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Chapter 3

Rheology of two dimensional

foams in a Taylor-Couette

geometry

To test and expand the applicability of the drag force balance model de-

veloped in the last chapter, we perform experiments on bidisperse mono-

layers of foam bubbles, sheared in a Taylor-Couette geometry. In contrast

to the linear geometry used in the previous chapter, the Couette geometry

allows to study the flow of bubble rafts, i.e., 2D foams not trapped under

a top plate. Also, its curved geometry means that the yielding threshold

included in the expression for F bb should play a role. We record averaged

velocity profiles both with and without a bounding glass plate.

Our main finding is that two-dimensional foam flows in a Couette ge-

ometry with a top plate exhibit rate dependent and strongly shearbanded

flows, whereas bubble raft flows are much less shearbanded and rate in-

dependent. We can fit the flows without a top plate to both a power law

fluid model and solutions to the drag force balance model provided the

local stresses scale with the local strain rate γ̇ as τ = kγ̇0.21. This is cor-

roborated by direct measurements of the local stress-strain rate relation.

In contrast, our drag force model fits poorly to the flows with a top plate

if β = 0.21, but we do not succeed in establishing an optimal value of β in

that case.

Strikingly, the model fits adequately only if we assume that the yield

drag force— of which we should see the effects in the Couette geometry, in
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3.1. INTRODUCTION

contrast to the linear geometry — is 0 or at least one order of magnitude

smaller than what was measured in the previous chapter from the bulk

rheometry a two-dimensional foam. This suggests that foams in a Taylor-

Couette geometry still flow if the local stress is considerably below the

globally measured yield stress.

3.1 Introduction

The flow of two dimensional foams has mainly been studied in Taylor-

Couette geometries. For example, Dennin and coworkers have sheared

bubble rafts in a Couette geometry with a fixed inner disc and a rotating

outer cylinder [8, 71]. Debrégeas has confined foam bubbles in a Hele-

Shaw cell and rotated the inner disc, while keeping the outer cylinder

fixed [9]. In both cases, shear banded flow profiles where found. However,

there has been no clear consensus on the cause of the shear bands in these

systems, but clearly both the radial decay of the shear stress in curved ge-

ometries and the presence of a top-plate need to be considered. Cheddadi

et al. [81] claim the wall drag that results from the top plate is not the

main cause of shear banding: instead they attribute the shear banding to

the inhomogeneity of the stresses which decay as 1/r2, see Appendix 3.A

for a derivation. Scheibert et al. [72] instead claim that focusing of the

stresses due to the quadrupolar stress field resulting from a T1 lies at the

root of the shear banding.

Our strategy for disentangling the roles of wall drag and curvature is to

fit flow profiles, obtained for a range of driving rates in Couette geometries

with and without a top plate, to the Herschel-Bulkley-like model which

described the flow in the linear geometry of chapter 2 in detail. Note that

the velocity profiles measured by Gilbreth, Sullivan and Dennin [68] were

also with some success fit to solutions of a Herschel-Bulkley constitutive

equation, which suggests that our previously developed model might be

applicable in the cylindrical geometry as well. An additional hint in that

direction is that the continuummodel that was postulated by Janiaud et al.

[10] to describe two-dimensional foam flows with an additional wall drag,

can be applied to the cylindrical geometry [82] and at least qualitatively,

Krishan and Dennin [83] have obtained experimental confirmation of a

few of their predictions.

Apart from the role of wall drag and curvature, an additional impor-
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

tant issue is whether the transition from the flowing region to the sta-

tionary region is continuous: most earlier literature finds a discontinuous

transition between a flowing and a non-flowing part in complex fluids:

for instance Dennin and coworkers claim in [71] that the transition is dis-

continuous. Such discontinuous shear bands are also often observed in

polymer systems and have also recently been observed by MRI imaging

of the rheology of three-dimensional foams and emulsions [84, 85]. For

the curved geometry, a discontinuous transition between the flowing and

stationary flow can be seen as a direct consequence of the existence of a

finite yield threshold: a part of the system that experiences local stresses

below the yield stress will not flow and a region that is above the yield

stress will.

For linear geometries as discussed in Chapter 2, the yield stress drops

out and no discontinuity is found — similarly Wang, Krishan and Den-

nin find continuous shear bands in linearly sheared foams [66,86]. In the

curved geometry the yield stress cannot be ignored and if there were an

appreciable yield stress we would observe this in our fitting procedure.

Moreover, one could expect to see a discontinuity in the experimental ve-

locity profiles providing a clear signature of the presence of a yield stress.

