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Abstract 

Grapevine (Vitis vinifera ssp. vinifera L.) is one of the most important fruit crops grown 

in viticultural regions on several continents. Like other crops grapevine are easily 

infected by plant pathogens. Understanding its defense responses will help to develop 

improved cultivars for more sustainable plant management. To gain insight into these 

processes the metabolic changes during the interaction of two differentially susceptible 

grapevine cultivars, ‘Regent’ and ‘Trincadeira’, with the downy mildew pathogen 

(Plasmapora viticola) were investigated. Nuclear magnetic resonance (NMR) 

spectroscopy on leaf extracts was used at several time points after experimental 

inoculation. A wide range of metabolites were identified using various two-dimensional 

(2D)-NMR techniques. Multivariate data analysis characterized both the resistant and 

the susceptible cultivar and their response against the pathogen. Metabolites responsible 

for their discrimination were identified as a fertaric acid, a caftaric acid, quercetin-3-O-

glucoside, linolenic acid, and alanine in the resistant cultivar ‘Regent’, while the 

susceptible ‘Trincadeira’ showed higher levels of glutamate, succinate, ascorbate and 

glucose. In addition have more phenolics than ‘Trincadeira’ upon inoculation with P. 

viticola, ‘Regent’ was also found more active in identifying the biotic stress and showed 

more rapid accumulation of phenolics than ‘Trincadeira’, which might be the key for 

resistance in this cultivar. This study portrays the analytical capability of NMR 

spectroscopy in combination with chemometrics methods for the metabolic profiling of 

plant samples. The results obtained will provide better understanding of the role 

phenylpropanoids and flavonoids in resistance against biotic stresses which in turn 

provide a firm platform for the designing of metabolic engineering of grapevine 

cultivars with higher resistance towards pathogens.  

 

Introduction 

Plant species survival depends on their metabolic plasticity, i.e. their ability to 

diversifying their own defense responses against biotic and abiotic stresses. In their 

natural environment, plants have to live with a multitude of stress conditions such as 

drought, flooding, salinity, nutritional deficiency, intense sun light, adverse climatic 

conditions, pollutants, pathogens and phytophagous insects and animals (Harborne 
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1999). Since plants are sessile, one of the major strategies for counteracting these 

adverse conditions is the synthesis of protective phytochemicals that operate on the 

level of natural selection, biological evolution and biodiversity. These important 

phytochemicals involved in defense mechanisms are mainly secondary metabolites, not 

directly involved in basic processes like growth, development, and reproduction but are 

necessary in a plants’ ecological network (Dixon 2001). 

Grapevines (Vitis spp) are important fruit species world-wide due to the numerous uses 

of grapes in the production of wine and grape juice as well as their popularity as fresh 

table fruits or dried currants and raisins. Among the Vitis species, Vitis vinifera ssp. 

vinifera is currently the most cultivated around the world. The phytochemistry of 

grapevine includes a great variety of compounds known for a vast array of activities. 

The chemical diversity of grapevine and related activities has been recently reviewed by 

Ali et al. (2010). 

Downy mildew, caused by Plasmopara viticola (Berk. et Curt.) Berl. et de Toni, is one 

of the most destructive diseases of grapevine. The disease was introduced from America 

and is responsible for considerable economical losses to European grapevine growers 

every year. So far the most effective control is the repeated use of fungicide, which in 

turn raises other issues related to environmental impact and resistant pathogenic strains 

(Kortekamp et al. 2008). Plasmopara viticola has a tendency to colonize both resistant 

and susceptible cultivars but the development of the parasite is known to be inhibited by 

resistant cultivars mainly because of the induction of specific stress related metabolites 

known as phytoalexins (Jean-Denis et al. 2006).  

Phytoalexins are low molecular weight antimicrobial secondary metabolites of broad 

interest. Studies of phytoalexins provide a large field of investigation for plant 

pathologist and biochemists concerning the aspects of biosynthesis of these compounds 

in plants and their metabolism by pathogenic organisms. Since phytoalexins have been 

shown to possess biological activities against a wide range of pathogens, they can be 

considered as markers for plant disease resistance. Although most phytoalexins are less 

toxic than synthetic fungicides they can locally accumulate within plant tissues, to 

concentrations much higher than those necessary to restrain fungal growth (Derckel et al. 

