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8  |  CHAPTER 1 

INTRODUCTION 

The immune system protects the body against pathogens by recognizing dangerous 

invasive organisms and subsequently eliminating them. Different parts of the immune 

system cooperate to achieve this, including the innate immune system, which is able to 

recognize pathogens based on repetitive signals associated with danger, and the 

adaptive immune system, which is able to improve recognition over time and to 

memorize this recognition (1). Mast cells and basophils are immune cells mainly 

considered as part of the innate immune system, although recent evidence has 

suggested they might be at the basis of certain adaptive immune responses as well.  

MAST CELL DISCOVERY 

Mast cells were discovered more than a century ago, by Paul Erlich, who based his 

discoveries on immunohistochemical studies of “Mastzellen”, cells in connective 

tissue containing granules which stained with basic aniline dyes, and supposedly had 

a feeding or nutritional function. He used similar techniques to describe granulocytes 

in blood, and discovered basophils based on their staining with basophilic dyes. In 

the 1950’s, these granules were found to contain histamine, and thus, mast cells and 

basophils were hypothesized to participate in allergic reactions by releasing their 

granular contents (2).  

Mast cell granules contain several mediators besides histamine, including the enzymes 

tryptase and chymase, discovered in the 1980’s. In both human and mouse, these 

enzymes have a heterogeneous expression pattern, allowing for the identification of 

two main mast cell subsets in different tissues. In humans, mucosal mast cells express 

only tryptase (MCT), whereas skin and submucosal tissue mast cell granules contain 

both tryptase and chymase (MCTC).  

As mast cell granules contain several mediators that could cause wheal-and-flare 

reactions when administered locally or anaphylactic shock when administered 

systemically, mast cells were long considered in the context of these allergic reactions.  

However, the physiological role of mast cells was not clear, and it was questioned why 

these cells with potent detrimental effects to the host existed without obvious benefits 

in terms of physiological function. It was not until the last two decades, that our 

perception of mast cell and basophil function has been broadened to other immune 

responses as well, and now, these cell types are thought to play a role in various 

immune responses, ranging from acute to chronic and from innate to adaptive immune 

responses. 
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MAST CELL MEDIATORS 

Besides releasing their granule content, mast cells can release several other mediators, 

including membrane-derived lipid mediators, and cytokines and chemokines which are 

produced de novo (Figure 1).  

 

Figure 1: Mediator release by mast cells. Upon activation, mast cells have the ability to degranulate within 

seconds, thereby releasing pre-formed molecules residing in their granules. Lipid mediators, derived from 

fatty acids in membranes through arachidonic acid, are synthesized through enzymatic reactions inside the 

cell and can be released within minutes after activation. De novo transcription and translation leads to 

secretion of cytokines and chemokines within hours after activation. 

GRANULE MEDIATORS 

Mast cell granules are structures within the cell which contain inflammatory mediators, 

which can be released rapidly (within seconds) upon activation of the cell. The granule 

structure serves mainly two functions: First of all, the granules contents contain very high 

concentrations of mediators allowing their rapid release into extracellular space. Second, 

these mediators are often destructive to the intracellular environment (such as proteolytic 

enzymes), and therefore need to be contained in a separate structure. They are initially 

produced as inactive precursor proteins (pre-pro-enzymes), after which they are processed 

through the ER-golgi pathway. Once they enter the granule, they are cleaved into the active 

protein. This is important, as it allows for immediate proteolytic activity in the affected 

tissue, and makes the mast cell response so potent. 
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The granule-resident mediators can be divided into different functional groups. As 

mentioned, histamine is an important mast cell mediator associated with allergic 

symptoms. Four different histamine receptors exist, which each lead to different 

downstream effects, including increased vascular permeability and chemotaxis, each 

enhancing influx of immune cells into the affected tissue.  

Next, proteases such as tryptase, chymase (both serine proteases) and 

carboxypeptidase (zinc-containing metalloprotease) are the most abundantly 

expressed proteins in mast cells, constituting 25-50% of the total proteins (3, 4). 

Release of these proteases can lead to pro- and anti-inflammatory effects, depending 

on the extracellular substrates that are being cleaved. For, example, these proteases 

can cleave pro-inflammatory cytokines into active forms, or in contrast, degrade pro-

inflammatory cytokines or other molecules (5). Furthermore, they can degrade toxic 

substance, such as derived from snake and bee venoms or endogenous toxins released 

upon injury (see below).  

Proteoglycans are another major constituent of granules. These are mainly serglycin 

proteoglycans that contain heparin and/or chondroitin sulfate chains. They form 

complexes with mast cell proteases in the granules, which is essential for correct 

storage and release of these proteases (6). The heparin which is released upon 

degranulation also serves as anti-coagulant. 

A fourth type of mediator which has been suggested to be present in granules are 

cytokines, such as TNF-ɑ (7). However, it is not clearly established whether human 

mast cell granules also contain cytokines, in particular TNF-ɑ.  

