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Chapter 2

Linear shear of two
dimensional foams

In this chapter, we first review recent research on the rheology of two di-

mensional foams. We then describe experiments to unravel the connec-

tion between local and global behaviour in a two-dimensional foam. To

this end we have focused on average velocity profiles in ordered and dis-

ordered two-dimensional foams which are covered by a glass plate, and

which are linearly sheared. We show that the shape of these profiles can be

understood by a model that takes into account viscous dissipation at the

bubble scale. We verify our claims by rheometrical measurements. Our

results strongly suggest that disorder leads to anomalous scaling of the

drag forces: for bidisperse two-dimensional foams, the functional form of

the averaged dissipation between bubbles differs markedly from the dis-

sipation between two bubbles moving with constant speed with respect to

each other.

2.1 Overview of the field

Experimentally, the rheology of three-dimensional foams (and emulsions)

has been studied extensively, mainly in oscillatory strain ( [37] and refer-

ences therein), but recently, the rheology of monolayers of foam bubbles

has received increasing attention [8,9,12]. Three experimental configura-

tions can be encountered in the literature: the bubble raft, see Fig. 2.1(a)

where bubbles float freely at the surface of a soapy solution [31], a liquid-
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2.1. OVERVIEWOF THE FIELD

Figure 2.1: Various geometries used in (quasi) two-dimensional foam rheology

experiments: (a) freely floating bubble raft, (b) bubble layer confined between

liquid surface and glass plate, (c) Hele-Shaw cell: bubble layer confined between

two glass plates.

glass setup where bubbles are sandwiched between a glass plate and the

surface of the soapy solution [64,65], see Fig. 2.1(b) and theHele-Shaw cell,
see Fig. 2.1(c), where bubbles are squashed between two glass plates [9].

These configurations have a number of advantages over three-dimensi-

onal systems. First, drainage is absent since the systems extendo only in a

horizontal plane. Second, in contrast to three-dimensional foams, which

are opaque and which one can only probe with diffusive wave scattering

[37] and X-ray tomography [53], the position of all bubbles can be tracked

at all times. By doing so, one can investigate the connections between the

behaviour of the individual bubbles and the global flow.

In what follows we will describe experiments on the rheology of two-

dimensional foams, and therefore we will first discuss recent literature on

the rheological behaviour of the above-mentioned systems.

The determination of the static, elastic properties of two dimensional

foams, such as the scaling of the shear moduli with packing fraction, is

largely an unexplored terrain, even though much theoretical effort has

been devoted to precisely that part of foam physics [1]. Instead, experi-
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

mentally, various groups have looked at shear startup and steady flow of

two dimensional foams [8,9, 12,66,67]. The analysis of such experiments

comprises for a large part of a host of different statistical measures such as

the distribution of stress drops [8, 36, 71], statistical properties of bubble

motions such as velocity fluctuations [9, 68] and the spatial distribution

of T1 events [66, 69, 70]. While each experiment was analysed in a differ-
ent way, in all experiments averaged velocity profiles have been measured.

Due to the variation in experimental geometries that have been employed,

connecting results remains difficult, as we will discuss in the next section.

Figure 2.2: (a) Velocity profiles of bubble raft in Couette geometry (outer cylinder

rotating) for 2 different rates of strain: Ω = 5 × 10−3 (�) and Ω = 8 × 10−4 (•).

Inset zooms in on region of discontinuity. Open symbols are not relevant in our

discussion (Figure reproduced from [68]). (b) Velocity profiles for bi-disperse

foam between two glass plates (inner cylinder rotating): φ = 0.95 (�), φ = 0.85
(�), φ = 0.80 (•). Profiles are fitted with exp(−r/λ), the inset shows variation of

λ with 1 − φ = φl (Figure reproduced from [9].)

Velocity profiles

The flow of foams has been studied in a Taylor-Couette geometry, which

consists of two concentric cylinders with the foam in between, in both the

Hele-Shaw [9] and bubble raft [8, 68] configuration. Lauridsen, Twardos

and Dennin [8,68,71] drove a polydisperse bubble raft by a rotating outer
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2.1. OVERVIEWOF THE FIELD

cylinder at low strain rates and measured the averaged velocity profile of

the foam and the stress on the inner cylinder as a function of strain rate.

The averaged velocity profile exhibits a discontinuity in the strain rate, see

Fig. 2.2(a): away from the outer (driving) wheel the azimuthal velocity is

constant and equal to the angular velocity of the outer cylinder, until at

some γ̇-dependent critical radius rc the velocity profile discontinuously

starts decaying. The decaying part was well fitted by with a velocity pro-

file expected for a Herschel-Bulkley fluid, for which we repeat the consti-

tutive relation here

τ = τY + μγ̇n, (2.1)

The authors find n = 0.45 for Ω = 8 × 10−4 and n = 0.33 for Ω = 5 × 10−3

[68]. In this experiment, the packing fraction φ was fixed at 0.9.

Debrégeas, Tabuteau and Di Meglio sheared a bidisperse foam in a

Hele-Shaw cell at low strain rates (within a velocity range in which the

shape of the velocity profiles was found to be independent of the strain

rate). Away from the driving cylinder, the azimuthal velocity was seen to

decay exponentially. The authors also varied the liquid content in the cell,

and hence φ, and observed the localisation length to grow for decreasing

packing fraction, see Fig. 2.2(b).

