figure 1.  
 
The influence of propofol (given as a propofol bolus dose of 1 mg/kg in 1 min followed by an infusion 

of 2.5 mg.kg-1.h-1 for 59 min) and midazolam (given as midazolam target controlled infusion with Ct = 

125 ng/ml; mean measured arterial plasma midazolam concentration = 289 ng/ml) on Ramsay score, 

BIS, mean arterial pressure (MAP), heart rate (HR), cardiac output (CO) and systemic vascular 

resistance (SVR) in a typical patient. The dots indicate the raw data, the lines indicate the predicted 

effect on the basis of the final pharmacokinetic-pharmacodynamic models. 



 

 

 
Figure 2.  
 
The measured versus individual predicted sedative and hemodynamic values for BIS, Ramsay sore, 

mean arterial pressure (MAP in mmHg), heart rate (HR in beats.min-1),  cardiac output (CO in L.min-1) 

and systemic vascular resistance (SVR in dyne.sec-1. cm-5). The straight line indicates Y = X. 

 



 

 

 

Figure 3.  
 
Left panel. Response surface of the interaction between propofol and midazolam on BIS. The parameter estimates determining the shape of the surface are 

displayed in table 2 and were determined using equation 3. 

 

Right panel. Iso-effect curves for the influence of propofol and midazolam on BIS expressing a synergistic interaction. The bold line displays the propofol and 

midazolam concentration combination with the strongest interaction (= the optimal concentration combination).  



 

 

 

 
 
Figure 4.  
 
Left panel. Response surface of the interaction between propofol and midazolam on Ramsay sedation score. The parameter estimates determining the shape 
of the surface are displayed in table 2 and were determined using equation 12-13 (Appendix).  
 
Right panel. Iso-effect curves for the influence of propofol and midazolam on the Ramsey sedation score expressing a slight synergistic interaction. The bold 
line displays the propofol and midazolam concentration combination with the strongest interaction (= the optimal concentration combination).  
 



 

 

 

 
 
Figure 5.  
 
Left panel. Response surface of the interaction between propofol and midazolam on mean arterial pressure (MAP). The parameter estimates determining the 
shape of the surface are displayed in table 2 and were determined using equation 2. 
 
Right panel. Iso-effect curves for the influence of propofol and midazolam on mean arterial pressure expressing an additive interaction. 
 



 

 

 

 
 
Figure 6.  

Left panel. Response surface of the interaction between propofol and midazolam on heart rate (HR). The parameter estimates determining the shape of the 
surface are displayed in table 2 and were determined using equation 2. 
 
Right panel. Iso-effect curves for the influence of propofol and midazolam on heart rate expressing an additive interaction. 
 



 

 

 

 
 
Figure 7.  
 
Left panel. Response surface of the interaction between propofol and midazolam on cardiac output (CO). The parameter estimates determining the shape of 
the surface are displayed in table 2 and were determined using equation 2. 
 
Right panel. Iso-effect curves for the influence of propofol and midazolam on CO expressing an additive interaction.  



 

 

 

 
 
 
Figure 8.  
 
Left panel. Response surface of the interaction between propofol and midazolam on systemic vascular resistance (SVR). The parameter estimates 
determining the shape of the surface are displayed in table 2 and were determined using equation 2. 
 
Right panel. Iso-effect curves for the influence of propofol and midazolam on SVR expressing an additive interaction.  



 

 

DISCUSSION. 
 
This study describes the successful modeling of the pharmacodynamic interaction between 

propofol and midazolam for sedative and hemodynamic end points. We used measured 

arterial blood propofol and measured arterial plasma midazolam concentrations to define the 

population pharmacokinetics of propofol and midazolam in volunteers.6;7 On the basis of 

these pharmacokinetic parameter sets we determined empirical Bayesian individualized 

propofol and midazolam concentrations and used these in the pharmacodynamic analysis of 

the sedative and hemodynamic effects of propofol and midazolam and their combination. 

Propofol and midazolam potentiate each other for sedative end points and display an 

additive interaction regarding their hemodynamic depressant effects.  

 

The pharmacodynamic parameters described in Table 1 and 2 confirm those previously 

reported for midazolam and propofol when given as sole agent. Kazama et al. reported for 

propofol an EC50BIS of 5.6-7.7 µg/ml compared to 6.98 µg/ml in this study.26 Similarly, the 

EC50MAP of propofol in our study (2.82 µg/ml) closely corresponds to that reported previously 

(2.1-4.6 µg/ml) and confirms that propofol induces hemodynamic depression already at 

concentrations associated with only light sedation.26 For midazolam, when given as single 

agent, the concentration-response relationship for the influence on sedation parameters like 

e.g. the Ramsay sedation score also closely correspond with those described previously.25 

Barr et al. described for midazolam an EC50Ramsey=2 and EC50Ramsey=6 of 68 and 375 ng/ml. 

This closely matches the corresponding midazolam EC50's at Ramsey = 2 and Ramsay = 6 

of 75 and 365 ng/ml found in our study.27 In line with previous studies the effect site 

equilibration of both propofol and midazolam with regard to the hemodynamic effects is 

significantly slower compared to that for the sedative effects.26 Please notice that the lower 

the concentration has been with respect to kon/koff, the more comparable koff and ke0 are. At 

higher concentrations the nonlinearity of the receptor kinetics equation becomes significant. 

Still, the dissociation half-lives for hemodynamic effects for both propofol and midazolam are 

longer than we had expected (1-2 h) and exceed those previously described.26 The 

methodology of our study that lacks multiple rapid changes in the drug concentrations as well 

as the nonlinearity in the receptor kinetics at higher concentrations probably both are 

responsible for this discrepancy with data from the literature.  

 

 

 

 

 



 

 

Table 1. Pharmacodynamic parameter estimates and standard errors (SE) for sedative 
end points. 

 Estimate SE ω2 SE 

Ramsay score  

kon,P 0.0216 0.00397 0.234 0.119 

koff,P 0.0569 0.00927 0.109 0.0566 

kon,M 0.000438 0.0000654 0.0795 0.0440 

koff,M 0.0892 0.0147 0.194 0.0527 

γ 11.8 1.21   

ν1 
0.686 0.0440   

ν2 
0.330 0.0415   

ν4 
0.210 0.0542   

ν5 
0.167 0.0393   

Bispectral Index Score 

kon,P 0.0484 0.0108 -  

koff,P 0.136 0.0249 0.156 0.0823 

kon,M 0.000216 0.0000536 0.288 0.0954 

koff,M 0.0462 0.00746 -  

Emax 97.9 0.482 0.806 0.435 

γ 2.05 0.296   

Imax 0.325 0.0390   

Qmax 0.737 0.0432   

σ2 51.5 5.49   

EC50P (µg/ml) 6.98    

EC50M (ng/ml) 532    

kon = rate constant determining onset of effect, koff = rate constant determining offset of effect, ν1-5 = 
parameters of proportional odds model (see Appendix), γ = a shape factor, ω2 = between-subject 
variability, Emax = maximum effect, σ2 = within-subject variability, Imax = maximum interaction, Qmax = 
is the maximum value of Q when maximum interaction occurs (see equation 3), EC50P = blood propofol 
concentration that assures 50% of the maximum effect, EC50M = plasma midazolam concentration that 
assures 50% of the maximum effect (decrease in BIS or rise in Ramsay score). 
 



 

 

 

Our results confirm, for the concentrations of the agents used in this study, that propofol and 

midazolam interact in a synergistic manner with respect to their effect on BIS and Ramsay 

sedation score.8;28 This may suggest, again, that the sedative effects of midazolam and 

propofol may not be propagated through a similar site of action.23 Synergism with regard to 

this end point also has been described between hypnotics and other intravenous agents like 

barbiturates or opioids. This, in contrast to the interaction of propofol and midazolam with 

ketamine that appears additive to infra-additive. Only very few studies describe the 

interaction between anesthetics with respect to their side effects like hemodynamic or 

respiratory depression. Hardly any data are available that describe therapeutic and side 

effects of a combination of anesthetic agents in one study and thus allow for the 

determination of optimal concentration combinations of 2 agents that exert a certain 

therapeutic effect in the presence of the least possible side effects. We were able for various 

combinations of propofol and midazolam to describe the interaction for both the therapeutic 

effect (sedation and hypnosis) and an important side effect (depression of MAP and CO). 



