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ABSTRACT 

Rheumatoid Arthritis is a chronic autoimmune disease with a complex disease pathogenesis 

leading to inflammation and destruction of synovial tissue in the joint. Several molecules 

lead to activation of immune pathways, including autoantibodies, Toll-Like Receptor ligands 

and cytokines. These pathways can cooperate to create the pro-inflammatory environment 

that results in tissue destruction. Each of these pathways can activate mast cells, inducing 

the release of a variety of inflammatory mediators, and in combination can markedly 

enhance mast cell responses.  

Mast cell-derived cytokines, chemokines, and proteases have the potential to induce 

recruitment of other leukocytes able to evoke tissue remodeling or destruction. Likewise, 

mast cells can secrete a plethora of factors that can contribute to tissue remodeling and 

fibroblast activation. Although the functional role of mast cells in arthritis pathogenesis in 

mice is not yet elucidated, the increased numbers of mast cells and mast cell-specific 

mediators in synovial tissue of rheumatoid arthritis patients suggest that mast cell 

activation in rheumatoid arthritis may contribute to its pathogenesis. 

PATHOGENIC PATHWAYS IN RHEUMATOID ARTHRITIS 

Rheumatoid arthritis is a systemic autoimmune disease characterized by chronic 

inflammation of the synovial lining of the joint, and is one of the most common 

autoimmune diseases affecting approximately 1% of the general population (1). Synovitis, 

inflammation of the synovial tissue, is mediated through leukocyte infiltration of the tissue, 

and leads to hyperplasia of fibroblast-like synoviocytes and tissue remodeling. Likewise, 

synovitis can induce cartilage destruction and bone erosion, ultimately leading to 

destruction of the joint. Clinically, synovitis induces pain and swelling of the involved joints, 

and the tissue destruction evoked can lead to disabilities if left untreated. 

It is currently believed that different cells of the immune system play a role in the 

pathogenesis of rheumatoid arthritis. However, the exact cause of rheumatoid arthritis is 

not known. Genetic risk factors (such as HLA) underlying disease susceptibility are often 

involved in T- and B-cell responses and the presence of activated B cells and T cells in the 

inflamed synovium of rheumatoid arthritis patients indicate that adaptive immunity plays a 

prominent role. Furthermore, the presence of autoantibodies in the majority of patients 

points towards an important role for B cells in rheumatoid arthritis. However, besides the 

role of adaptive immune cells in initiation of autoreactive responses, innate immune cells 

are thought to play an important role during the effector phase by sustaining inflammation. 
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Treatment is usually aimed at lowering disease activity via immunosuppression, which can 

be achieved in various ways including through the interference with B cell-mediated 

immunity, co-stimulatory pathways, and inhibition of proinflammatory cytokines, 

suggesting that these pathways play an important role in disease pathogenesis. 

AUTOANTIBODIES 

A major effector function thought to contribute to pathogenesis in rheumatoid arthritis 

is mediated by autoantibodies. The classical autoantibody system associated with 

rheumatoid arthritis is rheumatoid factor, which recognizes the Fc portion of IgG. 

However, rheumatoid factor is not specific for rheumatoid arthritis patients, as it is 

also produced in a number of other inflammatory conditions, therefore its role in 

disease pathogenesis is often questioned.  

An important group of autoantibodies in rheumatoid arthritis targets modified 

proteins, with anti-citrullinated protein antibodies (ACPA) being the most well-

characterized. These antibodies recognize a variety of proteins or peptides in which the 

amino acid arginine is modified into a citrulline through a posttranslational 

modification process mediated by Peptidyl Arginine Deiminase (PAD) enzymes. PAD 

enzymes are normally present inside cells and can be activated by high calcium levels 

when cells, such as neutrophils, undergo apoptosis, an event readily occurring during 

inflammation (2). PAD enzymes that are transported to the outside of cells can 

citrullinate the extracellular matrix and in doing so can create targets for ACPA. 

Citrullinated proteins can be found in a variety of inflamed tissues, including the 

synovial tissue of rheumatoid arthritis patients (3, 4). ACPA can recognize many 

citrullinated proteins such as vimentin, filaggrin, and fibrinogen. Because fibrinogen 

and vimentin are also present in the extracellular matrix of the synovium, these 

proteins are often considered as important target antigens for ACPA (5). 