Although both systems are similar in that the distribution of T1 events

is proportional to the gradient ∂vθ
∂r [62, 68], the differences between the

experiments, such as the discontinuous versus continuous velocity pro-

files, are more pronounced. This is surprising, since both experiments are

performed at low rotation velocity and the experimental setups are very

similar, apart from the upper and lower boundaries.

Recent developments

We try to understand the rheology of foams through measurements of av-

eraged velocity profiles. Some recent papers have guided our thoughts

on this subject. It has long been stated that, if one is measuring at suf-

ficiently low strain rates and the associated timescale is slower than all

kinematic relaxation times, the presence of confining boundaries, such as

in the Hele-Shaw cell, should not matter. In this regime the experiments

were said to be performed in the quasistatic limit [9, 66, 72, 73]. The rate

independence of the velocity profiles at low strain rates was then invoked

as proof that the system was in this limit. In a recent paper, however,
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Figure 2.3: (a) Averaged velocity profiles for linearly sheared bubble raft,

rescaled by driving velocity. (b) averaged velocity profiles for linearly sheared

foam layer between glass plate and liquid, rescaled by driving velocity. Note the

slip with respect to the driving bands. Figures reproduced from [66].

the influence of these boundaries on the shape of velocity profiles in shear

flows of two-dimensional foams has been examined [66]. Amono-disperse

foam at fixed φl was sheared linearly by two counter-propagating con-

veyor belts. The foam layer was either floating freely or confined between

a glass plate and the liquid surface. For both geometries, the resulting ve-

locity profile exhibits rate independence, but its shape is strongly depen-

dent on the boundary: for the bubble raft, the averaged velocity profile

is quasi-linear, see Fig. 2.3(a), resembling plane-Couette flow of Newto-

nian liquids, but the confined foam shows exponentially decaying shear

bands, see Fig. 2.3(b). We have already seen that the flow of bubbles along

a solid boundary (the top plate) leads to dissipation, and this apparently

influences the dynamics of the bubbles.

An analytical model, taking into account this viscous friction with re-

spect to a boundary, is proposed in [10]. The foam is described as a Bing-

ham fluid experiencing a frictional body force which depends linearly on

the velocity, allowing for analytical treatment of the problem. The result-
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2.2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

ing stress balance reads as follows:

βv =
∂

∂y
(τY tanh(γ/γY ) + ηγ̇), (2.2)

with a strain dependent yield stress τY that saturates at the yield strain.

For large strains (or steady shear) and relatively high strain rates the ve-

locity profiles converge to exponential decay, but for vanishing friction

coefficient (i.e in the case of a bubble raft) the decay length is of the or-

der of the system size and the flow profile closely resembles a Newtonian

flow profile. The exponentially decaying velocity profiles in the case of an

additional wall drag can hence be understood as a result of the balance of

the body force (the wall drag exerted on the foam bubbles) with enhanced

gradients in the local velocities, resulting in gradients in the local strain

rate.

2.2 Linear shear of two dimensional foams

We induce a linear shear flow in a two-dimensional foam. We record aver-

aged velocity profiles and by fitting these profiles to solutions of a drag

force balance model we can investigate the viscous stresses inside the

foam. The scaling with strain rate of these viscous stresses can be com-

pared to the scaling of the local bubble drag, as well as with the global

flow curve, though rheometry.

2.2.1 Experimental details

We create a bidisperse monolayer of foam bubbles of 1.8 and 2.7 mm di-

ameter on the surface of a reservoir of soapy solution, consisting of 80% by

volume demineralized water, 15% glycerol and 5% Blue Dawn dishwash-

ing agent (Proctor & Gamble), by bubbling nitrogen through the solution

via syringe needles of variable aperture. We measure the bath surface ten-

sion σ with the pendant drop method [74] and find σ = 28 mN/m. We

measure the dynamic viscosity η with a Cannon Ubbelohde viscometer

and find η = 1.8 mPa.s.
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Setup

The bubbles are contained inside an aluminum frame (400 x 230 mm)

which can be leveled with the liquid surface and can support the glass

boundary to which the bubbles bridge once it is in place. The glass bound-

ary consists of 3 glass plates with slits to accommodate two PMMAwheels

of radius 195 mm and thickness 9.5 mm. The gap between the liquid sur-

face and the glass plates is fixed at 2.25 ± 0.01 mm, such that the packing

fraction is fixed. We will show in chapter 4, that for this gap the packing

fraction is φ = 0.965 ± 0.005. The wheels, which are grooved to provide

a no-slip boundary for the bubbles, can be lowered into and raised out of

the solution through the slits. The wheels are connected to two Lin En-

gineering stepper motors, each driven by microstepping driver, and are

rotated in opposite directions. As a result, the layer of bubbles is sheared

with a driving velocity v0 = ωr0 in the plane of the bubbles, see Fig. 2.4(b).

At any point along the line where the wheels contact the foam bubbles the

horizontal component of the driving velocity is given by v0 = ωr1 cos φ.
But r1 = r0

cos φ and hence v0 = ω r0
cos φ cos φ = ωr0 and the foam is driven

with this velocity all along the contact line of 230 mm, see Fig. 2.4(b).

No motion is observed due to the vertical component of the radial ve-

locity, although bubbles do leave the system, while being pinned to the

wheels, at the edges of the slits. However, no holes are produced in the two

dimensional foam layer as a result of this, either because at high driving

velocities the bubbles reenter the system before rupturing while traveling

on the wheel, or because at low velocities bubbles from outside the shear-

ing region are pushed inwards due to the bubble surplus at the edges. The

resulting driving velocity gives rise to a global strain rate γ̇ = 2v0/W ,

where W denotes the gap between the wheels, which can be varied be-

tween 5 and 10 cm.