LIPID-DERIVED MEDIATORS 

The second wave of mediators released by mast cells consists of eicosanoids, or 

arachidonic acid metabolites, which are released within minutes after activation. 

Arachidonic acid is released from membrane phospholipids by phospholipase A2, and 

subsequently converted to leukotrienes and prostaglandins by arachidonate 5-lipoxygenase 

(5-LO) and cyclooxygenases (COX) enzymes respectively. Leukotrienes induce 

bronchoconstriction, increased vascular permeability and neutrophil chemotaxis, and can 

induce anaphylactic shock when present in excess. Prostaglandins, and in particular PGD2 

released by mast cells, leads to recruitment of Th2 cells, eosinophils, and basophils, as well 

as vasodilation and bronchoconstriction.  

Together, these early mast cell-derived molecules induce an early inflammatory reaction, 

allowing other immune cells to enter the tissue. 
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CYTOKINES AND CHEMOKINES 

Upon activation, transcription factors induce de novo transcription and production of 

several molecules, including secretion of cytokines and chemokines. The production 

and release of these molecules takes several hours, and this response is therefore 

sometimes referred to as the late phase response, especially in the context of allergic 

inflammation. Although the release of pre-formed and lipid derived mediators leads to 

general inflammation, the release of cytokines and chemokines can lead to more 

versatile functions, as different mast cell triggers can induce the differential production 

of cytokines, probably through inducing different transcription factors.  

Mast cells can produce cytokines affecting many different cell types. For example, 

several cytokines are most known for their effects on stromal or parenchymal cells. 

Likewise, the effect of mast cell-derived IL-13 on non-immune cells can lead to parasite 

expulsion through increased mucous production, epithelial cell turnover, and 

contraction by intestinal muscle. Mast cell-derived cytokines can also affect various 

immune cells, both from innate and adaptive immune system, as discussed below. 

These include IL-3, which can activate T cells, IL-5, which can recruit and activate 

eosinophils, and GM-CSF, which can affect neutrophil and monocyte expansion and 

function.  

Chemokines produced by mast cells lead to recruitment of different cell types, with 

neutrophils and other granulocytes as main responder cell types being attracted to the 

site of injury by mast cell-derived chemokines, such as IL-5, IL-8, MIP1ɑ (CCL3), TNF-ɑ. 

However, these and other chemokines, such as CCL2/MCP-1, can also attract T cells, 

monocytes and natural killer cells. This suggests that the mast cell chemokine response 

can lead to potent influx of a variety of other immune cells. 

MAST CELL MEDIATORS AS IMMUNOSUPPRESSORS 

In contrast to the pro-inflammatory role that mast cells play during injury and 

infection, mast cell derived cytokines and granule-derived mediators can also induce 

regulatory responses. Examples of such cytokines are IL-10 and TGFβ. In particular 

mast cell-derived IL-10 has been shown to be involved in immune regulation (8-10). 

In addition, mast cell proteases can cleave proinflammatory cytokines, and thereby 

limit inflammation. Many cytokines can be cleaved by chymase (at least in the mouse), 

sometimes leading to inactivation of the cytokines and alarmins, such as IL -3, IL-6, SCF, 

HSP70 and IL-33 (5, 11-13). Therefore, the response of mast cells can modulate the 

immune system towards anti-inflammatory responses as well. 
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MAST CELL ACTIVATION 

The most well-known receptor for activation of mast cells and basophils is the high affinity 

receptor for IgE, FcεRI. Due to its high affinity, IgE from the circulation is constantly bound 

to the cell surface, and upon antigen recognition, this receptor is crosslinked causing the 

full-blown mast cell response characterized by degranulation and production of lipid 

derived mediators, cytokines and chemokines.  As the IgE is already bound to the receptor, 

minute amounts of antigen are needed for activation, and activation can occur within 

seconds after antigen recognition. Therefore, this is a very potent mast cell response.  

Several other pathways for mast cell activation have been described. These include Fcγ 

receptors, complement receptors and innate receptors, such as Toll like receptors. In 

addition, mast cells can be activated by various cytokines or growth factors, which often 

influence their proliferation as well.  

APPROACHES TO STUDY MAST CELL FUNCTION 

Human 

Mast cells are not present in blood, and are therefore a difficult cell type to obtain for 

functional studies. Several mast cell-lines exist, such as LAD-2 and HMC-1, however, each of 

these have several molecular abnormalities compared to tissue mast cells, including low 

expression of FcεRI, dysfunction of ckit (receptor for stem cell factor; SCF), and lack of 

granules. These features constitute a limitation of studies employing these cell lines. 

Therefore, most studies of mast cell function in the human rely on in vitro expansion of 

stem cells or tissue mast cells, such as using hematopoietic stem cells from peripheral or 

cord blood. Although some discrepancies have been described, these have been shown to 

closely resemble tissue mast cells in most characteristics, such as granule constituents, 

expression of FcεRI and degranulation. 