ACPA show a very high specificity for rheumatoid arthritis, and are present in the 

majority (~70%) of rheumatoid arthritis patients (6, 7). Since their discovery ACPA are 

mainly used as diagnostic marker. However, it is now becoming increasingly clear that 

ACPA might also play a functional role in the pathology of rheumatoid arthritis. Several 

observations underlie this notion. ACPA can be observed already years before the 

onset of symptoms, and rarely develop after onset of clinical manifestation of 

rheumatoid arthritis (8, 9). The latter indicates that it is not likely that ACPA are a 

consequence of the inflammation present in rheumatoid arthritis patients. ACPA+ and 

ACPA- patients differ considerably with respect to the underlying genetic and 

environmental risk factors, suggesting that rheumatoid arthritis consists of two 

different disease entities: ACPA+ and ACPA- rheumatoid arthritis (10-13). Furthermore, 



236  |  CHAPTER 11 

ACPA+ and ACPA- rheumatoid arthritis patients have a different disease course with 

ACPA+ patients having a more progressive disease, characterized by increased 

radiological joint damage and worse disease activity scores (9, 14). These findings 

suggest that ACPA contribute to disease pathogenesis. When ACPA antibodies are 

adoptively transferred into mice with a low-level synovial inflammation caused by anti-

collagen antibodies, ACPA (reactive with citrullinated fibrinogen or collagen II) could 

enhance arthritis, implicating their direct involvement in the inflammatory process (15, 

16).  

Other autoantibodies present in rheumatoid arthritis patients include antibodies 

directed against carbamylated proteins, or anti-Carbamylated Protein Antibodies (anti-

CarP), another autoantibody directed towards modified proteins. Like ACPA, Anti -CarP 

are present before disease onset and associate with disease severity in (ACPA -

negative) rheumatoid arthritis patients, and could potentially contribute to disease 

pathogenesis (17). 

TOLL LIKE RECEPTOR LIGANDS 

Toll like receptor (TLR) activation is another important pathway for immune activation 

in rheumatoid arthritis. Although TLR are particularly known for their role in protection 

against pathogens, through their recognition of pathogen associated molecular 

patterns, endogenous ligands have been reported to trigger these receptors as well. 

Such endogenous ligands are present in conditions of stress or tissue damage, and 

often are intracellular molecules that can be either passively or act ively released upon 

cell death. As rheumatoid arthritis, like other inflammatory conditions, is related to 

tissue destruction, cell death and the associated presence of endogenous TLR ligands is 

a common feature in synovium of patients. Several examples have been described of 

damage associated endogenous TLR ligands present in synovium, including HMGB1, 

heat shock proteins, tenascin c, and fibronectin (18-22). These endogenous ligands are 

thought to contribute to the chronicity of inflammation, as they can activate TLRs, 

inducing an inflammatory response, further tissue and cellular damage, and thereby 

the sustained release of damage associated TLR ligands. 

Next to damage-associated TLR ligands, cell death can also lead to release of PAD 

enzymes into the extracellular environment, leading to generation of citrullinated 

proteins, including fibrinogen. Citrullinated fibrinogen, one of the antigens recognized 

by ACPA, was shown to trigger TLR-4 (23). Therefore, chronic inflammation is often 

related to release or generation of TLR ligands, leading to a self -amplifying 

inflammatory loop (Fig. 1). 

http://www.sciencedirect.com/science/article/pii/S0014299915003969#f0005
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T HELPER CELLS 

The strong genetic association of the HLA region with disease susceptibility suggests 

the involvement of T helper cells in the etiology of rheumatoid arthritis. The 

association to HLA-DR alleles is not completely understood, but is specifically related to 

the ACPA response and could therefore be attributed to the helper function of T cells 

by which they can drive autoantibody responses by B cells (13). However, T cells 

themselves may also exert pathogenic effects, for example through their production of 

cytokines. Initially, Th1 cells, producing IFNγ and TNFɑ were thought to drive the 

immune response in rheumatoid arthritis. Since discovery of a wide variety of T helper 

cell subsets, Th17 cells (producing IL-17) have been proposed as the most relevant 

subset of T cells in relation to arthritis, although their putative role in - or contribution 

to the pathogenesis of rheumatoid arthritis in humans is unclear (24). 

CYTOKINES AND CHEMOKINES: INFLAMMATORY MEDIATORS 

The importance of proinflammatory cytokines in the pathogenesis of rheumatoid 

arthritis is well established. The development of biologic agents that target various 

immune mediators has dramatically improved the patient prognosis in the past 

decades, and most of these biologicals target cytokines or cytokine receptors. 

