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Tri-allelic SNPs enable analysis of mixed and degraded DNA samples

Abstract

For the analysis of degraded DNA in disaster victim identification (DVI) and
criminal investigations, single nucleotide polymorphisms (SNPs) have been recognised
as promising markers mainly because they can be analysed in short sized amplicons.
Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead
to incorrect genotyping. VWe developed an algorithm to find non-binary (i.e. tri-allelic
or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic
SNPs with a minor allele frequency of at least 10 %.The tri-allelic nature was confirmed
for |5 SNPs residing on |4 different chromosomes. Multiplex SNaPshot™ assays were
developed, and the allele frequencies of |6 SNPs were determined among 153 Dutch
and | || Netherlands Antilles reference samples. Using these multiplex SNP assays, the
presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognised
reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP
markers and short tandem repeat (STR) markers by analysing artificially degraded
DNA and DNA from 30 approximately 500-year-old bone and molar samples. In
both types of degraded DNA samples, the larger sized STR amplicons failed to amplify
whereas the tri-allelic SNP markers still provided valuable information. In conclusion,
tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the
detection of a second DNA source in a sample.
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Introduction

DNA used in disaster victim identification (DVI) and forensic human genotyping is
often degraded. In DNA profiling, this results in the loss of the higher molecular weight
short tandem repeat (STR) markers and, consequently, in lower discrimination power
of the obtained partial DNA profiles [ |—4]. STR amplicons vary in length between 100
and 450 base pairs (bp). Two different strategies have been proposed to decrease the
target region [5—7]: (1) the use of so-called mini-STRs for which the primer binding
sites are moved closer to the repeat region resulting in amplicons usually <150 bp
[8—10] and (2) single nucleotide polymorphism (SNP) markers that involve the analysis
of only one nucleotide resulting in amplicons that can be designed to be as small as 50
bp [I'1,12]. These very small amplicons make SNPs particularly promising markers for
forensic analysis of degraded DNA [13,14].

SNPs have several other advantageous characteristics. One of these advantages is
a low mutation rate (10® versus 10 for STRs), which makes them useful for paternity
testing and complex kinship analysis [15,16]. In addition, SNPs can be analysed using
high throughput systems, and are not accompanied by the occurrence of stutter peaks,
which simplifies the interpretation of the SNP based profiles [ | 7—19]. The vast majority
of SNIPs are bi-allelic and these binary SNPs are unable to reliably detect the presence
of a second DNA source in a sample [5,17]. However, Phillips et al. have described that
non-binary SNPs can detect the presence of a DNA mixture [20]. This is important
to recognise, for example, contamination by soft tissue or bodily fluids from other
victims during a mass disaster. With computer simulations is estimated that 45-65 bi-
allelic SNPs are needed to reach a discrimination power that is equal to |2—16 STRs
[21-23]. In theory, less tri-allelic SNPs would be needed, since they have an increased
discrimination power per SNP.

In this study we apply non-binary SNPs to forensic relevant samples.VWe developed
an algorithm to search for non-binary SNPs in the NCBI SNP database (dbSNP). For
a selection of the tri-allelic SNP candidates that were found, SNaPshot™ multiplex
assays were set up, and over 250 reference samples from the Netherlands and the
Netherlands Antilles were analysed. A web-based application was written to calculate
allele frequencies from the SNP genotyping data. Furthermore, two-donor mixtures in
various ratios were studied. Artificially degraded DNA and DNA from approximately
500-year-old bone samples were genotyped both by the tri-allelic SNP assays and
standard STR profiling in order to compare the genotyping efficiency of both methods.
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Materials and methods

Samples

The reference set for verification of the non-binary nature of the SNPs consisted
of 153 Dutch and I'I'l Netherlands Antilles samples obtained from employees of
the Netherlands Forensic Institute, anonymous Dutch blood donors and policemen
from the Antilles. The Netherlands Antilles population has an admixed origin of Native
Americans, Europeans and Africans with an undetermined mixture ratio.Y chromosomal
research indicates that approximately half of the males from the reference population
displays Y chromosomes of African origin (PdK, unpublished results). From the YCC
panel that consists of cell lines from males representing worldwide populations, 59
samples were analysed: 5 European, |12 Russian/Siberian, 8 Asian/Pakistan, 9 African, 14
South African and | | Native American [24].The sensitivity of the SNPs was determined
using pristine DNA (Quantifiler™ Human DNA standard denoted as hDNA) with a
wide range of PCR inputs for both the SNP and STR analyses of 5 pg, 10 pg, 20 pg, 30
pg, 40 pg, 50 pg, 60 pg, 70 pg, 80 pg, 90 pg, 100 pg, 200 pg, 300 pg, 400 pg, 500 pg, 750
pg, | ng 10 ng and 50 ng. For mixture analysis, DNA from several pairs of reference
donors was mixed in various ratios: 1:8, 114, 1:2, 111, 2:1,4:1 and 8:1.

