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Chapter 1

Introduction

An aqueous foam consists of gas bubbles dispersed in water which con-

tains a stabilising agent (surfactant). Despite the simplicity of its compo-

sition, the properties of a foam are in general quite complex [1]. The static

structure and the ageing of a foam is reasonably well understood, while

the behaviour of foams under forcing, i.e. the elasticity and the rheology,

has only recently received attention. This is at least partly due to the intro-

duction of the jamming phase diagram [2], which has lead to an upsurge

of experimental and theoretical work in the entire field of soft condensed

matter physics. The rheology of foams, and of emulsions, which are very

closely related to foams but consist of bubbles of an immiscible fluid phase

instead of a gas, is expected to obey this jamming picture and the absence

of solid friction in both systems would allow for a connection between

experiment and simulations.

To investigate foam rheology and connect the bulk behaviour with the

motion of the individual bubbles, we will investigate monolayers of foam

bubbles which float on the surface of a surfactant solution andwhich allow

for direct imaging of the constituent particles.

However, in order to be able to understand the rheology of foams it is

necessary that we first understand the microscopic origin of the rheologi-

cal properties of individual bubbles. Only then can we try to understand

the collective behaviour of collections of these bubbles. The following

treatment is focussed on foams, but is equally well valid for emulsions,

except for a few details, which are discussed in section 1.4.2.
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1.1. MICROSCOPICS: FOAM FILMS, STABILITY

1.1 Microscopics: Foam films, stability

In this section we discuss the chemical components that make up a foam

and their influence on the various processes that lead to stabilisation and

structural evolution of a foam.

1.1.1 Surfactants and surface tension

Figure 1.1: (a) Surfactant molecules adsorbed at the interface. At the CMC the
surface is maximally covered by surfactant molecules and micelles start to form.

(b) Langmuir adsorption isotherm, relating the surface concentration Γ to the
bulk concentration C [3].

Foam bubbles are generally stabilised against rupture and coalescence

by a special class of molecules called surfactants (surface active agents).
These molecules consist of a hydrophilic (polar) head group and a hy-

drophobic (apolar) tail. When these molecules are dissolved in the water

phase they spontaneously adsorb at the interface. The head group sits in

the water phase and the tail points towards the oil phase (in case of an

emulsion) or the gas phase (in case of a foam). As a result the surfactant

molecules lower the surface tension σ of an interface, which can be under-
stood as follows: a surface energy arises because the water molecules at

the interface are missing bonds. The liquid seeks to minimise the excess

energy associated with these missing bonds and hence minimises its sur-

face area, leading to a surface tension. The surfactants lower the excess
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CHAPTER 1. INTRODUCTION

Figure 1.2: Static and dynamic foam stabilisation: (a) electrostatic and (b) steric
repulsion of the surfactant monolayers provide static foam stabilisation while (c)

dynamic stabilisation against fluctuations is guaranteed by the Marangoni effect,
which is the coupling between surface tension gradients and flow in the liquid.

energy of missing bonds and hence lower the surface tension.

Besides being polar, the headgroup of a surfactant molecule can be

charged or uncharged. Charged surfactants are called ionic surfactants
and either have a negatively (anionic), a positively (cationic), or both neg-

atively and positively (amphoteric) charged head group. A much used

anionic surfactant is Sodium Dodecyl Sulfate (SDS). Uncharged surfac-

tants are called non-ionic surfactants. An often used non-ionic surfactant
of low molecular weight is polyoxyethylene sorbitan monolaurate, which

is better known under its trade name Tween 20. Other important classes

of non-ionic surfactants are the synthetic polymeric surfactants such as

Pluronic and the natural polymeric surfactants (proteins) such as Bovine

Serum Albumin and Casein.

The surface tension σ, the bulk concentration C and the surface con-
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1.1. MICROSCOPICS: FOAM FILMS, STABILITY

centration Γ are related through the Gibbs-Duhem equation for the sur-
face phase [3]:

dσ = ΓkBTd(lnC). (1.1)

In order to calculate σ(C), a model adsorption isotherm is chosen, such as
the Langmuir adsorption isotherm shown in Fig. 1.1(b) :

Γ(C) = Γmax
KC

1 + KC
, (1.2)

where K is an adsorption constant. Eq. (1.1) can now be integrated to
obtain the dependence of surface tension on bulk concentration.

When increasing the surfactant concentration in the liquid phase (the

bulk concentration C), the surface concentration increases according to
Eq. (1.1) until the bulk concentration reaches the critical micelle concen-

tration (CMC). By further increasing the bulk concentration, the surfac-

tant molecules form micelles which are spherical shapes or bilayers with

the polar heads pointing towards the surrounding liquid and the apolar

tails grouped together and shielded against interaction with the fluid by

the heads, see Fig. 1.1, in order to minimise binding energy. At the CMC,

the chemical potential for surfactants to adsorb at the surface or form mi-

celles is equal and for concentrations above the CMC, the surface con-

centration can only be increased and hence the surface tension can only

be reduced by decrasing the repulsive interaction between the surfactant

molecules, for instance by adding electrolyte such that the molecules pack

closer at the surface.

The Gibbs surface elasticity, which is in fact a two dimensional elastic

modulus (units N/m) and is given by [3]

EG = − dσ

d(lnΓ)
, (1.3)

describes the response of the surface tension to variations in the surface

concentration. A surfactant layer with a high Gibbs elasticity experiences

large changes in surface tension for small variations in surface concen-

tration. Local fluctuations in the surface concentration are energetically

strongly unfavourable and result in large stresses. For such a surfactant

layer, these fluctuations will mainly be damped by the Marangoni effect,
which is the flow of fluid from regions of low surface tension to regions of
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CHAPTER 1. INTRODUCTION

high surface tension as a result of the coupling of the surface stress to the

fluid below through viscosity.