1999). 
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Although phytoalexins display an enormous chemical diversity, in Vitaceae they seem 

to constitute a rather restricted group of molecules belonging to the stilbene family, the 

skeleton of which is based on resveratrol. It has been demonstrated that resveratrol and 

its oxidation products like α-, β-, ε-, and γ-viniferins, are synthesized by grapevine 

leaves following fungal infection and UV irradiation (Langcake and Pryce 1977). 

Grapevine phytoalexins can thus be used as markers for resistance. These phytoalexins 

have been shown to be produced in different grapevine cultivars when infected with the 

downy mildew pathogen Plasmopara viticola (Pezet et al. 2004). Schnee et al. (2008) 

showed that upon infection with powdery mildew (Erysiphe necator), fungal growth 

was restricted on leaves in resistant cultivars and the amounts of stilbenes expressed by 

the infection site allowed discrimination of the resistant and susceptible cultivars. 

Metabolic fingerprinting is the high throughput qualitative screening of the metabolic 

composition in an organism or tissue with the primary aim of sample comparison and 

discrimination analysis (Dettmer et al. 2007). The analytical techniques applied to 

metabolite profiling should be rapid, reproducible, and stable over time, while requiring 

only simple sample preparation. A technique that potentially meets all the above listed 

necessities is NMR (nuclear magnetic resonance), which has been widely used as a 

fingerprinting tool for the analysis and quality assessment of industrial and natural 

products (Ali et al. 2009; Brescia et al. 2002). NMR is now commonly used in 

combination with multivariate or pattern recognition techniques such as principal 

component analysis (PCA) specifically designed to analyze complex datasets. The 

combination of NMR and multivariate data analyses has been widely applied to the 

metabolic profiling of various types of samples, e.g. fruits and beverages (Gall et al. 

2001; Charlton et al. 2002).  

The present research is a continuation of our previous report regarding the metabolic 

classification of different Vitis species (Ali et al. 2009). In this study, two Vitis vinifera 

cultivars (‘Regent’ and ‘Trincadeira’) were used. ‘Regent’, bred at the Institute for 

Grapevine Breeding Geilweilerhof, was chosen as a model since its resistance traits 

were achieved by multiple crosses introgressing resistance genes from American wild 

species (Eibach and Töpfer 2003). Furthermore, it combines high wine quality and 

resistance to the downy and powdery mildew pathogens. ‘Trincadeira’ is a highly 

susceptible Portuguese cultivar of elevated economic interest as used to make important 
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Portuguese wines. The NMR spectroscopy was applied for the metabolomic analysis of 

‘Regent’ and ‘Trincadeira’ leaf tissues before and at several time-points after 

inoculation with Plasmapora viticola. NMR spectroscopy was coupled with 

multivariate data analyses with the aim to identify the major metabolites involved in 

resistance that contribute to the discrimination between the resistant and the susceptible 

cultivars used in this study.  

 

Materials and Methods 

Inoculation of Vitis vinifera cultivars with Plasmopara viticola  

Grapevine plants from ‘Regent’ and ‘Trincadeira’ cultivars were grown in pots under 

greenhouse conditions. Plasmopara viticola sporangia were collected by incubating 

symptomatic leaves overnight in a moist chamber (90-100 % humidity) at room 

temperature. Sporangia were recovered, stored at -25 ºC and checked for their vitality 

by microscopy. A 104 sporangia/mL suspension was sprayed onto the lower leaf surface 

in order to challenge the plants. Mock inoculations were done with water. After 

inoculation, the plants were kept in a moist chamber for 8 hours during which time the 

moisture was 100 %. Afterwards it was kept at 40-50 %. The temperature ranged 

between 25-30 ºC. Plant material (3-5 leaves from the shoot apex) was collected at 0, 6, 

12, 24, and 48 hours post inoculation (hpi), starting from morning (8:00 am). Three 

biological replicates were performed per time-point.  

