
Transparent restructuring of pointer-linked data structures
Spek, H.L.A. van der

Citation
Spek, H. L. A. van der. (2010, December 7). Transparent restructuring of
pointer-linked data structures. ASCI dissertation series. Uitgeverij BOXPress,
Oisterwijk. Retrieved from https://hdl.handle.net/1887/16210

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16210

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16210

Transparent Restructuring of
Pointer-Linked Data Structures

Harmen Laurens Anne van der Spek

Transparent Restructuring of
Pointer-Linked Data Structures

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 7 december 2010

klokke 13.45

door

Harmen Laurens Anne van der Spek

geboren te Zevenhuizen in 1982

Promotiecommissie:

Promotor: Prof. dr. H.A.G. Wijshoff

Copromotor: Dr. E.M. Bakker

Overige leden: Prof. dr. W. Jalby (Université de Versailles)

Prof. dr. B.H.H. Juurlink (Technische Universität Berlin)

Prof. dr. J.N. Kok

Prof. dr. F.J. Peters

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 220.

Transparent Restructuring of Pointer-Linked Data Structures

Harmen Laurens Anne van der Spek

PhD Thesis, Universiteit Leiden

ISBN: 978-90-8891-216-0

Printed by: Proefschriftmaken.nl

Published by: Uitgeverij BOXPress, Oisterwijk

To my wife Erika

Contents

1 Introduction to the Introduction 11
1.1 Contemporary Processors . 11

1.1.1 Pipelining . 12
1.1.2 Multi-Core Processors . 13
1.1.3 The Memory Hierarchy . 14

1.2 Software for Parallel Systems . 15
1.2.1 Compilers . 16
1.2.2 Languages and (Run-Time) Libraries for Parallel Programming 18

1.3 Summary . 20

2 Introduction 23
2.1 The Problems of Irregularity . 24
2.2 Previous Work . 25
2.3 Our Approach . 29
2.4 Outline . 31
2.5 List of Publications . 32

3 Characterizing the Impact of Irregularity 35
3.1 Overview . 35
3.2 Characterizing Irregularity . 37

3.2.1 The Impact of Irregularity on Pointer-Structured Code 37
3.2.2 The Predictability of Memory Reference Streams 37
3.2.3 Memory Bandwidth in Irregular Applications 38
3.2.4 Controlling the Impact of Irregularity 38
3.2.5 Irregularity of Sparse Code . 39
3.2.6 Optimizing Compilers . 39
3.2.7 Irregularity in Multi-Core Environments 40

7

8 Contents

3.3 The SPARK00 Benchmarks . 40
3.3.1 Description of the Benchmarks 41
3.3.2 The Input Data . 44

3.4 Experimental Setup . 45
3.4.1 Hardware and Software Configuration 45
3.4.2 Data Layout . 46
3.4.3 Selection of Core Combinations for Multi-Core Experiments . . 47

3.5 Experiments on a Single Core . 49
3.5.1 The Impact of Irregularity on Pointer-Structured Code 49
3.5.2 The Predictability of Memory Reference Streams 53
3.5.3 Memory Bandwidth in Irregular Applications 57
3.5.4 Controlling the Impact of Irregularity 61
3.5.5 Irregularity of Sparse Code . 61
3.5.6 Optimizing Compilers . 66

3.6 Experiments on Multiple Cores . 66
3.6.1 Irregularity on Multi-Core Systems 68
3.6.2 Memory Bandwidth on Multi-Core Systems 68

3.7 Summary . 74

4 Concepts of Restructuring Pointer-Linked Data Structures 77
4.1 Annihilation and Sublimation . 78
4.2 Transformation Steps . 80

4.2.1 Normalization . 80
4.2.2 Identification of Linked List Traversals 82
4.2.3 Linearization . 84
4.2.4 Indirection Elimination . 84
4.2.5 Structure Splitting . 85
4.2.6 Access Pattern Restructuring 85
4.2.7 Iteration Space Expansion . 87
4.2.8 Loop Extraction . 87
4.2.9 Run-time Support for Sublimation 88

4.3 Example . 90
4.4 Experiments . 94

4.4.1 Sparse Matrix Times Dense Matrix Multiplication 94
4.4.2 Preconditioned Conjugate Gradient 99
4.4.3 Discussion . 101

4.5 Summary . 106

5 LLVM Preliminaries 107
5.1 The LLVM Compiler Infrastructure . 108
5.2 Data Structure Analysis . 110
5.3 Automatic Pool Allocation . 113
5.4 Pool-Assisted Structure Splitting . 114

6 A Compilation Framework for Automatic Restructuring 117

Contents 9

6.1 Outline . 117
6.2 Compile-time Analysis and Transformation 119

6.2.1 Structure Splitting . 119
6.2.2 Pool Access Analysis . 120
6.2.3 Stack Management . 121
6.2.4 In-Pool Addressing Expression Rewriting 123
6.2.5 Converting Between Pointers and Object Identifiers 126
6.2.6 Restructuring Instrumentation 127

6.3 Run-time Support . 127
6.3.1 Application Programming Interface 128
6.3.2 Tracing and Permutation Vector Generation 128
6.3.3 Pool Reordering . 128
6.3.4 Stack Rewriting . 131

6.4 Experiments . 131
6.4.1 Pool Reordering . 132
6.4.2 Tracing- and Restructuring Overhead 134
6.4.3 Run-time Stack Overhead . 135
6.4.4 Address Calculations . 139

6.5 Summary . 141

7 Enabling Array Optimizations on Code
Using Pointer-Linked Data 143
7.1 Control Flow Optimization of Pointer-Based Code 144

7.1.1 Data Dependencies in Pointer-Based Code 144
7.1.2 Data Dependence Analysis for Loop Conditions 145
7.1.3 Loop Rewriting . 148
7.1.4 Function Dispatch Mechanism 149
7.1.5 Converting Pointers to an Array-Based Representation 152
7.1.6 Controlling Memory Access Patterns 152

7.2 Experiments . 154
7.2.1 Overhead . 155
7.2.2 Loop Optimization of Data-Intensive Code 159

7.3 Summary . 160

8 Data Instance Specific Co-Optimization
of Code and Data Structures 163
8.1 Aggressive Two-Phase Compilation . 164
8.2 Sublimation . 165

8.2.1 Data Access Restructuring . 166
8.2.2 Identifying Injective Functions in Code 167
8.2.3 Eliminating Indirect Addressing in the Loop Body 169
8.2.4 Expanding the Iteration Space 169

8.3 Application of Sublimation to Pointer-based Matrix Kernels 170
8.3.1 Sparse Matrix Vector Multiplication 171
8.3.2 Jacobi Iteration . 173

10 Contents

8.3.3 Direct Solver . 173
8.4 Experiments . 173

8.4.1 Results on Sparse Matrix Kernels 175
8.4.2 Overhead . 175

8.5 Summary . 178
8.6 Example Data Instance Specific Code 179

9 Mapping Pointer-linked Data Structures to an FPGA:
A Case Study 181
9.1 Compiler Support for Indirection-free Code Generation 182

9.1.1 Transformation to Pointer Chase-free Code 185
9.1.2 Reshaping Memory Access . 187

9.2 Code Generation and Mapping to an FPGA 188
9.2.1 Iteration Space Restructuring 190
9.2.2 Mapping the resulting code to an FPGA 190

9.3 Related Work . 193
9.4 Summary . 194

10 Conclusions 195

CHAPTER 1

Introduction to the Introduction

The development of digital computers started in the previous century. At first, such
systems were programmed by hand, at a very low level. The need for abstraction
was soon recognized, and programming languages and tools to simplify the program-
ming process were developed with success. The concepts developed at that time are
still heavily used, although the complexity of both hardware and software has in-
creased dramatically. In this chapter, an overview of the current state of the art
technologies concerned with high performance computing is presented. We will ad-
dress contemporary processors and the memory hierarchy with its inherent problems.
The software-based technologies to make efficient use of these computers can be di-
vided into three groups: compilers, programming languages and (run-time) libraries.
Each of these topics is discussed and related to the latest developments in processor
technology: the multi-processor on a chip.

1.1 Contemporary Processors

Parallel computer systems are by no means a new phenomenon. Until recently, how-
ever, these systems were not widely deployed and used. This changed in the last
decade, when merely pushing single-threaded performance to its limits basically be-
came a dead end. Gordon Moore’s famous law, that the number of transistors on
an integrated circuit doubles every two years (his first estimate was every year), still
holds. This abundance of transistors is put to use in multi-core processors, combined
with large caches. Other developments include the heterogeneous architecture, such
as the IBM Cell and the throughput-oriented platform such as NVIDIA’s and AMD’s
GPUs.

Simply put, transistors are used to replicate components. These new platforms

11

12 1. Introduction to the Introduction

provide immense computational power, but each of them requires the programmer
to write code that specifically targets these platforms. Essentially, the introduction
of these platforms did not raise a new question on how to program parallel systems.
This question was relevant before, but the widespread introduction of parallel systems
have made this same question more relevant than ever before.

The Intel 4004, the first fully integrated microprocessor, was launched by Intel
in 1971. It consisted of 2300 transistors. Over the last few decades, the transistor
densities have increased dramatically, nicely following Moore’s law. The Intel Core
i7-960 for example consists of 731 million transistors. The latest NVIDIA GPU Fermi
architecture sports 3 billion transistors [95].

For decades, the availability of more and more transistors led to the integration
of many components onto the chip. Processors became pipelined and caches were
introduced to mitigate the effects of the ever growing gap between processor speed,
and memory bandwidth and latency. Pipelining in turn led to the introduction of
branch predictors, to prevent pipeline stalls. Patt discusses these and more driving
factors behind the progression in the field of microprocessors [98].

In this section, we will briefly consider some of the most important techniques and
concepts that are found in today’s high-end processors. All these different components
make the design and optimization of high-performance software a complicated task
compared to the time in which a single instruction was fetched, executed and retired
in one cycle. As the most prevalent architecture today is the Intel x86 architecture, we
will use mainly this architecture to illustrate the developments in processor technology
in the last two decades.

1.1.1 Pipelining

Pipelining is a technique that segments a large operation into multiple sub-operations.
Naturally, each sub-operation is smaller than the entire large operation, and thus the
cycle time can be reduced. For example, the MIPS pipeline used as an illustration
by Hennessy and Patterson [53] consists of five stages: instruction fetch, instruction
decode, execute, memory operation and write back. As soon as the first instruction
has been fetched, the next instruction can be fetched in the next cycle, while the
first instruction proceeds with the decode stage. Once the pipeline is fully filled, a
theoretical increase in performance of a factor 5 can be achieved versus non-pipelined
execution. In practice, this is not the case. Due to data dependencies, branching
behavior and lack of resources the pipeline might need to be flushed.

The Intel Pentium processor features two integer pipelines with a depth of five. It
includes a prefetch stage, two decode stages, an execute stage and a write back stage.
These two pipelines can execute two instructions in parallel, if the two instructions
meet certain requirements [44]. The Pentium Pro, II and III take a different strategy.
These processors issue the instructions in-order, decode them into smaller micro-ops,
which are executed in an out-of-order core. The full pipeline consists of the following
stages: branch predictions (2 stages), instruction fetch (3 stages), instruction decode
(2 stages), register alias table, micro-op reorder buffer for reads, reservation stations
(in which the micro-ops wait until their operands are available), multiple execution

1.1. Contemporary Processors 13

ports to which various micro-ops can be issued, write back to the reorder buffer and
the register retirement file (for in order retirement) [44, 61]. The Pentium M is a
design that is based on the architecture of the Pentium Pro/II/III described above.

The newer Core 2 and Core i7 designs are also a member of this family. The
changes mostly aim at higher throughput by increasing the number of micro-ops that
can be executed per clock cycle. Of course, such increased throughput capabilities
require that other stages can keep up, so for example, the instruction decoding must
be able to keep up and provide enough micro-ops to execute.

An interesting member of the Intel x86 family is the Pentium 4, which has a dif-
ferent design from the other processors described above. The Pentium 4 featured very
deep pipelines, which allowed it to use very high clock rates. This led to excessive
power consumption, which is one of the reasons why this architecture has been aban-
doned by Intel. Its successors, the Core 2 and Core i7 are based, as stated earlier, on
the Pentium M line. One of the interesting things about the Pentium 4 was the use
of Hyper Threading, which allowed the pipeline to be kept full by issuing instructions
from two different instruction streams into a single execution pipeline. This feature
was not present in the later Core 2 architecture, but has been reintroduced in the
latest Core architectures (i3, i5 and i7).

Around the same time of the Pentium 4, AMD approached the problem from a
different angle. Instead of building their processors using very deep pipelines, they
used three parallel pipelines which are able to handle almost any operation. The
AMD processors do not decode the instruction in micro-ops, but rather use more
high-level macro-ops, that are decomposed as late as possible.

As can be seen, there is a great diversity in the implementation of pipelines. For
example, Hennessy and Patterson’s MIPS pipeline [53] is very different in structure
from the Intel and AMD pipelines. Avoiding stalls in such complicated pipelines is not
an easy task, and compilers preferably should take the actual pipeline implementation
into account when generating code, but this is unfeasible in many practical cases. For
example, a software vendor will not provide a different installation package for each
different processor on the market, especially not for consumer software.

1.1.2 Multi-Core Processors

The abundance of transistors must be put to use somehow. As shown above, much
of this is used to speedup single-threaded execution using pipelining and other struc-
tures that improve performance such as branch prediction. Most of the real estate,
though, is used for caches (Section 1.1.3). Eventually, adding more complexity to the
architectures turned out not to be the best way forward. Instead of pursuing more
instruction level parallelism, the engineers moved their focus to putting multiple cores
on a single chip. The IBM POWER4 was the first chip to include two cores on a single
chip. Intel started to produce dual-core processors in their Core line, the Core Duo
being the first with two cores on a chip. The Core 2 line also included 2 cores per chip.
The quad core version does not have 4 cores on a single chip, but it is a composite
of two dual core chips. Real quad cores and 6 core machines are found in the Intel

14 1. Introduction to the Introduction

Core i7 line. Each of these cores can execute 2 threads, resulting in a maximum of
12 concurrently running threads.

Their tight integration allows for low latency communication between the different
cores. This is a major difference between on chip multi-core systems and the tradi-
tional multi-processor systems, where each processor was put in its own socket. For
executing some independent processes, this is fine, as long as the joint memory band-
width is not exceeded. The main problem is that the processors themselves are very
fast and as long as each processor is not interfering with another processor, things are
fine. In practice, processes do need to fetch data from main memory, and eventually
some resources must be shared, such as L2 or L3 caches and the memory bus. So,
while there is great potential in the processing capabilities of multi-core systems, it
is an art to write applications that make full (or even reasonable) use of these vast
computing resources.

1.1.3 The Memory Hierarchy

In early processors, the speed of the processor and the attached main memory storage
were roughly similar, and as a consequence, accessing main memory did not result in
large penalties. However, with the advances in computer architecture and transistors
getting smaller and smaller, the increase in performance of CPUs has outperformed
the decrease in memory latency by several orders of magnitude (Hennessy and Pat-
terson show a difference of over a factor of 1000 in 2010 [53] with the year 1980 as
reference point).

To overcome the performance gap between processors and main memory, caches
were introduced, which are small, but fast, memories that are close to the processor.
Today, all high-performance general purpose CPUs have at least most of their cache
levels integrated on the chip. With the ever growing gap between the performance
of processors, and memory bandwidth and latency, single levels of cache have been
extended to multiple cache levels, and in many multi-core processor designs, the caches
closer to main memory are a shared resource. For example, the cores of the Intel Core 2
Duo and later processors share parts of the caches, and can even dynamically change
the fraction allocated to a particular core. Such autonomous behavior (this is not
programmer controlled) can affect the performance of programs in an unpredictable
way, and hence it is very challenging to optimize for such architectures. This also
led to research in the field of scheduling, were active co-scheduling of jobs is used to
increase throughput. Note that next to performance issues, there is also the question
of security and reliability. Moscibroda and Mutlu have shown that the performance
of programs can be negatively affected by other processes that are especially crafted
to interfere with co-scheduled processes [88].

Similar to the complicated pipelines and the advances in multi-core processors,
caches pose a significant challenge to programmers of high-performance applications.
On the one hand, the transparency of the memory subsystem is a good abstraction
which frees to programmer from the responsibility where to store data. On the other
hand, the lack of control also implies that one must accept the unpredictable nature
of caches, especially if co-scheduling of other jobs is taken into account. Software

1.2. Software for Parallel Systems 15

controlled caches (also known as scratchpads) have been implemented to give the
programmer explicit control over what should be in the cache and what not. The
Cell processor [56], developed by Sony, Toshiba and IBM, consists of one PowerPC
core, connected to several (6 on the PlayStation 3, 8 on the blade systems) so called
Synergistic Processing Elements (SPEs). Each of this SPEs has its own local scratch-
pad memory (256KiB) which needs to be explicitly controlled using DMA transfers.
The recently announced NVIDIA Fermi architecture [95] contains 16 streaming mul-
tiprocessors, each of which contains 32 cores. Each streaming multiprocessor has its
own local memory with a size of 64KiB. This can either be decomposed into 48KiB

of shared memory (NVIDIA’s terminology for scratchpad memory) and 16KiB of L1
cache, or 16KiB of shared memory and 48KiB of L1 cache [95]. Where its predeces-
sors did not have an L2 cache, the Fermi architecture features an L2 cache of 768KiB.
Over time, it can be said that the memory architecture of GPUs is growing towards
that of the general CPUs.

For general-purpose multi-chip CPUs, the common approach consists of providing
fully coherent caches. Intel’s Larrabee project [108] aims to put many simple x86 cores
on a single chip, that have coherent caches. By providing cache control instructions
cache lines can be marked for early eviction. They claim this allows a programmer
to use the L2 cache similar to a scratchpad. It is unclear whether this coherent cache
design will scale to larger many-core systems. All approaches such as directory-based
coherence, snooping and snarfing suffer from the fact that transportation of data
takes time, and consumes relatively large amounts of power. Also, the hardware costs
increase quadractically with respect to the number of cores.

1.2 Software for Parallel Systems

Programming languages, (run-time) libraries and compilers form the set of tools avail-
able to implement systems. Programming languages and libraries serve as layers of
abstraction to ease software development. The compiler is used to provide the trans-
lation from the higher level language to the lower level instruction set architecture
(ISA). In the beginning, the focus was on automatic translation from higher level lan-
guages into machine specific code. Later, this focus moved to optimizing the resulting
output code. While automatic parallelization has been a subject of research, the ad-
vent of mass-produced multi-core systems has made the subject of parallelization
more important than ever.

Eigenmann and Hoeflinger state that there are three ways to create a parallel
program [42]:

1. Writing a serial program and compiling it with a parallelizing com-
piler.

2. Composing a program from modules that have already been imple-
mented as parallel programs.

3. Writing a program that expresses parallel activities explicitly.

16 1. Introduction to the Introduction

In this section, we describe compilers, which mostly focus on Option 1, and pro-
gramming languages and (run-time) libraries, which mostly fit the description of
Option 2 and 3.

1.2.1 Compilers

The basic task of a compiler is to translate an input program written in a particular
language into an output program. The output program can be expressed in another
language or in the same language. In the latter case a compiler is often referred to as a
source-to-source compiler. The first compilers (among which the first Fortran compiler
implementation by Backus et al. [15]) greatly aided in easing development efforts of
programs. Instead of retargeting an application to a new platform, the compiler would
need to be extended to support the new platform, after which all existing codes can be
recompiled for the new target platform. Modern compilers usually use a strategy in
which different, source language dependent front-ends compile source programs into
a common intermediate language. This common intermediate language can in turn
be compiled to a binary program for a specific architecture.

Today, compilers do much more than the basic translation of a source program
into a target program. Code optimization has become one of the major components of
modern compilers. Examples of such optimizations are: inlining, loop optimizations,
common sub expression elimination and inserting prefetching instructions. Especially
loop optimizations are essential in obtaining high performance on many computa-
tionally intensive applications. Zima and Chapman provide an overview of such
well-known techniques [127]. Optimizations that have been applied usually follow
the developments in computer architecture. With the introduction of vector proces-
sors, vectorizing transformations were needed to exploit these new features. In the
new, multi-core era parallelization is the key word, and new ways to compile for these
architectures must be sought.

Simply put, there are two different factors in compiler design and implementa-
tion. The first factor is the driving force of advances in the field of compilation:
features of the target architecture. For example, the introduction of vector processors
needed compiler support, as otherwise, all existing code would have to be rewrit-
ten by hand to use these new vector instructions. Another example is automatic
parallelizing transformations, which have been developed to exploit parallel architec-
tures. The other major factor in compiler design and implementation is code analysis.
Without proper analysis techniques, correctness and safety of transformations cannot
be proved. Dependence analysis techniques are among the most important analyses
found in parallelizing compilers [16, 17, 30, 78, 83, 97, 101]. Modern compilers include
advanced reordering transformations based on dependence tests. CLooG is a code
generator that use the polyhedral model [18] for dependence analysis. GCC includes
its GRAPHITE framework [109], which uses CLooG/PPL.

As mentioned above, the memory hierarchy is a very important factor in perfor-
mance, and therefore many locality-improving transformations have been proposed.
Most of those transformations focus on repartitioning the iteration space in such a

1.2. Software for Parallel Systems 17

way that the semantics of the program is preserved, but locality is increased. Ex-
amples of loop transformations are [127]: loop interchange [13], fission, fusion [66],
unrolling, tiling [121] and skewing [122], to name a few. By improving locality, such
optimizations can have a great effect on performance. The loop transformations focus
on reordering computations. Obviously, we can also try to reorder data in memory
to improve performance [64,68,96].

For large applications it is even more difficult to reorder computations and data
layout. On the other hand, optimization can be much more effective, if the entire
program is taken into account. GCC [1] and the Intel C++ compiler both sup-
port whole-program analysis. The LLVM compiler infrastructure [74] provides link
time optimization, where code can be optimized after modules have been linked.
Whole-program analysis combined with escape-analysis (which determines whether
data might be used outside the current compilation unit) allows for determination of
type-safety properties for type-unsafe languages [72]. The whole-program view en-
ables far more aggressive optimization techniques that cannot be applied otherwise.

A special class of compilers is that of automatic parallelizing compilers. Tradi-
tionally, these have been designed and implemented for the Fortran language, such as
the Polaris compiler [28] and the Vienna Fortran compiler [21]. Many Fortran codes
show quite regular behavior with respect to their control flow structures. Especially
in dense computations, in which arrays are directly accessed by access functions that
only depend on the loop counters, the loops can in many cases be fully analyzed
and parallelized at compile-time. The earlier mentioned polyhedral model has been
very successful in determining dependencies in loops whose iteration space can be
described by polyhedra. One major reason that automatic parallelization of Fortran
code has been very successful, compared to other languages such as C and C++,
is the fact that dependence analysis is easier in Fortran. This is a result from the
common practice of defining the data regions used in the program at compile-time.
This especially holds for code written in standard Fortran 77, which does not support
dynamic memory allocation.

Fortunately for today’s programmers, but unfortunately from the compiler per-
spective, dynamic memory allocation is widely used in languages such as C, C++,
and Java. Dynamic memory allocation is also often used in conjunction with recursive
data structures, such as tree and graph structures. The use of pointers that point to
the heap (the memory area used to dynamically allocate data from) gives rise to the
pointer aliasing problem. If two pointers to memory point to the same location, they
are said to be aliased. In general, pointer analyses are not able to answer this ques-
tion for every pair of pointers at compile-time, and may give three different answers
to a query, if two pointers (or addressing expressions) are aliased: pointers do not
alias, pointers may alias or pointers must alias. If a program is multi-threaded, the
aliasing problem becomes even more complicated. In the next chapter, an overview
of previous work on pointer analysis is provided.

For pointer-based codes, many of the techniques that have just been mentioned are
either not sufficient, or cannot be applied. Typically, code using pointer-linked struc-
tures uses data dependent branch conditions in their loop header. Such loops cannot

18 1. Introduction to the Introduction

be described in the polyhedral model. In addition, techniques like array-privatization
cannot be applied, because languages like C do not guarantee anything about the
location of allocated data for data elements in pointer-linked data structures. As a
result, parallelization of such code to non-shared memory architectures is a nontrivial
task that may require a substantial amount of handwork to translate structured data
to different address spaces.

In order to guide the parallelization of code, OpenMP [8] provides compiler direc-
tives that are used to specify the parallel properties of code. These directives are then
used by the compiler to produce a parallel implementation. While OpenMP can be
used to express some parallel properties when using pointer-based codes (for example
to traverse disjoint paths in a tree concurrently), in general, it can be stated that
optimization and parallelization of applications using pointer-based structures have
been relatively unsuccessful. The more recent CUDA [94] and OpenCL [67] frame-
works can be regarded as a combination of compiler and library techniques to enable
the definition of parallel algorithms.

1.2.2 Languages and (Run-Time) Libraries for Parallel Pro-
gramming

It would be highly desirable if compilation of sequentially expressed code would result
in automatically parallelized code that runs efficiently on any platform. Alas, this is
not the case with today’s compilers. Thus, one must resort to other solutions, that fit
into the category of Option 2 and 3 stated by Eigenmann and Hoeflinger [42], which
expresses that a program is built from components implemented as parallel programs,
or that a program explicitly expresses parallelism. Two means can be distinguished
that support these two options: programming languages and (run-time) libraries. We
will briefly review a number of programming languages and libraries used to express
and support the implementation of parallel applications.

Programming Languages

One of the first languages which could be used to express parallelism is Lisp, designed
by McCarthy [84]. While it is unlikely that the primary intent was to support con-
current execution, functional languages have the nice property that pure functions do
not have side effects and thus can be executed in parallel. More recent examples of
functional languages are Haskell [57] and Erlang [6], a language created by Ericsson
that is used in their communication systems. Erlang has integrated support for dis-
tributed programming. In general, it can be said that while theoretically functional
languages could support parallel programming very well, in practice it has never really
gained momentum.

Due to the advent of multi-core processors, the need for parallel programming
languages grew, but the approaches mentioned above did not see wide acceptance.
The current trend seems to be that languages that have already been successful in the
sequential programming domain are extended with parallel constructs. The dominant
languages include Fortran, C, C++ and Java. Automatic parallelization has been

1.2. Software for Parallel Systems 19

most successful for Fortran, thanks to its stricter aliasing rules than for example C and
C++. Not only compiler-based approaches have been used for Fortran. In addition,
many extensions and dialects have been proposed for Fortran to support the explicit
expression of parallelism. Many of these dialects were machine-dependent.

Today, more generic approaches exist. High Performance Fortran (HPF) is an
extension to the regular Fortran language [3]. It provides directives, FORALL loops
and restrictions in the rules for storage. Using the directives, data distribution can
be defined. The FORALL construct explicitly tells that each of the iterations of a
loop is independent and thus can be executed in parallel. Another extension that is
available for Fortran is OpenMP [8], which is a directive based approach to specify
parallelism. OpenMP is also available for C and C++, and its principles are not
bound to a specific language. Co-array Fortran is an extension to Fortran 95 which
is used to explicitly specify data decomposition [5, 93].

Unified Parallel C (UPC) is an extension of the C language [32], targeting both
systems with a global address space and systems with disjoint address spaces. From
the programmer’s perspective, there is one global address space. It has a bit of an
HPF flavor, in the sense that keywords are used to specify whether data is thread-
local or shared. Cilk is also an extension to ANSI C introducing only three keywords:
cilk, spawn and sync. Cilk has the property that if these keywords are removed
from a Cilk program that the resulting C program is semantically equivalent to the
Cilk program, if run sequentially. This simplicity is a major strength of Cilk and such
simple designs will catalyze the adoption of parallel computing by the majority of
programmers. Intel acquired Cilk Arts, and offers Cilk++ support.

For Java, the Titanium language offers an extension to Java for parallel execu-
tion [124]. Similar to Unified Parallel C and co-array Fortran, it offers a global
memory space model on top of distributed memory architectures. Unordered loop it-
erations are supported (similar to FORALL loops in parallel Fortran dialects). More
recently, IBM, together with academic partners, have designed the language X10 [33].
It has a Java flavor and like Titanium, it is based on the partitioned global address
space principle. Its aim is to provide a scalable (on NUMA1 platforms) solution that
supports object oriented programming. Locality is expressed using places, such that
objects and computations can be co-located.

(Run-time) Libraries

At a higher level, parallel (run-time) libraries can provide the building blocks that
a programmer can use to build parallel applications. Libraries can either support
parallel execution themselves, or they facilitate the implementation of parallel algo-
rithms. A classical library that supports the implementation of parallel applications
is POSIX threads, commonly referred to as Pthreads. It provides an API that can
be used to create and manage threads. Pthreads supports mutexes, condition vari-
ables and synchronization. How an application is parallelized is entirely left to the
programmer. More recently, Apple released libdispatch which is a task-based system.
Tasks are put in a queue and scheduled for asynchronous execution. This frees the

1Non-uniform memory access

20 1. Introduction to the Introduction

programmer from worrying about thread creation. Like Pthreads, libdispatch pro-
vides an infrastructure for the explicit specification of parallelism. It does not provide
parallel algorithms for any specific problem.

On a lower level, MPI (Message Passing Interface) is used [45]. MPI is one of the
standard libraries used on today’s supercomputing platforms, providing low-latency
communication between nodes in cluster systems. Typically, MPI is used to pass data
between nodes that do not share their address space. MPI does support accessing
the address space of remote nodes through RDMA2 [4]. This is not provided through
memory mapped regions in the virtual memory system, but a programmer must
explicitly use MPI primitives to access remote memory. GASNet takes a slightly more
high-level view of parallel systems by providing an abstract parallel global address
space [29]. It is used to provide a global address space for parallel languages such as
UPC [32], Titanium [124] and co-array Fortran [5].

The approaches mentioned so far provide infrastructural support to enable the pro-
grammer to distribute computations. Another approach is to provide the programmer
with an interface to enable parallel programming at the algorithmic level. STAPL
(Standard Template Adaptive Parallel Library) uses this approach [31]. STAPL is
an extension of C++ Standard Template Library (STL) and it provides distributed
data structures and parallel algorithms. Thus, the programmer can directly express
an algorithm in terms of data structures and algorithms that STAPL provide, and the
STAPL run-time system will take care of distributing the different data structures and
algorithms while respecting the dependencies between different tasks. Intel’s Thread
Building Blocks (TBB) is also a template based library aiming to express parallelism
by specifying the logical parallel structure of a problem instead of explicitly writ-
ing multi-threaded software. TBB only supports shared-memory machines, whereas
STAPL also supports distributed architectures.

MapReduce is a programming model for handling very large data sets [39]. Origi-
nally, it was developed at Google, but implementations for various different program-
ming languages are available. As its name suggests, MapReduce splits computations
into two parts: map and reduce. The map function basically turns input data into
key value pairs. Eventually, the key value pairs produced by the map step are sorted
by key, and fed into the reduce function. The reduce step can perform any operation
on the values associated with a particular key. In order to gain from the MapRe-
duce paradigm, a problem must be expressed using this formalism. This framework
is especially applicable to embarrassingly parallel tasks.

1.3 Summary

Over the last few decades, the field of computing has made tremendous steps forward.
Intel’s 4004 processor consisted of 2300 transistors. Nowadays, 3 billion transistors are
used in for example the NVIDIA Fermi architecture. This wealth of transistors must
be put to use, and we have seen the various techniques used in processors to speed up
execution. Pipelining, caches and branch prediction are all ways to speedup execution.

2Remote direct memory access

1.3. Summary 21

While processor performance has increased greatly, this does not hold for the memory
system. The ever growing gap between memory performance (both bandwidth and
latency) and processor performance is considered one of the major hurdles to overcome
in the coming years. While task parallelism is not a new concept, the introduction of
multi-core processors is a turning point in the history of computing, as it forces the
wide-spread adoption of the parallel programming paradigm.

Interestingly, the idea of parallel programming has been around since the early
beginnings of research in computing and as we have seen in this chapter, many ap-
proaches have been proposed to tackle the difficulties in parallel programming. At
a very fine granularity, hardware solves the problem by resolving dependencies at
run-time, without noticeable delay. Compilers can make these hardware extensions
even more effective by selecting and ordering instructions in such a way that specific
processor capabilities are exploited most efficiently. At a higher level, automatic par-
allelization of code has been successful, but this is mostly on regular code in which
dependencies can be determined.

As automatic parallelization has seen limited success, other approaches have been
taken to increase available parallelism. Support for expressing parallelism has been
implemented in various programming languages. For existing, non-parallel languages,
support for parallelism has mainly been added by providing software libraries to
express parallelism.

One difficulty in writing parallel applications is the use of pointers and pointer-
linked data structures. In the next chapter, we will treat this subject more in-depth,
and outline the remainder of this thesis, in which we will focus on restructuring
pointer-linked data structures such that the data layout of such structures can be
altered to the actual usage pattern at run-time.

22 1. Introduction to the Introduction

CHAPTER 2

Introduction

The high performance delivered by contemporary processors is made possible by an
important property of the instruction streams they execute: regularity. High perform-
ing applications in general show regular memory access patterns. As a result, such
programs exhibit high locality, thereby enabling more efficient cache usage. Regularity
in the sequence of referenced memory locations is also crucial for efficient hardware-
based prefetching. Predictability in branching behavior is another important factor
leading to high performance. Often, regular loops execute a considerable number of
iterations and only take a different branch after the last iteration. This is a perfect
target for branch predictors and will result in pipelines that are fully filled most of the
time. The fact that an application is regular is also visible to the compiler and regular
applications are therefore relatively easy to analyze and optimize. Not very surpris-
ingly, the list of TOP500 Supercomputing Sites [2] is determined using a benchmark
that consists of a solver for dense linear systems, the LINPACK benchmark, which is
inherently regular.

The applications described above are without doubt important, but there are many
applications that do not show such regular behavior, due to a variety of reasons. For
example, the hardware prefetching mechanism breaks down, if the memory access
streams are not predictable. Irregularity can also be caused by dependency chains in
memory, where for example a pointer chain is chased when iterating over linked lists.
Some code may also show very bad branch prediction behavior.

In the previous chapter, the advances made in both hardware and software tech-
nology have been reviewed. On all fronts, at each level of granularity, attempts have
been made to optimize performance and enable the definition and execution of paral-
lel programs. For irregular problems though, the progress has been rather slow. No
real, widely applicable solution has been found to this important problem. In this

23

24 2. Introduction

chapter, we first describe the problems caused by irregularity in the context of Chap-
ter 1. Then, work done in the area of optimizing execution of irregular applications
is reviewed. Next, the general idea of the approach taken in this thesis is described,
followed by a summary of the implications of this approach. Last, an outline of the
remainder of this thesis is given.

2.1 The Problems of Irregularity

The importance of regularity for efficient execution has increased over time. In the
previous chapter, we saw that in the beginning of the 1970s, the number of transistors
was relatively small, no caches were used, execution was not pipelined and there was
no large performance gap between the processor and the main memory. Thus, the
impact of irregular memory access and constructs did not really affect performance.
However, with today’s complexities, such as deep pipelines, caching, branch predic-
tion, hardware-based prefetchers and multi-core processors, this no longer holds. Any
dependence or decision that cannot be properly determined or predicted by the pro-
cessor will introduce delays.

From a compiler’s point of view, many analyses and optimization passes fail for
applications that have an irregular nature. An import cause of this failure is the pres-
ence of pointers and pointer-linked structures. As mentioned in the previous chapter,
the aliasing problem plays a large role here. Parallelizing transformations can only
be successful if the semantics of the execution of the applications remains the same.
Pointers whose target is unknown at compile-time severely restrict the optimizations
that can be applied. Not only the location of data that is pointed to affects the
analysis, but also the contents of the data pointed to, as branch conditions might
depend on these data. The previous chapter mentioned the polyhedral model, which
is used in GCC’s GRAPHITE framework. Control flow statements with data depen-
dent conditions are a problem for most frameworks that are based on the polyhedral
model. Only recently, Benabderrahmane et al. [19] have shown extensions to this
model using exit predication. Still, irregular memory accesses are present and the
performance may suffer. In many cases the compiler needs to be very pessimistic and
it has to resort to very conservative estimates known to work in all situations.

Essentially, pointers impose the same restrictions on code analysis and optimiza-
tion as code using indirection arrays. The main difference between pointers and arrays
that are accessed using indirection arrays is that pointers are address space dependent,
while the entries in the indirection arrays are constrained to the array bounds. As a
result, automatically parallelizing computations using pointer-linked data structures
on non-shared address spaces is not easily done by a compiler.

In order to circumvent the inherent limitations of automatic parallelization and
data layout optimization, one can choose to either explicitly specify data structures
and parallelism. While being a labor-intensive and error prone task, this approach
is often taken. As described in the previous chapter, building blocks can also be
provided by software libraries. The other approach mentioned was to include support
for parallelism in a programming language. Such approaches imply specific choices,

2.2. Previous Work 25

which are not easily reverted, and thus might not be suitable if new technologies
become available.

The problem of irregularity impacts every aspect of developing and running appli-
cations. It is not easily solved, as different data input sets will show different behavior,
and will have different optimal solutions, both in terms of code and data layout. In
order to solve this, both code and data must be considered by a compiler. In the
next section, we will review work done in the area of data restructuring and pointer
analysis.

2.2 Previous Work

In Chapter 1, two factors in compiler design and implementation were identified: the
features of the target architecture and the available code analyses. At first, archi-
tectures were relatively straightforward and the main purpose of a compiler was to
liberate the programmer from rewriting applications from scratch for each different
architecture. In order to gain widespread acceptance, performance of the resulting
executable program had to be reasonable. Therefore, the compiler had to exploit
the architectural features, otherwise the performance would be inferior to hand-coded
assembly. As described in the previous chapter, techniques like pipelining, caching,
prefetching and branch prediction have made this process much more complex, but
compilers are expected to keep up with all these architectural features and peculiari-
ties.

A good example of a new architectural feature is the introduction of vector pro-
cessors, for example the Cray-1 in 1976. In order to support the use of vector instruc-
tions, the compiler had to be able to identify when some operation is applied to a
sequence of contiguous elements in memory. In addition, vectorization should not vi-
olate constraints implied by the program, so called data-dependencies. This requires
data dependence analysis to ensure a transformation is safe [16,17,30,78,83,97,101].
Vectorizing transformations have received substantial attention [11,12,42,97,127] and
most mainstream compilers, such as GCC [1] and the Intel C++ compiler [24] support
vectorization. If automatic compiler-based approaches fail, one often resorts to imple-
menting support for specific features in the programming language. Examples of this
are the various Fortran dialects mentioned in the previous chapter (see Section 1.2.2).

All optimizations require dependence analysis and therefore, code that is fully
analyzable at compile-time will show the best results. While optimal scheduling of
instructions is NP-complete [22], efficient code can be generated, if an application can
be fully analyzed. Unfortunately, many applications in the real world do not fit in
this category and include many code constructs that prevent proper analysis and thus
proper optimization. An important issue preventing analysis is irregular access. In
Fortran code, this is found when arrays are accessed using index arrays, whose data
is only known when the application actually runs. This naturally leads to the idea to
defer some of the decisions that need to be made to run-time.

The inspector/executor technique performs optimization by splitting the execution
of code into an inspector, which does run-time access pattern analysis, and an execu-

26 2. Introduction

tor, which executes the optimized code generated by the inspector. Mirchandaney et
al. called this a self-scheduled approach [87]. A few years later, Saltz, Mirchandaney
and Crowley introduced the terms inspector and executor [106], which transforms
the original code by first finding an appropriate schedule of so-called wave-fronts of
concurrently executable loop iterations. This schedule is then used to execute the ac-
tual computations. Ujaldon et al. applied the inspector/executor paradigm to sparse
matrix computations [112]. Another related approach is the hybrid analysis frame-
work by Rus et al. [104], which provides a unified framework for both compile-time
and run-time analysis. Properties that cannot be determined at compile-time will be
checked at run-time.

Lin and Padua show that some indirect accesses follow particular patterns and use
this information to discover parallelism [79]. They are able to analyze irregular single-
indexed access, which occurs if an array is accessed using the same index variable
throughout the loop, and simple indirect array access, which are accesses using an
indirection array, which itself is indexed by the inner loop counter (for example,
A[B[i]], where i is the inner loop counter).

Note that the optimizations mentioned above are necessary for multiple reasons,
viewed in the context of Chapter 1. Within the processor, for example, instruction
level parallelism can only be exploited if there are no dependencies between instruc-
tions and efficient use of the cache can be improved by fetching data in a particular
order. From a compiler perspective, the inspector/executor paradigm is useful, as
parallelism that cannot be identified at compile-time might be found at run-time. If
this is successful, it simplifies the development of software considerably, shifting the
burden of data segmentation from the programmer to the compiler.

The optimization of pointer-linked data structures is far more challenging than the
optimization of arrays using indirect access. Pointers make it much more difficult to
perform dependence analysis, as they are not constrained to specific memory regions,
whereas arrays are constrained to specific regions. This lead to the development of
pointer analysis, which dealt with the question whether two pointers will not, might
or must point to the same location in memory [14, 55, 110]. The two most well-
known pointer analyses are those of Andersen [14] and Steensgaard [110]. Pointer
analyses must in general be conservative, as providing information for each possible
execution path is infeasible. Algorithms must make a trade-off between performance
and precision.

Aliasing is not the only problem faced when using pointers. Pointers are typically
used to create recursive data structures. Such data structures can form different
shapes at run-time, such as trees, acyclic graphs or cyclic graphs. Shape-analysis is
concerned about determining the shape of data structures. Hummel et al. define how
access patterns of data structures can be described at any point in the program [58].
Ghiya and Hendren proposed a pointer analysis that conservatively tags a heap-
directed pointer as a tree, a DAG or a cyclic graph [47].

Shape information is interesting, as it provides information whether different
traversal paths are disjoint and might show parallelization opportunities. Again,
such analyses are essentially an extension of traditional dependence analysis. While
it is of course good to know about the shape of a data structure, its conservativeness

2.2. Previous Work 27

might be a limiting factor. Therefore, next to the actual shape it is also important
to recognize how data structures are actually traversed. This is recognized by Hwang
and Saltz [59], who perform traversal pattern aware analysis of pointer structures.
For example, a data structure might form a cyclic graph, while its traversal defines a
tree.

All these analysis techniques form the basis for code and data transformations.
As noted in Chapter 1, the need for such techniques has increased, due to the ever in-
creasing complexity of processors and the enormous gap between memory performance
and processor performance. Therefore, much attention has been given to reducing the
effects of memory latency, a problem arising often in pointer-based applications when
pointer chains are traversed. Good locality of data references is essential to reduce
memory latency. Among the techniques to improve data locality are the inspector/ex-
ecutor strategy, which have been mentioned above.

Another approach to reduce latency and thus improve throughput is software
prefetching, which is a technique that loads data from memory before it is actually
needed. For pointer-linked structures, various prefetching techniques have been sub-
ject of research. Luk and Mowry [81] propose three software prefetching methods
which can be applied to generic recursive data structures, namely greedy prefetch-
ing, in which pointers in a current node are prefetched, history-pointer prefetching,
in which a separate history pointer is kept which stores a pointer encountered in a
previous traversal, and data linearization prefetching, which reorders nodes in mem-
ory to obtain both better locality and predictability of the memory reference pattern.
The data linearization technique described by Luk and Mowry is a way to enable
the hardware prefetcher to be effective. Karlsson et al. [65] extend this work by
combining greedy prefetching with jump pointer prefetching. They also study some
applications and quantify some performance characteristics of these application, such
as time spent in pointer-chasing chains and cache miss ratios. Yang and Lebeck [123]
propose a hardware-assisted, active push-based prefetch mechanism. This enables
the memory hierarchy to actively dereference pointers at any level in the memory
hierarchy, and use this to actively prefetch data.

In the beginning of the 1990s, Gallivan et al. [46] already described the complexities
of shared memories on multi-processor platforms. Though times have changed, the
same problems still arise in multi-core systems. In addition, modern processors include
mechanisms such as hardware prefetching and adjacent cache line prefetching, which
makes the analysis of such systems even more difficult.

Memory streams have been extensively studied. For instance, Jalby et al. imple-
mented WBTK [63], a set of micro-benchmarks to study the effect of various memory
address streams on system performance. For a single-core system, address streams
can in principle be obtained by getting traces. However, for multi-core systems this
is different, as the processes run independently and memory references will not be
handled in the same order by the memory controller when multiple applications are
running simultaneously.

The potentially large impact on performance of memory intensive applications
has been described by Moscibroda and Mutlu [88]. They view the multi-core problem
from a security point of view. In their research, they show that concurrently running

28 2. Introduction

applications can have a severe impact on each other. They call applications that slow
down other applications, memory performance hogs (MPHs). They show that an
application with a regular memory reference pattern is able to increase the execution
time of an irregular application by a factor of 2.90 whereas the execution time of the
regular application itself only increases by a factor of 1.18. In a simulated 16-core
system they show factors of 14.6 and 4.4 respectively.

Whenever automatic transformation does not yield satisfying results, one can re-
sort to implementing particular concepts into libraries. In order to improve locality,
Rubin et al. chose to implement the concept of so called Virtual Cache Lines [103],
which basically tries to store neighboring nodes in pointer-linked structures in the
same cache line. While the concept is implemented as a library, the authors believe
that VCL based code can be generated by a compiler. In this thesis, we do not ex-
plicitly implement VCL, but our restructuring techniques can lead to similar results.
Again, it can be seen that the changes in processor technology have had their im-
pact on every other aspect of software development, ranging from compiler-generated
prefetch instructions, to software libraries taking locality into account. Closely related
is the adaptive packed-memory array, which is proposed by Bender and Hu [20]. This
is a sparse array structure which allows for efficient insertion and deletion of elements
while preserving locality.

In 2001, the answer to the question posed in the title of Hind’s paper [55], “Pointer
Analysis: Haven’t We Solved This Problem Yet?”, was: No. Today, the answer is still
the same: We have not solved this problem yet. While all the approaches mentioned
above have contributed to understanding the problems caused by pointers better,
many, if not all problems stated in Hind’s paper are still largely unsolved. An impor-
tant point mentioned in his paper (inspired by a comment from Rakesh Ghiya) is the
modeling of aggregates in weakly-typed languages and the lack of precision in such
analyses.

In recent years, this topic has been researched by Lattner, who came up with
practical solutions to this problem [72,73,75,76]. Rather than trying to perform shape-
analysis or using type information, his work focused on determining the actual usage of
data within weakly-typed languages. Their analysis (called Data Structure Analysis)
is performed on an intermediate code, and thus is in principle programming language
independent. This leads into a conservative segmentation in disjoint data structures,
which in some cases can be proved to be type-safe. Disjoint-data structures can
be pool-allocated [75] and type-safe memory-pools can be used to support structure
splitting, which has been implemented for different compilers [35, 36, 48, 50]. Other
(automatic) restructuring techniques that are enabled by type-safe memory pools
are field reordering [34], described by Chilimbi et al., and array regrouping [126]
(the inverse of structure splitting), which is described by Zhong et al. All of these
techniques aim to provide more efficient use of the memory hierarchy. In this thesis,
automatic structure splitting is one of the building blocks for successful restructuring
of pointer-linked data structures. While Lattner’s Data Structure Analysis does not
solve all the problems associated with structured types (for example, inheritance
hierarchies in object-oriented languages will cause the results to be very conservative),

2.3. Our Approach 29

it is a major step toward solving practical problems associated with structured types.
Segmenting the data structures used in an application into disjoint regions resembles
the segmentation of data structures into arrays, which is often done in Fortran code. If
pointer-linked data structures can be represented as bounded arrays that are accessed
using indices instead of pointers, part of the gap between pointer-based and array-
based codes will be closed.

2.3 Our Approach

It might sound radical to say that automatic optimization of irregular code, in partic-
ular pointer-based applications, is in its infancy, but in fact no widely applicable meth-
ods are available to tackle this problem. While being a problem in single-threaded
applications, this problem will be an even greater challenge for future computing
platforms, for which many simultaneously running threads will be the norm. For ex-
ample, the current NVIDIA Fermi platform can execute 1536 simultaneous threads.
However, many restrictions apply to this single instruction multiple threads (SIMT)
approach and transparent, concurrent execution of pointer-based code is not available.
For future supercomputers, billions of threads are predicted. In order to support such
architectures when using pointer-based applications, rigorous methods need to be de-
veloped. In addition, we will be facing more and more heterogeneity in systems due
to the use of accelerators, mixed architectures, large scale systems with non-uniform
access times and non-shared address spaces. This makes the problems inherent to the
usage of pointers even larger.

If we reconsider the increasing complexity and the variety of methods that are
available to harness efficient and parallel execution of software (described in Chap-
ter 1), it is clear that no matter what solution is provided, flexibility and adaptability
are key issues. Processors have different characteristics (for example, AMD and Intel
processor share the same instruction set, but their implementations differ), complete
systems are heterogeneous (for example, the IBM Roadrunner [70]) and input sets to
problems differ. Thus, data structures should be adaptable, and architecture and ad-
dress space independent. For code, the same holds. If flexibility is a requirement, code
should not be specialized directly to one specific platform. Moreover, code should be
adaptable, as differences in input data will give rise to different optimization oppor-
tunities.