 

 

Table 2. Pharmacodynamic parameter estimates and standard errors (SE) for  
hemodynamic end points. 

kon = rate constant determining onset of effect, koff = rate constant determining offset of effect, 

γ = a shape factor, ω2 = between-subject variability, Emax = maximum effect, σ2 = within-

subject variability, EC50P = blood propofol concentration that assures 50% of the maximum 

effect, EC50M = plasma midazolam concentration that assures 50% of the maximum effect 

(decrease in MAP, HR or CO). 

 Estimate SE ω
2 SE 

Mean arterial pressure 
kon,P 0.0180 0.00608 0.194 0.0781 
koff,P 0.0401 0.00690 0.358 0.160 
kon,M 0.000232 0.0000979 0.119 0.137 
koff,M 0.120 0.0406 0.432 0.359 
Emax 80.6 1.06 29.3 8.23 
γ 1.91 0.434   
σ

2 12.4 1.75   
EC50P (µg/ml) 2.82    
EC50M (ng/ml) 654    

Heart rate 
kon,P 0.00300 0.00115 0.966 0.315 
koff,P 0.00221 0.000522 0.0362 0.0602 
kon,M 0.0000343 0.0000141 0.812 0.345 
koff,M 0.00501 0.000788 0.0748 0.0668 
Emax 66.6 1.10 34.2 8.21 
γ 2.93 1.03   
σ

2 130 1.16   
EC50P (µg/ml) 2.76    
EC50M (ng/ml) 547    

Cardiac Output 
kon,P 0.00145 0.000361 0.715 0.302 
koff,P 0.00553 0.00128 0.239 0.152 
kon,M 0.00000788 0.00000293 1.90 0.805 
koff,M 0.00706 0.00176 0.334 0.216 
Emax 7.48 0.308 2.94 0.649 
γ 1 (Fixed)    
σ

2 0.234 0.0280   
EC50P (µg/ml) 3.81    
EC50M (ng/ml) 896    



 

 

Optimal dosing. 
 
The main goal of this study was to define the optimal concentration combination that assures 

sedation in the presence of minimal hemodynamic depression. From the analysis of BIS an 

asymmetric synergism was found with C50,P = 0.136/0.0484 = 2.81 and C50,M = 

0.0462/0.000216 = 213.9, the optimal CP = 0.263/0.737 * 2.81/213.9 * CM = 0.004688 * CM. 

Because the interaction between propofol and midazolam for hemodynamic end points was 

found additive, this ratio (CP (ng/ml) = 4.688 * CM (ng/ml)) also defines the optimal 

concentration combinations of propofol and midazolam that assure the desired sedative 

effect in the presence of the smallest possible hemodynamic depression (Table 3).  

 

Table 3. Hemodynamic and sedative response to optimal and suboptimal combinations of propofol and 

midazolam associated with BIS scores between 40 – 90 as obtained from the pharmacodynamic models 
described in tables 1 and 2. 
 

BIS CP(µµµµg.ml-1) CM 

(ng.ml-1) 

Ramsay MAP 

(mmHg) 

HR 

(min-1) 

CO 

(L.min-1) 

SVR 

(dynes.sec-1.cm-5) 

97 0 0 1.55 80.6 66.6 7.48 796.3 

90 1.16 0 2.06 70.2 50.8 5.73 904.6 

90 0 88.6 2.06 78.6 62.8 6.81 852.8 

90 0.10 21.2 1.87 80.0 65.8 7.13 829.4 

80 2.18 0 2.99 59.6 38.3 4.76 925.3 

80 0 165.7 2.96 75.2 56.2 6.31 880.5 

80 0.19 39.7 1.98 78.8 63.7 6.84 850.6 

70 0.28 60.6 2.06 77.0 60.4 6.55 868.8 

60 0.41 87.0 2.45 74.5 56.0 6.21 885.7 

50 0.58 122.8 3.38 70.8 50.3 5.81 901.2 

40 0.82 175.4 5.62 65.6 43.3 5.30 914.8 

 

From Table 3 the benefit of the use of optimal concentration combinations of propofol and 

midazolam on hemodynamic function becomes clear. A BIS of 80 may be reached with 

propofol alone at a blood concentration of 2.18 µg/ml, with midazolam as sole agent at a 

plasma concentration of 165.7 ng/ml, or with a combination of propofol and midazolam (CP: 



 

 

0.19 µg/ml and CM: 39.7 ng/ml). In these healthy volunteers, mono-propofol sedation to a BIS 

of 80 was associated with a decrease in MAP and CO of 26% and 36% respectively, mono-

midazolam sedation was associated with a decrease of 7% and 16 % in these hemodynamic 

parameters whereas the propofol-midazolam combination only induced a 2% and 9% 

decrease in MAP and CO at this same sedative level of a BIS of 80. Furthermore, from table 

1 the potency ratio between propofol and midazolam can be determined for their effect on 

BIS. Based on the respective EC50’s, midazolam is 13.1 times more potent than propofol in 

its capacity to reduce BIS. Please note that this is very close to the potency ratio described 

by Billard et al., who found, with a widely different methodology, that propofol at 3.4 µg/ml 

equally reduced BIS as midazolam at 303 ng/ml (potency ratio: 1: 11.22).29  

Next to their sedative capacities both agents exhibit hemodynamic depressant effects. Purely 

based on the respective EC50’s for reduction of MAP and CO, midazolam is 4.3 times more 

potent than propofol (Table 2). Please note that this comparison only is meaningful when the 

hemodynamic depressant effects of propofol and midazolam are examined at concentrations 

that exhibit a similar sedative effect. In this perspective, at equisedative concentrations the 

hemodynamic depressant effect of propofol on CO and MAP is 3.1 times greater than 

midazolam (= 13.1/4.3).   

 

Computer simulation. 

The impact of the PK-PD interaction between propofol and midazolam becomes clear in the 

clinical scenario displayed in figure 9. In the LUMC premedication in the majority of ASA 1-2 

patients is with oral midazolam 15 mg, 30-90 min preoperatively. The concentration-time 

profile of midazolam 15 mg PO is comparable to that of a 5-7.5 mg intravenous bolus dose 

given over 15 min, taking in consideration intestinal and hepatic first pass metabolism.30 On 

the basis of the pharmacokinetics of midazolam as described7 intravenous midazolam 7.5 

mg in 15 min results in a peak plasma concentration of 250 ng/ml at 15 min, that decreases 

to 94 ng/ml at 40 min and 43 ng/ml at 120 min post administration. According to the 

pharmacodynamic model these plasma midazolam concentrations (still in disequilibrium with 

the effect site) are associated with BIS scores of 87, 86 and 95 and reductions in mean 

arterial pressure of 7%, 4% and 1% at 15 min, 40 min and 120 min after midazolam 

administration, respectively. Thirty min after midazolam premedication, in the operating room 

unconsciousness may be induced to a BIS of 50 with propofol. In the absence of midazolam 

a propofol concentration of 6.8 µg/ml would be needed to assure this BIS level (BIS = 50), 

inducing a reduction in MAP of over 40%, exceeding the boundaries of this study. In the 

presence of midazolam (CM: 94 ng/ml) the required propofol concentration only is 1.24 µg/ml 

and the reduction in MAP then only is 10% (see Table 3). Please note that the optimal 



 

 

propofol-midazolam combination to assure BIS = 50 exists at higher midazolam and lower 

propofol concentrations (CM: 122.8 ng/ml with CP: 0.58 µg/ml). 