Imaging and Analysis

The velocity profiles are obtained from images which we record by a Focu-

lus BW 432 CCD camera equipped with a Tamron 28-300 telezoom objec-

tive. A typical image is shown in Fig. 2.5. To improve the brightness

and obtain images in which the bubbles are represented by circles (see

Fig. 2.4(c) for an example), the foam is lit laterally by two fluorescent

tubes, each driven by high frequency ballasts to prevent flickering in the
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2.2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Figure 2.4: (a) Schematic topview of the experimental setup. W represents

the gap width and the two horizontal lines indicate the edge of the region over

which the velocity profiles are calculated. The red curve depicts one such pro-

file.(b) sideview of shearing wheels. The slits in the glassplate are drawn for

clarity. Explanation of the x independence of vx at the liquid surface. (c) Experi-

mental image of the foam, the scalebar represents 5 mm.

images. The bottom of the reservoir is covered with a black plate to im-

prove contrast. The frame rate is fixed such that the displacement at the

wheels is fixed at 0.15 mm between frames and we take 1000 frames per

run, corresponding to a strain of 3.75 for a 4 cm gap. In the images, 1 pixel

corresponds to approximately 0.1 mm.

We obtain the velocity profiles through particle tracking and a Particle

Image Velocimetry-like technique: for each y-value, we calculate the cross-

correlation (Xn)2 between the corresponding image line Pn(x) of length m
and the same image line Pn+1(x) in the next frame shifted by an amount

τ :

Xn(τ)2 =
m−τ∑
i=0

Pn(i)Pn+1(i + τ). (2.3)
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Figure 2.5: (a) Images of sheared regions for both (a) monodisperse and (b) bidis-

perse foams. Inset shows size distribution and coarsening over the duration of an

experimental run for bidisperse foams.

We can then proceed in two ways. One option is to, for each y-value,
add up all cross-correlations from all frames and calculate the average

displacement Δx(y) per frame by fitting a parabola to the resulting sum

of cross-correlations and taking the peak value of that parabola:

Δx(y) = max

(
999∑
n=0

(Xn(τ))2
)

. (2.4)

Alternatively, we can fit a parabola to each cross-correlation separately

and obtain the average displacement by averaging the maxima of all indi-

vidual parabolas:

Δx(y) =
999∑
n=0

max
(
(Xn(τ))2

)
. (2.5)
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2.2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

By comparing to average velocity profiles obtained by particle track-

ing [75], we find that the latter procedure gives the closest match to the

tracking velocity profiles, and we have employed that procedure through-

out. We restrict ourself to the central 60 mm of the shearing region, see

Fig. 2.4(a), to avoid effects caused by the recirculation of the foam at the

edges of the wheels. We thus obtain both spatially (in the x-direction)
and temporally averaged velocity profiles. Note that for disordered foams

the flow is strongly intermittent, with large fluctuations in bubble veloci-

ties and positions. Nevertheless, we obtain smooth reproducible velocity

profiles with the above method.

Figure 2.6: Flow at the liquid surface in the absence of bubbles, as imaged by de-

positing silver powder. Inset: same profile on lin-log scale, showing exponential

decay away from the boundaries.

We check that the drag on the foam bubbles due to flow of the bulk liq-

uid underneath is negligible by measuring the velocity profile of bubbles

floating on a very shallow layer of bulk fluid. In this case the fluid surface

velocity is decreased due to the no-slip boundary condition at the reser-

voirs bottom. This does not alter the profiles. We furthermore measure

the velocity profile of the liquid surface itself at the same fluid level as in

the foam experiments (≈ 3.5 cm) by imaging the flow of silver particles

that were sprinkled on the liquid surface, see Fig. 2.6. We observe an ex-

ponentially decreasing velocity profile at the fluid surface, which implies
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

that even if the fluid drag were of the order of the other drags acting on

the bubbles, it would not significantly alter the flow profiles except near

the wheels.

To check whether coarsening occurs we measure the bubble size distri-

bution by measuring the surface area of the rings in the images. We obtain

sharply peaked size distributions, see inset in Fig. 2.5(b), that show about

3 % coarsening over the duration of the runs, which corresponds to about

2 hours.

2.2.2 Results

Disordered foams

We now focus on averaged velocity profiles in disordered two-dimensional

foams. These foams are produced by bubbling a fixed flow rate of nitrogen

through syringe needles of 2 different inner diameters, such that bubbles

of 1.8 ±0.1 and 2.7 ±0.2 mm result. The bubbles are gently mixed with a

spoon until a disordered monolayer results. For gap widths of 5, 7 and 9

cm, we drive the foam at 6 different velocities, spanning 2.5 decades: v0 =
0.026, 0.083, 0.26, 0.83, 2.6 and 8.3 mm/s.

Note that we perform the sweep in driving velocities from fast to slow

and that we preshear the system for one full wheel rotation, to start with

bubbles covering the wheel. This is done to ensure the packing fraction

remains constant during the strain rate sweep; when the entire circumfer-

ence of the wheel is covered with bubbles a balance results between bub-

bles dragged out of the system and injected back in. If we would sweep

from slow to fast driving rates, this balance is not achieved, resulting in

a packing fraction that decreases during the experiment. To fix the pack-

ing fraction, we fix the gap between glass plate and liquid surface at 2.25

± 0.01 mm.