In order to be able to understand how surfactants stabilise foams we

now have to consider the thin soap film between two neighbouring foam

bubbles. The thin film consists of two monolayers of surfactant molecules

with the bulk phase in between. Both in ionic and in non-ionic surfactants,

static stabilisation is achieved by repulsive forces between the surfactant

monolayers. For ionic surfactants the repulsive force is electrostatic and

is caused by the charged groups at the interfaces , whereas for nonionic

surfactants, static stabilisation is achieved by a steric repulsion, which is

due to the overlap of the polymer chains, see Fig. 1.2 (a,b).

Dynamic stabilisation against fluctuations in the film thickness is en-

sured by the Marangoni effect, see Fig. 1.2 (c). If the film locally thins it
curves inwards, its area locally increases and the surface tension becomes

higher at the dimple but the resulting bulk flow towards the dimple re-

stores the equilibrium thickness. A dimple (thicker region) in the film

will by the same mechanism grow further, but the diffusion of surfactant
molecules to the dimple will eventually stop this.

1.1.2 Microscopic nature of foam evolution

When no mechanical forcing is applied, foams evolve due to drainage,
coarsening and coalescence. Drainage is caused by gravity which leads to a
downward flow of the liquid phase, coarsening is caused by gas diffusion
between neighbouring bubbles, while rupture of the flat films may cause

coalescence between bubbles. We will now discuss how these processes

are affected by the constituents of the foam.
Drainage. An increase of viscosity of the liquid phase, for instance by

adding glycerol, can help to decrease the drainage velocity, but the speed

at which a foam drains is mainly affected by the composition of the surfac-
tants at the interfaces. We have introduced the Gibbs elasticity above, and

connected to this we can define a surface elastic modulus as well as a sur-

face viscosity that describe the energy cost of the stretching and shearing

of interfaces. These moduli depend on how easily surfactant molecules

diffuse from the bulk to the interfaces and vice versa, and the interfaces
are either said to be mobile (low EG, ≈ 0 mN/m) or immobile (high EG,

≈ 50 mN/m). A flow of bulk liquid along a soap film couples to the sur-
factant molecules and results in surface tension gradients. If the film is
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1.1. MICROSCOPICS: FOAM FILMS, STABILITY

Figure 1.3: (a) Plug flow of liquid in thin film due to mobile surfactants: the flow
slips with respect to the foam films. (b) Poiseuille flow of liquid in thin film due

to immobile surfactants: the liquid experiences a no-slip boundary condition at

the foam films and energy is dissipated in the shear flow near the interface.

stabilised by mobile surfactants, an uniform surface tension can easily be

restored by diffusion of bulk surfactant molecules to the interface and dif-
fusion on the surface of adsorbed molecules. There is little dissipation at

the interfaces and the liquid exhibits plug flow. Immobile surfactants have

a far lower diffusivity and resist flow, so the liquid flow velocity decreases
steeply close to the interface, resulting in high dissipation and a Poiseuille

flow profile. Foams stabilised by immobile surfactants hence drain much

slower than foams stabilised by mobile surfactants. At the end of the 90’s,

a controversy between foam researchers at Harvard [4] and Trinity Col-

lege [5] in Dublin over the drainage velocity in foams was resolved only

when they realised that the different experimental results might well be
due to the different dishwashing liquids used. Indeed, it turned out that
the American brand Dawn has a lower surface viscosity, which is a quan-

tity that phenomenologically describes the influence of a high Gibb’s elas-

ticity in the film, than its European counterpart Fairy (known as Dreft in

the Netherlands).

Coarsening. The diffusion of water soluble gasses through the thin soap
films separating bubbles leads to coarsening. This is because the capillary

pressure inside the smaller bubbles in a foam is higher than in the larger
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CHAPTER 1. INTRODUCTION

bubbles (see section 1.2.2), so that gas will mainly diffuse from the smaller
to the larger bubbles. As a result, the larger bubbles will grow while the

smaller bubbles shrink. A common choice of gas to slow down the coars-

ening process is C2F6, which is almost insoluble in water. A much more

soluble but frequently used gas is N2, which still performs better than air

and CO2 which easily diffuse through the foam films. Note that diffu-
sion by soluble gases can be halted by the addition of only trace amounts

of insoluble gases: the soluble gasses easily diffuse from the smaller to
the larger bubbles, but since the insoluble gasses remain where they are,

the concentration of insoluble gas in the smaller bubbles increases, which

quickly leads to a balancing diffusion from the larger to the smaller bub-
bles to restore the equilibrium in gas concentration between the bubbles.

This is the same mechanism that drives osmosis in cells.

Coalescence. Bubbles end their existence by rupture or coalescence
with a neighbour. If the films become thin due to drainage, thermal fluctu-

ations will eventually lead to fluctuations in the film thickness that cannot

be restored anymore and will lead to rupture of the films. A way to pro-

mote rupture is by adding anti-foaming agents to the foam. These consist

of oil droplets or solid particles that attach to the thin films and then due

to their wetting properties, lead to a retraction of the foam film and hence

to rupture. Trying to do the laundry with dishwashing soap will, due to

the absence of anti-foaming agents, result in large amounts of foam in and

around your washing machine. However, this could be avoided simply by

adding some cooking oil.

1.2 Mesoscopics: Shape, Forces and Pressures

In the following section, we will consider the various pressures and forces

that are exerted on single bubbles and foam films. Wewill begin by stating

the rules describing a static foam configuration. Then we discuss how

bubbles are deformed by compression of other bubbles or by drainage of

liquid from the foam, and we discuss the forces that a bubble experiences

when it is moving with respect to another bubble or a solid wall. We

finally discuss the flotation forces that bubbles experience when floating

at an interface, and that hence only apply to two-dimensional foams.
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.4: (a) The first and second rule of Plateau illustrated with a dry foam.
Any three soap films meet at 120◦ angles, while three of such vertices meet in a
fourfold node at an angle of 120◦. (b) The same view, but for a wetter foam: the
Plateau borders are decorated with circular segments .