 
Figure 9. Computer simulation of the hemodynamic consequences of a clinical scenario with 
midazolam premedication of 15 mg per os (~ 7.5 mg IV) 30 min prior to propofol induction aimed at 
reaching a BIS of 50.  
 

Figure 10 offers an insight in the complex interplay of the pharmacokinetic and 

pharmacodynamic interaction between propofol and midazolam on BIS, MAP and return to 

consciousness (time for BIS to return from BIS=50 (unconsciousness) to BIS=75 (eye 

opening)) after termination of propofol-midazolam infusions of various durations.  

In the absence of midazolam (e.g. in the absence of premedication or co-induction), or in the 

presence of very low midazolam concentrations below 50 ng/ml, represented at the far left 

corner of figure 10, relatively high propofol concentrations (between 4-6 µg/ml) are required 

to assure a BIS of 50. At these simulated propofol concentrations hemodynamic depression 

is eminent and maximal (a MAP decrease down to 40-50% of the control) but even after 

prolonged infusion return to consciousness (return to a BIS = 75) is rapid (e.g. BIS increases 

from 50 to 75 within 15 min even after 360 min infusion). The speed of recovery at this 



 

 

propofol-midazolam combination is predominantly driven by the rapid pharmacokinetics of 

propofol.  

  
Figure 10. Computer simulation of the complex interplay of the pharmacokinetic and 

pharmacodynamic interaction between propofol and midazolam on BIS, MAP and return to 

consciousness (time for BIS to return from BIS = 50 (~unconsciousness) to BIS = 75 (~eye opening) 

after termination of propofol-midazolam infusions lasting 30-360 min. The lower panel displays the 

propofol and midazolam effect site concentrations associated with a BIS of 50. The intermediate panel 

displays the times required for the BIS to increase from 50 (~unconsciousness) to 75 (~eye opening) 

after termination of various durations of propofol-midazolam infusions aimed to maintain a BIS of 50.  

The upper panel displays the decrease in MAP from control as associated with the propofol- 

midazolam effect site concentrations required to maintain a BIS of 50. 

 

 



 

 

With an increasing effect site midazolam concentration present (moving from left to right in 

figure 10), less propofol is needed to assure a BIS of 50, a smaller decrease in MAP is the 

result, but now return to consciousness is significantly postponed. At midazolam effect site 

concentrations of 50-100 ng/ml, midazolam does improve hemodynamic stability but does 

not reduce propofol requirements enough (at BIS = 50, see right panel figure 3) at these 

suboptimal midazolam-propofol concentration combinations, to prevent a significant delay in 

awakening. The sluggishness of recovery at this propofol-midazolam combination is driven 

by the slower pharmacokinetics of midazolam and the suboptimal pharmacodynamic 

interaction of the propofol-midazolam combination.  

With midazolam effect site concentrations exceeding 100 ng/ml, midazolam now does 

reduce propofol requirements for BIS = 50 significantly. As a result, hemodynamic stability 

improves (MAP only decreases 10-15%) and due to the optimal use of the combination the 

speed of recovery, though longer than when propofol is given as sole agent, is acceptable 

(e.g. BIS rises from 50 to 75 within 40 min after 360 min of combined propofol-midazolam 

infusion). The speed of recovery at this propofol-midazolam combination is driven by the 

optimal pharmacokinetic-pharmacodynamic interaction of the propofol-midazolam 

combination. 

The clinical lessons to be learned from figure 10 are the following. When rapid postoperative 

awakening is required and hemodynamic depression is thought not an important issue 

propofol anesthesia should be given without midazolam. This is what most of us offer our 

patients on a daily basis. We counteract the concurrent hemodynamic depression with fluid 

loading and/or the administration of α- and ß-sympathicomimetic agents. In cardiovascular 

compromised patients, such as in most patients for CABG surgery or patients with cardiac 

ischemia for noncardiac surgery, hemodynamic depression is potentially harmful, 

undesirable and avoidable. Intermediate midazolam (CM: 110-150 ng/ml)-low propofol (CP: 

0.5 – 1 µg/ml) anesthesia may then offer unconsciousness, hemodynamic stability and an 

acceptable time to awakening. A lower midazolam dose may offer some anxiety reduction 

preoperatively (and this may account for other benzodiazepines as well) but may not reduce 

propofol requirements enough to be beneficial from a hemodynamic point of view, 

intraoperatively. 



 

 

 
Summary. 
 

We studied the pharmacokinetic-pharmacodynamic interaction between propofol and 

midazolam on various sedative and hemodynamic end points. The sedative potency of 

midazolam (EC50,M BIS = 532 ng/ml) is 13.1 times that of propofol (EC50,P BIS = 6.98 µg/ml) and 

at these equihypnotic concentrations, propofol depresses hemodynamics (MAP and CO) 3.1 

times more compared to midazolam. Propofol and midazolam exhibit a synergistic interaction 

for sedative endpoints but an additive interaction for hemodynamic endpoints. The use of an 

optimal propofol-midazolam combination (CP = 4.688 * CM) assures sedation and 

unconsciousness in the presence of minimal hemodynamic depression. 



 

 

 

Appendix 

In the analyses of the pharmacodynamic data a term RPM = RP + RM -RP . RM was used, 

because in steady-state RP = UP / (1 + Up) and RM = UM / (1 + UM) (where UP and UM as 

defined before), so 

  (11) 

 

which has been derived to hold for mutually non-exclusive drugs. 

 

For BIS, the drug interaction was better described using Minto’s approach with an interaction 

function I(Q); for the hemodynamic effect measures, using the term RP . RM resulted in higher 

values of the objective function; but for the Ramsay scores the above interaction function RPM 

resulted in the lowest value of the objective function. 

 

For the Ramsay scores, a proportional odds model was used. The values of RPM range 

between 0 and 1; for the proportional odds model this was transformed to 0 and ∞ by using z 

= RPM /(1-RPM). Usually the logit transform is used (so log (z)), but this would result in a 

probability of 1 for the lowest Ramsay score, which was at odds with the observed data. 

Therefore, the probability of observing a Ramsay score less than or equal to k was written 

as: 

.        (12) 

 

For k = 3, zk was set to one, because then P{RS < 3} = P{RS > 3}= 0.5 if z = 1, so when 

RPM = 0.5, which is the case if either CP = koff,P/kon,P and CM = 0, or CM = koff,M/kon,M and CP = 0. 

This is a logical choice, and it keeps the rate constants identifiable. The remaining zk were 

defined relative to z3, via z2 = z3 - ν2, z1 = z2 - ν1, z4 = z3 + ν4, and z5 = z4 + ν5, where the νk 

were parameters to be estimated. The probability of observing a Ramsay score k is now 

given by P{RS = k} = P {RS < k + 1} - {RS < k}, and P{RS = 6} = 1 - {RS < 5}. Finally, the 

expected value (for plots of fits) was calculated as 

 E{RS} = .        (13) 
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Summary :  

This review discusses the ways in which anaesthetists can optimize anaesthetic-analgesic 

drug administration by utilizing pharmacokinetic and pharmacodynamic information. We 

therefore focus on the dose-response relationship and interactions between intravenous 

hypnotics and opioids. For intravenous hypnotics and opioids, models that accurately predict 

the time course of drug disposition and effect can be applied. Various commercially or 

experimentally drug effect measures have been developed and can be implemented to 

further fine-tune patient individualized drug titration. The development of advisory and 

closed-loop feedback systems which combine and integrate all sources of pharmacological 

and effect monitoring, has taken the existing kinetic-based administration technology 

forwards towards a total coverage of the dose-response relationship.  