Established and approved therapies for rheumatoid arthritis block cytokine responses 

to TNF and IL-6 (25). Cytokines are produced in response to immune cell activation, 

and can activate cells in an autocrine, paracrine or systemic manner, leading to gene 

transcription of other cytokines, MMPs and other proinflammatory molecules. Thereby 

they contribute to the self-amplifying loop of immune activation. The cytokines 

mentioned above have a variety of target cells and functions, thereby able to tri gger 

tissue inflammation, cartilage destruction, bone erosion and angiogenesis.  

ACTIVATION OF MAST CELLS IN RHEUMATOID ARTHRITIS 

The mast cell is a potent immune cell from the myeloid lineage and is well -known for its 

granules containing inflammatory mediators which can be rapidly released upon 

activation. Mast cells reside at interfaces with the external environment, where they act 

as first line of defense against invading pathogens, such as parasites and bacteria. In 

addition, mast cells play an important role in allergic diseases (26). As there is overlap in 

the mechanisms involved in hypersensitivity in allergy and autoimmune diseases, a role 

for mast cells in autoimmune disease has long been postulated. Several clinical findings 

support an active role of mast cells in rheumatoid arthritis pathogenesis, and suggest 

that mast cells are activated in the synovium of rheumatoid arthritis patients.  
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MAST CELL HYPERPLASIA IN SYNOVIUM 

It has been shown that increased numbers of mast cells are present in synovium of 

rheumatoid arthritis patients, with numbers up to 5% of the total cell number in 

synovium (27, 28). Increased mast cell numbers, or so-called mast cell hyperplasia, is a 

hallmark of multiple autoimmune diseases. Growth factors and cytokines in synovial 

tissue, such as stem cell factor, the critical growth factor for mast cell survival, as well 

as IL-3 and IL-4 are present in synovial tissue of rheumatoid arthritis patients. These 

mediators can induce proliferation of mast cells, whereas in addition, stem cell factor 

and TGFβ have been shown to induce recruitment of mast cells (29), suggesting that 

the accumulation of mast cells in synovium may be the consequence of an ongoing 

inflammatory response mediating mast cell expansion through increased recruitment 

and proliferation. 

In addition to the accumulation of mast cells, it has been reported that the proportion 

of different mast cell subsets is changed in the synovium of rheumatoid ar thritis 

patients. Two main subsets of mast cells exist based on the expression of proteases, 

divided in tryptase-only positive cells (MCT) and tryptase−chymase double-positive 

cells (MCTC). Whereas normal synovium mainly contains MCTC cells, early 

inflammation in rheumatoid arthritis is associated with a selective expansion of MCT, 

followed by increases of MCTC in established or chronic disease (29-31). These changes 

are often correlated with clinical characteristics; MCT numbers in early disease 

associate with inflammation, whereas the MCTC numbers in chronic disease associate 

with tissue remodeling features, which may underlie active involvement of both 

subsets in different pathological processes. 

MAST CELL MEDIATORS IN SYNOVIAL TISSUE OR FLUID 

Mast cells produce a range of mediators, through three major pathways of secretion. 

First of all, they are characterized by presence of intracellular granules, containing 

preformed mediators such as histamine, proteases, proteoglycans, and heparin, which 

are rapidly released upon degranulation. Certain activation pathways can induce the 

release of lipid-derived mediators, produced from arachidonic acid, such as 

leukotrienes and prostaglandins. Finally, mast cell activation induces gene 

transcription, leading to de novo synthesis of cytokines, chemokines and growth 

factors, which can be released within several hours of activation. 

Although most of de novo-produced cytokines are not mast cell-specific, several 

preformed granule proteins are more or less specifically expressed by mast cells, 

including the mast cell specific proteases tryptase and chymase. Both histamine and 
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tryptase are elevated in synovial fluid of rheumatoid arthr itis patients likely reflecting 

local mast cell activation (28, 32-34). Furthermore, mast cells have been reported to be 

the main IL-17-positive cells in the inflammatory joint of rheumatoid arthritis and 

spondyloarthropathy patients (35). As discussed below, several of these mediators can 

contribute significantly to inflammation in the joint.  