 

Extraction of Plant Material  

Leaves from both V. vinifera cultivars sampled at different time points after inoculation 

were used and extracted according to Kim et al. (2010). Briefly, the freeze dried plant 

material (50 mg) was transferred to a microtube (2 mL) to which 1.5 ml of methanol-d4 

(750 µL) and D2O (750 µL) (KH2PO4 buffer, pH 6.0) containing 0.005% TMSP-d4 

(trimethyl silyl propionic acid sodium salt-d4, w/v, Sigma-Aldrich) were added. The 

mixture was mixed at room temperature for 1 min, ultrasonicated for 20 min (Branson 

5510E-MT, Branson Ultrasonics, Danbury, CT, USA), and centrifuged at 17,000 g at 

room temperature for 5 min. The supernatant (800 µL) was transferred to a 5 mm NMR 

glass tube.  
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Data Analysis 

The 1H NMR spectra were automatically reduced to an ASCII file using AMIX 

software (Bruker). Spectral intensities were scaled to total intensity and reduced to 

integrated regions of equal width (δ 0.04) corresponding to the region of δ 0.3–10.0 

(bucketing). The regions of δ 4.85–4.95 and δ 3.25–3.35 were excluded from the 

analysis because of the residual signal of D2O and CD3OD, respectively. Principal 

component analysis (PCA) and projections to latent structures-discriminant analysis 

(PLS-DA), and bidirectional orthogonal projections to latent structures-discriminant 

analysis (O2PLS-DA) were performed with the SIMCA-P+ software (v. 12.0, Umetrics, 

Umea, Sweden). For PCA, Pareto scaling was used whereas for PLS-DA and O2PLS-

DA a Unit variance method for scaling was used. The t-test for the 1H-NMR signals 

(bucket table) was performed using MultiExperiment Viewer (v. 4.0) and used for the 

relative quantification of metabolites (Saeed et al. 2003). 

 

Results 

Visual analysis of 1H NMR spectra 

Leaves of resistant (‘Regent’) and susceptible (‘Trincadeira’) grapevine cultivars 

inoculated with P. viticola were collected at different time points (0, 6, 12, 24, and 48 

hpi) and their extracts were subjected to 1H NMR analysis. A comparison between 1H 

NMR spectra of different time points of ‘Regent’ and ‘Trincadeira’ cultivars and it was 

observed that considerable amounts of phenolics are present even at 0 h and 6 h after 

inoculation in ‘Regent’. A gradual increase in the synthesis of metabolites, particularly 

phenolics, can be seen as the resonances in the phenolics region are getting higher at 

later time points after inoculation. Similar analysis has been done for ‘Trincadeira’ and 

it also showed a significant accumulation of phenolics at the later time points i.e. 24 and 

48 hpi. In order to highlight the differences in the metabolic responses of these varieties, 

all the time points were compared. It was found that ‘Regent’ not only showed higher 

accumulation of secondary metabolites but also was quicker in responding to the 

pathogen challenge. The comparison of 1H NMR spectra at 48 hpi in both cultivars is 

shown in Figure 1. The identification of the discriminating 1H NMR resonances along 

with the characterization of metabolic profiles of these resistant and susceptible 

cultivars will be discussed later.  
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Identification of metabolites 

The metabolites identified cover a wide diversity and include amino acids, organic acids, 

carbohydrates, hydroxycinnamates, hydroxybenzoates, and flavonoids. The aromatic 

compounds part of the 1H NMR spectra showed signals of gallic acid and syringic acid. 

