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Abstract 

Nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis 

methods are used for the metabolite profiling of different wines produced in Portugal. 

The water, methanol:water (1:1), and methanol fractions from solid phase extraction 

were subjected to in vitro TNFα activity assay. Principal component analysis (PCA) 

allowed the clear separation among the different SPE fractions. Various supervised data 

reduction algorithms were tested and compared to identify the signals related to the 

TNFα inhibition observed for the SPE fractions of wines. Projections to latent 

structures-discriminant analysis (PLS-DA) and orthogonal bidirectional PLS-DA were 

found most effective in discriminating the high activity samples from the low and 

medium activity samples. By calculating variable importance in the projections (VIP), 

the active ingredients in the high activity samples have been identified as caftaric acid, 

quercetin, and (+)-catechin. Among the different vintages, samples from the 2010 

vintage were found to have maximum anti-TNFα activity. The present study shows the 

usefulness of NMR spectroscopy in combination with chemometrics to identify the 

possible bioactivity in the several crude extracts.  

 

Introduction 

Inflammation plays a vital role in various widely occurring diseases in the world like 

asthma, atherosclerosis, and rheumatoid arthritis. Mediators, such as pro-inflammatory 

cytokines including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and 

interferon-γ (IF-γ), are known to be released during an inflammatory response. The 

imbalance between pro-oxidants and antioxidants in an organism leads to a condition 

known as oxidative stress which is known to play a critical role in various degenerative 

diseases like diabetes, cancer, cardiovascular diseases, and artherosclerosis. Tumor 

necrosis factor-α is one of the most important pro-inflammatory cytokines and is 

produced mainly by macrophages but can also be formed by various cells like T-cell, 

neutrophils, NK cells, and synovial cells (Vilcek and Lee 1991). TNF-α is secreted 

during the early phase of inflammatory diseases and responsible to initiate the secretion 

of other cytokines like IL-1, IL-6, and IL-8 (Cho et al. 1999; 2001). Hence the local 
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effect of TNF-α can be considered as beneficial but its overproduction can lead to 

systemic toxicity and in that case anti-inflammatory therapy is becomes important. 

Wine is a beverage of long tradition and high value and known to contain a complex 

mixture of compounds at a wide range of concentrations. These compounds in wine 

cover a diverse range of metabolites including primary (e.g. sugars, organic acids, 

amino acids) and secondary metabolites (e.g. flavonoids, hydroxycinnamates, 

hydroxybenzoates, anthocyanins). Wine phenolics have been proved to posses several 

health promoting activities (Ali et al. 2010; Halpern 2008) and nearly all of these 

beneficial effects associated to wine are due to anti-oxidant and radical scavenging 

properties of wine phenolics (German and Walzem 2000). Red wines contains much 

higher concentrations of phenolic compounds as compared to white wine as skin, seeds, 

and stem, which are rich in phenolics, are left in contact for longer period with must in 

red wine making, whereas they are separated immediately from the must in the case of 

white wine. 

The development of methods and algorithms for the multivariate statistical modeling 

have contributed much to metabolomics as they opened the way for handling the huge 

datasets of large-scale metabolic analyses (Crockford et al. 2006). In combination with 

different multivariate data analyses methods, NMR has been widely used to do 

metabolic profiling of various samples (Brescia et al. 2002; Charlton et al. 2002). 

Several other studies have been published using the same combination focusing on the 

characterization of different plant species (Kim et al. 2005; Ali et al. 2009), monitoring 

grape berry growth (Ali et al. 2011), and studying the effects of growing areas, vintage, 

soil, and microclimate (Pereira et al. 2005; 2006a; 2006b). Several studies showed the 

analysis of the extracts from Hypericum perforatum (Roos et al. 2004), Artemisia annua 

(Bailey et al. 2004), Citrus grandis (Cho et al. 2009), and Galphimia glauca (Cardoso-

Taketa et al. 2008), for the prediction of different pharmacological activities using NMR 

spectroscopy with the combination of chemometrics methods. 