 

 

 

Introduction : 

 

A wide spectrum of pharmacological actions (analgesia, hypnosis, and suppression of 

somatic and autonomic responses to noxious stimuli) are needed to control the general 

anaesthetic state 1. When administering (intravenous) drugs, a thorough understanding of 

the dose-response relationship is essential for achieving the specific therapeutic drug effect 

while minimizing side effects. Rational drug dosing depends on the understanding of both the 

pharmacokinetics and dynamics of the compounds in use and their drug interactions 2. With 

an ageing population, and growing demand for more complex surgical procedures in patients 

with limited physiological reserves, the need to fine-tune anaesthetic management in order to 

optimize peri-operative care is greater than ever.  

 

In current practise, intravenous drugs are commonly administered using standard dosing 

guidelines, an approach which ignores inter- and intra-individual variability in the dose-

response relation. It has been proven that incorporating pharmacokinetic-dynamic 

information as an additional input to guide clinical anaesthesia can result in better patient 

care 3. As such, it is important that anaesthetists learn and understand basic anaesthetic 

pharmacological principles and apply the available pharmacology-based technology into their 

daily clinical practice. This review discusses possible ways in which clinical pharmacology 

information can be used to optimize intravenous drug administration. For this purpose we will 

focus on the dose-response relationship and interactions among intravenous hypnotics and 

opioids.  

 

“Everything starts with education”:  

 

Knowledge on drug disposition and effect should be considered as essential for the practice 

of anaesthesia. Although most of the established residency programs world-wide do 

incorporate basic pharmacology teaching, clinical pharmacology remains a challenging topic 

to teach, and the extrapolation of theoretical principles such as drug distribution and 

clearance into clinical practise in the operating theatre remains difficult.  

 

Modern computer technology has facilitated the incorporation of this theoretical knowledge 

into pharmacokinetic simulation software packages, enabling clinicians to simulate the time 

course of drug disposition and drug effect while drugs are being administered and their 

effects are being measured. Computer simulations are frequently used in anaesthesia as a 



 

 

part of training and assessment4. Simulation technology and teaching methods have 

advanced significantly over the last years and have the potential to improve the competency 

of anaesthetists and ensure a safer use of intravenous anaesthetic drugs 5. By teaching 

clinical pharmacology through simulations, anaesthetists will be able to answer questions 

such as: Which plasma and effect-site concentration are reached when injecting propofol 

2mg/kg? Is the offset of drug effect when administering alfentanil different if it is administered 

for 30 minutes compared with 5 hours?  In what way are propofol and remifentanil 

interacting? The various software packages available are able to predict hypnotic and opioid 

drug behaviour, helping the clinician to make the transition from “dose thinking” towards 

“concentration thinking” 3.  

 

Pharmacokinetic-dynamic based drug administration.  

 

The dose-effect relationship can be divided into three parts : the relationship between dose 

administered and blood concentration (the pharmacokinetic part), the relationship between 

effect organ concentration and therapeutic effect (the pharmacodynamic part) and the 

coupling between pharmacokinetics and dynamics (figure 1, partially). Figure 2 shows that 

the time course of drug concentration for most intravenous hypnotics and opioids can be 

described by compartmental models depicting drug distribution and clearance. As the plasma 

is not the site of drug effect, hysteresis exists between the blood concentration and the 

clinical effect. Extending the pharmacokinetic model with an effect compartment enables 

modelling of the effect-site concentration of the drug, which represents this delay. This 

extension only requires one additional transfer constant, called keo 6. The relationship 

between the effect-site concentration and clinical drug effect is thought to be governed by a 

static (time-independent), non-linear (sigmoidal) relationship. In theory, a change in effect-

site concentration should directly translate into a change of clinical effect without time delay. 

However, with currently available models, various technological limitations and biological 

sources of variability might alter this relationship and as a result, in clinical practice, targeting 

the effect-site concentration to that associated with a specific clinical endpoint (e.g. loss of 

consciousness) may be associated with changes in clinical effect over the next few minutes7. 

Manual bolus and/or continuous infusion schemes do not easy result in steady state 

concentrations (except after long lasting infusions) and so, technology which enables 

accurate maintenance of targeted concentration can be beneficial. A target controlled 

infusion (TCI) is an infusion controlled by a computer or microprocessor in such a manner as 

to achieve a user-defined drug concentration in a “body compartment” of interest. These 

systems use multi-compartmental pharmacokinetic models to calculate the infusion rates 



 

 

required to achieve the target concentration. A clinician using a TCI system to administer an 

intravenous hypnotic or opiate is thus able to set a desired (“target”) drug concentration, and 

then adjust it based on clinical observation of the response of the patient or on 

measurements of drug effect.  A computer or microprocessor performs the complex 

calculations, and controls the infusion pump. Classically, plasma or effect-site concentrations 

are targeted 8. The development of target-controlled infusion (TCI) technology, have enabled 

clinicians to better manage the complex relationship between dose, blood-concentration, 

effect-site concentration and clinical effect. 

 

Figure 1 : dose-response relationship and interaction between hypnotics and analgesics. 

 

For most of the intravenous hypnotics and opioids used in daily practice, PK/PD models with 

clinically acceptable accuracy are programmed into commercially available TCI pumps. For 

propofol, two adult models are commercially available - the Marsh and the Schnider model 9-

11. Masui and colleagues 12 recently combined measured plasma concentration data from 

four different studies in which various propofol infusion regimens were used – bolus, short 

infusion, long infusion and TCI – and then tested the ability of different pharmacokinetic 

models to predict the concentrations for all of the regimens. He concluded that the model 



 

 

published by Schnider and coworkers 10, 11, although imperfect should be recommended to 

be used for TCI and advisory displays. Unfortunately, the Schnider model effect-site control 

algorithm has been implemented differently in the various commercially available infusion 

pumps, so, users have to be informed and cautious when using specific equipment 13 as this 

might result in different dosing and effect 7. Masui et al 14 studied the front-end PK and PD of 

propofol and concluded that a combined pharmacokinetic-dynamic model consisting of a 

multi-compartmental model with a lag time, presystemic compartments and a sigmoidal 

maximum possible drug effect model accurately described the early phase pharmacology of 

propofol during infusion rates between 10 and 160 mg.kg-1.h-1. They also found that age was 

a covariate for lag time and infusion rate influenced kinetics, but not dynamics. Further 

studies are required to reveal if or not these more complex model is clinically relevant 

compared with the classical one.  

 
Figure 2: Dose-response relationship for one drug. Pharmacokinetics are depicted as a 

multicompartmental model. Pharmacodynamics are shown as a sigmoidal Emax model. Kinetics and 

dynamics are linked by a effect-site compartment. (Modified from 96 with permission). 



 

 

 

For the opioids a better consensus exists than for propofol, and so only one model for 

remifentanil (“Minto” 15, 16), sufentanil (“Gepts”17) and alfentanil (“Maitre” 18-20) has been 

selected for use in commercially available TCI systems. 

 

As most of the above mentioned models have been developed in specific populations, their 

use in children the elderly and morbidly obese patients is still limited. Caution should be 

applied when extrapolating and using the models in groups differing from the original 

validating population 13.  Cortinez et al 21 proved that an allometric model using total body 

weight as the size descriptor of volumes and clearances was superior to other size 

descriptors to characterize propofol pharmacokinetics in obese patients. 

 

For the opioids there are no models suitable for use in children, whereas for propofol two 

models have been implemented for control of TCI in children in commercially available 

pumps - the Kataria and Paedfusor model 22, 23. An integrated PK/PD model enabling effect 

compartment control TCI for children is still lacking and the accuracy of these paediatric 

propofol models is still under debate 24, 25. For children, various limitations are still present 

and have been described in recent reviews by Anderson 26 and Constant.24. Additionally, 

more experimental modelling strategies have been applied.  