In this thesis, we aim to lay out the foundations for a compilation environment
which takes both data layout and code into account. Such a framework requires a
unified and architecture independent representation of data structures. It must be
possible to relocate and reorder data, according to actual access patterns emerging at
run-time. A major hurdle in this process is the existence of pointers, especially in
weakly-typed languages such as C. In this thesis, analysis and transformation tech-
niques are introduced that eliminate the use of pointers in data structures and replaces
pointer-based data structures by an array-based equivalent. This part of the analysis
and transformation is built on top of two existing techniques, pool allocation [73,75]
and structure splitting [35,48,50]. We have implemented structure splitting in LLVM

30 2. Introduction

and implemented a data reordering framework for (pool-allocated) pointer-linked data
structures.

Using this array-based representation, restructuring strategies are developed, which
are based on the adaptation of access patterns to conform to other access patterns
present in the code. Of course, actual access patterns will not be known until run-time,
but in many case, access patterns will exhibit particular features, such as injectivity
(that means that with respect to a part of the iteration space, an array will only access
disjoint elements). This observation allows to perform compile-time transformations
into an intermediate code that is free of indirect accesses.

Data access patterns are not compile-time constants. Rather, such information
becomes available when the program is run. Therefore, access pattern aware optimiza-
tions must be split into two phases. First, at compile-time, the code must be analyzed
and instrumented to support the subsequent recompilation phase that is performed
at run-time, when access patterns become available. We will develop techniques that
are able to identify access patterns at run-time for pointer-linked data structures.
Above, the adaptation of access patterns was mentioned. For pointer-linked struc-
tures, remapping of data is a non-trivial task. Techniques for automatic, transparent
restructuring of such data structures are developed for type-unsafe environments.

Changing data layout alone can already lead to great improvements. However,
there are more opportunities if code and data are optimized in concert. For example,
a linked list traversal may be replaced by a loop iterating over a sequence of elements,
provided that the memory is reordered such that these objects are continuous elements
in memory after restructuring. We will develop methods to eliminate data dependent
control flow in cases that this can be determined to be constant.

Traditionally, irregular applications are notoriously hard to optimize, as many
analyses simply cannot be performed at compile-time. The approach proposed in
this thesis aims to minimize the effects of performance penalties caused by irregular
properties of applications.

The common intermediate code that will be obtained will allow an integrated
analysis of code using arrays and code using pointer structures. As pointer-structures
will be defined in terms of arrays and index arrays, the structure will not be bound
anymore to a specific address space, a major limitation of today’s hybrid systems.

It will be proved that even pointer-linked data structures can be automatically
restructured. Given that this is possible, programmer-defined reorderings are not
necessary anymore, and are actually even discouraged, as this complicates code. The
same holds for custom memory allocators. Custom memory allocators add complexity
to the application and prohibit the application of analysis and reordering transfor-
mations. This is due to the fact that memory allocators will often allocate blocks of
data, and analysis techniques will not be able to distinguish between the allocation
of arrays and singletons. Thus, it is preferable that the compiler and run-time sys-
tem take care of data allocation and reordering instead of putting this burden on the
programmer.

Next to freeing the programmer from explicitly managing memory allocation, re-
structuring data layout can give large performance improvements. The programmer
can focus on writing the algorithm, the compiler and run-time system will adapt the

2.4. Outline 31

data layout according to the actual data usage. Taking this even a step further, the
information on data layout can be used to further optimize code. Co-optimization of
code and data can explicitly expose the actual data dependencies of a problem, elim-
inate data dependent loops such that a data instance specific code can be generated.

2.4 Outline

In this thesis, we will start with an assessment of the impact that irregularity has on
a modern architecture, the Intel Core 2. In Chapter 3, a set of benchmarks, called
SPARK00, is described which consists of sparse matrix codes, using orthogonally
linked lists to represent its matrices. In addition, it contains several codes based on
arrays only. Many of these correspond to one of the pointer-based benchmarks, such
that direct comparisons between these different implementations can be made. Using
the SPARK00 benchmarks, an estimate can be made of what to expect from various
restructuring opportunities.

A top-down overview of the ideas behind our restructuring techniques is presented
in Chapter 4. The concepts are described in an informal way, using C code samples.
Safety issues that arise from the use of unsafe languages are discussed, and it is
shown how an array-based representation is derived from a sparse matrix multiplica-
tion using linked lists. Using this array-based form, we show how annihilation and
sublimation can be applied to this code and present results obtained using a prototype
implementation of these compiler techniques.

There are many details involved in the transformation process outlined in Chap-
ter 4. In the subsequent chapters, we take a bottom-up approach, and describe the
different techniques in more detail. These chapters also include a description of the
implementations of these techniques using the LLVM compiler infrastructure [74]. In
order to understand the analyses and transformations that are presented, prelimi-
nary knowledge of the LLVM compiler infrastructure and Lattner’s Data Structure
Analysis (DSA) [72, 75] is required. Chapter 5 provides a concise overview of the
background needed to understand the techniques explained in the remainder of the
thesis.

Restructuring of pointer-linked structures is explained in Chapter 6. This relies
on transforming pointer structures into a type-safe representation, which uses object
identifiers instead of pointers. Using this position independent representation, heap
data can be reordered, and both heap and stack references will be updated accordingly.
In Chapter 7, a fully array-based representation is developed. This chapter also
presents techniques to detect static control flow behavior at run-time, which results
in optimized loop structures that have no dynamic data dependencies in their loop
conditions.

The concept of sublimation is revisited in Chapter 8. It is presented in the context
of a two-phase compilation process, in which sublimation is applied in the first phase
to obtain a fully regular intermediate code, which is optimized into a data instance
specific code at run-time, when actual access pattern become available. A case study
showing the potential application of this two-phase compilation trajectory is presented

32 2. Introduction

in Chapter 9, which shows how a kernel based on pointer-linked lists can be mapped
to an FPGA platform, which does not have a shared memory address space with the
host running the application.

We conclude this thesis with Chapter 10, which provides a retrospective view and
also sheds some light on possible future directions in the field of automatic restruc-
turing of applications using pointer-linked data structures.

2.5 List of Publications

Parts of this thesis have been published in journals and in conference proceedings.

Chapter 3

• Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G. Wijshoff. SPARK00:
A Benchmark Package for the Compiler Evaluation of Irregular/Sparse Codes.
In ASCI 2008: Fourteenth Annual Conference of the Advanced School for Com-
puting and Imaging, 2008.

• Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G. Wijshoff. Char-
acterizing the performance penalties induced by irregular code using pointer
structures and indirection arrays on the Intel Core 2 architecture. In CF 09:
Proceedings of the 6th ACM conference on Computing frontiers, pages 221–224,
2009.

Chapter 4

• Sven Groot, Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G.
Wijshoff. The Automatic Transformation of Linked List Data Structures. In
PACT 2007: Proceedings of the 16th International Conference on Parallel Ar-
chitecture and Compilation Techniques, 2007

• Harmen L.A. van der Spek, Sven Groot, Erwin M. Bakker, and Harry A.G.
Wijshoff. A compile/run-time environment for the automatic transformation
of linked list data structures. International Journal of Parallel Programming,
36(6):592–623, 2008.

• Harmen L.A. van der Spek, Erwin M. Bakker and Harry A.G. Wijshoff. Op-
timizing Pointer-Based Linked List Traversals Using Annihilation. Poster at
ASCI 2009: Fifteenth Annual Conference of the Advanced School for Comput-
ing and Imaging, 2009.

Chapter 6

• Harmen L.A. van der Spek, C.W. Mattias Holm, and Harry A.G. Wijshoff.
Automatic restructuring of linked data structures. In LCPC 2009: Proceedings
of the 22nd International Workshop on Languages and Compilers for Parallel
Computing, pages 263–277, 2009.

2.5. List of Publications 33

Chapter 7

• Harmen L.A. van der Spek, C.W. Mattias Holm, and Harry A.G. Wijshoff. How
to unleash array optimizations on code using recursive data structures. In ICS
2010: Proceedings of the 24th ACM International Conference on Supercomput-
ing, pages 275–284, 2010.

Chapter 8

• Harmen L.A. van der Spek, H.A.G. Wijshoff. Sublimation: Expanding Data
Structures to Enable Data Instance Specific Optimizations. In LCPC 2010:
Proceedings of the 23rd International Workshop on Languages and Compilers
for Parallel Computing, 2010.

34 2. Introduction

CHAPTER 3

Characterizing the Impact of Irregularity

Measuring to what degree performance is affected by irregular behavior of an appli-
cation can be done using several methods. Using hardware counters, quantities like
the instructions per cycle (IPC), memory bandwidth, cache misses and TLB1 misses
can be obtained. In this chapter, the SPARK00 benchmarks are introduced, which
consist of sparse matrix kernels and the benchmark MCF from the SPEC CPU2000
benchmarks [54]. Using the SPARK00 benchmarks, we present a systematic approach
for the evaluation of performance penalties caused by irregular properties of applica-
tions. This evaluation is guided by several theses, each of which focuses on a different
aspect of irregularity. These theses cover topics such as the different levels of the
memory hierarchy, predictability of memory reference patterns and memory band-
width characteristics of irregular applications. They also treat more abstract notions,
such as the ability to control the impact of irregularity and the perceived irregularity
of some common applications. The effectiveness of current production compilers is
studied and it is shown that traditional approaches are not likely to succeed in the
field of irregular applications. The pointer-based benchmarks of SPARK00 are used
throughout this thesis to assess the effect of the various optimizations that target
pointer-linked data structures.

3.1 Overview

While pointer-structured code is well known for its performance issues, we show that
pointers do not degrade performance, but irregularity does. By this, we mean that
if the actual emergent behavior at run-time shows regular access patterns, the code

1Translation lookaside buffer

35

36 3. Characterizing the Impact of Irregularity

that in principle contains long dependent memory access chains will perform well as
hardware prefetching mechanisms will be triggered. It is also shown that the scale at
which irregularity is observed has a significant impact on performance. Irregularity
within a certain window (related to cache sizes) will not greatly affect performance.

It is not always possible to come up with a data layout that will result in regular
behavior. There might be multiple, conflicting uses (in terms of access patterns) of a
data structure. In that case, the irregularity is something one will have to accept and
we determine the performance impact of not being able to predict the next address
in an irregular address stream.

Memory bandwidth is one of major bottlenecks in contemporary processors. This
is not only the case for regular applications, but as we show this also holds for irreg-
ular applications. Multi-core systems easily saturate the memory bus. Moreover, in
irregular applications, much of the data fetched from main memory originates from
wrongfully prefetched data, putting extra pressure on the memory subsystem.

The above mentioned performance penalties caused by irregular applications must
be controlled as much as possible. The results of the experiments show that the prob-
lem of controlling this irregularity is not going to be solved by traditional compiler
techniques, which mostly rely on optimizing control flow. It is shown, that if opti-
mizing compilers were able to optimize data layout, this would be very effective. In
other words, data driven optimization techniques show considerable performance im-
provements. In the remainder of this thesis, the SPARK00 benchmarks will be used
to evaluate methods to automate data layout optimization (some methods even take
the interaction between data and code into account).

In modern multi-core systems, the simultaneous execution of multiple processes
potentially leads to quite different behavior compared to running a single process, due
to resource sharing. In this chapter, the analysis on multi-core systems will be limited
to the effect of multiple running processes on memory bandwidth. Multiple processes
can result in an arbitrarily interleaved memory reference sequence and fine-grained
analysis of such patterns is infeasible. However, at the level of memory bandwidth,
specific behavioral patterns do arise and while these do not provide detailed infor-
mation on the precise interaction of the different processes, it does characterize the
performance limits imposed by running multiple processes on different combinations
of cores.

Section 3.2 introduces the theses that characterize irregular program properties.
The SPARK00 benchmarks are described in detail in Section 3.3. This section also
describes the data sets used in the experiments. The experimental setup is explained
in Section 3.4, including an experiment that motivates the different combinations of
cores that are used in the multi-core experiments. The single-core experiments are
discussed in Section 3.5 together with the theses from Section 3.2. The multi-core
experiments are discussed in Section 3.6.

3.2. Characterizing Irregularity 37

3.2 Characterizing Irregularity

The performance impact of irregularity varies widely and involves many aspects of
architectures and compiler design.This section introduces our theses about irregular
program properties. Theses 1 to 6 address the impact of irregularity on system per-
formance as well as optimization constraints and opportunities. Thesis 7 focuses on
the additional complexity introduced by multi-core processing.

3.2.1 The Impact of Irregularity on Pointer-Structured Code

Pointer-structured code is known for its unpredictable nature. This is visible at both
compile-time and run-time. At compile-time, pointer-structured code will not allow
for vectorized execution. Pointer-chasing loops are not very likely to generate unit
stride memory accesses and data members of subsequent elements are typically not
allocated sequentially in main memory which prevents vectorization. Moreover, the
compiler cannot make any assumptions about the actual memory reference sequence
that will occur at run-time. Pointer-structured code often contains dynamic data
structures and this allows for easy insertion and deletions of new elements. While
normally this causes a substantial performance decrease, we show that if the working
set of a data structure is small, there is no performance degradation to be expected
when memory access is irregular. Therefore, for small data sets, restructuring com-
piler transformations are not worth the effort and focus should be on generating
optimal code. This also applies to multi-core configurations. As long as there is no
competition for resources (when using small data sets), irregular memory reference
streams will not affect performance.

For large data sets, for which capacity misses will occur, the situation is differ-
ent. In this case, the physical data layout does matter and restructuring compiler
transformations can be very beneficial.

Regarding the impact of irregular memory reference streams, we pose the following
thesis:

Thesis 1 For applications using pointer structures, the impact of irregular memory
reference streams only manifests itself when the memory size of the working set is
greater than (memory) system dependent thresholds, such as L1 and L2 cache sizes.

3.2.2 The Predictability of Memory Reference Streams

Regular applications have the advantage that they can be analyzed relatively easily at
compile-time. This also implies that their memory reference patterns are in principle
predictable. For irregular applications this is different. For pointer-chasing loops, the
memory reference sequence that is generated can be anything. In this chapter, we
will show the performance impact of being able to predict the next memory reference
in a pointer-chasing loop. We also measure the performance penalty of not being able
to predict future references in the case memory is accessed randomly by a pointer-
chasing loop. We do so by replacing the pointer chasing loop by a loop that breaks
the cross-iteration dependency.

38 3. Characterizing the Impact of Irregularity

Codes that use indirection arrays to implement dynamic data structures have an
advantage over pointer-based codes. In indirection array based codes, data is stored
in disjoint arrays and therefore cache utilization is likely to be better than in the case
where structure nodes are used. When using structure nodes, it is more likely that
unneeded data members are fetched into the caches. While these factors can have a
significant impact, we will show that they have less influence on performance than
the unpredictability of memory reference streams.

When running multiple concurrent processes, unpredictability in memory refer-
ence patterns is a more complicated problem. Instead of handling a single address
stream, different address streams originating from different processes are interleaved,
introducing an extra degree of complexity.

These considerations lead to the following thesis:

Thesis 2 The main performance loss in irregular code is caused by unpredictability
of memory reference streams rather than using pointer-structured code vs. code using
indirection arrays.

3.2.3 Memory Bandwidth in Irregular Applications

If an application emits a very irregular memory stream in which subsequent memory
references are depending on each other, then it suffers from high latency in the memory
subsystem. In this case, the full memory bandwidth is not utilized. For multi-
core configurations, memory bandwidth is a fundamental constraining factor. This is
described more in depth in Section 3.2.7.

While much of the impact of irregularity can be controlled by choosing an ap-
propriate data layout, there are cases where this does not solve the problem. For
example, if there exist multiple access patterns for which no proper common data
layout can be used. Such patterns are common in for instance search trees which are
traversed differently for different search keys. In this case, we suggest that the unused
memory bandwidth is put to use. This is formulated in the following thesis:

Thesis 3 Irregular applications waste memory bandwidth. This extra bandwidth should
be used by these applications to provide extra information on memory reference pat-
terns, to make those patterns predictable. See also [65,81].

3.2.4 Controlling the Impact of Irregularity

Code which appears irregular, can behave quite regularly. In our experiments, we have
found that if a data layout is chosen carefully, performance improves substantially as
the irregular code issues a more or less regular memory reference sequence. The
impact of irregularity on the compiler is more difficult to deal with and this is also
reflected in Thesis 6, where it is stated that current compiler technology does not
suffice to deal with irregularity.

In a multi-core setting, this problem of conflicting data layouts also exists. Unin-
tentionally, different data structures might cause false sharing of cache space. Such
interactions between multiple processes is not taken into account by current compilers.

3.2. Characterizing Irregularity 39

Another approach is needed, and we will show that compilers should shift their
focus to data restructuring. We summarize this with the following thesis:

Thesis 4 Much of the impact of irregularity can be controlled by choosing an appro-
priate data layout.

3.2.5 Irregularity of Sparse Code

Contrary to common belief, sparse code is not necessarily very irregular. Irregularity
is a concept that is hard to grasp, and even dependent on for instance the platform
an application runs on. For example, if the only irregular access in a loop is access
to a vector that fits in the cache, and the architecture does not support vectorized
execution, then the impact of this irregular access is negligible. However, if vectorized
execution is available, the irregularity has a much higher impact, as the indirect array
access prevents vectorization. But sparse matrix algorithms do not necessarily access
data in an irregular fashion, as is seen in for instance one of the benchmark kernels,
IJACIT:

for(; j <= j2; j++) {

x_2[i] -= a[j] * x_1[ja[j]];

In this case, the only irregular access is to x 1, which depending on the size of the
array has more or less impact. However, the rest of the loop shows regular behavior,
and apart from the consequences of not being able to vectorize, data access is just
as efficient as on dense code. A difference between sparse and dense code is that
in sparse code, more data must be fetched from memory, i.e. the index array. As
this is also a regular memory reference stream, it can be expected that the memory
subsystem will be used efficiently, and the performance penalty in such cases is not
expected to be that great.

The following thesis concerns the often perceived irregularity of sparse matrix
algorithms:

Thesis 5 Sparse matrix algorithms are often regarded as very irregular applications.
This is exaggerated. In fact, especially for codes using indirection arrays, the actual
behavior is close to implementations operating on dense matrices.

3.2.6 Optimizing Compilers

Optimizing compilers have been very successful. Not only do they provide platform
independence, but they have also shown to be able to generate highly efficient code,
in many cases even more efficient code than hand-written assembly. Most of these
successful optimization target regular loops and much work on loop reordering trans-
formations has been done on code containing loops with regularly accessed data. For
irregular codes, however, many such compiler techniques cannot be applied. Pointers
may be aliased, the expression used to index an array is data dependent and loop
bounds cannot always be determined at compile-time.

40 3. Characterizing the Impact of Irregularity

Some compilers perform a program-wide analysis. This is a desirable property
as a non-global view cannot provide a complete view on the use of data structures
and will prevent any form of data restructuring, especially in type-unsafe languages
such as C. However, such analyses do not take into account the interactions between
multiple processes. This is a subject that must be addressed in future compilers as
multi-core platform are becoming the norm.

The Intel C Compiler, which has been used in the experiments, provides various
optimization levels, namely O1, O2 and O3. The benchmarks have been compiled and
run using all three of these options in order to compare their relative performance on
both regular and irregular code.

In this area, there is much to be gained, as often at run-time there are no actual
data dependencies. However, current compiler optimizations that mostly target code
only without considering data are not yielding satisfactory results on irregular code.
This is formulated in the following thesis:

Thesis 6 Code and control flow optimizations as done by current optimizing compil-
ers have little impact on the overall performance of irregular codes, now, and in the
near future.

3.2.7 Irregularity in Multi-Core Environments

The theses above do, in principle, also apply to the individually running processes
in a multi-core environment. However, the interaction between those concurrently
running processes adds another dimension to the problem. This consists of the sharing
of resources, more specifically the caches and the memory bus. We have mentioned
some characteristics of multi-core platforms above.

The main difference between running a single process and running multiple pro-
cesses is the emerging interleaved memory reference patterns. Whereas in a single
memory reference stream a pattern might be identified, this becomes less likely if
multiple address streams are merged at the memory controller. Also, if all sepa-
rate memory reference streams are irregular, it is possible that memory bandwidth is
saturated and becomes a problem.

An important difference between single and multi-core configurations is summa-
rized in the following thesis:

Thesis 7 In multi-core environments memory bandwidth is the main constraining
factor, even if applications show irregular behavior.

3.3 The SPARK00 Benchmarks

The SPARK00 benchmarks are used to measure the performance of irregular codes. It
is split into three groups of benchmarks: the first group implements applications that
are based on pointer structures. The irregularity in these applications is due to the
traversal of pointer chains and arrays that are accessed using input data-dependent
expressions. The second group consists of applications that are based on indirection
arrays.

3.3. The SPARK00 Benchmarks 41

The main difference between these groups is that the pointer-structured codes
group data into nodes, whereas in the array based codes, the same data members are
in the same array. The third group implements dense counterparts for some sparse
kernels, for comparison purposes.

The pointer-based sparse matrix benchmarks are implemented using orthogonally
linked lists. The design is based on the SPARSE library [69], but SPARK00 uses
a much smaller memory footprint by removing all metadata from the structure rep-
resenting matrix elements. In addition, SPARK00 does not use a custom memory
allocator, as the optimization of memory allocation and data layout should be opti-
mized automatically, and SPARK00 leaves the challenge to the compiler.

MCF is a pointer-based benchmark from the SPEC CPU2000 benchmark suite [54,
80] The benchmarks using indirection arrays are partially based on code from Saad
and Wijshoff’s SPARK [105] benchmark.

3.3.1 Description of the Benchmarks

The first subset of benchmarks is the pointer-based part of SPARK00, which consists
of the following programs:

1. SPMATVEC. Sparse matrix times dense vector. The sparse matrix is repre-
sented using compressed row storage. The rows themselves are stored using
linked lists. Each row is traversed and each element is multiplied with the cor-
responding element in the dense vector. The pointer traversal is one cause for
irregularity. The other cause of irregularity is the indexing of the dense vector
by a structure member of the linked list nodes (the column index of the sparse
matrix element is used to index the vector). The result is stored in a separate
dense vector.

2. SPMATMAT. Sparse matrix times dense matrix. The sparse matrix is repre-
sented using compressed row storage, the same manner as in SPMATVEC. The
dense matrix is a C-style 2-dimensional array, which is dynamically allocated.
This is different from FORTRAN-style 2-dimensional arrays, in which a contigu-
ous block is accessed by an affine function of the loop index variables. Therefore,
to access an element, two indirections are needed to access the appropriate value
in C. The main difference with SPMATVEC is that in this benchmark, values
are indirectly accessed whereas in the other benchmark, pointers are indirectly
accessed.

3. JACIT. Jacobi iteration. Jacobi iteration [49] is used to solve Ax = b. The
sparse matrix A is represented using linked lists, compressed row storage. The
linked list is traversed using two subsequent loops. One loop handles the ele-
ments before the diagonal and the second handles the elements after the diago-
nal. This traversal which is spread over two while-loops involves a termination
condition in the first while-loop which is input data dependent.

4. DSOLVE. Solve a linear system Ax = b using forward substitution and backward
substitution. The matrix is represented using orthogonal linked lists (the matrix

42 3. Characterizing the Impact of Irregularity

is traversed both row-wise and column-wise). The procedure takes a matrix
that has been LU-factorized and solves Ax = b. In order to do this, the right
hand side vector is permuted into an intermediate vector, after which forward
substitution is applied to solve Lc = b. The forward substitution traverses the
matrix column-wise. Next, Uc = x can be solved by backward substitution
which traverses the matrix row-wise. Finally, x is permuted to obtain the result
in the desired order.

5. PCG. Preconditioned conjugate gradient. PCG iteratively solves Ax = b. It
uses the compressed row storage scheme implemented using linked lists. The
code features indirect access caused by pointer traversals, as well as an array
indexed by structure members of the list nodes. This array is also used in a
regular fashion. Although the main computational part of PCG is the same as
SPMATVEC, PCG uses the outcome of the multiplication in subsequent dot
product operations.

6. MCF. Minimum cost flow problem solver. 181.mcf [80] is a program from the
SPEC CPU2000 [54] benchmark suite that solves the minimum cost flow prob-
lem. The network simplex implementation is a pointer intensive application
that is known to exhibit very poor cache performance due to the irregular na-
ture of the memory access patterns caused by extensive use of pointer-linked
data structures.

The second subset consists of codes in which the irregular access originates from
the use of indirection arrays. ASM, TRMAT, CMcK and MPERM are taken from the
SPARK benchmark suite [105] and have been translated to C. ISPMATVEC, ISP-
MATVEC, ISPMATMAT and IJACIT are the indirection array-based counterparts of
their point-based equivalents. IJDSPMATVEC is a jagged diagonal implementation
of sparse matrix vector multiplication.

1. ISPMATVEC. Sparse matrix times dense vector. Contrary to its pointer-based
version (SPMATVEC), this version uses the commonly used compressed row
storage format (CRS). This consists of an array storing the sparse matrix data
by row, an array storing the offset at which each row start, and an array storing
the column index of each matrix element.

2. ISPMATMAT. Sparse matrix times dense matrix. The array-based counterpart
of SPMATMAT.

3. IJACIT. Jacobi iteration. The array-based counterpart of JACIT.

4. IJDSPMATVEC. Sparse matrix times dense matrix. Array-based version of
sparse matrix times dense vector, using the jagged diagonal storage format.

5. ASM. Assemble stiffness matrix. Finite element methods involve an assembly
step, in which all interactions between sub-elements consisting of 3-node tri-
angular element are merged into one global matrix. Access to this matrix is
governed by the connectivity matrix which is used to index the global array.

3.3. The SPARK00 Benchmarks 43

The input data set used for this benchmark is the wrench data set, which is
depicted in Figure 3.1.

6. TRMAT. Transpose a matrix. Computing the transpose of a sparse matrix
contains quite some irregularity. First of all, the number of elements in a column
is not known beforehand, and a traversal of the old index structure is needed
to accumulate the right number of elements per column. This results in many
scattered updates. The column counts are then translated into array offsets,
which is done by a regular loop with one read-after-write dependency. Next, all
data and index elements from the original matrix are traversed and mapped to
the corresponding locations in the new arrays, causing single and double indirect
access to arrays. The vector containing the row offsets is used to remember the
current row offset within the target matrix. As a result, all elements of this
vector must be moved one position to the right after filling the column and data
vectors.

7. CMcK. Compute Cuthill-McKee ordering. The Cuthill-McKee method [37] com-
putes a permutation array that aims to reduce the bandwidth of a sparse ma-
trix. It does so by interpreting the sparse matrix as an adjacency matrix and
computes a relabeling of the nodes. The relabeling is computed as follows. A
breadth-first search is started at the node within minimal degree, which is la-
beled 1. Next, all adjacent nodes are considered and relabeled, starting with
the node with lowest degree. The relabeling is recorded in the permutation
array. The newly labeled nodes are expanded (following the ordering defined by
the new labeling) and all unlabeled nodes are relabeled. This process continues
until the entire connected component to which the starting node belongs is re-
labeled. If there still are nodes left, a remaining node with minimum degree is
picked and the process above is repeated, until all nodes have been relabeled.
The irregularity stems from the permutation array and the array that stores the
column indices. The permutation array is used to locate the nodes that must
be traversed next during the breadth-first search. Loop bounds and conditional
branches are data dependent, which further complicates analysis.

8. MPERM. Perform a symmetric permutation B = PAPT of an array A and its
associated right hand side vector b. where P is the permutation matrix. Instead
of storing the permutation matrix, the mapping is stored in an array. Irregu-
larity occurs naturally in permutation problems. The permutation requires a
complete scan of the row index array to determine the new row sizes. This
traversal mixes both regular and irregular access. Using the new row sizes, the
new offsets are computed. Next, the iteration space of the newly generated
index structure is traversed and the corresponding data from the original data
structure is copied, which involves indirect accesses.

The third group consists of dense implementations of some of the sparse bench-
marks, that closely correspond to their sparse counterpart. For the following bench-
marks, dense versions have been implemented: SPMATVEC, SPMATMAT, JACIT,

44 3. Characterizing the Impact of Irregularity

Figure 3.1: The wrench data set used in the ASM benchmark.

DSOLVE and PCG. They are referred to as DMATVEC, DMATMAT, DJACIT, DD-
SOLVE and DPCG respectively.

For multi-core experiments we focus on benchmarks that either stress the memory
bandwidth or exhibit irregular behavior because of pointer usage. We have selected
the following benchmarks as a representative subset: SPMATVEC, PCG, MPERM
and JACIT. According to additional experiments conducted, the other benchmarks
show similar behavior with respect to bandwidth utilization and its associated per-
formance degradation.

3.3.2 The Input Data

The input data sets for the current release of SPARK00 have been selected from the
University of Florida Sparse Matrix Collection, which is maintained by Davis [38].
The matrices have been selected from different problem domains. Matrices from a
wide range of sizes (measured in number of non-zero elements (nnz)) have been chosen
to compare the behavior of applications when data resides in different levels of the
memory hierarchy. Table 3.1 gives a summary of the characteristics of the matrices
used in SPARK00. The number of non-zero elements, prefixed with ’M’ is used as
identifier for the matrices.

For the benchmarks SPMATVEC, ISPMATVEC, IJDSPMATVEC, SPMATMAT
and TRMAT, all matrices are used. For CMCK and MPERM, only symmetric ma-
trices are used. For the solvers JACIT, PCG and DSOLVE, only matrices with full
diagonals are used. As DSOLVE performs a LU-factorization prior to solving Ax = b,
elements are potentially added to the matrix due to fill-in. Therefore, only matrices
that after factorization do not exceed the size of the largest matrix from the initial
input set are used.

For each sparse matrix, a dense matrix is generated with approximately the same
number of non-zero elements. These matrices are prefixed with ‘D’ (for example, D100
is a dense 10x10 matrix). These matrices are used to compare sparse algorithms with

3.4. Experimental Setup 45

ID Matrix Size NNZ LU Symmetric Problem Domain

M82 Oberwolfach/LF10 18 98 Yes Model reduction
M271 HB/impcol b 59 924 No Chem. proc. simulation
M479 Bai/rw136 136 2318 No Statistical/math. problem
M665 Rajat/rajat11 135 920 No Circuit simulation

M1083 HB/bcsstm09 1083 1083 Yes Structural problem
M1614 Sandia/oscil trans 01 430 2704 No Circuit simulation
M2474 HB/662 bus 662 4572 Yes Power network
M2580 Bai/rdb450l 450 12082 No Comp. fluid dynamics
M3068 HB/str 200 363 6439 No Subsequent optimization
M7419 Norris/lung1 1650 7419 No Comp. fluid dynamics

M24270 Boeing/bcsstm34 588 87742 Yes Structural problem
M41594 vanHeukelum/cage9 3534 1260004 No Directed weighted graph
M61896 Zitney/rdist3a 2398 1641781 No Chem. proc. simulation
M72734 Hollinger/jan99jac040 13694 546686 No Economic

M105339 Boeing/crystm01 4875 707199 Yes Materials
M578890 Sandia/ASIC 100ks 99190 3894306 No Circuit simulation
M680341 Norris/heart3 2339 1315281 No 2D/3D problem
M713907 VanVelzen/Zd Jac3 db 22835 NA No Chem. proc. simulation
M715804 ACUSIM/Pres Poisson 14822 5376356 Yes Comp. fluid dynamics
M726674 AMD/G2 circuit 150102 NA Yes Circuit simulation

M1143140 Boeing/bcsstk36 23052 NA Yes Structural problem
M3279690 ND/nd3k 9000 NA Yes 2D/3D problem

Table 3.1: The matrices in this table are used in the experiments. They are listed
by increasing size (number of non-zero elements). The number in the ID column
shows the number of non-zero elements. Size is the numbers of rows and columns
(all matrices are square). NNZ LU denotes the number of non-zero elements after
LU factorization (NA indicates NNZ LU exceeds the size of the largest matrix (non-
factorized) in use, M3279690.

their dense counterparts.
MCF uses the data sets from the SPEC2000 benchmark suite. This are the test,

train and ref data sets. These sets differ in their problem sizes. The ASM kernel
uses the wrench data input set as described in [107]. Different input data sets are
generated by specifying a different number of initial grid points and a varying number
of subsequent mesh refinements. For MPERM, the permutation matrix which results
from the CMCK benchmark is taken and applied to the corresponding matrix.

In the multi-core experiments, many different core configurations are tested. There-
fore, a number of representative matrices have been selected for these experiments.
The following matrices are used: M82 (LF10), M271 (impco b), M24270 (bcsstm34),
M41594 (cage9), M726674 (G2 circuit) and M3279690 (nd3k). For the benchmark
SPMATVEC, only the data set nd3k is used. For CMCK, only the symmetric ma-
trices from this set are used. The permutation produced by CMCK is used as the
permutation vector in MPERM. JACIT and PCG use all matrices except LF10, which
contains zero elements on the diagonal.

3.4 Experimental Setup

3.4.1 Hardware and Software Configuration

The benchmarks have been executed on an Intel Core 2 based Intel Xeon E5420
running at 2.50GHz in 64-bit mode The system contains 8 cores (2 chips, each con-
taining 4 cores) and has a total of 32GB of physical memory. The FSB clock speed
is 1333MHz. Figure 3.2 depicts the layout of the CPUs, as reported by the Linux

46 3. Characterizing the Impact of Irregularity

kernel (using “cat /proc/cpuinfo”). The compiler used to compile the benchmarks is
the Intel C compiler, version 10.1. The benchmarks are compiled with the options
‘-O2’. The optimization level ‘-O3’ is not used, because this applies more aggressive
optimizations that in general are not effective on irregular code. This can even slow
down code [117].

The benchmarks used can be configured to use the Intel Performance Tuning Util-
ity (PTU) [62] to obtain performance data from the hardware performance counters.
PTU uses statistical based event sampling to monitor for specific events that can be
specified by the user. In the experiments presented here, the following events have
been monitored for the single core experiments:

• BUS DRDY CLOCKS.ALL AGENTS

• BUS TRANS ANY.ALL AGENTS

• CPU CLK UNHALTED.BUS

• CPU CLK UNHALTED.CORE

• INST RETIRED.ANY

• L2 LINES IN.SELF.ANY

• L2 LINES IN.SELF.DEMAND

Using these events, the ratios Clocks per Instructions Retired (CPI), L2 Cache Miss
Rate, L2 Cache Demand Mis Rate, Bus Utilization and Data Bus Utilization can be
computed.

In order to run the benchmark kernels concurrently, a synchronization point is
inserted before the kernel entry point, such that all instances will start execution
of the benchmark kernels simultaneously and the results are not distorted by IO
operations from other instances. This synchronization is done using System V IPC
semaphores.

3.4.2 Data Layout

The impact of irregularity is assessed by generating different data layouts. For the
single-core benchmarks, three different input sets are generated for each matrix, which
are ordered differently. This different order is reflected in the pointer structures that
are built (different order of insertion). The three input formats are: the CSR format,
in which the entries are ordered row-wise, the CSC format, in which the entries are
ordered column-wise and the RND format, in which the entries are ordered randomly.

For the pointer-based benchmarks, the allocation of memory is done using large
blocks, such that most elements that are inserted after each other will also be subse-
quent elements in main memory. Using these different memory layouts, both regular
and irregular memory reference streams are generated by the irregular pointer appli-
cations. The results are used to determine the impact of the reference patterns at
the various memory levels. The data layouts used are named after their respective

3.4. Experimental Setup 47

Figure 3.2: Core layout as reported by “cat /proc/cpuinfo”. The system features 2
chips, each featuring 4 cores. The cores are numbered as reported by the Linux kernel.
Cores that are connected in this figure share resources which has been determined
experimentally. This is shown in Figure 3.3.

input data sets, CSR, CSC and RND. Note that the indirection array based codes use
the CSR input sets, and their internal storage format is also called CSR (Compressed
Sparse Row), except for IJDSPMATVEC, which uses JDS (Jagged Diagonal Storage).

In the multi-core benchmarks only the CSR and RND formats are used. They are
referred to as ‘S’ (sequential) and ‘R’ (random) in the figures.

3.4.3 Selection of Core Combinations for Multi-Core Experi-
ments

As there are many combinations of cores to choose from when running an on 8 core
system (256), we only use combinations consisting of 1, 2, 4 or 8 cores. To further
restrict the number of combinations, a set of representative combinations has been
determined. This is done by determining the clocks per instruction retired (CPI) for
the benchmark SPMATVEC, using many different combinations. The largest data
set (nd3k) is used with the sequential input order, such that the generated memory
reference sequences by the pointer traversals will be sequential. This data set does
not fit in the L2 caches. The results are shown in Figure 3.3.

For 2 cores, three levels of performance exist. The fastest level (lowest CPI) is
obtained by running on 2 cores that are on a different chip. The slowest level is
obtained by 2 cores running on the same chip. Most likely, these two cores share
resources, like the L2 cache. This combination will be called the slow combination
throughout this chapter. The intermediate level is obtained when 2 cores are on the
same chip but do not obtain the worst performance. This configuration is referred
to as the fast combination. For 4 cores, some patterns can be observed. Fastest
performance is obtained by picking those 4 cores that consist of two pairs that run
in the fast configuration as defined above. As expected from the results on 2 cores,
the configuration in which 4 cores are selected from 1 chip performs worst. The
configurations with the largest spread in performance occur when 3 cores are selected
from 1 chip, and the remaining core from the other chip. This configuration (#10
in Table 3.2) is not used in further experiments, as we chose only to run identical
processes that are equally distributed among the two chips. The configurations where

48 3. Characterizing the Impact of Irregularity

0 1 2 3 4

N
u

m
b

e
r o

f C
o

re
s

Relative Clocks Per Instruction

1
2

2
2

2
3

3
4

5
5

5
5

5
5

5
5

6
6

6
6

6
6

6
6

7
7

8
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
9

1
4

8

S
P

M
A

T
V

E
C

 −
 C

y
c
le

s
 P

e
r In

s
tru

c
tio

n

F
ig

u
re

3
.3

:
S
P

M
A

T
V

E
C

-
P
erform

an
ce

in
clo

ck
s

p
er

in
stru

ction
(C

P
I)

u
sin

g
th

e
d
ata

set
n
d
3
k

for
variou

s
com

b
in

ation
s

of
1
,
2
,
4

a
n
d

8
co

res.
D

iff
eren

t
con

fi
gu

ration
s

are
sep

arated
b
y

vertical
d
otted

lin
es.

E
ach

d
a
ta

p
oin

t
d
ep

icts
a

p
ro

cess.
E

ach
co

lu
m

n
is

a
n
n
o
ta

ted
w

ith
a

n
u
m

b
er,

w
h
ich

in
d
icates

th
e

con
fi
gu

ration
ty

p
e

as
given

in
T
ab

le
3.2.

3.5. Experiments on a Single Core 49

there are two distinct groups with slightly different performance are the configurations
where 2 pairs are chosen from different chips, such that 1 pair is running in a slow
combination and 1 pair in the fast combination. The remaining configurations consists
of either 2 pairs running both in a fast combination or in a slow combination.

The results show that running multiple instances concurrently has a significant im-
pact on the performance of the different processes. The different configurations show
clear patterns and these patterns have been used to select a representative subset of
configurations that will be used in the remainder of this chapter. Table 3.2 summa-
rizes the representative combinations of multiple cores that will be used throughout
the remainder of this chapter.

3.5 Experiments on a Single Core

3.5.1 The Impact of Irregularity on Pointer-Structured Code

In order to verify Thesis 1, which states that irregularity in pointer-structured code
only causes performance degradation in the case that the working set size exceeds
particular (memory) system limits, we will isolate the effects of irregularity in memory
accesses. Therefore, we do not specifically look at the performance for different data
sets, in which larger data sets will in general perform worse than smaller data sets,
but instead we will focus on the effects of irregularity in memory reference streams
for different data set sizes.

The evaluation of different memory access streams is realized by running the same
program with a different memory layout. This is possible for the benchmarks which
use pointer structures to represent the matrices. By controlling the order in which
elements are added to the matrix, different memory access patterns emerge when
traversing the pointer structures, showing different behavior. Here, the three memory
layouts described in the beginning of this section are used (CSR, CSC and RND).

Figure 3.4 shows the relative CPI of the benchmark DSOLVE. For each data set,
the three different memory layouts are used and the resulting relative CPI is obtained
by using the RND sets as the reference CPI. The matrices are ordered from left to
right by increasing number of non-zero elements (after LU-factorization). DSOLVE
is quite interesting, as the results deviate from the results obtained on the other
benchmarks. In DSOLVE, the different memory layouts do not seem to be very
influential. This is because the structures are built prior to LU-factorization, during
which zero elements become non-zero elements (fill-in) and new nodes are inserted
in the matrix. Eventually, this results in a data structure whose associated memory
reference stream upon traversal behaves very similar to a random sequence. Figure 3.5
shows the relative CPI for PCG. In this case, the memory layout is not changed prior
to running the benchmark and the performance of the memory layouts resulting from
row-wise and column-wise insertion order (CSR and CSC) show a much lower CPI.
The results of PCG are also typical for the benchmarks SPMATVEC, SPMATMAT
and JACIT.

The pattern observed in Figure 3.5 indicates that for small data sets, the irreg-

50 3. Characterizing the Impact of Irregularity

C
o
m

b
in

ation
ID

S
elected

cores
D

escrip
tion

1
0

S
in

gle-core
2

0;
2

2
cores,

each
on

a
d
iff

eren
t

ch
ip

3
0,1

2
cores,

b
oth

on
th

e
sam

e
ch

ip
,
fast

co
m

b
in

ation
4

0-4
2

cores,
b
oth

on
th

e
sam

e
ch

ip
,
slow

com
b
in

a
tion

5
0,5;

2,7
4

cores,
b
oth

p
airs

0,5
an

d
2,7

are
a

fast
co

m
b
in

ation
6

0-4;
2,7

4
cores,

p
air

0-4
is

a
slow

com
b
in

ation
,
2,7

a
fast

com
b
in

ation
7

0-4;
2-6

4
cores,

b
oth

p
airs

0-4
an

d
2-6

are
a

slow
com

b
in

ation
8

0-4,
1-5

4
cores,

all
on

th
e

sam
e

ch
ip

9
0-4,

1-5;
2-6,

3-7
8

cores
1
0

0
-4

,
1
;
2

4
co

res,
3

o
n

o
n
e

ch
ip

,
1

o
n

th
e

o
th

er

T
a
b
le

3
.2

:
C

o
re

com
b
in

ation
s

u
sed

in
th

e
ex

p
erim

en
ts.

T
h
ese

are
d
eterm

in
ed

from
th

e
ex

p
erim

en
t

sh
ow

n
in

F
igu

re
3.3.

S
low

co
m

b
in

a
tio

n
s

are
sep

arated
b
y

’-’,
fast

com
b
in

ation
s

b
y

’,’
an

d
cores

on
d
iff

eren
t

ch
ip

s
are

sep
arated

u
sin

g
’;’.

T
h
e

a
sy

m
m

etric
co

n
fi
g
u
ration

10
is

n
ot

u
sed

in
th

e
fu

rth
er

ex
p
erim

en
ts.

3.5. Experiments on a Single Core 51

M
8

2

M
6

6
5

M
2

7
1

M
1

0
8

3

M
4

7
9

M
1

6
1

4

M
2

4
7

4

M
3

0
6

8

M
7

4
1

9

M
2

5
8

0

M
2

4
2

7
0

M
7

2
7

3
4

M
1

0
5

3
3

9

M
4

1
5

9
4

M
6

8
0

3
4

1

M
6

1
8

9
6

Row−wise insertion order (CSR)

Column−wise insertion order (CSC)

R
e

la
ti
v
e

 C
P

I

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

DSOLVE Relative CPI

Figure 3.4: DSOLVE - Cycles Per Instruction (CPI), Relative to RND data set.
The benchmarks have been run using three different memory layouts resulting from
different insertion orders (CSR, CSC and RND). The CPI has been normalized by the
CPI obtained using the RND data set (random insertion order). On the x-axis are
the different input data sets (See Table 3.1) ordered from left to right by increasing
size. The results for PCG are shown in Figure 3.5. The improvements by choosing
a regular initial layout does not have great influence on DSOLVE in most cases, as
irregularity in the data structure is introduced by the LU factorization done prior to
running the actual benchmark.

52 3. Characterizing the Impact of Irregularity

M
8

2

M
2

7
1

M
4

7
9

M
6

6
5

M
1

0
8

3

M
1

6
1

4

M
2

4
7

4

M
2

5
8

0

M
3

0
6

8

M
7

4
1

9

M
2

4
2

7
0

M
4

1
5

9
4

M
6

1
8

9
6

M
7

2
7

3
4

M
1

0
5

3
3

9

M
5

7
8

8
9

0

M
6

8
0

3
4

1

M
7

1
3

9
0

7

M
7

1
5

8
0

4

M
7

2
6

6
7

4

M
1

1
4

3
1

4
0

M
3

2
7

9
6

9
0

Row−wise insertion order (CSR)

Column−wise insertion order (CSC)

R
e

la
ti
v
e

 C
P

I

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PCG Relative CPI

Figure 3.5: PCG - Cycles Per Instruction (CPI), Relative to RND data set. PCG
shows behavior that is typical for the different memory layouts. For the small data
sets, the data layout has no influence. The larger the data set becomes, the largest
the impact of the data layout chosen. SPMATVEC, SPMATMAT and JACIT show
similar behavior.

3.5. Experiments on a Single Core 53

ularity in the memory reference stream does not affect performance in most cases.
Whenever the input data sets grow larger, the difference between the different mem-
ory layouts becomes apparent, and the two more regularly ordered memory layouts
clearly show better performance than the randomly ordered data structure. In the
other benchmarks, these performance characteristics are also observed for the sparse
matrices. Note that, while CSR performs best in most cases, CSC, which does not
result in a perfectly regular address stream, performs relatively well and it can be
concluded that perfect regularity in a memory reference stream is not strictly neces-
sary to obtain good performance. Table 3.3 summarizes the range of relative CPIs
measured for the CSR and CSC layouts, with respect to the RND layout. This has
been done for all pointer-based matrix benchmarks.

The experiments support Thesis 1 that the impact of irregularity only manifests
itself in pointer-based applications, if large enough data sets are used. The thresholds
at which the impact grows are related to the respective sizes of the L1 and L2 cache.
This property should be used in the trade-off whether one should restructure data or
not. For small data sets, this is not necessary as it will not yield any performance
gains. However, the larger the data set, the greater the potential improvements that
can be obtained by restructuring data.

3.5.2 The Predictability of Memory Reference Streams

Thesis 2 states that the real reason of performance degradation is not really a fun-
damental problem of pointer-based code, but that the real problem is the unpre-
dictability of memory reference streams. It is important that cross-iteration depen-
dency chains do affect performance as least as possible. In SPARK00, the different
memory layouts do have a severe impact on performance, which has been shown in
Section 3.5.1, and this can be partly traced back to the cross-iteration dependency of
the pointer traversal. To quantify the performance degradation caused by this depen-
dency, a test program is used, which is based on SPMATVEC. Instead of traversing
the matrix elements by a linked list traversal, the pointers to the nodes are stored in
an array. This way, the memory reference stream of pointer nodes can be determined
by the processor without being hampered by the cross iteration data dependency, al-
lowing for a rough assessment of the effectiveness of the prefetching mechanism. The
original inner loop looks as follows:

while(pElement) {

result[row] += pElement->Real * right[pElement->Col];

pElement = pElement->NextInRow;

}

The modified loop which uses arrays to fetch the pointers to the matrix elements
becomes:

54 3. Characterizing the Impact of Irregularity

Benchmark
Rel. CPI Abs. L2 Miss Rate

CSR CSC CSR CSC RND

SPMATVEC 0.10-1.04 0.12-1.03 0.00-0.08 0.00-0.09 0.00-0.59
SPMATMAT 0.37-0.98 0.42-1.00 0.00-0.01 0.00-0.01 0.00-0.02
JACIT 0.10-1.00 0.13-1.00 0.00-0.07 0.00-0.08 0.00-0.48
DSOLVE 0.36-1.01 0.34-1.04 0.00-0.28 0.00-0.28 0.00-0.31
PCG 0.10-1.07 0.13-1.07 0.00-0.06 0.00-0.07 0.00-0.46

Benchmark
Abs. Data Bus Utilization

CSR CSC RND

SPMATVEC 0.00-0.27 0.00-0.26 0.00-0.19
SPMATMAT 0.00-0.28 0.00-0.25 0.00-0.22
JACIT 0.00-0.27 0.00-0.25 0.00-0.19
DSOLVE 0.00-0.19 0.00-0.19 0.00-0.19
PCG 0.00-0.33 0.00-0.31 0.00-0.29

Table 3.3: Summary of pointer-based benchmarks. The table lists relative CPI (cy-
cles per instruction, relative to the RND data set), absolute L2 cache miss rate and
absolute data bus utilization.

j = 0; pElement = pRow[j];

while(pElement) {

result[row] += pElement->Real * right[pElement->Col];

j++;

pElement = pRow[j];

}

In this loop, pRow is a pointer to the array of pointers for the current row. This
loop shows largely the same behavior as the loop above, except that pElement can
be determined independently for each iteration. The extra array will put some extra
load on the memory subsystem, but as the maximum data bus utilization observed for
SPMATVEC has been 0.2743, there is enough bandwidth available to accommodate
for this extra data (the maximum bandwidth has been determined to be 0.4746, see
Section 3.5.3).