Results are plotted in Fig. 2.7: the profiles exhibit shearbanding, and

for all gap widths the profiles become increasingly shear banded at in-

creasing driving velocities. The slowest runs at W = 5 cm yield essentially

linear velocity profiles. We suggest that this is due to the small gap width,

which results in overlapping shear banded profiles resembling a linear

profile, and we will present a model in section 2.2.3 that supports this

conclusion.. This is further illustrated in Fig. 2.7(d): there we plot the ve-

locity profile for a driving velocity of 0.26 mm/s for all three gap widths
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2.2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Figure 2.7: Profiles for a gap width W = 5 (a) 7 (b) and 9(c) cm. From black to

light grey, v0 = 0.026 mm/s, 0.083 mm/s, 0.26 mm/s, 0.83 mm/s, 2.6 mm/s and

8.3 mm/s. For all gap widths we observe that the localisation near the driving

wheels increases for increasing driving velocity. (d) Profiles at 2.6 mm/s for all

three gap widths. Regardless of the gap width all profiles decay at the same rate.
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

together, which clearly shows that for all widths, the velocity profiles de-

cay at the same rate. Fig. 2.7(d) thus hints that in this experiment the

driving velocity at the edges, instead of the overall shear, sets the veloc-

ity profiles. Therefore the local response to forcing will provide the key

towards understanding the shape of these profiles. Note finally that the

profiles do not exhibit slip with respect to shearing wheels, except for the

fastest runs.

2.2.3 Model

We now propose a model to account for the shear banding behaviour dis-

cussed above. We ignore the elastic energies in the system and only con-

sider the viscous drags. The relevant drag forces in our system have al-

ready been discussed in section 1.2.4 and we will do so once more: Fbw,

the drag force per bubble sliding past a solid wall, scales as

Fbw = fbw(Ca)2/3 = fbw (ηv/σ)2/3 , (2.6)

with η the bulk viscosity, σ the surface tension and fbw a constant with

dimensions of force. Typically fbw ∝ σrc [18], with rc the radius of the

deformed contact between bubble and wall. We remind the reader that

for bubbles in a soapy solution, the 2/3 scaling with Ca only holds for sur-

factants that are mobile [20], see section 1.2.4. Results from [4] strongly

indicate that this is indeed the case for Dawn, and we will later confirm

that this scaling applies to our system.

The drag force between 2 bubbles sliding past each other has not re-

ceived much attention up to now, although [24] provides indirect evidence

that it scales like Fbw, i.e. Fbb ∝ (ηΔCa)ζ , with ΔCa ≡ ηΔv/σ. In a very

recent paper it is explicitly shown that it scales indeed as (ΔCa)ζ , [25].

The authors find ζ = 0.5, although various physico-chemical peculiari-

ties, as well as the range of Ca one measures in, can alter this exponent.

Note that the physical mechanism leading to this scaling is markedly dif-

ferent from that leading to the nontrivial scaling of the bubble-wall drag:

the viscous drag between a bubble and a wall is due to the variations in

thickness of the thin film separating the two, whereas in this case it is ac-

tually the size of the deformed facet that changes when two bubbles come

into contact and slide past each other.

Taking all of this into consideration, it seems reasonable to assume

43



2.2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

that:

Fbb = fbb (ηΔv/σ)ζ , (2.7)

again with fbb ∝ σκc, with κc the radius of the deformed contact between

bubbles.

Figure 2.8: Illustration of drag balance model. The shear region is divided in

lanes labeled i which all experience a drag force de to the top plate and due to

both neighboring lanes. Illustration of the films around which the viscous drag

forces act.

We now assume that at every y-position in the shearing region the av-

erage drag forces per bubble F bw and F bb scale in a similar way with ve-

locity as the individual drag forces. In particular, we will assume that

F bw = fbw(Ca)2/3, but that F bb = fY + fbb(ΔCa)β . We thus leave the

possibility open that the averaged bubble-bubble drag forces scale differ-
ently from the drag froces experienced by single sliding pairs of bubbles.

We divide our shearing region in lanes labeled i and assume that on every

lane the time-averaged top plate drag per bubble F
i
bw balances with the

time-averaged viscous drag per bubble due to the lane to the left (F
i
bb) and

right (F
i+1
bb ), see Fig. 2.8:

F i+1
bb − F i

bw − F i
bb = 0. (2.8)
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

We assume that the averaged drag forces scale similar to the bubble drag

force, but allow for a yield drag term in the interbubble drag, to remain

consistent with rheometrical data presented later on and to reflect the

elastic barrier bubbles have to overcome before they slide past each other,

and write:

F i
bw = fbw(ηvi/σ)2/3 , (2.9)

F i
bb = fY + fbb [(η/σ)(vi − vi−1)]

β , (2.10)

F i+1
bb = fY + fbb [(η/σ)(vi+1 − vi)]

β . (2.11)

Note that assuming similar behaviour between the averaged drag forces

and the local drag forces is a rather strong statement, given that, due to

the intermittent and disordered bubble motion, the instantaneous bubble

velocities are fluctuating and not necessarily pointing in the x-direction.
Inserting the expressions from Eq. (2.11) into Eq. (2.8) and defining

k = fbw/fbb we arrive at:

k
(ηvi

σ

)2/3
=

(η

σ

)β [
(vi+1 − vi)β − (vi − vi−1)β

]
. (2.12)

Note that the yield drag contributions cancel, which is a particular advan-

tage of the linear geometry we work in.