First we need to introduce the bubble volume fraction φ defined as:

φl =
Vg

Vl + Vg
, (1.4)

with Vl and Vg are the volumes of liquid and gas respectively. In foam

research people often use the liquid fraction φl = 1 − φ to characterize
their foam. Note that we will use the volume fraction φ throughout this
work, to facilitate the connection with simulation results and granular ex-

periments. A wet foam contains a high volume fraction of liquid and the
bubbles are only weakly deformed. A typical volume fraction for a com-

mercial three-dimensional foam such as Gilette shaving foam is φ = 0.80.
At φ = 0.64 the foam loses its rigidity (unjams) [6, 7] and for yet lower φ
one speaks of bubbly liquids. A dry foam consists essentially of a network
of thin films and typically φ ≈ 0.99.
For three-dimensional foams, this liquid fraction is a well defined quan-

tity. However, both experimentalists and theorists often retreat to two
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CHAPTER 1. INTRODUCTION

dimensions [8–12] to study foams. The question is whether a two-dim-

ensional liquid fraction can be defined as well. In numerical studies of

two-dimensional foams, where the bubbles are represented by discs, this

is no problem. Experimentally, however, this geometry is only achievable

with Langmuir foams, which are monolayers of molecules that float at

the surface of a liquid and aggregate into two dimensional discs. Due to

the simplicity of production and imaging, physicists often prefer to work

with monolayers of foam bubbles instead. However, these bubbles extend

in three dimensions and since they are more or less spherical, a two-dim-

ensional liquid fraction would strongly depend on the height at which one

decides to make a slice through the bubble layer.

In this thesis we describe work performedwith two-dimensional foams.

We will describe the characterisation of φ in quasi two-dimensional foams
in much more detail in chapter 4, and we will also show that in order to

convincingly explain our findings we have to take into account the physics

at the (three dimensional) bubble scale.

1.2.1 Plateau rules

We consider a three dimensional dry foam to establish the geometric rules

at equilibrium, see Fig. 1.4(a) which where first described by Joseph Pla-

teau. The first rule states that exactly three soap films always meet at so-

called Plateau borders at angles of 120◦. The second rule states that four
of these Plateau borders meet at nodes under angles of 109.47◦. These
rules are a direct consequence of the fact that the surface tension of all

films should balance at equilibrium. If we consider a two dimensional

foam, i.e., a collection of lines that are pulled by surface tension, only

Plateau’s first rule applies. For slightly wetter foams, Plateau’s rules still

hold exactly, but the vertices are "decorated" with curved segments that are

dictated by the Laplace pressure across the film. For still wetter foams the

decorations of the vertices start to overlap and Plateau’s rules no longer

apply: for example, fourfold vertices become stable [1].

1.2.2 Capillary and Disjoining pressure

The shape of a liquid-gas interface is governed by the Laplace equation,

which relates the pressure drop across the interface — which is called the

Laplace or capillary pressure — to the surface tension σ and the principal
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

radii of curvature R1 and R2 of the interface:

Figure 1.5: Illustration of surface element under a pressure gradient. If the sur-
face curves the perpendicular component of the force due to surface tension can-

cels the pressure gradient.

Pc = Pgas − Pliq = σ(
1

R1
+

1
R2

). (1.5)

This equation can be understood by considering an infinitesimally small

surface on which surface tension acts and along which a pressure gradient

ΔP exerts a force, see Fig. 1.5. The resulting force ΔPRxdθxRydθy can

only be balanced by a surface tension if the surface is curved. In that case

the out of plane component of the force due to surface tension balances the

pressure gradient.The restoring forces due to the surface tension pulling

in the x and y directions are given by:

Fx · σ sin dθx = Rydθy · σ sin dθx ≈ Rydθy · σdθx, (1.6)

Fy · σ sin dθy = Rxdθx · σ sin dθy ≈ Rxdθx · σdθy . (1.7)

Balancing the force due to the pressure gradient with the restoring force

due to surface tension yields:

ΔP =
Fx + Fy

RxdθxRydθy
, (1.8)
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CHAPTER 1. INTRODUCTION

and since Rx = R1 and Ry = R2 we arrive at Eq. (1.5). For a spherical

bubble R1 = R2 and the capillary pressure reduces to:

Pc =
2σ

R
. (1.9)

The consequence of Eq. (1.9) is that the gas pressure inside bubbles is

inversely proportional to their size, which leads to diffusion from the
smaller to the larger bubbles. This is the mechanism behind coarsening.

An elegant and rigorous derivation of Eq. (1.5) is given in chapter 2 of [3].

A few additional remarks about the radii of curvature are made in Ap-

pendix 1.A.

One other pressure plays an important role at gas-liquid interfaces,

and to introduce it let us consider a bubble that is pressed against a solid

wall by some external force(See Fig. 1.6(a)). A flattened film results, of

which we will determine the size as a function of force in Section 2.2.1,

and for small deformations the pressure inside the bubble is still deter-

mined by the undeformed radius of the bubble:

Pgas = Pliq + Pc = Pliq +
2σ

R
. (1.10)

At the flattened film the radius of curvature R is infinite and hence the
capillary pressure is zero. There Eq. (1.10) cannot hold and a new force

comes into play once the distance between the bubble and the wall be-

comes sufficiently small. At the film this disjoining pressure Π, which is
a function of the film thickness h, balances the pressure difference across
the surface:

Pgas = Pliq +
2σ

∞ + Π(h). (1.11)

The disjoining pressure results from the attractive and repulsive forces in

the thin film, of which the electrostatic and steric repulsion have already

been mentioned. An overview of surface forces that can contribute to the

disjoining pressure is given in [13]. For aqueous films the disjoining pres-

sure is often a superposition of electrostatic repulsion and a van der Waals

attraction. A typical shape of theΠ(h) dependence in this case is shown in
Fig. 1.6(b). For very short distances a short range Born repulsion is added.