In order to obtain artificially degraded DNA, pristine hDNA of 200 ng/uL was
irradiated with 254 nm UV light in a CL-1000 UV CrossLinker (UVP Inc.) at 0.9 J/
cm2 for 0,5, 10, 15, 30, 60, 90 and 120 min. Two series of hDNA were used: hDNA
irradiated at room temperature or hDNA denatured for 5 min at 95 °C and placed
and irradiated on ice. Furthermore, pristine hDNA samples were degraded by different
concentrations of TURBO™ DNase (Ambion™ TURBO DNA-free™ Kit). DNA
fragments of specific size ranges were isolated from agarose gel with the QlAquick Gel
Extraction Kit (Qiagen), and diluted to | ng/uL after DNA concentration measurement
with a2 NanoDrop™ [000 spectrophotometer (Thermo Scientific). Genotyping
efficiency was determined using the artificially degraded DNA samples and DNA of
thirty 450-550-year-old bone and molar samples excavated in Delft (the Netherlands).

SNP selection

To find non-binary SNP candidates, the NCBI database dbSNP (build 126) was
searched with a custom-made algorithm, which can be found on http://www.liacs.nl/
rvjlaros/projects/snp/. This algorithm specifically searches for non-binary SNPs with
variation allele:V (A, Cor G),H (A, CorT),D (A, GorT),B (C,GorT) orN (G A,
T or C) and SNP class: snp. It filters out any unconfirmed allele calls from opposite
strands (N) and non-existent data (-). SNPs with a minor allele frequency (i.e. the
lowest frequency of the three alleles) above 10 % in at least one population in dbSNP
were selected for further analysis. SNPs can erroneously be assigned non-binary due
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to a lack of clarity regarding the direction of the sequence reads entered into dbSNP
Therefore, the non-binary character and allele frequencies of the SNP candidates were
redetermined after manual entering in dbSNPThe test set of SNPs was selected on the
following criteria: (1) a high minor allele frequency, (2) a high number of populations
that showed three alleles for that SNF (3) an equal distribution of the other two alleles,
and (4) the opportunity to develop suitable primers.To diminish the chance of linkage
between the SNPs, one SNP per chromosome was selected from the test set for the
development of the SNaPshot™ multiplexes.

PCR

The web-based version of Primer3 was used to design PCR primers (supplementary
table S1) resulting in amplicon sizes between 40 and 100 bp, with a primer length
between |8 and 24 bases, a primer Tm between 55 and 61 °C and a primer GC
percentage between 30 and 70 % [25]. All primers were checked for the absence of
primer—dimer formation, hairpin structures and complementarity to other primers in
the multiplex with the program Autodimer [26]. The primers were all HPLC purified
after synthesis (Biolegio BV or Isogen Life Science).

A 125 pL PCR was set up using 1x PCR Gold buffer; 9 mM MgCl2,2 mM dNTPs,
0.5 pL Tag Gold, 100 nM of each primer and | ng DNA.The PCR program consisted
of an initial hot start of 10 min at 94 °C, followed by 35 cycles of 94 °C for 30 s, 60
°Cfor 30 s and 72 °C for 30 s and a final hold at 72 °C for 5 min.To remove unused
primers and nucleotides 2.5 pL ExoSAP-IT™ (USB Corporation) was added to the
PCR products.This enzyme mixture was incubated for 30 min at 37 °C and inactivated
by incubation at 80 °C for |5 min.

Al measurements were performed in dedicated laboratories (ISO 17025
accredited), while wearing protective clothing. For comparison of the SNP markers
with STR markers, the AmpFISTR® SGM Plus™ kit from Applied Biosystems was used
according to their protocol, but with half the volumes (25 uL PCR).

SNaPshot™ (single base extension)

Extension primers were designed immediately upstream of the SNP position
[I'1,27]. Primer3 was used to design the primers with a primer size between |5 and
23 bases, a Tm between 48 and 52 °C, and a GC percentage between 25 and 60 %
[25]. Since the SNPs are analysed in multiplex they need to be spatially separated
during capillary electrophoresis; therefore the extension primers were tailed at the 5’
end with a non-human DNA sequence resulting in primer sizes between 23 and 50
nucleotides.

Terminator ddNTPs, labeled with four different fluorescent dyes, were used to
extend the primers at the SNP position. The extension reaction was set up with
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2.5 pL SNaPshot™ Ready Reaction Mix (Applied Biosystems), extension primer
concentrations between 5 and 75 nM (supplementary table S1), 1.0 uL ExoSAP-IT™
treated PCR product and added up to a total volume of 5 uL. The extension program
has an initial denaturation step of 2 min at 96.0 °C, followed by 40 cycles of 96.0 °C
for 10's,50.0 °C for 5 s and 60.0 °C for 30 s.To remove unincorporated nucleotides
[.5 pL Shrimp Alkaline Phosphatase (USB Corporation) was added to the extension
products, incubated for 60 min at 37 °C and inactivated for |5 min at 72 °C.