 

The first commercially available TCI system was the Diprifusor® (AstraZeneca, UK), which 

incorporated the Marsh model. It only allowed plasma controlled TCI as the important of the 

effect compartment was not fully appreciated at the time it was developed. Initial reports 

suggested benefits of this technology compared to manual infusion 27-30. More recently, 

others have not shown that plasma controlled propofol TCI systems facilitate more accurate 

control of anaesthetic depth than manually controlled infusions 31, 32. This might be due to the 

fact that the plasma is not the site of drug effect. Effect compartment controlled TCI may offer 

better control of the dose-response relationship 33-35.  For deep sedation in spontaneously 

breathing patients Moerman and colleagues 36 found that the combination of remifentanil and 

propofol offered better conditions for colonoscopy than propofol alone; and that TCI 

remifentanil administration was associated with reduced propofol dosing and a lower 

incidence of apnea and respiratory depression, compared to manually controlled 

administration.  Others have confirmed this finding 37. For other opioids such as sufentanil, 

TCI administration has been proven to be accurate and safe38.  

 

Pharmacokinetic and dynamic models have other potential operating room applications. 

Commercially available systems called “drug-displays” also provide on-line information of the 



 

 

predicted plasma and effect-site concentrations of the given drugs. This allows the clinician 

to learn more about the concentration-clinical effect relationship when administering the drug 

in a combined bolus and continuous infusion model39.  In addition, commercial pumps can 

also be connected to PC software programs to provide on-line predictions of plasma and 

effect-site concentrations. An example of such a program is RUGLOOP, developed by De 

Smet and Struys and available at “http://www.demed.be” 3.  

 

Measuring clinical drug effects :  

 

Beneficial kinetics and a fast onset and offset facilitate optimal drug administration and 

titration during anaesthesia. In contrast with “slow” drugs, the clinical effect of intravenous 

hypnotics and opioids can be measured online in a minute to second time frame. Better 

monitoring of the therapeutic effects has become available with the introduction of hypnotic 

effect monitors. As this equipment measures cerebral drug effect, it has to be considered as 

an integral part of anaesthetic pharmacology. For the first time in the history of the specialty, 

anaesthetists are able to differentiate and measure the two chief components of anaesthetic 

effect, hypnosis and analgesia, by using specific effect monitors.  

 

However, much work has still to be done. Various commercially available systems exist, but 

the extent to which they have been validated is variable, and some required further research 

to be validated as measures of cerebral drug effect. To facilitate this the relationship between 

drug effect-site concentration and clinical effect has to be better defined. As shown in figure 

2, a sigmoidal Emax model is mostly used for this, but in specific conditions more complex 

models might be required 40. In addition, validation on clinical endpoints such as loss and 

return of consciousness is required. Clinical utility should be proven and finally, patient 

outcome should be enhanced by applying this new technology. For some of these monitors, 

some of these goals are already reached and published in the literature. For others major 

research is still required 41.  

 

In contrast to the hypnotic cerebral drug effect monitors, real “analgesic drug effect monitors” 

do not yet exist. This is due to the complexity of pain physiology and the fact that what is 

required is a measure of the balance between nociception and antinociception during 

anaesthesia. The nature and severity of surgical stimuli change constantly and responses to 

noxious stimuli, such as movement and hemodynamic changes, are modulated by multiple 

factors. In an attempt to optimize the titration of opioids in relation to the noxious stimulus 

and the resulting adrenergic activation, various measures of the status of the autonomic 

nervous system have been studied. The success of these based on skin conduction 42, heart 



 

 

rate variability 43 and variability of pulse plethysmography, 44 has been variable 45, 46. 

Recently, the multivariate surgical stress index (SSI) (GE healthcare, Helsinki, Finland) (now 

commercially called “SPI” or “Surgical Pleth Index”), based on a sum of the normalized pulse 

beat interval (PBI) and the photoplethysmographic pulse wave amplitude (PPGA), has been 

developed as a measure of the nociception-antinociception balance 47. Some correlations 

between SSI during stimulation and remifentanil concentrations have been found. 48. Using 

SSI to titrate remifentanil compared with standard clinical practice during surgery resulted in 

less remifentanil usage, improved hemodynamic stability and less movement during surgery 
49.  

 

If immobility is considered as an important clinical endpoint of hypnotic and analgesic drug 

titration, then prediction of movement responses to noxious stimuli during anaesthesia is 

beneficial 50-52. The RIII reflex, a component of the nociceptive flexion reflex, is a polysynaptic 

spinal withdrawal reflex elicited by stimulation of nociceptive Aδ afferents. It is assessed by 

analyzing the biceps femoris muscle electromyogram during electrocutaneous stimulation of 

the ipsilateral sural nerve. This approach remains experimental and is not commercially 

available for clinical use 51, 52.  

 

Given the close relation between the propofol effect-site concentration and BIS 53, Luginbühl 

and colleagues hypothesised that the predicted effect-site concentrations of propofol and 

remifentanil together with an appropriate interaction model could provide sufficient 

information to predict responsiveness of an anesthetized patient to noxious stimuli. Thus they 

developed the novel noxious stimulation response index (NSRI), computed from hypnotic 

and opioid effect-site concentrations using a hierarchical interaction model and found that 

NSRI conveys information that better predicts the analgesic component of anaesthesia than 

EEG derived measures 54. 

 

Individualizing the dose-response relationship :  

 

Target-controlled infusions, as described above, are based on population based PK/PD 

models. The model parameters in the infusion device are those of the typical patient and are 

usually adjusted for factors known influence these parameters, such as weight, height, age 

and gender. As such, TCI ignores residual inter-individual variability, thereby limiting the 

accuracy of the estimated drug concentration for the individual. Fortunately, this inaccuracy 

can be limited if the model is built during a study which explores a wide variety of possible 

covariates using parametric modelling, ideally non-linear mixed-effects modelling 55, 56. 

Caution is needed when applying model-based drug information to an individual patient with 



 

 

co-morbidity such as cardiac disease, obesity, diabetes, nephropathy, alcoholism, and to 

children and the elderly, if similar subjects were not part of the original study population. 

Because of this, no single regimen applies to all patients. Some guidance can be found in the 

effective concentrations at which 50 % and 95 % of patients have accurate clinical effect 57.  

 

The resulting inaccuracy of absolute concentrations based on population models requires the 

clinician to manually titrate the dose regimen or target concentration for the individual patient 

based on observations of the desired therapeutic effect. Using one of the mentioned 

therapeutic effect monitors, the clinician is able to do so rationally. As a result, one could 

argue that if one has to titrate to a specific therapeutic effect anyhow, advanced drug 

administration systems are not required. In defence of TCI, it has been shown that the use of 

TCI technology facilitates rapid achievement of therapeutic concentrations at the site of drug 

action, the so-called “effect-site concentration” 33-35.  It is already possible in clinical practice 

to combine both sources of dose-response information - the effect-site concentrations 

displayed by the TCI system, and drug effect information shown by the hypnotic effect 

monitors, to guide hypnotic drug administration. Proof exists that the combined information 

offers a higher degree of care 58.  

 

Clinicians usually apply a reactive approach, by selecting a dose based on a variety of 

considerations, observing the effect thereof and adjusting the dose if required 59. Accurate 

titration can produce clinical benefits but requires a high standard of clinical expertise and is 

a labor-intensive process that may divert the clinician’s attention from critical actions resulting 

in paradoxically suboptimal therapy or even threatening the patient’s safety. “Closed-loop 

controllers” are computer programs designed to maintain a targeted effect by adapting and 

optimizing the drug administration. In closed-loop control, the user (patient or clinician) only 

selects and enters the desired effect variable to be maintained. The application of closed-

loop systems for drug administration is complex and requires a perfect balance for all the 

basic components of such a system: 1) a continuously available control variable 

representative for the targeted therapeutic effect; 2) a clinically relevant set-point or target 

value for this variable 3) a control actuator which is, in this case, the infusion pump driving 

the drug; 4) a system, in this case a patient 5) an accurate, stable control algorithm. Although 

closed-loop systems to control hypotics and analgesics using continuously measured 

pharmacodynamic drug effect measures are not yet available commercially, various 

experimental systems have been developed and tested over the last 40 (!) years 60, 61. 