From Eq. (1.11) it is clear that at equilibrium Pc = Π(h) so the equi-
librium film thicknesses are given by the roots of this equation. As shown

in Fig. 1.6(b), there are three equilibrium film thicknesses. At point 1, the
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.6: (a) Pressure balance for deformed bubble, pushed against a solid
boundary by buoyancy. At the flattened facet the radius of curvature is ∞ and
Pc needs to be balanced by a disjoining pressure Pi. (b) Disjoining pressure
isotherm. The horizontal line corresponds to equilibrium film thicknesses. Point

1 and 2 represent common and Newton black film thicknesses.

film is called common black film and there it is stabilised by double layer
repulsion. A common black film is defined as being at least thinner than

1/4 of the wavelength of visible light but thicker than 7 nm. Point 2 is

an unstable equilibrium and is never observed in experiment and Point 3

corresponds to theNewton black film, which is stabilised by the short range
Born repulsion. Newton black films are thinner than 7 nm.

1.2.3 Bubble deformation

Bubble deformation by compression

If a bubble is pressed against another bubble or a solid or liquid interface,

at equilibrium (or quasi-equilibrium) the driving force is balanced by the

disjoining pressure in the resulting thin film [14]:

πr2
cΠ = F, (1.12)

where πr2
c is the area of the flat film. Note that at quasi-equilibrium, for a

thinning film, this disjoining pressure can also contain a viscous pressure

contribution. The liquid and gas pressures cancel when integrated over

the bubble surface and do not result in forces. In principle a transver-

sal tension, which is due to the surface tension imbalance at rc (where
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CHAPTER 1. INTRODUCTION

the bubble surface curvature suddenly changes) should be included in

Eq. (1.12). However, this tension is generally considered to be negligibly

small [3,14].

In Fig. 1.6(a) the bubble is driven upwards by buoyancy and the force

balance reads:

πr2
cΠ = F =

4
3
πR3

0Δρg, (1.13)

with R0 the bubble radius,Δρ the density difference between gas and liq-
uid phase and g the gravitational acceleration.
We will now derive an expression for the force on the bubble in terms

of measurable quantities such as the bubbles radius R0, the surface ten-

sion σ and the radius of the deformed facet rc. From Eq. (1.11) we know

that for small rc, such that the gas pressure remains constant, the dis-

joining pressure Π is balanced by the capillary pressure Pc. We can thus

rewrite Eq. (1.12):

F = πr2
cPc = πr2

c

2σ

R0
. (1.14)

In an experimental situation [15, 16] the interparticle force Fij , which is

the sum of the forces Fi on particle i and Fj on particle j, can hence be
deduced from the size of the flattened film separating the two bubbles

pressing against each other by the above reasoning (See Fig. 1.7):

Fij = Fi + Fj = πr2
cΠ = πr2

c [(Pc)i + (Pc)j ] = πr2
c2σ

Ri + Rj

RiRj
. (1.15)

The compressive force can be related not only to the area of the de-

formed facet, but also to the deformation itself, through a force law. To

extract this force law for the bubbles, we can consider the deformation

δξ [17], where ξ = (R0 − Z)/R0 is a dimensionless measure of compres-

sion (See Fig. 1.8). For small deformations, to linear order in δξ:

r2
c ≈ 2R2

0δξ. (1.16)

We can now insert this in Eq. (1.14) and obtain

F ≈ 4πσR0δξ. (1.17)

To good approximation, the interaction between bubbles can thus be taken

as a repulsive harmonic potential. If a bubble is compressed by many

neighbouring bubbles and the deformed surface area becomes large, this

approximation breaks down and the interbubble interaction becomes stif-

fer than harmonic [17].
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.7: Illustration of the relation between force on bubbles and deformed
facet: the exterted forces Fi, Fj are balanced by the disjoining pressure Π, which
can be expressed in terms of the Laplace pressure Pc.

Bubble compressed by buoyancy

If a bubble is trapped under a solid boundary and pushed upwards, and

hence deformed by gravity, we can extract rc by combining Eqs. (1.13) and

(1.14), provided that the bubble radius is smaller than the capillary length

κ−1 =
√

σ
ρg . In this case we find:

rc =

√
2
3

R2
0√
σ
ρg

=

√
2
3

R2
0

κ−1
. (1.18)

However, when the bubble radius is larger than κ−1 the bubbles adopt a

"pancake" shape with the length of the short axis given by 2κ−1. In that

case the contact radius can be found by considering that the bubble vol-

ume is conserved after deformation: 4
3πR3

0 = 2πr2
cκ

−1. Hence:

rc =

√
2
3

R
3/2
0

κ−1/2
. (1.19)

These scalings were measured to hold approximately in [18] but here

we will show they are exact and excellently match experimental data. We

measured the contact radius as a function of R0, by blowing N bubbles
of a certain radius R0. Since the bubbles are not spherical as they float at

an interface, we determine this radius by measuring the amount of space

they occupy in an upright tube of 1x1x20 cm, see Fig. 1.9(b). We then tilt
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Figure 1.8: Pressure balance for deformed bubble: the dimensionless overlap
ξ ≡ (R0 − z)/R0 can be expressed in terms of rc.

the tube by 90 degrees and measure rc by looking at the reflection of a

light source by the flattened facet. We used Dawn as surfactant, for which

wemeasured σ = 28±1mN.m−1. The results are plotted in Fig. 1.9(a): the

theoretical expression fits excellently to the data for κ−1 = 1.62±0.02mm,
which is within error bars to the result κ−1 = 1.64 ± 0.06 mm obtained
from measuring σ.