Wewill measure velocity profiles of two-dimensional foams in a Taylor-

Couette geometry. We can study two cases. First, we add a top glass plate

to study shear localization in a setup that is very similar to the Hele-Shaw

type cell employed by Debrégeas et al. [9]. Second, we will also study

flows without top plate, to investigate possibly discontinuous shear band-

ing in a bubble raft geometry akin to the one employed by Dennin and

coworkers. Surprisingly, we will see that our system, in stead of resolving

these issues, merely raises new ones. First, we find essentially continuous

flow profiles and the corresponding fitted values of the yield stress are at

least an order of magnitude smaller than what was obtained from rheom-

etry. Second, our power law exponent for systems with and without top

plate differ. Third, a close comparison of the local rheology with the global

rheology finds puzzling discrepancies.
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3.2. EXPERIMENT

Figure 3.1: (a) Schematic top view of Taylor-Couette cell used in this experiment.

The outer cylinder, reservoirs and supports for the glass plate have been milled

into a PMMA block. (b) Side view: the reservoirs and the bounded area are con-

nected to keep the region underneath the glass plate from draining. The motor

is connected to the inner cylinder through the glass plate. (c) Photograph of the

experimental setup.

3.2 Experiment

3.2.1 Setup

Our experimental setup consists of a 500 by 500 by 50 mm square PMMA

block, into which the outer cylinder, a reservoir and supports for a remov-

able glass plate are milled, see Fig. 3.1. The boundary of the reservoir acts

as the outer cylinder (of radius ro = 190 mm) and is grooved with 6 mm

grooves. On the glass plate of 405 by 405 by 12 mm, two handles and a

casing for a stepper motor are fixed by UV curing glue. The stepper motor

(L-5709 Lin engineering) is connected to an inner cylinder of ri = 105 mm

radius through a hole in the glass plate. The inner cylinder is grooved like

the outer cylinder. The region that is filled with bubbles is in direct con-

tact with the reservoirs outside the glass plate. This is to keep the liquid

level underneath the glass plate constant, as fluid that has left the shear-
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

ing region due to capillary suction will reenter the system in the outside

reservoirs.

A bidisperse foam is produced by filling the reservoir with the same

soap solution as used previously and immersing syringe needles of two in-

ner diameters, bubbling nitrogen through bothy needles and subsequently

thoroughly mixing the resulting bubbles. The resulting bubble sizes are

as before: d1, d2 = 1.8, 2.7 mm. The glass plate, with the inner driving

wheel attached, is carefully placed on top of the foam and subsequently,

the foam is allowed to equilibrate for a considerable time. Approximately

40 bubble layers are contained within the gap.

3.2.2 Imaging

The foam is lit laterally by 4 fluorescent tubes driven by HF ballasts and

images are recorded by a CCD camera (Foculus FO 432BW), equipped

with a Tamron 280-300 telezoomlens. The bottom of the reservoir is black,

to enhance contrast. The frame rate is fixed such that the angular displace-

ment of the inner cylinder is fixed at 1.12×10−3 rad/frame. We record

only during steady shear, ensuring that the foam has been sheared consid-

erably before starting image acquisition.

We calculate velocity profiles across the gap between inner and outer

wheel by cross correlating arcs of fixed radial distance in subsequent fra-

mes over a large angular region. While this improves statistics, it forces us

to calculate velocity profiles on curved image lines. However, by defining

circular arcs and identifying these with the appropriate pixels, this can

easily be done, see Fig. 3.2. We compute averaged velocities over 2000

frames for the slowest runs with a top plate, 10000 frames for the fastest

runs with a top plate and over 3000 frames for the bubble raft experiment,

to enhance statistics. We check that coarsening, coalescence and ruptur-

ing are absent in the runs with a top plate, whereas we cannot rule out

the latter two phenomena in the bubble raft experiment. There we merely

content ourselves with the absence of holes in our foam during the exper-

iment, which can be achieved by loading the Couette cell with a surplus

of foam far away from the imaging region.
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3.3. RESULTS

Figure 3.2: (a) Raw image as obtained by CCD camera. The local curvature is ex-

tracted from the curvature at the inner disc and the outer cylinder, and for every

r we define an arc that we match to pixels in the image. If we plot these arcs as

straight lines we obtain: (b) the image with correction for curvature. We compute

cross correlations between subsequent frames on these straightened image lines.