To actually solve Eq. (2.12) numerically, it turns out we need to take

into account the discrete nature of both the bubbles and the pixels in the

images, as the distance in Eq. (2.12) between the vi’s is not arbitrary, but

set by the average bubble diameter 〈d〉. The forward difference on the

bubble scale is

vi+1 − vi = 〈d〉 · ∂v

∂y
|y=yi , (2.13)

in differential form. In the images, however, the velocities are separated

by the pixel size p. One can of course reverse Eq. (2.13) and write

∂v

∂y
|y=yi =

1
p
(vi′+1 − vi′) (2.14)

to end up with the forward difference on the pixel scale. Combining

Eqs. (2.13) and (2.14) and recognising that the full forward difference
of Eq. (2.12) is given by

(vi+1 − vi)β − (vi − vi−1)β = 〈d〉1+β · ∂

∂y

(
∂v

∂y

)β

|y=yi , (2.15)
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we can write Eq. (2.12) in a form that is suited for numerical integration:

k

(〈d〉/p)1+β
·
(ηvi

σ

)2/3
=

(η

σ

)β [
(vi+1 − vi)β − (vi − vi−1)β

]
. (2.16)

2.2.4 Fits

Procedure

We compare all 18 runs to solutions of the model. We focus on the central

part of the data where |v| < 3/4v0 to avoid the considerable edge effects
near the shearing wheels (for instance the bumps in the low-velocity pro-

files in Fig. 2.7(a) and the slip with respect to the wheel in the fast runs).

Since the shape of the velocity profiles is set by the local velocity, we as-

sume this is a valid procedure, and will not affect the shape of the model

solution. We numerically integrate Eq. (2.16) from y = 0, where v = 0,
to the y value for which v = 3/4 · v0, while keeping β and k fixed. The

drag force balance should govern the shape of the velocity profiles for all

driving rates and gap widths and hence, at fixed β, for all profiles we de-

termine the k value that gives the best fit to the data. The k values exhibit

a systematic variation that depends on the value of β one chooses, see

Fig. 2.9(f), and by repeating the procedure for a range of β we determine

the value for which the variation in k is minimized. We subsequently fix k
and β and take these values to hold for all data sets.

Results

We capture the shape of all data sets with high accuracy by fixing k and

β, whose values are k = 3.75 and β = 0.36 ± 0.05 as extracted from

Fig. 2.9(f). The results are plotted in Fig. 2.9, and we see that for these val-

ues all velocity profiles are adequately fitted except for the slowest runs

at W = 5 cm. We attribute this to the observation that edge effects ex-

tend further into the shearing region for small gaps. Note that the model

profiles exhibit linear tails, see Fig. 2.9(e), and that the experimental veloc-

ity profiles in the same figure exhibit approximately the same behaviour.

We can thus conclude that both the experimental and model profiles do

not decay exponentially, in contrast with results found in previous stud-

ies [9,66].
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CHAPTER 2. LINEAR SHEAR OF TWODIMENSIONAL FOAMS

Figure 2.9: (a)-(d) Velocity profiles from Fig. 2.7 with model profiles obtained for

k = 3.75 and β = 0.36 ± 0.05. The model profiles fit the experimental data very

well, except for the slowest runs atW = 5 cm gap. (e) Unrescaled velocity profiles

for V0 = 0.026 (black), 0.26 (grey) and 0.26 (light gray) mm/s and corresponding

fits plotted on a log-log scale, to highlight the linear tails, in particular in the fit

profiles. (f) Variance in k over all 18 runs for the bi-disperse foam as a function

of β. A clear minimum at β = 0.36 can be observed.
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2.3. RHEOMETRY OF VISCOUS FORCES IN 2D FOAMS

2.2.5 Continuum Limit

We can take the continuum limit of Eq. (2.13) which reads:

fbw

(ηv

σ

)2/3 〈d〉−1 =
∂τ

∂y
, (2.17)

The top plate drag can be considered as a body force and the interbubble

drag force as the divergence of a shear stress τ :

τ = τY + fbb

(
η 〈d〉 γ̇

σ

)β

, β = 0.36, (2.18)

where τY is an undetermined yield stress. This is the constitutive equa-

tion for a Herschel-Bulkley fluid [45] encountered before. We can now

associate the averaged bubble drag force scaling at the local level with

the power law scaling of the viscous stress in the Herschel-Bulkley model.

The fact that the yield stress does not play a role for our velocity profiles

can now be understood in two ways: firstly, since it is a constant it van-

ishes after taking the divergence of the shear stress, secondly, even though

we include a yield stress term at the bubble scale, the contributions from

both neighbouring lanes cancel in Eq. (2.12). Note that β = 0.36 is remark-

ably close to the power law index n = 0.40 found for the bulk rheology of

three-dimensional mobile foams [20,47] already discussed in Sec. 2.3 and

to the values n = 0.33 and n = 0.45 found in [71] which were discussed in

section 2.1.

2.3 Rheometrical determination of viscous forces in
two-dimensional foams

To validate the assumptions made for the bubble-wall drag and the result

obtained for the scaling of the local viscous friction inside the foam, in

this section we will investigate the viscous forces that act at the bubble

scale by rheometry. We use an Anton Paar DSR 301 rheometer, which

can be operated in stress controlled mode and, through a feedback loop,

also in strain controlled mode. We use the rheometer in strain controlled

mode to investigate F bw. Moreover, we compare measurements, which

we argue to reflect the actual drag force at the single bubble level F bb,
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with measurements of the averaged viscous drag force on a bubble in a

disordered flow of foam F bb.