The present study is aimed to measuring the in vitro anti-TNFα activity of different red 

wines from different vintages. Several wine phenolics and other primary metabolites 

were also identified using 1D and 2D NMR techniques. The correlation of activity data 

and NMR data using different multivariate data analyses methods in order to identify 

the active ingredients in red wines is also presented.   
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Materials and Methods 

Wine samples 

All the wine samples analyzed in this study were kindly provided by Eng. Inês Aranha 

and Esporão (http://www.esporao.com). 

 

 Solid phase extraction (SPE) 

A sample of 10 mL of each wine was completely dried under vacuum and then 

subjected to solid phase extraction (SPE) on SPE-C18 cartridges (Waters, Milford, MA, 

USA). Prior to its use, the SPE cartridge was prepared by elution with 10 mL of 

methanol followed by 10 mL of water. Then, the redissolved wine sample (in 1 mL of 

deionized water) was applied to the cartridge and eluted successively with 5 mL of 

water and then 5 mL of methanol:water (1:1) and finally with 5 mL of methanol. All 

three fractions were collected in round bottomed flasks and evaporated under vacuum 

and used for further NMR analysis. All the solvents were purchased from Biosolve B.V. 

(Valkenswaard, the Netherlands). 

 

Growth of cells, lipopolysaccharides stimulation, and treatment with wine 

Human monocyte-like histiocytic lymphoma cells U937 obtained from the ATCC 

(CRL-1593.2) were grown in RPMI-1640 medium, supplemented with 10% (v/v) fetal 

calf serum and 2 mM L-glutamine (Life technologies, Breda, The Netherlands) at 37 °C, 

5% CO2 in a humidified atmosphere. U937 monocytic cells (5x105 cells per well) were 

plated in a 96-well culture plate and then differentiated into macrophages using phorbol 

12-myristate 13-acetate (PMA, 10 ng mL-1, overnight, Omnilabo, Breda, The 

Netherlands). The PMA-differentiated macrophages were allowed to recover from PMA 

treatment for 48 h, during which the culture medium was replaced daily. 

Lipopolysaccharides stimulation of cells was performed as described by (Sajjadi et al. 

1996). Immediately after stimulation cells were treated with wine samples at the 

concentrations of 100 µgmL-1 and then incubated at 37ºC for 4 hours. Only DMSO was 

added to control samples. Supernatants were then collected and measured for TNFα 

content using the Human TNFα enzyme linked immunosorbent assay (ELISA) kit 

(R&D systems, Europe Ltd). 
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Enzyme-linked immunosorbent assay for TNFα 

TNFα in culture supernatants was determined by quantitative ‘sandwich’ enzyme-linked 

immunosorbent assay using paired antibodies purchased from (Biosource International, 

Inc., USA). In brief, all wells of high-binding Immulon-plates (96 well NUNC 

MaxiSorp microplates) were coated with 100 µL of the captured antibody (anti-Human 

TNFα) (0.250 mg 0.125 mL-1). After overnight incubation at 4ºC, plates were washed 

with washing buffer and blocked for 1 hour with 1% bovine serum albumin in 

phosphate-buffered saline. Plates were aspirated and inverted on adsorbent paper to 

remove excess liquid. Samples and standards were diluted with assay buffer. 100 µL of 

diluted standards (recombinant Human TNFα protein) were filled in sixteen wells of 

first two columns of plates. Rests of the wells were filled with 100 µL of samples in 

different concentrations. Immediately after, 50 µL of working detection antibody (0.025 

mg 0.125 mL-1) was plated in every well and then plates were incubated for 2 hours at 

room temperature with continuous shaking at 700 rpm. The wells were washed again 5 

times with washing buffer before addition of 100 µL of streptavidin-HRP to the wells 

and further incubated at room temperature for 30 minutes with continuous shaking at 

700 rpm. Again wells were aspirated and washed 5 times before addition of 100 µL of 

TMB substrate. Plates were incubated for 30 minutes at room temperature with 

continuous shaking at 700 rpm. After 30 minutes the reaction was terminated by 

addition of 100 µL of 2M H2SO4, and absorbance was determined using a microtiter 

plate reader (Bio-Tek Instruments Inc., Winooski, VT, USA) at 450 nm. The 

concentration of TNFα in the samples was calculated by comparison of the absorbance 

of the samples to the standard curve. The ratio (%) of TNFα inhibition release was 

calculated by the equation, i.e. Inhibition (%) = 100 x (1 – T/C), where ‘T’ represents 

the concentration of TNFα with wine samples while ‘C’ was the concentration of TNFα 

with only DMSO. 