SNP detection and analysis

The fluorescently labeled SNaPshot™ extension products were detected by
capillary electrophoresis with an ABI Prism 3130xI Genetic Analyzer with a 36 cm
capillary array and POP-4 polymer (Applied Biosystems). Data Collection software
v3.0 with the default run module SNP36_POP4_1| and dye set E5 were used to
analyse 1.0 uL SAP-treated extension product mixed with 8.75 pyL Hi-Di™ formamide
and 0.25 pL GeneScan-120LIZ™ size standard (Applied Biosystems) after 5 min of
denaturation at 95 °C and 5 min of cooling on ice.

Alleles were automatically called with GeneMapper® ID v3.2.1. Since the ratio
of the fluorescent signals for G, A, T and C differ per nucleotide dye and between
SNPs, the allele balance cut-off value in the SNaPshot™ default analysis method was
adjusted from 0.30 to 0.125 in order to call both G and C in a heterozygous locus.
For the analysis of the dilution series and the artificially degraded DNA, reference
DNA samples with a known SNP and STR profile were used. For these samples, the
percentage of detected alleles could be calculated, in which homozygous alleles were
counted as two alleles. Since the SNP and STR profiles of the analysed bone and molar
samples were unknown, homozygous alleles could not be discriminated from a single
heterozygous allele without the second allele. For these samples only the percentage
of detected loci is determined.

Allele frequencies and statistics

To calculate the allele frequency distribution of the Dutch and Netherlands Antilles
samples, genotype tables are exported from the GeneMapper® plot display to a .csv-
file and copied into SNPstat, a custom-made program that can be found on http:// www.
liacs.nl/rvhmeiland/projects/snpstat/. Expected and observed heterozygosity values and
PIC values are calculated using the Excel Microsatellite Toolkit [28]. Genepop v4.0.7
is used to determine the p-value for Hardy—\Weinberg (HW) equilibrium testing, for
HW testing when H| = heterozygote deficit, when H| = heterozygote excess and for
deviation from independence between or across loci [29]. The power of discrimination
and the power of exclusion were calculated with the Excel spreadsheet Genetic
Identity PowerStats vI2 (Promega) [30].
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Sequencing

Sanger sequencing was used to confirm the different alleles found with the
SNaPshot™ method in the Dutch and Netherlands Antilles reference samples.
Monoplex PCRs were performed under the same conditions and with the same
primers as described above, and the PCR products were cleaned with 1.5 plL ExoSAP-
[T™ (USB Corporation). The sequencing reaction was performed in a volume of 20
pL with Ix Sequencing Buffer; 1.0 pL BigDye™ Terminator vI.| Ready Reaction Mix
(Applied Biosystems), 0.16 mM SNP specific primer and 1.0 yL ExoSAP-IT™ treated
PCR product. To remove unincorporated nucleotides and salts the 20 plL sequencing
product was mixed with 20 yL XTerminator™ Solution and 90 yL SAM™ Solution
in a MicroAmp™ Optical 96-Well Reaction Plate (Applied Biosystems). The plate was
vortexed for 30 min at 2000 rpm, centrifuged for 2 min at 1000 x g, placed directly
in an ABI Prism 3130xl Genetic Analyzer and analysed with the BDx_UltraSeqg36_
POP4_I run module and dye set E-BigDyeVI. The sequences were analysed with
Sequencing Analysis 5.2 (Applied Biosystems).

Results and discussion

SNP selection and multiplexing

Using our custom-made algorithm, dbSNP was searched for non-binary SNPs with
a minor allele frequency above 10 % in at least one population. This search yielded 74
SNP candidates. After manual entry in dbSNP to correct for inconsistencies in direction
of sequencing, 63 tri-allelic SNP candidates remained, which are listed per chromosome
inTable | and supplementary table S2.To obtain a tri-allelic SNP for chromosome 3,
the minor allele frequency had to be lowered to 6 % (Table I).Since the first candidate
on chromosome 22 (rs3859849) vielded no useful primers, a second tri-allelic SNP
candidate was found by lowering the minor allele frequency to 8 % (Table ). Thereby
a total of 65 tri-allelic SNP candidates was obtained. For chromosome 13, 15, X and
Y no suitable SNPs were found. In contrast, the number of tri-allelic SNPs found on
chromosome 6 is considerable compared to the other chromosomes, probably due to
extensive research to a particular part of this chromosome.

