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Abstract

Purpose: A framework for the evaluation of paediatric population models is proposed
and applied to two different paediatric population pharmacokinetic models for
morphine. One covariate model was based on a systematic covariate analysis, the other
on fixed allometric scaling principles.

Methods: The six evaluation criteria in the framework were 1) number of parameters
and condition number, 2) numerical diagnostics, 3) prediction-based diagnostics, 4)
n-shrinkage, 5) simulation-based diagnostics, 6) diagnostics of individual and population
parameter estimates versus covariates, including measurements of bias and precision
of the population values compared to the observed individual values. The framework
entails both an internal and external model evaluation procedure.

Results: The application of the framework to the two models resulted in the detection
of over-parameterization and misleading diagnostics based on individual predictions
caused by high shrinkage. The diagnostic of individual and population parameter
estimates versus covariates proved to be highly informative in assessing obtained
covariate relationships. Based on the framework, the systematic covariate model proved
to be superior over the fixed allometric model in terms of predictive performance.
Conclusions: The proposed framework is suitable for the evaluation of paediatric
(covariate) models and should be applied to corroborate the descriptive and predictive
properties of these models.
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8.1 Introduction

Whereas many diagnostic and validation tools are available for the evaluation of
population models in the adult population, these tools may not always directly suffice
in the paediatric population due to the heterogeneity of this special population and the
scarcity of the datasets. In this study a framework including six evaluation criteria is
presented for the systematic assessment of the descriptive and predictive properties of
paediatric (covariate) models that takes these specific issues into consideration.

In paediatric population pharmacokinetic (PK) models, the influence of the
many physiological changes that take place in the paediatric age-range are reflected
in covariate relationships that are usually based on bodyweight and/or age. However,
since bodyweight and age are naturally correlated in the paediatric population there is
a debate on how to incorporate the influence of the physiological changes in paediatric
population PK models. Bodyweight and age can either be regarded as regular covariates
whose predictive properties on PK parameters are evaluated together with other
covariates in a systematic covariate analysis by formally testing them for significance
and only retaining them in the model if they statistically improve the model fit (Chapter
3) 2. Alternatively, bodyweight can be included a priori into paediatric PK models by
the use of a bodyweight-based allometric equation with a fixed exponent of 0.75 for
clearance and 1 for distribution volume. These equations can subsequently be augmented
by estimated age-based functions of various forms .

In recent years two different population PK models for morphine and its
two major pharmacologically active metabolites morphine-3-glucuronide (M3G)
and morphine-6-glucuronide (M6G) in children younger than three years have been
published (Chapter 3)B. The model by Knibbe et al. (Chapter 3) was developed using a
systematic covariate analysis. The model by Bouwmeester et al. ¥ was developed using
fixed allometric scaling principles in conjunction with estimated age-based functions. As
these models were developed using similar datasets, they provide both an example for
the assessment of the developed framework for the evaluation of paediatric (covariate)
models, as well as an opportunity to directly compare the performance of these two
fundamentally different paediatric covariate models.
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8.2 Materials and Methods

8.2.1 Models and Data

Figure 1 shows a schematic representation of the two models that are evaluated in
the current analysis. In the model by Knibbe et al. (Chapter 3) the maturation of the
formation and elimination clearances of the morphine glucuronides was found to be
best described by a bodyweight-based exponential equation with an estimated exponent
of 1.44. Within this exponential equation the formation clearance of the glucuronides
was found to be significantly reduced in neonates younger than ten days. Distribution
volumes were estimated to scale linearly with bodyweight. This model will be referred
to as the systematic covariate model. In the model by Bouwmeester et al. ®! bodyweight
was included a priori using an allometric equation with fixed exponents of 0.75 for
clearance and 1 for distribution volume. Three exponential equations based on postnatal
age (PNA) augmented the model, one equation for distribution volumes, one for the
formation of the morphine metabolites and one for the elimination of the metabolites.
Bilirubin concentration and creatinine concentrations were also incorporated to the
model as covariates for the formation and elimination of the glucuronides respectively.
This model will be referred to as the fixed allometric model.