2.3.1 Bubble-wall drag

We directly measure the bubble-wall friction with a method that was in-

troduced in [20]. We load a monolayer of bubbles (d = 2.4 ± 0.1 mm)

between two PMMA plates of radius RP = 2 cm. The bubbles are pinned

to the lower plate by means of a hexagonal pattern of indentations of size

O(d), and can slip with respect to the smooth upper plate which is con-

nected to the rheometer head. We measure the torque exerted by the bub-

bles as a function of the angular velocity of the smooth plate.

Figure 2.10: Close-up photograph of the rheometrical tool used to measure the

bubble-wall drag. The radius rc is clearly visible in reflected light and is used to

extract R0.

We convert T (ω) to F bw(Ca) in the following way: each bubble exerts

a wall stress τw = F bw/πR2
0 on the smooth plate. We integrate the contri-

bution to the torque of this wall stress over the plate:

T =
∫ RP

0
τwr2πrdr =

∫ RP

0

F bw

R2
0

2r2dr. (2.19)

If we now assume that F bw ∝ [Ca]α =
[ηωr

σ

]α
, we can immediately read of

49



2.3. RHEOMETRY OF VISCOUS FORCES IN 2D FOAMS

from the data that α = 0.67, see Fig. 2.11(a), so inserting this expression

in the integral Eq. (2.19) yields:

T =
2F bwR3.67

p

3.67R2
0

. (2.20)

Since the bubbles are flattened during the measurement, we can only mea-

sure rc by looking at the reflection of the deformed facet, see Fig. 2.10. We

find rc = 1.59 mm. As the bubble radius is smaller than κ−1 we can ex-

press R0 in terms of rc through R2
0 =

√
3
2rcκ

−1 (see chapter 1, section

2.3). Note that this derivation of rc in terms of R0 hinges on the assump-

tion that the bubbles are not too deformed, which is not obvious in the

rheometrical geometry, but for lack of a more precise relation we use it.

We finally rescale the horizontal axis by multiplying ω with ηRp/σ. The

resulting curve is plotted in Fig. 2.11(a).

Figure 2.11: (a) Drag force per bubble exerted on smooth rotated plate as a func-

tion of Ca. The solid line represents 0.0015 ± 0.0001 · (ηv/σ)2/3
. The inset shows

experimental geometry. (b) Drag force per bubble exerted by neighbouring, or-

dered lane of bubbles in a geometry that mimics the ordered sliding of bubble

lanes. The solid line represents 0.022 ± 0.002 · (ηΔv/σ)2/3
.
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2.3.2 Bubble-bubble drag

Drag at the bubble scale

Tomeasure the power law scaling of the inter-bubble drag we abandon the

linear geometry for a moment and actually measure the torque exerted by

a foam driven at a strain rate γ̇ in a cylindrical Couette geometry, which

consists of an inner driving wheel, connected to the rheometer head, rotat-

ing inside an outer ring. This is a natural geometry to perform rheometry

in. We will get back to the peculiarities of foam flow in a cylindrical geom-

etry in chapter 3. The rheometrical experiments are performed with bub-

ble rafts, i.e. foams that are not confined by a top plate, as the additional

stresses due to the wall would disturb a clean rheological measurement.

Both boundaries are grooved to ensure a no slip boundary for the

bubbles, of which a monolayer floats in the shearing region. We start

with measuring F bb for the ordered case by keeping the gap between the

cylinders such that exactly two layers of bubbles fit in, see the inset of

Fig. 2.11(b). The inner radius (ri) is 1.25 cm and the outer radius (ro) is

2.5 cm. We deposit 6mm diameter bubbles in the grooves, make sure that

all bubbles are strictly pinned and remain in their groove, and vary the

rotation rate ω of the inner cylinder over 2.5 decades while measuring the

torque averaged over one rotation. The result is plotted in Fig. 2.11(b):

even though the torque fluctuates enormously due to the elastic barrier

the bubbles have to overcome before they can pass a neighbour, the force

per bubble averaged over many such events scales with the dimensionless

velocity difference as a power law with index 2/3, just as the wall drag

scales with bubble velocity. No signs of a yield stress are observed, and

we believe this is due to the fact that all elastic energy that is stored in

the bubble deformation is released after yielding, such that one measures

purely the viscous drag.

We multiply ω by ηri/σ to rescale to the dimensionless velocity differ-
ence and we divide the torque by ri and the number of bubbles pinned at

the inner wheel (i.e 10) to obtain the averaged bubble-bubble drag force

per bubble in the ordered case, and in these rescaled coordinates we have

plotted the results in Fig. 2.11(b).
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Figure 2.12: (a) Torque exerted on the inner wheel by a monodisperse foam in a

Taylor-Couette geometry where the gap is of the order of 6-7 〈d〉, for different
bubble sizes. Fits are to Herschel-Bulkley model, power law indices β from fits

are shown in graph. Inset shows same data with yield torque from fit subtracted,

solid line is power law with index 0.4. Surprisingly, the yield stress increases

with increasing bubble size. (b) Averaged drag force per bubble in a bidisperse,
disordered foam. The foam is sheared in a Couette cell of inner radius 1.25 cm,

outer radius 2.5 cm (hence a gap of 5 bubble diameters) without a top plate, see

inset. We obtain F bb = fY + fbb(ΔCa)β , with the yield threshold fY ≈ 1.2±0.5×
10−5 N, fbb ≈ 5.6± 0.9× 10−4 N and β = 0.40± 0.02 (solid line). Open circles are

the same data with the yield torque obtained from the fit subtracted, which are

well fit by a pure power-law with exponent 0.4 (dashed line).