Figure 3.6 shows the normalized execution times of SPMATVEC using the prefetched
pointer arrays. The reference execution time is the original version of SPMATVEC
using the same data set with the same memory layout. Execution time is used in
this case and not CPI, because both kernels differ at the assembly level. The figure
shows that whenever the hardware prefetching mechanism is effective, which is true
for the CSR and CSC data layouts, then breaking the dependency chains can both
have a positive or negative effect, depending on the input data. However, these ef-
fects are relatively small, compared to the effect that breaking dependency chains has
when using the random data layout (RND). In that case, major improvements are ob-
served. This indicates that the original version of SPMATVEC is severely affected if
the memory access pattern is irregular and that latency caused by the cross-iteration
dependency on the pointer traversal is an important factor.

Additional improvements might be achieved by other techniques such as struc-

3.5. Experiments on a Single Core 55

M82.CSC

M82.CSR

M82.RND

M271.CSC

M271.CSR

M271.RND

M479.CSC

M479.CSR

M479.RND

M665.CSC

M665.CSR

M665.RND

M1083.CSC

M1083.CSR

M1083.RND

M1614.CSC

M1614.CSR

M1614.RND

M2474.CSC

M2474.CSR

M2474.RND

M2580.CSC

M2580.CSR

M2580.RND

M3068.CSC

M3068.CSR

M3068.RND

M7419.CSC

M7419.CSR

M7419.RND

M24270.CSC

M24270.CSR

M24270.RND

M41594.CSC

M41594.CSR

M41594.RND

M61896.CSC

M61896.CSR

M61896.RND

M72734.CSC

M72734.CSR

M72734.RND

M105339.CSC

M105339.CSR

M105339.RND

M578890.CSC

M578890.CSR

M578890.RND

M680341.CSC

M680341.CSR

M680341.RND

M713907.CSC

M713907.CSR

M713907.RND

M715804.CSC

M715804.CSR

M715804.RND

M726674.CSC

M726674.CSR

M726674.RND

M1143140.CSC

M1143140.CSR

M1143140.RND

M3279690.CSC

M3279690.CSR

M3279690.RND

Relative Execution Time

0
.0

0
.5

1
.0

1
.5

S
P

M
A

T
V

E
C

 R
e

la
ti

v
e

 E
x

e
c

u
ti

o
n

 T
im

e
 U

s
in

g
 P

o
in

te
r

A
rr

a
y

s

F
ig

u
re

3.
6:

S
P

M
A

T
V

E
C

-
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

u
si

n
g

p
re

fe
tc

h
ed

p
oi

n
te

r
ar

ra
y
s.

T
h
is

fi
gu

re
sh

ow
s

th
e

re
la

ti
v
e

ex
ec

u
ti
o
n

ti
m

e
w

h
en

p
oi

n
te

rs
ar

e
n
o
t

ac
ce

ss
ed

u
si

n
g

a
p
o
in

te
r

ch
as

in
g

lo
op

,
b
u
t

in
st

ea
d

ar
e

al
l
p
re

fe
tc

h
ed

in
to

an
ar

ra
y.

T
h
e

re
fe

re
n
ce

ti
m

e
is

th
e

ti
m

e
ob

ta
in

ed
b
y

ru
n
n
in

g
th

e
or

ig
in

al
p
oi

n
te

r
ch

as
in

g
lo

op
.

In
th

e
ca

se
th

at
th

e
m

em
or

y
re

fe
re

n
ce

st
re

a
m

is
re

gu
la

r
(C

S
R

is
ve

ry
re

gu
la

r,
b
u
t

C
S
C

is
al

so
re

la
ti

v
el

y
re

gu
la

r)
it

is
ob

se
rv

ed
th

at
p
er

fo
rm

an
ce

is
ro

u
gh

ly
si

m
il
a
r.

In
th

es
e

ca
se

s,
th

e
h
ar

d
w

ar
e

p
re

fe
tc

h
in

g
m

ec
h
an

is
m

is
th

u
s

ab
le

to
p
re

d
ic

t
fu

tu
re

re
fe

re
n
ce

s
of

th
e

p
oi

n
te

r
tr

av
er

sa
l.

W
it

h
th

e
R

N
D

d
at

a
se

t
th

is
is

n
ot

so
an

d
in

th
is

ca
se

,
th

e
ex

p
li
ci

t
ex

p
os

u
re

of
m

em
or

y
ad

d
re

ss
es

th
ro

u
gh

th
e

p
oi

n
te

r
a
rr

ay
re

su
lt

s
in

si
gn

ifi
ca

n
t

p
er

fo
rm

an
ce

im
p
ro

ve
m

en
ts

.

56 3. Characterizing the Impact of Irregularity

Benchmark Abs. CPI Abs. L2 Miss Rate Abs. Data Bus Utilization

MCF 1.00-4.79 0.00-0.04 0.12-0.25
ISPMATVEC 0.45-1.26 0.00-0.02 0.00-0.34
IJDSPMATVEC 0.53-1.56 0.00-0.03 0.00-0.34
IJACIT 0.42-1.42 0.00-0.02 0.00-0.33
ASM 0.67-2.34 0.00-0.03 0.00-0.28
TRMAT 0.40-5.84 0.00-0.03 0.00-0.27
CMCK 0.33-1.14 0.00-0.00 0.00-0.12
MPERM 0.43-1.98 0.00-0.04 0.00-0.43

Table 3.4: Summary of indirection array based benchmarks and MCF. The table lists
absolute CPI (cycles per instruction) absolute L2 cache miss rate and absolute data
bus utilization.

Benchmark Rel. Execution Time Rel. L2 Miss Rate Rel. Data Bus Utilization

SPMATVEC 0.67-14.96 1.51-18.31 0.20-3.89
SPMATMAT 0.79-0.85 0.29-3.94 0.60-8.38
JACIT 1.04-14.24 2.38-13.58 0.28-2.73
DSOLVE 0.05-0.32 3.71-27.74 1.63-46.72
PCG 1.09-4.07 5.03-69.12 0.46-50.37
ISPMATVEC 0.50-2.57 0.40-2.63 0.64-3.28
ISPMATMAT 0.77-0.84 0.08-0.71 0.18-1.49
IJACIT 0.85-2.50 0.71-3.36 0.59-3.03

Table 3.5: Summary of dense vs. sparse benchmarks. The table lists range of relative
execution time, relative L2 cache miss rates and relative data bus utilization with
respect to the dense implementation.

3.5. Experiments on a Single Core 57

ture splitting. Curial et al. [35, 36] have shown speedups of 2.07 and 1.72 using
structure splitting on the POWER4 and POWER5 architecture, respectively. They
implemented structure splitting in the IBM XL compiler. Hagog and Tice [50] have
implemented structure splitting in GCC and show performance improvements on the
art benchmark from SPEC2000 of 1.44 and 1.50 on the G4 and G5 architectures,
respectively. In other cases their methods did not show any significant effect. We
realize that their experiments were evaluated on different architectures than we used,
but it gives an indication of what can roughly be expected from such techniques.

Above, the potential performance improvements have been shown when memory
address streams are made predictable, either implicitly by managing the layout of a
data structure, or explicitly by exposing the memory addresses through a prefetch
array. The potential improvements of managing reference streams have shown to
be more influential than techniques like structure splitting. These findings support
Thesis 2, that the unpredictability of memory reference streams is largely responsible
for performance degradation in pointer-based applications. Therefore, memory refer-
ence streams must be made predictable, and this should be a guiding principle when
considering compiler optimizations targeting irregular code.

3.5.3 Memory Bandwidth in Irregular Applications

In data intensive regular applications, memory bandwidth is the main factor con-
straining performance. In contemporary processor designs, the memory bus is shared
among multiple cores. Performance of the memory system is measured using the data
bus utilization, which is defined as follows [62]:
“Data bus utilization is the percentage of bus cycles used for transferring data among
all bus agents in the system, including processors and memory.” Levinthal [77] states
that the bandwidth on an Intel Core 2 system is affected by numerous factors and that
for each system, the maximum bandwidth should be determined by benchmarking a
triad (A[i] = B[i] + a ∗ C[i]). For the system used in our experiments, the data bus
utilization when executing a triad on a single core is 0.4746.

Figure 3.7 shows the data bus utilization for JACIT. Compared to the upper
bound measured, the data bus is not fully utilized. The memory layout CSR scores
consistently better than the CSC and RND layouts. This fact is also reflected in
the L2 cache miss rates, which are shown in Figure 3.8. In this figure, the miss rate
is subdivided into demand misses and prefetch misses. A high demand miss rate
indicates that the prefetchers are not able to predict future references and therefore
cause a cache miss when they are actually needed. Prefetch misses occur whenever
a prefetch request from the L1 cache is received and the data is not found in the L2
cache. Whenever the memory references follow a very regular pattern (e.g. CSR input
order), practically no demand misses occur, which is a good thing. CSC input order
performs slightly worse than CSR, which is due to the fact that memory accesses
do exhibit a good locality, there is still some regularity and demand misses still do
not occur frequently. For the RND input order, this is different. Both prefetch and
demand misses increase dramatically and this is reflected in the normalized execution
times, as shown in Figure 3.9. A summary of the data bus utilization measured for

58 3. Characterizing the Impact of Irregularity

M
8

2

M
1

0
8

3

M
2

4
7

4

M
2

5
8

0

M
7

4
1

9

M
2

4
2

7
0

M
4

1
5

9
4

M
1

0
5

3
3

9

M
5

7
8

8
9

0

M
7

1
3

9
0

7

M
7

1
5

8
0

4

M
7

2
6

6
7

4

M
1

1
4

3
1

4
0

M
3

2
7

9
6

9
0

Row−wise insertion order (CSR)

Column−wise insertion order (CSC)

Random insertion order (RND)

D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

JACIT Data Bus Utilization

Figure 3.7: JACIT - Data Bus Utilization. On the x-axis are the different data input
sets, ordered by increasing size from left to right. As long as the input sets fit in the
caches, the data bus is not used. As soon as L2 cache misses start to occur though,
the data bus utilization rises quickly. In this case, the data layout has a large influence
on performance (See Figure 3.9). Therefore, when the RND set is used, much of the
data fetched from main memory is not actually needed.

the benchmarks are shown in Table 3.3, 3.4 and 3.5.
The results show that in nearly all cases, the bandwidth is not fully utilized. As

shown in the previous section, breaking dependency chains by explicitly exposing
the memory reference stream to the processor can be a rewarding technique. This
supports Thesis 3. There is extra bandwidth available and putting this to work to
break dependencies potentially increases performance.

This extra available bandwidth should be put to use to resolve dependency infor-
mation at run-time. Techniques that come to mind first are prefetching techniques
in which pointer chains are traversed and stored in arrays prior to the actual traver-
sal [65, 81]. Other techniques that effectively break dependency chains by reordering
data [113] also benefit from extra available bandwidth and also fit in this category.

In Section 3.6.2 the bandwidth characteristics when running multiple processes
concurrently on the different combinations of cores will be discussed.

3.5. Experiments on a Single Core 59

M
1

0
5

3
3

9
.C

S
R

M
1

0
5

3
3

9
.R

N
D

M
5

7
8

8
9

0
.C

S
C

M
5

7
8

8
9

0
.C

S
R

M
5

7
8

8
9

0
.R

N
D

M
7

1
3

9
0

7
.C

S
C

M
7

1
3

9
0

7
.C

S
R

M
7

1
3

9
0

7
.R

N
D

M
7

1
5

8
0

4
.C

S
C

M
7

1
5

8
0

4
.C

S
R

M
7

1
5

8
0

4
.R

N
D

M
7

2
6

6
7

4
.C

S
C

M
7

2
6

6
7

4
.C

S
R

M
7

2
6

6
7

4
.R

N
D

M
1

1
4

3
1

4
0

.C
S

C

M
1

1
4

3
1

4
0

.C
S

R

M
1

1
4

3
1

4
0

.R
N

D

M
3

2
7

9
6

9
0

.C
S

C

M
3

2
7

9
6

9
0

.C
S

R

M
3

2
7

9
6

9
0

.R
N

D

L2 Cache Demand Miss Rate

L2 Cache Prefetch Miss Rate

L
2

 C
a

c
h

e
 M

is
s
 R

a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

JACIT L2 Cache Miss Rate

Figure 3.8: JACIT - L2 Cache Miss Rate. On the x-axis are the different data input
sets, ordered by increasing size from left to right. Only data sets for which L2 caches
do occur are depicted. It is very clear that the CSR data layout performs best, as
this data layout does not result in any demand misses. The RND data set shows
most L2 cache misses, both prefetch and demand misses. Apparently, the prefetching
mechanism is often triggered, but most likely, the data fetched is not actually used
and actual data references often result in a demand miss.

60 3. Characterizing the Impact of Irregularity

M
8

2

M
1

0
8

3

M
2

4
7

4

M
2

5
8

0

M
7

4
1

9

M
2

4
2

7
0

M
4

1
5

9
4

M
1

0
5

3
3

9

M
5

7
8

8
9

0

M
7

1
3

9
0

7

M
7

1
5

8
0

4

M
7

2
6

6
7

4

M
1

1
4

3
1

4
0

M
3

2
7

9
6

9
0

Row−wise insertion order (CSR)

Column−wise insertion order (CSC)

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

JACIT Relative Execution Time

Figure 3.9: JACIT - Relative Execution Time. On the x-axis are the different data
input sets, ordered by increasing size from left to right. The reference time is the time
obtained by running the benchmark using the RND data sets. At the point where the
relative performance of the two regular layouts perform best, the data bus utilization
is also high. In other words, as soon as the main memory is accessed, regularity in
memory reference streams becomes more important.

3.5. Experiments on a Single Core 61

3.5.4 Controlling the Impact of Irregularity

Thesis 4 states that much of the impact of irregularity can be controlled by choosing
an appropriate data layout. The results of the experiments suggest that major per-
formance improvements can be achieved by controlling data layout. For example, the
results in Figure 3.5 showed that for larger data sets, restructuring memory to match
the traversal order can result in speedups of up to 8.5. These are significant improve-
ments. While DSOLVE did not yield great speedups for its input set (see Figure 3.4),
for reasons explained in Section 3.5.1, the results of the other benchmarks suggest
that if restructuring would be done after LU factorization, then similar improvements
would be achieved for these data sets as well (see Figure 3.5 and Table 3.3). In other
cases where restructuring may prove difficult, explicit exposure of memory addresses
did yield significant speedups, as was shown in Section 3.5.2. Both approaches deal
with the problem of irregularity by changing access to the data, either by explicit
restructuring or by providing extra information to expose memory addresses to the
processor without being hampered by dependency chains. Other data restructuring
approaches have also been shown to improve performance considerably [113]. There-
fore, in accordance with Thesis 4 we state that much of the impact of irregularity can
be controlled by techniques as mentioned above.

3.5.5 Irregularity of Sparse Code

Thesis 5 states that contrary to common belief sparse code is not necessarily very
irregular. It will be shown here, by comparing dense kernels with sparse kernels,
that their behavior is not necessarily radically different from their dense counter-
parts. IJACIT is presented in more detail and results for the other comparisons are
summarized in Table 3.5.

In certain cases, indirection array based applications can show performance that
is near the performance of their dense counterparts. This is because the matrix
structure itself is traversed in a regular fashion. This occurs for instance in IJACIT,
which executes the following loop structure every iteration:

for(i = 1; i <= Size; i++) {

x_2[i] = b[i];

j1 = ia[i];

j2 = ia[i+1]-1;

for(j = j1; j <= j2 && ja[j] < i; j++) {

x_2[i] -= a[j] * x_1[ja[j]];

}

diag = a[j];

j++;

for(; j <= j2; j++) {

x_2[i] -= a[j] * x_1[ja[j]];

}

x_2[i] = x_2[i] / diag;

}

Only array x 1 is accessed irregularly. If the dimensions of the matrix are not too

62 3. Characterizing the Impact of Irregularity

D
1

0
0

D
1

0
8

9

D
2

5
0

0

D
2

6
0

1

D
7

5
6

9

D
2

4
3

3
6

D
4

1
6

1
6

D
1

0
5

6
2

5

D
5

7
9

1
2

1

D
7

1
4

0
2

5

D
7

1
7

4
0

9

D
7

2
7

6
0

9

D
1

1
4

4
9

0
0

D
3

2
7

9
7

2
1

IJACIT

JACIT

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

0

5

10

15

DJACIT Relative Execution Time

Figure 3.10: Dense vs. Sparse Code - Relative Execution Time. This figure shows
the relative execution time of IJACIT and JACIT, with DJACIT used as a reference.
These benchmarks are identical (for IJACIT and DJACIT this includes their data
layout), except that IJACIT and JACIT contain indirect accesses to the data. There-
fore, this figure gives an estimate of the impact of the overhead of these data access
methods. For IJACIT, it shows that there is some overhead, but this is not always as
large as often believed. For JACIT, the overhead is much larger. Cache performance
is a large factor, as is seen for the data set D579121 where the cache performance of
especially JACIT is relatively bad.

large, this vector will remain in the cache. Also, while the access pattern of the right
hand side vector may be completely unpredictable at compile-time, it will often show
good locality due to the structure of the matrix. Another characteristic found in
indirection array based applications is the presence of loop bounds that are data de-
pendent. This potentially prevents a compiler from doing reordering and parallelizing
transformations.

To measure the overhead incurred by indirection arrays, we compare the execution
times of dense implementations of some benchmarks against their indirection array
based counterparts. The data sets they operate on have the same dimensions, but
the indirection array based version adds overhead by introducing an indirection array
that stores column indices. This array is used to access another array, in the case of
IJACIT this is x 1.

Figure 3.10 shows the relative execution times of DJACIT and IJACIT. It is
interesting to see that the dense version does not execute that much faster, especially

3.5. Experiments on a Single Core 63

D
7

1
4

0
2

5

D
7

1
7

4
0

9

D
7

2
7

6
0

9

D
1

1
4

4
9

0
0

D
3

2
7

9
7

2
1

IJACIT

JACIT

R
e

la
ti
v
e

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

0

5

10

15

DJACIT Relative L2 Cache Miss Rate

Figure 3.11: Dense vs. Sparse Code - Relative L2 Cache Miss Rate. Only data sets
are shown for which in both cases a significant amount of cache misses occur. For the
smaller data sets, IJACIT has a higher miss rate that DJACIT, which is due to the
smaller working set of DJACIT (which does not use the indirection array). JACIT
shows a much higher miss rate and this is due to the fact that the pointer structure
nodes contains data that is not used by the algorithm which wastes cache space.
Eventually, for the largest data sets, DJACIT has a higher miss rate than IJACIT
but it does not have to fetch the index data and therefore still performs better than
IJACIT (See Figure 3.10).

64 3. Characterizing the Impact of Irregularity

D
5

7
9

1
2

1

D
7

1
4

0
2

5

D
7

1
7

4
0

9

D
7

2
7

6
0

9

D
1

1
4

4
9

0
0

D
3

2
7

9
7

2
1

DJACIT

IJACIT

JACIT

D
a

ta
 B

u
s
 U

ti
li
z
a

ti
o

n

0.0

0.2

0.4

0.6

0.8

DJACIT Data Bus Utilization

Figure 3.12: Dense vs. Sparse Code - Data Bus Utilization. For the smaller data sets,
IJACIT and JACIT show a higher data bus utilization, as there is more data to fetch
for these benchmarks (index array and data from pointer nodes). For the larger data
sets, DJACIT and JACIT achieve a data bus utilization that is quite close to that of
IJACIT but for DJACIT, this does not include the index array. Therefore, DJACIT
will execute faster in these cases, which is confirmed in Figure 3.10.

3.5. Experiments on a Single Core 65

for the smallest and largest data sets. Note that neither of these implementations
have been hand-optimized and thus the compiler is responsible for the generation of
efficient code. For DJACIT, the Intel C compiler generates vectorized, unrolled and
multi version code. For IJACIT, however, none of these optimizations are performed.
This is due to potential data dependencies (dynamic loop bounds) and non-standard
loop headers. Even if dependencies are ignored 2, the optimizations are still not
performed, due to the indirection in the inner loop3. Despite the lack of advanced
optimizations, IJACIT does not perform dramatically worse than DJACIT.

For the medium sized data sets, however, the dense version is considerably faster.
There is a peak in performance difference between DJACIT and IJACIT, which is
largely due to the fact that IJACIT also uses an indirection array that is used as an
offset in the array x 1. This indirection results in extra data traffic. The point where
the execution times show the greatest difference is the region in which IJACIT starts
to suffer from L2 cache misses, whereas for DJACIT the data set still fits in L2 cache.
If we look at the relative L2 cache miss rate in Figure 3.11, this becomes clearer.
Results are only shown for matrices that have L2 cache misses for both versions.
For matrix D761, IJACIT suffers from L2 misses, whereas DJACIT has almost no
cache misses (and therefore is not shown in the graph). As the data sets grow larger,
DJACIT starts to suffer from misses as well, and the performance differences become
much less. The decomposition of L2 cache misses in prefetch and demand misses
shows that for both benchmarks, demand misses do not occur. Thus, prefetched data
arrives in time in the L2 cache. Data bus utilization is similar for both benchmarks
when using the largest data sets. But in the case of IJACIT, part of the data traffic is
caused by the indirection array, which is not part of DJACIT. To conclude, DJACIT
runs faster because of less data traffic, no irregular access to the right hand side vector
and the fact that optimizations can be applied.

For the pointer-based version (JACIT) the performance figures are much worse,
also in the case that the working set of the dense version is also too large to fit in
the cache. While data bus utilization is similar, the effectiveness of pointer-based
applications is less, as much of the data brought into the cache remains unused (only
a few members of a structure node are actually used).

The lesson that can be learned from these experiments is that irregularity is not
always a very constraining factor. The example of IJACIT showed that performance
degradation is not as severe as often is believed, supporting Thesis 5. The comparison
of the other algorithms is shown in Table 3.5 and they show similar behavior. Pointer-
based applications make this problem a bit harder. In that case, regular behavior can
be forced by choosing the proper layout. Together with recent techniques implemented
in compilers, such as structure splitting, even pointer-based applications might in
certain cases reach performance levels previously only believed to be possible for
dense applications.

2Using #pragma ivdep
3This information can be obtained by using the -opt-report option.

66 3. Characterizing the Impact of Irregularity

3.5.6 Optimizing Compilers

The SPARK00 benchmarks contain relatively simple kernels. However, even the most
basic constructs that are responsible for irregular behavior prevent the application of
many compiler optimizations. Thesis 6 states that traditional code and control flow
optimizations do barely have a positive effect on irregular code. In the experiments
in this section, we will show the effectiveness of the standard optimization levels of
the Intel C Compiler (O1, O2 and O3) on both regular and irregular code.

Timings have been obtained for all benchmarks of SPARK00 for the options men-
tioned above. For each benchmark that uses a matrix as input data set, two different
matrices are used, namely M24270 and M715804. They will be referred to as the
small and large input set, respectively. For DSOLVE, M24270 and M105339 are
used. In DSOLVE, a LU-factorized matrix is used, and M105339 has a similar size
as M715804 after LU-factorization.

Figure 3.13 shows the speedups obtained by the optimization levels -O2 and -
O3, relative to the execution time using the setting -O1. It shows that for irregular
applications, there is not much to be gained by the extra optimizations that -O2 and
-O3 provide. The dense codes do show some additional performance increase when
-O2 and -O3 are applied.

These results indicate that irregular code itself is hard to optimize, if only code and
control flow optimizations are considered. In the experiments just described, the data
layout was fixed, and only the quality of the target assembly code was responsible
for any performance improvement (or degradation). As was shown in Figure 3.5,
if the code is not changed but the data layout can be changed, then the potential
performance improvements are much higher. Breaking dependency chains (either
by prefetching of pointers or by data layout remapping) also showed large potential
performance improvements (Figure 3.6). It can be concluded that speedups obtained
by such methods are much greater, and therefore attention should shift towards data
restructuring transformations instead of code and control flow optimizations, as stated
in Thesis 6.

3.6 Experiments on Multiple Cores

This section describes two sets of experiments. First, we will focus on the effect of
irregularity in applications on multi-core platforms. Second, the bandwidth charac-
teristics of such applications are considered. Finally, a short summary of the results
is given. All figures contain information on processor efficiency, measured by the
(relative or absolute) clocks per instruction retired (CPI), and data bus utilization,
which is the fraction of bus cycles used to transfer data. Each run in separated by
a dotted line. Within each run, each different process is depicted using one black
data point, which shows the bus utilization, and an associated grey bar, which shows
the CPI. Whenever applicable, the legend shows which data set is associated with a
data point. The grey data points show the estimated aggregate data bus utilization,
in case cores from two different chips are used simultaneously. This is explained in
more detail in Section 3.6.2. Each run is annotated with the configuration number.

3.6. Experiments on Multiple Cores 67

DMATVEC

DMATMAT

DJACIT

DDSOLVE

DPCG

SPMATVEC

ISPMATVEC

IJDSPMATVEC

SPMATMAT

JACIT

DSOLVE

PCG

MCF

ASM

MPERM

CMCK

TRMAT

O
2
−

s
m

a
ll

O
2
−

la
rg

e

O
3
−

s
m

a
ll

O
3
−

la
rg

e

Speedup (Relative to O1)

0
.0

0
.5

1
.0

1
.5

2
.0

D
e
n
s
e

S
p
a
rs

e

R
e
la

ti
v
e
 E

ff
e
c
ti

v
e
n

e
s
s
 o

f
IC

C
 O

p
ti

m
iz

a
ti

o
n

 O
p

ti
o

n
s

F
ig

u
re

3.
13

:
T

h
e

eff
ec

t
of

st
a
n
d
ar

d
co

m
p
il
er

op
ti

on
s

of
th

e
In

te
l

C
co

m
p
il
er

.
T

h
e

b
en

ch
m

ar
k
s

ar
e

al
l

ru
n

u
si

n
g

a
sm

a
ll

an
d

a
la

rg
e

d
at

a
se

t.
F
or

th
e

b
en

ch
m

ar
k
s

u
si

n
g

m
at

ri
ce

s
as

th
ei

r
in

p
u
t

se
t,

M
24

27
0

an
d

M
71

58
04

ar
e

u
se

d
.

D
S
O

L
V

E
u
se

s
M

10
53

39
as

it
s

la
rg

e
d
at

a
se

t.
T

h
e

d
en

se
b
en

ch
m

ar
k
s

u
se

D
24

33
6

an
d

D
71

74
09

as
it

s
d
at

a
se

ts
.

D
D

S
O

L
V

E
(d

en
se

ve
rs

io
n

of
D

S
O

L
V

E
)

u
se

s
D

8
82

09
an

d
D

70
72

81
.

T
h
e

sp
ee

d
u
p
s

gi
ve

n
ar

e
re

la
ti

ve
to

th
e

ex
ec

u
ti

on
ti

m
es

o
b
se

rv
ed

u
si

n
g

-O
1.

F
or

th
e

d
en

se
b
en

ch
m

a
rk

s,
th

e
op

ti
m

iz
at

io
n

le
ve

ls
-O

2
an

d
-O

3
d
o

in
so

m
e

ca
se

s
gi

ve
ad

d
it

io
n
al

p
er

fo
rm

a
n
ce

.
T

h
e

ir
re

gu
la

r
b
en

ch
m

ar
k
s

d
o

n
ot

re
al

ly
b
en

efi
t

fr
om

th
es

e
op

ti
m

iz
at

io
n

le
ve

ls
in

g
en

er
al

,
ex

ce
p
t

fo
r

M
C

F
an

d
A

S
M

.
H

ow
ev

er
,

th
e

sp
ee

d
u
p
s

as
ob

se
rv

ed
fo

r
D

M
A
T

V
E

C
ar

e
n
ot

ob
se

rv
ed

in
an

y
of

th
e

ir
re

gu
la

r
b
en

ch
m

ar
k
s.

68 3. Characterizing the Impact of Irregularity

Descriptions for the configurations can be found in Table 3.2. Note that as described
in Section 3.3.2 our experiments are run using two different memory access patterns.
If different memory access patterns are used, the column is annotated with either
an ‘S’ or an ‘R’, indicating the use of the sequential or random reference patterns,
respectively.

3.6.1 Irregularity on Multi-Core Systems

On a single-core configuration, irregularity in memory reference streams has little
impact, if the working set size of the application does not exceed the cache sizes [117].
In order to verify this in the case of multi-core configurations, both data sets that
fit in the cache and sets that do not fit in the cache are used. The evaluation of
different memory access streams is realized by running the same program with the
two different memory layouts, sequential and random. This is only possible for the
benchmarks which use pointer structures to represent the matrices. By controlling
the order in which elements are added to the matrix, different memory access patterns
emerge when traversing the pointer structures, showing different behavior.

When running PCG with a dataset that fits into L1 cache (impcol b), no per-
formance degradation is observed when running on different combinations of cores
simultaneously. Data layout does not affect performance in this case. The same holds
for sets that fit into L2 cache (bcsstm34 and cage9). In contrast, for data sets that do
not fit in the cache (G2 circuit and nd3k), performance differences are observed among
different core combinations and memory layouts. This is shown in Figure 3.14. Thus,
whenever possible, cores should be selected from different chips and if cores from the
same chip are to be used simultaneously, choosing the fast combinations (as indicated
in Table 3.2) has a significant impact on performance.

While the absolute performance numbers of PCG are much better in the case
that memory access is chosen to be regular (the runs marked with ‘S’), the relative
performance impact when running multiple instances is much greater compared to the
impact when memory access is random (the runs marked with ‘R’). Regular behavior
of an application is a desirable property, but not all data structures can be designed
to show this behavior (e.g. unpredictable graph traversals). In cases where data
access cannot be optimized, the single-core performance might be disappointing, but
such applications will scale relatively better than regular applications when running
multiple instances concurrently.

Therefore, it can be concluded that as long as data sets fit within the caches,
performance does not suffer when running multiple instances of an irregular appli-
cation simultaneously, but when the data does not fit in the caches, the choice of a
combination of appropriate cores has a significant impact.

3.6.2 Memory Bandwidth on Multi-Core Systems

In data intensive regular applications, memory bandwidth is the main factor con-
straining performance. In contemporary processor designs, the memory bus is shared
among multiple cores. While it has been shown in Section 3.5.3 that most irregular

3.6. Experiments on Multiple Cores 69

0.00.20.40.60.81.0

N
u

m
b

e
r

o
f

C
o

re
s

Data Bus Utilization (Data Points)

Relative Clocks Per Instruction (Grey Bars)

1 S

1 R

1 S

1 R

2 S

2 R

3 S

3 R

4 S

4 R

2 S

2 R

3 S

3 R

4 S

4 R

5 S

5 R

6 S

6 R

7 S

7 R

8 S

8 R

5 S

5 R

6 S

6 R

7 S

7 R

8 S

8 R

9 S

9 R

9 S

9 R

1
2

4
8

00.511.522.533.544.55

G
2

_
c
ir
c
u

it

n
d

3
k

P
C

G
 −

 R
e
la

ti
v
e
 C

P
I:

 S
e
ts

 t
h

a
t

d
o

 n
o

t
fi

t
in

 c
a
c
h

e

F
ig

u
re

3.
14

:
P

C
G

-
P
er

fo
rm

a
n
ce

in
re

la
ti

ve
cl

o
ck

s
p
er

in
st

ru
ct

io
n

re
ti

re
d

(C
P

I)
.
D

ep
ic

te
d

ar
e

th
e

tw
o

se
ts

th
a
t

d
o

n
o
t

fi
t

in
L
2

ca
ch

e
w

h
en

ru
n

on
a

si
n
g
le

co
re

(G
2

ci
rc

u
it
,
n
d
3
k)

.
T

h
e

b
ar

s
sh

ow
th

e
re

la
ti

v
e

C
P

I.
T

h
e

d
at

a
p
o
in

ts
sh

ow
th

e
d
a
ta

b
u
s

u
ti

li
za

ti
on

.
T

h
e

d
es

cr
ip

ti
on

fo
r

th
e

co
re

co
n
fi
gu

ra
ti

on
n
u
m

b
er

s
sh

ow
n

in
ea

ch
co

lu
m

n
ca

n
b
e

fo
u
n
d

in
T
a
b
le

3
.2

.
It

is
cl

ea
r

th
at

st
ar

ti
n
g

at
4

co
re

s,
th

e
b
an

d
w

id
th

is
al

re
ad

y
fu

ll
y

u
ti

li
ze

d
an

d
ad

d
in

g
m

or
e

p
ro

ce
ss

or
s

w
it

h
h
ig

h
b
a
n
d
w

id
th

re
q
u
ir

em
en

ts
w

il
l
n
ot

in
cr

ea
se

th
e

a
gg

re
ga

te
th

ro
u
gh

p
u
t.

70 3. Characterizing the Impact of Irregularity

applications do not fully utilize the bandwidth in single-core configurations, we will
show that for multi-core configurations, not only memory latency is a problem, but
also memory bandwidth. Performance of the memory system is measured using data
bus utilization. We repeat the definition given above [62]:
“Data bus utilization is the percentage of bus cycles used for transferring data among
all bus agents in the system, including processors and memory.” For the system used
in our experiments, the maximum bandwidth for multi-core configurations is done by
benchmarking a triad (A[i] = B[i] + a ∗ C[i]) for all core configuration mentioned in
Table 3.2. The results are shown in Figure 3.15. The black data points indicate the
data bus utilization as reported by Intel PTU, per core. The data bus utilization is
reported per chip, and therefore, for instance for configuration 2 (2 cores, different
chip), it seems that the bus utilization is lower than for configuration 3 and 4, while
the measured performance in CPI is better. In fact, the data bus utilization is also
higher, but the cores only report the data bus traffic for the chip they are part of.
Therefore, as the 2 chips and the application that runs on them are identical, we
estimate the actual aggregate bandwidth by multiplying the measured bandwidth by
2. These estimates are depicted by the grey data points.

Maximum bandwidth utilization can be viewed per chip, or for the entire system.
For a single chip, the maximum bandwidth measured is 0.4746. While measurements
on a triad should give an upper bound of performance [77], we have observed higher
values using MPERM, namely 0.5029. For a single chip, the maximum bandwidth
available seems to be roughly 50%. If we look at the highest measured value for data
bus utilization in the case that 2 chips are used and multiply this by 2, we reach
a maximum aggregate data bus utilization of 0.7076. For MPERM, 0.7571 is the
estimated maximum data bus utilization. Therefore, the maximum bandwidth as
obtained by MPERM is used as a reference.

Figure 3.16 shows the data bus utilization for MPERM. The grey bars show the
absolute CPI and the data points show the data bus utilization. The benchmark
MPERM achieves quite a high data bus utilization when running on a single core.
As expected, the small data sets that fit in the caches (LF10 and bcsstm34) do not
cause traffic on the memory bus and therefore their CPI per process does not show
any performance degradation. For the large data sets (G2 circuit and nd3k), the
performance is affected when moving to multi-core configurations. Near maximum
bandwidth utilization is already reached in some cases when running on 2 cores and
scaling further significantly slows down performance, as indicated by the increasing
CPIs.

Figure 3.17 shows the data bus utilization for JACIT. MPERM only uses the
sequential input data sets, whereas JACIT also uses the random data sets. The
irregular memory reference pattern caused by the random data set does not give
large differences in data bus utilization, especially when moving beyond the single-
core configuration. There is a large difference in performance though, as indicated by
the measured CPI (scale is different from the scale in Figure 3.16). While the amount
of data traffic is similar for both the regular and irregular memory reference streams,
much of the data fetched is actually not used in computations when the access pattern
is irregular.

3.6. Experiments on Multiple Cores 71

0.00.20.40.60.81.0

N
u

m
b

e
r

o
f

C
o

re
s

Data Bus Utilization (Data Points)

Clocks Per Instruction (Grey Bars)

1
2

3
4

5
6

7
8

9

1
2

4
8

024681012141618202224262830

T
R

IA
D

 −
 D

a
ta

 B
u

s
 U

ti
li
z
a
ti

o
n

F
ig

u
re

3.
15

:
T

R
IA

D
-

D
at

a
b
u
s

u
ti

li
za

ti
on

.
T

h
e

b
ar

s
in

d
ic

at
e

th
e

ab
so

lu
te

cl
o
ck

s
p
er

in
st

ru
ct

io
n

re
ti

re
d
,

th
e

b
la

ck
d
a
ta

p
oi

n
ts

d
at

a
b
u
s

u
ti

li
za

ti
on

.
T

h
e

gr
ey

d
at

a
p
oi

n
ts

sh
ow

th
e

es
ti

m
at

ed
ag

gr
eg

at
e

d
at

a
b
u
s

u
ti

li
za

ti
on

w
h
en

co
re

s
fr

o
m

d
is

ti
n
ct

ch
ip

s
h
av

e
b
ee

n
se

le
ct

ed
.

72 3. Characterizing the Impact of Irregularity

0.0 0.2 0.4 0.6 0.8 1.0

N
u

m
b

e
r o

f C
o

re
s

Data Bus Utilization (Data Points)

Clocks Per Instruction (CPI)

1
1

1
1

2
3

4
2

3
4

2
3

4
2

3
4

5
6

7
8

5
6

7
8

5
6

7
8

5
6

7
8

9
9

9
9

1
2

4
8

1 2 3 4 5 6 7 8 9 10

G
2

_
c
irc

u
it

L
F

1
0

b
c
s
s
tm

3
4

n
d

3
k

M
P

E
R

M
 −

 D
a
ta

 B
u

s
 U

tiliz
a
tio

n

F
ig

u
re

3
.1

6
:

M
P

E
R

M
-

D
ata

b
u
s

u
tilization

.
T

h
e

b
ars

in
d
icate

th
e

ab
solu

te
clo

ck
s

p
er

in
stru

ction
retired

,
th

e
b
lack

d
ata

p
o
in

ts
d
a
ta

b
u
s

u
tilization

.
T

h
e

grey
d
ata

p
oin

ts
sh

ow
th

e
estim

ated
aggregate

d
ata

b
u
s

u
tilizatio

n
w

h
en

cores
from

d
istin

ct
ch

ip
s

h
av

e
b
een

selected
.

D
ata

for
all

in
p
u
t

sets
is

sh
ow

n
.

3.6. Experiments on Multiple Cores 73

0.00.20.40.60.81.0

N
u

m
b

e
r

o
f

C
o

re
s

Data Bus Utilization (Data Points)

Clocks Per Instruction (Grey Bars)

1 S

1 R

1 S

1 R

2 S

2 R

3 S

3 R

4 S

4 R

2 S

2 R

3 S

3 R

4 S

4 R

5 S

5 R

6 S

6 R

7 S

7 R

8 S

8 R

5 S

5 R

6 S

6 R

7 S

7 R

8 S

8 R

9 S

9 R

9 S

9 R

1
2

4
8

0102030405060708090100

G
2

_
c
ir
c
u

it

n
d

3
k

J
A

C
IT

 −
 D

a
ta

 B
u

s
 U

ti
li
z
a
ti

o
n

F
ig

u
re

3.
17

:
J
A

C
IT

-
D

a
ta

b
u
s

u
ti

li
za

ti
on

.
T

h
e

b
ar

s
in

d
ic

at
e

th
e

ab
so

lu
te

cl
o
ck

s
p
er

in
st

ru
ct

io
n

re
ti

re
d
,

th
e

b
la

ck
d
a
ta

p
oi

n
ts

d
at

a
b
u
s

u
ti

li
za

ti
on

.
T

h
e

gr
ey

d
at

a
p
oi

n
ts

sh
ow

th
e

es
ti

m
at

ed
ag

gr
eg

at
e

d
at

a
b
u
s

u
ti

li
za

ti
on

w
h
en

co
re

s
fr

o
m

d
is

ti
n
ct

ch
ip

s
h
av

e
b
ee

n
se

le
ct

ed
.

O
n
ly

d
a
ta

fo
r

d
at

a
se

ts
th

at
d
o

n
ot

fi
t

in
th

e
ca

ch
es

ar
e

sh
ow

n
.

74 3. Characterizing the Impact of Irregularity

3.7 Summary

The performance degradation caused by different sources of irregularity has been
characterized using the SPARK00 benchmarks. The study has been performed on
the widely used Intel Core 2 architecture. Guided by the theses put forward in
Section 3.2 we have described the results of our experiments in Section 3.5 and 3.6.
We summarize our findings here.

Different aspects of irregularity have been evaluated and we have been able to
measure the impact of irregularity in memory reference streams for both pointer-
based and indirection array-based applications. We can conclude that as expected,
pointer-based applications are not in general suffering because of the pointers, but that
it is the irregularity of the memory streams that is the problem for the performance
of these programs.

Irregularity does not necessarily have a large impact on performance. Our ex-
periments have shown that for smaller working set sizes, the degree of irregularity
in memory reference streams did not have any significant effect (Thesis 1). This is
independent of the number of cores that are used. For larger sets, the influence of
irregularity becomes more dominant and the layout of the data does make a differ-
ence. This was observed across all pointer-based benchmarks. In this case, the use of
multiple cores will incur a degradation in performance and also the choice of which
cores are used does matter.

In the case that irregularity does have an influence, a major factor contributing
to the behavior of an application on a specific architecture is the predictability of the
memory reference stream (Thesis 2). In pointer-based applications, latency caused
by dependent memory references has a significant impact. It was shown that if the
hardware prefetching mechanism fails (random data references), explicitly exposing
the memory addresses by using pointer prefetch arrays did result in significant per-
formance improvements.

As memory latency often occurs in irregular applications, the full potential of the
memory subsystem is not used. This was reflected in our experiments, which showed
that in nearly all cases, the data bus is not fully utilized when running irregular
applications. Given the results described above, we propose that this extra available
bandwidth should be exploited to communicate dependency information (Thesis 3).
For multi-process configuration, this is not necessarily the case. While latency is a
problem per process, the processes together easily consume all available bandwidth
(Thesis 7).

The first three theses focused on quantifying the behavior of irregular applications.
The results that have been obtained indicate that the performance impact of irregu-
larity can vary considerably. It was shown that by controlling data layout, many of
the performance bottlenecks can be solved (Thesis 4).

Thesis 5 addressed the supposed irregularity of many sparse algorithms. We have
shown that the impact of this irregularity is not as severe as is often believed. Per-
formance of sparse algorithms using indirect addressing has been compared to their
dense counterparts and performance differences have been found to be relatively small
and are mostly explained by increased working set size due to the extra index array.

3.7. Summary 75

All results described above show that for irregular applications, data layout is a
very important factor. In addition, we have shown that optimizations that target code
optimization do not yield any additional improvement for irregular code (Thesis 6).
Therefore, we expect that the traditional approaches are not very likely to cause a
breakthrough in the optimization of irregular code. On the other hand, data restruc-
turing approaches can result in significant performance improvements and hence focus
in compiler research should shift towards data restructuring approaches.

Thesis 7 addressed the main performance issue arising when irregular memory
intensive applications are run concurrently: while irregular applications underutilize
the memory subsystem in a single-core configuration, this is not the case when moving
to multi-core platforms. Regardless of the fact whether the memory reference streams
are regular or irregular, the memory bandwidth is easily saturated.

While for small data sets, the multi-core platform performs extremely well this
is not true for data intensive irregular applications. Many factors have an influence,
such as the selection of cores to run on and the data layout used. The evaluation
performed in this chapter only considers running multiple independent processes.
Even in this case, optimal performance cannot be obtained. Distributed irregular
applications where dependencies between processes exist will make this problem even
harder to tackle. Therefore, both computer architecture and compiler technology
should be focusing on the dynamic optimization of data layout to handle the complex
interactions of irregular applications on multi-core platforms.

The work presented here defines performance bounds of what can be achieved
by restructuring transformations. Ideally, no matter what data layout is provided
initially, the application generated by the compiler should show the same performance.
This is what compilers targeting irregular code should aim for. As of today, such
restructuring approaches have not found their way to mainstream compilers yet, but
some experimental implementations of transformations targeting data layout have
been implemented [35, 48, 50, 68, 73, 75, 79], which is a promising step in the right
direction.

76 3. Characterizing the Impact of Irregularity

CHAPTER 4

Concepts of Restructuring Pointer-Linked Data Structures

Irregular memory accesses, especially those caused by the use of pointer-linked data
structures, can have a great impact on performance, as shown by the SPARK00
benchmarks in the previous chapter. Therefore, transparent reordering of data struc-
tures has great potential. In this chapter, the concepts underlying the restructuring
of pointer-linked codes are explained. In subsequent chapters, an implementation
is described which employs the LLVM framework, whereby the analyses and trans-
formations operate on the intermediate format of LLVM (LLVM bitcode). In this
chapter, the focus is on the concepts of data restructuring methods for pointer-linked
structures. For clarity, all examples are given in C.

The impact of irregular access is mainly found in two forms: either by using
indirect addressing of an array or by using pointers (the impact of both types has
been assessed using the SPARK00 benchmarks). Approaches to restructure irregular
code to regular code exist [125], but these only work on indirectly accessed Fortran
arrays (i.e., an array can be directly addressed as in A(i), or indirectly addressed by
using an index array B as in A(B(i))).

In languages such as C, irregular access is typically due to the use of pointers,
which makes such code very difficult to optimize. Pointers do not only allow irregular
access but can also point to arbitrary locations. Also, multiple pointers can point to
the same location (aliasing). Furthermore, pointers can be arbitrarily manipulated
and allow more complicated structures to be defined, such as linked lists or trees, all
of which present considerable optimization challenges. Hind [55] provides a concise
overview of pointer analysis techniques.

One very common pointer structure is the linked list. Linked lists represent a
sequence of elements where each element is in a completely unrelated memory location,
making it difficult for the compiler to optimize the memory access patterns. The

77

78 4. Concepts of Restructuring Pointer-Linked Data Structures

while(node != end) {

... = node->Value * B[idx_expr];

node = node->Next;

}

Figure 4.1: Structure of a loop using a linked list and array B.

presence of the code that accesses the linked list impedes analysis of the code (for
example, loop-carried data dependency analysis) and thus prevents the application
of optimizing transformations such as loop interchange or even more drastic code
restructuring. This irregular access pattern also poses a problem for the CPU cache,
which cannot exploit the locality of subsequent memory references. Computations
performed on subsequent items cannot be vectorized, if a linked list is used. This fact
is recognized in [11], which describes many of the key points that make C code so
hard to vectorize and parallelize.

In this chapter, the concepts of restructuring pointer-linked structures will be
explained using C code examples that traverse linked lists. Restructuring of these
lists is accomplished by transforming them into an alternative form that is more
suitable for further optimization. The concepts outlined have been implemented in
a proof-of-concept C to C restructuring compiler and the results of their application
to SPMATMAT and PCG benchmarks from SPARK00 are presented, which shows
considerable speedups.

4.1 Annihilation and Sublimation

In this chapter, we only deal with loop structures that iterate over linked lists. These
loops may also use regular arrays which may be indexed by an expression that depends
on the linked list. Figure 4.1 shows the structure of such a loop.

These types of loops prevent optimizations such as vectorization. We will show
that these loops can be transformed to loops having only array based regular and
irregular access patterns. In this form, optimizations are still not possible. This is not
a direct consequence of the use of indirect access patterns, but merely a consequence
of mixing an indirect access pattern with a direct access pattern or another indirect
access pattern. Let us illustrate this with an example:

for(i = 0; i < m; i++) {

...

for(j = 0; j < n; j++)

X[i] = X[i] + A[j] * B[C[j]];

}

The access pattern of B prevents vectorization of this code. At this point, two
different approaches can be taken. Either impose the access pattern of A on B, or
impose the access pattern of B on A. In the first case, B is restructured to follow the

4.1. Annihilation and Sublimation 79

access pattern of A, which is induced by i. The loop can now be rewritten to use the
restructured array B′:

for(i = 0; i < m; i++) {

...

for(k = 0; k < n; k++)

B’[k] = B[C[k]];

for(j = 0; j < n; j++)

X[i] = X[i] + A[j] * B’[j];

}

The other possibility is to restructure A such that it follows the access pattern of B.
This results in the following loop structure, where A′ is the restructured array:

for(i = 0; i < m; i++) {

...

for(k = 0; k < n; k++)

A’[C[k]] = A[k];

for(j = 0; j < n; j++)

X[i] = X[i] + A’[C[j]] * B[C[j]];

}

For this restructuring to be valid, the access pattern induced by C[k] must be injective.
The access patterns of A′ and B are the same, but they still are irregular. This issue
will be dealt with in Section 4.2.6. The first method is called annihilation, the second
sublimation.

Definition 1 If an access pattern I is provably sequential at compile-time and this
pattern is enforced onto other arrays, then this is called annihilation.

Definition 2 If an access pattern I is irregular (the array bounds induced by I cannot
be determined at compile-time) and this pattern is enforced onto other arrays, then
this is called sublimation.

At a first glance, it is not obvious that this distinction is effective. However, we
will show that both methods lead to significant performance improvements. The two
methods are complementary, as annihilation uses a pattern whose bounds are known
(symbolically) at compile-time, whereas for sublimation the optimization decisions
are taken at run-time. Therefore, applying annihilation does not require much run-
time overhead, whereas sublimation does require substantial run-time overhead. This
does not render sublimation a useless technique, as in some cases data dependencies
can make the application of annihilation inefficient (see Section 4.2.8).

Figure 4.2 shows the architecture of our conceptual restructuring framework. The
system consists of a compile-time part and a run-time part. At compile-time, code
is generated which results into perfectly nested loop structures. In the case of subli-
mation, these loop structures can be further optimized by the run-time system, using
memory access pattern restructuring, the process in which different access patterns
are coerced into a common regularized pattern.

80 4. Concepts of Restructuring Pointer-Linked Data Structures

This chapter is organized as follows. First, related work in this area is discussed.
Next, the transformation steps a compiler must implement are explained, The most
important contribution being the description of an access pattern restructuring frame-
work. The other transformations are merely tools to transform code into a code that is
suitable for access pattern restructuring. In the subsequent chapters, it will be shown
that some of this code and data transformations can also be replaced by compile-time
data layout transformations techniques and a run-time based restructuring environ-
ment. The different steps are illustrated by their application on a code example
which performs matrix multiplication. This algorithm has been transformed by a
prototype C source-to-source restructuring compiler (called MTC) and the results of
experiments conducted are discussed.