Cl*BWk Cl,*"BWOo75 /2

4 *2\Cl,*BWO-75

*3

Clg*BWk

Cl,*BWk

#1 reduced PNA <10 days *1 1-Bvol*exp(-PNA*LOG(2)/Tvol)
*2 1-Bel*exp(-PNA*LOG(2)/Tcl)
*3 exp(-Cy"Kyip)
*4 1-Brf*exp(-PNA*LOG(2)/Trf)
*585.947/C ., *exp(K, . *(PNA/365-40))

crea age

Figure 1. Schematic representation of the systematic covariate model (Chapter 3) (A) and the fixed
allometric model P (B). M = morphine, M3G = morphine-3-glucuronide, M6G = morphine-6-glucuronide,
V' = distribution volume of the designated compartment, Cl = clearance of designated route, Q =
intercompartimental clearance, PNA = postnatal age, k and m = exponential scaling constants, p = fraction
below adult values at birth and T = maturation half-life for distribution volume (vol), formation clearance
of the metabolites (cl), and elimination clearance of the metabolites (rf), C = plasma concentration and K =
scaling constant for bilirubin (bili) and creatinine (crea).
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The systematic covariate model (Knibbe et al. (Chapter 3)) was developed using
two datasets 5%, while the fixed allometric model (Bouwmeester et al. ¥)) was developed
using only one of these two datasets .. To allow for a direct comparison, the systematic
covariate model was refit with the data from the one common dataset. This dataset will
be referred to as the internal dataset of this study and consists of postoperative term
neonates, infants and children up to the age of three years on a continuous or intermitted
intravenous morphine regimen F.

For the external evaluation of the two paediatric covariate models in the current
analysis, five previously published datasets ' were used. These external datasets
included the same patient population as the internal dataset with the exception that their
PNA ranged up to only one year instead of three years. In addition, two external datasets
included preterm neonates 7], which is a younger age-range than the age-range in the
internal dataset ! used for model building. An overview of all datasets is given in table L.

Table 1. Overview of the internal dataset (Int.1) and the external datasets (Ext.1-5) used for model building
and external model evaluation.

Number of Postnatal Age in days Bodyweighting
Patients (median, IQR) (median, IQR)

4700 (3100 - 8000)

Dataset Patient Population

Post—operative term neonates,

[5] —_
Int.1. infants and children. 183 97 (8 - 286)
Ext.1. Zr‘:ztﬁlff’:;f;‘ve termneonates g 14 (0~ 70) 3100 (2550 — 4000)
Post-operative term neonates
191 _
Ext.2. and infants 105 (3 -135) 3800 (3000 - 5000)
Ext.3. 10 Term neonates and infants on 12 13 (6 - 80) 3050 (2675 — 6900)
e artificial ventilation
Preterm and term neonates on
Ext4. 1 artificial ventilation 63 04(02-05) 1180 (862.5 - 1760)
ifici 1035 (892.5 — 1295
Ext5. Prete'rrn' neonates on artificial 4 11-2) ( )
ventilation

Int. = internal dataset, Ext. = external dataset, M = morphine, M3G = morphine-3-glucuronide, M6G =
morphine-6-glucuronide

8.2.2 Model Evaluation
All model fitting and model-based simulations in the current study were performed
using NONMEM VI (ICON, Ellicott City, MD).

The framework for the evaluation of paediatric population models is composed of the
following six evaluation criteria and tools:
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4)

total number of parameters and condition number of the model. The latter was
obtained by taking the ratio of the largest and smallest eigenvalue of the covariance
matrix of the estimate from the NONMEM output.

numerical diagnostics by means of a bootstrap analysis using the PsN software
package ™. One hundred datasets were resampled with replacement from the
internal dataset and refit to the models. The parameter estimates for fixed and
random effects obtained in every separate run were summarized in terms of mean
and relative standard errors (RSE) for each parameter. Runs that did not minimize
successfully were excluded from the analysis.