 

Cell viability assay 

Cell viability after treatment with different wine samples was determined by using MTT 

assay. Briefly, U937 cells having concentration of (5x105 cells mL-1) were placed in a 

96 well plate. The culture media also contain different plant extracts (100 µg mL-1) in 
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the presence or absence of 200 µg mL-1 LPS at 37°C.  After 2.5 hours of incubation at 

37°C, the medium was discarded and the formazan blue, which is formed by reacting 

MTT with mitochondrial dehydrogenase in the living cells, was dissolved with 100 µL 

DMSO. The optical density (OD) was measured at 540 nm. The background signal 

inherent to the plates when no cells were present was subtracted from the absorbance 

obtained from each sample.  

 
1H NMR spectroscopy 

The three fractions eluted from SPE were redissolved in 1 mL of methanol-d4. An 

aliquot of 800 µL of sample was transferred to the 5-mm NMR tube and used for the 

NMR analysis as explained in Chapter 7.  

 

Data analysis and statistics 

The 1H NMR spectra (from all SPE fractions) were automatically reduced to ASCII 

files. Spectral intensities were scaled to methanol signal (δ 3.30) and reduced to 

integrated regions of equal width (δ 0.04) corresponding to the region of δ 0.0–10.0. 

The regions of δ 4.85–4.95 and δ 3.2–3.4 were excluded from the analysis because of 

the residual signal of D2O and CD3OD, respectively. Bucketing was performed by 

AMIX software (Bruker) with scaling on total intensity. Principal component analysis 

(PCA) with scaling based on Pareto, while projections to latent structures-discriminant 

analysis (PLS-DA), and O2PLS-discriminant analysis (O2PLS-DA), with scaling based 

on Unit Variance were performed with the SIMCA-P+ software (v. 12.0, Umetrics, 

Umeå, Sweden). The TNFα content was arbitrarily set as 100 in the positive control and 

all the other values are normalized to this (% activity) and shown in results. Means and 

standard deviations were calculated and means comparisons were made with ANOVA 

at a significance level <0.01.  

 

Results and Discussion 

Visual analysis of 1H NMR spectra 

Solid phase extraction (SPE) in combination with NMR spectroscopy was applied for 

the metabolic profiling of different red wines. The 1H NMR spectra of water, 

methanol:water (1:1), and methanol fractions are shown in Figure 1. It is quite obvious 



Red wines and anti-TNFα activity 

149 

from the figure that the metabolic contents in each SPE fraction are very different and 

dominated by distinct classes of metabolites. The water fraction shows mostly sugars, 

organic acids, with few signals related to phenolics. The methanol fraction shows high 

signal intensity in amino acids and fatty acids regions with relatively less sugars and no 

phenolics. The highest phenolic contents was observed in methanol:water fraction with 

relatively less sugars and amino acids contents. The distribution of specific metabolites 

in SPE fractions will be discussed later.   

 

Identification of metabolites 

Different metabolites have been identified using 1H NMR with the help of the above 

mentioned 2D techniques and cover a wide diversity and including amino acids, organic 

acids, carbohydrates, hydroxycinnamates, hydroxybenzoates, stilbenes, flavanoids, and 

flavonoids. Phenolics belong to one of the major classes of wine metabolites and many 

characteristic wine phenolics are identified in this study. Among the flavonoids, 

quercetin, and myricetin are identified in the aromatic region. Signal correlation is 

observed between δ 6.49 of H-6 and δ 6.27 of H-8, and also between 6.99 of H-5′ and δ 

7.66 of H-6′ of quercetin in the 1H-1H COSY spectrum. Likewise myricetin signals, δ 