Recently, various groups tested BIS-guided propofol administration using proportional-

integral-derivative (PID) closed-loop control and found that it was clinical feasible and 

outperformed manual drug titration 62-66.  



 

 

 

Unfortunately, PID control might suffer from a lack of patient individualization leading to 

oscillation during control and therefore, Struys and De Smet 67-69 developed a model-based 

patient-individualized closed loop control system for propofol administration using the 

Bispectral Index as a controlled variable. They tested their system, which uses Bayesian 

methodology for patient-individualization, during anaesthesia for ambulatory surgery and 

found a high level of accuracy and feasibility 70, 71. As all previous examples lack the 

possibility of predictive control, Ionescu et al. developed the Robust Predictive Control 

Strategy which can be applied for propofol dosing using BIS as a controlled variable during 

anesthesia 72. So far, most closed-loop systems offer only “single-input-single-output control”. 

As hypnotics and analgesics are mostly co-administered during anaesthesia, multiple-input-

multiple output controllers are a logical next step, but have yet to be developed and tested. In 

addition to a measure of hypnotic drug effect, these systems will also require an accurate 

measure of the nociception-antinociception balance during anaesthesia 73. 

 

During sedation and post-operative analgesia, patient controlled drug delivery allows the 

patient to optimize drug titration, and as such this can also be defined as a closed-loop 

system. Patient demands represent positive feedback, whereas lack of responsiveness can 

be used for negative feedback. Doufas et al. showed previously that failure to respond to an 

automated responsiveness monitor (ARM) precedes potentially serious consequences of 

loss of responsiveness 74, 75. Recently, they showed that ARM dynamics in individual subjects 

compare favorably with clinical and electroencephalogram endpoints and that the ARM could 

be used as an independent guide of drug effect during propofol-only sedation 76. This 

technology has now been implemented in Sedasys ® (Ethicon endoSurgery, Cincinnati, 

Ohio, USA) to provide propofol sedation during endoscopic procedures 77.  Previously, others 

have also shown the applicability of patient-controlled drug administration for hypnotic 78and 

analgesic 79-81 drugs.  

 

Combining hypnotics and analgesics :  

 

To reach the highest standards of care, optimal titration of both anaesthetic and analgesic 

drugs is required. Classically, opiates are used to manage the balance between nociception 

and antinociception and short acting hypnotics are widely used to titrate the hypnotic 

component of anesthesia. When optimizing the balance between hypnotic and analgesic 

action, the primary concern is to ensure an accurate level of the hypnotic component of 

anesthesia. Both awareness caused by inadequate anesthesia, and the hemodynamic side-



 

 

effects caused by an excessive anaesthetic depth should be avoided as they may 

compromise outcome. 82-84 

Next, optimal and rationale opioid titration is required. As such, the dose-response 

relationship of both drugs should be optimized. It should be taken into account that 

intravenous hypnotics and opioids demonstrate both kinetic and dynamic interactions. 

Pharmacodynamic interactions between opioids and intravenous hypnotics are clinically very 

significant and have been studied in detail using response surface methods 85-89. Response 

surface models are powerful sources of information on drug interactions as they combine 

information about any isobole and the concentration response curve of any combination of 

the drugs involved 90. Using the different mathematically described response surface, one 

can predict the corresponding drug effect for any two (or more) drug concentrations of the 

interacting drugs 91 .  

The information of hypnotic-analgesic drug interaction together with data from estimated drug 

concentration and on-line effect-monitoring can be combined in a powerful 

pharmacodynamic advisory tool that estimates the complete dose-response relation, 

facilitates optimal dose titration, and improves patient care 92, 93 Recently, various display 

systems have been developed and tested.  Schumacher et al. proposed an advisory system 

that leaves the anaesthetist in complete control of dosing but provides real time information 

about the estimated drug concentrations, predicted combined effect, and estimated wakeup 

time resulting from his actions. Additionally, this device  displays the optimal drug 

concentration ratio for a given effect in the typical patient 94.  Albert and co-workers 

developed a pharmacological display system that can be used to accurately model the 

concentration and effect of anaesthetic drugs administered alone and in combinations, on-

line, in the operation room, thereby visualizing the sedation, analgesia and muscle relaxation 

status of a patient based on general population models that have been corrected for body 

mass, age, and sex 95. Various advisory systems became recently commercially available. 

Two examples, Smart Pilot View (Dräger, Lübeck, Germany) and GE Navigator (GE 

Healthcare, Helsinki, Finland) are depicted in figures 3 and 4, respectively. 

 



 

 

 
Figure 3 : Smart Pilot View (Dräger, Lübeck, Germany). This display represents a balanced 

anesthetic case using a volatile agent, propofol, remifentanil, and fentanyl. It uses a topographical plot 

of the interaction between hypnotic – and analgesic drugs (left plot) and represents the vital signs and 

Bispectral Index Scale (BIS), dose and effect over time. Furthermore it introduces the noxious stimulus 

response index (NSRI) as a new parameter (right plots). The topographical plot on the left illustrates 

the synergistic interaction of hypnotic – and analgesic drugs with gray-scaled isoboles. MAC 50 and 

90 indicate the probability of loss of response to skin incision (MAC: minimum alveolar concentration). 

MAC awake indicates the probability of wake up. Fentanyl is converted into remifentanil equivalents so 

its contribution can be accounted for on the isobole plot. The plots on the lower right represent the 

time course for each drug over the past 40min to 4h and 20 minutes into the future. A series of 

symbols (light green buttons) are used as Event Markers during a surgical procedure (e.g. loss of 

consciousness, intubation, incision). These markers are useful to mark the individual reaction or non 

reaction of the patient and see if the patients individual reaction will correspond to the level of 

anesthesia, which is represented by the isoboles calculated from the behind lying algorithms. 

(SmartPilot® View, reprinted with permission, © Dräger Medical GmbH, Lübeck, Germany). 



 

 

 
Figure 4: GE Navigator (GE Healthcare, Helsinki, Finland).display provides a tool for modelling and visualization 

of PK/PD models for common anaesthetic (inhaled and i.v.) drugs. In addition, it provides a model for the 

synergistic effects of propofol (or inhaled agents) and the fentanyl family. The calculated effect-site concentrations 

are displayed in a time-based graphical format. The total effect trace (the black line shown in the sedation and 

analagesia windows) visualizes the combined synergistic effect of the analgesic and sedative drugs. The 

displayed effects include level of sedation according to loss of consciousness probablility, level of analgesia 

according to the probability of response to intubation (high pain stimuli), and level of neuromuscular block. The 

drug models are calculated for up to 1 h into the future providing predictive drug modelling for drug concentration 

and quantative complex drug interactions. (Navigator Therapy Display, reprinted with permission, © 2010 General 

Electric Company, Helsinki, Finland). 

 
In conclusion, by implementing PK/PD based information, the anaesthetist should be able to 

optimize anaesthetic-analgesic drug administration. For both intravenous hypnotics and 

opioids, models to accurately predict the time course of drug disposition and effect can be 

applied. Various commercially available and some experimental drug effect measures have 

been developed and can be implemented to further fine-tune patient individualized drug 

titration. All sources of pharmacological and effect monitoring can be combined into 

anaesthetic advisory and closed-loop feedback systems enlarging the existing kinetic-based 

administration technology towards a total coverage of the dose-response relation.  
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Summary, conclusions and future perspectives. 
 
This thesis describes the day to day interaction between propofol and midazolam as 

encountered in every day practice. The direct interaction of premedication given to patients 

before surgery has profound implications. The propofol induction dose can be decreased 

with respect to the target BIS. Besides the interaction mechanisms of propofol and 

midazolam, the pharmacological backgrounds of propofol-opioid interactions are given. The 

future perspectives of PK-PD modeling and the use of additional informative techniques are 

given in the last chapter. 