MAST CELL ACTIVATION PATHWAYS IN RHEUMATOID ARTHRITIS 

Mast cells are most well-known because of their role in IgE-mediated immune responses 

as they express the high affinity FcεRI, and therefore have originally mainly been 

considered for their role in allergic diseases. However, the importance of mast cells in 

IgE-independent responses has been appreciated in the last decades, and has led to 

increased understanding of mast cell function in a variety of immune responses, 

including autoimmune disease. 

Mast cell activation by autoantibodies 

Depending on their specific isotype, antibodies can exert immune activation by binding 

to cellular Fc receptors and activation of complement. Because various isotypes of 

ACPA (IgG, IgA, IgM) have been previously demonstrated, ACPA are, in principle, able 

to activate the immune system via both pathways (36). The potential of ACPA to 

activate complement has been shown in vitro. ACPA bound to immobilized antigen 

activated the complement system, via both the classical and alternative pathways (37). 

These pathways can activate mast cells, for examples through the cleavage product 

C5a. It has been shown in mice that C5aR activation of synovial mast cells is essential 

for the induction of arthritis (38). However, in humans, it is not clear whether this 

pathway contributes to autoantibody-mediated mast cell activation. 

Besides indirect activation of immune cells via complement activation, autoantibodies 

can also directly activate cells upon crosslinking of Fc receptors, in particular Fcγ 

receptors (binding IgG), Fcε receptors (IgE), and Fcα receptors (IgA). As ACPA are 

mainly present as IgM and IgG isotypes, the binding of IgG-ACPA to Fcγ receptors is 

thought to play a major role in autoantibody-mediated pathogenesis. Activating Fc 

receptors are predominantly expressed by myeloid immune cells, including mast cells. 

In mice, certain mast cell subsets, including synovial mast cells, express the activating 

FcγRIIIa (39-41), the receptor involved in arthritis induced by anti-collagen 

autoantibodies (42). Human mast cells have been shown to express FcγRIIA, whereas 

there is some controversy regarding expression of FcγRI (43-45). We have recently 

shown that human cultured mast cells could be activated by ACPA immune complexes 

in a citrulline-dependent manner (45). This activation was mediated through 

crosslinking FcγRIIA. As this receptor was expressed by synovial mast cells from all 
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patients analysed, we propose that this receptor is a major player in autoantibody-

mediated mast cell activation. 

Mast cell activation by Toll like receptor ligands 

Toll like receptors (TLRs) are expressed by a variety of immune cells, and are 

considered to act as sentinels of the immune system. As mast cells are thought to play 

an important role in protection against pathogens, their expression of TLRs has been 

studied in different cell subsets and species. Although some variation is present in 

expression of these receptors, mast cells generally express a wide variety of TLRs, and 

triggering of TLR by pathogen associated molecular patterns induces activation of mast 

cells (46-49). Importantly, mast cells also express those TLRs that are thought to 

mediate responses to endogenous ligands released in inflammatory conditions. The 

main receptors involved in such responses are TLR-2, TLR-4 and endosomal TLRs which 

sense nucleic acids (20, 50). 

We have recently shown that human mast cells indeed respond to HSP70, an 

endogenous ligand for TLR-4, which is present in rheumatoid arthritis synovium (45). 

Another endogenous TLR ligand, the extra domain A of fibronectin, can induce joint 

inflammation in mice in a mast cell- and TLR4-dependent manner (18), suggesting that 

this pathway of mast cell activation can contribute to pathogenic responses in 

rheumatoid arthritis. 

Mast cell activation by cytokines 

As described above, several cytokines or growth factors are involved in survival and 

expansion of mast cells in synovium. In addition, cytokines can activate mast cells 

directly. Such cytokines include IL-3, IL-4, IL-5, and IL-33, each of which are increased in 

synovial tissue or fluid of rheumatoid arthritis patients. However, stimulation of mast 

cells with cytokines alone usually mediates mainly proliferation with only a low level of 

activation. Importantly, the cytokine environment can play an important role in priming 

of mast cell responses to other triggers (51). IL-33 has been shown to enhance arthritis in 

a mast cell-dependent manner (52), suggesting that activation or priming of mast cells by 

cytokines can significantly alter inflammatory responses in the joint.  

Mast cell-T cell interactions 

The interaction between mast cells and T helper cells has been explored in recent years. 