The approach as described here is essentially different from other approaches dis-
cussed in Chapter 2. By linearizing access to a linked list, linked list iteration state-
ments are transformed into simple for loops of which the access patterns can be
restructured by applying techniques similar to those described by Zhao and Wijs-
hoff [125]. This leads to an intermediate code that is amenable to further optimiza-
tions that take the characteristics of the underlying data structures into account.
taking the data it operates on into account. In the case of sublimation, a partial exe-
cution is required followed by a run-time recompilation of part of the code, resulting
in highly efficient code for a particular instance of a linked list.

4.2 Transformation Steps

This section describes the steps a compiler should take to transform code using a
linked list access pattern into code that is optimized for a specific instance of a linked
list. An outline of these steps can be found in Figure 4.2. First, we start with
preprocessing steps, such that the code is transformed into a normal-form. Using
this normalized code, we will show how a dense intermediate is obtained by step-wise
rewriting of the code.

4.2.1 Normalization

Programming languages often contain complex expressions. In order to make trans-
formations easier, a normalization step is performed before all other steps. In this
chapter, all transformations will be done on C code. In case of C, the normalization
step involves the conversion of for loops to while loops, expression flattening, and
common subexpression elimination. These steps lead to a form of C code that is
easier to transform.

Loops are transformed to while loops using the rule

for(init; cond; iter) { block; } ->

{ init; while(cond) { block; iter; } }

The only point of exit of the loop should be controlled by the condition. Control flow
statements, such as continue, break and return are not allowed and such loops will

4.2. Transformation Steps 81

�����������	

��	�������
���

�		��������	 ����������	

����������

����������

����������������	

���������������
����������	

������	���	��
��������������� ����	

�����
�������

!��∀��������	���������	
��	���� ����	
�	�������	������	����	
�����������������	

Figure 4.2: Linked list restructuring compiler architecture. The white shapes repre-
sent compile-time components and the grey shapes represent run-time components.

82 4. Concepts of Restructuring Pointer-Linked Data Structures

not be considered for optimization.
Next, all code is flattened. In this form, complicated expressions are unravelled

and their results are stored in temporary variables. Also pointer expressions that are
dereferenced are first put into a temporary variable. This process can be viewed as
creating a type of three address code for C. It drastically reduces the number of cases
to consider and enables transformations on, for instance, an array of linked lists.

The last step in the normalization phase is common subexpression elimination
which together with the flattening of expressions results in easy identifiable linked
list traversals. An example where this transformation enables simple recognition of a
linked list traversal is the following code:

/* list[x] = list[x]->Next; */

*(list + x) = (**(list + x)).Next;

Flattening all expressions results in:

temp1 = lists + x;

temp2 = lists + x;

temp1 = ((*temp2)).Next;

After common subexpression elimination, the result is a code code in which linked
list traversals have a simple representation:

temp1 = lists + x;

temp1 = ((*temp1)).Next;

(Note that in the examples shown here non-normalized code is used to keep the
examples more readable.)

4.2.2 Identification of Linked List Traversals

In order to linearize access to a linked list, linked list access patterns must be identified
and formally described. Access path matrices (APM) are matrices that describe every
possible traversal path at a particular point in a program [58]. Using these access
path matrices, a regular expression that represents the possible traversal paths over
a particular code segment can be constructed. A small example is shown here to
illustrate how access paths are determined:

4.2. Transformation Steps 83

void traverse(Node *root, int k)

{

int x; Node *p;

p = root;

L1:

while(p && p->key != k) {

/* Do something */

...

p = p->next;

L2:

}

x = p->value;

p = p->next;

L3:

while(p) {

/* Do something */

...

p = p->next;

}

L4:

}

At L1, the following APM is computed:

root p
hp ǫ ǫ

The initial definition of p is denoted by hp (handle), which denotes a pointer relative
to which an access path is computed [58]. At program point L1, root, p and hp refer
to the same node.

At L2, the list is traversed using the next member. As no information about
the value of p → key is known at compile-time, the assumption is made that the
containing while loop executes 0 or more times. This leads to the following APM:

root p
hp ǫ (next∗)

At L3, a single pointer has been traversed.

root p
hp ǫ (next∗)(next) = next+

Finally, the remainder of the pointer list is traversed until the end is reached. We
will denote a traversal which terminates at the NULL pointer as next>. At L4, the
APM looks as follows:

root p
hp ǫ (next∗)(next)(next>) = next>

84 4. Concepts of Restructuring Pointer-Linked Data Structures

Using these APMs, all access paths can be determined which are used to generate
code to linearize these pointer traversals. Proper construction of APMs requires that
control flow within the code region of the traversal is regular. Therefore, control flow
statements, such as continue, break, return and goto are not allowed. Additionally,
if side-effects of function calls cannot be determined at compile-time (such as library
functions), the traversal will not be considered for optimization.

4.2.3 Linearization

Linearization is the process of traversing a linked list and storing the pointers that are
encountered during this traversal. The original iteration loop can then be replaced
with a for loop iterating over the newly created array. All linked list pointers are
then replaced with an array reference. Applying linearization on the loop structure
from Figure 4.1 results in the following code (memory allocation/deallocation code is
omitted):

i = 0;

/* Linearize linked list */

while(node != end) {

A[i] = node;

node = node->Next;

i++;

}

iMax = i;

/* Substitute linearized array for

iteration pointer */

for(i = 0; i < iMax; i++) {

... = A[i]->Value * B[idx_expr];

}

The loop in which the list is linearized is called the pre-initialization loop.
While in this example the linearization is shown as C-code just before the compu-

tation loop, this is not necessarily the case in an implementation of a restructuring
framework. A method following the concept outlined here has been implemented in a
prototype C-to-C restructuring compiler framework (called MTC), but the same effect
can be obtained by using a combination of using split memory pools and a restructur-
ing run-time for pointer-linked structures. These techniques and their implementation
will be explained in detail in the next chapters.

4.2.4 Indirection Elimination

The linearization step produces an array with pointers to a linked list element. Using
these pointers, data members are accessed and used in the computation loop. This
indirection can be removed by changing the pre-initialization loop and performing
the indirection there. Thus, the pre-initialization loop will acquire an extra level of
indirection, but in the computation loop, one level of indirection is eliminated. The
code generated by the linearization step would be transformed as follows:

4.2. Transformation Steps 85

i = 0;

while(node != end) {

A[i] = *node; /* Do indirection here */

node = node->Next;

i++;

}

iMax = i;

for(i = 0; i < iMax; i++) {

/* Result: indirection is eliminated here */

... = A[i].Value * B[idx_expr];

}

The difference with the code resulting from linearization is that in this case, data
is being copied and thus multiple copies of the data from the linked list can exist
at run-time. In the restructuring framework presented in the next chapters, copying
data is not necessary, if the traversal does not revisit the same node multiple times.
In that case, the memory objects can be reordered and all pointers will be updated
to reflect this change.

4.2.5 Structure Splitting

It is inefficient to copy the entire structure in the initialization loop. Many structure
members may not be used in the computation loop and such data would unnecessarily
reside in the cache. Additionally, a non-unit stride access pattern on the arrays can
prevent other optimizations such as vectorization. By only copying the members
which are actually needed, these problems are circumvented. It leads to code that is
even easier to analyze. Applied to the code resulting from the indirection elimination
step, the following code is obtained:

i = 0;

while(node != end) {

A_Value[i] = (*node).Value;

node = node->Next;

i++;

}

iMax = i;

for(i = 0; i < iMax; i++) {

... = A_Value[i] * B[idx_expr];

}

The concept of structure splitting can also be applied to entire data structures at
compile time. This is discussed in detail in Chapter 6.

4.2.6 Access Pattern Restructuring

The newly generated computation loop contains an array which is indexed by a new
iteration variable (i in this example). Other arrays within the same loop do not
follow the access pattern induced by this variable, although the access pattern may

86 4. Concepts of Restructuring Pointer-Linked Data Structures

be dependent on the linearized linked list. Consider the computation loop obtained
in the previous step. For simplicity, A V alue is renamed to A.

for(i = 0; i < iMax; i++) {

... = A[i] * B[idx_expr];

}

This example contains two different access patterns, namely (1) the access pattern
induced by i (such a pattern always exists after linearization) and (2) the access
pattern induced by idx expr. In order to impose the same access pattern onto both
arrays, either A must be accessed using the access pattern of B or B must be accessed
using the access pattern of A. Note that the index expression of B may originally have
been dependent on the linked list. This expression will have been converted to an
array by the indirection elimination and structure splitting step: e.g. B[A[i] → Index]
would have been transformed to B[A Index[i]].

If the array B is remapped using the index expression idx expr, idx expr must
be injective (the index expression is viewed as a function of i), otherwise at least one
element becomes inaccessible. For example, consider the access patterns (1, 2) for A

and (1, 1) for B. The access pattern of B is not injective and as A[1] can contain only
one value, the original semantics of the loop cannot be reproduced.

Consider the two access pattern restructuring techniques, annihilation and sub-
limation. It is assumed that A is indexed using iteration counter i, with lower and
upper loop bounds iMin (= 0) and iMax, respectively. B is indexed by idx expr,
which is an injective index expression dependent on i.

Annihilation: Impose the access pattern of A onto B, that is, restructure based on
the index expression of A, which is i. This restructuring is done by creating a new
array B′ which is defined as follows:

B′[i] = B[idx expr], ∀i(iMin ≤ i ≤ iMax)

Note that changing the access pattern of B to follow the access pattern of A is always
possible, since the access pattern induced by i is injective. This case is very intuitive:
fetch the elements actually needed from the other array B and rewrite the loop such
that the restructured array is tightly packed and accessed in the same order as A.

Sublimation: Impose the (irregular) access pattern of B onto A, that is, restructure
based on the index expression of B, which is idx expr. This restructuring is done by
creating a new array A′ which is defined as follows:

A′[j] =

{

A[i] if ∃i(idx expr(i) = j)
identity otherwise

The variable j ranges from min(idx expr) to max(idx expr), which can be determined
in the pre-initialization loop.

In the original loop, not every element of B is necessarily accessed. For instance,
if throughout the execution of the loop the variable idx expr defines the sequence

4.2. Transformation Steps 87

(5, 50, 10), then only the elements A′[5], A′[50] and A′[10] need to be defined.

4.2.7 Iteration Space Expansion

In case of sublimation, not every element of B (see the previous section) is necessarily
accessed. For instance, if throughout the execution of the loop the variable idx expr

defines the sequence (5, 50, 10), then only the elements A′[5], A′[50] and A′[10] need
to be defined.

However, if the new iteration space is defined to be the interval

[min(idx expr),max(idx expr)],

the other elements of A′ must not alter the semantics of the program. Therefore,
the “gaps” in A′ should be filled with values chosen in such a way that they do not
have any effect when the code is executed. For example, when the loop executes a
statement like

X = X + A′[i] ∗ Y,

then the so called identity value must be 0, as this will preserve the semantics of the
program. This case is not really intuitive. The resulting code will most likely have
infeasible loop bounds, but this code only serves as an intermediate. The advantage of
this approach is that information about the sparse structure is preserved and, together
with the input data, a compiler can determine if other access functions can be used,
for example storing diagonals of a matrix separately.

4.2.8 Loop Extraction

The pre-initialization loop that is generated is placed into same compound statement
as the original linked list traversal. Therefore, the initialization loop could end up
nested within other loops. In order for the transformations to be efficient, the initial-
ization loop should be extracted from this loop. This transformation enables further
optimizations as it often results in a perfectly nested loop. If loop extraction cannot
be performed, due to dependencies, another access pattern should be tried in the
restructuring phase. This section describes how loop extraction should be performed.

The pre-initialization loop uses a number of variables. Some of these are generated
replacement variables which will be used by the transformed main loop. Other vari-
ables are used for bookkeeping the pre-initialization loop, such as variables tracking
loop boundaries. All remaining variables are non-generated variables or expressions
originating from the initial code.

If an initialization loop A is contained in an outer loop O, it can be extracted
using one of the following two techniques:

1. If all non-generated variables used in A are invariant over O, A is just repeating
the same operation every iteration of O. It is therefore safe to move A in front
of O without any further processing.

2. If some non-generated variables used in A are not invariant over O, but all non-

88 4. Concepts of Restructuring Pointer-Linked Data Structures

invariant variables are only dependent on a loop counter with known bounds,
then A can be extracted from O.

This requires extension of the generated variables, which is done by adding an
extra dimension to these variables, such that for every iteration the correct value
is preserved. All references to generated variables must be changed to use the
new, extended variables. A new loop O′ can be created which uses the original
loop structure of O. Subsequently, loop A is moved from O to O′. Figure 4.3
illustrates variable extension.

(Note that when A is moved in either situation, any statements used to initialize
variables used in A will also be moved.)

Loop extraction plays a vital role in the transformation chain. If any dependency
prevents loop extraction, the restructuring code and computation code are not sep-
arated. In case of annihilation, this results in code where the restructuring is done
every iteration, which in itself is expensive and prevents the computation loops to be-
come perfectly nested. In case of sublimation, the lack of separation of restructuring
code and computation code prevents recompilation and therefore this optimization
path is disabled. An example of a loop containing such a dependency is an algorithm
for Conjugate Gradient. This algorithm, which is not discussed here in detail, con-
tains a sparse matrix times dense vector multiplication that is embedded in a loop.
It has the following structure:

while(...) {

...

/* Some definition of vector p */

...

for(row = 0; row < rows; row++) {

/* Linearization code omitted */

/* Restructuring code */

for(i = 0; i < iMax; i++)

p’[i] = p[A_ColIndex[i]];

for(i = 0; i < iMax; i++)

result[row] += A_Value[i] * p’[i];

}

...

}

The redefinition of p in each loop renders annihilation inefficient, because the
restructuring code cannot be moved in front of the containing while loop. As an
alternative, sublimation can be applied (using the access pattern A ColIndex[i]).

4.2.9 Run-time Support for Sublimation

When sublimation is applied, the code obtained from the previous steps (which are
all performed at compile-time) results in a code that is never executed. A partial

4.2. Transformation Steps 89

Before:

loop O {

loop A {

generated-variable =

original-variable;

}

/* additional code including

transformed main loop

referencing generated-variable */

}

After:

loop O’ {

loop A {

generated-variable[E] =

original-variable;

}

}

loop O {

/* additional code including

transformed main loop

referencing generated-variable[E] */

}

Figure 4.3: Loop A which depends on E is extracted from O.

90 4. Concepts of Restructuring Pointer-Linked Data Structures

Figure 4.4: A sparse matrix using a linked list representation.

recompilation step is included in the run-time system where the newly generated
loops are transformed. Only the computation loops are recompiled while keeping the
pre-initialization untouched. During execution of the pre-initialization loop, the non-
identity structure of the restructured array is written to a file which is used in the
recompilation step to generate instance specific optimized code.

The perfectly nested loop is recompiled using the additional non-identity structure
information. The implementation of such a compiler is discussed in depth by Bik
and Wijshoff [23, 25, 26]. This recompilation step emits restructured code which is
compiled into a shared library which is loaded by the application at run-time. Finally,
the newly generated code is executed.

4.3 Example

The concept described is this chapter is demonstrated by using a code example of
sparse matrix multiplication. Figure 4.4 depicts the data structure used for the rep-
resentation of a sparse matrix. Figure 4.5 shows the actual C code performing the
multiplication. Only the left matrix is sparse (compressed row storage). The right
matrix and the result matrix are both dense. The rows of the sparse matrix are
traversed using linked lists which prevents optimizations such as loop interchange
and vectorization. Additionally, as linked list elements are not generally successive
elements in main memory, performance will suffer due to cache misses.

If we consider the loops in the example code, one of these loops (the while loop)
is a traversal of a linked list. With an n×m result matrix, this loop is executed n ·m
times, because the dot product of each row of the left matrix with each column of the
right matrix involves the traversal of a linked list which is relatively costly. Ideally,
the inner loop would be vectorized, however this is prevented by using the contents
of a linked list element as operand for the multiplication (leftCell → V alue) and for
indexing of an array (leftCell → ColIndex).

This code can be transformed to an intermediate code which is equivalent, but
uses directly accessed arrays in the inner while loop. As an initial step, linearization
is applied on the linked list which transforms the linked list traversal into a pre-

4.3. Example 91

void MatrixMultiply(Matrix left,

double **right, double **result,

int cols)

{

Cell *leftCell;

int dimensions = left.Dimensions;

int row, col;

for(col=0; col<cols; col++) {

for(row=0; row<dimensions; row++) {

leftCell = left.Rows[row];

while(leftCell != NULL) {

result[row][col] +=

leftCell->Value *

right[leftCell->ColIndex][col];

leftCell = leftCell->ColNext;

}

}

}

}

Figure 4.5: Sparse matrix multiplication.

initialization loop and a computation loop.
On the resulting code, indirection elimination and structure splitting can be ap-

plied. In the computation loop, only the members V alue and ColNext are used.
These members will be put into an array by applying structure splitting. The code
produced by these steps can be found in Figure 4.6. Memory management code is
inserted to dynamically resize arrays when needed at run-time. This is necessary,
because the length of a linked list is not known a priori.

At this point, two choices can be made: either the access pattern of A V alue

is used to restructure right (annihilation) or the access pattern of right is used to
restructure A V alue (sublimation). Memory allocation code is left out of these short
code samples.

In the first case, right is restructured as follows:

for(i = 0; i < counter; i++)

rightp[i] = right[A_ColIndex[i]];

rightp (right prime) is now substituted for right in the computation loop:

for(i = 0; i < counter; i++)

result[row][col] += A_Value[i] * rightp[i][col];

In the second case, A V alue is restructured to follow the access pattern of right. This
is done by the following loops:

92 4. Concepts of Restructuring Pointer-Linked Data Structures

for(i = 0; i < MAX_INT; i++)

A_Valuep[i] = 0;

for(i = 0; i < counter; i++)

A_Valuep[A_ColIndex[i]] = A[i];

This code is clearly not meant to be executed ever, and the upper bound should be
seen as a conceptual upper bound. During recompilation, the correct upper bounds
induced by A ColIndex[i] can be determined and a feasible iteration space is gener-
ated. Now A V aluep can be substituted for A V alue:

for(i = 0; i < counter; i++)

result[row][col] += A_Valuep[A_ColIndex[i]] *

right[A_ColIndex[i]][col];

In order to remove the indirect addressing from the loop, change the loop control
structure such that the loop iterates over the entire range defined by A ColIndex:

for(j = lowerbound; j < upperbound; j++)

result[row][col] += A_Valuep[j] *

right[j][col];

Remember that this does not change the semantics of the program, as the “gaps” in
A V aluep have been set to 0.

The pre-initialization code depends on the variable row, which is not loop-invariant
(the containing for loop increases it by one every iteration). Therefore, loop extraction
cannot be directly applied without eliminating this dependency. Values which are
pointed to by leftCell, either directly or indirectly (by following a pointer chain),
are not modified. Therefore, loop extraction is possible if all variables dependent on
leftCell are extended, such that for every iteration of row, the values which were
copied are stored separately.

The pre-initialization code is now independent of the computation loop and can be
moved in front of all containing for loops. The resulting code is shown in Figure 4.6,
which is code resulting from restructuring A V alue.

For simplicity, we assume a lower bound of 0 on the inner loop. Memory man-
agement code is inserted, except for the restructured array A V aluep. This is not
a problem, as this code only serves as an intermediate representation. The code
generated in the run-time phase of recompilation will generate the proper memory
allocation code.

An interesting issue is the determination of the maximum upper bound of the
inner loop. Instead of having a separate upper bound for each row, the maximum
upper bound encountered across all iterations is used. This extends the iteration
space of the computation loop but poses no further problems, as the compiler knows
that any uninitialized element of A V aluep is the identity value (in this case 0).

The resulting code only traverses the linked list once per row and the computation
loop has become a perfectly nested for loop, which is easier to analyze. In this case,
loop interchange is enabled so that the inner loop can be vectorized. Additionally,

4.3. Example 93

void MatrixMultiply(Matrix left, double **right, double **result, int cols)

{

Cell *leftCell;

int dimensions = left.Dimensions;

int row, col, i;

double **A_Value = (double **)malloc(sizeof(double *) * dimensions);

int **A_ColIndex = (int **)malloc(sizeof(int *) * dimensions);

int *counter = (int *)malloc(sizeof(int) * dimensions);

for(row = 0; row < dimensions; row++) {

int size = INIT_ALLOC;

A_Value[row] = (double *)malloc(sizeof(double)*size);

A_ColIndex[row] = (int *)malloc(sizeof(int)*size);

leftCell = left.Rows[row];

counter[row] = 0;

while(leftCell != NULL) {

if(counter == size) {

/* Resize array */

size *= 2;

A_Value[row] = (double *)realloc(A_Value, sizeof(double) * size);

A_ColIndex[row] = (int *)realloc(A_ColIndex, sizeof(int) * size);

}

/* Code generated by successive application of linearization,

* indirection elimination and loop extraction (which introduced

* the extra dimension indexed by row) */

A_Value[row][counter[row]] = (*leftCell).Value;

A_ColIndex[row][counter[row]] = (*leftCell).ColIndex;

leftCell = leftCell->ColNext;

counter++;

}

/* Restructure A_Value - Assume value of undefined element is 0 */

for(i = 0; i < counter; i++)

A_Valuep[row][A_ColIndex[i]] = A[i];

}

/* This loop will be recompiled and loaded dynamically */

for(col = 0; col < cols; col++) {

for(row = 0; row < dimensions; row++) {

for(j = 0; j < MAX_INT; j++) {

result[row][col] += A_Valuep[row][j] * right[j][col];

}

}

}

for(row = 0; row < dimensions; row++) {

free(A_Value[row]); free(A_ColIndex[row]);

}

free(A_Value); free(A_ColIndex); free(counter);

}

Figure 4.6: Sparse matrix multiplication after loop extraction (sublimation).

94 4. Concepts of Restructuring Pointer-Linked Data Structures

this loop structure dramatically increases cache performance as subsequent items are
adjacent in memory.

In this example, the code resulting from restructuring right to match the access
pattern of A V alue induced by i (annihilation) can easily be optimized further by
performing a simple loop interchange. This would enable vectorization. In this case
the run-time recompilation phase is left out, as the iteration space is defined (symbol-
ically) at compile-time. The version resulting from restructuring A V alue to match
the access pattern of right induced by A ColIndex[i] (sublimation) is not directly
executable, as this code would be very inefficient (it has a potentially huge iteration
space, as the loop bounds can be anything at run-time). Together with non-identity
structure information the computation loop can be transformed to a data instance
specific code which can be very efficient, as will be shown in the following section.

4.4 Experiments

A prototype C source-to-source restructuring compiler has been implemented that
supports the transformations outlined above on simple linked list traversals. The
transformation chain has been applied to two benchmarks from the SPARK00 bench-
marks (see Chapter 3), SPMATMAT and PCG1. SPMATMAT is an example where
annihilation is a feasible option. For PCG, annihilation is not successful, as depen-
dencies prevent the cost of restructuring to be amortized over multiple iterations. It is
shown that sublimation can be applied in this case, showing significant improvements.

4.4.1 Sparse Matrix Times Dense Matrix Multiplication

The transformations described in Section 4.2 have been applied on code performing
matrix multiplication, as described in the above example. In this case, the left matrix
is a sparse n × n-matrix and the right matrix is a dense n × m-matrix. The result
matrix is also dense. Figure 4.5 shows the original algorithm.

All benchmarks have been executed using both the GNU C/Fortran compiler and
the Intel C/Fortran compiler. There are five different versions of the program, the
original program, two programs generated using sublimation (one uses the Fortran
compiler to compile the code emitted by the sparse compiler MT1 [23,25,26] the other
uses f2c [43], a Fortran to C compiler) and two programs obtained using annihilation
(one without further optimizations and one with loop interchange applied). Together,
this results into ten different versions.

For sublimation, the access pattern chosen is the access pattern of right, which
leads to the following computation loop:

1Note that throughout this thesis, small differences in the implementation of the benchmarks
might exist, as SPARK00 has evolved over time.

4.4. Experiments 95

0 500 1000 1500 2000 2500 3000

0
5
0

1
0
0

1
5
0

Total Execution Time (GCC)
af23560

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

Total Execution Time (GCC)
add32

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6

Total Execution Time (GCC)
sherman3

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
1
0

2
0

3
0

4
0

5
0

Total Execution Time (GCC)
memplus

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

Figure 4.7: Execution times using GNU GCC.

96 4. Concepts of Restructuring Pointer-Linked Data Structures

0 500 1000 1500 2000 2500 3000

0
5
0

1
0
0

1
5
0

Total Execution Time (Intel Compiler)
af23560

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

Total Execution Time (Intel Compiler)
add32

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6

Total Execution Time (Intel Compiler)
sherman3

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

0 500 1000 1500 2000 2500 3000

0
1
0

2
0

3
0

4
0

5
0

Total Execution Time (Intel Compiler)
memplus

Number of columns of right matrix

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Original

Sublimation FORTRAN

Sublimation FORTRAN Computation

Sublimation f2c

Annihilation

Annih + Loop Interchange

Figure 4.8: Execution times using the Intel Compiler.

4.4. Experiments 97

add32 af23560 memplus sherman3

Original

Sublimation

Sublimation/F2C

Annihilation

Annihilation + LI

GCC

0
5

1
0

1
5

2
0

2
5

add32 af23560 memplus sherman3

Original

Sublimation

Sublimation/F2C

Annihilation

Annihilation + LI

Intel Compiler

0
5

1
0

1
5

2
0

2
5

Figure 4.9: Speedup obtained with 3000 result columns.

for(col = 0; col < cols; col++) {

for(row = 0; row < dimensions; row++) {

for(i = 0; i < MAX_INT; i++) {

result[row][col] +=

A_Valuep[row][i] * right[i][col];

}

}

}

The real bounds of the inner loop are obtained at run-time in the pre-initialization
loop. In the example shown, a sparse matrix structure is embedded into a two dimen-
sional array whose size may exceed available memory. As explained in Section 4.2.6,
A V alue is restructured to follow the access pattern of right. The identity value
for the multiplication followed by addition is 0. The access pattern of A V aluep is
determined in the pre-initialization loop and can be used to restructure the loops such
that this structure is taken into account during optimization. Currently, this step is
not implemented for C code.

Instead, the intermediate C code is compiled to Fortran. For such code, a restruc-
turing compiler called MT1 exists, which can take this structure into account. This
compiler takes array based code using direct addressing and transforms this into an
optimized sparse code, taking the non-zero structure of the matrices into account.
The non-zero structure must be specified in a separate file. The code emitted in this
stage is recompiled at run-time and the generated code is dynamically linked to the
application.

In order to do a full comparison of all combinations, the restructured code is
compiled, as well as a C version that is obtained by converting the code back to C by
the f2c utility. The other versions are generated by applying annihilation, i.e. right

98 4. Concepts of Restructuring Pointer-Linked Data Structures

is restructured to follow the access pattern of A V alue, which is i. This results in the
following computation loop:

for(col = 0; col < cols; col++) {

for(row = 0; row < dimensions; row++) {

for(i = 0; i < iMax[row]; i++) {

result[row][col] +=

A_Value[row][i] * rightp[row][i][col];

}

}

}

After applying loop interchange:

for(row = 0; row < dimensions; row++) {

for(i = 0; i < iMax[row]; i++) {

for(col = 0; col < cols; col++) {

result[row][col] +=

A_Value[row][i] * rightp[row][i][col];

}

}

}

The compilers used are GCC 4.0.2 and the Intel C and Fortran Compiler 9.1.
For GCC, we used the options ’-m32 -msse3 -O3 -fomit-frame-pointer’, for the Intel
Compiler ’-msse3 -O3 -fp -fno-alias’ (both produce 32-bit executables). The bench-
marks were executed on an Intel Xeon 3.00 GHz CPU, 4GB of main memory running
SuSE Linux 10.0. Four different matrices which are publicly available [41, 92] were
used, namely sherman3, memplus, add32 and af23560.

Figure 4.7 shows the execution times for sparse matrix times dense matrix mul-
tiplication for various sizes of the right matrix using the GCC compiler. Figure 4.8
shows the results for the Intel Compiler. The speedups relative to the original code
(GCC code relative to the original code compiled with GCC, Intel Compiler code rel-
ative to the original code compiled with the Intel C compiler) when the right matrix
has 3000 columns, is shown in Figure 4.9.

As can be seen in Figure 4.7 and Figure 4.8, the run-time recompilation can take
a considerable fraction of the total execution time, but it dramatically speeds up the
computation itself. In this experiment, the code generated by applying annihilation
clearly is the fastest. Table 4.1 shows the initialization time needed by annihilation
and sublimation. The execution time of sublimation using Fortran is also plotted
using the computation time only (initialization time left out) to indicate the efficiency
of the code generated using sublimation. Note that if the initialization time is not
taken into account, the code generated by sublimation shows a performance similar
to that of annihilation. Especially the Intel Fortran compiler emits code that is close
in performance to the code produced by annihilation. This shows that sublimation is
a viable alternative if dependencies prevent application of annihilation.

Interestingly, for GCC it does not really matter whether the Fortran or the C
version is used. For the Intel Compiler, in two of the four cases it makes quite a

4.4. Experiments 99

af23560 add32 sherman3 memplus

Sublimation
GCC 10.439 3.130 3.124 4.688
Intel 8.436 3.049 3.297 4.190

Sublimation/F2C
GCC 16.386 3.069 3.408 4.358
Intel 16.344 3.146 3.482 4.419

Annihilation
GCC 0.073 0.006 0.005 0.029
Intel 0.074 0.006 0.005 0.029

Table 4.1: Mean initialization time.

difference whether the Fortran or the C version is used. For the matrices add32 and
memplus the computation loop is considerably faster if Fortran is used. In principle,
the C code emitted by f2c should be the same, but apparently the Fortran code is
easier to analyze by a compiler. The performance of the C versions is comparable for
GCC and the Intel Compiler. Apparently, the Intel Fortran Compiler discovers some
parallelism that the GCC Fortran compiler does not find. It can be concluded that
sublimation does generate code which is optimizable, but that not every compiler
fully exploits these opportunities.

4.4.2 Preconditioned Conjugate Gradient

There are cases where annihilation is not a feasible option. Preconditioned conjugate
gradient [49] is such an example. This algorithm iteratively solves linear systems. In
each iteration, a matrix/vector multiplication is performed. The matrix is constant
throughout execution, but the vector changes every iteration. Therefore, restructuring
the vector is expensive as it cannot be pulled outside of the containing loop. In
addition, this vector is used is subsequent computations which of course expect the
original access pattern. In principle, this can be solved by restructuring all dependent
data structures, but this has not been implemented yet.

A less disruptive choice in this case is the application of sublimation. Sublima-
tion has been applied to a C implementation of Conjugate Gradient with a diagonal
preconditioner. The matrices used are af23560, sherman3, memplus, impcol b and
lshp3466. The algorithm does not converge, except for sherman3. This is not a prob-
lem, as we are interested in the program behavior caused by the non-zero structure
of the underlying problem, rather than the actual solution.

Table 4.2 shows the execution times of the two programs generated by MTC. One
directly compiles the restructured Fortran code, the other uses f2c to convert the
restructured code back to C. The execution times shown are the average execution
times taken over 10 runs. The significance of the difference in execution times is
determined using the Student’s t-test. The threshold used for the p-value is 0.001.
The only differences found to be significant are for the combination GCC with the
matrix impcol b. In the absolute sense, the differences are not very large and therefore
the results for the version using f2c will not be considered further.

Figure 4.10 shows the execution times of PCG using the different matrices. The

100 4. Concepts of Restructuring Pointer-Linked Data Structures

Matrix Compiler Iterations Total(pcg mtc) Total(pcg mtc f2c) p-value

af23560

gcc

0 10.4369181 10.4565496 0.2332
200 13.6794500 13.6856079 0.7277
500 18.4899473 18.5281476 0.0928

1000 26.5012467 26.5199758 0.5196

icc

0 8.3799467 8.3820959 0.8543
200 11.2647890 11.2720330 0.4640
500 15.6034099 15.5978320 0.7378

1000 22.8165724 22.8604394 0.3324

impcol b

gcc

0 2.7630555 2.7659491 0.7064
1000000 7.7020608 7.8059651 0.0000*
2000000 12.6517297 12.8694533 0.0000*
5000000 27.4455029 28.0216110 0.0000*

10000000 52.1405536 53.2367686 0.0000*

icc

0 2.7902089 2.7847962 0.7141
1000000 5.7294116 5.7362139 0.1551
2000000 8.6936637 8.6937868 0.9908
5000000 17.6339414 17.5776914 0.5198

10000000 32.6823472 32.3215858 0.1807

lshp3466

gcc

0 1.9389572 1.9393990 0.8050
5000 3.1645367 3.1619932 0.9443

10000 4.4255588 4.4025642 0.6569
25000 8.2005100 8.1453305 0.7551
50000 14.0215637 14.1054011 0.7226

icc

0 1.9219801 1.9304343 0.0001
5000 2.8958285 2.9275486 0.3830

10000 3.9794020 3.8251235 0.1028
25000 6.8309266 6.9324833 0.6294
50000 11.4676299 11.6319217 0.4393

memplus

gcc

0 3.6738501 3.7176453 0.1371
200 4.9385124 4.9246219 0.3406
500 6.8018818 6.8135444 0.4001

1000 9.9479365 9.8877520 0.0811
2000 16.1671235 16.2084638 0.4743

icc

0 3.1837252 3.1985074 0.6831
200 4.1646083 4.2815048 0.1062
500 5.5736581 5.5779907 0.7269

1000 7.9800528 7.9539172 0.1920
2000 12.7488172 12.7159817 0.5007

sherman3

gcc

0 3.1321917 3.1264834 0.7156
200 3.2285829 3.2185971 0.1075
500 3.3751111 3.3805490 0.6407

1000 3.6319173 3.6358024 0.8249
2000 4.1335331 4.1530528 0.7129
2865 4.6117277 4.6734273 0.4756

icc

0 3.0950571 3.0827892 0.4930
200 3.1625665 3.1744411 0.2263
500 3.3024061 3.3019816 0.9704

1000 3.5116003 3.5093471 0.9205
2000 3.9008675 3.8564076 0.2961
2865 4.2025144 4.2786232 0.1312

Table 4.2: Execution Times for Preconditioned Conjugate Gradient. MTC vs
MTC/F2C

4.4. Experiments 101

results for lshp3466 are shown separately in Figure 4.11, as for this matrix, the pro-
gram shows some unexpected behavior. For the matrix af23560, the transformations
performed by MTC are effective. Using both compilers, significant speedups are ob-
tained. For memplus, the transformations are effective as well. PCG converges in 2875
iterations for sherman3 and at this point the original code performs better. However,
note that the slope of the curve is less steep, which means that the computation itself
is faster but it cannot compensate for the time spent in the initialization. The results
are different for impcol b. In this case, performance suffers if the transformations are
applied. This matrix is relatively small (53x53) and no appropriate access pattern can
be found for this matrix, which results in the selection of a representation completely
based on an indirectly addressed access storage scheme. This storage scheme provides
no benefits compared to the linked list representation, which uses indirect addressing
as well. The Intel Compiler clearly outperforms GCC on this matrix. For all other
matrices in Figure 4.10, the Intel Compiler performs slightly better than GCC.

As mentioned before, PCG shows some abnormal behavior when the matrix lshp3466
is used. Figure 4.11 shows the execution times for this matrix. In addition to the
mean execution time, the 95% confidence intervals are also shown. Both for the Intel
Compiler and GCC, there is a large variance in the execution times for the untrans-
formed version. Interestingly, the transformed version does not show this behavior
and is likely to execute faster. This indicates that the transformations we propose do
not only give gains in performance, but also can result in algorithms that show more
robust behavior.

Table 4.3 compares the original algorithm with the version generated by MTC.
In all cases (except for the matrix lshp3466) the differences in execution times are
significant. Table 4.4 compares the performance of the Intel Compiler and GCC.
From these data, it can be concluded that the Intel Compiler performs significantly
better than GCC.

Speedups for the code produced by MTC have been obtained using the maxi-
mum number of iterations that data has been collected for. Additionally, the asymp-
totic speedup is calculated by leaving out the initialization times. All speedups are
compared to the original code, using the same compiler. The results are shown in
Figure 4.12. The asymptotic speedup shows that the code produced by MTC is
potentially faster than the original code in all cases, except for impcol b.

4.4.3 Discussion

The results obtained from the experiments suggest that the transformations proposed
in this chapter can be very effective. Code containing pointer chains are hard to
analyze and transforming such codes to regularized codes can have major benefits.
The methods proposed here result in a code that has the following properties: 1) Loop
interchange is enabled and related data exhibits spatial locality due to linearization
and structure splitting. 2) Structure splitting reduces the amount of data that must
be fetched from memory because if the linked list itself was used in the computation,
data that is never needed can be loaded in the CPU cache. 3) Loop extraction
results in simpler computation loop structures which are easier to analyze. 4) After

102 4. Concepts of Restructuring Pointer-Linked Data Structures

0 200 400 600 800 1000

0
1
0

2
0

3
0

4
0

5
0

af23560

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (gcc)

pcg_mtc (gcc)

pcg (icc)

pcg_mtc (icc)

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0
1
0

2
0

3
0

4
0

5
0

6
0

impcol_b

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (gcc)

pcg_mtc (gcc)

pcg (icc)

pcg_mtc (icc)

0 500 1000 1500 2000

0
1
0

2
0

3
0

4
0

memplus

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (gcc)

pcg_mtc (gcc)

pcg (icc)

pcg_mtc (icc)

0 500 1000 1500 2000 2500

0
1

2
3

4
5

sherman3

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (gcc)

pcg_mtc (gcc)

pcg (icc)

pcg_mtc (icc)

Figure 4.10: Execution Times for Preconditioned Conjugate Gradient

4.4. Experiments 103

0 10000 20000 30000 40000 50000

0
5

1
0

1
5

2
0

2
5

lshp3466 (icc)

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (gcc)

pcg_mtc (gcc)

0 10000 20000 30000 40000 50000

0
5

1
0

1
5

2
0

2
5

lshp3466 (gcc)

Iterations

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

pcg (icc)

pcg_mtc (icc)

Figure 4.11: Execution Times for Preconditioned Conjugate Gradient (lshp3466)

af23560 impcol_b lshp3466 memplus sherman3

gcc

gcc (asymptotic)

icc

icc (asymptotic)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Figure 4.12: Mean Asymptotic Speedup Obtained by Using MTC

104 4. Concepts of Restructuring Pointer-Linked Data Structures

Matrix Compiler Iterations Total(pcg) Total(pcg mtc) p-value

af23560

gcc

0 0.0014977 10.4369181 0.0000*
200 9.0676140 13.6794500 0.0000*
500 22.6633046 18.4899473 0.0000*

1000 45.3536471 26.5012467 0.0000*

icc

0 0.0011748 8.3799467 0.0000*
200 8.6016974 11.2647890 0.0000*
500 21.4728851 15.6034099 0.0000*

1000 42.9741284 22.8165724 0.0000*

impcol b

gcc

0 0.0000489 2.7630555 0.0000*
1000000 4.1009672 7.7020608 0.0000*
2000000 7.9636513 12.6517297 0.0000*
5000000 20.1213715 27.4455029 0.0000*

10000000 40.4568902 52.1405536 0.0000*

icc

0 0.0000546 2.7902089 0.0000*
1000000 1.8692082 5.7294116 0.0000*
2000000 3.7324763 8.6936637 0.0000*
5000000 9.3331125 17.6339414 0.0000*

10000000 18.7334097 32.6823472 0.0000*

lshp3466

gcc

0 0.0002808 1.9389572 0.0000*
5000 2.0282342 3.1645367 0.0000*

10000 3.9577893 4.4255588 0.0058
25000 10.3251169 8.2005100 0.0004
50000 19.1854449 14.0215637 0.0002

icc

0 0.0002627 1.9219801 0.0000*
5000 1.2696215 2.8958285 0.0000*

10000 3.0687554 3.9794020 0.0000*
25000 6.6853483 6.8309266 0.7832
50000 13.4729768 11.4676299 0.0470

memplus

gcc

0 0.0011539 3.6738501 0.0000*
200 3.3156697 4.9385124 0.0000*
500 8.2835206 6.8018818 0.0000*

1000 16.5571594 9.9479365 0.0000*
2000 33.1987006 16.1671235 0.0000*

icc

0 0.0009095 3.1837252 0.0000*
200 2.6729744 4.1646083 0.0000*
500 6.6520123 5.5736581 0.0000*

1000 13.3496854 7.9800528 0.0000*
2000 26.6269574 12.7488172 0.0000*

sherman3

gcc

0 0.0003997 3.1321917 0.0000*
200 0.1960706 3.2285829 0.0000*
500 0.5022527 3.3751111 0.0000*

1000 1.0568317 3.6319173 0.0000*
2000 2.0277288 4.1335331 0.0000*
2865 2.8716864 4.6117277 0.0000*

icc

0 0.0003540 3.0950571 0.0000*
200 0.1463178 3.1625665 0.0000*
500 0.4011187 3.3024061 0.0000*

1000 0.6927279 3.5116003 0.0000*
2000 1.4612195 3.9008675 0.0000*
2865 2.1161639 4.2025144 0.0000*

Table 4.3: Execution Times for Preconditioned Conjugate Gradient. Original vs.
MTC

4.4. Experiments 105

Matrix Program Iterations Total(ICC) Total(GCC) p-value

af23560

pcg 0 0.0011748 0.0014977 0.00000*
pcg 200 8.6016974 9.0676140 0.00000*
pcg 500 21.4728851 22.6633046 0.00000*
pcg 1000 42.9741284 45.3536471 0.00000*
pcg mtc 0 8.3799467 10.4369181 0.00000*
pcg mtc 200 11.2647890 13.6794500 0.00000*
pcg mtc 500 15.6034099 18.4899473 0.00000*
pcg mtc 1000 22.8165724 26.5012467 0.00000*

impcol b

pcg 0 0.0000546 0.0000489 0.00977
pcg 1000000 1.8692082 4.1009672 0.00000*
pcg 2000000 3.7324763 7.9636513 0.00000*
pcg 5000000 9.3331125 20.1213715 0.00000*
pcg 10000000 18.7334097 40.4568902 0.00000*
pcg mtc 0 2.7902089 2.7630555 0.08049
pcg mtc 1000000 5.7294116 7.7020608 0.00000*
pcg mtc 2000000 8.6936637 12.6517297 0.00000*
pcg mtc 5000000 17.6339414 27.4455029 0.00000*
pcg mtc 10000000 32.6823472 52.1405536 0.00000*

lshp3466

pcg 0 0.0002627 0.0002808 0.00001*
pcg 5000 1.2696215 2.0282342 0.00023
pcg 10000 3.0687554 3.9577893 0.00007*
pcg 25000 6.6853483 10.3251169 0.00002*
pcg 50000 13.4729768 19.1854449 0.00021
pcg mtc 0 1.9219801 1.9389572 0.00000*
pcg mtc 5000 2.8958285 3.1645367 0.00000*
pcg mtc 10000 3.9794020 4.4255588 0.00035
pcg mtc 25000 6.8309266 8.2005100 0.00000*
pcg mtc 50000 11.4676299 14.0215637 0.00000*

memplus

pcg 0 0.0009095 0.0011539 0.00000*
pcg 200 2.6729744 3.3156697 0.00000*
pcg 500 6.6520123 8.2835206 0.00000*
pcg 1000 13.3496854 16.5571594 0.00000*
pcg 2000 26.6269574 33.1987006 0.00000*
pcg mtc 0 3.1837252 3.6738501 0.00000*
pcg mtc 200 4.1646083 4.9385124 0.00000*
pcg mtc 500 5.5736581 6.8018818 0.00000*
pcg mtc 1000 7.9800528 9.9479365 0.00000*
pcg mtc 2000 12.7488172 16.1671235 0.00000*

sherman3

pcg 0 0.0003540 0.0003997 0.00000*
pcg 200 0.1463178 0.1960706 0.00000*
pcg 500 0.4011187 0.5022527 0.00000*
pcg 1000 0.6927279 1.0568317 0.00000*
pcg 2000 1.4612195 2.0277288 0.00000*
pcg 2865 2.1161639 2.8716864 0.00000*
pcg mtc 0 3.0950571 3.1321917 0.11104
pcg mtc 200 3.1625665 3.2285829 0.00000*
pcg mtc 500 3.3024061 3.3751111 0.00000*
pcg mtc 1000 3.5116003 3.6319173 0.00006*
pcg mtc 2000 3.9008675 4.1335331 0.00050
pcg mtc 2865 4.2025144 4.6117277 0.00008*

Table 4.4: Execution Times for Preconditioned Conjugate Gradient. Intel Compiler
vs. GCC

106 4. Concepts of Restructuring Pointer-Linked Data Structures

loop extraction the expensive traversal of a linked list is less deeply nested, removing
many unnecessary traversals of the linked list. Together, these properties enable
major performance improvements.

The choice between annihilation and sublimation involves a tradeoff. Annihila-
tion is relatively simple and does not need run-time support, sublimation is more
complicated and has significant run-time overhead. Table 4.1 shows how large this
difference can be. Sometimes a choice is forced as dependencies prevent one of the
two methods to be applied, as was shown in the example in Section 4.2.8. If there are
no constraints and both methods are available, the experiments suggest that annihi-
lation is the way to go. We believe however that there are cases where sublimation is
superior to annihilation, because in principle, sublimation allows to choose different
basis functions to access the iteration space. In that case, at run-time data structures
can be created to match this new basis.

4.5 Summary

Although it is well known that the choice of data structures has a big influence on the
performance of algorithms, most compiler transformations do not directly target data
structures but only consider the computational code. One of the reasons for this is that
especially pointer structures impose severe restrictions on standard transformations.
Various transformations have been described in this chapter that directly target the
transformation of data structures and it is shown that substantial speedups can be
achieved.

The framework outlined in this chapter has been implemented in a prototype
restructuring compiler (called MTC) and extending this to a production quality com-
piler is not a trivial task. Many requirements must be met before these concepts are
widely applicable. In the subsequent chapters, different facets of the concepts out-
lined here will be dealt with in more detail, and more generic techniques to handle a
much wider class of applications are described. One must realize that before a restruc-
turing framework has described here can be fully functional, a large implementation
effort is needed. For full applications, the problems which need to be dealt with are
the propagation of information on data access restructuring, injectiveness of indirect
addressing, and the structure of the underlying data structure. In the remainder of
this thesis, the LLVM compiler framework will be used together with Data Struc-
ture Analysis [72], which is used to determine how data is accessed throughout an
application.

Actually, the restructuring concepts described in this chapter might be seen as a
first step in realizing data structure independent programming. In [71,119] and [120],
proposals have been made to define future programming where specific information
on how data is stored and structured is hidden from the core application. More
generically phrased: Can the component based software architecture be seen as a
way to compartmentalize specific implementation details of the building blocks and
can the data virtualization approach be seen as a specific instance of this component
based approach.

CHAPTER 5

LLVM Preliminaries

The previous chapter sketched out the main ideas for restructuring pointer-linked data
structures and code. All examples were C-to-C restructuring transformations. The C
language has many constructs that need to be handled and therefore normalization
techniques are required in order to simplify the analysis phase. Necula et al. define
CIL [89], a type-safe subset of C, which simplifies C to a kind of simpler normal form.
While this approach is suitable for C-to-C restructuring, it does not widen the scope
of compiler techniques to other languages.

Compiler intermediate codes also provide a much simpler set of constructs. For
example, GCC has its GIMPLE intermediate [1], which is based on the SIMPLE
intermediate used in the McCat compiler [52]. This is a C-like three address code [10].
LLVM is a relatively new compiler framework [74], which operates on the LLVM
intermediate representation, referred to as LLVM bitcode. The main advantage of
LLVM over CIL is that it is, in principle, language independent. For any front-end
emitting LLVM bitcode, the optimization framework can be applied. Compared to
GCC, LLVM is easier to work with and an analysis of fundamental importance for our
work is available, namely Lattner’s Data Structure Analysis [72]. Therefore, LLVM
is the compiler framework that will be used in the remainder of this thesis.

A number of issues are solved by using the LLVM compiler framework. First of
all, it offers a clean and simple instruction set for which optimizations can be de-
fined. The bitcode provides an implicit normalization of C code (and other languages
for which front-ends exist). The indirection elimination and structure splitting tech-
niques explained in the previous chapter can be implemented in a more transparent
way. This will be explained in Section 5.4. Furthermore, in the subsequent chapters,
restructuring techniques that substitute indirection elimination, loop expansion and
loop extraction, that use a run-time system, will be discussed.

107

108 5. LLVM Preliminaries

In this chapter, we will briefly describe the LLVM compiler framework, and some
analysis and transformation passes on which our restructuring transformations, that
are presented in the subsequent chapters, depend. Section 5.1 describes the LLVM
framework and bitcode in general. Data Structure Analysis (DSA) is an analysis pass
developed by Lattner [72] that provides information about data structure usage and
safety. It is described in Section 5.2. Using DSA, Lattner implemented automatic pool
allocation of disjoint data structures [73,75]. On top of this, program-wide structure
splitting can be implemented. These techniques are explained in Section 5.2 and 5.4,
respectively.