In vivo approaches in humans include immunohistochemistry or measurement of mast cell 

specific mediators in serum or other body fluids. Although useful, these studies can merely 

be used for descriptive studies. Due to the low frequency of mast cells in most tissues, 

characterization of tissue mast cells in humans is still difficult, but new technologies, such 

as next generation sequencing, are likely to give us more insight into the exact function of 

mast cells in different tissues.  

Mouse 

In the mouse, several in vivo models for mast cell function are being used. The most 

frequently used is the so-called mast cell knockin model, using the kit
W/Wv

 or kit
Wsh/sh

 mice 

which display profound mast cell-deficiency. However, the mutation in kit in these mice 
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affects some other cell types as well. This includes neutropenia observed in kit

W/Wv
 

mice and neutrophilia in kit
Wsh/sh

 mice (14, 15). Therefore, mast cell reconstitution 

using mast cells derived from bone marrow of wildtype mice is usually required to 

confirm that the phenotype is mast cell-specific.  

In the last years, several novel mouse strains have been developed which target mast 

cell molecules, including carboxypeptidase A3 (cpa3), and mast cell proteases (such as 

Mcpt5) (16-19). Several findings using kit mutant mice with knockin mast cells, have 

been recently challenged using the more specific mast cell deficient mice (15, 17, 20). 

Therefore, these new mast cell deficient mouse models might change the paradigms 

on the contribution of mast cells to various immune responses.  

Differences between mouse and human mast cells 

It is important to note that mouse mast cells and human mast cells differ considerably. 

Their constitution of granules is different, as in humans there is only one chymase 

gene, whereas in mice, several different chymases can be expressed at the same time 

(21). Their origin and development also differs considerable: in humans the 

proliferation and differentiation is thought to mainly depend on SCF, whereas in mice, 

IL-3 alone can induce differentiation and proliferation of mast cells from stem cells 

(22). Also, the expression of activating receptors such as TLR and FcγR might differ 

between these species.  

Importantly, several cytokines which have been shown to be crucial for certain mast 

cell functions in the mouse (TNF-ɑ and IL-4) were not found in human mast cells (22, 

23). So, although mouse studies are very important to obtain understanding of mast 

cell function in vivo, caution needs to be applied for extrapolation of these results to 

human conditions. As it is difficult and expensive to obtain functional human mast 

cells, there is a lack of translation of the findings in mice to human disease, and this is 

therefore an important area of research.  

PHYSIOLOGICAL FUNCTIONS OF MAST CELLS 

The presence and homology of mast cells between different species suggests that they 

are essential to our survival. In support of this notion, mast cell -deficient persons have 

not been identified. Mast cells are located in strategic locations where they can 

encounter pathogens upon entry of the body. The following paragraphs describe the 

protective immune responses in which mast cells play an important role.  
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THE ROLE OF MAST CELLS IN INNATE IMMUNE RESPONSES 

Venoms 

A physiological role for mast cell degranulation has recently emerged, hypothesizing that 

such an immune response has evolved as a protective mechanism against venoms which 

need to be eradicated in a quick manner.  Besides direct toxicity of venom contents, 

venoms can induce toxic endogenous (neuro-) peptides, such as endothelin-1, neurotensin 

and vasoactive intestinal polypeptide (VIP) (24-26). Granule-derived mast cell enzymes 

have been shown to detoxify or degrade several venom-derived toxins as well as 

endogenous peptides produced in response to venoms (26-28), giving protection to the 

host (Figure 2).  

Venom-induced mast cell degranulation is usually triggered by innate recognition, but their 

receptors are not known. Nonetheless, as venoms resemble neuropeptides, they might act 

on mast cells through similar G protein coupled receptors. Besides activation of mast cells 

via innate receptors, a recent study has demonstrated that IgE memory can also contribute 

to venom-induced mast cell activation (29). In this mouse model, IgE was produced after 

sensitization with bee venom, which later mediated resistance to a lethal dose of the same 

venom in a mast cell-dependent manner.  

These mast cell responses to venoms are a good example on how immune responses need 

to be tightly balanced. As described above, both innate and IgE-mediated responses can 

contribute to protection against these dangerous venoms through release of mast cell 

proteases. However, uncontrolled mast cell degranulation in allergic individuals can lead to 

anaphylaxis such as during severe reactions to bee and wasp stings in sensitized individuals.  

Parasites 

Another type of innate immune response in which mast cells have been shown to play a 

role is the protection against various parasites, in particular intestinal helminths. These are 

multicellular pathogens, and can therefore not be controlled or eliminated by traditional 

immune responses such as phagocytosis or cytotoxicity. Helminth parasites are well-known 

for their induction of Th2 immune responses (30), but they also have several immune 

evasion strategies, including upregulation of Tregs and anti-inflammatory cytokines such as 

IL-10 (31, 32).  