6.47 of H-8 with δ 6.25 of H-6 also showed 1H-1H COSY correlations. Compounds like 

(+)-catechin and (-)-epicatechin were also identified. For both the (+)-catechin and (-)-

epicatechin, signals of H-6′ and H-5′ along with signals of H-6 and H-8 showed 

correlations in 1H-1H COSY spectra. Resonances like δ 6.21 (t, J = 2.1 Hz), δ 6.31 (d, J 

= 2.1 Hz), δ 6.68 (d, J = 13.3 Hz), δ 6.71 (d, J = 8.5 Hz), δ 6.76 (d, J = 13.3 Hz), and δ 

7.18 (d, J = 8.5 Hz) are assigned to resveratrol. The signal of H-8 at δ 6.68 and H-7 at δ 

6.76, with a coupling constant of 13.2 Hz, suggest that this compound is the cis- isomer 

of resveratrol. These olefinic protons correlate in the 1H-1H COSY spectrum along with 

other signal correlations like H-4 (δ 6.21) with H-2 and H-6 (δ 6.30), and H-6′ (δ 7.18) 

with H-3′ (δ 6.71). 

The aromatic part of the 1H NMR spectra also showed some signals of benzoic acid 

derivatives such as gallic acid, syringic acid, p-benzoic acid, and vanillic acid. The 

characteristic doublets of 16.0 Hz in the range of δ 6.39-6.50 and δ 7.59-7.70 represent 

respectively the H-8′ and H-7′ (olefinic protons) of trans-cinnamic acids, which are 

correlated in the 1H-1H COSY spectra and also coupled with the carbonyl carbon at δ 
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168.3 in the HMBC spectra. These metabolites are identified as caffeic acid, and p-

coumaric acid. These two cinnamic acid derivatives, along with trans-feruloyl 

derivative, were also identified to be conjugated with tartaric acid through an ester 

linkage. Based on these assignments, these compounds were identified as trans-caftaric 

acid (caffeic acid conjugated with tartaric acid), trans-fertaric acid (ferulic acid 

conjugated with tartaric acid), and trans-coutaric acid (coumaric acid conjugated with 

tartaric acid). Along with the trans- forms, the cis- forms of these conjugated cinnamic 

acids, i.e. cis-caftaric acid and cis-coutaric acid, were also detected through up-field 

shifted signals for H-8′ and H-7′ along with the reduction in the coupling constant from 

16.0 Hz to 13.0 Hz.  

The high signal intensities in the amino acid region allowed the identification of a 

number of amino and organic acid signals. The amino acids alanine, threonine, valine, 

proline, methionine, tyrosine, phenylalanine, glutamic acid, glutamine, arginine, and 

aspartic acid were identified by comparison with the reference spectra of these 

compounds. The signals in the carbohydrate regions were highly overlapping and 

showed signals of the anomeric protons of β-glucose, α-glucose, and sucrose. Other 

compounds, including choline, 2,3-butanediol, and γ-amino butyric acid (GABA) were 

also identified in this region. A number of signals were assigned to the organic acids 

like acetic acid, succinic acid, fumaric acid, formic acid, citric acid, lactic acid, malic 

acid, and tartaric acid. All of these assignments (Table 1) were done by comparing the 

spectra with previous reports (Ali et al. 2009; 2011) and 1D and 2D NMR spectra of 

common plant metabolites in our in-house library.  
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Wine type, vintage, and anti-TNFα activity 

Anti-TNFα activities resulting from the SPE fractions of different wine samples are 

shown in Figure 2. Among the water fractions, the lowest activity is shown by Petit 

Verdot 2008 while the most active water fraction is of Aragones 2010 wine. Different 

vintages from the wines like Petit Verdot (2008 and 2010), Touriga Nacional (2009 and 

2010), and Aragones (2007 and 2010) showed significantly different TNFα inhibition 

Figure 1. Comparison of 
1
H NMR spectra of phenolics (A) and amino acids (B) regions of SPE 

fractions. Both (A) and (B) shows water (blue), methanol:water (1:1) (red), and methanol (green) 
fractions. 