prediction-based diagnostics by means of basic goodness-of-fit plots. Both the
individual and population predicted concentrations were plotted versus the
concentrations that were actually observed in these datasets. Plots were made for
both the internal and external datasets and for the population as a whole as well as
for stratified subsets based on age (0-1 month, 1 month — 1 year, 1-3 years). Mirror
plots were created to serve as a reference for these predicted versus observed plots
2

n-shrinkage as defined by Karlsson and Savic. ', which was calculated for all
model parameters for which inter-individual variability was estimated.
simulation-based diagnostics by means of normalized prediction distribution
errors (NPDE) .. Both the internal and merged external datasets were simulated
1000 times with inclusion of the inter-individual variability and residual error.
Using the NPDE add-on package for R (version 1.2) ' a cumulative distribution
was assembled for each observation with the 1000 simulated concentrations and
subsequently the value of the cumulative distribution at the observed concentration
was determined. An inverse function of the normal cumulative density function
was then applied to these data to obtain what are called the normalize prediction
distribution errors. The NPDEs are presented in a total distribution, versus time
and versus the concentration. This analysis was also performed on the population
as a whole and on the stratified subsets described in item 3.

Individual and population parameter estimates versus the most predictive
covariate in the model. In both models, bodyweight was the most predictive
covariate. Total morphine clearance was defined as the sum of Cl, and CI, for the
systematic covariate model (see figure 1A) and of dl, Cl, and Cl, for the fixed
allometric model (see figure 1B). The elimination clearances of the metabolites
(Cl, and Cl,) and the distribution volume of the central morphine compartment
(V,) were directly compared between the two models. To numerically quantify
the bias and precision of the model predicted parameter values compared to the
observed parameter values in the internal datasets, Mean Prediction Error (MPE,
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equation 1) and the Root Mean Square Error (RMSE, equation 2) were calculated
respectively for both models.

(predicted — observed) *100

(equation 1)

MPE = observed
n
Z (predicted — observed)® (equation 2)
RMSE =
n

In these equations predicted parameter values were the population predicted values
for each individual by both models and the observed parameter values were the
individually observed post hoc parameter values for that individual. MPE and RMSE
were calculated separately for the strata described before. A table with MPE and RMSE
was also constructed for the external datasets. This table was also stratified based on
age with the following strata: preterm neonates (PNA < 1 month and postmenstrual age
(PMA) at birth < 36 weeks), term neonates (PNA <1 month and PMA at birth =36 weeks),
toddlers (PNA 1 month — 1 year).

8.3 Results

Table IT A and B lists the parameter estimates as obtained with the fit of the internal
dataset by the systematic covariate model and the fixed allometric model, respectively.
With a total of 18 model parameters, the systematic covariate model described the fixed
and random effects with fewer parameters than the fixed allometric model, which contains
35 model parameters. The condition number of the systematic covariate model was 293,
which is well below the critical value for the indication of serious ill-conditioning of 1000
051, For the fixed allometric model the condition number was 10698, which is more then
ten-fold higher than the critical value.
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Table I1. Parameter estimates from the model fit, number of model parameters and parameter estimates from
the bootstrap procedure for the systematic covariate model (A) and for the fixed allometric model (B) obtained
with the internal dataset. Parameter names are explained in figure 1.

A.

. Bootstrap
Parameters Model fit (98 out of 100 successful)
Systematic covariate model Value (RSE%) Mean value (RSE%)
Fixed effects (n=10)
k = exponential scaling factor on
clearance 1.49 (3.6) 1.49 (3.42)
m = exponential scaling factor on
distribution volume 1 fixed 1 fixed
CL s 104 (ml/min/kg") 3.68 (9.0) 3.68 (8.15)
Cl, pya - 10 (m1/min/kg") 8.04 (11.0) 8.01 (10.1)
CL, s - 10 (M1/min/kg") 0.423 (11.1) 0.42 (14.4)
CL, o 10q (m1/min/kg¥) 0.623 (10.2) 0.62 (13.0)
CL, (ml/min/kg") 1.84 (9.9) 1.85(9.73)
Cl, (ml/min/kg") 0.955 (9.0) 0.95 (12.6)
Q,, (ml/min) 40.8 (24.1) 43.8 (42.7)
vV, =V, (/kg) 1.64 (8.2) 1.65 (9.44)
V,=V, (fraction of V) 0.157 (21.2) 0.161 (27.0)
Inter-individual variability (n=5)
o* Cl, 0.0809 (24.0) 0.0774 (22.9)
o* Cl, 0.256 (27.1) 0.263 (29.1)
®* Cl, 0.110 (15.2) 0.110 (15.5)
®* CL,-Cl, covariance 0.128 (18.2) 0.126 (19.8)
0V, 0.162 (17.9) 0.168 (20.7)
Residual variance (n=3)
6% PP (morphine) 0.440 (14.7) 0.431 (14.0)
o Pop (M3G) 0.261 (27.2) 0.243 (26.0)
o> PP (M6G) 0.0894 (15.7) 0.0894 (16.4)
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B.