The flavonoids quercetin-3-O-glucoside and myricetin were also identified in the 

aromatic region. The quercetin signal at δ 6.49 of H-8 was correlated in the 1H-1H 

COSY spectrum with the signal at δ 6.27 of H-6 and a signal at δ 6.95 of H-5′ with one 

at δ 7.56 of H-6′. Similar correlations were obtained for the signals of myricetin at δ 

6.51 of H-8 with δ 6.28 of H-6 that also showed 1H-1H COSY correlations. Resonances 

for (+) - catechin and (-) - epicatechin were also identified in the same region. The 

characteristic doublets of 16.0 Hz in the range of δ 6.30-6.50 and δ 7.59-7.70 represent 

the H-8′ and H-7′ (olefinic protons) of trans-cinnamic acids, respectively. In the 1H 

NMR spectra, these resonances were assigned to two different hydroxycinnamic acids 

Figure 1. Comparison of full 
1
H-NMR spectra (A) of ‘Trincadeira’ (blue) and ‘Regent’ (red) 

cultivars analyzed after 48 hours of pathogen inoculation. The phenolic (B) and amino acid (C) 
regions are amplified. 1: leucine, 2: valine, 3: threonine, 4: alanine, 5: glutamate, 6: proline, 7: 
glutamine, 8: malate, 9: quercetin glucoside, 10: caffeoyl moiety, 11: feruloyl moiety, 12: myricetin. 
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moieties that include trans-caffeoyl- and trans-feruloyl derivatives. These derivatives 

were found to be conjugated with tartaric acid via an ester linkage. Based on these 

assignments, these compounds were identified as trans-caftaric acid (caffeic acid in 

ester-linkage with tartaric acid) and trans-fertaric acid (ferulic acid in ester linkage with 

tartaric acid). Along with the trans- forms, the cis- forms of these conjugated cinnamic 

acids, i.e. cis-caftaric acid and cis-fertaric acid, were also detected. When compared to 

their trans- configuration, the cis- forms showed an up-field shift of the signals for H-8′ 

and H-7′ along with a reduction in the coupling constant from 16.0 Hz to 13.0 Hz. Two 

clear doublets of 13.0 Hz at δ 5.92 and δ 5.97 were detected for the H-8′ in the cis-

configuration.  

The high signal intensities in the amino acids region were helpful to elucidate a number 

of amino and organic acid signals. The amino acids alanine, threonine, valine, proline, 

methionine, leucine, tyrosine, glutamine and glutamic acid were identified in leaves by 

comparison with reference spectra of these compounds. The signals in the carbohydrate 

regions were highly clustered and overlapped. This region showed the signals of the 

anomeric protons of β-glucose, α-glucose, fructose, and sucrose. Other compounds 

including choline, α-linolenic acid, and acetic acid were also identified in this region. A 

number of signals were assigned to different organic acids like succinic acid, fumaric 

acid, formic acid, ascorbic acid, malic acid, and tartaric acid. All of these assignments 

were done by comparing the spectra with 1D and 2D NMR spectra of common plant 

metabolites in our in-house library and already explain in detail in Chapter 9 of this 

thesis.  

 

Multivariate data analysis  

After visual inspection of 1H NMR spectra, multivariate data analyses were applied in 

order to identify the 1H NMR resonances which were changed in resistant and 

susceptible cultivars upon pathogen challenge. One of the most common and widely 

used methods to reduce the dimensionality of multivariate data set is the application of 

principal component analysis (PCA). The PCA score plot actually shows the differences 

among the samples and the loadings plot shows the variables (NMR chemical shifts 

from bucket table) responsible for that discrimination. The identification of these 

spectral signals leads to the identification of compounds accountable for the separation.  



Infection-induced metabolites in grapevine leaves 

187 

Firstly, PCA was applied to the bucketed 1H NMR spectra. As shown in Figure 2A, 

samples from ‘Regent’ and ‘Trincadeira’, collected at different hours after infection, did 

not exhibit any clear distinction on the score plot. Inoculated samples of the ‘Regent’ 

cultivar were found separated from the respective mock inoculations and showed some 

grouping based on post infection time. But no such separation was observed among the 

samples of the ‘Trincadeira’ cultivar and the infected samples were found clustered with 

their mock inoculations. Although PCA is undoubtedly a reliable grouping method in 

metabolomics, a clear separation among the groups can not be expected if variation 

within the samples of the same group (biological variation) is bigger than the groups 

themselves as the separation in PCA is achieved from unbiased maximum variation 

within the tested samples. Therefore, it was decided to apply a supervised analytical 

method to the same binned 1H NMR spectra. 