The 65 tri-allelic SNP candidates are distributed over 20 chromosomes.The chance
of linkage between the SNPs is minimised when they reside on different chromosomes.
In order to find the best SNP per chromosome, PCR and extension primers were
tested in monoplex for the 31 SNPs that are shown inTable |.To reduce the number
of reactions and the amount of DNA needed, SNaPshot™ multiplex assays were
designed. The primer sets that were examined for the SNPs on chromosome 16, 17, 19
and 21 proved unsuited for multiplexing, probably due to interactions with other PCR

54



Tri-allelic SNPs enable analysis of mixed and degraded DNA samples

'SINsal |, J0YSJENS SNONSIqUIE 0] aNP PIUILISIBP 3q 10U PINOI s3dUaNbaly 3R[Y , %
'sjuawadxa 101id |, 10YsdeNS x3[douow ul palaap sIR[[E 323 INq XK3dnnw 10§ pauns 10N ,
'sAesse | 10YSJeNS Xajdnnur ut pajsal ale pjog ul umoys sdnNs 4
‘(uonendod auo ueyl 210U 10] PAUIULIAIAP 21am saluanbaly aR[[e uaym) NSqp ul Aduanbay afa[e Jounu Isaysiy ay) yum uonendod ayy, .

00001 00001 qzz €8 0E6IbLPE 7z
001 0101L¥ 1z
75T 98°S 9L YLER et SLSE r0z 651 SP6690T 0z
: 19z 08£58€ 61
0LTS 6L'6E 18 1629 €0°ZE gl voL STSEST 81
5 'Lz 8750501 A
. 001 1055981 1 91
o€l 68Y8LIT 91
6v9¢ 15°€9 1295 6LEY 1228 0oL 9898001 vl
€51 909€EELL Al
12719 16%6 8€'8T  6ZT 1991 0’18 ezl 297 £TTLOET 71
szl vL8THOLL I
veLE 88°ze 8767 959 ¥eL 089 1384 g1 0FZ0E0S 1
611 T1ZEEE6 o1
91 ¥55E08T o1
16'6 0r'9¥ 69°EY 1572 €9'16 98'€7 201 (1374 86bLETLL o1
r'ot L9EBIBE 6
LYEL £1'9Z 8LLL e 260 Ll PESTILL 6
. el PEITESE 8
8687  6SSE ¥0'9E €9°1 8L°LT 6504 g0 881 ZhEEsh 8
6788 9£'01 el €2°5S 6LEY 860 ®/0 zs1 78SZE0Z a
+ + + + + s g0 98z 10LbLT6 9
8762 1921 L18S 6071 1628 250 80T POI6ZE6 S
LULL LLYT S0t s it S9LL avo SLL LII9SE v
1z SS00PSH ¥
00001 00001 1230 79 8968755€ €
Sl €£88/701 z
€88 LU1Z ESEL Lr9T ®Z20 viz 1veLzL z
€61 91156 1
€0z Z1E0E9L 1
YTEY 89'GZ 80°1€E 79 129 LE1E 130} 19z PHZI60E ol
b} L ) v b} L ) v
(zzz = saPIe U) INV (90€ = sap11e u) IN BT
xadnnur ur J@[[E Joumnu
x3[dnnuw Ul pauUIEXa SJNS J10j sanuanbaly 3Ry JWeu JgNS WINWIXeWw JNsSqp 13qUWINU-SI UWIOSOWIOIY)

“wyILIoS[e IPEW-WOISNI B )M INSAP UI PUNOJ SINS ATeulq-uou [enuajod paunuexy
1 3IqeL



Chapter 3

or extension primers. The SNPs that were chosen for the remaining |6 chromosomes
are shown in bold in Table |.These 16 SNPs were combined in multiplex A, B, and C
with seven, four, and five SNP markers, respectively (supplementary table S1).

In order to test whether these 16 SNPs were non-binary, 153 Dutch and |1 |
Netherlands Antilles reference samples were analysed using the three multiplexes
(supplementary table S3). Nine SNPs were found to be tri-allelic in both populations,
and two SNPs were tri-allelic in the Antilles samples but appeared to be bi-allelic in
the Dutch samples. Three SNPs were bi-allelic in both populations and two SNPs
were fixed. The analyses were extended with 59 samples from the Y Chromosome
Consortium dispersed over six genetically distinct populations, but no additional
alleles were detected (supplementary table S3). Thereby, | | of the 16 SNPs in the
multiplexes were found to be truly tri-allelic. Monoplex assays on a limited number
of samples from the reference set revealed four additional tri-allelic SNPs: a second
one on chromosome 8 and three SNPs on chromosome 16, |7 and |9 for which the
primers were unsuited for multiplexing (Table 1).Thus, in total 15 SNPs on 4 different
chromosomes were confirmed to be tri-allelic.