A 

B 

1 

2 

3 

1 

2 

3 
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by the water fraction. By comparing the water fraction from the 2010 vintage of all wine 

types, it is evident that Aragones is the most active against TNFα production.  

 

Table 1. 1H NMR Chemical Shifts (δ) and coupling constants (Hz) of wine metabolites identified by using 1D 

and 2D NMR Spectra of the reference compounds (CD3OD-KH2PO4 in D2O, pH 6.0) 

Compounds Chemical Shifts (δ) 

Alanine 1.48 (d, J=7.4) 

Threonine 1.32 (d, J=6.5), 3.51 (d, J=5.0), 4.27 (m) 

Valine 1.01 (d, J=7.0), 1.06 (d, J=7.0), 2.28 (m) 

Proline 2.35 (m), 3.37 (m) 

Methionine 2.15 (m), 2.65 (t, J=8.0) 

Tyrosine 6.85 (d, J=8.5), 7.19 (d, J=8.5) 

Phenylalanine 3.15 (dd, J=8.2, 14.5), 3.91 (t, J=9.6) 

Glutamine 2.14 (m), 2.41 (td, J=16.2, 7.5) 

Glutamate 2.13 (m), 2.42 (m), 3.71 (dd, J=7.0, 1.9) 

Arginine 1.75 (m), 3.75 (t, J=5.5) 

Aspartate 2.80 (m), 3.80 (m) 

β-glucose 4.58 (d, J = 7.8) 

α-glucose 5.17 (d, J = 3.7) 

Sucrose 5.39 (d, J = 3.9) 

GABA 1.90 (m), 2.31(t, J=7.5), 3.01 (t, J=7.5) 

Choline 3.20 (s) 

Glycerol 3.56 (m), 3.64 (m) 

2,3-butanediol 1.14 (d, J=6.5) 

Acetic acid 1.94 (s)  

Succinic acid 2.53 (s) 

Fumaric acid 6.52 (s) 

Formic acid 8.45 (s) 

Citric acid 2.56 (d, J = 17.6), 2.74 (d, J = 17.6) 

Malic acid 2.68 (dd, J = 16.6, 6.6), 2.78 (dd, J = 16.6, 4.7), 4.34 (dd, J = 6.6, 4.7) 

Lactic acid 1.40 (d, J=7.0) 

Tartaric acid 4.35 (s) 

cis-Resveratrol 6.21 (t, J=2.1), 6.31 (d, J=2.1), 6.68 (d, J=13.3), 6.71 (d, J=8.5), 6.76 (d, J=13.3), 

7.18 (d, J=8.5) 

Gallic acid 7.03 (s) 

Syringic acid 3.89(s), 7.31(s) 

Vanillic acid 3.90 (s), 6.77 (d, J=8.2), 7.22 (m) 

p-Benzoic acid 6.83 (d, J=8.7), 7.94 (d, J=8.6) 

p-Coumaric acid 6.38 (d, J=16.0), 6.84 (d, J= 8.8), 7.50 (d, J=8.8), 7.59 (d, J=16.0) 
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Caffeic acid 6.24 (d, J=16.0), 6.87 (d, J=8.4), 7.02 (dd, J=8.4, 2.0), 7.12 (d, J=2.0), 7.52 (d, 

J=16.0) 

(+)- Catechin 2.52 (dd, J=16.1, 8.2), 2.83 (dd, J=16.0, 5.4), 4.04 (m), 4.55 (d, J=7.5), 5.89 (d, 

J=2.2), 6.75 (d, J=8.0), 6.80 (dd, J=8.5, 2.0), 6.88 (d, J=8.5), 6.9 (d, J=2.0) 

(-)- Epicatechin 2.72 (dd, J=16.8, 2.6), 2.89 (dd, J=16.9, 4.6), 4.26 (m), 6.03 (d, J=2.0), 6.06 (d, 

J=2.0), 6.88 (brs), 6.96 (d, J=2.2) 