The application of supervised methods like projections to latent structures-discriminant 

analysis (PLS-DA) and bidirectional orthogonal projections to latent structures-

discriminant analysis (O2PLS-DA) are considered to be the next step for the analysis of 

multivariate data. These analyses, unlike the unbiased system used for PCA, are 

performed with pre-input information regarding the data. The most important 

information obtained from these analyses is the correlation between data sets which 

correspond in this study to different progressive stages of pathogenesis defense 

responses and cultivar types. Like PCA, the differences or similarity among the samples 

can be detected by using the score plot while the signals responsible for those 

differences or similarities can be identified by the loadings. The 1H NMR data (bucket 

table), from both cultivars, were used as variables for all the supervised multivariate 

analyses applied in this study. 

Since PLS-DA, like PCA, was unable to show any meaningful separation among the 

analyzed samples (Figure 2B), it was decided to apply another supervised method. 

Bidirectional orthogonal projections to latent structures-discriminant analysis (O2PLS-

DA) is a supervised method which we tested to characterize the metabolic responses of 

the resistant and susceptible cultivars against the downy mildew pathogen. The Y-matrix 

consists of four discrete classes based on the inoculated and mock inoculated cultivars. 

This O2PLS-DA model was validated using cross validation-analysis of variance (CV-

ANOVA) with a p-value equals to 6.2 x 10-20.  
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A 

B 

Figure 2. Score plot of PCA (A) and PLS-DA (B) showing samples from ‘Regent’ and 
‘Trincadeira’ at all time points after inoculation with P. viticola or mock inoculations. T0: 
‘Trincadeira’ at 0 hour, T6: ‘Trincadeira’ at 6 hours, T12: ‘Trincadeira’ at 12 hours, T24: 
‘Trincadeira’ at 24 hours, T48: ‘Trincadeira’ at 48 hours, R0: ‘Regent’ at 0 hour, R6: ‘Regent’ 
at 6 hours, R12: ‘Regent’ at 12 hours, R24: ‘Regent’ at 24 hours, R48: ‘Regent’ at 48 hours. 
Labels with ‘m’ represent the mock inoculations for that time point. 
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Figure 3. Score plot of O2PLS-DA based on four (A) and two (B) classes. Labels for 
each sample are the same as in Figure 2. Loading plot (C) of O2PLS-DA based on 
‘Regent’ and ‘Trincadeira’ classes show higher phenolic contents in the ‘Regent’ 
cultivar. 

A 

B 

C 
‘Trincadeira
’ 

‘Regent
’ 

Phenolics 
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Figure 3A shows the score plot of O2PLS-DA which not only clearly discriminates the 

‘Regent’ cultivar from ‘Trincadeira’ but also the pathogen inoculated samples from the 

mock inoculations. Samples from the resistant cultivar were grouped on the positive 

side of component 1 which can be further categorized by inoculated samples and mock 

inoculations having negative and positive component 2 scores, respectively. Although 

the samples from the susceptible cultivar were separated from the resistant one, any 

clear distinction among the pathogen and mock inoculations was not observed in the 

case of ‘Trincadeira’. To search for general differences in the metabolic responses of the 

two cultivars, again O2PLS-DA was applied. This time the samples were classified into 

two classes (Y-matrix), ‘Regent’ and ‘Trincadeira’. This regression was validated using 

CV-ANOVA with a p-value equal to 1.06 x 10-29. The score plot (Figure 3B) shows 

good separation between the ‘Trincadeira’ and ‘Regent’ cultivars with positive and 

negative component 1 values, respectively. By inspecting the loading plot many 

metabolites were found to participate in this grouping. The corresponding loading plot 

(Figure 3C) reveals that the ‘Regent’ cultivar was higher in phenolics like fertaric and 

caftaric acid, quercetin glucoside, along with other metabolites like alanine, proline, 

threonine, fumaric acid, and gallic acid. Many primary metabolites were found 

responsible for the separation of the ‘Trincadeira’ variety including glutamate, 

methionine, glucose, and sucrose, together with some organic acids like succinate and 

ascorbate.  