From local to bulk viscous drag

We observe that the scaling exponent for the viscous drag at the bubble

scale differs markedly from the scaling of the local viscosity inside the

bulk foam as extracted from the velocity profiles, e.g., ζ = 2/3 vs. β =
0.36. We hypothesize this is due to the disordered flow in the foam and

will provide supporting evidence in what follows.

Still loading the cell with monodisperse foams with bubble radii of 1,

3 and 5 mm, we increase ro to 8 cm, such that more layers of bubbles can

fit inside the cell. However, since ri is small, the curvature is high, which

forces the foam to deviate from hexagonal packing during rotations. In

this way we induce disorder through geometry. The resulting measure-

ments, see Fig. 2.12(b), show clear yield stress behaviour and can be ex-
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cellently fit by the Herschel-Bulkley model, yielding for all bubble sizes

β ≈ 0.4, which is markedly lower than the 2/3 found for the drag force

in ordered lanes above, and close to the 0.36 extracted from the velocity

profiles. Surprisingly, the yield stress appears to increase with increasing

bubble radius, contrary to the intuition that the yield stress is set by the

Laplace pressure and should hence scale in inverse proportion to the bub-

ble radius. We attribute this to the deformation of the bubbles through

the capillary flotation force, which is larger for larger bubbles and hence

leads to a relatively larger contact size between the bubbles.

In order to convincingly establish a connection between the rheomet-

rical data and the model, we now return to the geometry used for the

ordered foams (ri = 1.25 cm and ro = 2.5 cm), and measure the torque ex-

erted on the inner wheel by a bidisperse foamwith the same bubble sizes as

in the linear shear experiment. We obtain a clear confirmation that indeed

the disorder changes the power law scaling of F bb: we again reproducibly

measure Herschel-Bulkley behaviour with power law index β ≈ 0.40, as
can be seen in Figs. 2.12(b). To convert torques to F bb, we again divide by

the number of bubbles and ri. Since our outer rough boundary forces the

bubble velocity to zero, we can rescale the angular frequency to the di-

mensionless velocity difference ηΔv/σ by assuming a linear velocity pro-

file across the gap, decaying from ωri to 0. The gap width is approximately

6〈d〉 and hence we can estimate Δv. We extract from the rheological mea-

surements an estimate for the ratio k = fbw/fbb ≈ 2.5 ± 0.5. This is close
to the value k = 3.75 ± 0.5 estimated from the flow profiles.

2.4 Discussion

The drag forces exerted on the bubbles by the top plate, which at first

sight might be seen as obscuring the bulk rheology of the foam, enable us

to back out the effective inter-bubble drag forces and constitutive relation

of foams from the average velocity profiles. To further appreciate this

fact, note that our model yields linear velocity profiles regardless of the

exponent β if the body force due to the wall drag is zero.

By comparing the results obtained from the velocity profiles with the

rheometrical measurements, we note a remarkable difference between the

scaling of the bubble-bubble drag forces at the bubble level, which we

have mimicked by strictly ordered bubble rheology, and the scaling at
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the bulk level, which we have extracted from the velocity profiles and

confirmed by rheometry: we find Fbb ∼ (Δv)2/3 at the bubble level and

F bb ∼ (Δv)0.36 at the bulk level.

One might understand this anomalous scaling as follows: The degree

of disorder does not affect the drag forces at the bubble scale, but it does

modify the bubble motion. For disordered foams, the bubbles exhibit non-

affine and irregular motion — hence they “rub” their neighbouring bub-

bles much more than when their flow is orderly, and consequently the

averaged viscous dissipation is enhanced over what could naively be ex-

pected from the local drag forces [76]. This picture is corroborated by re-

cent simulations on the bubble model [23], where one recovers this “renor-

malisation” of the drag force exponent [77, 78] and rate-dependent flow

profiles [78].

In this vein, one could wonder why the drag with the top plate is not

changed by the disordered motion of the foam bubbles. We have no def-

inite answer, but we have verified, using tracking of the bubble motion,

that the average of the instantenous bubble-plate drag force is very simi-

lar to the drag force calculated from applying the Bretherton result to the

average velocity:

< (�v/|v|)x|v|2/3 >≈ 0.9 < vx >2/3 . (2.21)

On the other hand, the bubble-bubble drag force involves velocity differ-
ences, which therefore are much more broadly distributed, in particular

when Δv < v — apparently this causes the breakdown of the affine as-

sumption.

Finally, the origin of the edge effects that prevent us from fitting our

full experimental curves with the model profiles, might be due to the fluid

drag near the wheels, as discussed in section 2.2.1. Alternatively the ori-

gin might lie in the absence of a local flow rule near the driving wheels

as reported in [79]. One way to resolve this is accommodating non-local

behaviour in our model, for instance by incorporating drag terms due to

next nearest lanes, similar to the cooperativity length introduced in [79].

Nevertheless, since our model is local in spirit, it has enabled us to back

out valuable information even though we have not been able to use the

full velocity profiles.
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2.5 Ordered foams

A final indication that indeed the disordered flow of the bidisperse foam

is at the root of the anomalous scaling of the bulk viscosity with shear

rate can be given by shearing ordered, monodisperse foams in the linear

geometry, as was done in [66]. In this case the bubbles are expected to

move affinely with the global shear, in which case one would expect the

global viscous drag forces to scale the same as the local one.