3.3 Results

We shear the foam, covered with a glass plate at 6 different driving ve-

locities, spanning 2.5 decades. Results are plotted in Fig. 3.3. We have

rescaled the velocity profiles with the velocity at ri to highlight the qual-

itative changes. We have rescaled the radial coordinate with the average

bubble radius 〈d〉, to hightlight the steep decay of the velocity profiles. We

only plot a limited region of r since all velocity profiles are strongly shear

banded. Whenwe thus zoom in, we observe that nevertheless, the shape of

the velocity profiles depends on the exerted rate of strain, as in the linearly

sheared foam: the runs that were recorded at the highest driving velocity

exhibit the most shearbanding. This is in strong contrast with the findings

by Debrégeas et al. [9], were rate independent profiles were found. This is

striking because we operate at essentially the same shear rates and because

having only one bounding plate in stead of two, as for the Hele-Shaw cell

employed in [9] should matter little as regards the bubble-wall drag force.

We do observe approximately exponentially decaying profiles (see inset of

Fig 3.3).

The shear banding cannot a priori be attributed to the bubble-wall
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

Figure 3.3: Velocity profiles for two dimensional Taylor-Couette flow of foam

with top plate. We see strongly shear banded velocity profiles that furthermore

exhibit rate dependence: the faster the driving velocity, the more shear banded

the profiles become. Inset highlights approximately exponential decay of velocity

profiles.

drag as another inhomogeneity in the stresses due to the curvature is

present. However, by comparing to the results in the linear geometry we

can venture a guess that in the Couette geometry the rate dependence is

again due to the fact that the bubble-bubble drag and the bubble-wall drag

scale with different exponents. By applying the drag force balance model

to the cylindrical geometry, we will investigate this question in section 3.5.

To be able to perform bubble raft experiments, we place spacers be-

tween the supports and the glass plate. By doing so the bubbles are no

longer confined. If we now lower the inner wheel, we can shear the foam

without drag from the top plate. However, the foam stability is strongly

decreased and bubbles will pop after approximately 11
2 hours. Neverthe-

less, the bubbles are sufficiently stable that we can shear the foam at the

same shear rates as in the experiments with a bounding glass plate, except

for the slowest run. Results are plotted in Fig. 3.4: within experimental
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Figure 3.4: Velocity profiles for two dimensional Taylor-Couette flow of foam

without top plate, the driving velocities are as in Fig. 3.3. We see approximately

rate independent velocity profiles, with a curvature that is solely due to the

curved geometry. We observe no discontinuous transition in the shear rate, as

is evidenced by the log-lin inset, that furthermore highlights exponential decay

near the inner disc.

uncertainty the profiles exhibit rate independent velocity profiles. We ob-

serve that the velocity profiles are still reasonably shear banded, but this

curvature is due to the fact that the stresses decay as 1/r2 in the Couette

geometry, as we will see later on. We furthermore observe no discontinu-

ous transition between a flowing and a static region as was found by Rodts

et al. [84] and Dennin and coworkers [68,71,87] experimentally and Ched-

dadi et al. theoretically [81].

3.4 Model

In this section we attempt to validate the drag force balance model de-

veloped for linear shear of two-dimensional foams by applying it to the

circular case. We will proceed as follows: because the geometry has circu-
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

Figure 3.5: (a) Illustration of the model defined in Eq. (3.6): the light grey ar-

rows indicate the velocity profile, while the black arrows indicate the resulting

drag forces on lane i. (b) Schematic explanation of the additional term vi〈d〉/r
in Eqs. (3.3): bubbles in lane i + 1 that have advanced by a distance 〈d〉 will ex-

ert a small inward drag force on bubbles in lane i of magnitude [sinΨ · vi]β with

sinΨ = 〈d〉/r.

lar symmetry, this time instead of balancing drag forces on neighbouring

lanes, we have to balance torques on neighbouring annuli, see Fig. 3.5. To

arrive at the torques acting at lane i, we start with the expressions from

Eq. (2.11) and adapt them to the circular geometry:

F i
bw = fbw(

ηvi

σ
)2/3 , (3.1)

F i
bb = fY + fbb

[η

σ
(vi−1 − vi − vi〈d〉/r)

]β
, (3.2)

F i+1
bb = fY + fbb

[η

σ
(vi − vi+1 − vi〈d〉/r)

]β
. (3.3)

In both bubble drag forces a new term vi〈d〉/r has appeared, and we can

explain these in two ways. Firstly, it turns out to be crucial to ensure that

the continuum limit of the circular drag force balance model agrees with

the Cauchy equilibrium criterion in polar coordinates, see Appendix 3A,

that states that a body force acting in the azimuthal direction is balanced
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3.4. MODEL

by:

∂τ

∂r
+

2τ

r
, (3.4)

with τ the stress. Furthermore, the strain rate in polar coordinates reads:

γ̇ = r
d

dr

[
vθ(r)

r

]
=

dvθ(r)
dr

− vθ(r)
r

. (3.5)

From Eq. (3.5) we can thus already see the necessity of including a term

vi〈d〉/r.