With the aim of high-lighting the time dependent responses of both cultivars, samples 

from ‘Regent’ and ‘Trincadeira’ were separately compared at every time point after 

inoculation, omitting the other time points. For instance, the samples of 48 hpi of 

‘Regent’ with its mock inoculations were compared with 48 hpi of ‘Trincadeira’ with its 

mock inoculations using principal component analysis. Figure 4 shows the score plots 

for the PCA of every time point i.e. 6, 12, 24, and 48 hpi, with their respective mock 

inoculations. It is very clear from this figure that both ‘Trincadeira’ and ‘Regent’ 

reacted differently at the same time points when challenged with the pathogen as they 

are grouped separately from each other on the PCA score plots. It is also worthy to note 

that in the case of ‘Regent’, the mock inoculations are separated from the infected 

samples at each time point after infection but in the case of ‘Trincadeira’, samples from 
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the mock inoculations after 24 and 48 hpi are clustered close to their respective infected 

samples.  

 

 

Several interesting observations were made by examining 1H NMR spectra along with 

the loading plots of the PCA. As the mock inoculations for both cultivars grouped 

separately at every time point, it can be postulated that these two cultivars were 

inherently different in their metabolic profile as confirmed by inspecting the 1H NMR 

spectra of both cultivars. The characteristic difference between these two varieties is 

that the ‘Regent’ cultivar was found to accumulate more phenolics than ‘Trincadeira’. 

After inoculation with P. viticola, ‘Regent’ showed a gradual increment in its phenolic 

contents like fertaric acid, caftaric acid, and quercetin glucoside, together with the 

accumulation of valine, alanine, proline, and α-linolenic acid. On the other hand, 

‘Trincadeira’ was characterized by a much lower phenolic content but higher levels of 

glutamic acid, methionine, succinic acid, ascorbic acid, glucose, and sucrose. Based on 

these observations, it can be suggested that these cultivars are not only naturally 

A 

C 

B 

D 

Figure 4. PCA score plots showing samples at 6 (A), 12 (B), 24 (C), and 48 (D) hours after 
inoculation along with their mock inoculations. Labels for each sample are the same as in 
Figure 2. 
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different in their metabolic profile but also respond differently when confronted by 

biotic stress. 

 

Relative quantification of metabolites 

The 1H NMR data set (bucket table) was subjected to a t-test (Student 1908) in order to 

confirm the statistical significance of the results obtained from multivariate data 

analyses. The compounds were relatively quantified based on measurement of the mean 

peak areas of the characteristic resonance signals of these compounds. The t-test 

confirmed several metabolites discriminating both cultivars with high statistical 

significance (p<0.01). Figure 5 shows the graphs representing the compounds with their 

relative quantities at different time points after pathogen challenge for both ‘Regent’ 

and ‘Trincadeira’.  

As shown in Figure 5, both varieties followed a pattern of appearance of metabolites by 

the passage of time after being inoculated with the downy mildew pathogen. In ‘Regent’, 

phenolics like trans-caftaric acid, trans-fertaric acid and quercetin-3-O-glucoside, along 

with inositol, alanine, and α-linoleinic acid increased with time after pathogen challenge 

and their highest concentration can be measured at 24 or 48 hpi. ‘Trincadeira’ showed a 

significantly higher accumulation of glucose, glutamic acid and succinic acid with less 

phenolic contents as compared to ‘Regent’. It is also interesting to observe that 

‘Trincadeira’, although susceptible, not only showed the presence of small amounts of 

phenolics at 0 hpi but they also increased at the later stages, especially the caftaric and 

fertaric acid. Figure 5 also shows that the cultivar ‘Regent’, in contrast to ‘Trincadeira’, 

not only accumulates higher levels of defense-related metabolites but is also faster in 

responding to pathogen attack as a rapid increase in the concentrations of 

phenylpropanoids and flavonoids was observed as early as at 6 and 12 hpi. Another 

interesting observation is related to glutamic acid and succinic acid. These two 

compounds showed a decline in their concentration after inoculation in ‘Regent’ while 

they were found in significantly increased amounts in ‘Trincadeira’ at later stages i.e. 24 

and 48 hpi. 
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Discussion 

Nuclear magnetic resonance spectroscopy in combination with multivariate data 

analyses has been widely used as a fingerprinting tool for plants. The system has proved 

very effective for the metabolic characterization of not only cultivars but species as well 