For the 16 SNPs in the multiplex SNaPshot™ assays 41 different alleles were
observed. To confirm the occurrence of these alleles, per SNP up to 8 samples were
analysed by Sanger sequencing using the same primers as for the PCRs preceding
the SNaPshot™ assays. The alleles that were observed by Sanger sequencing were
consistent with the SNaPshot™ results. Eight of the 41 alleles could not be confirmed,
which is probably due to ineffective sequencing within the very short sized amplicons.
Sanger sequencing was very useful for the interpretation of ambivalent SNaPshot™
results obtained for SNP 0éa.While in samples | and 2 (Fig. |A and B,and Cand D) a
heterozygous GC and a homozygous T are detected by both methods, in sample 3 (Fig.
IE and F) Sanger sequencing clearly detects a homozygous G, while the SNaPshot™
shows a large G-peak and a small additional T-peak. This additional small T-peak is neither
observed in the PCR and extension negative controls (data not shown) nor in Fig. |B.
Due to these ambiguous SNaPshot™ results, SNP O6a was left out of further analyses.

The SNaPshot™ was chosen as analysis platform since this method is not dependent
on SNP specific probes and the possibility of a third allele does not complicate the
analyses. Furthermore, multiplexing is possible, thereby reducing the amount of input
DNA required. In addition, most forensic laboratories possess the instruments needed.
A disadvantage of the SNaPshot™ is that the amount of fluorescent signal differs per
nucleotide dye.Theratio G:AT:C was estimated to be 3:2:1:1 aftermeasuring the average
allele peak heights per SNP in the 153 Dutch samples with SNPstat. This ratio showed
some variation both between individual SNPs and between samples for the same SNP.
For SNP | 13, the ratio G:C sometimes rose to 8:1, and the allele balance cut-off value
in the analysis method was set to /8 = 0.125. Due to this difference in signal and to
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Fig. 1 Sanger sequencing (A, C, E) and

SNaPshot™ (B, D, F) results for SNP 06a_ a5 .

rs9275142 for three individuals. (A and A 2000 B

B) Heterozygous GC for both methods. o0y

(C and D) Homozygous T for both 760 1200

methods. (E and F) Sanger sequencing 380 800

shows a clear homozygous G, but the 0 400

SNaPshot™ results show a large G-peak = o

and a small additional T-peak. ARS At “ B
2000

the interactions of the many PCR and C 1500 D

extension primers present, SNaPshot™ 760 oo

multiplexes require several optimization 380 o

steps. Phillips and co-workers also 0 | 10

encountered these problems and o nTar ° E

compared four forensically relevant i o

SNP  typing techniques: SNaPshot™ F 000 F

genotyping, TagMan™ real-time PCR b

assays, Sequenom™ (PLEX™ MALDI- 760 e

TOF spectrometry and Genplex™ 380 .

oligo-ligation assays (a modification of 0 400 ]

the SNPlex™ chemistry), of which the AAG At E
Genplex™ system seemed the most
promising alternative [31].

Allele frequencies and statistics

Genotyping data, allele frequency distributions and a summary of the statistics for
the SNP markers in the Dutch and Netherlands Antilles reference samples are shown
in Table | and supplementary tables S3, 54 and S5. A few p-values are below the
threshold of 0.05, but after Bonferroni correction, no significant deviation from Hardy—
Weinberg equilibrium or linkage was observed. The number of tri-allelic SNP markers
that we examined does not suffice to reach a discrimination power that equals 10—15
STR markers, and further research is needed (for discrimination and exclusion powers
per SNP see supplementary table $4). Unfortunately, the amount of population data
available in dbSNP is rather limited and does not enable an efficient pre-selection of
non-binary SNPs with promising allele distributions at the moment. For the |5 SNP
markers analysed, the allele distribution per population is visualised in Fig. 2. It is clear
that the allele distribution of the tri-allelic SNPs can differ greatly between the two
populations. For example, SNPs 08a and |2a both have an allele that is rare in the
Dutch samples, while common in the Netherlands Antilles samples, and SNPs 05a
and |8a show only two alleles in the Dutch while three alleles in the Netherlands
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allele distribution
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Fig. 2 Allele distributions for the SNPs that were analysed in the Dutch (NL, n = 306
alleles) and Netherlands Antilles (ANT, n = 222 alleles) samples.

Antilles samples (Fig. 2 and Table ). As some of the alleles in these SNP markers
seem to be determined geographically, these SNPs might not only be interesting for
identification, but also as ancestry informative markers (AIMs) [32]. When the source
individual of a DNA sample is unknown, AIMs can point out the most likely population
of origin [32]. For this purpose, it is important to keep in mind that the examined
Dutch DNA samples represent a cross-section of the Dutch population and that the
donors may not all have a European background. The allele frequencies of the six YCC
population groups are summarised in supplementary table S6 (notwithstanding the
small sample sizes). These findings support the suggestion that SNPs 05a and |8a might
be interesting AIMs, since the third allele is only detected in the African and South
African populations.