 
Chapter 1: This chapter describes the Propofol-Opioid combinations that are widely used in 

today’s anaesthetic practice. Over the past twenty years the pharmacology of these agents 

has been described in increasingly greater detail. Together with novel administrating devices 

and improved anaesthetic depth monitoring, this has created a basis for the optimisation of 

the administration of propofol-opioid anaesthesia. This article describes the current strategies 

regarding the application of this type of anaesthesia, focusing on three strategic tools: 

application of the pharmacokinetic-pharmacodynamic knowledge of propofol and opioids, 

with particular attention to pharmacodynamic interactions between them; the use of state-of-

the-art administration techniques; and the application of bispectral index monitoring. 

Together, these techniques have improved the level of control, the flexibility and the safety of 

anaesthetic practice. 

 

Chapter 2: We studied the influence of propofol on the midazolam pharmacokinetics. 8 

health male volunteers were studied in a random crossover manner, during which they 

received either a midazolam bolus infusion in 1 minute followed by an infusion for 59 

minutes. During the second session they received the same midazolam infusion and a TCI 

controlled infusion of propofol. Midazolam plasma levels and whole blood propofol 

concentrations were measured. In the presence of a mean blood propofol concentration of 

1.2 µg/ml, the plasma midazolam concentration increased by 26.9 ± 9.4% compared with 

midazolam given as single drug. Propofol (Cblood:1.2 µg/ml) reduced midazolam central 

volume of distribution from 5.37 to 2.98 L, elimination clearance from 0.39 to 0.31 L/min and 

rapid distribution clearance from 2.77 to 2.11 L/min. Inclusion of heart rate further improved 

the pharmacokinetic model of midazolam. 

 

Chapter 3: during our research we encountered three volunteers who were enrolled in our 

study that were deeply sedated when given the combination of propofol and midazolam. This 

deep sedation was recorded with online BIS-XP logging and recording of Ramsey scores. 



 

 

BIS values of 40-60 were recorded, which in daily practice are regarded as surgical depth of 

anesthesia. Although the volunteers were deeply sedated they were responsive to questions 

and could answer simple mathematical questions. The effect is partly due to midazolam 

because of the effect on the EEG. Spindles (low voltage, high frequency EEG) are 

interpreted as a sign of a high-level anaesthesia, but are merely an effect of midazolam. 

 

Chapter 4: During the reverse study session eight healthy male volunteers were studied on 

2 occasions in a random crossover manner. During session A volunteers received propofol 1 

mg/kg in 1 min followed by an infusion of 2.5 mg.kg-1.h-1 for 59 min. During session B, in 

addition to this propofol infusion scheme, a TCI of midazolam (constant Ct: 125 ng/ml) was 

given from 15 min before the start until 6 h after termination of the propofol infusion. Arterial 

blood samples were taken for blood propofol and plasma midazolam concentration analysis 

until 6 h after termination of the propofol infusion. Nonlinear mixed-effects models examining 

the influence of midazolam and hemodynamic parameters on propofol pharmacokinetics 

were constructed using Akaike’s criterion for model selection. In the presence of midazolam 

(Cblood: 224.8 ± 41.6 ng/ml) the blood propofol concentration increased by 25.1 ± 13.3 % 

compared to when propofol was given as single agent. Midazolam (Cblood: 225 ng/ml) 

reduced propofol Cl1 from 1.94 to 1.61 L/min, Cl2 from 2.86 to 1.52 L/min and Cl3 from 0.95 to 

0.73 L/min. Inclusion of mean arterial pressure (MAP) further improved the propofol 

pharmacokinetic model. 

 

Chapter 5: we have studied the pharmacokinetic interactions between midazolam and 

propofol. In this chapter we explore the pharmacodynamic interactions between propofol and 

midazolam. Our aim was to find the optimal dosing that ensures hemodynamic stability and 

unconsciousness. The groups that have been studied and the dosing schemes used in the 

studies are not large enough to reach our goal. We can elude a part of the answers but with 

respect to a final and definitive answer we will have to study more volunteers with a wider 

range of dosing schemes. We have found that there is a trend towards synergism between 

propofol and midazolam for BIS endpoints. During the reconnaissance phase of the PD data 

and the first calculations a synergistic model was found for propofol and midazolam. The 

data have been submitted and the reviewers have given us very useful comments. 

NONMEM interaction with 3D modelling is a useful tool for direct visualization of interaction. 

 

Chapter 6: This review discusses the ways in which anaesthetists can optimize anaesthetic-

analgesic drug administration by utilizing pharmacokinetic and pharmacodynamic 

information. We therefore focus on the dose-response relationship and interactions between 

intravenous hypnotics and opioids. For intravenous hypnotics and opioids, models that 



 

 

accurately predict the time course of drug disposition and effect can be applied. Various 

commercially or experimentally drug effect measurement techniques have been developed 

and can be implemented to further fine-tune patient individualized drug titration. The 

development of advisory and closed-loop feedback systems which combine and integrate all 

sources of pharmacological and effect monitoring, has taken the existing kinetic-based 

administration technology forwards towards a total coverage of the dose-response 

relationship.  

 
Future perspectives for intravenous based anesthesia are good. When all developments are 

considered, there is a thorough basis from which the patient will benefit directly.  

The conclusions that can be drawn from this thesis are 

 Education and study on PK-PD interactions between opioids and Propofol is 

beneficial for patients, with shorter duration of anesthesia while minimizing side 

effects. 

 Pharmacokinetic propofol midazolam interactions prove to be of clinical importance 

for everyday practice, with regards to induction and maintenance dose. 

 Pharmacodynamic interactions between propofol and midazolam appear to be 

synergistic.  

 Interaction display and effect monitoring during surgery for education and training will 

be an interactive and useful tool in the operating room.  

 

Future perspectives: 

Completion of the pharmacodynamic interaction between propofol and midazolam depends 

on the implementation of a step up and down model wise approach to the study. At this 

moment the interaction appears to be synergistic a supplemental study must be considered 

to draw final conclusions. This thesis has proven that the interaction is worth studying and 

with a renewed approach will give a more subtle and complete view of this interaction. 

Introducing the results of the study in display monitoring for surgery with the possibility of 

introducing premedication, and will be helpful in the OR. 



 

 

 

Nederlandse Samenvatting 
 
Anesthesie wordt gegeven voor een groot aantal verschillende chirurgische procedures. 

Patiënten krijgen een combinatie van slaapmedicijnen en pijnstilling voor de inductie en 

onderhoud van de anesthesie. Naast deze combinatie van medicatie wordt spierverslapping 

gegeven zodat de chirurg de operatie kan uitvoeren.  

De combinatie van medicijnen die zorgt voor bewusteloosheid en pijnstilling tijdens de 

operatie heeft als potentieel nadeel dat deze ook de autonome stabiliteit van de patiënt kan 

ontregelen. Het is dan ook van groot belang dat de anesthesioloog kennis heeft van de 

pharmacokinetiek, hoe wordt een medicijn door het lichaam opgenomen en afgebroken, en 

de pharmacodynamiek, wat doet het medicijn met het lichaam.  

 

In hoofdstuk 1 wordt de optimalisatie van de combinatie van anesthetica en analgetica 

besproken. De anesthesioloog moet steeds meer nadruk leggen op de behoefte van de 

individuele patiënt waarbij gebruik wordt gemaakt van de farmacologische kennis die is 

opgebouwd in de laatste 30 jaar. Met deze kennis kan de anesthesioloog de dosis van de 

gebruikte medicatie aanpassen aan de individuele behoefte zodat alle patiënten snel in slaap 

kunnen worden gebracht waarbij deze zo stabiel mogelijk zijn en na de operatie weer snel 

wakker kunnen worden. Met deze kennis hebben de patiënten zo min mogelijk last van 

bijwerkingen. Het gebruik van deze kennis gaat samen met de toepassing van een aantal 

zogenaamde “state of the art” technieken. Het gaat hier om gebruik van target-controlled-

infusion (TCI). Tot voor kort werden slaapmiddelen manueel toegediend waarbij geen 

rekening werd gehouden met de individuele karakteristieken. TCI gebruikt de 

karakteristieken van een individuele patiënt voor het bereiken en onderhouden van een 

stabiele bloed of plasmawaarde van een anestheticum. De diepte van de narcose kan 

worden gemonitored door middel van een afgeleide van het EEG, de Bispectral Index 

monitoring (BIS). BIS correleert sterk met de diepte van de narcose zodat de diepte van de 

narcose kan worden aangepast aan de behoefte van de individuele patiënt. 