Parasites trigger TLRs and other pattern recognition receptors, generally leading to Th2 

responses (33-37). Due to their Th2-skewing properties, parasitic infection often promote 

production of both total and parasite-specific IgE.(38-40) In addition, the helminth parasite 

Schistosoma mansoni has been shown to directly crosslink non-specific IgE/FcεRI in an 

antigen-independent manner (41). The contribution of IgE antibodies or FcεRI to protective 
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immunity is not completely clear, and seems to depend on the type of parasites and the 

site of infection (42-44). 

Mast cells are also thought to contribute to immunity during primary helminth infections in 

mice (45, 46). The mast cell effector molecules during protective responses against 

parasites are IL-4, IL-13, TNF-ɑ, histamine and mast cell proteases, such as mouse MCP-1, -

2 and -6 (Figure 2) (47-50). These cytokines play different roles; IL-13 specifically has been 

suggested to induce goblet cell hyperplasia, causing increased mucus production, leading to 

trapping of parasites in the mucus as well as enhancing expulsion of the parasites (51). 

Mast cell proteases can enhance intestinal permeability, thereby directly contributing to 

parasite expulsion (46, 52). The other cytokines and proteases are mainly thought to 

contribute to intestinal inflammation, for example through recruitment of eosinophils (49). 

Although most of these cytokines are also produced by Th2 cells, IL-4 and IL-13 derived 

from innate cells was shown to be most important for worm clearance during infection 

with N Brasiliensis (51). 

Recent data suggest a non-redundant role for basophils in the context of secondary 

parasite infection. Basophils were shown to be important in the secondary immune 

response against diverse intestinal helminthes (N. brasiliensis, H. polygyrus, T. muris) and 

ticks, probably by activation through parasite-specific IgE (44, 53, 54). 

Together, these observations suggests that whereas mast cells are potent effector cells to 

prevent parasites from entering the body in a primary infection, basophils may be more 

potent during IgE-dependent secondary responses against parasites. 

Bacteria 

The first study to show an important role for mast cells in protection against bacteria 

originated in 1996, when mast cell-derived TNF-ɑ was shown to confer protection against 

E. Coli (55). Several studies have since then shown a protective role of mast cells against 

various bacteria, including K. pneumoniae, M. pneumoniae, and C difficile (56-59).  In most 

of these models, the crucial mechanism of mast cell-mediated protection is recruitment of 

immune effector cells, mainly neutrophils (Figure 2). Due to their ability to rapidly 

degranulate, mast cells are thought to be the first cell to initiate an inflammatory response 

upon bacterial invasion of a tissue. Such an acute response is characterized by increased 

vascular permeability mediated by histamine and proteases, and recruitment of effector 

cells by release of lipid-derived mediators (LTB4) and cytokines or chemokines present in 

granules (TNF) (7, 60). This early response is important, as mast cell-deficient mice have a 

wider spread of bacterial infection, suggesting that mast cells can contain infections to a 

local tissue, such as lung or skin (55, 56, 61). 
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In addition to their role in acute infection, mast cell may initiate adaptive immune 

responses to bacteria as well. Mast cell derived TNF was shown to regulate recruitment of T 

cells to draining lymph nodes during intradermal infection with E. Coli (62). Furthermore, 

DCs were recruited to the infected tissue by mast cells, followed by their migration to 

draining lymph nodes (63, 64). Therefore, mast cells may orchestrate T cell activation 

during bacterial infection by regulating the migration and activation of both T cells and 

antigen presenting cells. 

Different receptors have been shown to contribute to mast cell activation during bacterial 

infections, including complement receptors (CR1, CR2) and TLR4 (65-67). In addition, 

bacterial toxins may directly activate mast cells through yet unknown receptors (68). The 

exact receptors inducing mast cell degranulation upon bacterial infection are not known, 

but can consist of a variety of bacterial products and endogenous ligands released upon 

invasion of the body. 

Mast cells are not crucial for protection against all bacteria strains. However, a recent study 

suggested that this may originate from evasion strategies employed by bacteria to prevent 

mast cell activation. At least two bacterial strains, Salmonella Typhimurium and Yersinia 

Pestis, were capable of such mast cell inhibition (69).  

These studies show that mast cell play a non-redundant role in protection against a variety 

of bacteria, although some bacteria have developed immune evasion strategies. 

Other pathogens 

Although fewer studies have been performed evaluating the role of mast cells to viruses 

and fungi, some studies suggest they can also contribute to protective immunity against 

these pathogens. For example, mast cells were shown to induce migration and activation of 

CD8
+
 T cells and NK cells in the context of viral infections (70-75). 

Not much is known about the role of mast cells in fungal infections, but the overlapping 

mechanisms in protection against bacteria, parasites and fungi (such as TLR recognition), 

suggest that mast cells potentially play a role against fungi as well (76). 

THE ROLE OF MAST CELLS IN TISSUE HOMEOSTASIS 

Mast cells are usually associated with acute responses due to their potent degranulation 

mechanism; however, they may be an important effector cell in the context of tissue 

homeostasis. Several findings implicate a role for mast cells in tissue remodeling. Mast cell 

numbers are often associated with tissue remodeling processes, such as during scarring 

and fibrosis and pathologic conditions such as bullous pemphigus and scleroderma (77-79). 