Quercetin 6.27 (d, J= 2.0), 6.49 (d, J=2.0), 6.99 (d, J=8.6), 7.66 (dd, J=8.5, 2.0), 7.71 (d, 

J=2.0) 

Myricetin 6.28 (d, J= 2.0), 6.51 (d, J=2.0), 7.30 (s) 

trans-Caftaric acid 5.77 (s), 6.29 (d, J=16.0), 6.88 (d, J=8.4), 7.02 (dd, J=8.4, 2.0), 7.12 (d, J=2.0), 

7.52 (d, J=16.0) 

trans-p-Coutaric acid 5.84 (s), 6.36 (d, J=16.0), 6.87 (d, J=8.8), 7.51 (d, J= 8.8), 7.59 (d, J=16.0) 

Fertaric acid 3.89 (s), 5.38 (s), 6.32 (d, J=16.0), 6.89 (d, J=8.4), 7.01 (dd, J=8.4, 2.0), 7.19 (d, 

J=2.0), 7.56 (d, J=16.0) 

cis-Caftaric acid 5.34 (s), 5.92 (d, J=13.0), 6.71 (d, J=8.4), 6.81 (d, J=13.0), 7.03 (dd, J=8.4, 2.0), 

7.44 (d, J=2.0) 

cis-p-Coutaric acid 5.41(s), 5.94 (d, J=13.0), 6.73 (d, J=9.2), 6.86 (d, J=13.0), 6.93 (d, J=9.2), 7.61 

(d, J=9.2), 

 

The methanol fraction of SPE showed nearly equal activity in the case of different 

vintages of the same wine except for Aragones, for which the 2009 vintage is 

significantly higher in activity than the 2010 vintage. The most active methanol fraction 

is also from the Aragones 2009 while the least active fraction is from Alicante Bouschet 

2008. In most cases the activity shown by the methanol fractions are similar to their 

respective water fractions. 

The methanol:water (1:1) SPE fractions is showed significantly higher anti-TNFα 

activity than the other two fractions. The vintage effect is very obvious in 

methanol:water fractions as Petit Verdot, Touriga Nacional, Aragones, and Alicante 

Bouschet from 2010 vintage are significantly higher in inhibiting TNFα production than 

the vintages of 2008 (Petit Verdot, Touriga Nacional, and Alicante Bouschet) and 2007 

(Aragones). Among the different wine types, the Touriga Nacional (2010) showed the 

maximum anti-TNFα activity, but not significantly higher than the other wines from the 

same 2010 vintage.  
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Principal component analysis (PCA) 

Multivariate data analysis algorithms are an essential component of any metabolomics 

studies. These methods, either supervised or unsupervised, are used to reduce the 

dimensionality of multivariate dataset and thus enable to recognize possible differences 

or similarities among the samples. Principal component analysis (PCA) is a primary tool 

among the various multivariate data analysis methods. It is an unsupervised method and 

samples are clustered or separated purely due to metabolic similarities or differences, 

respectively. The NMR data from the SPE fractions of all the samples have been 

subjected to PCA in order to highlight the differences existed among the SPE fractions 

and to identify the metabolites responsible for that distinction. Figure 3 shows the score 

plot of PCA where samples are colored according to SPE fractions.  

The PCA score plot shows clear separation of all three fractions of SPE with tight 

clustering among the samples of same fraction. It is evident that water fractions are 

clustered on the negative side of PC1 (61.4%) and positive side of PC2 (20.9%) while 

the methanol fractions are grouped on the positive side of PC1 and PC2, with few 

exceptions. The methanol:water fractions are assembled on the negative side of PC2 

while nearly distributed on both positive and negative sides of PC1. By examining the 

corresponding loadings plot, metabolites responsible for this separation are revealed. As 

shown by the NMR spectra (Figure 1), the methanol fractions are rich in fatty acids and 

amino acids including alanine, threonine, valine, arginine, and glutamic acid while the 

water fraction contain higher levels of glucose and sucrose with major organic acids like 

malic acid, tartaric acids, and succinic acids. The water:methanol fractions contain 
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relatively higher amounts of phenolics like quercetin, caftaric acid, coutaric acid, and 

resveratrol, as compared to other fractions of solid phase extraction. The unsupervised 

PCA thus clearly separates the fractions but did not show separation on the basis of 

activity. 