Figure 2.13: (a) Velocity profiles for a monodisperse, ordered foam with crystal

axis aligned with the wheels. Gap W = 7 cm and v0 = 0.083 (black), 0.26 (dark

grey) and 0.83 (light grey) mm/s. Solid curves indicate fits to the model with

k = 0.3, α = β = 2/3. (b) Angle of the monodisperse foam with respect to the

shearing direction as a function of strain (time): the foam remains stationary for

considerable strains, after which it rapidly rotates over π/3. Upper inset shows

derivative of main graph to highlight the apparent periodicity of the rotations.

Lower inset shows 2D autocorrelation of foam image with the circle located at

the first order maxima used to determine the rotation.

We shear a monodisperse, ordered foam with bubbles of size 2.7 mm,

produced by blowing nitrogen through one syringe needle at fixed flow

rate, at a gap W of 7 cm at v0 = 0.083, 0.26 and 0.83 mm/s. We recover

the rate independent and strongly shear banded velocity profiles reported

in [66] (see Fig. 2.13). However, it turns out that the orientation of the

hexagonal bubble packing with respect to the shearing direction of the

foam is crucial for reproducibility: the monodisperse foam orients itself

with one of its crystal axes parallel to the shearing boundaries and re-

mains in that state for a considerable time, until it rather rapidly and
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collectively rotates over an angle of π/3 radians until the next crystal

axis is aligned with the wheels. We investigate this by taking the 2D-

autocorrelation of the foam images taken from a run at 10 cm and measur-

ing the pixel intensity along a circle located at the first order maxima, see

inset of Fig. 2.13(b).

By cross correlating the intensity profile of the first image with that

of later images, we obtain Fig. 2.13(b): the foam remains stationary for

considerable strains, after which it quite rapidly rotates over π/3 radians

and remains stationary again. The upper inset of Fig. 2.13(b) displays the

derivative of the angle with time and confirms that stationary periods are

interspersed with bursts, during which the foam rapidly rotates, and to

which one could maybe even contribute a periodicity.

This remarkable phenomenon is, however, avoided by increasing the

aspect ratio of the shearing region. By doing so, the interval between the

rotation events is considerably increased and hence one can safely mea-

sure in the strictly ordered regime, with the bubbles aligned with the

shearing wheels. How this rotation is avoided in [66] we do not know,

but if one looks at the experimental images in that paper, one observes

that the monodisperse domains only extend over 7 — 8 bubbles due to

the presence of defects, thus likely hindering large-scale collective rear-

rangements, while at the same time leaving enough ordered foam at the

shearing boundaries to allow for rate independent shear banding.

As in the case of the bidisperse foams, we fit model profiles to our ex-

perimental data. For our model to yield rate independent velocity pro-

files, the drag forces need to balance in the same ratio for all driving

velocities. This can only be achieved if β = 2/3 since we have already

confirmed with rheometry that α = 2/3. Indeed we find that the exper-

imental profiles are best fit by model profiles if one fixes k = 0.3 and

β = 0.67 ± 0.05, see Fig. 2.13. The value of k is remarkably small. If we

assume that prefactor fbw for the bubble wall drag remains unchanged for

the ordered foam, this means that the bubble-bubble drag prefactor fbb

is much larger compared to its value for a disordered foam. Note how-

ever, that the power law exponent β greatly influences the value of the

drag force: for instance, if Δv = 0.001 m/s, then (ηv/σ)2/3 = 1.6 × 10−3,

whereas (ηv/σ)0.36 = 3.1×10−2, which is more than an order of magnitude

larger.
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Disorder

We now return to the question how disorder sets the rheological behaviour

in foam flows. We have shown that the average drag between bubbles

scales as v2/3 for monodisperse foams, whereas it scales as v0.36 for bidis-

perse foams. On the other hand, at the bubble level, the drag forces scale

as v2/3 as is evidenced by the rheometrical data presented in 2.11(b). We

speculate that this is closely connected to the non-affine behaviour of the

bubbles [23,76,80]: close to the jamming transition, the shear modulus of

the foam becomes anomalously large due to the fact that bubbles fluctu-

ate much more than can be expected from the affine prediction — which

is that the bubbles follow the imposed shear — and thus dissipation in-

creases.

In our experiment, this results in an anomalous scaling of the bubble-

bubble drag force, which in turn is reflected in the observed rate depen-

dence of the velocity profiles for bidisperse foams. We can thus investigate

when the rate dependence of the velocity profiles first occurs by gradually

increasing the disorder in a monodisperse foam.

To this end we record velocity profiles in a monodisperse foam made

of 2.7 mm size bubbles in which we gradually increase the area fraction

of smaller (1.8 mm) bubbles. After mixing the two species we measure

velocity profiles at v0 = 0.083, 0.26 and 0.83 mm/s. We already observe

the occurrence of rate dependent velocity profiles for small quantities of

defects, indicating that rate independent flows are in fact limited to the

singular case of completely ordered foams. We have not quantified the

amount of disordered motion, but by visual inspection, we already see the

swirling patterns, typical of our 50/50 bidisperse foam, occuring at 2 %

disorder.
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Figure 2.14: Velocity profiles for an ordered foam consisting of 2.7 mm bubbles

for driving velocities v0 = 0.083 mm/s (light gray), v0 = 0.083 mm/s (dark grey)

and v0 = 0.083 mm/s (black) to which defects are added in the form of an in-

creasing area fraction of 1.8 mm bubbles.
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