Secondly, we can construct a tentative picture of the origin of these

forces in the spirit of our drag force balance model. This picture is illus-

trated in Fig. 3.5(b): due to the curvature, bubbles that have advanced in

the θ-direction by a distance 〈d〉 in lane i + 1 will exert a drag force in the

inward radial direction, because these bubbles provide a steric hindrance

for the bubbles in the i-th lane to move straight on. Similarly, bubbles that

lag behind by a distance 〈d〉 will push the bubble in lane i outward. The

radial component of the associated bubble velocity is given by v〈d〉/r, thus
giving rise to that additional term.

In the circular geometry we balance torques, and hence we balance the

force per bubble times the number of bubbles N i ≡ 2πr/〈d〉 on rings of

circumference 2πr and width 〈d〉, the average bubble diameter. The force

balance then reads:

N i−12π(r − 〈d〉/2)F i
bb − N i2πrF i

bw − N i+12π(r + 〈d〉/2)F i+1
bb = 0. (3.6)

The torque due to the bubble-bubble drag forces is evaluated a distance

〈d〉/2 from the center of bubble lane i. While this is indeed where this drag

force acts, we did not need to specify this in the linear geometry. Again

however, it turns out that specifying this distance is crucial to match the

continuum limit to Eq. (3.4).

Since the resulting relative velocity vectors deviate by an angle

Ψ = arcsin(〈d〉/r) from the θ-direction, a factor sin(90±ψ) =
√

1 − (〈d〉/r)2

≈ 1 − 1
2(〈d〉/r)2 should be added in the viscous part of the bubble-bubble

drags, but this is of higher order in 〈d〉/r and we ignore it. The resulting
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

expression can be written as:

(2πr)2fbw

[ηvi

σ

] 2
3

= [2π(r − 〈d〉
2

)]2
(

fY + fbb

[
η

σ
(vi−1 − vi(1 +

〈d〉
r

))
]β

)

−[2π(r +
〈d〉
2

)]2
(

fY + fbb

[
η

σ
(vi(1 − 〈d〉

r
) − vi+1)

]β
)

(3.7)

We can rewrite this as follows:

k(
ηvi

σ
)2/3 =

(
1 − 〈d〉

2r

)2 [
η

σ
(vi−1 − vi(1 +

〈d〉
r

))
]β

−
(

1 +
〈d〉
2r

)2 [
η

σ
(vi(1 − 〈d〉

r
) − vi+1)

]β

− 2fY 〈d〉
fbbr

, (3.8)

with k = fbw
fbb

. We can take the units of length in which we measure -

which is the average bubble diameter 〈d〉 and which we measure in units

of the pixel length p - into account explicitly by making the substitution

fbb → f∗
bb with f∗

bb = fbb/(〈d〉/p)1+β , which is the scale factor on the left

hand side of Eq. (2.16).

3.4.1 Continuum limit

We have already stated that it is crucial to check if our numerical model

is physically correct by comparing the continuum limit to Eq. (3.4). If we

neglect quadratic terms in 〈d〉/r we find from Eq. (3.7) (note that

lim
〈d〉↓0

〈d〉vi−1−vi

〈d〉 = −∂v(r)
∂r ):

k(ηvi/σ)2/3 = 〈d〉 ∂

∂r

(
η〈d〉
σ

(
∂v(r)
∂r

− v

r
)
)β

+
2〈d〉
r

[〈(
η〈d〉
σ

(
∂v(r)
∂r

+
v

r
)
)β

〉
+

fY

fbb

]
. (3.9)

From Eq. (3.9), we can immediately deduce that the continuum limit

of our model indeed satisfies both Eqs. (3.4) and (3.5) and that

τ =
(

η〈d〉
σ

γ̇

)β

+
fY

fbb
. (3.10)
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Figure 3.6: (a)+(b)+(c): Data from Fig. 3.3. (a)+(b): Solid lines are solutions to the

drag force balance model defined in Eq. (3.8), with k =0 since top plate drag is

absent, β =0.36 and fY = 0 (a) or fY = 1.2 × 10−5 N (b). Clearly, for β = 0.36 the

fits are far off (a), whereas setting fY to the value found in Fig. 2.12(b) results in

a small rate dependence which is in fact more pronounced for fits with β = 0.20.
(c) Solid lines are model profiles with β = 0.20 and fY = 0. Inset shows data on

a lin-log scale: both the model and the experimental profiles curve downwards,

since they have to obey v(ro) = 0.