Dilution series and mixtures

To assess the sensitivity of the three SNaPshot™ multiplex assays in relation to the
STR profiling system AmpFISTR® SGM Plus™ a range of pristine hDNA PCR inputs
between 5 pg and 50 ng was analysed. Using an input of 5 pg DNA, 43, 67,40,and 9 %
of the genotypes was obtained for multiplex A, B, C and SGM Plus™, respectively.With
an input of 10 or 50 ng DNA, the SNaPshot™ multiplex assays were overloaded but
still interpretable, while the SGM Plus™ resulted in strongly overloaded profiles or“no
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sizing data”. The minimal amount of input DNA with which full profiles were obtained
are 300, 200, 100 and 50 pg for muttiplex A, B, C and SGM Plus™, respectively (data
not shown).Thus, although SGM Plus™ is better capable of generating full profiles, the
SNaPshot™ multiplex assays provide a higher percentage of detected alleles using
very minute amounts of DNA and give genotyping data when very high DNA inputs
are used.

Next, we investigated whether the mixing of samples can be detected using the
tri-allelic SNP assays. Two-donor mixtures in various ratios between 1:8 and 8:l
were analysed in which the total amount of input DNA was 2 ng per reaction. Two
individuals were selected that differ for five of the seven SNP markers that are present
in multiplex A (Fig. 3A and B). When the DNA of these two individuals is mixed, it is
expected that (1) three alleles are visible for SNPs 05a and 08a, (2) altered peak height
ratios are visible for SNPs with overlapping alleles like SNPs 07a and 02a and (3) SNPs
with no overlapping alleles look like a heterozygous when mixed in a |:| ratio or have
an altered peak height ratio with other mixture ratios like SNP 04b. In a |:] mixed
sample (Fig. 3C), clearly three alleles are detected for SNPs 05a and 08a pointing to
the presence of a second DNA source. This finding is supported by the detection of
altered peak height ratios for SNPs 07a and 02a. Normally the ratio G:A:T:C is around
3:2:1:1. For SNP 02a the C:T ratio in the |:| mixed sample is around |:7 and thereby
distinct from the normal I:1 ratio. For SNP 07a the G:T ratio is far above the normal
3:1 ratio resulting in an uncalled T-peak because this peak (that is clearly above the
allele calling threshold of 50 rfu) falls below the allele balance cut-off value of 0.125
(corresponding to a G:T ratio of 8:1). In a |:8 mixture (Fig. 3D), three alleles are
detected for SNP 05a only. In addition, an altered peak height ratio is seen for SNP 04b:
the normal G:C ratio of 3:1 has lowered to |:4. A 8:] mixture from the same donors
and two-donor mixtures from other individuals show similar results (data not shown).
In conclusion, in 1:8 to 8:1 mixed samples the presence of a second DNA source is
recognised in the SNaPshot™ assays for the tri-allelic SNP markers. The indicators are
the presence of three alleles on one locus, unexpected peak height ratios and uncalled
peaks above the detection threshold.

The presence of three alleles on one locus is the clearest sign for the occurrence
of a mixture and does not depend on quantification of the fluorescent signal.
This quantification is complicated for the analysis of SNaPshot™ assays since the
fluorescent signal differs per dye, but is possible in other SNP typing technologies such
as pyrosequencing and mass spectrometry [33]. However, compared to SNaPshot™
assays these methods have other limitations such as less multiplexing capability or the
need for a higher amount of input DNA [27,34].

In order to estimate the utility of the tri-allelic SNPs for mixture detection we
determined the theoretical occurrence of a third allele on at least one locus by
evaluating all possible two-person mixtures in the Dutch and Netherlands Antilles

59



Chapter 3

[ ota | [ 05 | 08a 02a

21 27 33 39 45 51

4000

3200

2400+

1600

800

4000

3000

2000

1000

4000

3200

2400

1600

800

4000

3200

2400

1600

800

v

Fig. 3 Detection of a mixture of two individuals using tri-allelic SNP SNaPshot™ multiplex
A that analyses 7 SNP markers. The horizontal grey bars on top label the SNP markers.
(A) SNP profile for person 1. (B) SNP profile for person 2. (C) 1:1 mixture for person
1:person 2. (D) 1:8 mixture for person 1:person 2. These individuals differ for markers
05a, 08a, 07a, 04b and 02a.

reference samples. The percentage of detected mixtures was determined by two
approaches: automated counting (Table 2) and a statistical approximation based on
the allele frequencies (supplementary table S7). The Dutch and Netherlands Antilles
populations have different allele frequencies, and therefore we determined the
percentage of detected mixtures both separately and combined (Table 2).75 % of the
two-person mixtures within the Dutch population is detected (based on 8 tri-allelic
SNPs), while 95 % of the mixtures is detected for the Netherlands Antilles samples
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(based on 10 tri-allelic SNPs). The counting and the statistical
approximation show similar results (Table 2). Even this limited
number of tri-allelic SNP markers effectively detects the majority
of the mixtures.