In both human and mouse, mast cells have been shown to present antigens to CD4
+
 T 

cells, thereby enhancing T cell responses with the possibility of skewing specific T helper 

subsets as well (53-55). Besides antigen presentation, mast cell-derived cytokines can 

also induce T cell activation (56). 
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Although we have recently shown that the interaction between T helper cells and mast 

cells does not only activate T cells, but can also change mast cell phenotype, the exact 

influence of T cells on mast cell function has been studied sparsely (57). Whereas 

regulatory T cells can inhibit mast cell activation, the effect of T cells involved in 

rheumatoid arthritis, such as Th17 cells, is not known (58, 59). However, these cell types 

are likely to interact and it is tempting to speculate that such an interaction contributes 

to pathogenesis of rheumatoid arthritis. A recent study indeed suggested that mast cells 

can regulate T cell responses in an arthritis mouse model, by inducing CD4
+
 T cell 

expansion and Th1 and Th17 cytokine secretion (60). 

CHRONIC INFLAMMATION MEDIATED BY A COMPLEX INTERPLAY OF MULTIPLE PATHWAYS 

As rheumatoid arthritis is characterized by the activation of multiple immune 

pathways, these pathways are likely to interact. For example, it has been shown for 

different types of myeloid cells that activation through TLRs synergizes with triggering 

of Fc receptors (45, 61, 62). As mast cells can be activated by different cytokines, 

several studies have investigated the interaction between cytokine- and FcεRI-

mediated activation. These studies have shown increased degranulation and cytokine 

production when mast cells are exposed to combined triggers of e.g. IL -3, IL-4 and IL-

33 with FcεRI crosslinking (63-66). Whereas these studies are important for 

understanding of the role of cytokines in allergic responses, Fcγ receptors, as 

compared to FcεRI, are probably more important for mast cell activation in rheumatoid 

arthritis. 

In this context, IL-33 was shown to enhance immune complex mediated mast cell 

responses through Fc γ receptors (67). In addition, we have studied the interaction of 

Toll Like receptor triggering on Fcγ receptor mediated mast cell activation, and shown 

that this greatly enhanced cytokine production by human mast cells (45). Importantly, 

we also showed this interaction was present in an antigen-specific system using ACPA 

autoantibodies and endogenous TLR ligands present in synovium. 

Such a synergy between TLR or cytokines and Fc receptor responsiveness likely 

represents a physiological function of the immune system to mount an enhanced 

response when antibodies are produced after the first encounter of a pathogen (68). 

Whereas this is conceivably highly beneficial when a pathogen needs to be eliminated, 

such responses in an autoimmune setting can drive chronic inflammation, because it 

can lead to further release of modified self-antigens and TLR ligands (Fig. 1). Therefore, 

synergy in mast cell responses may contribute to chronicity of rheumatoid arthritis.  

 

http://www.sciencedirect.com/science/article/pii/S0014299915003969#f0005
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Figure 1. Chronic inflammation in rheumatoid arthritis is amplified by mast cells. Damage associated Toll 

Like Receptor (TLR) ligands, cytokines and citrullinated proteins are all implicated in rheumatoid arthritis 

pathogenesis and are released upon inflammation, in particular in association with cell death. Both have 

been shown to activate mast cells: citrullinated proteins can form immune complexes with ACPA 

autoantibodies, and activate mast cells through Fcγ receptors; endogenous ligands can activate mast cells 

through TLRs; various cytokines can activate mast cells. In the environment of the inflamed joint, all of 

these triggers are present at the same time, and together lead to synergy in mast cell activation. This 

synergy leads to enhanced tissue inflammation, in particular neutrophil influx, leading to cell death in the 

tissue. This cell death can lead to an amplification loop by generating more endogenous TLR ligands and 

citrullinated proteins. 

MAST CELL EFFECTOR FUNCTIONS IN RHEUMATOID ARTHRITIS 

Mast cells are well-known for their potent and quick effector functions, such as present 

during allergic reactions. However, as tissue-resident cells, their physiological role is 

thought to be protection against pathogens, as well as to contribute to wound healing (69). 

Therefore, it is not surprising that they also contribute to these processes during 

autoimmune responses. 