(Choi et al. 2005; Choi et al. 2004b; Kim et al. 2005). Recently metabolic profiling, 

using NMR and multivariate data analyses, of different grapevine species with varying 

resistance against P. viticola has been done (Ali et al. 2009). Another report showed the 

coupling of metabolomics and transcriptomics data to discriminate the two grapevine 

cultivars on their resistance capacity towards downy mildew infection (Figueiredo et al. 

2008). These reports clearly suggest the enormous potential of this approach in 

metabolic characterization of plants which in turn can be very useful in explaining 

different physiological reactions and distinctive characteristics of plants species.  

Since plants are sessile in nature, to survive and contest different stresses they have a 

unique ability to diversify their responses against these (Harborne 1999). When 

challenged by pathogens, plants exhibit several biochemical defense responses 

including enzyme synthesis, cell wall deposition of lignin, and accumulation of specific 

Figure 5. Relative quantification of metabolites based on the mean area of the resonance peak 
related with that metabolite (p<0.01). 
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metabolites (Daayf et al. 2000). Among these mechanisms, the metabolites-involved 

mechanism is usually coupled with plant ‘secondary metabolites’ biosynthesis, which 

are mainly involved in plant ecological diversification (Harborne 2001). A considerable 

part of the plant metabolome consists of phenolic compounds produced by the 

shikimate pathway. These compounds play important physiological roles like the 

formation of the cell wall polymer lignin (Li et al. 2008), floral and fruit pigments 

synthesis (Tanaka et al. 2008), resistance against microbes (Shadle et al. 2003), and 

formation of flavor and scent compounds (Schwab et al. 2008). It is evident from many 

studies that phenolics like phenylpropanoids and flavonoids are detected as biomarkers 

of different biotic stresses to the plants. It has been reported that upon infection tomato 

(viroid and bacterium) (Lopez-Gresa et al. 2010) and tobacco (virus) (Choi et al. 2006) 

plants showed significant increase in the biosynthesis of phenylpropanoids and 

flavonoids. Similar observations have been made in the case of different Brassica 

(fungus) (Abdel-Farid et al. 2009) and Arabidopsis (fungus) (Liang et al. 2006) 

cultivars.    

In the present study, different phenolics like fertaric acid, caftaric acid, and quercetin-3-

O-glucoside were identified and found responsible for the separation of the resistant 

cultivar from the susceptible one. The ‘Regent’ cultivar showed significantly higher 

accumulation of these compounds as compared to ‘Trincadeira’, suggesting their 

possible involvement in successful defense against pathogens. The results indicate that 

the ‘Trincadeira’ and ‘Regent’ cultivars are inherently different in their metabolic 

profile as ‘Regent’ was found to contain higher levels of these stress related metabolites 

even at 0 hpi. The innate metabolic and transcriptional differences of these two cultivars 

have been discussed in a previous report (Figueiredo et al. 2008). The first twelve hours 

after infection seems to be very critical as ‘Regent’ showed rapid synthesis of phenolics 

in this time period. It has been shown by many reports (Jean-Denis et al. 2006; 

Slaughter et al. 2008; Pezet et al. 2004) that grapevine specific phytoalexins can also be 

produced by the susceptible cultivars upon infection. The metabolic differences at the 

initial stages of infection, as we have seen during this study, might be acting as the first 

line of defense and can be the key for resistance in grapevine against fungal pathogens. 