5.1 The LLVM Compiler Infrastructure

The LLVM compiler infrastructure started as a project at the University of Illinois.
Lattner and Adve characterize the goal of the framework as follows [74]:

“LLVM is designed to support transparent, lifelong program analysis and
transformation for arbitrary programs, by providing high-level information
to compiler transformations at compile-time, link-time, run-time, and in
idle time between runs.”

The LLVM compiler tries to achieve this by compiling different languages into a
single, intermediate representation, the LLVM bitcode. For example, each separate
C, C++, Fortran or Ada file can be compiled into an LLVM bitcode module. These
modules can then be linked by the LLVM linker, which results in a single, linked
bitcode module. This flexibility allows for optimization at link-time, which enables
more aggressive optimizations to be applied.

In this section, we will briefly describe the LLVM bitcode, and one important
analysis, Data Stucture Analysis, that partitions data structures within a whole-
application and identifies how data structures are accessed throughout the application.

LLVM Bitcode

LLVM bitcode consists of a virtual instruction set with an unbounded amount of
virtual registers and a main memory that can be read and written. The virtual
registers are only assigned once, so at the virtual register level, LLVM bitcode uses a
static single assignment (SSA) representation. In addition, all register, load and store
instruction are typed. Thus, LLVM bitcode is a typed language, which is quite close
to machine languages, but has type information associated with each instruction. Let
us consider an example piece of LLVM bitcode:

5.1. The LLVM Compiler Infrastructure 109

bb: ; preds = %bb1

%0 = call i32 @rand() nounwind ; <i32> [#uses=1]

%1 = sitofp i32 %0 to double ; <double> [#uses=1]

%2 = fdiv double %1, 0x41747AE140000000 ; <double> [#uses=1]

%3 = fsub double %2, 5.000000e+01 ; <double> [#uses=1]

%4 = load double** %vec_addr, align 8 ; <double*> [#uses=1]

%5 = load i32* %i, align 4 ; <i32> [#uses=1]

%6 = sext i32 %5 to i64 ; <i64> [#uses=1]

%7 = getelementptr double* %4, i64 %6 ; <double*> [#uses=1]

store double %3, double* %7, align 1

%8 = load i32* %i, align 4 ; <i32> [#uses=1]

%9 = add i32 %8, 1 ; <i32> [#uses=1]

store i32 %9, i32* %i, align 4

br label %bb1

In this code, the variables %0 through %9 are SSA register variables. It is possible
to give SSA variables a name, but that is not shown in this example. Text following
a semicolon are comments. The first instruction is a call instruction, that calls the
rand function, which is a standard C library function. The result is returned into
%0. As this is an SSA variable, we know that %0 will only be assigned here, and
nowhere else. We also know that any uses of this SSA variable must be dominated
by the definition of this variable. The sitofp instruction used the value resulting from
the call, and converts it to a double precision floating point number. Note, that for
each instruction, the full type of the arguments and the return type is known. Any
type conversions are stated explicitly.

Accessing memory is done through the load and store instructions. The load
instruction takes a typed pointer, and returns the value that is read from memory.
The store instruction takes both a pointer and a value, and stores the value at the
location specified by the pointer. The store instruction does not return any value.
Again, note that the operands and return value are all typed variables.

Address Calculations

Address arithmetic is implemented using a special instruction, getelementptr, which
preserves all type information. In the example above,

%7 = getelementptr double* %4, i64 %6

corresponds to the C expression:

var7 = &var4[var6]; // or var7 = var4 + var6;

It is crucial to note that the getelementptr instruction never dereferences a pointer.
It only performs pointer arithmetic. The getelementptr instruction is also used to
calculate pointers to fields in structures. For example, the corresponding LLVM data
type for struct timeval from the C library is:

110 5. LLVM Preliminaries

%struct.timeval = type { i64, i32 }

If %t is a pointer referring to a variable of this type, then the address of the second
field, with type i32, is computed using the following getelementptr instruction:

%fieldAddr = getelementptr %struct.timeval * %p, i32 0, i32 1

In terms of C, this translates to:

fieldAddr = &p[0].field1;

This means that starting from pointer %p, we need the element 0 (%p is interpreted as
an array) and within this element, we need the address to field 1 (which is the second
field).

Of crucial importance in this thesis is the possibility of link-time optimization.
With link-time optimization, a whole-program view is provided, which is needed to
prove safe use of data structures. This is determined by Lattner’s Data Structure
Analysis, which is discussed in the next section. More details on the LLVM com-
piler infrastructure and the bit code instructions can be found on the LLVM project
website [7].

5.2 Data Structure Analysis

Lattner’s Data Structure Analysis (further referred to as DSA) is an efficient, inter-
procedural (whole program), context- and field-sensitive pointer analysis [72, 73, 75].
It provides information about how data structure elements are actually accessed in a
program and (conservatively) identifies disjoint instances of data structures, even if
these data structures show an overlap in the functions that operate on them. Such
disjoint data structures can be allocated in their own designated memory area, called
a memory pool. First, it is important to understand that DSA is not a shape analysis.
DSA determines which data structures can be proved to be disjoint in memory. Such
a data structure can be a linked list, a tree, a graph or any other pointer-linked data
structure.

The result of DSA is the Data Structure Graph (DS Graph). Within this graph,
the nodes represent memory objects. A node is described as follows [72]:

“Each DS graph node represents a (potentially unbounded) set of dynamic
memory objects and distinct nodes represent disjoint sets of objects, i.e.,
the graph is a finite, static partitioning of the memory objects. Because
we use a unification-based approach, all dynamic objects which may be
pointed to by a single static pointer variable or field (in some context) are
represented as a single node in the graph.”

Our primary interest lies in the nodes that are type-homogeneous, that is, all memory
objects represented by the node are of the same type and are used in a type-consistent
way throughout the entire program. For implementation and efficiency reasons, data
structures should often not be stored according to their layout as defined by the

5.2. Data Structure Analysis 111

programmer, as this layout is not optimal, and is merely chosen because of, for in-
stance, its logical structure. As DSA provides information on type-safety on the
whole-program level, it is possible to remap the layout of data structures. This as-
sumes that all uses of such a data structure have been identified and that the data
structure cannot escape the program (otherwise it would not be type-safe). These
restructuring transformations will be discussed in the next chapters. Here, we will
focus on the framework supporting such transformations.

Construction of the DS graph is done in three phases. The first is the Local
Analysis Phase, during which the actual program representation is used to construct
DS graphs for all functions, taking only local information into account. For each
function, each data access is analyzed and each SSA variable that contains a pointer
will have an edge to the corresponding data structure it is pointing to in the graph.
The layout is determined by examining how data is accessed. For example, consider
the following code:

%struct.MatrixElement = type { double, %struct.MatrixElement*,

i32, i32, %struct.MatrixElement* }

...

%17 = load %struct.MatrixElement** %pElement, align 8

%18 = getelementptr %struct.MatrixElement* %17, i32 0, i32 0

%19 = load double* %18, align 8

%20 = load %struct.MatrixElement** %pElement, align 8

%21 = getelementptr %struct.MatrixElement* %20, i32 0, i32 2

%22 = load i32* %21, align 8

Variable %17 will contain the pointer loaded from pElement. We do not consider the
code preceding this example, so we cannot determine the effect of this load statement.
Let us assume that in the DS graph, %17 has an edge pointing to some data structure
node. The next getelementptr instruction computes an offset relative to %17. This
offset is 0. Note, though, that this computes a pointer to the first field of the structure
that %17 is pointing to, which has the type double. The subsequent load accesses
this location as a double. Thus, in the data structure graph, the node that %17
is connected to will record that it is accessed at offset 0 as a double. The next
getelementptr performs a similar operation, but computes a pointer to the third field,
which is an integer. Thus, the layout of the DS node looks as follows now, represented
as a sequence of offset/type pairs: <<0:double,8:void,8:i32>>.
If now, for some reason, this same data structure would be accessed in a different
way (due to type-unsafe programming, or inheritance in object oriented languages), a
conflict may arise. Imagine that the third field is accessed as a 64-bit integer. In that
case, a conflict with a previously recorded type is detected, and the node is marked
as type-unsafe (collapsed, in DSA terminology).

DS nodes contain flags which indicate whether they contain complete information,
that is, whether information from callees and callers has been integrated in the node
for the current function. The nodes also indicate whether data associated with a node
might be read from (R flag) or written to (M flag). After the first phase, this indicates
whether the data is read or written in the function that is associated with the node.

112 5. LLVM Preliminaries

int main(int argc, char **argv)

{

...

MatrixPtr tmp = ReadMatrixPtrRow(matrixFile);

MatrixPtr Matrix = MatrixToFormat(tmp, format);

...

for(i = 0; i < iterations; i++)

MatrixMultiplyVec(Matrix, right, result);

...

}

Figure 5.1: Code excerpt of main function of SPMATVEC.

The next phase, the Bottom-Up Analysis Phase, combines the information from
the local functions with results from their callees, by propagating this information
bottom-up. This phase is context-sensitive (that is, it takes function calls into ac-
count). After this phase, the DS nodes represent information about the aggregate
effect of the function itself and all its potential callees. This requires a mapping be-
tween DS nodes in callers and callees. After this mapping has been made (which
can be found by mapping actual arguments to formal arguments), the information in
the nodes is merged. If type conflicts are detected, the node is marked unsafe in the
caller, but not in the callee. This is because the callee still might be type-safe if called
from another context.

The last phase is the Top-Down Analysis Phase, which propagates information
on data structure usage from callers to callees. This provides a global, conservative
view on data structures in the application. If at some point it is determined that a
data structure is type-unsafe, this is propagated throughout the application after the
Top-Down Analysis Phase. We will not need the Top-Down Analysis Phase in our
restructuring framework, the results from the Bottom-Up Analysis suffice.

Let us illustrate this with an example. Figure 5.1 shows a part of the main
function of SPMATVEC, one of the SPARK00 benchmarks described in Chapter 3.
Figure 5.2 shows the associated DSGraph. Information about the variables generated
by the compilation to the LLVM bit code (which uses an SSA representation) is not
shown. The graph shows the two stack variables (specified by the S flag) %tmp

and %Matrix, which both have their disjoint storage space on the stack. Hence the
separate nodes. The MatrixFrame structure they are both pointing to is one node,
indicating that the analysis cannot prove that they are pointing to disjoint structures.
The MatrixFrame structure basically contains three pointers. These are the three
arrays of pointers that point to the start of a row, the start of a column and the
diagonal elements. The MatrixElement structure is the structure containing the
matrix data. It has two self references, which are the two pointers used to traverse
the matrix row- and column-wise.

Each function has its own bottom-up DS graph. Nodes that are related to formal
arguments are data structures that are passed in by calling the function. Nodes that

5.3. Automatic Pool Allocation 113

Function main

%struct.MatrixFrame*: SMR

%struct.MatrixFrame: HMRE

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HM

%struct.MatrixFrame*: SMR

%struct.MatrixElement: HMR

%tmp %Matrix

Figure 5.2: DSGraph for main function of SPMATVEC benchmark.

do not correspond to a formal argument depict data structures that are instantiated
within this function. At this point, such a node incorporates all information on how
this node is used in all callees. The Bottom-Up Analysis ensures that if a node is
used in a type-safe fashion this is propagated to the point where the data structure in
instantiated. At this particular location, a choice can be made how this data structure
instance is treated.

Summarizing, for each data structure, we are interested at which point it is actually
instantiated and whether it is type-safe in all callees. All such data structures can be
stored in a disjoint memory segment, called a memory pool.

5.3 Automatic Pool Allocation

On top of DSA, Lattner et al. implemented automatic pool allocation [73, 75]. Pool
allocation is a transformation which rewrites calls to memory allocation functions to
custom memory allocators such that disjoint data structures are allocated from dis-
joint memory regions. This is done by identifying pool-allocatable data structures, as
shown in the previous section. As such a node in the DS graph has been determined to
be type-safe, all associated memory allocation functions can be identified and rewrit-
ten such that they call a pool allocation library. The new allocation functions take
an additional argument compared to their standard equivalents, the pool descriptor,
which uniquely identifies a data structure instance at run-time. Pool-allocated struc-
tures that are allocated from type-homogeneous pools, allow for precise control of the

114 5. LLVM Preliminaries

struct S {

int32 x;

double y;

struct S *next;

} [SIZE_OF_POOL];

struct S {

int32 x[SIZE_OF_POOL];

double y[SIZE_OF_POOL];

struct S *next[SIZE_OF_POOL];

};

Figure 5.3: Array of structures vs. structure of arrays.

f1 f2 f3 f4

Object 1

f1 f2 f3 f4

Object 2

f1 f2 f3 f4

Object 3

f1 f2 f3 f4

Object 4

f1 f2 f3 f4

...

f1 f2 f3 f4

Object n

(a) Regular type-homogeneous pool

Field 1

o1 o2 o3 o4 ... on

Field 2

o1 o2 o3 o4 ... on

Field 3

o1 o2 o3 o4 ... on

Field 4

o1 o2 o3 o4 ... on

(b) Split type-homogeneous pool

Figure 5.4: Type-homogeneous pools can be stored either grouped by object or by
field. In both cases, locations are uniquely identified by the triplet (pool, object, field).

data layout, because it is known that all allocated elements within a particular mem-
ory region have the same type. We use this property to modify the way structures
are laid out in main memory.

5.4 Pool-Assisted Structure Splitting

A useful data layout transformation when a data structure is known to be type-safe
is structure splitting. Let us consider a memory pool that only stores elements of
a particular structured type. In essence, such a pool is just an array of structures
(AOS). If we assume that the size of this array is fixed, this can be easily transformed
into a structure of arrays. Figure 5.3 depicts this concept by giving the corresponding
structure definitions in C. As the size of all fields is known and we also know that
only objects of a single type exist within a pool, data can be addressed by the triplet
(pool, object, field). This is a logical addressing mode, and the underlying physical
mapping can be picked freely. Figure 5.4 shows how this logical addressing mode is
mapped to both a regularly ordered pool and a split pool.

Splitting structures has some advantages over normal pool allocation. Firstly,
it is possible to do away with all padding which is otherwise needed (except for
alignment-imposed restrictions) as primitive data types (i.e. floats, doubles, integers
etc..) normally must be aligned to addresses corresponding with the size of the type.
In a split structure however, the elements that follow each other will be of the same
type and size, this means that the fields can be packed much more efficiently in many
cases where padding would normally be inserted. Secondly, another advantage is that
a field in a structure that is not accessed as often as the other elements will not pollute
the cache, as unused data will not be taking up cache space.

5.4. Pool-Assisted Structure Splitting 115

Structure splitting has its limitations, for example, a split structure will typically
be split over multiple memory pages and thus require more active TLB1 entries. As a
consequence of this, a structure that is not used in sequential access (e.g. by following
pointer chains), is not likely to yield any performance benefits when split. In addition,
when multiple fields of a structure are referenced, the cache efficiency will be worse
for split structures than for a non-split structure as in the split version, as the two
fields will be located in two different cache lines, whereas in the original version, those
fields are most likely co-located in the same cache line.

The implementation of our structure splitting transformation is similar to the
DSA-based implementation of Curial et al. [35], who implemented structure splitting
in the IBM XL compiler. Compared to their implementation, we have improved on the
efficiency of address calculations. Furthermore, we have extended DSA MOD flags,
which indicate whether a data structure might be modified in a particular function.
The standard MOD-flags are compile-time flags. Our implementation supports field-
sensitive, run-time MOD-flags which are set whenever a write to a particular field
occurs.

Using the tools described in this chapter, we will describe the implementation of
our restructuring framework for pointer-linked data structures.

1Translation Lookaside Buffer

116 5. LLVM Preliminaries

CHAPTER 6

A Compilation Framework for Automatic Restructuring

Predictability in memory reference sequences is a key requirement for obtaining high
performance on applications using pointer-linked data structures. This contradicts the
dynamic nature of such data structures, as pointer-linked data structures are often
used to represent data that dynamically changes over time. Also, different traversal
orders of data structures cause radical differences in behavior. Thus, having control
on data layout is essential for getting high performance.

For example, architectures like the IBM Cell and GPU architectures each have
their own characteristics and if algorithms using pointer-structures are to be executed
on such architectures, the programmer must mold the data structure in a suitable
form. For each new architecture, this means rewriting code over and over again.

Another common pattern in code using pointer-linked data structures is the use of
custom memory allocators. Drawbacks of this approach are that such allocators must
be implemented for various problem domains and that they depend on the knowledge
of the programmer, not on the actual behavior of the program. Our restructuring
framework is a first step in the direction to liberate the programmer from having to
deal with domain specific memory allocation and rewriting of data structures.

6.1 Outline

In this chapter, we present a compiler transformation chain that determines a type-
safe subset of the application and enables run-time restructuring of type-safe pointer-
linked data structures. This transformation chain consists of type-safety analysis
after which disjoint data structures can be allocated from separate memory pools.
At run-time, accesses to the memory pools are traced temporarily, in order to gather
actual memory access patterns. Next, from these access patterns, a permutation is

117

118 6. A Compilation Framework for Automatic Restructuring

generated which enables the memory pool to be reordered. Note that these traces
are not fed back into a compiler, but are rather used to restructure data layout at
run-time without any modification of the original application. Pointers in the heap
and on the stack are rewritten if the target they are pointing to has been relocated.
After restructuring, the program resumes execution using a new data layout.

Restructuring of linked data structures cannot be performed unless a type-safe
subset of an application is determined. This information is provided by Lattner
and Adve’s Data Structure Analysis (DSA), which has been explained in Chapter 5.
The result of DSA can be used to segment disjoint data structures into different
memory regions, the memory pools. Often, many memory pools turn out to be type-
homogeneous, that is, they only store data of a specific (structured) type.

For type-homogeneous pools, we have implemented structure splitting, similar to
MPADS [35], the memory-pooling-assisted data splitting framework by Curial et al.
This changes the physical layout of the structures, but logically they are still ad-
dressed in the same way (any data access can be characterized by a pool, objectid and
field triplet). Structure splitting is not a strict requirement for restructuring, but it
simplifies the implementation and results in higher performance after restructuring.

In order to restructure, a permutation vector must be supplied. This permutation
vector is obtained by tracing memory pool accesses. Tracing does have a significant
impact on performance, so in our framework tracing can be disabled after a memory
pool has been restructured. The application itself does not need to be aware of this
process at all. While in principle such a trace can also be used to modify the behavior
of a memory allocator for the next execution of an application, we have not done so
at this moment. It is important to note that tracing and restructuring all happen
within a single run of an application.

Section 6.2 describes the compile-time parts of our framework and Section 6.3
treats the run-time components. Section 6.4 contains the experimental evaluation of
our framework. Restructuring pointer-linked data structures has great potential and
considerable speedups are shown on the SPARK00 benchmarks. The challenge of
SPARK00 lies in closing the performance gap between pointer traversals resulting in
random access behavior and traversals resulting in perfectly sequential access behav-
ior. As such, it illustrates the potential, but it does not guarantee that such speedups
will be obtained for any application. The overhead of the tracing mechanism, which
of course does not come for free, is discussed in Section 6.4.2. It is shown that the
performance gains do compensate for this overhead within relatively few consecutive
uses of the restructured data structure. Restructuring memory pools requires a spe-
cial stack that can be updated after restructuring. Different mechanisms and their
implications are discussed and evaluated in Section 6.4.3. Address calculations need
to be efficient, and therefore we present improved address calculations (compared to
the address calculations as given by Curial [35]) for addressing fields of structures in
split memory pools in Section 6.4.4. A summary is given in Section 6.5.

6.2. Compile-time Analysis and Transformation 119

���������������	
���

����	�������������

������		�����
�����

��
	���

�����

��������������
������������

��������������	�������������

������	��������������
���

�� ����
!��	���

�����	
���
!�
��

�����	
���
!��	���

Figure 6.1: Overview of the pool restructuring compilation chain.

6.2 Compile-time Analysis and Transformation

At compile-time, a whole program transformation is applied in order to obtain a split
structure layout that supports run-time restructuring. Figure 6.1 shows an overview
of the entire compilation chain that our framework consists of. In this section, the
analyses and rewriting compiler passes are discussed.

6.2.1 Structure Splitting

Our analysis and transformation chain starts at the point where DSA has been per-
formed on a whole program and pool allocatable data structures have been deter-
mined. We start at the main function and traverse all reachable functions, cloning
each function which needs to be rewritten to support the data layout of split struc-
tures. Functions are cloned as there might also be calling contexts in which splitting
cannot be applied, and these cases must also be dealt with correctly. For the identifi-
cation of the memory pools we depend on Lattner and Adve’s Pool Allocation [73,75].
It is not possible to split pools that are not type homogeneous, as addressing of object
fields would become ambiguous and fields of different types and length would intro-
duce aliasing of field values. This information is however available from the DSA and
pool allocation passes.

During the analysis phase, function clones are generated for split versions of func-
tions and calls are rewritten accordingly. Rewriting of other instructions, such as

120 6. A Compilation Framework for Automatic Restructuring

address calculations are deferred to a later stage, as they are nothing more than a
change in the semantics of the address calculation instruction (GetElementPtrInst)
in LLVM.

Various pieces of information are gathered in the structure splitting analysis pass
which are used in subsequent passes. All loads and stores to pool data are identified as
well as all loads and stores that store a pointer into a pool, which is needed to support
the use of object identifiers instead of pointers (see Section 6.2.5). The structure
splitting pass ensures that all the address calculation expressions (GetElementPtrInst
in LLVM) whose result points to data in split pools are identified. These expressions
must be rewritten before the final code generation at a later stage. The address
calculation expressions are not rewritten immediately but just before code generation
because additional passes will need to reason about these expressions.

6.2.2 Pool Access Analysis

Pool access analysis is a pass in which all pool accesses (loads and stores) are analyzed.
The result of the analysis is that instead of being viewed as an access using a specific
pointer, the location read from or written to is represented using a triplet (pool, object,
field). Pool is the pool descriptor used at run-time, object the pointer to the object
the data belongs to and field is the field number that is accessed. Originally, a load
or store just used a pointer as its address operand, but now, the more generic notion
of pool, object and field can be used. This is analogous to data access in a database
(table, row and column).

For each load and store from a split pool, the analysis is performed as follows:

// Get accessed object

baseObject = get underlying object for accessed object

check that baseObject is also a load

pool = get pool descriptor associated with baseObject

// Get accessed field

gepiInst = get pointer operand of memory instruction

check gepiInst is a GetElementPtr instruction

field = get field index from gepiInst

Note that for each access to a pool, it must be possible to determine which field is
accessed. This property cannot always be proved if the address of fields is taken,
and therefore we do not allow that any address of a field is written to any memory
location using the LLVM StoreInst. For example, the following C-code snippet will
never be restructured:

obj->ptr = &p1->y;

...

*obj->ptr = val;

This might be a bit over-conservative, and in a future version, we might define this

6.2. Compile-time Analysis and Transformation 121

Method Advantages Disadvantages
Pointer Tracking Simple Slow

Portable Interferes with IR
Shadow Stack Fast Interferes with IR

Portable
Stack Map Fast Backend Modifications

No IR Interference Stack walking not portable

Table 6.1: The three stack management options and their individual advantages and
drawbacks

more precisely. Lattner and Adve’s pointer compression applies the same restriction
on field accesses [76].

6.2.3 Stack Management

The primary requirement for structure splitting to work (in terms of code modifica-
tions) is the remapping of address calculation expressions so that data is read and
written to the relocated location in the split pool. However, if reordering of the pool
contents is to be accomplished this is not sufficient. Other pools may for example
contain references to the reordered pool (which means that those references need to
be updated). However, these on-heap pointers are not the only references to pool ob-
jects that the system needs to deal with. The other type of references that need to be
managed are pointers that are stored on the stack and that point into the pool. This
problem is similar to what garbage collectors have to do, and in their terminology,
the on-stack pointers are known as roots. Tracking the on-heap pointers can be done
by adding additional meta data to the pool descriptor, this meta data is derived from
the DSA (that keeps track of connectivity information between pools).

Three different alternatives to accurate stack managing were explored and eval-
uated. These approaches include explicit pointer tracking, shadow stacks and stack
maps. However, only the first method was fully implemented for reasons that will be-
come clear later on. The three different investigated methods for stack management
are summarized in Table 6.1.

Explicit Pointer Tracking

One approach to the stack root issue, is to ensure that all pointers are explicitly
tracked at the LLVM level. We call this technique pointer tracking. When a pool
descriptor is allocated, a special segment of data is acquired that will be used to track
all stack local pointers pointing into the pool, whenever a pointer is allocated on the
stack, the location of this pointer is inserted in the per pool stack tracking block. A
frame marker is needed in order to be able to remove all the pointer tracking entries
associated with a returning function. In LLVM, this means that any pointer that is
an SSA register must explicitly be stored on the stack. The following LLVM function

122 6. A Compilation Framework for Automatic Restructuring

illustrates this:

void @func(pooldesc *pool0) {

entry:

bb0:

%x = load {i32, i32}** %heapObjectAddr

call void @foo %x

ret

}

The function listed above is then transformed into the following:

void @func(pooldesc *pool0) {

entry:

%xptr = alloca {i32, i32}**

call void @split_st_reg_stack_obj %pool0, %xptr

call void @split_st_push_frame %pool0

bb0:

%x = load {i32, i32}* %heapObjectAddr

store %x, %xptr

%x_foo_arg = load {i32, i32}* %xptr

call void @foo %x_foo_arg

call void @split_st_pop_frame %pool0

ret

}

In the transformed function the pointer %x is explicitly backed by a stack variable
and this variable is then registered with the run-time function
split st reg stack obj. After the pointer registrations a call to the run-time function
split st push frame is executed. This function will close the stack frame for the current
function in order to speed up the pop operation of the stack. It should be noted that
the run-time functions mentioned here are very short (a few instructions) and will be
inlined. Thus, they do not induce any function calling overhead. In order to reduce
this overhead, an approach where stack tracking is disabled in certain functions has
been chosen. The pseudo code in the following example illustrates why this is useful:

Pool pool;

Matrix *mtx = readMatrix(pool);

doMatrixOperation(pool, mtx);

PoolRestructure(pool, mtx);

for (int i = 1 ; i < N ; i ++) {

doMatrixOperation(pool, mtx);

}

Here the critical code is the doMatrixOperation, but if this operation does not call
the PoolRestructure function, then this function does not need to track the pointers.

6.2. Compile-time Analysis and Transformation 123

Explicit pointer tracking is relatively easy to implement. In terms of imple-
mentation effort it is small compared to the methods described further on in Sec-
tions 6.2.3 and 6.2.3. Although the method (as shown in experiments later on) is not
a good choice for a field deployment, it takes very little code to implement both the
passes and the run-time support for the explicit pointer tracking.

Shadow Stacks

The second approach that we investigated for tracking pointers on the stack, was
the utilization of a shadow stack. This technique is based on the garbage-collection
method described by Henderson [51]. Shadow stacks are generated by the compiler.
For each function, a data structure is generated that stores pointers to all the pointers
that will be used within the function. When a function is called, such a structure
is allocated on the stack and this structure is then registered with the run-time.
Compared to the pointer tracking method, this reduces the number of calls to the
run-time system to register the shadow stack frame to exactly one call per function
call as only one pointer (to the shadow stack) needs to be registered.

Stack Maps

The third alternative is the construction of stack maps [9]. Stack maps are structures
that are generated statically for each function; these structures describe the stack
frames of the corresponding functions. The maps are computed during the code
generation phase and contain information on for example frame pointer offsets of the
pointers allocated by the function. The main advantage of delaying this to the code
generation phase is that the transformation will not interact in any way with earlier
optimizations. The main drawback is that the stack walking will become platform
dependent and this may not necessarily suit every compiler.

6.2.4 In-Pool Addressing Expression Rewriting

For non-split structures, the derived pointers to fields in the structures can easily
be computed by adding a constant offset to the base pointer of the structure. For
split structures however, this is not possible anymore. In a split structure, the field
addresses do no longer have constant offsets from the base pointer of the structure
(see Figure 6.2 for a graphical explanation of why this happens).

It is obvious that calculating addresses for the fields in the structures must be very
efficient. This fact was already stressed by Curial, but he did not optimize the address
calculation expressions and their selection rules to the same extent as we did. If this
calculation is inefficient, it potentially nullifies much of the performance improvement
gained from the more cache-efficient split structure representation. In general, the
offset for field n can be represented by the following equation:

offsetn = kn + sizeofn
p&(sizeofpool − 1)

sizeof0
− p&(sizeofpool − 1) (6.1)

124 6. A Compilation Framework for Automatic Restructuring

where kn is the constant offset to field array n from the pool base. The sub-expression
p&(sizeofpool − 1) calculates the object pointer p’s offset from the pool base and the

expression
p&(sizeof

pool
−1)

sizeof0
calculates the object index in the pool1.

Note that when the accessed field is the first field of the structure then offset0 = 0
and if the size of the accessed field is the same as the first field of the structure then
offsetn = kn.

We have observed that in many common cases the size difference between the
accessed field and the first field is a power of two. Taking this observation into
account, we introduce two additional expressions. When the size of the accessed field
is greater than the first field of the structure we have that:

offsetn = kn + (sizeofn − sizeof0)
p&(sizeofpool − 1)

sizeof0
(6.2)

and when the size of the first field is greater than the accessed field use the following
expression:

offsetn = kn − (sizeof0 − sizeofn)
p&(sizeofpool − 1)

sizeof0
(6.3)

Equation 6.1 can be viewed as adding the pool base to the offset from the address
of the nth field of the first object, see Figure 6.2. This figure also demonstrates that
Equation 6.2 and 6.3 take into account the linear drift of field n due to the size
differences between fields 0 and n, with respect to the object’s pool index and the
constant offset kn.

It is assumed that further passes of the compiler will apply strength reduction
on all multiply and divide instructions involving a power of two constant. Fog [44]
gives the cost for various instructions for a 45nm Intel Core 2 CPU. These numbers
have been used to estimate the cost in cycles for the various equations calculating
the offsets. Assuming that the expressions have been simplified as much as possible
through, for example, constant folding and evaluation, we get that when sizeof0 is a
power of two, Equation 6.1 will take 26 cycles, if sizeofn is not a power of two the
same equation will take 6 cycles and if both sizes are a power of two it will take 4
cycles. Equation 6.3 will take 3 cycles, and Equation 6.2 will take 3 cycles in the
normal case (or 2 cycles if sizeofn − sizeof0 = sizeof0).

The address calculations as defined by Equations 6.1 and the elimination of calcu-
lations if accessing the first field are already used in MPADS [35], but our additional
Equations 6.2 and 6.3, have some important properties. They allow the calculation
of the field offsets to be reduced to 2 or 3 instructions instead of 4, as the code
generator will merge the divide and the multiplication operation into a single shift
operation. Note that for Equation 6.2 when sizeofn − sizeof0 = sizeof0, LLVM will
automatically eliminate the multiply and the divide instruction, giving even more
savings.

The most notable equation cost (26 cycles) has a divide instruction in the expres-

1Note that in this context, & is the C-operator for a bitwise AND.

6.2. Compile-time Analysis and Transformation 125

������
�

� ��� ������� �������

������
�

	 �

� ��� ������� ���
���

�������
�
�������

�
�
� ���������� ���
���

������
�

�������
�
�������

����
� ���������� ���
���

������ �

	 ���

�

�

��

�

�

���

���

���

��������������

�������

�������

�������

�������

���

	
����������

	��
����

��� ��� ���

�
�
��

�

��

Figure 6.2: Graphical representation of split pools and the field offset expressions
detailed in Section 6.2.4 for a split pool consisting of structures with elements of sizes
2, 4 and 1 bytes. Each shade of gray represents an individual object. The object
pointer p is in this case is pointing at the third object and the derived pointer pn is
pointing to the second field of the third object.

sion. This will for example happen when the first field of a structure is an array of
three 32 bit values (arrays are not split since they are already sequential) and the
next element is a 32 or 64 bit value. In those cases up to 23 cycles may be saved on
the address calculation as the divide instruction has been eliminated through strength
reduction possibilities introduced by Equation 6.3.

Overall it can be said that a compiler that splits structures should also reorder the
fields in a structure so that address calculations are made as simple as possible. For
example, if a structure contains three fields of lengths 1, 2 and 4 bytes, then the field
ordering should place the 2-byte element first, under the condition that the access
frequency of the fields is the same, as this simplifies the address calculations. Putting
the 2-byte element first will simplify Equation 6.2, (because sizeofn − sizeof0 =
sizeof0 when accessing the 4-byte field). The size difference with the other field is 1,
which is a power of two. As a result, Equation 6.3 can use a shift instruction instead

126 6. A Compilation Framework for Automatic Restructuring

of a division. At this moment our implementation does not reorder fields.

6.2.5 Converting Between Pointers and Object Identifiers

Instead of storing pointers in split memory pools, object identifiers are used. Object
identifiers can be used in type-homogeneous pools to uniquely identify an object
within a pool. As shown in Section 6.2.2, together with a field number, each data
element can be addressed. Object identifiers are a more compact representation than
pointers and also more compact than byte offsets from a pool base pointer, as used
in Lattner and Adve’s static pointer compression [76]. Object identifiers are more
compact than byte offsets because object identifiers can use every available integer
for addressing, while for byte offsets, the next available offset is the previous offset
plus the size of one element. Their dynamic pointer compression transformation also
uses object identifiers. In that case, it provides a representation independent of the
size of fields, whereas byte offsets would need to be rewritten if field sizes change.

Our motivation to use objects identifiers is different. While our framework would
also benefit from pointer compression (currently object identifiers are stored as 64-bit
unsigned integers), we use object identifiers because they can be used as indices in
permutation vectors and because they provide position independence for data struc-
tures. For future developments, the object indexing will aid in using data structures in
hybrid architectures and environments, as the representation is position-independent.
Whenever a pointer is loaded from memory, the conversion is done in an architecture
and context-dependent way.

Section 6.2.2 described how all loads and stores to memory pools can be repre-
sented as a (pool, object, field) triplet. In the case that field is a field that is pointing
to pool allocated data (whether this defines a recursive data structure or a link to
another data structure does not matter), this value needs to be converted to an object
identifier upon a store, and must be converted to a pointer upon a load. Loads and
stores to the stack are unaffected and thus will contain real pointers.

For stores the value to store is rewritten as follows:

uintptr_t ptr_to_objid(split_pooldesc_t *pool, void *obj)

{

if(obj == 0) return 0; // Special case: NULL pointer

else {

uintptr_t poolBase = (uintptr_t)pool->data;

uintptr_t objOffset = poolBase - (uintptr_t)obj;

uintptr_t objIdx = objOffset / sizeof_field(0);

}

return objIdx;

}

And for loads the loaded value is rewritten as follows:

6.3. Run-time Support 127

void *objid_to_ptr(split_pooldesc_t *pool, uint64_t *objIdx)

{

if(objIdx == 0) return 0; // Special case: NULL pointer

else {

uintptr_t poolBase = (uintptr_t)pool->data;

uintptr_t objOffset = objIdx * sizeof_field(0);

uintptr_t obj = poolBase + objOffset;

return (void *)objIdx;

}

}

Note that the actual implementation uses LLVM bit code and uses a bitmask instead
of an if-statement to handle the NULL pointer.

Compared to the description of object indexing used in the pointer compression
transformation by Lattner and Adve [76], our implementation differs in some ways.
In their work, object indices are not only present in the heap, but are also used on
the stack and in LLVM’s virtual registers. Pointer comparisons and assignments do
not need the object identifier to be expanded to a full pointer in their framework.
In our framework, only loads and stores of pointers (only to pool objects) to split
pools need rewriting, and the rest of the code will run unchanged. It also simplifies
the restructuring step: on the heap, we only need to handle object identifiers, on the
stack we only have to deal with full pointers.

6.2.6 Restructuring Instrumentation

Pool tracing and restructuring of data structures requires instrumentation of the code
with calls to the tracing run-time. During pool access analysis, all loads and stores to
pools have been identified and are represented using the triplet (pool, object, field).
All these instructions can be instrumented such that a per pool, per field trace of
object identifiers is recorded. Currently, we only trace load instructions.

As tracing is a method that does not come for free, we only enable tracing for
one execution of a function and its callees. After the first execution, the data is
restructured and tracing is disabled. This is accomplished by generating two versions
of the function, one with and one without tracing. Selecting the proper function is
done through a global function pointer which is set to the non-traced version after a
trace has been obtained.

6.3 Run-time Support

Extracting a type-safe subset of the program and replacing its memory allocation by
a split-pool-based implementation requires run-time support, similar to the run-time
support provided for regular pool allocation. The split pool run-time provides create
and destroy functions for split pools as well as memory allocation and deallocation
functionality. In addition, some common operations implemented in the standard C
library are also provided, such as memcpy (which needs to copy data from multiple
regions due to the split layout), thereby widening the applicability of the framework.

128 6. A Compilation Framework for Automatic Restructuring

In this section, the run-time system for splitting and restructuring is described.
While this run-time system has been implemented specifically to support our pool
restructuring framework, it can also be used as a standalone library, giving the user
the ability to explicitly use split and restructurable data structures. Note that pool
connectivity must be explicitly specified if the library is used separately from the
compiler in order to keep data structures consistent after restructuring.

6.3.1 Application Programming Interface

The split-pool run-time offers implementations for initializing pools and for memory
allocation and deallocation. Table 6.2 describes the run-time functions needed to
support restructuring of split pools.

6.3.2 Tracing and Permutation Vector Generation

In order to restructure a memory pool, a permutation must be supplied to the restruc-
turing run-time. The pool access analysis pass (Section 6.2.2) provides the compile-
time information (pool, object and field) about all memory references and these mem-
ory references can all be traced. Separate traces are generated for each field within
a pool. For each pool/field combination, this results in a trace of object identifiers.
From any of these traces, a permutation vector can be derived which can be used to
permute a pool. The permutation vector is currently computed by scanning the trace
sequentially and appending the encountered object identifiers to the vector, avoiding
duplicates:

perm[0] = 0;

permLen = 1;

for (i = 0; i < maxTraceEntry; i++) {

if (!perm[trace[i]]) {

perm[trace[i]] = permLen;

permLen++;

}

}

Element 0 is reserved to represent the NULL pointer and therefore is never permuted.
For the evaluation of our restructuring method we choose to trace the first execu-

tion of a specified function (a compiler option specifies which function). Subsequently,
we restructure the data structure used in this function using this trace and then, upon
the next function call, we call the specified function with tracing disabled. In a future
implementation, this will be dynamic and tracing could be triggered if a decrease in
performance is detected (for example by using hardware counters).

6.3.3 Pool Reordering

One of the more important parts of our system is the pool rewriting support. Rewrit-
ing in this context means that a pool is reordered in memory, so that it is placed in a

6.3. Run-time Support 129
F
u
n
c
t
io

n
A

r
g
u
m

e
n
t
s

R
e
t
u
r
n

v
a
lu

e
D

e
s
c
r
ip

t
io

n

sp
li
t

p
o
o
l
va

rg
s

•
sp

li
t

p
o
o
ld

es
c

t
*
p
o
o
l

•
u
in

tp
tr

t
o
b
j
cn

t
•

u
in

t3
2

t
u
n
sp

li
t

o
b
j

le
n

•
u
in

t3
2

t
sp

li
t

o
b
j

le
n

•
u
in

t3
2

t
fi
el

d
cn

t
•

..
.

v
o
id

S
p
li
t

p
o
o
l
c
r
e
a
t
io

n
a
n
d

in
it

ia
li
z
a
t
io

n
.

In
it

ia
li
ze

s
a

n
ew

p
o
o
l,

a
n
d

re
se

rv
es

m
em

o
ry

fo
r

o
b
j
c
n
t

n
u
m

b
er

o
f

o
b
je

ct
s.

N
o
n
-s

p
li
t

o
b
je

ct
s

le
n
g
th

a
n
d

sp
li
t

o
b
je

ct
le

n
g
th

a
re

b
o
th

sp
ec

ifi
ed

.
fi
e
ld

c
n
t

sp
ec

ifi
es

th
e

n
u
m

b
er

o
f
fi
el

d
s

a
n
d

is
fo

ll
ow

ed
b
y

a
li
st

o
f
in

te
g
er

s
sp

ec
if
y
in

g
th

e
si

ze
o
f

ea
ch

fi
el

d
in

b
y
te

s.

sp
li
t

p
o
o
ld

es
tr

oy
•

sp
li
t

p
o
o
ld

es
c

t
*
p
o
o
l

v
o
id

D
e
s
t
r
o
y
s

a
p
o
o
l
a
n
d

fr
e
e
s

u
p

a
ll

m
e
m

o
r
y

m
a
p
p
e
d

r
e
g
io

n
s
.

sp
li
t

p
o
o
la

ll
o
c

•
sp

li
t

p
o
o
ld

es
c

t
*
p
o
o
l

•
u
n
si

g
n
ed

N
u
m

B
y
te

s
v
o
id

*
A

ll
o
c
a
t
e

M
e
m

o
r
y

fr
o
m

a
S
p
li
t

P
o
o
l.

A
ll
o
ca

te
s

a
n

in
te

g
er

n
u
m

b
er

o
f

o
b
je

ct
s

fr
o
m

a
p
o
o
l.

T
h
e

n
u
m

b
er

o
f

o
b
je

ct
s

a
ll
o
ca

te
d

is
N

u
m

B
y
te

s,
d
iv

id
ed

b
y

th
e

n
o
n
-s

p
li
t

o
b
je

ct
le

n
g
th

,
w

h
ic

h
w

a
s

sp
ec

ifi
ed

u
p
o
n

in
it

ia
li
za

ti
o
n

o
f

th
e

p
o
o
l.

T
h
is

a
re

p
la

ce
m

en
t

fo
r

m
a
ll
o
c
.

sp
li
t

p
o
o
lr

ea
ll
o
c

•
sp

li
t

p
o
o
ld

es
c

t
*
p
o
o
l

•
v
o
id

*
o
b
j

•
u
n
si

g
n
ed

N
u
m

B
y
te

s

v
o
id

*
R

e
a
ll
o
c
a
t
e

M
e
m

o
r
y

fr
o
m

a
S
p
li
t

P
o
o
l.

R
ep

la
ce

-
m

en
t

fo
r

re
a
ll
o
c

in
th

e
st

a
n
d
a
rd

C
li
b
ra

ry
.

sp
li
t

p
o
o
lf
re

e
•

sp
li
t

p
o
o
ld

es
c

t
*
p
o
o
l

•
v
o
id

*
o
b
j

v
o
id

F
r
e
e

P
o
o
l

A
ll
o
c
a
t
e
d

O
b
je

c
t
s
.

R
ep

la
ce

m
en

t
fo

r
fr
ee

in
th

e
st

a
n
d
a
rd

C
li
b
ra

ry
.

sp
li
t

p
o
o
lt

ra
ce

in
it

•
sp

li
t

p
o
o
ld

es
c

t
*
p
o
o
l

sp
li
t

p
o
o
lt

ra
ce

in
fo

*
In

it
ia

li
z
e

t
r
a
c
in

g
fo

r
a

p
o
o
l.

In
it

ia
li
ze

s
tr

a
ci

n
g

d
a
ta

st
ru

ct
u
re

s
fo

r
a

p
o
o
l.

sp
li
t

p
o
o
lt

ra
ce

-
tr

a
ce

b
a
se

st
a
ck

sp
li
t

p
o
o
lt

ra
ce

-
tr

a
ce

b
a
se

h
ea

p

•
v
o
id

*
p
o
o
l

•
u
in

t3
2

t
fi
el

d
•

v
o
id

*
p
tr

v
o
id

A
d
d
s

a
n

e
n
t
r
y

t
o

t
h
e

t
r
a
c
e

fo
r

a
s
p
e
c
ifi

c
fi
e
ld

o
f

a
p
o
o
l.

T
w

o
v
er

si
o
n
s

ex
is

t,
o
n
e

fo
r

p
o
in

te
rs

o
n

(n
o
t

to
!)

th
e

st
a
ck

th
a
t

a
re

d
er

ef
er

en
ce

d
,
o
n
e

fo
r

p
o
in

te
rs

o
n

th
e

h
ea

p
.

T
h
is

is
d
o
n
e

b
ec

a
u
se

p
o
in

te
rs

o
n

th
e

h
ea

p
a
re

st
o
re

d
a
s

o
b
je

ct
id

en
ti

fi
er

s
a
n
d

p
o
in

te
rs

o
n

th
e

st
a
ck

a
re

st
o
re

d
a
s

fu
ll

p
o
in

te
rs

a
n
d

th
u
s

n
ee

d
to

b
e

co
n
v
er

te
d

to
a
n

o
b
je

ct
id

fi
rs

t
w

h
en

a
d
d
in

g
a
n

en
tr

y
to

a
tr

a
ce

.

T
ab

le
6.

2:
F
u
n
ct

io
n
s

of
th

e
sp

li
t

p
o
ol

ru
n
-t

im
e

w
it

h
re

st
ru

ct
u
ri

n
g

su
p
p
or

t.

130 6. A Compilation Framework for Automatic Restructuring

hopefully more optimal way with respect to memory access sequences. This is done
during run-time, and the re-writing is based on passing in a permutation vector gen-
erated during run-time as described in Section 6.3.2. We have implemented a copying
rewriting-system that uses permutation vectors that specify the new memory order of
the pool. Although permutation vectors could technically be generated during com-
pile time in some cases where data is not input dependent, this has not been seen as
necessary at this point in time.

When a permutation vector is available, a pool can be rewritten in order to op-
timize the memory layout. The pool rewriting algorithm that we have devised has
three distinct phases:

1. Pool rewrite, where the actual pool-objects are being reordered

2. Referring pool rewrite, where pointers in other pools that refer to the rewritten
pool are updated to the new locations

3. Stack update, where the on-stack references to objects in the rewritten pool are
updated

The basic algorithm for the interior pool update is as follows:

newData = mmap(pool.size);

foreach field in pool {

foreach element in field {

if field contains recursive pointers {

newData[field][permVec[element]]

= permVec[pool.data[field][element]];

} else {

newData[field][permVec[element]]

= pool.data[field][element];

}

}

}

munmap(pool.data);

pool.data = newData;

In this case each field in the split pool is copied into the new address space, and
relocated according to the permutation specified in the permutation vector. If the
value in the field is itself a pointer to another object in the pool, that pointer is
remapped to its new value.

For the second phase where all the referring pools are updated, the rewrite is even
simpler:

foreach referrer in pool.referrers {

foreach entry in referrer.field {

referrer.field[entry] = permVec[referrer.field[entry]];

}

}

6.4. Experiments 131

Here, each pool that refers to the rewritten pool will have the field containing those
pointers updated with the new locations. The algorithm assumes that each pool de-
scriptor has information available regarding the pool connectivity (that is, it knows
which fields in other pools are pointing to objects in the rewritten pool). This infor-
mation can be derived from the DSA discussed earlier. This connectivity information
is therefore registered as soon as the pool is created.

6.3.4 Stack Rewriting

As already discussed in Section 6.2.3, the program stack is managed through explicit
pointer tracking. When a pool descriptor is allocated, a special segment of data
is acquired that is used to track all pointers on the stack pointing into the pool.
Whenever a pointer is allocated on the stack, the location of this pointer is inserted
in the per pool stack tracking block.

When a pool is rewritten, the current stack will be traversed and all base and
derived pointers to locations within the pool are rewritten to reflect the new location
of the object. This block makes a distinction between base pointers and derived
pointers, and each derived pointer is also tagged (in the stack tracking block) with
the field it is referring to.

6.4 Experiments

The challenge of a restructuring compiler is to generate code that will automatically
restructure data, either at compile- or at run-time, in order to achieve the perfor-
mance that matches the performance when an optimal layout would be used. In the
introduction the potential of restructuring was shown by comparing execution of the
benchmarks using explicitly defined data layouts. Ideally, we want to obtain similar
performance gains, but then by automatic restructuring of the data layout of the used
pointer-linked data structures.

The benchmark set SPARK00 (see Chapter 3), which contains pointer bench-
marks, is used. In these benchmarks, the layout can be controlled precisely. The
pointer-based benchmarks used are: SPMATVEC (sparse matrix times vector), SP-
MATMAT (sparse matrix times matrix), DSOLVE (direct solver using forward and
backward substitution), PCG (preconditioned conjugate gradient) and JACIT (Jacobi
iteration).

These benchmarks store their matrix using orthogonal linked lists (elements are
linked row-wise and column-wise). All of them traverse the matrix row-wise, except
DSOLVE, which traverses the lower triangle row-wise and the upper triangle column-
wise.

For all benchmarks, one iteration of the kernel is traced, after which the data
layout is restructured. After this, tracing is disabled. This all happens at run-time,
without any hand-modifications of the application itself.

The experiments have been run on two platforms. The first is the Intel Core 2
platform, an Intel Xeon E5420 2.5 GHz processor with 32 GiB of main memory,

132 6. A Compilation Framework for Automatic Restructuring

running Debian 4.0. The other system is an Intel Core i7 920 2.67GHz based system
with 6 GiB of main memory, running Ubuntu 9.04.

6.4.1 Pool Reordering

As shown in the introduction, being able to switch to an alternative data layout can
be very beneficial. We applied our restructuring transformations to the SPARK00
benchmarks and show that in ideal cases, speedups exceeding 20 are possible by regu-
larizing memory reference streams in combination with structure splitting. Of course,
the run-time introduces a considerable amount of overhead and is a constant compo-
nent in our benchmarks. We will consider this overhead separately in Section 6.4.2
to allow a better comparison between the different data sets.