Eq. (3.5) shows the necessity of introducing the terms vid/r in the drag

forces F bb: it accounts for the curvature term in the ensuing continuum

version of the model.

3.5 Fits

3.5.1 Flows without a top plate

We match solutions of our curved drag force balance model Eq. (3.8) to

the experimental velocity profiles in the following way. For the case with-

out a top plate, fbw = 0 and hence the constant k = 0. Thus our model
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

simplifies, and only contains two fit parameters: the exponent β, and the

yield force fY . Surprisingly, when we take for beta the value obtained

from the linear geometry and rheology, β = 0.36, we have not been able

to obtain a convincing fit, see Fig. 3.6(a). Moreover, using in addition

the estimate of fY from rheology, see Fig. 2.12(b), makes the fits even

worse, see Fig. 3.6(b), as it introduces a small rate dependence. However,

a good fit to the model can be obtained by taking β = 0.20 ± 0.02 and fY

at least one order of magnitude smaller than the value from Fig. 2.12(b)

→ fY ≤ 1.2 × 10−6. The yield drag then essentially has no influence on

the shape of the model fits and we could as well set it zero.

We show the data, fit to solutions of the model with β = 0.20, k = 0
and fY = 1.2 × 10−6 N in Fig. 3.6: the model solutions fit reasonably well

to the data and correctly capture the rate-independence for the bubble raft

experiment.

3.5.2 Flows with a top plate

Figure 3.7: (a) Same data as in Fig. 3.4. Solid lines are solutions to the drag force

balance model defined in Eq. (3.8), with k =15.5 β =0.20 and fY = 0 N. (b) Again

data from Fig. 3.4. Solid lines are solutions to the drag force balance model, with

k =5.5 β =0.36 and fY = 0 N. The quality of the fit is markedly improved.

For the case with a top plate, we have in principle three fit parameters.
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3.6. LOCAL RHEOLOGY AND POWER-LAW FLUIDS

To extract the optimal value of β we look for a minimum in the spread

of k over all six runs while setting fY = 0 — setting fY = 1.2 × 10−5

yields poor fits. For every 0.30 < β < 0.60 there seems to a rather good fit

to all the profiles if k is tuned properly, and only at β < 0.30 the spread

in k-values increases significantly. For β = 0.20 the model profiles fit

downright poorly, Fig. 3.7. We also show fits to the data with k =5.5 and β
=0.36 to highlight the fact that we can reproduce the correct trend in rate

dependence and obtain rather good fits in the range 0.30 < β < 0.60.

3.6 Local rheology and power-law fluids

As discussed above, the value of the yield drag force fY we extracted

from our fits is anomalously small compared to the value found from bulk

rheometry. This could be either due to the yield stress being much lower

locally than what is measured in bulk rheometry [88], consistent with the

idea of a static and dynamic yield stress. Another option is that a local

stress strain relation is not satisfied throughout the gap, placing severe re-

strictions on the validity of comparing the experimental velocity profiles

with the model profiles. Finally, the yield stress could simply not play a

role in these foam flows. Another issue is the conflicting value of the β
extracted from our fits and β as established in chapter 2: the bubble raft

experimental profiles are best fit with a β = 0.20 ± 0.02 which is much

lower than β = 0.36 found in chapter 2.

We will investigate these issues in two ways. The first is by fitting the

velocity profiles obtained in the freely flowing bubble raft to the analyt-

ical prediction for velocity profiles of power law fluids (hence without a

yield stress) in a Couette geometry, to see if a yield stress is needed to fit

the velocity profiles. We will then present additional measurements ob-

tained by simultaneously imaging the velocity profiles and measuring the

bulk rheometrical response of a two dimensional bubble raft in a Taylor-

Couette geometry. This allows us to investigate the local rheology of the

foam in the spirit of [79] and connect bulk rheometry with local measure-

ments as well as our model solutions.
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

Figure 3.8: Velocity profiles for foam without top plate with analytical solution

to Eq. (3.11). Note the reasonable agreement, even though this model does not

consider a yield stress.