Among the metabolites identified, linolenic acid is the precursor to jasmonate in the 

octadecanoid cascade. Jasmonate functions as a signal molecule and activates defense-
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related genes (Farmer and Ryan 1990). Our results indicate a rapid accumulation of 

linolenic acid (within 24 hpi) in the ‘Regent’ cultivar which could be due to the 

induction of octadecanoid biosynthesis by P. viticola attack, and involved in stress-

related signaling to other parts of the plant. Also the elevated levels of 

phenylpropanoids and flavonoids suggest that in ‘Regent’ the phenylpropanoid pathway 

was rapidly induced upon inoculation in comparison with ‘Trincadeira’. It is also 

interesting to know that the phenylpropanoid pathway finally leads to the synthesis of 

grapevine specific stress related metabolites i.e. viniferins. Our analysis showed no 

accumulations of viniferins either due to low sensitivity of NMR spectroscopy or 

mainly because viniferins are known to produce at later stages of infection. Many 

publications showed viniferins accumulation at least after four to seven days of 

inoculation (Jean-Denis et al. 2006; Slaughter et al. 2008; Pezet et al. 2004). The results 

presented here clearly suggest that apart from viniferins, phenylpropanoids also plays 

crucial role in resistance against pathogen. 

Primary metabolites are essential for plant survival as they play a vital role not only in 

growth, reproduction, and energy generation but also in resistance against pathogens 

(Lokvam et al. 2006), insects (Berenbaum 1995), and herbivores (Rostas et al. 2002). 

Many primary metabolites have been identified in this study including amino acids, 

organic acids, and carbohydrates, and found to discriminate the cultivars in multivariate 

data analyses. In this study many primary metabolites were also found induced by 

fungal infection including alanine, inositol, glutamic acid, succinic acid, α-linolenic acid, 

and glucose. Alanine and inositol are also reported to be involved in resistance as they 

have been shown to increase under stress. The accumulation of inositol may account for 

the rapid synthesis of stress metabolites and for the resistance trait in the ‘Regent’ 

cultivar. For alanine the precise function in plant resistance is not yet known but it is 

known to induce a stress protein synthesis in mammalian kidney (Monselise et al. 2003). 

Our results demonstrate that the resistant cultivar shows a significant elevation in 

alanine concentration after infection as compared to the susceptible cultivar. Inositol has 

been known to participate in signal transduction and, when accumulated, facilitates the 

resistant plant to respond quickly to pathogen attack (Hamzehzarghani et al. 2005). An 

increase in glucose levels was also shown by the cultivars after inoculation. This 

alteration in carbohydrate metabolism might be associated to the reallocation of 
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nutrients to the non infected parts of the plants and/or provide pool of precursors for the 

biosynthesis of phenylpropanoids and flavonoids (Rostas et al. 2002; Hendrawati et al. 

2006). 

 

Conclusion 

By means of NMR-based metabolomics approach, we were able to trace the metabolic 

responses of resistant and susceptible grapevine cultivars against infection by P. viticola. 

Multivariate data analyses methods like principal component analysis (PCA), 

projections to latent structures-discriminant analysis (PLS-DA), and bidirectional 

orthogonal projections to latent structures-discriminant analysis (O2PLS-DA) were used 

to underscore the genuine metabolic differences between the ‘Regent’ and ‘Trincadeira’ 

cultivars. Several diverse classes of metabolites were identified by comparing the 

spectra of samples to a library of NMR spectra of standards run under identical 

conditions. Based on this, it can be concluded that the cultivar ‘Regent’ is not only 

innately different from ‘Trincadeira’ but also differs in the metabolic responses 

generated against infection. The ‘Regent’ cultivar exhibited a quick reaction against 

pathogen stress and is characterized by relatively rapid production and accumulation of 

stress metabolites like flavonoids and phenylpropanoids together with some amino acids. 

This works shows the great potential of NMR spectroscopy and similar approaches can 

be used for the portrayal of different plant samples on the basis of metabolic 

composition. Furthermore, detailed targeted analysis of these stress related metabolites 

is of great interest to provide better understanding of their role in resistance against 

biotic stresses. Moreover analysis of infected grapevine samples of more varieties at 

shorter time intervals along with even longer exposure time to the pathogen may 

provide an improved understanding of grapevine physiology related to biotic stresses. 