Finally we remark that if the density difference between the bubble
phase and the liquid phase is small (as can be the case for emulsions),

bubbles remain essentially undeformed. This can easily be seen from

Eq. (1.18): rc scales quadratically with bubble radius.

Bubble deformation by drainage

Liquid mainly drains from the foam via the Plateau borders. As a con-

sequence, due to the decreasing liquid fraction, the foam bubbles deform

and the Plateau border radius of curvature decreases, see Fig. 1.10, re-

15



1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

rc

Figure 1.9: (a) Measured dependence of the radius of the flattened contact nor-
malised by the capillary length versus the undeformed bubble radius normalised

by the capillary length. Solid lines are the theoretical results from Eqs. (1.18) and

(1.19) for κ = 1.62mm.

sulting in an increase in the capillary pressure. To good approximation,

the gas pressure inside the bubbles remains constant and hence the liq-

uid pressure in the Plateau border must decrease to satisfy the Laplace

equation. The resulting pressure gradient between the foam films and the

Plateau border causes liquid to be sucked from the thin films separating

the bubbles, where the liquid pressure is higher, to the Plateau border

where the pressure is lower, which leads to thinning.

1.2.4 Viscous drag forces

Bubbles that move with respect to other bubbles or a wall experience vis-

cous drag forces due to the resistance to flow of liquid in the thin films

separating the bubble from a neighbour or a wall. This resistance to

flow is linked to the concepts of surface elasticity or viscosity we have

introduced before. The interaction between a moving bubble and a wall

has been extensively studied, both theoretically [19–21] and experimen-

tally [18,20–22]. The frictional force Fbw turns out to scale as:

Fbw ∝ (Ca)n, (1.20)
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CHAPTER 1. INTRODUCTION

Figure 1.10: Due to drainage of the fluid the Plateau border radius of curvature
decreases. This leads to a decrease in the liquid pressure and as a result, liquid is

sucked from the films, leading to thinning.

with Ca the capillary number, describing the ratio of viscous and surface
tension contributions to the force, given by (Ca) = ηv/σ, with, η the vis-
cosity, v the relative bubble speed and σ the surface tension. The power
law index n depends on the mobility of the surfactants that stabilize the
foam films: for mobile bubble surfaces, i.e for bubble surfaces that have

very low EG, n = 2
3 , whereas for immobile surfaces (where EG is high)

n = 1
2 [20]. The model can be refined further by including the liquid

fraction of the foam in terms of the relative size of the deformed film sep-

arating the bubble and the wall: rc/rPB , where PB denotes Plateau border.

For all practical purposes though, the viscous drag can be assumed to scale

as in Eq. (1.20) with n somewhere between 1
2 and

2
3 .

The viscous friction between bubbles sliding past each other is much

less studied, and is often taken to scale linearly with the velocity differ-
ence between bubbles [10, 23]. A theoretical study of the viscous drag

in dry monodisperse foams under shear yields a viscous drag force that

scales with Ca2/3 [24], hinting that the mechanism of viscous dissipation

between bubbles that slide past one other is the same as for a bubble slip-

ping past a wall. A very recent theoretical analysis of layers of bubbles in

an ordered bcc structure [25], reveals that for immobile foams the viscous
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

drag force between bubbles scales as:

Fbb ∝ (Ca)0.5. (1.21)

Wewill come back to the scaling of the viscous dissipation inmuch greater

detail in Chapter 2.

1.2.5 Capillary forces on floating bubbles

Bubbles floating at an air/water interface will in general experience lateral

forces due to the fact that neighbouring bubbles deform the water surface.

The origin and functional form of these forces will be discussed in the next

section. The derivation is most easily carried out for solid particles, but is

equally valid for foam bubbles and emulsion droplets. The deformation

of an interface ζ(x, y) in the vicinity of a floating particle is due to the
requirement that the surface tension balances with gravity while simul-

taneously the interfacial tensions balance at the three-phase contact line.

This requires the liquid phase to meet the particle under a certain angle,

which results in a deformation of the surface.

Flotation forces

Two types of lateral capillary forces exist, of which we present an overview

in Fig. 1.11: a capillary flotation force, which is caused by the deformation

of the liquid interface due to the weight (or buoyancy) of a floating body

and a capillary immersion force, which occurs if particles are partially

immersed in a liquid layer and which is due to wetting of the particle.

Both forces are attractive if the contact angles at the particles are of the

same sign, and repulsive if they are of different sign.
Since our particles float at the surface of a deep basin of soapy solution,

for our system the only relevant capillary force is the flotation force. To

calculate this force we follow [3]. In this book the authors provide an ex-

cellent summary of work performed by Kralchevsky and co-workers that

expands and refines the approach first taken by Nicholson [26], which is

called the linear superposition approximation (LSA).
Consider a particle floating at the interface between two immiscible

fluids. The origin is fixed at the particle position. The force due to gravity

(which consists of the particle weight as well as buoyant forces) is bal-

anced by the vertical component of the surface tension integrated over the
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Figure 1.11: Flotation and immersion forces compared. Depending on the con-
tact angle, the forces can either be attractive or repulsive. Foam bubbles will

always attract, as in (a). Figure taken from [3].

three-phase contact (tpc) line, as is shown in Fig. 1.12:

Fg(1) = 2πσr1 sinψ1, (1.22)

where r1 i the radius of the tpc line. Nowwe bring in particle 2 from infin-

ity (ζ = 0) to a distance L, where it is located at ζ(L) below the horizontal
plane due to the meniscus created by particle 1. The work carried out by

the gravitational force to bring particle 2 from z = 0 down to z = −ζ(L)
is:

ΔWg = −Fg(2)ζ(L) = −2πσr2 sinψ2ζ(L). (1.23)

Introducing the capillary charge Q ≡ r sinψ this can also be written
as:

ΔWg = −2πσQ2ζ(L). (1.24)