Figure 6.3(a) and 6.3(b) show the results of restructuring on the pointer-based
SPARK00 benchmarks (except DSOLVE, which is treated separately), if the initial
data layout causes random memory access, on the Intel Core 2 and Core i7, respec-
tively. The data set size increases from left to right. As shown in previous work [114],
optimizing data layout of smaller data sets is not expected to improve performance
that much and this fact is reflected in the results. On both architectures, restructur-
ing had no significant effect for data sets fitting into L1 cache. These sets have not
been included in the figures. For sets fitting in the L2 and L3 cache levels, speedups
of 1 − 6× are observed. The Core i7 has an 8 MiB L3 cache, whereas the Core 2
only has two cache levels. This explains the difference in behavior for the matrix San-
dia/ASIC 100ks, which shows higher speedups for the Core 2 for most benchmarks.
However, it turns out that the Core i7 runs almost 3× faster when no optimizations
are applied on SPMATVEC for this data set. Therefore, restructuring is certainly
effective on this data set, but the greatest benefit is obtained when using data sets
that do not fit in the caches.

An interesting case is DSOLVE, in which the lower triangle of the matrix is tra-
versed row-wise, but the upper triangle is traversed column-wise. As the available
data layouts of the matrices are row-wise sequential (CSR), column-wise sequential
(CSC) or random (RND), none of these orders matches the traversal order used by
DSOLVE. Figure 6.4(a) and 6.4(b) shows the results for DSOLVE using the different
memory layouts on the Core 2 and Core i7, respectively. The matrices are ordered
differently than in the other figures, as DSOLVE uses LU-factorized matrices as its
input. These matrices have different sizes depending on the number of fill-ins gener-
ated during factorization. The matrices have been ordered from small to large (in the
case of DSOLVE, this is the size after LU-factorization).

For the lung1 data set, a decrease in performance is observed, but for the larger
data sets, restructuring becomes beneficial again. Speedups of over 6× are observed
for the Core i7, using CSC (column-wise traversal would yield a sequential memory
access pattern) as initial data layout. In principle, the RND (initial traversal yields
a random memory reference sequence) data set could achieve much higher speedups,
if after restructuring the best layout would be chosen. Currently, this is not the case
for DSOLVE and we attribute this to the very simple permutation vector generation
algorithm that we use (see Section 6.3.2). Generation of permutation vectors from

6.4. Experiments 133

Speedups using restructuring, initially random memory access − Intel Core 2

S
p

e
e

d
u

p

lu
n

g
1

b
c
s
s
tm

3
4

c
a

g
e

9

rd
is

t3
a

ja
n

9
9

ja
c
0

4
0

c
ry

s
tm

0
1

A
S

IC
_

1
0

0
k
s

h
e

a
rt

3

Z
d

_
J
a

c
3

_
d

b

P
re

s
_

P
o

is
s
o

n

G
2

_
c
ir
c
u

it

b
c
s
s
tk

3
6

n
d

3
k

0
2
4
6
8

10
12
14
16
18
20
22

SPMATVEC

SPMATMAT

PCG

JACIT

(a) Intel Core 2

Speedups using restructuring, initially random memory access − Intel Core i7

S
p

e
e

d
u

p

lu
n

g
1

b
c
s
s
tm

3
4

c
a

g
e

9

rd
is

t3
a

ja
n

9
9

ja
c
0

4
0

c
ry

s
tm

0
1

A
S

IC
_

1
0

0
k
s

h
e

a
rt

3

Z
d

_
J
a

c
3

_
d

b

P
re

s
_

P
o

is
s
o

n

G
2

_
c
ir
c
u

it

b
c
s
s
tk

3
6

n
d

3
k

0
2
4
6
8

10
12
14
16
18
20
22

SPMATVEC

SPMATMAT

PCG

JACIT

(b) Intel Core i7

Figure 6.3: Speedups obtained using restructuring on the SPARK00 benchmarks.
The initial data layout is random.

134 6. A Compilation Framework for Automatic Restructuring

DSOLVE using restructuring

S
p
e
e
d
u
p

lu
n
g
1

b
c
s
s
tm

3
4

ja
n
9
9
ja

c
0
4
0

c
ry

s
tm

0
1

c
a
g
e
9

h
e
a
rt

3

rd
is

t3
a

P
re

s
_
P

o
is

s
o
n

0

2

4

6

8

10

CSC

CSR

RND

(a) Intel Core 2

DSOLVE using restructuring

S
p
e
e
d
u
p

lu
n
g
1

b
c
s
s
tm

3
4

ja
n
9
9
ja

c
0
4
0

c
ry

s
tm

0
1

c
a
g
e
9

h
e
a
rt

3

rd
is

t3
a

P
re

s
_
P

o
is

s
o
n

0

2

4

6

8

10

CSC

CSR

RND

(b) Intel Core i7

Figure 6.4: Speedups obtained using restructuring on DSOLVE for all different initial
layouts. Input data sets are ordered by size (after LU-factorization).

traces will be improved in future versions of the framework.

6.4.2 Tracing- and Restructuring Overhead

Our framework uses tracing to generate a permutation vector that is used to rewrite
the memory pool. Traces are kept for each field of a pool and one of these traces
is used for restructuring. Currently, the trace to be used is specified as a compiler
option, but this could potentially be extended to a system that autonomously selects
the appropriate trace.

Tracing and the subsequent restructuring step have an impact on the performance.
One cannot simply trace everything all the time as the system will run out of memory
very quickly. In the benchmarks, we choose to only trace the first iteration of the
execution of the kernel. In order to minimize the overhead of the tracing, the trace
will only contain object identifiers, as described in Section 6.3.2. So for instance,
if a linked list contains a floating point field and this list is summed using a list
traversal, then both the pointer field and the floating point field are traced, there
is an overhead of 2 trace entries per node visited. In our experiments, the structure
operated on is 32 bytes and tracing the above mentioned traversal would add 16 bytes
per node extra storage requirements when using 64-bit object identifiers. By using
32-bit objects identifiers, this would be reduced to 8 bytes. Subsequently, the memory
pool is restructured using the information of the trace which relates to the field that
contains the floating point values of the linked list nodes.

The overhead of the tracing and restructuring has been estimated by running a
single iteration of each kernel with and without tracing and restructuring enabled,

6.4. Experiments 135

spmatvec spmatmat pcg jacit dsolve

Matrix C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7

lung1 42.1 51.8 113.9 58.3 388.5 31.5 98.8 55.4 N/A N/A
bcsstm34 24.3 6.2 53.6 29.5 22.7 5.6 27.2 6.7 19.8 4.0
cage9 21.0 8.1 44.3 26.1 22.1 8.1 28.6 10.3 2.9 2.0
rdist3a 17.9 5.6 39.5 21.1 17.7 5.2 - - 3.2 2.1
jan99jac040 16.0 8.0 16.3 15.3 17.8 8.2 - - 1.1 1.3
crystm01 8.3 4.9 17.1 17.0 9.1 4.9 10.8 5.8 2.2 1.8

ASIC 100ks 2.3 3.9 4.4 5.0 4.0 4.1 2.4 4.4 - -
heart3 2.4 1.7 4.6 4.8 2.4 1.5 - - 3.1 2.2
Zd Jac3 db 2.5 1.6 4.6 4.8 2.6 1.7 2.6 1.9 - -
Pres Poisson 2.6 1.7 4.7 5.0 2.6 1.7 2.7 2.0 3.8 3.0
G2 circuit 2.6 4.7 4.6 4.7 5.0 5.1 2.6 5.7 - -
bcsstk36 3.0 1.7 5.1 5.0 3.1 1.8 3.1 2.0 - -
nd3k 3.5 1.9 5.4 5.2 3.5 1.9 3.6 2.1 - -

Table 6.3: Number of iterations for the break-even points when tracing and restruc-
turing is enabled, when using an initial random data layout. The matrices are ordered
by increasing size. The lower part of the table contains the larger data sets, which
do not fit in the caches. DSOLVE performs worse using lung1 therefore a break-even
point is not applicable. The missing entries for JACIT are due to zero elements on
the diagonal. For DSOLVE the missing entries are due to matrices that take too long
to factorize.

using a data layout causing random memory access. Figure 6.5 and 6.6 show the
interpolated execution times of the benchmark PCG, both with and without restruc-
turing for the Core 2 and Core i7 architectures. The initial data layout produces
random memory access behavior of the application, which is eliminated after the first
iteration when tracing and restructuring is used. After the first iteration, the appli-
cation switches automatically to the non-traced version, which uses the restructured
data. Four different matrices have been used which are representative in terms of
performance characteristics (see Figure 6.3(a) and 6.3(b)). The break-even points for
all matrices are included in Table 6.3.

The figures show that tracing does come with an additional cost, but for most
(larger) data sets the break-even point is reached within only a few iterations. For
instance, for all data sets shown in Figure 6.5, the break-even point is reached within
4 iterations, except for cage9, which is the smallest data set depicted. Interestingly,
on the Core i7, the break-even point is reached even quicker, making restructuring
more attractive for this architecture.

6.4.3 Run-time Stack Overhead

In order to quantify the overhead from the stack management that is needed if pool
restructuring is desired, a few custom programs have been written. The interesting
measurement in this case will be the overhead per function and per pointer.

136 6. A Compilation Framework for Automatic Restructuring

0 10 20 30 40

0
.0

0
0

0
.0

1
0

0
.0

2
0

Total Execution Time − PCG
vanHeukelum/cage9

Iterations

T
im

e
 [

s
]

l

l

No opt. − C2

Restruct. − C2

No opt. − Ci7

Restruct. − Ci7

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

Total Execution Time − PCG
ACUSIM/Pres_Poisson

Iterations

T
im

e
 [

s
]

l

l

No opt. − C2

Restruct. − C2

No opt. − Ci7

Restruct. − Ci7

Figure 6.5: Execution times with and without restructuring. The break-even points
are marked with a dot. The break-even points are reached earlier on the Core i7.
Continued in Figure 6.6.

6.4. Experiments 137

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Total Execution Time − PCG
Sandia/ASIC_100ks

Iterations

T
im

e
 [

s
]

l

l

No opt. − C2

Restruct. − C2

No opt. − Ci7

Restruct. − Ci7

0 1 2 3 4 5 6 7

0
.0

1
.0

2
.0

3
.0

Total Execution Time − PCG
ND/nd3k

Iterations

T
im

e
 [

s
]

l

l

No opt. − C2

Restruct. − C2

No opt. − Ci7

Restruct. − Ci7

Figure 6.6: Execution times with and without restructuring. The break-even points
are marked with a dot. The break-even point is reached earlier on the Core i7 for
Sandia/ASIC 100ks. For ND/nd3k, the break-even point is reached slightly earlier
on the Core 2.

138 6. A Compilation Framework for Automatic Restructuring

In order to measure this overhead an experiment was carried out where a function
is called that declares (and links together) a certain number of pointers that point into
a pool. This was repeated for a multiple number of pointers and for both a version
of the program built without the semi-managed stack and one version that was built
with the semi-managed stack enabled. The function was executed a certain number
(over a million) of times.

The following code demonstrates how this experiment was conducted:

listelem_t*

nextElem(list_t *list)

{

if (list->current)

list->current = list->current->next;

#pragma MAKE_POINTERS

return list->current;

}

where the MAKE POINTERS pragma was replaced by:

listelem_t *a0 = list->current;

listelem_t *a1 = a0;

listelem_t *a2 = a1;

listelem_t *a3 = a2;

...

listelem_t *aN-1 = aN;

The execution time for the loop calling the nextElem function was measured and
the difference between the managed version and the unmanaged version should thus
represent the overhead introduced for that number of pointers in the given number
of calls to the function.

Figure 6.7 shows the execution time on a 2.5GHz Intel Core 2 Duo, of 4 million calls
to the function above in several runs with different numbers of pointers declared and
used in one function. The data evaluates to a base cost of 5 cycles per pointer being
linked, for the pointer tracking alternative the cost is around 27 cycles per pointer
being registered and linked. This gives the penalty of explicit pointer tracking to 22
cycles per pointer being tracked. This overhead is obviously quite substantial, but the
compilation chain described in this chapter employed a simple optimization in order
to minimize the overhead.

The optimization used was based on disabling the pointer tracking when not
needed, for example in descendant functions from the one that calls the restruc-
turing run-time (since the stack on the descendants will be dead anyhow, when the
restructuring function is invoked).

Since the shadow stack and stack map strategies were never implemented, the
test case was modified to include simulation code in order to estimate any overhead,
though it was expected that such overhead would be minimal.

6.4. Experiments 139

0 100 200 300 400 500

0
5

1
0

1
5

2
0

Time vs. Linked Pointers

Number of Pointers

T
 s

/4
 M

 c
a

lls

BASE

PTR TRACK

STACKMAP

SHADOW

Figure 6.7: Execution time of a function with different stack management approaches

By pooling all the pointers associated with a pool in a function into a single per
function data structure, it is possible to eliminate all per pointer overhead associated
with registering each pointer. In this case, only the address of the record containing
all the pointers would need to be registered. This has its own problems, as it prevents
certain optimizations to be run on the code such as the elimination of unused pointers
(though the pointer tracking suffers from the same issue).

The stack map approach offers none of the run-time overhead (except during the
stack walks when program counter entries on the stack are translated into function
ids), but does on the other hand require modifications in the compiler’s backend.

6.4.4 Address Calculations

The address calculation expressions used are an improved variant of those introduced
by Curial et.al. [35]. These improvements have been verified experimentally by run-
ning two versions of the pointer-based applications from the SPARK00 benchmark
suite [114], one with the new optimized address calculation expressions enabled, and

140 6. A Compilation Framework for Automatic Restructuring

Bench Name Address Calc Improvements
DSOLVE 4.87 %
JACIT 4.59 %
PCG 1.99 %
SPMATMAT 3.81 % (6.22%/4.16%/1.05%)
SPMATVEC -6.11 %

Table 6.4: Average performance gains (in percent) for pool allocation and the im-
proved field offset equations. Note that SPMATVEC has a negative improvement
due to instruction cache conflicts. For SPMATMAT, different figures are given in
parentheses for 1, 7 and 30 columns in the right hand matrix, respectively.

one version with only the general addressing equations used by MPADS enabled. It
should be noted that the implementation described here is not using the same com-
piler framework as MPADS which is based on XLC. Thus a direct comparison between
Curial’s work and the compiler chain introduced here has not been carried out.

The matrix input files are sparse and inserted in row-wise order, leading to a
regular access pattern when traversing the data structure. In Figure 6.8, the matrices
are ordered by size. For the SPMATMAT benchmark the same matrices are used
three times each: one pass using one column of the right hand side matrix, the second
pass using seven columns and the third pass using 30 columns. Note that the matrix
multiplication in SPMATMAT is multiplying a sparse matrix with a dense matrix.
The result of this multiplication is a dense matrix.

SPARK00 was compiled with LLVM GCC in order to generate LLVM bit code.
The bit code was then passed through the LLVM bitcode linker, after which it was
transformed by the pool allocation (Lattner [73]) and structure splitting optimization
passes.

When running the experiments, it was expected that the new field offset equations
will in principle never be less efficient than the generic ones, excluding effects on
instruction caches and any reordering that the compiler may do or forgets to do due
to the changed instruction stream.

Table 6.4 gives the average improvements of the addressing optimizations. Note
that in Table 6.4, the SPMATVEC benchmark actually lost in performance, this
was due to instruction cache conflicts in the new code, and thus not related to the
address calculation expressions themselves. Figure 6.8 show the general behavior of
the benchmarks where the relative performance improvements is greater for smaller
data set sizes, this is because the new instruction mixture actually plays a greater
part in those cases. For the larger data sets, the performance is more bounded by the
memory latency and thus the instruction mixture has less influence in total.

6.5. Summary 141

Figure 6.8: Typical improvements (in this case for the JACIT benchmark) ordered
by increasing matrix size, from left to right.

6.5 Summary

In this chapter, we presented and evaluated our restructuring compiler transformation
chain for pointer-linked data structures in type-unsafe languages. Our transformation
chain relies on run-time restructuring using run-time trace information. We have
shown that the potential gains of restructuring access to pointer-based data structures
can be substantial.

Curial et al. mention that relying on traces for analysis is not acceptable for
commercial compilers [35]. For static analysis, this may often be true. For dynamic
analysis, which does not need the intervention of the person compiling the application,
relying on tracing is not necessarily undesirable and we have shown that the overhead
incurred by the tracing and restructuring of pointer-linked data structures is usually
compensated for within a reasonable amount of time, if data structures are used
repetitively.

Our restructuring framework opens up more optimization opportunities that we
have not explored yet. For example, after data restructuring extra information on

142 6. A Compilation Framework for Automatic Restructuring

the data layout is available which could be exploited to apply techniques such as
vectorization on code using pointer-linked data structures. This is a subject of future
research.

Data structures that are stored on the heap contain object identifiers instead of
full pointers. This makes the representation position-independent, which provides
new means to distribute data structures over disjoint memory spaces. Translation
to full pointers would then be dependent on the memory pool location and the ar-
chitecture. This position independence using object identifiers has been mentioned
before by Lattner and Adve in the context of pointer compression [76]. However, with
our pool restructuring, a more detailed segmentation of the pools can be made and
restructuring could be extended to a distributed pool restructuring framework.

The implementation described in this chapter uses some run-time support func-
tions to remap access to the proper locations for split pools. The use of object
identifiers implies a translation step upon each load and store to the heap. These
run-time functions are efficiently inlined by the LLVM compiler and have a negligible
effect when applications are bounded by the memory system. The run-time support
could in principle be implemented in hardware and this would reduce the run-time
overhead considerably. We envision an implementation in which pools and their lay-
out are exposed to the processor, such that address calculations can be performed
transparently. Memory pools could then be treated similarly to virtual memory in
which the processors also takes care of address calculations.

We believe the restructuring transformations for pointer-linked data restructures
that have been proposed in this chapter do not only enable data layout remapping,
but also provide the basis for new techniques to enable parallelizing transformations
on such data structures.

CHAPTER 7

Enabling Array Optimizations on Code

Using Pointer-Linked Data

For decades, most code was written under the assumption that there would be only
one processor available. This, together with other factors, led to particular concepts
and techniques used to write programs. One of these concepts, which originates from
the way main memory is accessed (as one large vector of bytes), is the concept of
pointer variables that point to a location in memory. While technically a pointer is
just an address, programming languages add some extra information about the type
of the data that is stored at the location pointed to. For example in C, this might be
a 64-bit integer, or a structured type.

Another commonly used concept is the array. This is just a linear sequence of
elements of the same type in memory. Especially arrays of atomic (i.e. non-structured)
values have been used extensively and many analyses and optimization methods target
code using arrays. Key to their susceptibility to optimizations is their predictability.
At compile time, it is known that every element has the same type. The computation
of addresses of elements within arrays is straightforward, namely offset×sizeof (Type).
Iteration over such arrays is often done using simple, counted loops.

So what is the point here? While successful optimizations for array-based code
have been implemented (even parallelizing transformations), such optimizations could
never be directly applied to code using pointer-linked data structures. This has several
causes. In pointer-based code, the address right after the current data element might
be of a different type. Traversing a pointer-linked data structure potentially yields
a scattered memory reference pattern, while access to arrays stays within the array
bounds. The loops used to traverse the data structure are usually not counted loops.
Pointer-chasing loops with data-dependent loop conditions are characteristic for such
traversals.

143

144 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

Ideally, optimizations that are designed for array-based code should also work on
code containing pointer-linked structures. In this chapter, a combined compile/run-
time approach is proposed that enables an array-based view on pointer-linked data
structures, thereby paving the way to the application of more advanced compilation
techniques, such as used in the case study in Chapter 8. Compile-time analysis alone
is certainly not going to be the solution to the problem of eliminating pointers and
other forms of irregularities arising from the use of pointer-linked structures. For
example, in order to detect if data-dependent loop conditions did not change between
two function calls, run-time support is required. Three key properties of pointer-linked
code make the optimization of such code different from optimizing array-based code:
data is stored as linked elements of structured data, loops are not simple, counted loops
and memory access patterns are unpredictable. In this chapter, transformations are
presented that generate code and a data layout whose properties are more like that
of array-based code.

The analysis algorithms, transformations and run-time components that are pre-
sented in Section 7.1 have been implemented using the LLVM compiler framework.
The transformations described in this chapter explicitly target to enable traditional
array and control flow optimizations on code using pointer-linked data structures.
These transformations depend on many properties of Data Structure Analysis (DSA)
and structure splitting, which have been discussed in more detail in Chapter 5. In
Section 7.2, we evaluate the results of our transformation chain. The overhead of
the run-time mechanisms are quantified, and we apply the transformation chain on
the SPARK00 benchmarks (sparse matrix computations using pointer linked data
structures). Section 7.3 summarizes this chapter.

7.1 Control Flow Optimization of Pointer-Based Code

Pointer-based code often uses control flow structures that are not easy to analyze.
Loop conditions might be data dependent and long dependency chains are common.
At first, any comparison with counted loops seems far fetched, but if we take a closer
look at this problem, they are not that different in many cases. The key to this
similarity in behavior is non-modified data. In many cases it cannot be proved that
control flow behaves in a particular way at compile-time. However, we do know that
for any function, its loops will execute exactly the same way as during the previous
call, if all data that the control flow depends on is not modified. In this section,
we describe our heap-analysis and loop transformation that changes data dependent
well-formed loop structures into simple, counted loops.

7.1.1 Data Dependencies in Pointer-Based Code

In pointer-based code, data dependencies are not as easily detected as in array-based
code. For example, if a function is called with a particular pointer argument and later
on it is called a second time, with exactly the same pointer as its argument, this does
not mean that the function will execute the same instruction sequence. This is caused

7.1. Control Flow Optimization of Pointer-Based Code 145

by the underlying data structure. While the actual function argument might be the
same, the data it points to, together with all the other data that is being pointed to
(when using recursive data structures), might be completely different.

Therefore, in order to determine whether control flow for loops will be the same on
successive calls of a function, two types of dependencies must be identified: variable
dependencies and heap data dependencies. The analysis presented in this section
takes both these types of dependencies into account. Pointers to stack data are not
supported as such data is not pool-allocated. In order to pool allocate stack data,
stack allocations have to be rewritten to heap allocations. This is a non-trivial task,
as such allocations should be automatically freed when the function returns, even
when exceptions occur or functions like setjmp and longjmp are used. Therefore, this
feature has not been implemented so far.

7.1.2 Data Dependence Analysis for Loop Conditions

We have implemented a data dependence analysis for loop conditions in pointer-based
code using the LLVM compiler framework [74]. This analysis has as its input a whole
program and computes for each function both the variable dependencies and the heap
data dependencies for conditions of nested loops. Algorithm 1 and 2 show the data
dependence analysis for loop conditions.

Algorithm for the Identification of Data Dependencies

The algorithm calls findLoopDepRoots for each function. findLoopDepRoots starts
by taking the terminator instruction of each exiting block of a loop and it inserts the
condition variable (which determines control flow) in the traceBackSet set. This set
contains all variables that have to be traced back to their root, which is either a local
(stack) variable, a function argument or a global variable. The algorithm proceeds
by picking a variable from traceBackSet (in LLVM, this is an llvm::Value object):

• If this value is an argument or a global variable, it is root of the data dependen-
cies. Otherwise, it is a variable that is defined within this function, and therefore
it is a derived value. Arguments and global variables are added to the root set,
and in case it is a pointer value we check if it is pointing to pool-allocated data.
If it is not, the function is unsafe and we should not proceed. Otherwise, we
add the pool to the set of pools (DSDeps).

• Else, if this value is the result of a load instruction (it is of the type
llvm::LoadInst), we need to check whether this loads data from the local stack
or from a memory pool that is split. Other cases cannot be analyzed and are
classified as unsafe. As the control flow depends on the value of this load,
all values that are stored to this location within the current function must be
identified and added to traceBackSet. This is done by determining all possible
aliases of the pointer operand of the load instruction using the DSA-based alias
analysis available in the source distribution of DSA. Subsequently, all values

146 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

function findLoopDepRoots(function)
begin

// DSA-based alias analysis
DSAA = getDSAAForFunction(function)
traceBackSet = ∅
loopDepRoots = ∅
DSDeps = ∅
// Initialize set of variable dependencies with loop conditions
foreach loop in function do

foreach exitingBlock in loop do
termInst = exitingBlock.getTerminator()
c = termInst.getCondition()
traceBackSet = traceBackSet ∪ {c}

end

end

// Trace back values until a function argument or global is found
variableDone = ∅
while traceBackSet != ∅ do

value = traceBackSet.get()
traceBackSet.remove(value)
variableDone = variableDone ∪ value
if isArgument(value) or isGlobal(value) then

loopDepRoots = loopDepRoots ∪ value
if isPointer(value) then

if getPoolInfoForValue(value) then
DSDeps = DSDeps ∪ getPoolForValue(value)

else
mark function UnSafe
return

end

end

else if isLoadInst(value) then
// See Algorithm 2
analyzeLoad(value, traceBackSet,

accessFieldsForType, DSAA)
else if isInstruction(value) then

inst = cast<Instruction>(value)
foreach operand of inst do

if operand /∈ variableDone then
traceBackSet = traceBackSet ∪ operand

end

end

end

end

findModGlobals(function)

// Check if data on which control flow depends is not
// modified in the same function and its callees
foreach pool ∈ DSDeps do

if DSNode for this pool has MOD flag set then
mark function UnSafe
return

end

end

end

Algorithm 1: Algorithm to determine root data dependencies of loop conditions.
This detects function arguments, global variables and the heap-allocated data that
might be pointed to.

7.1. Control Flow Optimization of Pointer-Based Code 147

function analyzeLoad(loadInst, traceBackSet,
accessFieldsForType, DSAA)

begin

if accessesSplitPool(loadInst) then
field = getAccessedField(loadInst)
PI = getPoolInfo(loadInst)
accessedFieldsForType[PI.getType()].insert(field)

else if not isLocalStackLoad(loadInst) then
return Unsafe;

end

aliasSet = DSAA.getAliasSetForPointer(
loadInst.getPointerOperand())

// If some potential alias of this pointer is modified
if aliasSet.isMod() then

foreach store to any pointer target in aliasSet
within this function do

// Add the value that is stored to the set
// of variables that must be traced back
traceBackSet.insert(store.getValueOperand())

end

end

end

Algorithm 2: Analysis of load instruction during identification of dependencies.
Identifies all pointers that might be aliased to the load target. If there is a store
instruction storing to any of these pointers, the value of that store is added to the
set of dependencies that must be traced back to their roots.

stored within the current function to any potential alias of the pointer variable
are added to traceBackSet.

• Else, if this value is the result of another instruction (it is of the type
llvm::Instruction), add the operands of this instruction to traceBackSet.

findModGlobals determines which global variables may be modified by the function.
It considers all store instructions within the strongly connected component of the
control flow graph that the function belongs to and if the target stored to is flagged
as global in the DS graph, the pointer operand of the store instruction is added to the
set of modified global variables. If not all call targets can be detected (unresolvable
indirect calls), then all variables are marked as MOD.

The function to be optimized (and its callees) should not modify any data on
which the loop conditions depend. This information is available statically from the
Bottom-Up DSA, which describes how data is accessed from within a function and
its callees. Unfortunately, DSA is currently field-insensitive [72], as opposed to our
run-time MOD flag tracing. Lattner has stated that this would be easy to add to their
implementation, but this has not been done, yet [72]. Implementing field-sensitivity
would allow for modification of fields in structures that do not affect control flow.

148 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

struct CFOptRecord

{

struct {uint64_t poolid1; uint64_t poolid2; ...};

struct {uint64_t modflagsmask1; uint64_t modflagsmask2; ...};

struct {Type1 arg1; Type2 arg2; ...};

struct {TypeG1 global1; TypeG2 global2; ...};

struct {uint64_t *traceVector1, uint64_t *tracevector2, ...};

struct {uint8_t hasTrace};

};

Figure 7.1: Run-time control flow optimization record. This stores information about
the last call to the associated function, such that immutability of control flow of the
loops within the function can be determined.

Instrumentation for Run-time MOD Flag Tracking

Knowing all arguments, globals and pools on which the loop conditions depend, the
next step is to instrument stores to fields in pools on which these conditions depend,
such that a flag is set whenever a field has been modified. This is analogous to
the MOD flags in DS Nodes as used in DSA. The difference is that our mechanism
provides run-time MOD flags at the field level, while DSA provides compile-time
MOD information at the whole-structure level. All store instructions are checked if
their storage types need MOD flag tracking, and if so, code is inserted that sets the
proper MOD flag for the field accessed in the pool descriptor (a run-time structure
storing pool properties).

7.1.3 Loop Rewriting

At this point, we know for each function which globals, arguments and when dealing
with pointers, which fields in pools the loop conditions depend on. Thus, if none of
this dependencies change, control flow will be exactly the same as during the previous
call of the function. As we only deal with natural loops (LLVM’s LoopInfo analysis
gives results on natural loops, which are well-formed, that is, they only have one
unique entry point), these loop structures can be replaced by simple, counted loops.
Loops are guaranteed to be in a normal-form, that is, they only have a single back
edge and a single exit basic block (the block executed directly after exiting the loop).
Any predecessor for such an exit block is always within the loop.

In order to obtain counted loops, the original function (which is executed when
iteration counts are not yet known) must record the loop bounds for each execution
of a loop, that is whenever the loop pre-header is entered. Figure 7.1 depicts the
run-time meta data maintained for each function that can be transformed. At run-
time, the record is used to keep track of the arguments and memory pools passed in
at the last call. The modflagsmasks are masks which have the bits set for the fields
on which the loop conditions are dependent (currently this is a 64-bit vector, thus a

7.1. Control Flow Optimization of Pointer-Based Code 149

maximum of 64 fields per pool is supported). The values of the function arguments at
the last call are also stored in this record and the same holds for global values. The
trace vectors are pointers to integer arrays, which contain the loop bounds each time
a loop is entered. hasTrace is a flag which is set after the trace vectors have been
initialized.

function insertLoopBoundTracing(function)
begin

foreach loop that is traceable do
entry = getEntryBasicBlock(function)
entry.insert(loopBoundCounter)
cfoptrecord.traceVector = allocateTraceVector()
entry.insert(”loopBoundCounter = 0”)
entry.insert(”loopBoundIdx = 0”) // Offset trace vector
latch = loop.getBackEdge()
latch.insert(”loopBoundCounter++”)

exitBlock = loop.getExitBlock()
exitBlock.insert(

”traceVector[loopBoundIdx] = loopBoundCounter”)
exitBlock.insert(”loopBoundCounter = 0”)
exitBlock.insert(”loopBoundIdx++”)

end

end

Algorithm 3: Insertion of run-time loop bound tracing in original function. These
traces are used as loop boundaries in the optimized function.

Algorithm 3 shows the pseudo-code that generates the necessary code for comput-
ing the run-time loop bound information. It is most easily illustrated by an example.
Figure 7.2 shows a simple example traversal of a data structure in C. In Figure 7.2a, a
simple pointer traversal is shown. In real life “one ought to do something useful dur-
ing the traversal”, but let us keep things clean for the sake of clarity. In Figure 7.2b,
the same code is shown with the run-time tracing inserted. The loopBoundCounter

variables are incremented at every back edge and after exiting the loop, the counter
is written to the trace vector. At the end of the function, the hasTrace flag is set in
the optimization record. If upon the next function call the right conditions are met
(see the next section) the code in Figure 7.2c is executed. The pointers are still there,
and they will be dealt with later.

7.1.4 Function Dispatch Mechanism

At this point, there are two functions at our disposal. The first is the original function,
which now performs tracing to obtain loop counters, the second is the newly generated
function, which uses counted loops. The second function should only be called instead
of the first one if safety conditions are met. These conditions are checked at run-time.
We will describe the function dispatch mechanism in this section.

Figure 7.3 depicts the function selection process. First, it is checked whether
the optimization record has its hasTrace flag set. If it is not set, the function which
generates the trace vectors with iteration count limits must be called. In the case that
there is a trace available, we must check whether any data on which loop conditions

150 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

while (p) {

p2 = p;

while (p2) {

p2 = p2->down;

}

p = p->right;

}

loopBoundIdx1 = 0;

loopBoundIdx2 = 0;

for (i = 0; i <

traceVector1[loopBoundIdx1];

i++) {
p2 = p;

for (j = 0; j <

traceVector2[loopBoundIdx2];

j++) {
p2 = p2->down;

}
loopBoundIdx2++; p =

p->right;

}
loopBoundIdx1++;

(a) (c)

loopBoundCounter1 = 0;

loopBoundCounter2 = 0;

loopBoundIdx1 = 0;

loopBoundIdx2 = 0;

traceVector1 =

cfOptRecord.traceVector1;

traceVector2 =

cfOptRecord.traceVector2;

while (p) {
p2 = p;

while (p2) {
p2 = p2->down;

loopBoundCounter2++;

}
...

...

traceVector2[loopBoundIdx2]

= loopBoundCounter2;

loopBoundCounter2 = 0;

loopBoundIdx2++;

p = p->right;

loopBoundCounter1++;

}
traceVector1[loopBoundIdx1]

= loopBoundCounter1;

loopBoundCounter1 = 0;

loopBoundIdx1++;

cfOptRecord.hasTrace = 1;

(b)

Figure 7.2: Example of the code transformation to counted loop structures. (a)
shows a nested pointer traversal. In (b), each loop is instrumented to keep track of
the iteration counts which are stored to the trace vectors. Whenever it is determined
that the control flow of the loops did not change, (c) is executed using the loop counts
from the trace vectors in the counted loops.

7.1. Control Flow Optimization of Pointer-Based Code 151

Execute function with
trace vector generation

Set hasTrace flag
Update other records

Clear MOD flags

Has trace?

no
Check function arguments

Check pool identifiers
Check MOD flags

 yes

not ok

Call optimized function

 ok

Figure 7.3: The function dispatch mechanism checks if a trace exists, if the function
arguments and pool-allocated data that the loop conditions depend on did not change
and selects the proper function to call accordingly.

152 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

depend has been changed. This is done by checking whether the function is called
with the same actual arguments (the value), and by checking if the data they point to
have changed. In addition, the current pool identifier is checked against the previous,
to ensure the same memory pool is used. Then, the run-time MOD flags (which are
stored in the pool descriptor structure) are checked against the mask stored in the
optimization record. If none of the fields have changed, the optimized version can be
called.

In the case that any of these conditions is not met, the function that generates
a new trace is used. This is the same situation as when the hasTrace flag is not
set. After generation of the trace vectors, the hasTrace flag is set for this specific
function (in the optimization record). All other records are checked, as when the
run-time MOD flags in the pool descriptor are cleared, other records might become
inconsistent. Therefore, it is checked if any set MOD flag would invalidate the trace
vectors of other optimized functions, and if so, the hasTrace flag for that specific
function is cleared.

7.1.5 Converting Pointers to an Array-Based Representation

For pool allocated type-homogeneous data structures, pointers can be represented by
an object index into the pool. Lattner and Adve mention this possibility in their
pointer compression implementation [76] and we have used this representation in
Chapter 6 in the implementation of automatic restructuring of linked data structures.
In the latter framework, all pointers that are on the stack and in LLVM virtual
registers are represented as normal pointers and all pointers that are stored to pools
are stored as object identifiers. We follow the same strategy, but for the generated
code with counted loops, all pointers are stored as object identifiers and are only
converted back to pointers if they escape the current function as a function argument.
All incoming pointer arguments are immediately converted to object identifiers.

As all pools have been split already, data is already grouped by field, and the pool
descriptor contains the pointer to the start of data of each field. Figure 7.4 shows
how the code with the counted loops from Figure 7.2 is transformed. For each split
structure, the pool meta data is passed into the function as a pool descriptor. Among
other information, this pool descriptor contains the base pointer for each field of the
associated structured type. At the start of the function, all the array pointers of the
fields from pools that are used in the function are loaded. Any computation of an
address within a pool that is load from or stored to can now be computed by indexing
the array using object identifiers. This transformation in itself does not directly
affect performance, but it results in a representation on which existing analyses can
be applied.

7.1.6 Controlling Memory Access Patterns

Memory access patterns can be very unpredictable when running pointer-based code.
This unpredictability does not magically disappear if the code is rewritten in the
array-based form as explained above, e.g.

7.1. Control Flow Optimization of Pointer-Based Code 153

IndexType *ArrayBase_Right = Pool->field_ptr[fieldNoOfRight];

IndexType *ArrayBase_Down = Pool->field_ptr[fieldNoOfDown];

loopBoundIdx1 = 0;

loopBoundIdx2 = 0;

for (i = 0; i < traceVector1[loopBoundIdx1]; i++) {

p2_oid = p_oid;

for (j = 0; j < traceVector2[loopBoundIdx2]; j++) {

p2_oid = ArrayBase_Down[p2_oid];

}

loopBoundIdx2++;

p_oid = ArrayBase_Right[p_oid];

}

loopBoundIdx1++;

Figure 7.4: Pointer to array conversion converts all pointers to fields within a split
pool into an offset with respect to the base pointer of the array used for that field.
This figure shows the result of converting the code from Figure 7.2c to an array-based
representation.

p_oid = ArrayBase_Right[p_oid]

is basically still a pointer chasing statement. The fact that everything is expressed
using arrays and indices makes things easier, as data access is at least confined to the
region allocated for the array, and within this region, only data of the same type can
be expected.

In this section, we describe three different forms of memory access, between which
an application can switch (under some conditions) using our framework: unprefetch-
able indirect access, prefetchable indirect access and direct access. Figure 7.5 shows
the basic examples of these three different forms. Unprefetchable indirect access is
memory access that cannot be initiated before a previous memory access has been
completed. Such a type of memory access often suffers from high latency (except

k = x;

for (i=0; i<n; i++) {

k = A[k];

... = B[k];

}

for (i=0; i<n; i++) {

k = A[i];

... = B[k];

}

for (i=0; i<n; i++) {

... = B[i];

}

(a) (b) (c)

Figure 7.5: Three different forms of memory access in loops. (a) shows unprefetchable
indirect access, (b) prefetchable indirect access and (c) shows a loop using direct
access.

154 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

when hardware prefetching is successful). Prefetchable indirect access is a memory
access that can be initiated independent from other memory accesses. In the example
in Figure 7.5b, A[i] can be fetched independently for each iteration, and latency is not
a problem anymore. The best option of course is direct access. No memory access to
find an array index is needed, and this is of course the most efficient. Additionally,
direct access often results in a sequential access pattern, which is memory-subsystem
friendly, and enables other optimizations such as vectorization.

The worst case is that memory access is unpredictable, and that indices are not
prefetchable. In our example, let us assume that the index array A is not being written
to. It is only used to fetch the next k. Let ki be the value of k at iteration i. During
execution, these values can be traced and stored in a temporary array X. After
executing the unprefetchable version, ki == X[i] holds. So upon the next execution,
if the array A has not been changed (no run-time MOD flag has been set for the
field that is associated with in our framework), X can be used instead. Substituting
k = X[i] for k = A[k] yields prefetchable, indirect access to B, the same code as
shown in Figure 7.5b.

The next step is harder, to move from indirect access to direct access. Eliminating
indirect access is possible, if A[i] == i. In that case, i can be substituted for k in
our example. However, it would be sheer luck if this is the case in an application.
In general, if a sequential access pattern is needed, the data should be reordered.
In Chapter 6, we have seen how restructuring of linked data structures has been
implemented, which is based on pool-allocated and split data structures (remember
that all the arrays we are talking about here have their origin in the split structures).
Therefore, the data can be reordered in memory by applying a permutation to the
split memory pool. In the case that the array X mentioned above is an injective
mapping, the memory pool can be reordered such that X[i] == i holds (referring
data is correctly updated by the restructuring algorithm).

7.2 Experiments

The optimizations described in the previous sections are not meant to give great per-
formance improvements by themselves. Rather, they try to transform the code into
a representation that is recognized by other existing optimizations. All the transfor-
mations described in the previous section have been implemented within the LLVM
framework, except for the code transformations described in Section 7.1.6.

In this section, we will focus on the effect that our transformations have on per-
formance, as our run-time system does have some overhead. First, we will show the
performance impact of our function dispatch mechanism and the tracing of the loop
bound trace vectors. Our transformation chain as a whole will be evaluated on the
pointer benchmarks from SPARK00 (see Chapter 3). The benchmarks used are: SP-
MATVEC (sparse matrix vector multiplication), SPMATMAT (sparse matrix times
dense matrix), DSOLVE (direct solver), JACIT (Jacobi iteration) and PCG (pre-
conditioned conjugate gradient). The experiments are run on an Intel Core 2 Duo
2.33GHz with 4MiB of cache and 2GiB of main memory, running Mac OS X 10.6.2.

7.2. Experiments 155

7.2.1 Overhead

At run-time, there are two mechanisms that incur overhead: the function dispatch
mechanism that selects which function must be called, and the generation of trace
vectors. In this section, we will first evaluate the overhead of the dispatch mechanism
using a micro-benchmark specifically written for this purpose. Next, the overhead of
the generation of trace vectors is estimated using the SPARK00 benchmark set.

Dispatch Mechanism

Our framework checks preconditions to see whether data on which loop conditions
depend has changed. At each call site of a function that has an optimized implemen-
tation, all function arguments have to be checked against the values that the function
was previously called with. In addition, run-time MOD flags must be checked for
all pools on which loop conditions depend. After a function has generated its trace
vectors, all MOD flags involved must be cleared.

We estimate the performance penalty caused by this dispatch mechanism by gen-
erating a C function for which the number of non-pool arguments and arguments with
an associated pool can be specified. Figure 7.6 shows an example of the code that is
used for two pool-allocated arguments and one normal function argument. This code
is generated by a script, and any combination of non-pool variables and pool allocated
objects can be created. The code calls the function func repeatedly. The first call
will be to the split version of the function, the subsequent calls will be to the version
with counted loops. Each time the function is called, the dispatch code is executed
to determine the right call target. The MOD flags are cleared after executing the
function that generates the trace vectors.

In order to make the function func depend on all variables the condition of the
while loop includes a reference to all function arguments and each data element of
the objects passed in. At run-time, this loop is never executed, as the if-statement
will return immediately. However, due to the flow-insensitivity of the analyses, the
if-statement will not prevent the generation of the dispatch mechanism.

In this experiment, the impact for non-pool variables and pool allocated objects
is evaluated separately. For both types of variables, we measure the average overhead
per function argument for up to a total of 31 function arguments. For the experiments,
we fix the number of pool arguments to one and vary the number of normal arguments
from 1 to 31, or we fix the number of non-pool arguments to 1 and vary the number
of pool arguments from 1 to 31.

Figure 7.7 shows the results of the overhead per function argument (for pool
allocated and normal arguments) per call. For the first three pool arguments, the cost
per argument is decreasing after which the cost per argument increases until at around
17 pool arguments the cost per argument stabilizes. In this (worst) case, the average
cost per pool-allocated argument is around 6ns. This is around 15 times slower than
a normal function call. While this is a relatively large performance penalty, it is
still pretty small in the absolute sense and in the next section, it is shown that for
data-intensive applications this extra overhead is negligible. For non-pool allocated

156 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

typedef struct _Object {

uint64_t val;

uint64_t val2;

} Object;

void func(Object *obj0, Object *obj1,

uint64_t var0)

{

if(var0 == 0) return;

while(obj0->val && obj0->val2 &&

obj1->val && obj1->val2 && var0) {

printf("Hello world\n");

}

}

int main()

{

unsigned i;

unsigned lim = 100000000;

uint64_t var0 = 0;

Object *obj0 = (Object *)malloc(sizeof(Object));

obj0->val2 = 0;

obj0->val = 0;

Object *obj1 = (Object *)malloc(sizeof(Object));

obj1->val2 = 1;

obj1->val = 1;

for(i = 0; i < lim; i++) {

func(obj0, obj1, var0);

}

return 0;

}

Figure 7.6: Example code for the evaluation of the overhead of the dispatch mecha-
nism. This example shows one non-pool variable and two pool allocated objects.

7.2. Experiments 157

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

Overhead for arguments

Number of arguments

O
ve

rh
e
a
d
 p

e
r

a
rg

u
m

e
n
t
[n

s
]

l

l

l
l l

l
l

l

l

l

l
l

l

l

l

l
l

l l l l l l l

l l
l

l l l l

l

l

l

l l
l l

l

l

Pool arguments

Non−pool arguments

Figure 7.7: Overhead of the function dispatch mechanism for a varying number of
both pool and non-pool arguments.

arguments, the average cost per argument decreases quickly to slightly less than 1ns

when the number of arguments is increased. Pool arguments have a higher overhead
due to the conditions that need to be checked (see Figure 7.3).

Trace Vector Generation

The trace vectors that store the loop bounds of the previous execution of a function
are generated when the non-optimized version of a function is executed (See Sec-
tion 7.1.3). This incurs some overhead as iteration counts are tracked and written to
the trace vector. We estimate this overhead by running the pointer-based benchmarks
of SPARK00 for only one iteration. During this first iteration, the trace vectors are
generated. The execution time of this single iteration is compared to the execution
time of a single iteration when using only structure splitting. For small data sets,
the time measured is so small that these results are unreliable. Therefore, only data
sets for which execution times are larger than 1ms are shown in the figures. The

158 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s
.c

s
r

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b
.c

s
r

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n
.c

s
r

A
M

D
/G

2
_

c
ir
c
u

it
.c

s
r

B
o

e
in

g
/b

c
s
s
tk

3
6

.c
s
r

N
D

/n
d

3
k
.c

s
r

B
o

e
in

g
/c

ry
s
tm

0
1

.r
n

d

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s
.r

n
d

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b
.r

n
d

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n
.r

n
d

A
M

D
/G

2
_

c
ir
c
u

it
.r

n
d

B
o

e
in

g
/b

c
s
s
tk

3
6

.r
n

d

N
D

/n
d

3
k
.r

n
d

JACIT − Overhead of Loop Counter Tracing

R
e

la
ti
ve

 E
xe

c
u

ti
o

n
 T

im
e

0

2

4

6

8

H
o

lli
n

g
e

r/
ja

n
9

9
ja

c
0

4
0

.c
s
r

B
o

e
in

g
/c

ry
s
tm

0
1

.c
s
r

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s
.c

s
r

N
o

rr
is

/h
e

a
rt

3
.c

s
r

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b
.c

s
r

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n
.c

s
r

A
M

D
/G

2
_

c
ir
c
u

it
.c

s
r

B
o

e
in

g
/b

c
s
s
tk

3
6

.c
s
r

N
D

/n
d

3
k
.c

s
r

H
o

lli
n

g
e

r/
ja

n
9

9
ja

c
0

4
0

.r
n

d
B

o
e

in
g

/c
ry

s
tm

0
1

.r
n

d
S

a
n

d
ia

/A
S

IC
_

1
0

0
k
s
.r

n
d

N
o

rr
is

/h
e

a
rt

3
.r

n
d

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b
.r

n
d

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n
.r

n
d

A
M

D
/G

2
_

c
ir
c
u

it
.r

n
d

B
o

e
in

g
/b

c
s
s
tk

3
6

.r
n

d
N

D
/n

d
3

k
.r

n
d

PCG − Overhead of Loop Counter Tracing

R
e

la
ti
ve

 E
xe

c
u

ti
o

n
 T

im
e

0.0

0.5

1.0

1.5

2.0

(a) (b)

Figure 7.8: Overhead of the loop bound tracing mechanism for the SPARK00 bench-
marks JACIT (a) and PCG (b). Only results are included if execution time of a single
iteration of the original (split) version was greater than 1ms. The results for JACIT
excludes some matrices, as it cannot use matrices that contain zero elements on the
main diagonal.

7.2. Experiments 159

L
F

1
0
.c

s
r

L
F

1
0
.r

n
d

im
p
c
o
l_

b
.c

s
r

im
p
c
o
l_

b
.r

n
d

rw
1
3
6
.c

s
r

rw
1
3
6
.r

n
d

ra
ja

t1
1
.c

s
r

ra
ja

t1
1
.r

n
d

b
c
s
s
tm

0
9
.c

s
r

b
c
s
s
tm

0
9
.r

n
d

o
s
c
il_

tr
a
n
s
_
0
1
.c

s
r

o
s
c
il_

tr
a
n
s
_
0
1
.r

n
d

6
6
2
_
b
u
s
.c

s
r

6
6
2
_
b
u
s
.r

n
d

rd
b
4
5
0
l.
c
s
r

rd
b
4
5
0
l.
rn

d
s
tr

_
2
0
0
.c

s
r

s
tr

_
2
0
0
.r

n
d

lu
n
g
1
.c

s
r

lu
n
g
1
.r

n
d

b
c
s
s
tm

3
4
.c

s
r

b
c
s
s
tm

3
4
.r

n
d

c
a
g
e
9
.c

s
r

c
a
g
e
9
.r

n
d

rd
is

t3
a
.c

s
r

rd
is

t3
a
.r

n
d

ja
n
9
9
ja

c
0
4
0
.c

s
r

ja
n
9
9
ja

c
0
4
0
.r

n
d

c
ry

s
tm

0
1
.c

s
r

c
ry

s
tm

0
1
.r

n
d

A
S

IC
_
1
0
0
k
s
.c

s
r

A
S

IC
_
1
0
0
k
s
.r

n
d

h
e
a
rt

3
.c

s
r

h
e
a
rt

3
.r

n
d

Z
d
_
J
a
c
3
_
d
b
.c

s
r

Z
d
_
J
a
c
3
_
d
b
.r

n
d

P
re

s
_
P

o
is

s
o
n
.c

s
r

P
re

s
_
P

o
is

s
o
n
.r

n
d

G
2
_
c
ir
c
u
it
.c

s
r

G
2
_
c
ir
c
u
it
.r

n
d

b
c
s
s
tk

3
6
.c

s
r

b
c
s
s
tk

3
6
.r

n
d

n
d
3
k
.c

s
r

n
d
3
k
.r

n
d

SPMATVEC − Split vs. Counted Loops Optimization

S
p
e
e
d
u
p

0.0

0.5

1.0

1.5

Figure 7.9: Speedups for sparse matrix times vector after applying the complete
transformation chain. Results are shown for three different memory layouts per ma-
trix. The input sets are ordered by size from left to right. On large data sets, our
transformations do not have a bad impact on performance, while allowing for further
optimization.

benchmarks have been executed for two different data layouts, csr and rnd.
Figure 7.8 shows the relative execution time of JACIT and PCG comparing the

version that generates the trace vectors versus the version that only uses structure
splitting. The other benchmarks show similar results. Some data sets do not appear
in the plot for JACIT, as those matrices contain one or more zero elements on the
diagonal and are thus invalid inputs for JACIT. The results are labeled with the mem-
ory layout used and are ordered by data layout and size. We observe that the larger
data sets suffer relatively less from the tracing mechanism, and that code showing
a predictable memory reference pattern has a higher relative overhead. Especially
smaller data sets (those that fit into the caches) show a large relative overhead. Be-
cause of this fact, for small data sets, focus should be on code optimization, not on
data layout, which has already been described in Chapter 3.