 
 

INTRODUCTION  |  17 

 1 

 

Figure 2: The role of mast cells in protective immunity. Mast cells have been shown to contribute to 

protection against a variety of pathogens. During parasitic infection, mast cell-derived proteases can lead to 

intestinal permeability. Cytokines contribute to recruitment of eosinophils and other granulocytes to the 

site of parasitic infection, and IL-13 specifically can induce the production of mucous; together these 

processes contribute to expulsion of intestinal parasites. Upon exposure to venoms or toxins, mast cell-

derived proteases can degrade or detoxify these molecules, thereby protecting the host. Upon bacterial 

infection, tissue-resident mast cells are one of the first cell types to respond by releasing proteases, lipid 

mediators and chemokines. These mast cell-derived molecules increase vascular permeability and 

recruitment of immune effector cells, including neutrophils. 

In addition, mast cells can produce a variety of mediators involved in tissue remodeling, 

including proteases which can activate several matrix metalloproteinases (MMPs), 

thereby contributing to breakdown of extracellular matrix proteins (80, 81). Mast cells 

can activate fibroblasts through various growth factors and cytokines and induce TGF β-

dependent collagen production by fibroblasts through a variety of mechanisms (82-85). 

These studies indicate that mast cells can contribute to extracellular matrix turnover by 

both production and breakdown of extracellular matrix constituents.  

Mast cells were also thought to contribute to wound healing and fibrosis in the skin. 

Mast cells accumulate at the site of skin injury, and some studies using kit-mutant mice 

showed a functional role for mast cells in fibrosis (78, 86). However, some studies using 

kit-independent mast cell-deficient mice have recently challenged the role of mast cells 



Parasites

Bacteria

Venoms/toxins

Proteases

Proteases

IL-13

Chemoattraction

Intestine

Chemokines 

IL-8, TNF, 

LTB4

Blood vessel



18  |  CHAPTER 1 

in wound healing and fibrosis in the skin (87), indicating that more research is needed to 

understand the role of mast cells in tissue remodeling (87-90). Furthermore, most studies 

have only addressed the role of mast cells during acute wound healing responses, 

whereas tissue remodeling during chronic inflammatory responses has only been 

sparsely studied.  As mast cell-mediated tissue remodeling could be detrimental in the 

context of chronic inflammation, this is an important area of research. 

THE ROLE OF MAST CELLS IN PATHOGENIC PROCESSES 

Although the physiological role of mast cells and basophils is being more acknowledged 

in recent years, and as it is now generally accepted that these cells play important roles 

in the first line of defense against a number of pathogens, the route that mediates the 

recognition of pathogens, is not firmly established.  For example, there is a lack of 

knowledge concerning expression of Toll-like receptors and the specific response that is 

generated by ligands for these receptors, especially in human mast cells and basophi ls. 

Activation through such receptors is important, not only for their role in protective 

immunity, but also during pathogenic processes, as described below. 

MAST CELLS IN ALLERGIC REACTIONS 

Mast cells are classically associated with allergic responses, in particular type I 

hypersensitivity responses, related to IgE. Allergic reactions consist of two phases, the 

early and late reaction, of which the exact symptoms depend on the location where the 

body comes in contact with the allergen.  The early reaction in the lungs is characterized 

by bronchoconstriction, edema and mucus production, whereas in the skin it leads to 

redness, edema and itching. The late phase reaction in all tissues is associated with influx 

of eosinophils, other granulocytes and lymphocytes. Basophils and mast cells are the 

main cell types expressing FcεRI, but because mast cells are already present in tissues 

where allergens are first encountered, and basophils need to be recruited from the 

blood, mast cells are usually considered as the main cell type in the early phase reaction. 

Their mediators histamine, proteases, leukotrienes and prostaglandins can directly 

induce the early allergic symptoms (Figure 3) (91). Through their release of cytokines, 

such as IL-5 and IL-13, mast cells can also contribute to the late phase reaction, in 

particular by recruiting and activating eosinophils (through IL-5), and inducing mucus 

production (through IL-13) (92-95). 

Besides the early and late responses to allergen exposure in sensitized individuals, allergy 

often leads to chronic inflammation, associated with tissue remodeling. The most well -

known example is chronic atopic asthma, which is thought to be driven at least partially 
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by repeated FcεRI triggering. During chronic asthma, several tissue remodeling processes 

occur, including fibrosis, matrix deposition, vascular remodeling and mucus secretion. 

Mast cells are thought to contribute to these processes through their release of 

proteases (tryptase, chymase), angiogenic factors (VEGF, IL-8), and cytokines (IL-13). 

However, the role of mast cells in such chronic IgE-mediated responses is not clearly 

understood (96).  