. Bootstrap
Parameters Model fit (46 out of 100 successful)
Fixed allometric model Value (RSE%) Value (RSE%)
Fixed effects (n=14)
Cl,(1/h/70kg*7) 3.12(117) 2.59 (43.4)
Cl, (1/h/70kg*7) 64.3 (18.0) 55.2 (32.3)
Cl,(1/h/70kg*7) 3.63 (14.0) 3.99 (65.6)
CL, (1/h/70kg*™) 17.4 (16.0) 7.23 (38.0)
Cl, (1/h/70kg*™) 5.8 (20.2) 5.43 (23.4)
V, (1/70kg) 136 (59.3) 147 (34.9)
V, (1/70kg) 23 fixed 23 fixed
V, (1/70kg) 30 fixed 30 fixed
Bcl 0.834 (6.41) 0.894 (8.35)
Tcl (days) 88.3 (37.4) 65.2 (176)
Brf 0.832 (9.74) 0.814 (10.7)
Trf (days) 129 (49.8) 136 (45.4)
Bvol 0.391 (28.4) 0.388 (38.1)
Tvol (days) 26.3 (72.2) 26.7 (58.9)

e 0.0141 (140) 0.0201 (36.3)
K -0.00203 (33.2) -0.00207 (35.3)
Inter-individual variability (n=16)

o* Cl, 1.37 (104) 1.80 (69.9)
o? Cl, 0.346 (20.9) 0.916 (74.9)
o* Cl, 0.675 (29.3) 1.21 (75.8)
o* Cl, 0.185 (20.8) 0.764 (41.7)
o* Cl, 0.545 (32.1) 1.39 (87.6)
oV, 0.351 (29.1) 1.54 (121)

full omega block on all eta’s except Cl;

Data not shown

Data not shown

Residual variance (n=5)

G2 Prop morphine

G2 add M3G (ng/ml)

G2 Prop M3G

G2, add M6G (ng/ml)

G2 Prop M6G

0.128 (11.6)
50.3 (36.2)
0.118 (27.0)
0.198 (26.0)
0.0925 (16.9)

0.503 (105)
136 (217)
2.21(80.0)
1.31 (148)
0.249 (53.0)
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In tables II A and B the parameter estimates obtained with the bootstrap analyses are
presented as well. The parameter estimates of the bootstrap deviated more from the
values obtained in the initial model fit for the fixed allometric model compared to the
systematic covariate model. For both the model fit and the bootstrap procedure with the
fixed allometric model, the overall precision of the parameter estimates was lower than
the systematic covariate model as expressed by the higher relative standard error (RSE)
of the parameter estimates. Additionally, for the bootstrap, using the fixed allometric
model only 46 out of 100 model refits minimized successfully, whereas 98 out of 100
model refits successfully minimized using the systematic covariate model.

Figure 2 shows the individual predicted concentrations versus observed concentrations
for morphine and its metabolites as obtained with the internal dataset for both the
systematic covariate model (A) and the fixed allometric model (B). This figure shows
a slightly better description of individual concentrations by the fixed allometric model
compared to the systematic covariate model, especially for the mother compound
morphine.