The overall conclusion is that the generation of loop bound trace vectors for larger
data sets is usually quite small, but for small data sets, the cost can be relatively high.

7.2.2 Loop Optimization of Data-Intensive Code

We have seen that structure splitting can yield substantial speedups on these pointer-
based benchmarks, if the memory reference pattern is reasonably predictable. This
can be achieved by restructuring the memory pools (see Chapter 6). Therefore, we

160 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

compare the result of our loop optimizations with the split version. Note that pool
restructuring has not yet been integrated in the optimization chain (combined with
the control flow optimizations) and therefore restructuring is also disabled for the
split version.

Figure 7.9 shows the result of our optimizations on the SPMATVEC benchmark
(the other benchmarks show similar results). For this benchmark, the transformations
from Section 7.1, except those from Section 7.1.6, have been applied. Note that the
data sets are ordered from small to large. In general, especially for the larger data
sets, our transformations barely affect performance. Even for smaller data sets, in
many cases the overhead of the dispatch mechanism does not result in significantly
lower performance.

In some cases, especially for the smaller data sets, some speedups are observed. No
data restructuring or code restructuring techniques, as described in Section 7.1.6, have
been applied. Therefore, this speedup cannot be caused by a reduction in required
memory bandwidth. Inspection of the generated x86 -64 assembly code shows that
the transformed inner loop has a lower instruction count, due to the more efficient
translation of the array-based code resulting from the pointer to array-based code
transformation described in Section 7.1.5. On small data sets, instruction throughput
is a limiting factor, while for large data sets, the instruction count has much less
impact.

While there are a few exceptions, on average the performance is comparable to
that of the split version, and the generated loop structures are suitable targets for
further optimization. This is exactly the goal of these transformations. In itself, it
should not have a negative impact on performance, and it should enable traditional
array-based optimizations.

7.3 Summary

In 1968, Michie proposed memoization [86], a technique that is often used in func-
tional languages. Basically, it is the process in which functions remember the outcome
of previous calls to speedup computations. This bears some resemblance to our tech-
niques, in which we detect if control flow did not change with respect to the previous
call. Although the work described above shows some relation to our work, the prob-
lems targeted are different from ours as we specifically try to bridge the gap between
pointer-based and array-based code.

In this chapter, a transformation chain was described which transforms pointer-
based codes into array-based codes. Combined with run-time support for the identi-
fication of static loop control, we have shown how to obtain a representation that can
potentially be optimized by existing techniques. This is a major step forward in the
field of optimization for code containing recursive data structures.

The overhead of the run-time checking of preconditions has been determined and,
while compared to a regular function there is a measurable overhead, its impact
is quite small if any significant computation is done by the function called. The
generation of trace vectors can be relatively time consuming for smaller data sets. For

7.3. Summary 161

larger data sets, and especially those that cause irregular memory access patterns, we
have shown that the tracing overhead is quite small. When applied to the SPARK00
pointer-based sparse matrix computations, it was shown that, even for small data
sets, our transformations do on average not degrade performance. Especially, when
large data sets and a data layout that causes irregular memory accesses are used, the
behavior is very similar in terms of performance compared to the code using structure
splitting.

The major contribution of this work is the fact that we transform pointer-based
code with data dependent loop conditions to a representation that uses only arrays and
simple, counted loop structures. Future work will address the application of existing
array-based optimizations. Controlling memory access patterns such as described
in Section 7.1.6 will be integrated in our framework enabling more advanced data
layout transformations such as described in Chapter 4 and 8. Other directions include
parallelization and execution of pointer-based applications on hybrid architectures and
GPUs.

162 7. Enabling Array Optimizations on Code Using Pointer-Linked Data

CHAPTER 8

Data Instance Specific Co-Optimization

of Code and Data Structures

For practical reasons, data structure selection and its actual mapping onto hardware
do not necessarily match with the logical structure of a problem. Often, a single
solution is implemented that is supposed to fit a wide range of problem instances.
This, however, is very unlikely to yield optimal performance on the entire range of
input sets. Each problem instance has its own characteristics, which are not taken
into account by the “one solution fits all” implementation.

An obvious example is sparse matrix representation. Many different storage mech-
anisms have been proposed, each of which has its applications for specific instances
of a more general problem, for instance, solving a sparse system of linear equations.
This diversity in implementations, each of which is tailored to specific properties of
a problem at hand, is a nightmare from a code management point of view. For each
different class of problems, new code should be written. In practice, sub-optimal
performance will be the result of this trade-off between implementation effort and
efficiency.

Many proposals to optimize irregular and sparse applications have been made
recently. Most, if not all, of these proposal rely heavily on extensive run-time anal-
ysis [68, 104, 106]. Although these techniques themselves might work very well, they
suffer from the fact that the overhead incurred by these run-time mechanisms must
be amortized over multiple runs or iterations. To optimize specifically for each input
set, a code using these run-time mechanisms is generally not feasible. So in order to
allow data instance specific optimizations, other mechanisms are needed.

163

164 8. Data Instance Specific Co-Optimization of Code and Data Structures

8.1 Aggressive Two-Phase Compilation

In this chapter, we propose a very ambitious and aggressive compilation trajectory
to overcome the issues described above and to allow data instance specific optimiza-
tion. Basically, our approach relies on the fact that for large scale simulation codes,
like circuit simulation, structural mechanics, computational fluid dynamics, etc., the
reference codes which are used have a long life cycle [60, 82, 99, 100, 102]. Although
these codes employ libraries to exploit specific architectural features, in general, it is
a major and error-prone task to rewrite these codes and optimize them for a specific
problem at hand.

In our approach, these codes will be aggressively analyzed, both at compile and
run-time, and they will be automatically expanded into a form which allows compiler
optimizations to be much more effective. Also, other compiler optimizations are
enabled, which optimize these codes for specific problem instances. We envision that
this whole transformation chain is split into two parts. The first part consists of
compile and run-time analysis, combined with iteration space expansion and will
happen at the vendor/code owner’s site. So even before the code is shipped to the
customer, the code is prepared, instrumented and expanded. Because this is done
on a per customer basis, the amount of time it takes to prepare this code can be
considerable. In this phase, representative data sets can be used to identify access
patterns that are likely to be useful for restructuring later. In the second phase, after
the code is installed at the customer’s site, “back-end” compiler optimizations take
place, which do not only optimize for specific architectural features of the computing
platform, but also take the specific characteristics of the problem to be solved into
account. In the second phase, the overhead incurred by these compiler optimizations
should be minimized.

One might wonder why the code resulting from the first phase cannot be directly
provided by the code owner. However, if this approach would be taken, the code
owner must maintain multiple versions of the code, as different problem domains
show different data usage patterns. A major advantage of our approach is that the
code owner only has to maintain one reference code and not multiple versions of
the codes for the different customers. Note that the different versions of the code,
which otherwise have to be maintained, differ in an essential way, in the sense that
they are based on different data structure choices. Therefore, this effort would go far
beyond common practice, in which the code owners just have to maintain differently
configured versions of its code base for the different customers.

In this chapter, we mainly describe the first phase of this compilation chain, where
we specifically describe the way the code could potentially be expanded. This expan-
sion is based on the notion of sublimation, in which data structures used are being
embedded into enveloping data structures, such that proper data dependence anal-
ysis can be performed in the second phase. In order to enable this sublimation as
a preparatory phase, the pointer-based codes are being transformed into (indirect
addressed) array-based codes using pool allocation and structure splitting. Although
this in itself is a challenging problem, recent results show that this can be solved
using compile-time techniques [35,48,73,75,76,115,116]. This phase will be extended

8.2. Sublimation 165

by automatically generated compiler instrumentation (for tracing memory pool ac-
cesses [115]), which uses run-time information to identify regions in which indirections
are referring to distinct objects. This information is used in the expansion phase to
further eliminate indirect addressing, yielding indirection free, array-based code which
can therefore can be analyzed by standard compiler optimization techniques. This
representation of the code is then analyzed at the customer’s site together with the
characteristics of the specific problem instance to be solved to obtain a problem/archi-
tectural optimized implementation of the code. The last phase is based on compilation
techniques that optimize dense codes together with a non-zero pattern specification
into an optimized sparse implementation [25,26].

Within the scope of this chapter, we will mainly concentrate on the sublima-
tion/expansion process. As already described, the overall compilation chain is very
ambitious, but it is our belief that such an approach is needed in the future to tackle
the problems faced when implementing data specific optimizations.

In Chapter 6, we have seen how pointer-linked data structures can be rewritten to
a split representation that can be reordered at run-time. Subsequently, we described
in Chapter 7 how this can be transformed into an array-based representation and
how it can be determined if loop conditions may change. In this Chapter, we use this
array-based representation, and explain sublimation, (the technique to embed data
structures into an enveloping data structure) in Section 8.2. We have applied subli-
mation to three sparse matrix kernels, which are sparse matrix vector multiplication,
Jacobi iteration and a direct solver using an LU-factorized matrix. The derivation
using sublimation is done in Section 8.3. The kernels have been optimized using a
variety of different input matrices and the results are presented in Section 8.4, which
also evaluates and describes the overhead of the compilation chain in the second phase.
Section 8.5 summarizes this chapter.

8.2 Sublimation

The basic idea behind sublimation is to transform a code using indirect addressing
into a dense code, thereby eliminating the occurrence of indirect addressing entirely.
So for example, we want to transform a code using compressed row format-based to
represent sparse matrices into a dense code using compiler transformations. In this
section, we describe how this could be achieved by first restructuring access to arrays
to conform to a common access pattern. By transferring the indirection from the
loop body to the header, followed by an expansion of the iteration space, a regular
intermediate code is obtained.

Prototypes of these techniques have been implemented [113, 125]. They address
either simple indirect addressing-based loops or nicely nested pointer traversal loops.
These implementations have not yet been extended to use pool-allocated data struc-
tures. For the sake of a concise description, we describe these transformations using
generic code samples, as the codes generated by the prototype implementations con-
tain additional initialization code which unnecessarily complicates the explanation.
An example of real output generated by our transformation process can be found in

166 8. Data Instance Specific Co-Optimization of Code and Data Structures

Section 8.6, which shows the output of an automatically transformed sparse matrix
vector multiplication kernel.

Note that sublimation is part of the first phase of the compilation process. There-
fore, the overhead needed when implementing the transformations as described in
this section is only incurred once. In the second phase, the data instance specific
optimizations will have to be much more efficient.

The example codes all use an array-based representation. In Chapter 7, we have
seen that type-homogeneous data structures that are pool-allocated can be rewritten
using an indirection array-based style. It also describes a method to detect invari-
ant loop traversal patterns which can be replaced by counted loop structures. This
invariance is used to obtain a countable iteration space for data dependent loop struc-
tures whose conditions are proved to be constant with respect to a specific program
region. In the remainder of this chapter, we will express our transformations using
the indirection array-based version of the pointer-based codes, and thus assume that
pointers and data dependent while loops have been eliminated using the techniques
from Chapter 7.

The analysis and code generation presented in this section which eliminate indi-
rection consists of three (sub)phases. First, data access functions are determined and
a common injective access function is selected, possibly by extending the dimension-
ality of an access function in order to obtain injectivity. In the second phase, the
indirection is transferred to the loop header. Subsequently, in the third phase, the
irregular iteration space is embedded into a containing iteration space, with known
loop bounds.

8.2.1 Data Access Restructuring

Consider the following loop structure:

for (i=0; i<n; i++) {
...A[i]...

...B[C[i]]...

}

In this loop, two arrays are accessed using the iteration counter i and the index
array C, which basically is a function of the iteration counters. An obvious choice
to restructure data in this loop is to restructure array B in order to follow the same
access pattern as A.

for (i=0; i<n; i++) {
...A[i]...

...B’[i]...

}

Where B′ is defined as: ∀i, 0 ≤ i ≤ n : B′[i] = B[C[i]]. While this gather operation
is the most obvious choice for restructuring, we will focus on another choice, which is

8.2. Sublimation 167

sublimation of array A, by changing its regular access pattern into the same irregular
access pattern of B. In this case, the code is transformed into:

for (i=0; i<n; i++) {
...A’[C[i]]...

...B[C[i]]...

}

In the resulting code, both the arrays are accessed using the same access pattern.
Of course, the restructuring of the arrays must meet certain criteria in order to be
valid. All values used in the original array must be preserved in the target array and
in case an array is written to, data should not be duplicated.

Generally speaking, let f(I) and g(I) denote the new and original access functions,
respectively. An access function is defined as a function that maps a point from the
iteration space into an integer offset. In the example above, f(i) = C[i] (access using
index array) and g(i) = i (the iteration counter). The following condition must hold
if f(I) is used to access data that is being read: ∀I, J : I 6= J → f(I) 6= f(J) (thus, f

is an injective function). If f(I) is used to index an array that is written to, then the
injectivity of f(I) is not sufficient. In that case, the original access function must also
be injective, in order to avoid duplication of data originating from the same location.
For writes, the following condition must hold: ∀I, J : I 6= J → (f(I) 6= f(J)∧ g(I) 6=
g(J)) (both f and g are injective functions).

8.2.2 Identifying Injective Functions in Code

The notion of sublimation that was explained in the previous section was based on a
simple regular access pattern combined with an indirect access pattern. In general, the
simple regular access pattern can be extended to any injective access pattern derived
from loop counters. Such patterns naturally arise in counted loop structures. From
such loop structures, the iteration space and a total ordering of its traversal can be
determined at compile-time. On this total order T , a bijective mapping h : T → Zn to
the iteration space can be defined. Using this bijective mapping, all of the techniques
described above are generalized to multi-dimensional iteration spaces.

Within a loop, multiple access patterns can be identified, each of which is a po-
tential candidate to be used as the access function to which other access functions
adapt. This adaptation is what the notion of sublimation refers to. While not all
access functions are injective, all access functions can be made injective with respect
to the containing loop structure by expanding their dimensionality. We will clarify
this using an example:

#pragma INJECTIVE(k)

for (i=0; i<n; i++) {
#pragma INJECTIVE(colIdx[k])

for (k=start[i]; k<start[i+1]; k++) {
result[i] += M[k] * right[colIdx[k]];

}
}

168 8. Data Instance Specific Co-Optimization of Code and Data Structures

Access Function: ColIdx[k]

A
c
c
e
s
s
 F

u
n
c
ti
o
n
:
i

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

l l l

l l l l l l l

l l l l

l l l l l l l l l l

l l l l l l

l l l l l l l

l l l l

l l l l l l l l l

l l l l l l

l l l l l

Figure 8.1: colIdx[k] is a non-injective access function. Extending the index expres-
sion with i results in an injective access function. The arrows show the order in which
the points in the function are visited.

This code computes a sparse matrix vector product. The addressing expressions that
can be derived from this code sample are: i, k and ColIdx[k]. Of these, colIdx[k]
is injective with respect to every single iteration of the inner loop and k is injective
across the entire iteration space. This can be specified in a directive (which is done in
our example) or we can choose to speculate on this property and check injectiveness at
run-time. In this example, colIdx[k] is not injective across the entire iteration space.
By extending the access function using one of the dimensions of the iteration space,
a new, injective function is obtained. In our example, the new injective function is
f(i, k) = (i, colIdx[k]), see Figure 8.1. As a result, the following loop structure is
obtained (the #pragma statements are left out):

8.2. Sublimation 169

for (i=0; i<n; i++) {
for (k=start[i]; k<start[i+1]; k++) {

result[i] += M’[i, colIdx[k]] * right[colIdx[k]];

}
}

Note that this resulting code is never directly executed. It only serves as an interme-
diate code. In this code, M’[i, colIdx[k]] = M[k].

8.2.3 Eliminating Indirect Addressing in the Loop Body

Irregularity can be present both in the loop header as well as in the loop body. With ir-
regularity, we mean any property that cannot be statically determined. This includes,
data dependent loop conditions and unpredictable memory reference patterns. In our
example, the lower and upper bound of the inner loop are data dependent and thus
irregular. The inner loop is a counted loop, which in itself defines an injective func-
tion. This injective property can be used to transfer the irregular access that still
exists within the inner loops to the loop header. Let the original iteration space be ∆
and let h be an irregular access function within the loop. Then the irregular access
function can be transferred to the loop header as follows:

for (I ∈ ∆) {
...A’[h(I)]...

}

is transformed to: for (I’ ∈ h(∆)) {
...A’[I’]...

}

Applied to our example, the irregular access function defined by the index array
expression colIdx[k] is dependent on the inner loop counter, and the access function
can be transferred to the loop bounds of the inner loop as follows:

for (i=0; i<n; i++) {
for (q ∈ { colIndex[start[i]], colIndex[start[i]+1],

..., colIndex[start[i+1]-1] }) {
result[i] += M’[i, q] * right[q]];

}
}

The irregularity has now been transferred from the loop body to the loop header.

8.2.4 Expanding the Iteration Space

The resulting loop header is still data dependent and thus irregular. This form of
irregularity can be eliminated by expanding the iteration space to a space that en-
compasses the entire iteration space using a fixed interval that is large enough to
contain all the elements of the original iteration space. The fact that this can be
done, relies on the property that statements of the following form do not have any
effect:

(1) A = A + 0
(2) A = A ∗ C, if A is zero.

170 8. Data Instance Specific Co-Optimization of Code and Data Structures

Therefore, any extraneously executed statements will not change the semantics of
programs. Such statements naturally occur in numerically intensive applications, and
therefore this method is suitable for large scale simulation codes as mentioned in the
introduction.

In general, let ∆ be the iteration space after transferring the indirect access to the
loop header, as described in the previous section. Let Ω be the new iteration space
that extends ∆ (Ω ⊇ ∆). The injective function g is the extended function of the
original access function f . If A is the result of sublimation on an array, the array
A′ used in the expanded iteration space is defined as follows: ∀I ∈ Ω : A′[g(I)] =
A[f(I)] if I ∈ ∆, 0 if I ∈ Ω\∆.

Applied to our example code, the iteration space can be extended by transforming
the inner loop to a counted loop with a range that covers all possible values. The new
access function is still (i, q), but q covers a larger range of values.

for (i=0; i<n; i++) {
for (q=0; q<MAX INT; q++) {

result[i] += M’’[i, q] * right[q]];

}
}

Note that this code is an intermediate code, and therefore is never executed. The
loop bounds here are taken very conservatively. Using directives or results from other
analyses, a smaller iteration space could be used. Eventually, this intermediate is
recompiled and proper loop bounds are generated. Note that the definition of M ′

needs to be changed into M ′′, in order to specify the zero elements:

∀(i, q) :
if q ∈ {colIndex[start[i]], . . . , colIndex[start[i + 1] − 1]}

M ′′[i, q] = M ′[i, q]
else

M ′′[i, q] = 0

8.3 Application of Sublimation to Pointer-based Ma-
trix Kernels

We have applied sublimation on three sparse matrix kernels, that use orthogonally
linked lists to store the matrix data. The three kernels considered are sparse ma-
trix multiplication, sparse Jacobi iteration and a direct sparse solver using an LU-
factorized matrix, and are taken from SPARK00 [114]. These kernels have been
transformed to an array-based representation using the transformations described
in Chapter 7. On each of these kernels, sublimation is applied, causing the array
representation of the matrix values to be extended. Although all programs use the
orthogonally linked list representation for sparse matrices, the difference in traversal
patterns may lead to completely different implementations for different kernels. In this
section, the transformation of each of the three kernels is described and characteristic
features of each of these kernels are explained.

8.3. Application of Sublimation to Pointer-based Matrix Kernels 171

k=0;

for (i=0; i<n; i++) {
for (j=0; j<limj[i]; j++) {
result[i] += M[k] *

right[colIdx[k]];

k++;

}
}

for (i=0; i<n; i++) {
for (k=start[i];

k<start[i+1]; k++) {
result[i] += M[k] *

right[colIdx[k]];

}
}

(a) Pointers transformed to arrays (b) Injective inner loop

for (i=0; i<n; i++) {
for (k=start[i];

k<start[i+1]; k++) {
result[i] += M’[i,colIdx[k]] *

right[colIdx[k]];

}
}

for (i=0; i<n; i++) {
for (q=0; q<INT MAX; q++) {

result[i] += M’’[i,q] *

right[q];

}
}

(c) Sublimation of M to M’ (d) Transferred and expanded loop
bounds

Figure 8.2: Starting point for code analysis and sublimation of sparse matrix vector
multiplication.

8.3.1 Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication is an important kernel in many applications. Fig-
ure 8.2 shows the code samples while the code is being transformed. We start with
the array-based code resulting from the pointer to array conversion. In this code, the
variable k is increased in the inner loop body. Therefore, k defines an injective access
pattern. The values that k takes for each inner loop can be determined during the
pointer to array conversion and results in a loop structure where the bounds of k are
defined in the loop header.

We pick the access pattern colIdx[k] to be used for sublimation and redefine M

accordingly. As explained in Section 8.2.2, access functions that are not injective can
be made injective by extending them using a dimension from the iteration space. In
this case, it is extended using the iteration counter i. Injectivity must be determined
either by using directives or by run-time analysis.

Subsequently, the indirection is moved to the loop header, after which the iteration
space is expanded, using the property that the access function is injective with respect
to the inner loop. The resulting dense intermediate code will be optimized later when
the actual data set has been loaded at run-time.

172 8. Data Instance Specific Co-Optimization of Code and Data Structures

k = 0;

for (h=0; h<hlim; h++) {
for (i=0; i<ilim[h]; i++) {

x 2[h] -= M[k]*x 1[colIdx[k]];

k++;

}

for (j=0; j<jlim[h]; j++) {
x 2[h] -= M[k]*x 1[colIdx[k]];

k++;

}
x 2[h] = x 2[h] / diag[h];

}

for (h=0; h<hlim; h++) {
for (k=start[h];

k<start[h+1]; k++) {
x 2[h] -= M[k]*x 1[colIdx[k]];

}
x 2[h] = x 2[h] / diag[h];

}

(a) Pointers transformed to arrays (b) Fused injective inner loop

for (h=0; h<hlim; h++) {
for (k=start[h];

k<start[h+1]; k++) {
x 2[h] -= M’[h,colIdx[k]]*

x 1[colIdx[k]];

}
x 2[h] = x 2[h] / diag[h];

}

for (h=0; h<hlim; h++) {
for (q=0; q<INT MAX; q++) {
x 2[h] -= M’’[h,q]*x 1[q];

}
x 2[h] = x 2[h] / diag[h];

}

(c) Sublimation of M to M’ (d) Transferred and expanded loop
bounds

Figure 8.3: Starting point for code analysis and sublimation of Jacobi iteration.

8.4. Experiments 173

8.3.2 Jacobi Iteration

Figure 8.3 shows the code for Jacobi iteration while it is being transformed. Jacobi
iteration has the interesting property that it consists of two inner loops. These loops
originate from the pointer-based code, where elements before and after the diagonal
are traversed in separate loops, while storing the diagonal entry to a temporary vari-
able. In the array-based version shown here, the diagonal entries are stored in the
array diag. Therefore, the loops can now be merged into a single loop. Similar as
in the sparse matrix multiplication code, k is injective and can be transferred to the
inner loop by storing the lower and upper bounds per execution of the inner loop.

The sublimation process and iteration space expansion follow the same pattern
as previously. It should be noted, though, that the definition of M ′′ will not include
entries from the main diagonal, as these are separately stored in the array diag. While
looking similar to sparse matrix multiplication, the missing diagonal might lead to
different optimization choices in the optimization back-end.

8.3.3 Direct Solver

The results of the transformation steps on the direct solver are shown in Figure 8.4.
Characteristic for the kernel is the use of two different index arrays, one using row
indices (rowIdx) upon column-wise traversal of the matrix and one using column in-
dices (colIdx) upon row-wise traversal. The lower triangle of the matrix is traversed
column-wise (first loop), the upper triangle is traversed row-wise (second loop). In-
direct access is both present in reads of arrays and in writes.

In the code, the data has been segmented in two different arrays, M and M2,
representing the lower triangle and upper triangle, respectively. k and k2 define an
injective access pattern, and are put in the inner loops with corresponding lower and
upper loop bounds. In the first loop, the variable i is an induction variable and is re-
placed by g+1. In the first loop, M is sublimated using the access function rowIdx[k],
while in the second loop M2 is sublimated using the access pattern colIdx[k2]. After
transferring indirect addressing and expanding the iteration space, the intermediate
dense code specifies two dense matrices, each representing the lower and upper trian-
gle of the input matrix. Similar as in Jacobi iteration, the main diagonal is not part
of the M ′′ or M2′′, but is stored separately in the array pivot.

8.4 Experiments

The sparse matrix kernels, on which sublimation has been applied, have been opti-
mized and executed using a variety of matrices from Davis’s University of Florida
Sparse Matrix Collection [38]. Not all data sets that are used in the sparse matrix
multiplication are used in Jacobi iteration because input matrices for Jacobi iteration
cannot contain zero entries on the diagonal. For the direct solver, the matrices have
been LU-factorized prior to running the program. Matrices taking excessive time to
factorize have not been used.

The dense intermediate codes derived in the previous section are compiled to a

174 8. Data Instance Specific Co-Optimization of Code and Data Structures

I = 1; k = 0;

for (g=0; g<glim; g++) {
Temp = Intermediate[I];

Temp = Temp / pivot[g];

Intermediate[I] = Temp;

for (m=0; m<mlim[i]; m++) {
Intermediate[rowIdx[k]] -=

Temp * M[k];

k++;

}
I++;

}

I2 = Size; k2 = 0;

for (h=0; h<hlim; h++) {
Temp = Intermediate[I];

for (n=0; n<nlim[h]; n++) {
Temp -=

M2[k2]*Intermediate[colIdx[k2]];

k2++;

}
Intermediate[I2] = Temp;

I2--;

}

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];

Temp = Temp / pivot[g];

Intermediate[g+1] = Temp;

for(k=start[g]; k<start[g+1]; k++) {
Intermediate[rowIdx[k]] -=

Temp * M[k];

}
}

I2 = Size;

for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];

for(k2=start2[h]; k2<start2[h+1]; k2++)

{
Temp -=

M2[k2]*Intermediate[colIdx[k2]];

}
Intermediate[I2] = Temp;

I2--;

}

(a) Pointers transformed to arrays (b) Injective inner loops

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];

Temp = Temp / pivot[g];

Intermediate[g+1] = Temp;

for(k=start[g]; k<start[g+1]; k++)

{
Intermediate[rowIdx[k]] -=

Temp * M’[g,rowIdx[k]];

}
}

I2 = Size;

for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];

for(k2=start2[h];

k2<start2[h+1]; k2++) {
Temp -= M2’[h,colIdx[k2]] *

Intermediate[colIdx[k2]];

}
Intermediate[I2] = Temp;

I2--;

}

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];

Temp = Temp / pivot[g];

Intermediate[g+1] = Temp;

for(q=0; q<INT MAX; q++) {
Intermediate[q] -= Temp * M’[g,q];

}
}

I2 = Size;

for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];

for(r=0; r<INT MAX; r++) {
Temp -= M2’’[h,r]*Intermediate[r];

}
Intermediate[I2] = Temp;

I2--;

}

(c) Sublimation of arrays M and M2 (d) Transferred and expanded loop
bounds

Figure 8.4: Starting point for code analysis and sublimation of a direct solver.

8.4. Experiments 175

data set-specific implementation of the kernel. In our experiments, we use the MT1
compiler as our back-end [25]. MT1 compiles a dense specification together with
the specification of the non-zero patterns and produces a data set-specific optimized
implementation. The access patterns can be obtained by instrumenting the code ob-
tained by the methods presented in Chapter 7. All experiments have been run on In-
tel Core 2 Duo 2.33GHz system with 2GiB of main memory, running Mac OS X 10.6.2.
The programs are compiled using GCC 4.2.1 using the options ’-O3 -ftree-vectorize’.

First, we will present the results of the recompiled kernel that uses the dense code
as input and the access patterns as defined by the specific input matrix. Next, the
overhead of the dynamic code-generation is assessed. Note that in the first phase
of our overall compilation process, the overhead can be substantial. However, when
transforming the intermediate (dense) code into a data instance specific code, which
belongs to the second phase of the overall compilation process, the overhead should
be minimized.

8.4.1 Results on Sparse Matrix Kernels

As soon as the data is loaded from the input file and it is determined that the access
pattern of the kernel will remain static (as described in Chapter 7), the code resulting
from sublimation together with a definition of the access patterns is compiled. The
overhead is measured separately, as this is constant for each kernel and data set
combination. Including the overhead in the kernel execution time yields arbitrary
results, as by increasing the number of iterations, the overhead per iteration can be
made as small as desired. Therefore, we will show more details about the overhead
in the next section, and here we will focus on the performance of the kernel itself.

Figure 8.5 shows the speedups obtained by running the optimized kernels. In
these figures, the data sets are sorted by increasing size from left to right. For each
of these kernels, we can observe that the restructuring methods are most suitable for
the larger data sets, while the optimizations do not negatively effect performance for
the small data sets, in general. The bars are annotated with the break-even points
(×1000 iterations). In the cases where the optimized version is slower, a break-even
point does not exist and this is denoted with a dash.

As we can see, the speedups can be substantial. Although the data structure
layout for the original kernels have been optimized and take into account the sparsity
of the data, they have not been optimized for specific non-zero structure information.
As a result of our transformations, these original codes are compared to kernels which
are specifically optimized for a particular input matrix, and thus both the code and
data layout are optimized for that specific data instance.

8.4.2 Overhead

While the application of sublimation is a compile-time analysis and transformation,
which generates the dense intermediate code, the data set specific compilation is
deferred to run-time. At run-time, the final re-targeting of the code using input data
set dependent access patterns is performed before the kernel is executed.

176 8. Data Instance Specific Co-Optimization of Code and Data Structures

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/i
m

p
c
o

l_
b

B
a

i/
rw

1
3

6
R

a
ja

t/
ra

ja
t1

1
H

B
/b

c
s
s
tm

0
9

S
a

n
d

ia
/o

s
c
il_

tr
a

n
s
_

0
1

H
B

/6
6

2
_

b
u

s
H

B
/s

tr
_

2
0

0
N

o
rr

is
/l
u

n
g

1
B

o
e

in
g

/b
c
s
s
tm

3
4

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9
Z

it
n

e
y
/r

d
is

t3
a

H
o

lli
n

g
e

r/
ja

n
9

9
ja

c
0

4
0

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s

N
o

rr
is

/h
e

a
rt

3
V

a
n

V
e

lz
e

n
/Z

d
_

J
a

c
3

_
d

b
A

C
U

S
IM

/P
re

s
_

P
o

is
s
o

n
B

o
e

in
g

/b
c
s
s
tk

3
6

N
D

/n
d

3
k

S
p

e
e

d
u

p

0

1

2

3

4

5

−
1

6
7

2
6

.9
9

0
2

5
.0

1
5

9
4

.4 −
1

6
9

2
.9

8
9

6
.6

3
0

1
.7

8
0

.4
5

6
.3

3
1

.2
2

1
.3

1
5

.9
2

.8
2

.9
2

.7
2

.8
2

.8
2

.6

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/6
6

2
_

b
u

s

N
o

rr
is

/l
u

n
g

1

B
o

e
in

g
/b

c
s
s
tm

3
4

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n

B
o

e
in

g
/b

c
s
s
tk

3
6

N
D

/n
d

3
k

S
p

e
e

d
u

p

0

1

2

3

4

5

−

5
3

7
.2

3
6

5
.5

5
4

.1

2
1

.6

3
.2

3
.6

3
.6

3
.6

3
.6

(a) Sparse matrix vector multiply (b) Jacobi iteration

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/6
6

2
_

b
u

s

B
a

i/
rd

b
4

5
0

l

B
o

e
in

g
/b

c
s
s
tm

3
4

B
o

e
in

g
/c

ry
s
tm

0
1

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9

S
p

e
e

d
u

p

0

1

2

3

4

5

1
2

2
9

4
6

.8

4
0

9
.8

9
6

.6

1
3

.0

1
.9

1
.4

(c) Direct solver using LU factors

Figure 8.5: Speedups obtained on the data set specific optimized kernels. The anno-
tations show the break-even points (×1000 iterations).

8.4. Experiments 177

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/i
m

p
c
o

l_
b

B
a

i/
rw

1
3

6
R

a
ja

t/
ra

ja
t1

1
H

B
/b

c
s
s
tm

0
9

S
a

n
d

ia
/o

s
c
il_

tr
a

n
s
_

0
1

H
B

/6
6

2
_

b
u

s
H

B
/s

tr
_

2
0

0
N

o
rr

is
/l
u

n
g

1
B

o
e

in
g

/b
c
s
s
tm

3
4

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9
Z

it
n

e
y
/r

d
is

t3
a

H
o

lli
n

g
e

r/
ja

n
9

9
ja

c
0

4
0

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s

N
o

rr
is

/h
e

a
rt

3
V

a
n

V
e

lz
e

n
/Z

d
_

J
a

c
3

_
d

b
A

C
U

S
IM

/P
re

s
_

P
o

is
s
o

n
B

o
e

in
g

/b
c
s
s
tk

3
6

N
D

/n
d

3
k

F
ra

c
ti
o

n
 o

f
T
o

ta
l
O

ve
rh

e
a

d
 [

%
]

0

20

40

60

80

100

2
.3

1
s

1
.9

4
s

1
.9

4
s

1
.9

5
s

2
.0

1
s

2
.3

2
s

1
.9

6
s

1
.9

8
s

2
.0

3
s

2
.2

0
s

2
.4

0
s

2
.6

2
s

3
.2

8
s

8
.8

7
s

1
0

.5
2

s
1

0
.3

8
s

1
0

.3
4

s
1

5
.5

2
s

4
6

.8
1

s

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/6
6

2
_

b
u

s

N
o

rr
is

/l
u

n
g

1

B
o

e
in

g
/b

c
s
s
tm

3
4

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9

S
a

n
d

ia
/A

S
IC

_
1

0
0

k
s

V
a

n
V

e
lz

e
n

/Z
d

_
J
a

c
3

_
d

b

A
C

U
S

IM
/P

re
s
_

P
o

is
s
o

n

B
o

e
in

g
/b

c
s
s
tk

3
6

N
D

/n
d

3
k

F
ra

c
ti
o

n
 o

f
T
o

ta
l
O

ve
rh

e
a

d
 [

%
]

0

20

40

60

80

100

2
.3

2
s

1
.9

6
s

2
.0

2
s

2
.3

1
s

2
.5

4
s

1
0

.0
4

s

1
3

.2
6

s

1
3

.0
8

s

2
0

.1
4

s

6
2

.5
3

s

(a) Sparse matrix vector multiply (b) Jacobi iteration

O
b

e
rw

o
lfa

c
h

/L
F

1
0

H
B

/6
6

2
_

b
u

s

B
a

i/
rd

b
4

5
0

l

B
o

e
in

g
/b

c
s
s
tm

3
4

B
o

e
in

g
/c

ry
s
tm

0
1

va
n

H
e

u
k
e

lu
m

/c
a

g
e

9

F
ra

c
ti
o

n
 o

f
T
o

ta
l
O

ve
rh

e
a

d
 [

%
]

0

20

40

60

80

100

2
.1

4
s

2
.2

0
s

2
.2

9
s

3
.1

9
s

1
1

.5
0

s

1
7

.8
9

s

Other

Initialization

Optimization/Code Generation

Structure Analysis

Restructuring

(c) Direct solver using an
LU-factorized matrix

(d) Legend

Figure 8.6: Contribution of different phases to the overhead of run-time compilation
of the dense intermediate with data set dependent access pattern to a data set specific
implementation. The time plotted at the top of each bar is the total time spent in
run-time compilation.

178 8. Data Instance Specific Co-Optimization of Code and Data Structures

Figure 8.6 shows the overhead for the run-time compilation for the kernels with
their different input data sets. For the smaller data sets, it is clear that the majority
of the time is spent in optimization and code generation (this is the generation of a
shared library). This is caused by the fact that this is a fairly constant factor, as this
consists of compiling the code emitted by MT1 (using for example GCC) into a binary.
More complicated code could be emitted for larger data sets, but this only results in
a relatively small increase in compilation time (observed times for this phase range
from 0.27s − 4.37s). For the larger data sets, restructuring, structure analysis and
initialization (loading data using the restructured data layout) are the dominating
factors.

8.5 Summary

We proposed and described a two-phase approach to the optimization of applications.
The first phase consists of compile-time analysis in which data used in the applica-
tion is embedded in enveloping data structures. This is driven by a technique we
call sublimation, which forces data to be laid out in memory using a common and
appropriate access function. The resulting code is an intermediate code which is not
directly executed. In the second phase this intermediate is compiled together with
actual data and an instance specific optimized code is generated.

We have described how these optimizations can potentially be applied to codes
including pointer-based data structures. The subsequent optimizations in the first
phase are all based on array-based codes. Using three sparse matrix kernels, we
have evaluated the potential of the transformation to an enveloping data structure (a
dense matrix in this case) and show that considerable speedups can be achieved. The
overhead involved in the restructuring during the second phase has been evaluated.
For smaller data sets, the final code generation time is dominating. For large data
sets, restructuring and initialization of the new data structures after compilation are
dominating.

While the experiments show the potential of our two-phase compilation system us-
ing sublimation, these experiments are only a limited application of these techniques.
We envision applications in which computational intensive parts are compiled into an
intermediate code using sublimation, which is compiled together with specific input
data to enable even more aggressive optimizations to be applied.

8.6. Example Data Instance Specific Code 179

8.6 Example Data Instance Specific Code

struct {

doublereal val_mtca__[41595];

integer ind_mtca__[41595],

low_mtca__[3534],

hgh_mtca__[3534],

lst_mtca__;

} mtca_____;

#define mtca_____1 mtca_____

static integer c__3 = 3;

static integer c__1 = 1;

static integer c__4 = 4;

static integer c__3534 = 3534;

static integer c__41595 = 41595;

int mtc_fortran_init__(void)

{

integer i__1;

olist o__1;

cllist cl__1;

integer f_open(olist *), s_rsle(cilist *),

do_lio(integer *, integer *,

char *, ftnlen),

e_rsle(void);

int s_stop(char *, ftnlen);

integer f_clos(cllist *);

static integer i___, j___, k___, m___, n___;

static real v___;

static integer nnz___, tmp____[41595];

extern int dini____(doublereal *, integer *,

integer *, integer *, integer *,

integer *, integer *, integer *);

static cilist io___1 = {0, 1, 0, 0, 0};

static cilist io___6 = {0, 1, 0, 0, 0};

mtca_____1.lst_mtca__ = 1;

o__1.oerr = 0; o__1.ounit = 1; o__1.ofnmlen = 7;

o__1.ofnm = "mtca.cs"; o__1.orl = 0; o__1.osta = "OLD";

o__1.oacc = 0; o__1.ofm = 0; o__1.oblnk = 0;

f_open(&o__1);

s_rsle(&io___1);

do_lio(&c__3, &c__1, (char *) &m___,

(ftnlen) sizeof(integer));

do_lio(&c__3, &c__1, (char *) &n___,

(ftnlen) sizeof(integer));

do_lio(&c__3, &c__1, (char *) &nnz___,

(ftnlen) sizeof(integer));

e_rsle();

if (m___ != 3534 || n___ != 3534) {

s_stop("Incorrect size", (ftnlen) 14);

}

180 8. Data Instance Specific Co-Optimization of Code and Data Structures

i__1 = nnz___;

for (k___ = 1; k___ <= i__1; ++k___) {

s_rsle(&io___6);

do_lio(&c__3, &c__1, (char *) &i___,

(ftnlen) sizeof(integer));

do_lio(&c__3, &c__1, (char *) &j___,

(ftnlen) sizeof(integer));

do_lio(&c__4, &c__1, (char *) &v___,

(ftnlen) sizeof(real));

e_rsle();

++mtca_____1.lst_mtca__;

if (mtca_____1.lst_mtca__ > 41595) {

s_stop("Too many entries", (ftnlen) 16);

}

mtca_____1.val_mtca__[mtca_____1.lst_mtca__ - 1] = v___;

mtca_____1.ind_mtca__[mtca_____1.lst_mtca__ - 1] = j___;

tmp____[mtca_____1.lst_mtca__ - 1] = i___;

}

cl__1.cerr = 0; cl__1.cunit = 1; cl__1.csta = 0;

f_clos(&cl__1);

dini____(mtca_____1.val_mtca__, tmp____,

mtca_____1.ind_mtca__, mtca_____1.low_mtca__,

mtca_____1.hgh_mtca__, &c__3534, &c__41595,

&mtca_____1.lst_mtca__);

return 0;

}

int mtc_callback_mtca00__(doublereal * result,

doublereal * right)

{

integer i__1;

static integer mtctemplin1, row, mtctemplin1___;

--right;

--result;

for (row = 1; row <= 3534; ++row) {

result[row] = 0.f;

i__1 = mtca_____1.hgh_mtca__[row - 1];

for (mtctemplin1___ = mtca_____1.low_mtca__[row - 1];

mtctemplin1___ <= i__1; ++mtctemplin1___) {

mtctemplin1 =

mtca_____1.ind_mtca__[mtctemplin1___ - 1];

result[row] +=

mtca_____1.val_mtca__[mtctemplin1___ - 1] *

right[mtctemplin1];

}

}

return 0;

}

CHAPTER 9

Mapping Pointer-linked Data Structures to an FPGA:

A Case Study

Heterogeneous systems are systems that are composed of different types of proces-
sors, possibly with memories that are not directly accessible to all components. For
example, an FPGA combined with a regular desktop system can be viewed as a het-
erogeneous system, but also the combination of a general purpose CPU and a GPU
card within a single system is a heterogeneous system. In order to co-optimize code
and data for such architectures, both the code and data must first have a repre-
sentation that is architecture and memory address space independent. Using such a
representation, code and data can be segmented and distributed between the different
resources.

Pointer-linked structures prevent compilers from finding these segmentations of
the input data such that code can run in parallel. Parallelization of those codes is
notoriously hard, mainly due to two reasons: pointers can be aliased and pointers
are address space dependent. The aliasing problem has been studied in-depth, both
for stack and heap-allocated data. Address space-dependence is a more practical
problem. In heterogeneous environments, pointers used in one place are not always
valid in other contexts and therefore, pointers cannot be exchanged directly. Similar
problems are faced if a pointer-linked data structure, that has been allocated on a host
machine, is to be mapped onto an FPGA. Some solutions to map pointer structures
into an FPGA have been proposed [40, 111]. These solutions demand the use of a
specific programming interface (API), which ensures properties such as type-safety
and immutability of data layout by their design.

The main contribution of the work presented in this chapter is is the presentation of
a novel, completely compilation-based strategy that allows the execution of code using
pointer-linked structures on architectures lacking a globally shared address space,

181

182 9. Mapping Pointer-linked Data Structures to an FPGA

such as FPGAs, GPUs and the Cell processor. The techniques rely on transforming
type-safe subsets of structured data into the address independent representation, as
described in Chapter 6 and 7. The resulting code, which is address space-independent
can in principle be mapped to any architecture, but can also be used to synthesize
custom hardware. Using a sparse matrix multiplication kernel as a case study, we will
illustrate the chain of transformations that leads to a specification of an algorithm
that is free of indirect memory access. Figure 9.1 shows the transformation chain.
In the following case study, the transformations are discussed in more detail. Our
compilation chain is based on the LLVM compiler framework (see Chapter 5).

In Chapter 6, we have outlined the techniques and requirements for the restructur-
ing of pointer-linked data structures. This resulted in an address space independent
representation, which can also be represented using arrays and object identifiers. Since
the type-safe memory pools can be monitored, it is possible to identify regions in the
program which can safely be transformed to use counted loops (see Chapter 7). Using
sublimation, which has been described in Chapter 8, the code is mapped into a dense
intermediate code that does not contain indirect accesses.

In this chapter, this dense intermediate code is mapped to an FPGA using the
Daedalus tool-flow [90], which provides an integrated and automated framework for
system-level architectural exploration, system-level synthesis, programming, and pro-
totyping of heterogeneous Multi-Processor System-on-a-Chip (MPSoC) platforms. Its
process network-based format is a suitable representation for automatic paralleliza-
tion. Using a process-network based parallelizing transformation, we will derive and
evaluate a parallel implementation of a code that originally used pointer-linked data
structures.

Using a case study (sparse matrix-vector multiplication), we explain our trans-
formation chain. Section 9.1 describes the compile-time transformations that map a
pointer-based code in an indirection free intermediate code. The subsequent data-
dependent iteration space restructuring and mapping onto the FPGA platform is de-
scribed in Section 9.2, which also shows timing results on different realizations of the
parallel model. Related work is discussed in Section 9.3, followed by the conclusions
and future directions in Section 9.4.

9.1 Compiler Support for Indirection-free Code Gen-
eration

Sparse matrix multiplication is a common method that is used in many iterative
solvers. In this section, we describe the compile-time analyses and transformations
that are needed to obtain a regular (and thus predictable) specification from an orig-
inally pointer list-based implementation. The starting point is the matrix vector
multiplication kernel shown in Figure 9.2a. It computes its result by traversing the
sparse matrix row-wise, and uses the stored column position as on offset in the vector
operand. Note that variable declarations are left out of the code samples.

9.1. Compiler Support for Indirection-free Code Generation 183

����������
	���
�����

������	��
���������

�������
���
��������������

��������
���������

���������
	

���

������������
�
� �������

������������
�
�����
�����

��
����!��∀�#
���������

∃��
�%�
��%��
����
&�����%�

��
����!��∀�#
������∋�����

&�(
��������������

���	

����������
��
��

������%��
���
������

��
��)��
��%�

Figure 9.1: Overview of the transformation chain. The white blocks denote pure
compile-time phases, the dark gray blocks are run-time components generating infor-
mation that is used in the run-time data-dependent compilation phases. The run-time
data-dependent compilation phases are denoted by light gray blocks.

184 9. Mapping Pointer-linked Data Structures to an FPGA

void MatrixMultiplyVec(Matrix *left,

double *right, double *result)

{

for(row=1; row<=left->Size;row++){

result[row] = 0.0;

pElement = left->FirstInRow[row];

while(pElement){

result[row] += pElement->Real *

right[pElement->Col];

pElement = pElement->NextInRow;

}

}

}

(a) Pointer-based code

void MatrixMultiplyVec(PoolDescriptor *poolLeft,

PoolDescriptor *poolElement, Matrix *left,

double *right, double *result)

{

unsigned leftAsInt = ptr_to_objid(poolLeft, left);

double *basePtrFirstInRow =

poolLeft->basePtr[fieldNo(FirstInRow)];

unsigned pElement;

...

for(row=1; row <= basePtrSize[leftAsInt]; row++){

result[row] = 0.0;

pElement = basePtrFirstInRow[leftAsInt][row];

while(pElement){

result[row] += basePtrReal[pElement] *

right[basePtrCol[pElement]];

pElement = basePtrNextInRow[pElement];

}

}

}

(b) Array-based code

Figure 9.2: Sparse matrix times vector using linked lists and its corresponding array-
based code.

9.1. Compiler Support for Indirection-free Code Generation 185

9.1.1 Transformation to Pointer Chase-free Code

The transformation chain depends on the structure splitting and restructuring frame-
work that has been presented in Chapter 6 and 7. The split pool allocation, run-time
MOD flag tracking, pool tracing and conversion to an array-based representation,
depicted in Figure 9.1, are all provided within this framework. Due to the structure
splitting transformation, the pointer-based code can be expressed using arrays only,
as all data accesses are represented by a (pool, field, object) triplet. Each field has
its own data region in the split pool and the start of this data is given by the base
pointer for the array-based representation. Figure 9.2b shows the code after conver-
sion to an array-based representation. It shows how the base pointers for the fields
are obtained from the pool descriptors and how pointers have become offsets in these
arrays. In subsequent code samples, the initialization of base pointers will be left
out. All pointers that are loaded from memory pools are already object identifiers,
the incoming argument left is converted within this function, aided by information
from the pool descriptor. In the remainder of the discussion, we assume that each
subsequent call will have the same control flow. This can be easily determined from
the MOD flag information, which is used at run-time to call the appropriate function.
We use multi-versioned code that always includes the original code (i.e. Figure 9.2b).
In the case that the MOD flag information indicates that the control flow might be
different, the original code will be executed.