MAST CELL-MEDIATED TISSUE INFLAMMATION 

During certain bacterial infections, mast cells can orchestrate a local inflammatory 

response by rapidly increasing vascular permeability and releasing chemokines. Thereby 

they contribute to the recruitment of neutrophils and other immune cells, ultimately 

resulting in amplification of the local inflammatory response (70). Rheumatoid arthritis is 
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also characterized by accumulation of immune cells. Whereas the synovial lining mainly 

contains monocytes/macrophages and T cells, synovial fluid is the site to which 

neutrophils are recruited. In humans, it has been shown that neutrophil chemoattraction 

to the synovial fluid is mainly mediated by IL-8, a cytokine produced (although not 

exclusively) by mast cells in response to ACPA autoantibodies and TLR ligands (45, 71, 

72). In mice, mast cell-derived TNF and leukotriene B4 can both mediate neutrophil 

recruitment as well (73-76). In addition, histamine can increase vascular permeability, 

thereby augmenting neutrophil recruitment (Fig. 2A) (77). These and other mast cell-

derived chemokines can also induce recruitment of T cells and monocytes, although 

evidence indicating that this also occurs in the context of autoimmunity is scarce. Growth 

factors for neutrophils and macrophages, such as GM-CSF and G-CSF are also produced 

by mast cells, suggesting that besides inducing cellular infiltration, mast cells may also 

contribute to survival of these cell subsets. 

CROSSTALK BETWEEN SYNOVIAL FIBROBLASTS AND MAST CELLS 

An important consequence of the chronic tissue inflammation present in rheumat oid 

arthritis is activation of synovial fibroblasts, also called fibroblast-like synoviocytes, the 

main stromal cell type of the synovium. Activation of synoviocytes in rheumatoid 

arthritis leads to their proliferation and reduced apoptosis, secretion of c ytokines and 

chemokines and invasiveness, whereby synoviocytes invade the underlying 

cartilage/collagen tissue (78) Synovial fibroblasts can be activated by multiple 

pathways, including TLR activation, and cytokines (79). Cytokines implicated in this 

process are TNFɑ, IL-1, and IL-17 (80, 81). Mast cells can produce each of these 

cytokines, thereby potentially contributing to activation of synovial fibroblasts ( Fig. 2B). 

In addition, other mast cell mediators, such as histamine and tryptase have been 

shown to induce activation and inhibition of apoptosis in synovial fibroblasts cells as 

well (82, 83) Likewise, interaction between synovial fibroblasts can also lead to bi -

directional crosstalk, whereby fibroblasts recruit and activate mast cells, for example 

through stem cell factor and IL-33 (52) 

TISSUE REMODELING SUSTAINED BY MAST CELLS 

Tissue inflammation and activation of fibroblasts goes hand-in-hand with various tissue 

remodeling processes, characterized by angiogenesis, breakdown of cartilage and bone 

erosion. Angiogenesis occurs mainly in the synovial lining of the joint, where rapid-

growing fibroblasts and infiltrating immune cells require increased amounts of nutrients 

and oxygen supplied through the blood. Angiogenesis is mediated by growth factors such 

as VEGF and FGF, and angiogenic cytokines such as IL-8, TNF and GM-CSF, but can also be 

mediated by mast cell granule-derived mediators such as heparin, tryptase and chymase 

http://www.sciencedirect.com/science/article/pii/S0014299915003969#f0010
http://www.sciencedirect.com/science/article/pii/S0014299915003969#f0010
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(Fig. 2C) (84-87). Mast cells are often found in close proximity to blood vessels, and their 

numbers are often associated with angiogenesis, especially in the context of tumors and 

wound healing (88, 89). Although no functional data are available on the direct role of 

mast cells in synovial angiogenesis, their secretion profile suggests that they may 

contribute this process. 

 

Figure 2. Mast cell contribution to pathogenic processes in rheumatoid arthritis. (A) Activated mast 

cells can amplify tissue inflammation through several mechanisms. They increase vascular 

permeability through release of histamine, leading to increased recruitment of immune cells. In 

particular, neutrophils are recruited into synovial fluid by chemokines such as IL -8, TNFα, and 

leukotrienes, whereas monocytes and T cells are recruited to the synovial tissue through chemokines 

such as TNF, CCL2, and CCL5. (B) Mast cells in synovium have a bidirectional interaction with 

fibroblasts, whereby fibroblasts can activate mast cells through growth factors and cytokines (SCF, IL -

33), and activated mast cells in turn can activate synovial fibroblasts. Mast cell degranulation can  

induce proliferation of fibroblasts by histamine and tryptase, and cytokine production by mast cells 

(TNFα, IL-1, IL-17) can led to activation of synovial fibroblasts. Together, this crosstalk can induce 

fibroblasts invading into the underlying cartilage tissue. (C) Mast cell-derived cytokines and proteases 

can contribute to increased angiogenesis,a process required for the increased metabolic demand in 

inflamed tissue. Furthermore, various mast cell proteases can lead to extracellular MMP cleavage, 

leading to their activation, a crucial process in the breakdown of cartilage. 
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The two main destructive processes in rheumatoid arthritis are cartilage breakdown and 

bone erosion. Synovial fibroblasts, next to chondrocytes have been implicated in cartilage 

breakdown. Both cell types secrete matrix degrading enzymes such as matrix 

metalloproteinases (MMPs) (90). These enzymes can break down extracellular matrix 

proteins such as collagen, aggrecan and fibrinogen.  