 

Figure 3: Role of mast cells in allergy. Once specific IgE recognizing allergens (red Y) has been formed, and 

mast cells have been sensitized, re-exposure to the allergen leads to activation of mast cells, characterized 

by degranulation, release of lipid mediators and production of cytokines, including type 2 cytokines, IL-5 

and IL-13. Degranulation of mast cells during acute allergic reactions in the lung can lead to 

bronchoconstriction and increased vascular permeability. Production of leukotrienes and chemokines then 

leads to recruitment of granulocytes and T cells, which further increase allergic symptoms. During the late 

phase reaction, IL-13 and other mast cell products can increase mucous production and 

bronchoconstriction in the lung, thereby contributing to further narrowing of the bronchial tubes.  

MAST CELLS IN AUTOIMMUNE DISEASE 

Mast cells have been correlated to several autoimmune diseases, including T cell -

dependent type IV hypersensitivity, and antibody-dependent type II and type III 

hypersensitivities (97). However, in most cases, this association is mainly correlative, 

depending on the findings of increased mast cell numbers or evidence of mast cell 

activation in the affected tissues in human disease. For example, increased mast cell 

numbers and levels of their mediators have been found in the synovium of rheumatoid 

arthritis patients, blisters of patients with bullous pemphigoid, spinal fluid of multiple 
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sclerosis patients, salivary glands of Sjögren’s syndrome, as well as the skin of 

scleroderma patients (98-102).  

Although this provides some suggestion for mast cell involvement, mast cell activation in 

these tissues is sometimes regarded as merely a consequence of tissue inflammation, 

rather than playing an important role in the pathogenesis of autoimmune disease. The 

functional contribution of mast cells to autoimmune disease is difficult to verify in 

humans, as currently, no specific mast cell inhibitors are available for clinical studies. 

Therefore, such studies rely on the use of animal models, which in most autoimmune 

diseases do not fully reflect human disease, but rather, just one component of the 

disease (103). For example, immunization models for arthritis are used to study the 

initiation of autoreactive T- and B-cell responses, whereas serum transfer models are 

used to study the effect of autoantibodies and chronic inflammation in arthritis. Next to 

variable models to study disease, there are now several models for mast cell deficiency, 

together resulting in seemingly contradictory results on the role pathogenic role of mast 

cells in autoimmune disease.  

The role of mast cells in T cell-dependent autoimmunity has only been studied sparsely. A 

recent study on collagen induced arthritis showed that mast cell deficient mice display 

reduced arthritis severity and reduced numbers of collagen-specific Th1 and Th17 cells. 

Furthermore, mast cell numbers in draining lymph nodes were markedly increased upon 

immunization in wildtype mice, suggesting a direct role for mast cells in activation of 

autoreactive T cells (104). In contrast, mast cell deficiency in the diabetic NOD mouse, 

which depends on CD4
+
 and CD8

+
 T cells had no effect on disease pathogenesis (105). 

However, it is unclear to which extent the NOD mouse model reflects the autoreactive T 

cell response that occurs in type 1 diabetes patients (106).  

In experimental autoimmune encephalitis, contrasting results have been obtained; 

whereas mast cells have been shown to contribute to autoreactive CD8
+
 T cell responses, 

disease severity and recruitment of T cells to the CNS, another study reported no effect 

of mast cell deficiency on disease severity in the EAE model (17, 107-109). As described 

above, mast cells can contribute to T cell responses in various ways, including T cell 

activation and recruitment to lymph nodes, so it is conceivable that mast cells indeed 

play a role in these responses. More research into the function of human mast cells in 

the priming and activation of T cells is needed to get a better understanding of their 

capacity to contribute to T cell-dependent autoimmunity.  

Autoantibodies 

A major effector function thought to contribute to pathogenesis of autoimmune 

diseases is mediated by autoantibodies. An important group of autoantibodies in 
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rheumatoid arthritis targets citrullinated proteins (anti-citrullinated protein antibodies; 

ACPA). These antibodies recognize a variety of proteins or peptides in which the am ino 

acid arginine is modified into citrulline through a posttranslational modification 

process mediated by Peptidyl Arginine Deiminase (PAD) enzymes. PAD enzymes are 

normally present inside cells and can be activated by high calcium levels when cells, 

such as neutrophils, undergo apoptosis, an event readily occurring during inflammation  

(110). PAD enzymes that are transported to the outside of cells can citru llinate 

extracellular proteins, although intracellular citrullinated proteins can also be released 

into extracellular space (111). 

ACPA show a very high specificity for rheumatoid arthritis, and are present in the 

majority (~70%) of rheumatoid arthritis patients (112, 113). When ACPA antibodies are 

adoptively transferred into mice with a low-level synovial inflammation caused by anti-

collagen antibodies, ACPA (reactive with citrullinated fibrinogen or collagen II) could 

enhance arthritis, implicating their direct involvement in the inflammatory process  

(114, 115). 