Thus, before we can obtain the force on the particle from W we first

have to find an expression for the meniscus deformation around particle

1. This deformation is given by Eq. (1.51) in appendix 1.A:

∇II ·
(

∇IIζ√
1+ | ∇IIζ |2

)
= [P2(ζ) − P1(ζ)]/σ, (1.25)

19



1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.12: The force balance for a heavy spherical particle: the force due to
gravity acting on the particle is balanced by the vertical component of the surface

tension integrated over the three-phase contact line.

with

∇II ≡ ex
∂

∂x
+ ey

∂

∂y
. (1.26)

If the buoyant and gravity forces are considerably smaller than the inter-

facial tension force, that is, if the Bond number ρgR2/σ < 1, the surface
deformations around the particle are small [27]. In this case | ∇IIζ |2
becomes negligible and equation 1.51 reduces to:

∇2
IIζ = [P2(ζ) − P1(ζ)]/σ. (1.27)

Now the pressures at both sides of the interface ζ can be expressed in the
following form [27]:

P1(ζ) = P
(0)
1 − ρ1gζ, P2(ζ) = P

(0)
2 − ρ2gζ. (1.28)

Here ρ1 and ρ2 are the densities of the respective fluid phases, and P
(0)
1,2

are the pressures of the respective fluid phases at ζ∞ = 0. Inserting 1.28
in 1.27 we end up with:

∇2
IIζ = κ2ζ, κ2 =

Δρg

σ
, Δρ = ρ1 − ρ2, (1.29)

where qκ is the inverse capillary length encountered before, κ =
√

Δρg
σ .
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If this equation is written in cylindrical coordinates it reduces to the

modified Bessel equation, whose solution is for small meniscus slope [28]:

ζ(r) = AK0(κr) (1.30)

withK0 a modified Bessel function of zeroth order. The constantA can be
determined [29]: A = r1sinψ1 = Q1 with ψ the three phase contact angle.
Inserting Eq. (1.30) in Eq. (1.24) we end up with

ΔWg = −2πσQ1Q2K0(κL). (1.31)

Now, we know that

F = −dΔWg

dL
;

dK0

dx
= −K1(x), (1.32)

so the capillary flotation force obeys:

F = −2πσQ1Q2κK1(κL). (1.33)

It is intrinsic to the approximation that the LSA loses its validity for

small inter-particle distances. It has been claimed in [30] that the LSA

considerably underestimates the capillary attraction. However, recent nu-

merical calculations [28] have shown that for small slope angles, the linear

superposition approximation remains valid within 2 % up to particle con-

tact. The authors furthermore show that for many particle systems, the

forces are pair-additive.

Dependence of flotation force on particle size

The linearisation of Eq. (1.51) is only allowed if R2
0κ

2 � 1. This condition
is found by equating Fg with the surface tension force, as described above.

For an air/water interface κ−1 = 2.7 mm. Furthermore it is shown in
section 8.1.2 of [3] that: Q ∝ R3

0, with R0 the droplet radius. Therefore

the R0 dependence for the flotation force is:

F ∝ (R6
0/σ)K1(κL) (1.34)

This means that for bubbles close to each other a decrease of the surface

tension, for instance by adding surfactant, increases the force. On the

other hand the long range force, which is hidden in the Bessel function,

then decreases. It also implies the flotation force becomes smaller than kT
and thus smaller than the Brownian force for R0 < 5-10 μm.
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Figure 1.13: ( (a) T1 process in a 2D foam: the film between bubbles 2 and 4
shrinks to 0, after which the unstable fourfold vertex is resolved by creating a

new film between bubble 1 and 3. (b) T2 process in a 2D foam: a small bubble

located at the vertex of three larger films disappears due to coarsening.

1.3 Macroscopics: structure, rearrangements and rhe-
ology

This section deals with the macroscopic behaviour of a foam under exter-

nally imposed stresses or strains. We will explore connections between the

micro- and mesoscopic concepts introduced before and the macroscopic

behaviour.

1.3.1 Foam structure

If one blows bubbles of one size on the surface of a soapy solution, the

bubbles will, due to the flotation forces discussed above, attract and order

in a hexagonal packing [31]. A foam consisting of same-sized bubbles

is called a monodisperse foam and will order for bubble size variation

(polydispersity) up to 10%. For larger polydispersity, a disordered foam

results.

In the beginning of Section 1.2 we briefly discussed the volume frac-

tion φ. For a two-dimensional hexagonal packing of discs, the jamming or
rigidity loss point is at φ = 0.909 [32]. A disordered disc packing, however,
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jams at φ = 0.842 [33]. Although in real foams bubbles mutually attract
and are three-dimensional objects, we include these numbers here to high-

light the structural differences between ordered and disordered foams.
A three-dimensional disordered foam unjams at φ = 0.64, but a three-

dimensional monodisperse foam will again form crystalline lattices at

much higher volume fractions, depending on the lattice structure, which

can be either FCC or BCC [34].

1.3.2 Structural rearrangements and visco-elastic behaviour

The response of a bubble to deformations and the viscous dissipation be-

tween two bubbles during flow was discussed in section 1.2. How these

forces at the bubble scale translate to the bulk scale is largely unknown

and constitute the focus of this thesis, but as a result of the interplay of

these nonlinear interactions and the disordered flow of the foam, the bulk

response of a foam is highly nontrivial. For small applied strains, bub-

bles want to restore their equilibrium surface area, and foams respond

elastically, i.e.like a solid [1]. If the strain is increased the foam deforms

plastically: it relaxes the stresses through bubble rearrangements [1, 32].

For large and continuously applied strains, the foam flows irreversibly

with bubbles rearranging continuously [35, 36]. The flow of foams is of-

ten measured in oscillatory rheological measurements [7,37,38] and fit to

certain flow models, which we will describe in the following section.