 

 

Projections to latent structures-discriminant analysis (PLS-DA) 

To identify compounds related to activity, supervised methods are required. This aims 

to separate actives from lesser actives. PLS-DA is a supervised multivariate data 

analysis method, performed with a pre-input data regarding the analyzed samples i.e. 

classification of samples by creating dummy Y-variables. The samples were classified 

into high (>50%), medium (<50% and >29%), and low (<29%) activity classes. The 

3D-score plot of PLS-DA (Figure 4A) shows good separation of samples with high 

activity from the others. Not a clear distinction between the samples with medium and 

low activity is observed. To discriminate the low and medium activity samples, another 

supervised algorithm, bidirectional orthogonal PLS-DA (O2PLS-DA), was used. As 

shown by the score plot (Figure 4B), a very nice separation among all the three classes 

of samples is achieved. By examining the corresponding loadings plot, metabolites 

Figure 3. Principal component analysis (PCA) score plot of SPE fractions 
of all the wine samples. All the three fractions are clearly separated from 
each other. Samples in blue, green, and red represents water, 
methanol:water (1:1), and methanol fractions, respectively.  
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responsible for the separation are identified. Samples with high activity are found with 

higher levels of phenolics like quercetin, myricetin, (+)-catechin, caftaric acid, and 

coutaric acid while metabolites like glucose, sucrose, valine, proline, methionine, and 

alanine are found more concentrated in low and medium activity samples. 

 

 

Validation of PLS-DA 

One of the key aspects of a supervised regression algorithm is model validation. For the 

data reduction methods like PLS-DA, a permutation test is often used for validation. 

The permutation test is the calculation of goodness of fit (R2, describes how well the 

data is mathematically reproducible) and the predictive ability of the model (Q2). The 

R2 value can vary from 0 to 1, where 1 means a model with a perfect fit. If the Q2 value 

is more than 0.5, the model is considered to have good predictability and if it is higher 

than 0.9 and less than 1.0, then the model is considered to have an excellent 

predictability. It is suggested that if more than five PLS components are included in the 

PLS1  

(25.3%) 

PLS2  

(12.4%) 

PLS3  

(7.8%) 

A 
B 

C 

Figure 4. Score plots of PLS-DA (A) and O2PLS-DA (B). Samples with high, medium, and low 

anti-TNFα activity are presented with ‘H’, ‘M’, and ‘L’. The validation plot of permutation test 

for PLS-DA (C) using 
1
H NMR resonances and anti-TNFα based on three classes. 
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model the training set data generally reproduce excellently. The R2 and Q2 values of 

PLS-DA were calculated using six components. For anti-TNFα activity the R2 and Q2 

values for PLS-DA analysis were 0.92 and 0.91. This PLS-DA models was validated by 

the permutation method through 20 applications in which all Q2 values of permuted Y 

vectors were lower than original ones and the regression of Q2 lines intersect at below 

zero (Figure 4C). 

 

Variable importance in the projections (VIP) 

Variable importance in the projections can be defined as a weighted sum of squares of 

the PLS weights. It has been indicated that it is directly proportional with the influence 

of a factor on the separation on score plot, meaning, factors have higher VIP values are 

more important for the sample separation. For O2PLS-DA analysis, VIP values for 

several phenolic compounds, responsible for separation on the score plot, are calculated. 

It has been reported that factors with VIP values more than 0.7 could be regarded 

influential for the separation of samples (Eriksson et al. 2006). Among the identified 

phenolics in wine during this study the VIP values of the major contributing metabolites 

are as follows; caftaric acid at δ 7.02: 1.91, quercetin at δ 7.71: 1.74, coutaric acid at δ 

7.59: 1.42, and (+)-catechin at δ 5.89: 1.18. Such high VIP scores for the identified 

phenolics authenticate their involvement in the separation of high activity samples and 

suggest a role of these compounds in inhibiting TNFα production.   