There is not much evidence for a role of mast cells in the initiation of autoantibody 

production. In most immunization models, mast cell-deficient mice have similar levels 

of autoantibodies (104). However, mast cells express a variety of Fc receptors and 

complement receptors, making them an important effector cell type in the propagation 

of autoantibody-mediated inflammation. In mice, C5aR and Fcγ receptors on mast cells 

have been shown to play an important role in antibody-mediated arthritis and bullous 

pemphigoid (116-119). In these models, mast cells were shown to play an important 

role in recruitment of leukocytes, in particular of neutrophils. This is in line with their 

function observed in the Arthus reaction, where passive transfer of IgG antibodies and 

antigen lead to a mast cell-dependent neutrophil infiltration of the affected tissue 

(120-122). In contrast, some studies did not observe any effect of mast cell deficiency 

on autoantibody-mediated tissue inflammation (17, 104, 123). 

Importantly, the expression of Fcγ receptors differs considerably between mouse and 

human mast cells (124-127), and, as a consequence, not much is known about the 

capacity of human mast cells to respond to immune complexes, especially in the 

context of autoimmune disease. Studies on the role of human mast cells in antibody -

mediated inflammation may therefore provide more insight into the potential role of 

mast cells in autoimmune disease. As activation of immune cells through Fcγ receptors 

is an important effector mechanism of autoantibodies in autoimmune disease, it will be 

important to understand the capacity of mast cells to respond to Fcγ triggering. In the 

mouse, activation of mast cells through Fcγ receptors is known to lead to neutrophil 
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recruitment, however, not much is known about the role of Fcγ receptor activation of 

mast cells in autoimmune disease in humans. 

 

Figure 4: Potential role of mast cells in autoimmune disease. Mast cells have been implicated in T cell 

responses, therefore they could contribute to T cell-mediated autoimmune disease. Although not much is 

known about the interaction between mast cells and CD4+ T cells in the human, there are suggestions that 

mast cells can function as antigen presenting cells, providing the 3 signals crucial for T cell activation: 1) 

Antigen presentation through HLA class II; 2) Co-stimulation, such as through CD28 or other molecules; 3) 

Skewing of T helper responses through production of cytokines.  

CHRONIC INFLAMMATION 

Repeated or continuous activation of the immune system can occur in a variety of 

conditions, including allergy and autoimmunity. In the case of allergy, after sensitization has 

occurred, repeated exposure to allergens, such as during yearly pollen season, can quickly 

induce reactivation of memory T cells and activation of innate immune cells through 

allergen-specific IgE. In the case of autoimmunity, release of self-antigens can lead to a 
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sustained activation of autoreactive T and B cells, as well as innate immune cells through 

antibody effector mechanisms. When the self-antigen or allergen cannot be eliminated, 

such responses can become chronic. Furthermore, the immune system contains 

amplification mechanisms to enhance inflammatory responses, and epitope spreading can 

contribute to further loss of tolerance in autoimmunity and allergy (128-132). 

Not much is known about what exactly drives the incessant cycle of inflammation during 

these diseases, but it is likely that a proinflammatory cytokine environment, TLR ligands, 

antibodies and cellular effector mechanisms all cooperate to maintain chronicity. The 

danger model, as proposed by Matzinger, hypothesizes that self-antigen in itself is not 

enough to trigger autoimmunity, but that it needs to be accompanied by danger signals, 

such as occurring through tissue damage (133). In this context, it is interesting that most 

autoantibodies involved in chronic autoimmune disease have specificities for damage 

associated molecular patterns (DAMPs) (which I discuss in Chapter 12). This indicates that 

in autoimmune disease recognition of non-self through adaptive signals (e.g. antibodies) 

and innate danger signals often coincide, as they can be present even in the same molecule 

(134). In allergy, the danger signals can originate from infection (e.g. during asthma 

exacerbations) or tissue damage (during tissue remodeling in chronic allergy), although 

some allergens may also directly activate TLRs similar to self-antigens in autoimmune 

disease (135). Together, recognition of non-self in combination with danger signals can lead 

to a sustained response when tissue damage leads to additional release of DAMPs 

recognized by autoantibodies and TLRs (136).  

The contribution of mast cells in the induction of tissue damage has not been widely 

studied. Although mast cells are not immediately viewed as a main cell type exhibiting 

cellular cytotoxicity, one study showed that mast cells can kill opsonized parasites, 

through release of tryptase (137). In addition, some studies have shown that mast cells 

exhibit cellular cytotoxicity, presumably through releasing their granule constituents 

such as TNF-ɑ, granzyme B and possibly active caspase-3 (138-142). In addition, mast 

cell granule enzymes granzyme B, tryptase and chymase have been shown to degrade 

extracellular matrix proteins directly as well as indirectly through activating MMPs (81, 

143, 144). Together, these processes may contribute to tissue and cellular damage, 

thereby inducing additional release of DAMPs and self-antigens which can be 

recognized by autoantibodies.  

Furthermore, mast cells may directly release DAMPs upon cell death, for exam ple 

through the formation of extracellular traps, or through necrosis  (145-148). Besides 

direct effects of mast cells on tissue damage, their role in recruitment of neutrophils, 

activation of T cells and other immune cells can also contribute to inflammatory 
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responses, local cell death and release of DAMPs and self-antigens, thereby potentially 

contributing to the continuous amplification of local inflammatory responses.  