For a dry foam the bubble rearrangements through which a foam flows

are well defined, and two elementary topological processes have been

identified that drive the structural evolution of the foam: the T1 and T2

processes, see Figs. 1.13(a)+(b). A T1 process denotes the neighbour swap-

ping of bubbles and is most easily explained for a two dimensional foam,

see Fig. 1.13(a): the facet between bubbles 2 and 4 shrinks to zero, result-

ing in a fourfold vertex. In such a vertex the surface tensions cannot be

stably oriented; this instability is resolved with the creation of a new facet

between bubble 1 and 3. The T2 process corresponds to the disappearance

of a small bubble located at a vertex due to coarsening, see Fig. 1.13(b),

and is hence not connected to stress induced evolution of the foam. For

wet foams, topological rearrangements seem less well defined, although

attempts have been made to treat wet foams within this picture of topo-

logical rearrangements by simply considering a wet foam as a dry foam,

the vertices of which are decorated with circular arcs [32, 39]. It remains
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an open question whether considering the flow of foams entirely through

T1 processes is a valid tool for realistic, experimental foams.

Elastic, viscous and visco-elastic response

For an elastic medium, the shear stress τ and the shear strain γ are related
through:

τ = Gγ, (1.35)

with G the shear modulus. For a fluid that is sheared between two plates
with a strain rate γ̇ the relation between stress and strain reads:

τ = ηγ̇, (1.36)

with η the viscosity.

As was discussed before, foams exhibit both solid and liquid proper-

ties and are hence said to be visco-elastic materials. The simplest way

to describe this visco-elastic behaviour in terms of a relation between the

strains and the stresses is by simply combining both expressions for the

stresses. The two simplest procedures to do so are due to Kelvin and

Maxwell and are obtained by modeling the elastic response by a spring

with stiffness G and the viscous response by a dashpot, characterized by
η. In the Maxwell model the spring and the dashpot are placed in series
and since the total strain is the sum of the strains on the dashpot and

spring, we can write:

γ = γ1 + γ2 =
τ

G
+

τ

η
· t. (1.37)

The Maxwell model captures the behaviour of a fluid under a step stress,

with an instaneous elastic response plus a permanent creep flow.

The Kelvin model models a different kind of response and can thus be
applied to different systems. In this model, the spring and the dashpot are
placed in parallel and this time the stresses over each element are added

up, resulting in:

τ = τ1 + τ2 = Gγ + ηγ̇. (1.38)

More complex models involve many springs and dash-pots, can deal with

both step stresses and step strains and are used to model more realistic

systems [40–43].
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Rheometry and complex shear modulus

If one is interested in the rheological response of a viscoelastic medium

over a wide range of time scales, sweeping a periodically varying strain

over many decades in frequency yields the desired information, as op-

posed to imposing a step strain or step stress as in the models discussed

above. Imposing a periodically varying strain:

γ = γ0 sinωt (1.39)

yields a stress:

τ = τ0 sin(ωt + δ). (1.40)

The phase shift δ can be understood by considering the response of purely
elastic material, for which δ = 0 , and that of a viscous fluid for which:

τ = ηγ̇ = ηγ0ω cos ωt = τ0 sin(ωt +
π

2
), (1.41)

hence δ = π
2 . For a visco-elastic material, the phase-shift will be some-

where between 0 and π
2 and the stress can be written as:

τ = τ0 sin(ωt + δ) = (τ0 cos δ) sin ωt + (τ0 sin δ) cos ωt. (1.42)

This shows that there are two components to the stress, one in phase with

the deformation and one with a phase difference of 90◦. One then defines
the storage and the lossmodulus G′ and G′′ as:

G′ = τ0
γ0

cos δ ≡ G0 cos δ, (1.43)

G′′ = G0 sin δ (1.44)

and write the stress as:

τ = γ0(G′ sinωt + G′′ cos ωt). (1.45)

The storage modulus G′ is the amplitude of the in-phase component of
the response and is a measure of the energy that is reversibly stored in the

material, hence the elastic energy, while the loss modulus G” is the out-
of-phase component and denotes the viscous dissipation per oscillation.

Writing the strain as γ = γ0 exp(iωt), the complex shearmodulus becomes:

G∗ = G′ + iG′′. (1.46)
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Constitutive equations

Rheometrical data are often fit to constitutive equations. For Newtonian

fluids, the constitutive equation is simply Eq. (1.36). However, to account

for the solid-like behaviour, foam rheology is often fit to the Bingham

model [44], which accounts for the experimentally observed fact that be-

low a certain stress, called the yield stress, the foam does not flow but

responds elastically. The Bingham model reads:

τ = τY + μγ̇, (1.47)

with τY the yield stress and μ the consistency. The model has a linear
dependence of the stress with the strain rate, like a Newtonian fluid.

The Herschel-Bulkley model [45]is similar to the Bingham model, but

allows for a non-linear scaling of the viscosity:

τ = τY + μγ̇n. (1.48)

If n > 1 the material exhibits shear-thickening behaviour, that is, it becomes
more viscous the faster its driven. On the other hand, if n < 1, as is the
case for foams [20,46,47], the material is shear-thinning: it flows more eas-
ily for higher driving rates. While the inclusion of a yield stress term in

a constitutive equation describing foam rheology appears to be a natural

way to describe the elastic response of the system, a microscopic justifi-

cation for linear or non-linear scaling of the foam viscosity is at present

lacking.

1.4 Experiments and numerics on foams and emul-
sions

1.4.1 Experiments

The first experiments on foam and emulsion rheology stem from the eight-

ies, and since then physicists have mainly studied the rheology of three-

dimensional foams and emulsions in Taylor-Couette geometries [32, 35,

38, 46, 48–51]. While these measurements have shed light on the highly

non-trivial bulk properties of foams and emulsions, relationships between

bulk rheology and behaviour at the bubble scale remained elusive. Re-

cent results, obtained using novel imaging techniques such as DWS [52]
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x-ray tomography [53] and confocal microscopy [15, 16] start to elucidate

this highly non-trivial connection between local and bulk scale. However,

many questions remain unanswered, and we hope these can be addressed

by performing experiments on two-dimensional foams. An overview of

two-dimensional foam flow experiments is given in chapter 2.