An important feature of MMPs is their secretion as inactive pro-enzymes which need to be 

cleaved by other MMPs or other proteinases to become activated (91). As this cleavage 

occurs in the extracellular space, the proteases required for cleavage can be derived from 

different cellular origins. In this respect, mast cell tryptase could play a prominent role as it 

is known for its ability to activate MMPs (92, 93). In doing so, mast cells can contribute to 

loss of cartilage through activation of MMPs via secretion of tryptase (Fig. 2C). 

Osteoclast activation is the main mechanism leading to bone erosions. Although mast cells 

are not known to release RANKL, a major factor involved in osteoclast activation, mast cells 

may contribute to setting the balance in bone homeostasis. For example, patients with 

mastocytosis (systemic mast cell hyperplasia) exhibit features of accelerated bone 

turnover, possibly through a direct effect of histamine on osteoclasts (94, 95). 

In summary, mast cells can secrete a variety of mediators which are implicated in many of 

the basic pathogenic hallmarks of rheumatoid arthritis. 

MOUSE MODELS FOR ARTHRITIS AND MAST CELL INVOLVEMENT 

ARTHRITIS MOUSE MODELS 

Insight in the contribution of mast cells to pathogenesis of rheumatoid arthritis has 

also been obtained using models of experimental arthritis.  

The first study to show an important role for mast cells in arthritis was performed in 

mice deficient in kit signaling, KitWKitW-v mice. In this study, experimental arthritis, 

induced by K/BxN serum transfer, was completely abolished in the absence of mast 

cells. Transfer of cultured bone marrow derived wild-type mast cells to mast cell 

deficient mice restored the incidence of arthritis after K/BxN serum transfer, indicating 

a direct effector function of mast cells in the development of arthritis (96). The critical 

role of mast cells for development of arthritis in this model has boosted the 

recognition of mast cells as a non-redundant cell in the development of autoimmune 

disease. 

http://www.sciencedirect.com/science/article/pii/S0014299915003969#f0010
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However, the findings from this study have been recently challenged in different 

models (Table 1). First of all, KitW-Sh/KitW-Sh mice, another mast cell deficient mouse 

due to defect kit signaling, were able to develop arthritis after passive transfer of anti -

collagen type II antibodies (97). In addition, KitWKitW-v mice had normal arthritis 

development in the collagen induced arthritis model (98). Unlike neutropenic 

KitWKitW-v mice, KitW−sh/W−sh mice have a baseline pro-inflammatory phenotype, 

including neutrophilia (99, 100). Therefore, these confounding results have sometimes 

been attributed to the neutrophilia in KitW−sh/W−sh mice, which renders them 

insensitive to mast cell-mediated neutrophil recruitment, a critical event in early 

arthritis development (101). 

Of the mast cell deficient mouse models independent of kit, two models have been 

used to study arthritis. In one study, the Cpa3Cre/+ mice, which are mast cell deficient, 

were fully susceptible to the induction of serum-induced arthritis and clinical scores, 

histology and gene expression analysis were comparable to wild-type mice (102). 

Therefore, it was concluded that the role of mast cells in arthritis is limited. Whereas 

mast cell deficiency using Mcpt5-Cre iDTR mice did not affect serum-induced arthritis 

either, these mice experienced reduced arthritis upon immunization with collagen (60), 

suggesting that further research is needed to increase our understanding of these 

discrepancies. 

Despite these contradictory findings using mice with a complete mast cell deficiency, 

additional evidence for mast cell-mediated pathogenesis in arthritis comes from 

studies using mice deficient in mast cell-specific proteases, such as chymase or 

tryptase. Mice deficient in mMCP4, the homologue of human chymase, develop less 

severe arthritis upon collagen induced arthritis (103). Mice which are deficient in either 

tryptase mMCP6 and/or -7, especially in combination with heparin-deficiency, display a 

reduced severity of adjuvant-induced arthritis and K/BxN induced arthritis (for mMCP6 

deficiency) (104, 105). In addition, mast cell-specific (Mcpt5-Cre-mediated) deficiency 

in A20, a regulatory molecule, leads to increased mast cell activation, thereby 

exacerbating collagen induced arthritis (106). 