 

In hoofdstuk 2 en Hoofdstuk 4 worden Propofol en Midazolam samen gegeven, waarbij 

wordt gekeken hoe deze elkaar beïnvloeden. Midazolam is een slaapmiddel dat veel wordt 

gebruikt voor preoperatieve anxiolyse, langdurige sedatie op de intensive care en soms bij 

langdurige ingrepen. Propofol en midazolam worden soms gecombineerd en onderzoek naar 

de interactie was met name op het gebied van pharmacodynamiek, waarbij de rol van het 

cytochroom in de lever de focus van het onderzoek was. Wij hebben de rol van de interactie 

onderzocht tijdens langdurige infusies middels TCI. Tijdens de sessies kregen de vrijwilligers 



 

 

eerst een target controlled infusie met ofwel midazolam of propofol. Na 15 minuten werd een 

tweede infusie gestart met ofwel propofol of midazolam. Gedurende de gehele sessie 

werden arteriële bloedmonsters genomen welke later werden bepaald in het laboratorium.  

Ook werden alle hemodynamische data digitaal opgenomen voor latere verwerking.  

In de uiteindelijke PK-set voor midazolam, blijkt dat de toevoeging van hartslag (slagen per 

minuut) de tijd-concentratie beschrijving van de gevonden waarden nog beter weergeeft.  

 

Table 3. Pharmacokinetic parameters of Midazolam (based on the final Pharmacokinetic 
Parameter Set with Propofol and Heart Rate as covariates) for various Propofol and Heart 
Rate Values as used in the Computer Simulations 

Propofol (μg/mL) 0 1.5 0 0 

Heart Rate (min-1) 63 63 40 90 

V1 5.37 2.57 5.37 5.37 

V2 26.2 26.2 26.2 26.2 

V3 48.9 48.9 69.7 32.3 

Cl1 0.39 0.30 0.32 0.50 

Cl2 2.73 1.94 1.34 6.30 

Cl3 0.36 0.36 0.36 0.36 

 

Bij een gelijktijdige infusie van propofol en midazolam is een reductie nodig van ongeveer 

15% om de midazolamconcentraties te verkrijgen die zijn ingesteld met de TCI. 

Naast deze reductie is er ook een duidelijk verschil in de 80% decrement time. Deze waarde 

geeft aan dat de klaring van midazolam uit het bloed afneemt.  

In het omgekeerde onderzoek is eerst midazolam TCI gegeven, zodat er een stabiele 

waarde in het bloed was. Daarna is een infusie van propofol gegeven. Midazolam geeft een 

verhoging van de propofolconcentratie. De klaring van propofol uit het bloed is sterk 

afgenomen. Bij het uiteindelijke model waarin alle covariaten zijn opgenomen blijkt dat 

toevoeging van de Mean Arterial Pressure  (MAP) het pharmacokinetische model verder 

verbetert. (zie Tabel) 

 

 

 

 

 



 

 

 
Midazolam 

(ng/mL) MAP (mm Hg) V1 (L) V2 (L) V3 (L) Cl1 (L/min) Cl2 (L/min) Cl3 (L/min) 

0 78 4.80 31.20 144.00 1.94 2.86 0.95 

225 68 6.13 28.04 144.00 1.61 1.52 0.73 

0 50 9.55 23.12 144.00 1.94 2.86 0.64 

0 75 5.16 30.22 144.00 1.94 2.86 0.91 

0 100 2.97 39.48 144.00 1.94 2.86 1.29 

 

In hoofdstuk 4 beschrijven wij een aantal vrijwiligers die tijdens de studie die gesedeerd 

waren tijdens de studie met lage BIS waardes. Ook de Ramsey scores, een maat voor diepte 

van de sedatie, gaven dat aan. De gemeten BIS waarden waren tussen de 40 en 60, wat 

gezien wordt als een chirurgische narcose. Hoewel deze vrijwilligers diep waren gesedeerd 

waren konden deze vrijwilligers gemakkelijk wekbaar en konden simpele vragen 

beantwoorden. Het effect wat werd gezien is zeer waarschijnlijk het effect van midazolam. 

Spindles op het elektro-encefalogram (EEG) worden door de BIS geïnterpreteerd als een 

diepe narcose 

. 

In hoofstuk 5 komen hoofdstuk 2 en 4 samen. Alle data van de onderzoeken worden samen 

genomen en word gekeken naar de pharmacodynamische interacties. Het doel van het 

onderzoek is het vinden van de optimale dosering voor de combinatie van propofol en 

midazolam waarbij zo min mogelijk bijwerkingen optreden en de patiënt hemodynamisch 

stabiel is. Binnen het onderzoek lijkt er een trend te zijn naar synergie tussen propofol en 

midazolam. Hierbij verstreken de beide middelen elkaar en is er minder van beide nodig, wat 

weer leidt tot minder bijwerkingen. Met name als er gekeken wordt naar het eindpunt BIS lijkt 

deze samenwerking zich uit te betalen. Gezien de grootte van de groepen is het nog wel 

nodig om aanvullend onderzoek te doen om deze synergie definitief vast te stellen. 

 

In Hoofdstuk 6 wordt een overzicht gegeven van de verschillende manieren waarop de 

anesthesist gebruik kan maken van de PK-PD informatie die er beschikbaar is, waarbij de 

focus ligt op de dosis-respons relatie en interactie tussen intraveneuze hypnotica en opiaten. 

Er zijn op dit moment modellen die de PK-PD van de hypnotica goed kunnen voorspellen. 

Daarnaast zijn er ook commerciële en experimentele metingen beschikbaar voor anesthetica 

die nog beter de individualisering van de dosis-respons relatie van patienten kunnen 

verfijnen. Als laatste komen ook de closed-loop systemen aan bod welke pharmacologische- 

en effect-metingen integreren en combineren. Effecten van en bloedwaarden van hypnotica 



 

 

kunnen zo als een geheel worden gezien en geven de anesthesioloog direct inzicht in de 

individuele behoefte van patienten. 

De conclusies die dan ook kunnen worden getrokken uit deze studies zijn dan ook: 

• Onderzoek naar en onderwijs over de PK-PD interacties tussen propofol en opiaten is 

belangrijk voor patientenzorg. Het leidt tot een kortere anesthesie met minder 

bijwerkingen. 

• Pharmacokinetische interacties tussen propofol en midazolam zijn klinisch belangrijk, 

met betrekking tot de inductie en onderhoudsdosis van de narcose 

• Interacties tussen propofol en midazolam op pharmacodynamisch vlak lijken 

synergistisch te zijn wanneer men kijkt naar BIS als waarde 

• Het visueel weergeven van de interacties tussen en effecten van anesthetica voor 

onderwijs is een interactieve en waardevolle toevoeging in de operatiekamer 

 

Toekomstperspectieven: hernieuwd onderzoek naar de pharmacodynamische interactie 

tussen propofol en midazolam zal een nog beter beeld geven van deze interacties. Op dit 

moment lijkt deze interactie synergistisch van aard te zijn, maar toegevoegd onderzoek zal 

dit kunnen uitwijzen. Het implementeren van deze interacties binnen de interactie display zal 

een waardevolle toevoeging zijn aan de dagelijkse praktijk. 
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