3.6.1 Fit to a power-law fluid model

If the yield stress is assumed to be absent, one can analytically solve the

following equation for the stresses in the system:

τ(r) =
T

rir2
= k

(
η〈d〉
σ

)β

γ̇β ≡ C

(
r

d

dr

vθ(r)
r

)β

. (3.11)

The solution to this differential equation is given in Appendix B. We can

vary β and obtain an optimal match with the experimental velocity pro-

files obtained in the shear cell without top plate for β = 0.20. The analyt-

ical velocity profile adequately fits the data and the value of β is in good

agreement with the exponent found previously by fitting the model pro-

files to the experimental data. This strongly indicates that the yield stress

has a negligibly low influence on the shape of the velocity profiles and

that we can essentially understand the shape of the experimental velocity

profiles to stem from the power-law fluid nature of the two dimensional
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3.6. LOCAL RHEOLOGY AND POWER-LAW FLUIDS

foam, without accounting for the yield stress. The question remains, how-

ever, why we do no observe a yield stress and what sets the anomalously

low exponent.

3.6.2 Rheometry: an anomalous local flow rule

We can try to see if a local flow rule describes the foam rheology

throughout the system, as this would validate fitting a local drag force bal-

ance model to the experimental profiles as well as show possible non-local

effects that might influence the flow in this system. To this end, we shear a

bidisperse monolayer of foam bubbles in an Anton Paar DSR 301 rheome-

ter. We again employ a Taylor-Couette geometry, but this time we can

measure torques on the inner cylinder which is connected to the rheome-

ter head (lower inset of Fig. 3.9). We impose five different strain rates,

spanning two decades in total and measure the resulting average torque,

while simultaneously imaging the bubble motion from which we can cal-

culate the averaged velocity profiles. The radii of the inner disc and the

outer ring are ri = 0.025 m and ro = 0.07 m. The resulting velocity pro-

files are displayed in Fig. 3.9: within experimental uncertainty the profiles

are rate independent, as well as strongly localized. Again we observe no

discontinuity in the local strain rate.

We fit solutions of the drag force balance model to the velocity profiles

and we obtain optimal fits for β = 0.20 ± 0.02 and fY = 0 (red curves in

Fig. 3.9). Clearly, these fits do not extend over the whole velocity profile

and we will shortly see this is due to the absence of a local flow rule near

the inner disc.

We will now calculate local stresses and strain rates throughout the

gap of our Couette cell, with a method that was utilised in [79, 85, 89].

From the Cauchy equilibrium condition we know that the stresses in the

system are given by (see Appendix 3.A for details):

τ(r) = τ(ri)r2
i /r2. (3.12)

Furthermore, we can take the appropriate derivative, Eq. (3.5), of the ve-

locity profile:

γ̇ = r
d

dr

[
vθ(r)

r

]
(3.13)

to obtain the local strain rate γ̇(r). We then have for each r-coordinate
a value of the local stress and the local strain rate and we can thus plot
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CHAPTER 3. RHEOLOGY OF FOAMS IN A COUETTE GEOMETRY

Figure 3.9: Averaged velocity profiles plotted on log-lin scale from a bubble raft

sheared in Taylor-Couette geometry with inner disc driven by rheometer head.

Solid lines: fits to drag force balance model with β = 0.20 ± 0.02 and fY = 0.
Upper inset shows same plot on linear scale to highlight the part of the profile

where one can fit. Blue curve: Velocity profile for power-law fluid (analytical

solution Eq. (3.11)) with β = 0.22. Lower inset: schematic picture of the setup.

the local stress as a function of the local strain rate, which is displayed in

Fig. 3.10. The local rheology of the experimental velocity profiles is given

by the five scatter plots ranging from black to light blue.

If there truly were a local flow rule then al these profiles would col-

lapse onto one master curve. However, we can clearly see from Fig. 3.10

that all profiles start to deviate from the flow curve at a point — labeled

by a yellow square in Fig. 3.10 — close to the inner cylinder, where the

local stresses are high.

A direct consequence is that fitting the velocity profiles with our lo-

cal drag force balance model at a radial distance that is closer to the in-

ner cylinder than this divergence point is useless. If we, however, restrict

ourselves to the parts of the velocity profiles where the local flow rule is

obeyed we can excellently fit our experimental data (see Fig. 3.9).
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Figure 3.10: (b) Local stress-strain relation extracted from velocity profiles in

Fig. 3.9: The local strain rate can be calculated from the velocity profiles and

the stress is known from the measured torque. Scattered data: local stress-strain

relation for experimental profiles. Red solid lines: Model profiles from Fig. 3.9.

Yellow squares: maximal value of the local rate at which a local flow rule — and

hence the fit — holds. Blue dots: bulk rheometrical measurements. Solid blue

line: Herschel-Bulkley fit through bulk data points: 0.42 + 0.7γ̇0.36. Black line:

power law with slope 0.21.