 

Discussion 

Various multivariate data analysis methods were used in combination with NMR 

spectroscopy in order to correlate the activity data of the extracts with the spectroscopy 

data of the same. Such analyses of extracts from Hypericum perforatum (Roos et al. 

2004), Artemisia annua (Bailey et al. 2004), Citrus grandis (Cho et al. 2009), and 

Galphimia glauca (Cardoso-Taketa et al. 2008), were successful in linking 

pharmacological activities with certain compounds. This approach is very effective in 

the screening of plant extracts in order to identify active compounds without laborious 

fractionation and chromatographic separation of the crude extract. Fractions from SPE 

of various red wines from Portugal were analyzed for anti-TNFα activity and the 
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combination of NMR spectroscopy and chemometrics was successfully applied to 

identify the active ingredients.  

The vintage effect on metabolic profile of grapes and ultimately on wine has been 

extensively studied (Pereira et al. 2006b; Lee et al. 2009) and the importance of the 

vintage is widely accepted. The amino acids and polyphenols contents are highly 

affected by the climatic conditions of a grape production area. It has been shown that a 

hot and dry climate results in a higher proline and phenolic contents in wine (Lee et al. 

2009). This study is also capable to highlight the effects of vintage on the TNFα 

inhibition potential of different wines. It is evident from the results that samples from 

2010 are more active than samples from the other vintages and based on this 

observation it can be postulated that either in 2010 vintage the berries experienced hot 

and dry climate which ultimately resulted in higher phenolic contents and more potency 

towards TNFα inhibition. Another possibility is the fact that aging of wine can cause 

significant decrease in its phenolics content which ultimately resulted in the lower 

activity of old wine sample (2008 and 2009 in this case) (Waterhouse 2002). 

It is a fact that diet has beneficial effects and the consumption of antioxidant rich food 

(fruits, vegetables, tea, and wine) has health promoting effects. The medicinal 

importance of moderate wine consumption has been proven by many studies. Wine 

metabolites, especially phenolics, are now well known to prevent cardiovascular 

diseases (Cordova et al. 2005), renal disorders (Bretelli et al. 2005), Alzheimer’s disease 

(Marambaud et al. 2005), cancer (Barstad et al. 2005), and also active against bacteria 

(Murray et al. 2002) and viruses (Takkouche et al. 2002). Several health promoting 

activities associated to wine polyphenols were comprehensively reviewed recently 

(Opie and Lecour 2007; Halpern 2008; Cordova and Sumpio 2009; Ali et al. 2010). 

Phenolics are well known for their potency against TNFα production and they are 

widely accepted to have anti-oxidative and anti-inflammatory properties (Chuang et al. 

2009; Baur et al. 2006). Phenolics like resveratrol (Stewart et al. 2008) and quercetin 

(Rivera et al. 2008) are known to reduce inflammation, while others like cinnamates, 

benzoates, flavonols, flavan-3-ols, and anthocyanins, are well known antioxidants (Lee 

et al. 2009; Meyer et al. 1997). The present study is an attempt to analyze different wine 

types and vintages for TNFα inhibition. The proposed approach is found very effective 
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in discriminating the SPE fractions from different wine types and vintage based on the 

efficacy to reduce TNFα production, and relate the activity with active constituents. 

 

Conclusion 

This study used an NMR spectroscopy-based metabolomics approach to reveal the 

correlation of characteristic metabolic profiles of different wines with anti-TNFα 

activity. Solid phase extraction in combination with different chemometrics methods 

proved that the active ingredients in an extract could be identified using a PLS-based 

regression models with 1H NMR and anti-TNFα activity data set. Phenolics like 

quercetin, caftaric acid, and (+)-catechin are identified as most influential in inhibiting 

TNFα production among the other wine metabolites. It is suggested that the similar 

approach can be applied for the prediction of anti-TNFα activity of crude plant extract 

using NMR and multivariate data analysis. The methodology proposed here can be 

applied to connect bioactivities associated to wine with active constituents without any 

laborious chromatographic separation of metabolites. 