1.4.2 Numerics

The numerical modeling of foam statics and rheology is carried out using

a wide variety of techniques, all of which capture part of the rheological

behaviour. One of the first simulations was carried out with the PLAT

code [33], in which a foam is constructed by creating a Voronoi tessella-

tion and relaxing it to equilibrium, all the while satisfying the Laplace

pressure equation for each bubble. The wetness is varied by repeating this

procedure while replacing the vertices by circular arcs, and finally this

foam of variable wetness is sheared. The strain is increased in small incre-

ments and the foam is allowed to relax to static equilibrium between each

increment. Such a foam is said to be in the quasistatic limit.
The structure of a dry foam can be generated by the surface minimi-

sation routine Surface Evolver, developed by Ken Brakke [54], which is

intrinsically quasistatic and which can be adapted to simulate shear flow

of dry foams. The vertex model [55] is also limited to dry foams, since

it models the Plateau-borders as straight lines, but it includes a linear

viscous dissipation in the foam films. The viscous froth model [56], de-

veloped recently, can be implemented either in the Surface Evolver frame-

work or in the PLAT code to explicitly describe the presence of confining

glass plates through a viscous drag force acting on the entire Plateau bor-

der.

The soft disc or bubble model [23, 57, 58] focusses on wet foam be-

haviour, as it models foam bubbles as spheres that repel each other har-

monically and experience a viscous drag proportional to their velocity dif-

ference when sliding past each other. It predicts a Bingham behaviour for

the rheology and since φ can be varied, it uncovers non-trivial scaling of
the bulk and shear moduli B and G with φ.

Finally, the cellular Potts model [59], in which bubbles are represented

by patches of numbers that obey certain rules involving the numerical

values of neighbouring patches, is well suited to simulate coarsening in

dry foams [60] and has in a few instances been modified to accomodate
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the simulation of shear flow [61].

These simulation techniques can each be used to model only parts of

the foam behaviour encountered in experiment. For instance, the distri-

bution of stress drops in bubble raft experiments has been found to be in

agreement with predictions made in the bubble model [8]. Foams simu-

lated as a collection of vertices — i.e a dry foam — in a Couette geometry

display shearbanding, both in quasistatic [62] simulations and in viscous

froth [11] simulations, similar to the flow behaviour observed in experi-

mental dry foams. In the viscous froth simulation, however, the exerted

rate of strain determines the location of the shearband (and hence of the

T1 events): for infinitely slow shear the T1’s are located at the cylinder

that is not rotated whereas for higher strain rates the T1’s are located close

to the rotating cylinder.

1.4.3 Differences between foams and emulsions

While emulsions and foams share many properties, these systems exhibit

a few differences, which we will now discuss At the smallest scale, the
interfacial rheology of the adsorbed monolayers of soap molecules is dif-

ferent because the fluid inside emulsions droplets can flow, hence dissipat-

ing energy [3], whereas in foams the air inside bubbles does not dissipate

energy.

Furthermore, experimentally three-dimensional emulsions can be ma-

de in such a way that they transmit light by index matching the bulk and

the dispersed liquid [15, 16]. As a result, the three-dimensional structure

can be probed directly with confocal microscopy. In addition, emulsion

droplets can also be density matched with the bulk fluid to eliminate of

the effects of gravity.
The main difference between emulsions and foams is due to the size of

the constituent particles: as a result of the way emulsions are produced,

and to meet stability requirements, emulsion droplets are often in the mi-

crometer size range, resulting in Brownian motion. At that scale emulsion

systems are most directly related to colloidal systems: for instance, they

undergo a glass transition at φ = 0.58 [46]
A phenomenon which occurs in emulsions is flocculation: in absence

of a confining pressure, emulsion droplets still deform and form extended

connected conglomerates called flocs, due to long-range attractive forces,

caused by depletion attractions [63]. Whether such a depletion attraction
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might exist in foams stabilised with surfactant solutions well above the

CMC is an open question. Finally a few remarks about differing jargon
between emulsions and foams: Coarsening is often calledOstwald ripening
in emulsions. Drainage is referred to as creaming.
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Appendix 1.A Laplace equation of capillarity

The shape of a liquid surface is governed by the Laplace equation of cap-

illarity, written here in Cartesian coordinates:

(1 + ζ2
y )ζxx − 2ζxyζxζy + (1 + ζ2

x)ζyy

(1 + ζ2
x + ζ2

y )3/2
= [P2(ζ) − P1(ζ)]/σ, (1.49)

where ζi denotes derivatives with respect to the i-th coordinate, Pj is the

pressure of phase j and σ is the interfacial tension. A very elegant deriva-
tion of (1.49) is given in chapter 2 of [3]. Writing the left hand side of

(1.49) more elegantly we arrive at:

2Hσ = P2(ζ) − P1(ζ) (1.50)

with H given by:

H ≡ ∇II ·
(

∇IIζ√
1+ | ∇IIζ |2

)
, (1.51)

∇II ≡ ex
∂

∂x
+ ey

∂

∂y
. (1.52)

H is a basic quantity in differential geometry called the mean curvature.
This quantity can also be expressed through the principle radii of curva-

ture of the surface R1 and R2:

H = −1
2

(
1

R1
+

1
R2

)
. (1.53)

Inserting this in (1.50) we recover the familiar form of the Laplace equa-

tion:

σ

(
1

R1
+

1
R2

)
= P2(ζ) − P1(ζ). (1.54)
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