However, not much is known about mast cell activation pathways in chronic inflammation, 

including their activation through TLRs, Fcγ receptors, as well as their intrinsic capacities to 

respond to these triggers in the context of continuous or repeated activation. 

THIS THESIS 

Although the studies mentioned above reveal a pivotal role for mast cells in a variety of 

immune responses, their role in autoimmunity has been studied sparsely. The objective of 

this PhD thesis is to understand mast cell (and basophil) functions and their role in 

autoimmune disease by focusing on three main aims: 

1. To characterize the interaction between innate and Fc receptor triggers on mast 

cell and basophil function 

2. To analyze the interaction between mast cells and CD4
+
 T cells 

3. To understand the function of mast cells in chronic inflammation 

INNATE SIGNALS AND FC RECEPTOR TRIGGERING 

First, it is important to characterize the specific pathways leading to mast cell 

activation, especially those pathways that operate in autoimmune diseases. The 

functional responses of human mast cells to triggering of Fcγ receptors, Toll -like 

receptors, or cytokines, have only sparsely been scrutinized. Furthermore, it is 

unknown how different activation pathways cooperate in the context of antibody -

mediated responses. Such interactions are relevant for a variety of immune responses, 

including protective responses against pathogens, allergic reactions, as well as 

autoimmunity. Therefore, the first part of this thesis focuses on the interaction of 

these pathways. In Chapter 2 and 3, the activation of human basophils by TLRs and IL-

33 was studied, in particular in combination with FcεRI-mediated activation. 

Furthermore, in these chapters, the effects of basophil activation on T helper cell 

skewing as well as monocyte activation are described. As basophils have recently 

emerged as important immunomodulatory cells, these studies will provide insight into 

their function, in particular in the context of IgE-mediated responses. 

In Chapter 4-6, we describe the studies into the effect of the combined activation by 

innate signals (TLR, IL-33) and Fc receptor triggering in mast cells. In Chapter 4, the 
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cytokine profile of mast cells upon different TLR ligands in combination with FcεRI 

triggering is described, providing insight into the specific TLR ligands that could 

contribute to mast cell responses in allergy. In Chapter 5, I evaluated the activation of 

mast cells by anti-citrullinated protein antibodies, DAMPs and other TLR ligands. This 

study therefore aimed to gain understanding of activation pathways that contribute to 

synovial inflammatory responses in RA patients. In Chapter 6, we aimed to evaluate the 

role of IL-33 on mast cell activation, and the subsequent mast cell-monocyte 

interaction.  

MAST CELL-T CELL INTERACTIONS 

As mast cells are present at strategic locations of the environment/host interface 

where they can encounter pathogens, they have been implicated in the regulation of 

adaptive immune responses and the regulation of T cell immunity.  

Besides their role in recruiting T cells to lymph nodes during bacterial infection, mast 

cells themselves were shown to be capable of migrating from the skin to the draining 

lymph nodes in murine models of contact hypersensitivity  and UV radiation (149, 150), 

suggesting they may directly be involved in antigen presentation. Thus far, little 

information is available on the antigen-presenting capacity of human mast cells. 

Therefore, in Chapter 7 and 8 we studied whether mast cells possess the required 

molecular make-up, such as HLA-DR and costimulatory molecules, to activate T-cells 

through antigen presentation and co-stimulation.  

As mast cells produce a variety of cytokines which can act on T cells, they have also 

been implicated in skewing of specific T cell responses. The effect of human mast cells 

on skewing of T helper cell responses and the effect of different modes of mast cell 

activation has not been elucidated. In Chapter 9 we therefore evaluated the effect of 

mast cells on Th cell responses. 

CHRONIC INFLAMMATION 

Finally, although mast cells are very potent cells in the context of acute inflammatory 

responses, only little is known about their function in the context of chronic 

inflammation. First of all, they are very long-lived (estimated >10 months in rats with 

a lifespan of 30-36 months) and therefore, can be influenced by inflammatory stimuli 

that are present during that time (50, 151). Further, as they enter a tissue as 

immature cell, their maturation depends on growth factors and cytokines in the 

tissue, allowing mast cell plasticity under the influence of local inflammatory 

conditions (152, 153).  
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However, as mast cells are usually considered in acute responses, not much is known 

about mast cell function under the influence of prolonged inflammatory stimulation or 

chronic infections. Therefore, the studies described in Chapter 10 were aimed at 

understanding mast cell function upon chronic Fc receptor triggering, providing 

detailed insight into changes in the mast cell transcriptome related to chronic allergy. 

Chapters 11 provides an overview of the role of mast cells in rheumatic disease, and 

Chapter 12 and 13 describe how autoantibodies are initiated and how chronic 

inflammation is propagated in autoimmune disease, also providing a perspective on 

novel therapeutic targets for the treatment of these diseases.  
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