Degraded samples

In order to obtain information on the performance of the
tri-allelic SNP assays to analyse degraded DNA, pristine DNA
was artificially damaged. Native and denatured hDNA samples
of 200 ng/uL were irradiated for increasing time with UV light
in a cross-linker: By denaturing the DNA prior to UV irradiation,
we intended to induce the formation of single-stranded breaks,
which are the most common type of post-mortem DNA
degradation [35]. Analysis of the samples on ethidium bromide
stained, 0.8 % agarose gels showed that the UV treatment had
resulted in DNA degradation rather than inter-strand cross-
linking since reduced sized DNA smears were visible for both
the native and the denatured DNA samples. In addition, longer
UV treatment resulted in smears of reduced fragment length
(results not shown). The denatured samples were selected to
test the performance of the tri-allelic SNP assays on artificially
degraded DNA.The samples of 200 ng/uL were diluted 200-fold
and | pL was used as PCR input for the SNaPshot™ and SGM
Plus™ analyses. Fig. 4A shows that SGM Plus™ STR profiling
fails for the higher molecular weight STR markers when DNA
is treated by 5 min of UV irradiation, and that only 14 % of
the alleles is called when DNA is treated by UV irradiation for
120 min. In contrast, the SNaPshot™ multiplex assays show their
first loss of marker detection when using DNA treated by UV
irradiation for 60 min,and 73 % of the alleles are still called when
using DNA treated for 120 min of UV irradiation.

Furthermore, pristine hDNA samples were degraded using
increasing TURBO™ DNase concentrations. Reduced sized
DNA smears were visible after running these samples on an
ethidium bromide stained, 2 % agarose gel. DNA fragments
were isolated in size ranges of approximately 400-350 bp,
300-250 bp, 200—150 bp and <100 bp by gel extraction. One
nanogram DNA was used in both the SNaPshot™ and SGM
Plus™ analyses. Fig. 4B shows that the percentage of detected
STR alleles reduces with decreasing fragment length, and that no

Table 2

Two-person mixture detection by three alleles on at least one locus.

Statistical approximation (%)

% detected mixtures

n tri-allelic SNPs/population

n profile comparisons

n samples

Population

74.9

753

153 11628

111

NL

95.7

10
10

6105
34716

ANT

na?

87.5

264

NL and ANT

2 The different background of the populations does not allow the use of a combined allele frequency.
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Fig. 4 Genotypingresults for degraded DNA samples. Dark grey bars represent SGM Plus™
data (11 loci) and middle grey bars represent the SNaPshot™ results for multiplexes A,
B, and C together (15 loci). The experiments shown in (A) and (B) were performed
in duplo and the error bars represent the standard deviation; when no error bars are
displayed, both measurements were equal. (A) UV irradiation time is plotted against the
average percentage of detected alleles. (B) TURBO™ DNase degraded DNA fragments
of decreasing length are plotted against the average percentage of detected alleles. (C)
Results for 30 approximately 500-year-old bone and molar samples are plotted against
the percentage of detected loci.

STR alleles are found when using DNA fragments smaller than 100 bp. For the latter
DNA fragments, 22 % of the SNP alleles are still detected, and the SNP profiles are
nearly complete when using DNA fragmented to 150-400 bp.These results show that
the tri-allelic SNP markers are better capable of analysing artificially degraded DNA
than SGM Plus™ STR profiling, which is most likely due to the use of smaller sized
amplicons in the SNaPshot™ assays.
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In addition to the artificially degraded DNA samples, thirty 450-550-year-old bone
and molar samples were analysed using both the SNaPshot™ multiplex assays and
SGM Plus™ STR profiling with a constant input of 3 uL DNA extract. Sixteen out
of the 30 samples show an increase in the percentage of loci that were called for
the SNP markers compared to the STR markers (Fig. 4C). The finding that for some
samples STR data but no SNP data are obtained may have various reasons: (1) limiting
sensitivity of SNP assays with low quantities of DNA, (2) differences between the two
PCR assays in susceptibility for PCR inhibitors, and (3) level of optimization of the
multiplex PCR. The individual SNP markers vary in robustness and the assays could be
improved by further balancing of the multiplexes or development of a more sensitive
assay, which would aid the analysis of both degraded and low quantities of DNA. STR
locus drop-out mainly occurs for the larger sized amplicons, which is in accordance
with DNA degradation in the samples. Four samples provided SNaPshot™ results,
while no SGM Plus™ data are obtained. This is probably due to a high level of DNA
degradation in these samples. Thus, when the higher molecular weight STR markers fail
to amplify, tri-allelic SNP markers may provide additional information.