The red lines in Fig. 3.10 denote the local stress- strain rate behaviour

of the model profiles and not surprisingly, since these profiles are es-

sentially solutions to a power-law constitutive equation (Eq. (3.9), with

fY = 0) they nicely collapse and scale as γ̇0.21
l as shown by the solid black

line.

The blue squares denote the measured torque at the inner disc for the

corresponding velocity profiles plus two additional data points at high

shear rate to facilitate fitting a Herschel-Bulkley expression (solid blue

line). We cannot image at sufficiently high frame rates to record the flow

at these high shear rates and thus we have no information on the local

rheology there.
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3.7 Discussion

Three things strike the eye in Fig. 3.10: i) Both experimental profiles and

the model solutions exhibit a local flow rule that reads τ ∝ γ̇0.21, in clear

contradiction with the previously found exponent β = 0.36. Nevertheless,

this value 0.21 is in good agreement with the exponent extracted from

fitting an analytical power-law fluid model to the experimental velocity

profile. It is also consistent with the optimal fits of the model profiles in

both Fig. 3.6(c) and Fig. 3.9.

ii) By plotting the bulk stress and strain rate as measured by rheome-

try and the corresponding Herschel-Bulkley fit we see that, in the tails of

the velocity profile, the foam still flows well below the global yield stress.

This confirms the finding that the optimal fits from the drag force balance

model were obtained at fY at least one order of magnitude lower than the

value as found in bulk rheometry: the global extrapolated yield stress in

Fig. 3.10 is far above the local stresses, in fact we do not observe a yield

plateau for our range of local strain rates.

iii) Due to the large stress and strain rate gradients near the inner

disc, one apparently only measures the non-local flow behaviour with

the rheometer and one can thus measure a different rheology with the

rheometer — τ = τY + kγ̇0.36 — than what actually governs the local flow,

which reads τ = kγ̇0.21. This finding is in clear contrast with [85] where,

for wide-gap Couette rheometers the local and global flow behaviour obey

exactly the same constitutive equation. However, the large local strain

rates near the inner disc in our experiment might give rise to a non-local

rheology in the spirit of Goyon et al. [79], where rearrangements in the

shearing zone lead to cooperative flows in the shear bands.

Since measuring an exponent β = 0.36 seems to be a result of non-

typical rheology close to the inner disc, it is an open question why a local

strain rate scaling with β = 0.36 describes linear shear flow of two-dim-

ensional foams bounded by a glass plate so well. We hypothesise it might

have to do with the type of flow in the foam: optical inspection of foam

regions where the local strain rate is very low, evidence qualitatively dif-

ferent behaviour between the bubble raft flow and the liquid-glass flow. A

qualitative difference in the fluctuations might well be at the root of this

behaviour, and we will present a simple optical technique that seems to

support this explanation in chapter 5. This would also explain the poor

fit with β = 0.20 of the rate dependent runs in Fig. 3.6(b).
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3.8 Conclusion

We have measured velocity profiles in a two-dimensional foammonolayer,

undergoing cylindrical (Taylor-Couette) shear. We have adapted our drag

force balance model to the circular geometry and have obtained model fits

that adequately fit the experimental data for the foam without a top plate,

with a bubble-bubble drag force exponent β = 0.20, much smaller than

was measured in the linear geometry. Also, the yield stress required to

obtain good fits is either zero or at least one order of magnitude smaller

than the value previously obtained from two-dimensional rheometry. In

order to elucidate the role of the yield stress and non-locality on our foam

flow we have performed additional rheometry and velocimetry on foams

in a smaller Taylor-Couette geometry. From these measurements we can

extract the local stress-strain rate relation throughout our sample and we

observe a local flow rule τ ∝ γ̇0.20±0.02 , from which deviations occur close

to the inner cylinder that place a bound on the range of the velocity pro-

files to which we can fit our model. Furthermore, the foam appears to flow

at stresses well below the yield stress.

Fitting the analytical expression for velocity profiles for power-law flu-

ids (hence without a yield stress) to the experimental profiles yields a

power-law index 0.21, in good agreement with the directly measured local

stress-strain rate relation.
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Appendices

3.A Stress and strain rate in polar coordinates

Figure 3.11: Infinitesimal element used to derive Cauchy equilibrium in polar

coordinates.