Because control flow is guaranteed to be static, that is, data on which the control
flow depends has not been modified if the transformed function is called, the loop
counters can be traced. Simple, counted loops can be inserted instead (see Chapter 7).
In addition, only data that lives after execution of the function is relevant to the result
of code. Our example needs to access data that is only used for data structure traversal
and for indirect access of other arrays. Using the run-time MOD flags, it can also be
determined whether access to fields will follow the same pattern and all accesses to
pools can be collected in traces. This avoids the latency caused by pointer-chasing
loops.

Figure 9.3 shows the code that uses traces of object identifiers to access the arrays
in the inner loop. Note that only persistent changes to data are relevant for functional
correctness. That includes heap data, return values and stack data not local to the
function (accessed through a pointer). Local stack data is only valid during the
lifetime of the stack frame of the function. Therefore, we determine which changes to
data should be persistent after the function returns and mark the associated writes as
necessary operations. Using dead-code elimination, redundant memory reads needed
for data structure traversal are removed. What is left, is a kernel with counted
loops and arrays accessed by a trace vector. Naturally, the trace vectors are accessed
sequentially. This in itself may already improve performance, as the pointer-chasing
is replaced by sequential access to a trace vector. The performance impact of such
differences have been described in Chapter 3.

186 9. Mapping Pointer-linked Data Structures to an FPGA

void MatrixMultiplyVec(...)

{

/**** Initialization left out ****/

cnt = 0;

for (i = 0; i < bound; bound++) {

result[i+1] = 0.0;

for (j = 0; j < innerBounds[i]; j++) {

result[i+1] +=

basePtrReal[basePtrReal_Trace[cnt]]

* right[right_Trace[cnt]];

cnt++;

}

}

}

(a) Access by object identifier traces

void MatrixMultiplyVec(...)

{

/**** Initialization left out ****/

cnt = 0;

for (i = 0; i < bound; bound++) {

result[i+1] = 0.0;

for (j = 0; j < innerBounds[i]; j++) {

result[i+1] +=

basePtrReal[cnt]

* right[right_Trace[cnt]];

cnt++;

}

}

}

(b) Pool of baseP trReal restructured to sequential access pattern

Figure 9.3: Sparse matrix times vector using (a) object identifier traces and (b) with
the restructured array baseP trReal that follows a sequential access pattern.

9.1. Compiler Support for Indirection-free Code Generation 187

9.1.2 Reshaping Memory Access

Given the code from Figure 9.3, we can define an iteration space whose dimensions are
determined by the iteration counters of the loop structures. In our example, we have
a two-dimensional iteration space with iteration counters i and j. Within these loops,
we have four addressing expressions: cnt, baseP trReal Trace[cnt], right Trace[cnt]
and i + 1. We will only consider the expressions used for indirect access to arrays.

A bijective mapping between (i, j) and cnt can be computed. Figure 9.4a gives an
example of a mapping that could be generated from this function. In addition, the
trace baseP trReal Trace can be analyzed at run-time, and it can be determined if
this addressing expression is injective, by verifying the following definition:

∀I, J(I 6= J) → baseP trReal Trace[I] 6= baseP trReal Trace[J].

In Chapter 6, we have already seen that memory pools can be permuted, and if this is
done using the permutation defined by the trace on baseP trReal, the reordered data
can be accessed simply by using cnt instead of baseP trReal Trace[cnt].

Figure 9.4b shows the relation between cnt and (i, right Trace[cnt]). Clearly,
right Trace[cnt] is not an injective mapping, as multiple values for cnt are mapped
to the same point when projecting on the axis corresponding to right Trace[cnt].
Extending the mapping function with the outer loop counter i provides an injective
mapping (each point in the figure carries a unique label). Any injective mapping
can be used to restructure data. The transformation of regularly accessed data to
irregular accessed data (sublimation) has been described in Chapter 8. Application
of this technique defines a restructured version of the array baseP trReal:

baseP trReal Restr[F (i, right Trace[cnt])]

=

{

baseP trReal[cnt], ∀cnt(0 ≤ cnt < trace len)
0, otherwise

Here, F is a mapping from the two-dimensional logical iteration space to an ar-
ray index. In these code samples, the mapping used is similar to array access as
used in Fortran on multi-dimensional arrays with known sizes: F (i, j) = i ∗ maxJ +
j,where maxJ is the maximum value found in right Trace.

Figure 9.5 shows the code after restructuring baseP trReal. The access pattern to
both arrays is now identical, but they are still indirectly accessed. This indirect access
can be removed by expanding the iteration space of the inner loop to cover all possible
indices. Note that this expansion still happens on the intermediate representation and
is not necessarily executed. As shown above, the run-time analysis shows that the
mapping from cnt to (i, right Trace[cnt]) is injective, and therefore each element is
accessed at most once in each iteration of i. As a consequence, the iteration space
can be extended to include all elements within the range that right Trace defines,
if this does not affect the result of the computation. In general, this will be true,
if the iteration space extension maintains the lexicographical ordering of iterations
(which is the case in our example, as right Trace contains a monotonically increasing
sequence) and the new points in the iteration space do not alter any data (ensured

188 9. Mapping Pointer-linked Data Structures to an FPGA

j

i

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

l

1
l

2
l

3
l l l l l l l l

l

4
l

5
l

6
l

7
l

8
l

9
l

10
l l l l

l

11
l

12
l

13
l

14
l l l l l l l

l

15
l

16
l

17
l

18
l

19
l

20
l

21
l

22
l

23
l

24
l

l

25
l

26
l

27
l

28
l

29
l

30
l l l l l

l

31
l

32
l

33
l

34
l

35
l

36
l

37
l l l l

l

38
l

39
l

40
l

41
l l l l l l l

l

42
l

43
l

44
l

45
l

46
l

47
l

48
l

49
l

50
l l

l

51
l

52
l

53
l

54
l

55
l

56
l l l l l

l

57
l

58
l

59
l

60
l

61
l l l l l l

right_Trace[cnt]
i

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

l

l

l

l

l

l

l

l

l

l

l

1
l

2
l

3
l l l l l l l ll

l

l

l

l

l

l

l

l

l

l

4
l

5
l

6
l

7
l

8
l

9
l

10
l l l l

l

l

l

l

l

l

l

l

l

l

l

11
l

12
l

13
l

14
l l l l l l l

l

l

l

l

l

l

l

l

l

l

l

15
l

16
l

17
l

18
l

19
l

20
l

21
l

22
l

23
l

24
l

l

l

l

l

l

l

l

l

l

l

l

25
l

26
l

27
l

28
l

29
l

30
l l l l l

l

l

l

l

l

l

l

l

l

l

l

31
l

32
l

33
l

34
l

35
l

36
l

37
l l l l

l

l

l

l

l

l

l

l

l

l

l

38
l

39
l

40
l

41
l l l l l l l

l

l

l

l

l

l

l

l

l

l

l

42
l

43
l

44
l

45
l

46
l

47
l

48
l

49
l

50
l l

l

l

l

l

l

l

l

l

l

l

l

51
l

52
l

53
l

54
l

55
l

56
l l l l l

l

l

l

l

l

l

l

l

l

ll

57
l

58
l

59
l

60
l

61
l l l l l l

(a) cnt vs. (i, j) (b) cnt vs. (i, right Trace[cnt])

Figure 9.4: Relation of addressing expressions with respect to the iteration space.
The arrows denote the traversal order within the iteration space. The annotations
on the iterations points are the corresponding values for cnt. The open bullets are
iterations points that are not visited.

by assuming 0 values in baseP trReal Restr for such points). The resulting code that
is free of any form of indirect access is shown in Figure 9.5b.

Note that this code serves as an intermediate that is usually not executed, as the
iteration space could be really large. Whenever the actual data becomes available,
an optimized code can be generated that takes the actual data layout into account.
This is described in the next section.

9.2 Code Generation and Mapping to an FPGA

After the initial compilation phases (the white blocks in Figure 9.1, we have obtained
a traceable and indirection free code, which is used for further optimizations after
access pattern traces have been obtained. This section describes the compilation
phases used to map the intermediate and indirection free code together with the
access pattern traces into an FPGA. First, the iteration space is restructured using
the access pattern information, subsequently, we explain how the result is mapped
into an FPGA and present our results on the automatic parallelization of the code.

9.2. Code Generation and Mapping to an FPGA 189

void MatrixMultiplyVec(...)

{

for (i = 0; i < bound; bound++) {

result[i+1] = 0.0;

for (j = 0; j < innerBounds[i]; j++) {

result[i+1] +=

basePtrReal_Restr[F(i, right_Trace[cnt])]

* right[right_Trace[cnt]];

cnt++;

}

}

}
(a) Restructured data

void MatrixMultiplyVec(...)

{

for (i = 0; i < bound; bound++) {

result[i+1] = 0.0;

for (k = 0; k < sizeOfRight; k++) {

result[i+1] +=

basePtrReal_Restr[i*sizeOfRight+k]

* right[k];

}

}

}

(b) Restructured data and expanded iteration space

Figure 9.5: Sparse matrix times vector code with restructured data, conforming to the
access pattern defined by right Trace[cnt] and expanded iteration space, respectively

190 9. Mapping Pointer-linked Data Structures to an FPGA

void MatrixMultiplyVec(...)

{

for(i = 0; i < outerLoopBound; i++) {

result[i+1] = 0.0;

for(j = max(halfMB - i, 0); j < maxBand; j++) {

result[i+1] += basePtrReal_Poly[i*maxBand+j] * right[i+1-halfMB+j];

}

}

}

Figure 9.6: The code resulting from iteration space restructuring. The variables
maxBand and halfMB are constant values produced by the iteration space restruc-
turing step.

9.2.1 Iteration Space Restructuring

The code in Figure 9.5b is free from indirect address and has regular loops bounds.
However, the loop bounds might be very large and many elements might be zero.
This all depends on the input data used when calling the function. The trace vector
used in Figure 9.5a defines which values are non-zero in the expanded iteration space.
Bik and Wijshoff [27] describe algorithms to segment a sparse matrix into regions
which can be addressed directly as an affine function of the two loop counters. In our
case study, a representation was generated that stores the data in compressed row
storage form, but with rows of equal length. This way, the advantage of this data
representation is that the offset of each row can directly be determined by a simple
affine expression of the loop iteration counters. Figure 9.6 shows the resulting code.

9.2.2 Mapping the resulting code to an FPGA

In this section, we show how we map the MatrixMultiplyVec kernel from Figure 9.6
onto a Multi-Processor System on Chip (MPSoC) platform prototyped on a Xilinx
FPGA. The purpose of this case-study is to show that we can automatically translate
kernels with irregular data accesses to code with regular data accesses that can be
parallelized and subsequently mapped onto a MPSoC. We use the pn compiler [118]
to translate the sequential program specification into a parallel one. That is, process
networks (PNs) are derived from sequential nested-loop programs in a fully analytical
and automated way. However, there are restrictions on the input code: the program
must be static and affine, which means that upper/lower bounds of for-loops, array
index expressions, and if-conditions are affine combinations of loop iterators and pro-
gram parameters. Thus, it is not possible to derive, for example, a process network for
the linked-list code shown in Figure 9.2b. In the previous sections, however, we have
explained how this code can be transformed into another representation as shown in
Figure 9.6 that does not expose any linked-list traversal and indirections in the index
expressions. This transformation allows the pn compiler to derive the corresponding
process network, which was not possible before.

9.2. Code Generation and Mapping to an FPGA 191

init

right

init

resultbase

init

Compute

for(i = 0; i < outerLoopBound; i++) {

result[i+1] = init_result();

for (j = 0 ; j < maxBand; j++) {

if (halfMB − i >= 0)

base[i*maxBand + j],

right[i+1+j−halfMB]);
}

}

result[i+1] = compute (result[i+1],

init_result();

init_right();

(a) Initial process network

Compute Compute

base

init init

result

init

rightfor(i = 0; i < outerLoopBound; i++) {

result[i+1] = init_result();

for (j = 0 ; j < maxBand; j++) {

if (halfMB − i >= 0)

init_result();

init_right();

if (i%2==0)

result[i+1] = compute (/* .. */);

if (i%2==1)

result[i+1] = compute (/* .. */);
}

}

(b) Transformed process network

Figure 9.7: Derivation of different Process Networks. In the experiments, outerLoop-
Bound is equal to 5000, maxBand is equal to 100 and halfMB is equal to 50.

192 9. Mapping Pointer-linked Data Structures to an FPGA

Figure 9.7 shows two different PNs as we have derived them with the pn compiler;
the input code is shown on the left, and the corresponding derived PNs on the right.
The top most figure displays the code for the MatrixMultiplyVec kernel as shown in
Figure 9.6, but only the data-flow is made explicit for the pn compiler. This means
that all function input arguments represent reads to particular array elements and the
function output arguments are writes to array elements. The actual computation is
done inside the function compute. It allows the compiler to create a process for each
program statement and to automatically derive the control for the FIFO communi-
cation for each process. For the input program shown at the top of Figure 9.7, we
see that a PN is created that consists of 4 processes; three processes are responsible
for initializing data and process compute fires a function with the actual computa-
tion. It has 2 self-channels, where one is the result of a loop-carried data-dependency
on the innermost loop j and the reading/writing from/to array result. The other
self-channel is used to propagate (or reuse) data from array right.

Once the process network is derived, it can be further analyzed and transformed,
if necessary. For example, if the performance constraints are not met, then a com-
putationally intensive process can be split up such that multiple instances of that
process run in parallel. This is illustrated with an example at the bottom of Figure
9.7, where 2 compute processes have been created that execute the same function. We
have a compile-time approach to decide how a selected processes can be partitioned
best. This is necessary as there are many possibilities to partition a process [85]. The
two self-channels of the compute process are taken into account, and inter-process
communication is avoided if possible. For our example, this means that we create
multiple instances of the compute process that execute for different iterations of the
outermost loop i since the dependencies are carried by the innermost loop iterator j.
The result is an algorithmic transformation that simply copies the function call such
that both compute statements execute the loop iterations in a mutually exclusive
way. When the process network is derived, it has 2 compute processes without any
synchronization and data communication.

Figure 9.8a shows the measured performance results on the ESPAM platform [91].
As mentioned in Figure 9.7, outerLoopBound is equal to 5000, maxBand is equal to
100 and halfMB is equal to 50. The first bar corresponds to the process network
of Figure 9.7a that has one compute process. The second group of bars corresponds
to the process network of Figure 9.7b that has 2 compute processes. As a baseline,
we also did a fully hand-optimized mapping onto the FPGA. The dark bars corre-
spond to the PN as it has been automatically generated by the pn compiler, while
the light bars correspond to the hand-optimized ones. The transformations introduce
additional control (see the modulo statements in Figure 9.7) that can easily be elim-
inated. The third group of bars corresponds to the PN where the compute process
is split up 3 times using the process splitting transformation. In these experiments,
all processes are mapped as software one-to-one on MicroBlaze softcore processors,
which are point-to-point connected. Thus, the number of processors used is 4, 5, and
6, respectively. After manual optimization of the PNs, the performance increase is
linear in the number of processes. This is expected, as the compute processes run
in parallel. We can also observe that the additional overhead generated by the au-

9.3. Related Work 193

1 2 3

PN

Optimized PN

Number of compute processes

C
y
c
le

 C
o

u
n

t
[x

1
0

0
0

]

0

100

200

300

400

0.0 0.2 0.4 0.6 0.8

500

1000

1500

2000

2500

3000

3500

Fraction of zero elements in representation
E

s
ti
m

a
te

d
 C

y
c
le

 C
o

u
n

t
[x

1
0

0
0

]

l l l l l l l l
l

l
l

l
l

l

l

l

l

l

l

(a) Measured performance results (b) Estimated cycle count for varying
degrees of representation efficiency

Figure 9.8: Performance results for sparse matrix-vector multiplication.

tomatic mapping is reasonable. In fact, a further optimization step could potentially
eliminate this overhead automatically.

In addition to the measured performance results, we assessed the impact of in-
efficiencies in the data representation on the performance. This representation is
generated during iteration space restructuring, and can contain explicitly stored zero
elements. The number of stored zero elements depends on the data layout of the input
data set. This leads to the execution of operations that do not affect the result. The
results shown in Figure 9.8a are optimal in the sense that their representation is free
of zero elements. From this, we can estimate the cycle counts if a suboptimal repre-
sentation is used. Figure 9.8b shows the cycle counts for the same number of non-zero
values, but with a growing fraction of zero elements in the representation, which of
course increases when a larger fraction of data consists of zero elements. Thus, find-
ing a good segmentation is a trade-off between the complexity of the iteration space
restructuring phase and the performance of the generated code.

9.3 Related Work

Diniz and Park use an FPGA as a smart memory engine to reorder memory access of
pointer-linked data structures [40]. Their methodology involves the use of a specific
programming interface. Thus, the programmer must be aware of the programming
model used. Traversal caches, as proposed by Stitt et al. [111], though implemented
completely differently, rely on similar foundations we used in our work: recognize
pointer-traversal patterns that are static for some time during execution and reorder

194 9. Mapping Pointer-linked Data Structures to an FPGA

accordingly. They recognize their limitation, that their traversal caches must be
managed manually, by using their custom software library for maintaining linked
data structures.

Our work depends on compile and run-time MOD flags (see Chapter 7) which are
used to invalidate traces that define traversal patterns. Therefore, existing software
does not need to be rewritten to support our transformations. Where other methods
depend on custom libraries to determine traversal patterns and immutability of data
on which traversals depend, our framework relies on a combination of compile-time
and run-time MOD-flag information.

9.4 Summary

Pointer-linked data structures and regular access to data are usually being considered
mutually exclusive. In this case study, we have shown that pointer-linked data struc-
tures that are used in a type-consistent way, can be transformed into an address space
independent representation by applying structure splitting. Access to split memory
pools can be traced precisely and data can be restructured by reordering the memory
pool. As the split structure representation exposes fields as arrays, these arrays can
be optimized by existing methods. In this case study, we used sublimation to reshape
access in such a way that arrays follow a common access pattern, after which an
expansion of the iteration space is applied. This results in an indirection free inter-
mediate code. When actual access patterns are known, a segmentation into convex
polyhedra can be made, which we have subsequently mapped to a parallel descrip-
tion using process networks. These networks can be further optimized and we have
compared three configurations showing that pointer-based code can be mapped into
a parallel hardware implementation when address spaces are not shared.

The choices made in this case study are not the only possibilities. Other appli-
cations might offer more restructuring opportunities, but will also show restrictions
(e.g. data that cannot be copied efficiently as it mutates constantly).

Not only FPGAs can be targeted using the methods described here. Other archi-
tectures, for example GPUs, are also suitable targets as they would certainly benefit
if data is restructured. Other applications include automatic distribution of pointer-
linked data structures and computations on these structures, which would be a major
step forward in research on parallel computing.

CHAPTER 10

Conclusions

Data structure selection and its implementation is crucial for the performance of mod-
ern applications. This has been true since the first computer programs were written,
but the problem has become much more complicated over time. Today, multi-core
systems (possibly with heterogenous architectures) are the norm, and this adds an-
other level of complexity. In this thesis, we aimed to bridge the gap between the
complexity caused by the use of pointer-linked data structures and existing compiler
optimizations. While the gap has not been bridged completely, the following impor-
tant contributions have been made in this thesis:

• We have presented SPARK00, a set of benchmarks that can be used to assess
the impact of irregular code and data layouts, and evaluate the performance of
optimization and restructuring strategies.

• Pointers in recursive data structures have been eliminated and are automatically
transformed into architecture-independent object identifiers.

• Run-time restructuring of pointer-linked data structures in weakly-typed lan-
guages such as C has been described and evaluated.

• Detection of unchanged dependencies of loop conditions has been implemented,
which allows for the elimination of long dependence chains in loop conditions.

• A radical, two-phase compilation approach for irregular codes has been pro-
posed. In the first phase, a dense intermediate is derived from the irregular
code which in the second phase is compiled, together with the actual data, into
a data instance specific intermediate.

195

196 10. Conclusions

These contributions are fundamental to the progress in the field of automatic re-
structuring and parallelization of code using pointer-linked data structures, an area
for which automatic restructuring and optimization has seen limited success over the
past years.

Solutions to the problem of programming future computer systems are often sought
in the design of new languages and new libraries, as many people seem to believe that
automatic compiler parallelization is a dead end. We have shown that this view
is too pessimistic, and proved that there are many optimization opportunities in
weakly-typed languages such as C. Restructuring of code that uses pointer-linked
data structures is feasible, if proper care is taken when writing code. While C and
C++ both allow for the violation of type-safety, well-written programs should not do
so in order to aid the compiler in optimization.

Looking to the future, we envision that programs can automatically adapt their
code and data structures, according to the actual data layout and the available com-
puting resources. Such techniques involve static analysis, run-time monitoring, run-
time data instance specific compilation, automatic data migration and identification
of parallel sections.

Furthermore, the unified view on data structures should even be taken a step
further. Integration of persistent storage into the array-based representation proposed
in this thesis is a feasible option. Over the last few years, column-oriented databases
have attracted considerable attention and the similarity to split memory pools is
striking.

Traditional languages such as C and C++ are here to stay for the foreseeable
future. While people may argue that their design and inherent use are unsuitable for
automatic parallelization, we have shown in this thesis that, in many cases, automatic
parallelization can be successfully applied, Data can be dynamically restructured and
we have made the first steps in transparent, automatic restructuring of pointer-linked
data structures.

Bibliography

[1] GCC, the GNU compiler collection. http://gcc.gnu.org.

[2] TOP500 Supercomputing Sites. http://www.top500.org.

[3] High performance Fortran forum: High performance Fortran language specifi-
cation, version 1.0. Technical Report CRPC-TR 92225, Center for Research on
Parallel Computation, Rice University, Houston, Texas 77251, 1993.

[4] High performance RDMA protocols in HPC. In Proceedings, 13th European
PVM/MPI Users’ Group Meeting, Lecture Notes in Computer Science, Bonn,
Germany, September 2006. Springer-Verlag.

[5] Co-Array Fortran. http://www.co-array.org, 2010.

[6] Erlang. http://www.erlang.org, 2010.

[7] The LLVM compiler infrastructure. http://llvm.org, 2010.

[8] OpenMP. http://openmp.org, 2010.

[9] Ole Agesen, David Detlefs, and J. Eliot Moss. Garbage collection and local
variable type-precision and liveness in Java virtual machines. SIGPLAN Not.,
33(5):269–279, 1998.

[10] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, 2006.

[11] R. Allen and S. Johnson. Compiling C for vectorization, parallelization, and
inline expansion. In PLDI ’88: Proc. of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, pages 241–249, New York,
NY, USA, 1988. ACM Press.

197

198 Bibliography

[12] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs
to vector form. ACM Transactions on Programming Languages and Systems,
9:491–542, 1987.

[13] Randy Allen and Ken Kennedy. Automatic loop interchange. SIGPLAN Not.,
39(4):75–90, 2004.

[14] Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 1994.

[15] J.W Backus, R.J Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A.
Nelson, D. Sayre, P.B. Sheridan, H. Stern, I. Ziller, R.A. Hughes, and R. Nutt.
The Fortran automatic coding system. In Western Joint Computer conference,
pages 188–198.

[16] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, 1988.

[17] C. Bastoul and P. Featrier. Adjusting a program transformation for legality.
Parallel processing letters, 1(15):3–17, March 2005.

[18] Cédric Bastoul. Code generation in the polyhedral model is easier than you
think. In PACT ’04: Proceedings of the 13th International Conference on Par-
allel Architectures and Compilation Techniques, pages 7–16, September 2004.

[19] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The poly-
hedral model is more widely applicable than you think. In Proceedings of the
International Conference on Compiler Construction (ETAPS CC’10), LNCS,
pages 283–303, Paphos, Cyprus, 2010.

[20] Michael A. Bender and Haodong Hu. An adaptive packed-memory array. In
PODS ’06: Proc. of the twenty-fifth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 20–29, New York, NY, USA,
2006. ACM Press.

[21] Siegfried Benkner. VFC: The Vienna Fortran compiler. Sci. Program., 7(1):67–
81, 1999.

[22] David Bernstein, Michael Rodeh, and Izidor Gertner. On the complexity of
scheduling problems for parallel/pipelined machines. IEEE Trans. Comput.,
38(9):1308–1313, 1989.

[23] Aart J. C. Bik. Compiler Support for Sparse Matrices, PhD Thesis. Leiden
University, The Netherlands, 1996.

[24] Aart J. C. Bik. The Software Vectorization Handbook. Intel Press, 2004.

[25] Aart J. C. Bik and Harry A. G. Wijshoff. Advanced compiler optimizations for
sparse computations. Journal of Parallel and Distributed Computing, 31(1):14–
24, 1995.

Bibliography 199

[26] Aart J. C. Bik and Harry A. G. Wijshoff. Automatic data structure selection
and transformation for sparse matrix computations. IEEE Transactions on
Parallel and Distributed Systems, 7(2):109–126, 1996.

[27] Aart J. C. Bik and Harry A. G. Wijshoff. Automatic nonzero structure analysis.
SIAM J. Comput., 28(5):1576–1587, 1999.

[28] William Blume, Rudolf Eigenmann, Jay Hoeflinger, David Padua, Paul Pe-
tersen, Lawrence Rauchwerger, and Peng Tu. Automatic detection of par-
allelism: A grand challenge for high-performance computing. IEEE Parallel
Distrib. Technol., 2(3):37–47, 1994.

[29] Dan Bonachea. GASNet specification, v1.1. Technical Report CSD-02-1207,
2002.

[30] Michael Burke and Ron Cytron. Interprocedural dependence analysis and par-
allelization. In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium
on Compiler construction, pages 162–175, 1986.

[31] Antal Buss, Harshvardhan, Ioannis Papadopoulos, Olga Pearce, Timmie Smith,
Gabriel Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco, Nancy M. Am-
ato, and Lawrence Rauchwerger. STAPL: standard template adaptive parallel
library. In SYSTOR ’10: Proceedings of the 3rd Annual Haifa Experimental
Systems Conference, pages 1–10, 2010.

[32] W. Carlson, J.M. Draper, D.E. Culler, K. Yelick, E. Brooks, and K. Warren.
Introduction to UPC and language specification. Technical Report CCS-TR-
99-157, 1999.

[33] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 519–538, 2005.

[34] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious
structure definition. In PLDI ’99: Proc. of the ACM SIGPLAN 1999 conference
on Programming language design and implementation, pages 13–24, New York,
NY, USA, 1999. ACM Press.

[35] Stephen Curial, Peng Zhao, Jose Nelson Amaral, Yaoqing Gao, Shimin Cui,
Raul Silvera, and Roch Archambault. MPADS: memory-pooling-assisted data
splitting. In ISMM ’08: Proc. of the 7th international symposium on Memory
management, pages 101–110, 2008.

[36] Stephen Matthew Curial. Safe Automatic Data Splitting for Linked Data Struc-
tures, MSc. Thesis. University of Alberta, 2007.

200 Bibliography

[37] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.
In Proc. of the 1969 24th national conference, pages 157–172, New York, NY,
USA, 1969. ACM.

[38] T. Davis. The University of Florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices, submitted to ACM Trans.
on Mathematical Software.

[39] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[40] Pedro C. Diniz and Joonseok Park. Data search and reorganization using FP-
GAs: Application to spatial pointer-based data structures. In FCCM ’03: Pro-
ceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, page 207, Washington, DC, USA, 2003. IEEE Computer
Society.

[41] Iain S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I). Technical Report RAL 92-086,
Chilton, Oxon, England, 1992.

[42] Rudolf Eigenmann and Jay Hoeflinger. Parallelizing and vectorizing compilers,
2000.

[43] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer. A FORTRAN
to C converter. SIGPLAN Fortran Forum, 9(2):21–22, 1990.

[44] Agner Fog. The microarchitecture of Intel and AMD CPU’s: An
optimization guide for assembly programmers and compiler makers.
http://www.agner.org/optimize/microarchitecture.pdf, 2008.

[45] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[46] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff. Experimentally
characterizing the behavior of multiprocessor memory systems: A case study.
IEEE Trans. Softw. Eng., 16(2):216–223, 1990.

[47] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? a
shape analysis for heap-directed pointers in C. In POPL ’96: Proc. of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 1–15, New York, NY, USA, 1996. ACM.

[48] Olga Golovanevsky and Ayal Zaks. Struct-reorg: current status and future
perspectives. In Proc. of the GCC Developers’ Summit, pages 47–56, 2007.

Bibliography 201

[49] Gene H. Golub and Charles F. Van Loan. Matrix Computations. 1989.

[50] Mostafa Hagog and Caroline Tice. Cache aware data layout reorganization
optimization in GCC. In Proc. of the GCC Developers’ Summit, pages 69–92,
2005.

[51] Fergus Henderson. Accurate garbage collection in an uncooperative environ-
ment. In ISMM ’02: Proceedings of the 3rd international symposium on Memory
management, pages 150–156, New York, NY, USA, 2002. ACM.

[52] Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and
B. Sridharan. Designing the McCAT compiler based on a family of structured
intermediate representations. In Proceedings of the 5th International Workshop
on Languages and Compilers for Parallel Computing, pages 406–420, 1993.

[53] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach, Fourth Edition. Morgan Kaufmann, 2006.

[54] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new
millennium. Computer, 33(7):28–35, 2000.

[55] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In PASTE
’01: Proc. of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analy-
sis for software tools and engineering, pages 54–61, New York, NY, USA, 2001.
ACM Press.

[56] H. Peter Hofstee. Introduction to the Cell Broadband Engine. 2005.

[57] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
of Haskell: being lazy with class. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 12–1–12–55,
2007.

[58] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A general data
dependence test for dynamic, pointer-based data structures. In PLDI ’94: Proc.
of the ACM SIGPLAN 1994 conference on Programming language design and
implementation, pages 218–229, 1994.

[59] Yuan-Shin Hwang and Joel H. Saltz. Identifying def/use information of state-
ments that construct and traverse dynamic recursive data structures. In LCPC
’97: Proceedings of the 10th International Workshop on Languages and Compil-
ers for Parallel Computing, pages 131–145, London, UK, 1998. Springer-Verlag.

[60] Flow Science Inc. FLOW-3D. http://www.flow3d.com, 2010.

[61] Intel. Intel architecture optimization manual, 1997.

[62] Intel Corporation. Intel(R) performance tuning utility reference.

202 Bibliography

[63] W. Jalby, C. Lemuet, and X. Le Pasteur. WBTK: A new set of microbenchmarks
to explore memory system performance for scientific computing. International
Journal of High Performance Computing Applications, 18:211–224, 2004.

[64] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving local-
ity using loop and data transformations in an integrated framework. In MICRO
31: Proceedings of the 31st annual ACM/IEEE international symposium on
Microarchitecture, pages 285–297, 1998.

[65] Magnus Karlsson, Fredrik Dahlgren, and Per Stenström. A prefetching tech-
nique for irregular accesses to linked data structures. pages 206–217, January
2000.

[66] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and im-
proving data locality via loop fusion and distribution. In Proceedings of the 6th
International Workshop on Languages and Compilers for Parallel Computing,
pages 301–320, 1994.

[67] Khronos. OpenCL: Open Computing Language.
http://www.khronos.org/opencl, 2010.

[68] Induprakas Kodukula and Keshav Pingali. Data-centric transformations for
locality enhancement. Int. J. Parallel Program., 29(3):319–364, 2001.

[69] Kenneth Kundert. SPARSE 1.3. http://www.netlib.org/sparse.

[70] Los Alamos National Laboratory. Roadrunner – fact sheet.
http://www.lanl.gov/news/newsbulletin/pdf/RRFactSheet.pdf, 2008.

[71] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek, and J. Saltz. A
distributed data management middleware for data-driven application systems.
In CLUSTER ’04: Proc. of the 2004 IEEE International Conference on Clus-
ter Computing, pages 267–276, Washington, DC, USA, 2004. IEEE Computer
Society.

[72] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, May 2005. See http://llvm.cs.uiuc.edu.

[73] Chris Lattner and Vikram Adve. Automatic pool allocation for disjoint data
structures. In MSP ’02: Proc. of the 2002 workshop on memory system perfor-
mance, pages 13–24, 2002.

[74] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO ’04: Proc. of the international
symposium on Code generation and optimization, page 75, 2004.

Bibliography 203

[75] Chris Lattner and Vikram Adve. Automatic pool allocation: improving per-
formance by controlling data structure layout in the heap. In PLDI ’05: Proc.
of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 129–142, 2005.

[76] Chris Lattner and Vikram S. Adve. Transparent pointer compression for linked
data structures. In MSP ’05: Proc. of the 2005 workshop on Memory system
performance, pages 24–35, 2005.

[77] D. Levinthal. Analyzing and resolving multi-core non scaling on Intel Core 2
processors. http://www.devx.com/go-parallel/Link/34762.

[78] Zhiyuan Li and Pen-Chung Yew. Program parallelization with interprocedural
analysis. Journal of Supercomputing, 2(2):225–244, 1988.

[79] Yuan Lin and David Padua. Compiler analysis of irregular memory accesses.
In PLDI ’00: Proc. of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 157–168, 2000.

[80] Andreas Löbel. MCF version 1.3 - a network simplex implementation. Available
for academic use free of charge via WWW at www.zib.de, 2004.

[81] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive
data structures. In ASPLOS-VII: Proc. of the seventh international confer-
ence on Architectural support for programming languages and operating systems,
pages 222–233, New York, NY, USA, 1996. ACM Press.

[82] B.M. Maker, R.M. Ferencz, and Hallquist J.O. NIKE3D: A nonlinear, implicit,
three-dimensional finite element code for solid and structural mechanics - user’s
manual. (UCRL-MA-105268 Rev. 1), 1995.

[83] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact
data dependence analysis. In PLDI ’91: Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation, pages
1–14, 1991.

[84] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, Part I. Commun. ACM, 3(4):184–195, 1960.

[85] Sjoerd Meijer, Hristo Nikolov, and Todor Stefanov. On compile-time evalu-
ation of process partitioning transformations for kahn process networks. In
CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, pages 31–40, New York,
NY, USA, 2009. ACM.

[86] Donald Michie. ”Memo” functions and machine learning. Nature, 218:19–22,
1968.

204 Bibliography

[87] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. Prin-
ciples of runtime support for parallel processors. In ICS ’88: Proceedings of the
2nd international conference on Supercomputing, pages 140–152, 1988.

[88] Thomas Moscibroda and Onur Mutlu. Memory performance attacks: denial of
memory service in multi-core systems. In SS’07: Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, pages 1–18. USENIX
Association, 2007.

[89] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C pro-
grams. In CC ’02: Proc. of the 11th International Conference on Compiler
Construction, pages 213–228, London, UK, 2002. Springer-Verlag.

[90] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-
sulescu, and E. Deprettere. Daedalus: toward composable multimedia MP-SoC
design. In DAC ’08: Proceedings of the 45th annual Design Automation Con-
ference, pages 574–579, New York, NY, USA, 2008. ACM.

[91] Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Systematic and automated
multiprocessor system design, programming, and implementation. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 27, pages 542–555, 2008.

[92] NIST. Matrix Market. http://math.nist.gov/MatrixMarket, 2007.

[93] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[94] NVIDIA. CUDA: Compute unified device architecture.
http://www.nvidia.com/object/cuda home new.html, 2010.

[95] NVIDIA. NVIDIAs next generation CUDA compute architecture: Fermi.
http://www.nvidia.com/object/fermi architecture.html, 2010.

[96] Michael F. P. O’Boyle and Peter M. W. Knijnenburg. Nonsingular data trans-
formations: Definition, validity, and applications. Int. J. Parallel Program.,
27(3):131–159, 1999.

[97] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for
supercomputers. Commun. ACM, 29(12):1184–1201, 1986.

[98] Yale Patt. Requirements, bottlenecks, and good fortune: Agents for micropro-
cessor evolution. Proceedings of the IEEE, 89(11):1553–1559, November 2001.

[99] B. Patzák and Z. Bittnar. Design of object oriented finite element code. Ad-
vances in Engineering Software, 32(10-11):759–767, 2001.

Bibliography 205

[100] B. Patzák, D. Rypl, and Z. Bittnar. Parallel explicit finite element dynamics
with nonlocal constitutive models. Computers & Structures, 79(26-28):2287–
2297, 2001.

[101] William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91: Proceedings of the
1991 ACM/IEEE conference on Supercomputing, pages 4–13, 1991.

[102] T. Quarles. SPICE3 version 3C1 users guide. Technical Report UCB/ERL
M89/46, EECS Department, University of California, Berkeley, 1989.

[103] Shai Rubin, David Bernstein, and Michael Rodeh. Virtual cache line: A new
technique to improve cache exploitation for recursive data structures. In CC ’99:
Proc. of the 8th International Conference on Compiler Construction, Held as
Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’99, pages 259–273, London, UK, 1999. Springer-Verlag.

[104] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: static
& dynamic memory reference analysis. Int. J. Parallel Program., 31(4):251–283,
2003.

[105] Youcef Saad and Harry A. G. Wijshoff. SPARK: A benchmark package for
sparse computations. In ICS ’90: Proc. of the 4th international conference on
Supercomputing, pages 239–253, New York, NY, USA, 1990. ACM.

[106] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization
and scheduling of loops. IEEE Trans. Comput., 40(5):603–612, 1991.

[107] H. R. Schwarz. Finite Element Methods. Academic Press, London, 1988.

[108] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Toni Juan, and Pat Hanrahan. Larrabee: a many-core
x86 architecture for visual computing. In In SIGGRAPH 08: ACM SIGGRAPH
2008 papers, pages 1–15. ACM, 2008.

[109] Jan Sjödin, Sebastian Pop, Harsha Jagasia, Tobias Grosser, and Antoniu Pop.
Design of Graphite and the polyhedral compilation package. In Proc. of the
GCC Developers’ Summit, pages 33–45, 2009.

[110] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 32–41, 1996.

[111] Greg Stitt, Gaurav Chaudhari, and James Coole. Traversal caches: a first step
towards FPGA acceleration of pointer-based data structures. In CODES/ISSS
’08: Proceedings of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, pages 61–66, New York, NY,
USA, 2008. ACM.

206 Bibliography

[112] Manuel Ujaldón, Emilio L. Zapata, Shamik D. Sharma, and Joel Saltz. Paral-
lelization techniques for sparse matrix applications. J. Parallel Distrib. Com-
put., 38(2):256–266, 1996.

[113] H. L. A. van der Spek, S. Groot, E. M. Bakker, and H. A. G. Wijshoff. A
compile/run-time environment for the automatic transformation of linked list
data structures. Int. J. Parallel Program., 36(6):592–623, 2008.

[114] Harmen L. A. van der Spek, Erwin M. Bakker, and Harry A. G. Wijshoff. Char-
acterizing the performance penalties induced by irregular code using pointer
structures and indirection arrays on the Intel Core 2 architecture. In CF ’09:
Proc. of the 6th ACM conference on Computing frontiers, pages 221–224, 2009.

[115] Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wijshoff.
Automatic restructuring of linked data structures. In LCPC ’09: Proc. of the
22nd Int. Workshop on Languages and Compilers for Parallel Computing, pages
263–277, 2009.

[116] Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wijshoff.
How to unleash array optimizations on code using recursive data structures. In
ICS ’10: Proceedings of the 24th ACM International Conference on Supercom-
puting, pages 275–284, 2010.

[117] Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G. Wijshoff. Char-
acterizing the performance penalties induced by irregular code using pointer
structures and indirection arrays on the Intel Core 2 architecture. In CF ’09:
Proceedings of the 6th ACM conference on Computing frontiers, pages 221–224,
2009.

[118] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool for improved
derivation of process networks. EURASIP J. Embedded Syst., 2007(1):19–19,
2007.

[119] Li Weng, Gagan Agrawal, Umit Catalyurek, Tahsin Kurc, Sivaramakrishnan
Narayanan, and Joel Saltz. An approach for automatic data virtualization. In
HPDC ’04: Proc. of the 13th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC’04), pages 24–33, Washington, DC, USA,
2004. IEEE Computer Society.

[120] Harry A. G. Wijshoff. Programming without bothering about data structures?
IEEE Comput. Sci. Eng., 3(3):67–68, 1996.

[121] M. Wolfe. More iteration space tiling. In Supercomputing ’89: Proceedings of
the 1989 ACM/IEEE conference on Supercomputing, pages 655–664, 1989.

[122] Michael Wolfe. Loop skewing: the wavefront method revisited. Int. J. Parallel
Program., 15(4):279–293, 1986.

Bibliography 207

[123] Chia-Lin Yang and Alvin R. Lebeck. Push vs. pull: data movement for linked
data structures. In ICS ’00: Proc. of the 14th international conference on
Supercomputing, pages 176–186, New York, NY, USA, 2000. ACM Press.

[124] Yelick, Semenzato, Pike, Miyamoto, Liblit, Krishnamurthy, Hilfinger, Graham,
Gay, Colella, and Aiken. Titanium: A high-performance Java dialect. February
1998.

[125] L. Zhao and H. A. G. Wijshoff. A case study in automatic data structure
selection for optimizing sparse matrix computations. Proc. of the IEEE In-
ternational Workshop on Advanced Compiler Technology for High Performance
and Embedded Systems (IWACT), pages 22–55, July 2001.

[126] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. Array regrouping
and structure splitting using whole-program reference affinity. In PLDI ’04:
Proc. of the ACM SIGPLAN 2004 conference on Programming language design
and implementation, pages 255–266, New York, NY, USA, 2004. ACM Press.

[127] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector com-
puters. ACM, New York, NY, USA, 1991.

208 Bibliography

Samenvatting

Transparante Herstructurering van Datastructuren
met Pointers

Processoren en computersystemen zijn zeer complex geworden. Een belangrijke fac-
tor hierin is simpelweg de steeds hoger wordende dichtheid van transistors (en dus
ook het aantal) op een chip. Deze overvloed aan transistors werd in het verleden
vooral aangewend om specifieke technieken te implementeren die de snelheid van een
processor voor een enkele stroom van instructies verhoogt. Een voorbeeld hiervan
is pipelining, een techniek waarbij de uitvoering van een instructie wordt opgedeeld
in verschillende fasen, zodat er tegelijkertijd werk aan verschillende instructies kan
worden verricht. Een ander bekend onderdeel van moderne processoren is de branch
predictor. Deze voorspelt waar een branch instructie heen zal springen om zo weinig
mogelijk vertraging te ondervinden van zulk soort instructies. Verreweg het grootste
deel van de transistors wordt gebruikt voor caches, die veelgebruikte data uit het ge-
heugen tijdelijk op de chip van de processor zelf opslaan. Het alsmaar sneller maken
van één enkele processor stuitte op problemen, met name op het gebied van warmte-
ontwikkeling. Dit heeft geleid tot de ontwikkeling van de huidige chips met meerdere
processoren en andere hybride oplossingen.

Sinds het begin van het tijdperk van de moderne computer zijn veel datastructuren
gëımplementeerd met behulp van pointers (verwijzingen naar geheugenlocaties). Het
grote voordeel van datastructuren die met pointers zijn opgebouwd is hun flexibiliteit.
Het invoegen van elementen is relatief eenvoudig en behoeft slechts aanpassing van
enkele pointers. Echter, het gebruik van datastructuren die met pointers gebouwd zijn
heeft als keerzijde dat de logisch structuur niet noodzakelijkerwijs overeenkomt met
de fysieke structuur. Deze discrepantie zorgt ervoor dat de efficiency van algorithmen
sterk afhankelijk is van de werkelijke layout in het geheugen. Een ander belangrijk
probleem van datastructuren die met pointers gebouwd zijn is dat ze gebonden zijn

209

210 Samenvatting

aan een specifieke adresruimte, wat migratie en parallellisatie van code en data op
moderne parallelle systemen in de weg staat.

Dit proefschrift beschrijft en evalueert transformaties die het mogelijk maken om
op pointers gebaseerde datastructuren te herordenen, zodat de fysieke layout van da-
tastructuren aangepast kan worden tijdens de uitvoering van een programma. Door
de layout aan te passen aan de manier waarop een datastructuur doorlopen wordt,
kan de snelheid van een algorithme enorm toenemen. Een andere interessante bijkom-
stigheid is dat kennis van de layout, die bekend is nadat een datastructuur herordend
is, gebruikt kan worden bij het optimaliseren van code.

Hoofdstuk 1 geeft een kort overzicht van de ontwikkelingen op het gebied van
de computerarchitectuur en software voor parallelle systemen. De problemen die
zich voordoen bij applicaties waar geheugentoegansgpatronen slecht voorspelbaar zijn
worden beschreven in hoofdstuk 2. Bestaande technieken die betrekking hebben op
deze problematiek worden besproken en de aanpak die verder uitgewerkt wordt in de
rest van dit proefschrift wordt hier uiteengezet.

Om een juist beeld te krijgen van wat nu precies de impact is van onregelma-
tigheid en onvoorspelbaarheid van applicaties worden de SPARK00 benchmarks in
hoofdstuk 3 gepresenteerd. Deze benchmarks worden gebruikt om verschillende ei-
genschappen van zulke applicaties te kwantificeren. Uit deze resultaten kan ook een
referentiekader afgeleid worden, welke nuttig is om het effect van herstructurerende
technieken te evalueren.

De herstructurerende technieken die beschreven worden in dit proefschrift worden
in hoofdstuk 4 op een top-down manier uitgelegd. Aan de hand van voorbeelden in
de programmeertaal C worden de concepten tastbaar gemaakt. In de volgende hoofd-
stukken worden deze concepten verder uitgewerkt. Hoofdstuk 5 bevat de benodigde
achtergrondinformatie over het LLVM compilatiesysteem en beschrijft een bestaande
compileranalyse die gebruikt wordt om datastructuren te identificeren die geschikt
zijn om getransformeerd te worden.

De herstructurerende technieken om op pointer gebaseerde datastructuren te kun-
nen transformeren (en de technieken die nodig zijn om herstructurering mogelijk te
maken) worden beschreven en geëvalueerd in hoofdstuk 6. Hierna worden deze tech-
nieken in hoofdstuk 7 verder uitgewerkt zodat code met pointers getransformeerd
kunnen worden naar aan representatie die arrays gebruikt. Dit biedt ook de moge-
lijkheid om invariantie van loopcondities te monitoren, zodat loops eenvoudiger en
beter geoptimaliseerd kunnen worden.

Hoofdstuk 8 beschrijft een aanpak om code in twee fasen te optimaliseren. Door
de op arrays gebaseerde representatie te gebruiken zijn deze technieken in principe
ook toepasbaar op applicaties die datastructuren met pointers gebruiken. De subli-
matietechniek heeft als doel om code, die pointers en arrays met indirecte adressering
gebruikt, te transformeren naar een tussenvorm welke geheel vrij is van pointers en
indirecte adressering. Vervolgens wordt in de tweede fase de tussenvorm samen met
specifieke data getransformeerd naar een voor specifieke data geoptimaliseerde code.
In hoofdstuk 9 wordt deze techniek toepast om code die pointers gebruikt te transfor-
meren naar een geoptimaliseerde code voor een FPGA die niet dezelfde adresruimte
gebruikt als de host CPU.

Samenvatting 211

Het optimaliseren van code is altijd al een uitdaging geweest en dit geldt in het
bijzonder voor code waarin datastructuren die opgebouwd zijn met pointers worden
gebruikt. In dit proefschrift worden praktische technieken voorgesteld die het poten-
tieel hebben om deze categorie van moeilijk te optimaliseren en parallelliseren code
ook automatisch te kunnen transformeren naar efficiëntere code. In de toekomst,
waarin chips vele processoren zullen bevatten en hybride architecturen de norm zul-
len worden, zullen herstructurerende technieken van groot belang zijn om ook voor
zulke code deze architecturen maximaal te kunnen benutten.

212 Samenvatting

Acknowledgements

I would like to thank all people who I have worked with during the past four years.
In particular, I would like to thank my supervisor Harry Wijshoff, who has taught me
the patience needed to conduct research. I also would like to thank Erwin Bakker,
Mattias Holm and Kristiaan Rietveld, for all the interesting discussions we have had.

My parents have been of great support throughout the years and I greatly appre-
ciate all the love they have shown. Finally, I would like to thank Erika, my wife, who
encouraged me to be persistent in my research. Erika, thanks for sharing your life
with me.

213

214 Acknowledgements

Curriculum Vitae

Harmen Laurens Anne van der Spek werd geboren op 22 februari 1982, te Zevenhui-
zen (Zuid-Holland). In 2000 heeft hij aan het Driestar College te Gouda zijn VWO
diploma behaald. Hierna is hij werkzaam geweest bij CS Engineering BV, te Wad-
dinxveen, waar hij aan software werkte voor datacommunicatie en de beveiliging van
netwerken. In 2001 is hij gestart met de opleiding Informatica aan de Universiteit
Leiden. Gedurende de opleiding heeft hij zich breed geörienteerd, wat tot uiting is
gekomen in het volgen van de vakken van de master track Bioinformatics. In 2006
heeft hij zijn doctoraal examen cum laude afgerond bij prof. dr. H.A.G. Wijshoff,
waarna hij in dienst is getreden bij de Universiteit Leiden. Hier heeft hij samenge-
werkt met zijn promotor prof. dr. H.A.G. Wijshoff en copromotor dr. E.M. Bakker,
en onderzoek gedaan naar nieuwe methoden om code- en datatransformaties uit te
voeren op applicaties die datastructuren bevatten die met pointers zijn opgebouwd.

215