Conclusion

In this study |5 tri-allelic SNPs on |4 different chromosomes are detected in
DNA samples from Dutch and Netherlands Antilles donors. We showed that such
non-binary SNPs have the ability to reveal the presence of a second DNA donor in
mixed samples with a ratio up to |:8. Indications for a mixture are the presence of a
third allele on one locus, unexpected peak height ratios and uncalled peaks above the
detection threshold. Several of the tri-allelic SNP markers may not only be interesting
for identification purposes, but also as ancestry informative markers. Furthermore,
degraded (UV irradiated, TURBO™ DNase treated and 500-year-old bone and molar)
DNA samples show that when the higher molecular weight STR markers fail to amplify,
tri-allelic SNP markers can still provide valuable information.
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Table S2

Unexamined potential non-
binary SNPs found in dbSNP
with a custom-made algorithm

£

50

g —
Q -~ O X
£ ~ X D>y
o 0] @ —~ O
0] g £ ®© o
o 0]
=1 3 ooy 3
o = Z o o
g | n o o
< 0 Q-+ N
0 “ T g W
1 2184030 11,9
6 668871 11,8
6 865577 10,4
6 956297 14,3
6 1059553 21,4
6 1694115 10,7
6 2072899 15,1
6 2246068 19,2
6 2523610 10,7
6 2621363 12,5
6 2647086 21,4
6 3095299 12,5
6 3104368 10,3
6 3129158 12,9
6 4993691 17,9
6 6925893 17,9
6 9264962 15,9
6 9274703 28,6
6 9274723 21,1
6 9275142 27,1
6 9276016 14,3
6 17203067 10,4
6 17203741 12,0
6 17210062 12,0
8 353721 12,5
8 36031660 10,0
9 6560007 18,2
10 1047111 16,7
12 720578 20,0
14 28909974 12,5
17 2642157 27,6
17 5819132 16,7
19 6508976 16,7
22 3859849 19,6

* The population with
the highest minor allele
frequency in dbSNP (when
allele frequencies were
determined for more than
one population).
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Table S3

Genotyping data of Dutch, Netherlands Antilles and YCC samples analyzed with multiplex A, B and C
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Table S7
Statistical approximation of mixture detection probability by three alleles on at least one locus

If all three allele variants are present in a random sample of four alleles,
then one variant must be realized twice and the other two once. The number of
distinct permutations of four objects,
is 4!/(2'1'11)=12.

allele variants in a random sample of four alleles equals 12*pl*p2*p3 (pl+p2+p3)

two of which are indistinguishable from

each other, Hence, the probability of obtaining all three

For p., = estimated allele frequency of allele 1 on locus L
p.. = estimated allele frequency of allele 2 on locus L
p.s = estimated allele frequency of allele 3 on locus L

The probability of detecting three alleles on locus L in a two-person mixture =
12%p 10*P 12*Pes (PeatProtP o) = 12%P ua*p u2*P s (1) = 12%P 00*P 1o*Pis

The probability of not detecting three alleles on locus L in a
two-person mixture =

1 - 12*%p 11 *P e 2*Pors

(i.e. one or two)

The probability of not detecting three alleles on all loci in a two-person
mixture =

M.(1 = 12%p 1. *P1,2*P 1)

The probability of detecting three alleles on at least one of all loci in a two-
person mixture =
1 - O.(1 - 12%Pp 11*P 1,2%P 1,3)

NL (n alleles = 306)

L Pui P Pous 1 - 12%p 1 1*Pr2*Pous
0la 0,3137 0,0621 0,6242 0,8541
04b 0,1765 0,1111 0,7124 0,8324
05a 0,8791 0,1209 0 1
07a 0,0098 0,4379 0,5523 0,9716
08a 0,7059 0,2778 0,0163 0,9616
10e 0,2386 0,5163 0,2451 0,6377
lla 0,2680 0,0784 0,6536 0,8352
12a 0,8105 10,1667 0,0229 0,9629
18a 0,3203 0,6797 0 1
20a 0,4575 0,1111 0,4314 0,7369
1 -T.(1 - 12%p ..*p uo*p us) 0,7490
ANT (n alleles = 222)
L P P> P 1 - 12%Pp 1 1*P r2*P 1
O0la 0,3108 0,2568 0,4324 0,5859
04b 0,0405 0,2477 0,7117 0,9143
05a 0,5811 0,1261 0,2928 0,7425
07a 0,0135 10,1036 0,8829 0,9852
08a 0,3604 0,3559 0,2838 0,5632
10e 0,4369 0,464 0,0991 0,7589
lla 0,2928 0,3288 0,3784 0,5628
12a 0,2838 0,0991 0,6171 0,7917
18a 0,0811 0,3919 0,5270 0,7990
20a 0,7162 0,0586 0,2252 0,8866
1 - T.(1 - 12%p +,1*P 1,2*P 1,3) 0,9471
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