As most of these mouse models contain a single deficiency in a mast cell-specific 

mediator, and are therefore not associated with any other defects such as the kit 

mutant mice, these studies provide compelling evidence for mast cell involvement in 

arthritis, despite the contrasting data obtained with mast cell deficient mouse models. 

Therefore, more research is needed to increase our understanding of the role of mast  

cells in rheumatoid arthritis. 

  

http://www.sciencedirect.com/science/article/pii/S0014299915003969#t0005
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Table 1. Overview of experimental arthritis in MC-deficient or MC protease-deficient mice. 

Mouse strain Deficiency Arthritis model Outcome Refs 

Mast cell deficiency 

KitWKitW-v 

(W/Wv) 

SCF-receptor mutation K/BxN Mast cell deficient mice resistant to 

develop arthritis. 

96, 

109 

  CIA No effect of mast cell deficiency 98 

KitW-Sh/KitW-Sh SCF-receptor mutation α-collagen type II 

antibody transfer 

No effect of mast cell deficiency 97 

Cpa3-Cre  

(cre-master) 

Cre-mediated tocxicity K/BxN No effect of mast cell deficiency 102 

Mast cell protease-deficiency 

mMCP4-/- Chymase CIA Reduced arthritis 103 

mMCP6-/-, 

mMCP7-/-, 

NDST-2-/- 

Tryptase/ heparin 

complexes 

K/BxN Reduced arthritis 105 

  mBSA/IL-1β Reduced arthritis 104 

Mast cell-conditional knockout 

Mcpt5Cre 

A20Fl/Fl 

A20 CIA Exacerbated arthritis 106 

Pharmacological mast cell inhibition 

Cromolyn (not mast cell specific) CIA Reduced arthritis 109 

mBSA: methylated bovine serum albumin; CIA: collagen-induced arthritis; K/BxN: SCF: stem cell factor.  

PHARMACOLOGICAL INHIBITION OF MAST CELLS 

As several lines of evidence suggest a role for mast cells in rheumatoid arthritis, 

intervention with mast cell activation could potentially form novel therapies. The drug 

cromolyn is clinically used as a treatment for asthma patients. The exact mechanism of 

cromolyn in not completely understood, but it is described to prevent the release of mast 

cell specific mediators like histamine from rat peritoneal cells (107). Cromolyn is described 

as a mast cell stabilizing agent and is used frequently in mouse studies. The effect of 

cromolyn as a prolactive on CIA was investigated in DBA/1 mice. A lower clinical score and 

radiographic score were observed compared to non-treated mice, when cromolyn was 

administered when first symptoms of clinical arthritis became evident (108). In addition, it 

was shown that intra-articular treatment of cromolyn or salbutamol prevented 

angiogenesis, pannus formation and joint destruction in mice (109).  

Recently however, the specificity of cromolyn and the sensitivity of different types of mast 

cells to cromolyn in mice is under debate (110). Also, the specificity of salbutamol can be 

questioned since it has also inhibits the secretion of pro-inflammatory cytokines by 

macrophages and T cells (109). Therefore, development of mast cell-specific therapeutics is 

needed to establish the exact role of mast cells in rheumatoid arthritis. 
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CONCLUSIONS 

Rheumatoid arthritis is a complex autoimmune disease caused by environmental and 

genetic interactions leading to a chronic activation of many (immune) cells in the synovial 

tissue. The pathology of rheumatoid arthritis involves multiple activation pathways and 

interactions between a variety of cell types with arthritogenic functions leading to the 

progression of joint destruction. 

Mast cells can also be found in rheumatoid arthritis tissue, which indicates a possible role 

for this potent cell in the disease pathology. Many in vivo arthritis studies in mice have 

aimed to clarify the precise role of mast cells. However, since mouse models do not fully 

reflect the disease process and as some models for mast cell deficiency have additional 

non-mast cell defects, it is difficult to assess the specific role of mast cells on disease 

pathogenesis in vivo. 

Nevertheless, mast cells have the capacity to respond to a wide range of activating ligands 

in synovium and their effector functions likely reflect their potential role in pathogenesis of 

rheumatoid arthritis. 
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