A consideration of the stresses and strains in the Couette experiment is

best performed in polar coordinates (r, θ), which are related to Cartesian

coordinates through

r =
√

x2 + y2 , θ = arctan(y/x), (3.14)

x = r cos(θ) , y = r sin(θ) (3.15)

3.A.1 Stress equilibrium

We will here follow the excellent geometrical derivation of the Cauchy

equilibrium condition for the stresses and strain(rate) in polar coordinates

found in [90]. Consider a infinitesimally small element with vertices lo-

cated at (r, θ), (r, θ + dθ), (r + dr, θ + dθ) and (r + dr, θ) (see Fig. 3.11). We

can then find the Cauchy equilibrium conditions by looking at the radial

and the tangential force balance at P separately.

The radial force on side 1 is τrr,1(r + dr)dθ and similarly the radial

force on side 3 is −τrr,3rdθ. The normal force on side 2 has a component

along the radial direction of −τθθ,2dr sin(dθ/2) 	 −τθθ,2drdθ/2 as does the

normal force on side 4: −τθθ,4drdθ/2. The shear stresses result in a force
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(τrθ,2 − τrθ,4)dr. If we sum up these forces and include a body force R we

obtain the equation of equilibrium in the radial direction:

τrr,1(r + dr)dθ − τrr,3rdθ − τθθ,2drdθ/2 − τθθ,4drdθ/2
+ (τrθ,2 − τrθ,4)dr + Rrdθdr = 0. (3.16)

If we divide this by drdθ we find:

τrr,1(r + dr) − τrr,3r

dr
− τθθ,2 + τθθ,4

2
+

τrθ,2 − τrθ,4

dθ
+ Rr = 0. (3.17)

By taking the limit dr, dθ ↓ 0 we find the equilibrium condition for the

radial stresses:
∂(rτrr)

∂r
+ τθθ +

∂τrθ

∂θ
+ rR = 0. (3.18)

Dividing by r yields the normally encountered expression:

∂τrr

∂r
+

1
r

∂τrθ

∂θ
+

τrr − τθθ

r
+ R = 0. (3.19)

For the tangential stress balance we can perform the exact same analysis

and we find the balance to read:

(τθθ,2 − τθθ,4)dr +(τrθ,4 − τrθ,2)drdθ +(τrθ,1(r + dr)− τrθ,1r)dθ = 0. (3.20)

By taking the limit dr, dθ ↓ 0 we find the tangential stress balance, which

reads:
1
r

∂τθθ

∂θ
+

∂τrθ

∂r
+ 2

τrθ

r
= 0. (3.21)

3.A.2 Strain and strain rate

While the expression for the strain rate can be obtained by straightfor-

ward coordinate substitution [91], one can again consider an infinitesimal

element that is deformed by an amount w in the radial direction and u in

the tangential direction. A detailed derivation is given in [90]. We will

restrict ourselves to stating the results. The shear strain γrθ is given by:

γrθ =
∂w

r∂θ
+

∂u

∂r
− u

r
. (3.22)

Due to the rotational symmetry, the first term is 0. If we take the time-

derivative we find the shear strain rate:

γ̇rθ =
∂v

∂r
− v

r
= r

∂

∂r

[v

r

]
. (3.23)
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3.B Velocity profiles for a power-law or a Herschel-
Bulkley fluid in a curvilinear geometry

In a Taylor-Couette Geometry with inner and outer radii ri and ro, Eq.

(3.21) dictates the balance of stresses in the tangential direction. Since the

flow has rotational symmetry, all the terms in Eq. (3.19) equal 0 and in the

tangential stress balance, 1
r

∂τθθ
∂θ = 0. Eq. (3.21) then reads:

∂τrθ

∂r
+ 2

τrθ

r
= 0. (3.24)

The solution to this differential equation is given by

τ(r) = τ(ri)r2
i /r2. (3.25)

For a power-law fluid, the stresses are balanced by the local strain rate

[68]:

τ(r) =
τ(ri)r2

i

r2
= kγ̇β = k

[
r

∂

∂r

(v

r

)]β

. (3.26)

This simplifies to:

(τ(ri)r2
i )

1/β

r2/β+1
=

∂

∂r

[v

r

]
. (3.27)

Which can be directly integrated, yielding:

v(r)
r

=
β

−2
(τ(ri)r2

i )
1/β

r2/β
+ C (3.28)

The integration constant C can be evaluated by requiring that v(r)/r = 0
at r = r0. Thus we end up with:

v(r) =
β

2
(τ(ri)r2

i )
1/βr

[
1

r
2/β
o

− 1
r2/β

]
(3.29)

We can of course add a yield stress term to the right hand side of Eq. (3.26),

to model a Herschel-Bulkley fluid. However, an analytical solution is then

no longer available, and one then needs to resort to numerical integration.
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