Figure 3 shows the population predicted concentrations versus observed
concentrations obtained with the internal as well as the five external datasets. This figure
shows the systematic covariate model to be superior over the fixed allometric model
in the predictions of population concentrations in the datasets. The predictions for the
systematic covariate model are only slightly biased and since this bias is also observed
in the mirror plots (data not shown) this is not indicative of model misspecification. For
the fixed allometric model on the other hand significant bias towards under-prediction
can be observed, that did not correspond to trends observed in the mirror plots (data not
shown).

For both models, stratification of the plots of the predicted wversus observed
concentrations into the different age-groups showed no differences in model performance
(data not shown).

Table III shows the percentage of n-shrinkage for the parameters for which inter-
individual variability was identified in each of the two models. Both models have
parameters for which shrinkage is relatively high (>20%), indicating that the individual
data in the internal dataset is not rich in information about these parameters.

Table II1. Percentage n-shrinkage in both models for the parameters for which inter-individual variability
was identified.

cl, cl, cl, 1, cl, Vv,
Systematic covariate model (%) - 29.6 - 8.26 5.76 30.3
Fixed allometric model (%) 52.3 10.8 13.2 21.0 18.9 17.7
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For both models the results of the NPDE analysis with the internal dataset are depicted
in figure 4. For the systematic covariate model no trends in time or concentration are
observed and the mean of the distribution of NPDEs is close to 0 while the variance is
slightly lower than 1. The trends observed in the plots for the fixed allometric model are
indicative of an under-prediction, which appears to be relatively constant over time but
to increase with decreasing concentrations.

The results of the NPDE analysis with the external datasets confirmed the results
obtained with the internal dataset for both models (data not shown). Stratification into
different age-groups also revealed similar results for the three age-groups for each of the
models (data not shown).

The plots of the individual post hoc parameter estimates and population predicted
parameter estimates for total morphine clearance, the clearances of the metabolites
and distribution volume of the central morphine compartment versus bodyweight for
both models are shown in figure 5. For the systematic covariate model, total morphine
clearance is composed of Cl, and Cl, (see figure 1A) which both have different population
values for children older and younger than ten days resulting in two different lines of
population parameter estimates. For the fixed allometric model, total morphine clearance
is composed of Cl, Cl, and CI, (see figure 1B). The larger number of additional covariates
(age, and bilirubin and creatinine concentration) on the structural parameters in the fixed
allometric model results in scattered lines for the population parameter estimates of this
model. This figure shows that for the systematic covariate model the population predicted
values describe the individual post hoc values without bias for all parameters, whereas
for the fixed allometric model the population predicted values are biased compared to
the individual post hoc values for all parameters.

Table IV numerically quantifies the bias (MPE) in the population predicted
parameter values compared to the individually observed parameter values for both
models. The RMSE in this table quantifies the precision of the population prediction.
It can be seen that for the systematic covariate model, mean bias in the population
predictions stays well below 25% and remains relatively constant over the age-ranges for
all parameters. For the fixed allometric model, bias in the population predictions reaches
up to 250% and especially in the clearance of the metabolites an increasing trend towards
over-prediction is observed with increasing age.

Table V shows the mean bias and precision in the predictions of the model
parameters in the external dataset stratified in three age-groups. As can be expected, for
both models the bias in the parameter predictions of the external datasets is generally
larger than for the internal dataset, however for the systematic covariate model it still
remains below 35.6%, whereas for the systematic covariate model the values are between
25% and 300%.
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Table IV. Bias (MPE) and precision (RMSE) of the predicted parameter values in the internal datasets
stratified by age-group.

Systematic covariate model Fixed allometric model
parameter Age-group
MPE RMSE MPE RMSE
Total hi neonates’ 4.26 0.426 10.8 0.922
otal morphine 4 jjert -0.74 1.65 12.7 5.00
clearance
infants* 4.63 3.28 -2.56 7.90
neonates’ 19.7 0.291 -19.5 2.50
M3G clearance toddlers? 1.85 0.888 23.8 15.5
infants* 14.5 3.82 188 9.03
neonates’ 12.5 0.0784 -69.0 0.825
M6G clearance toddlers? 0.262 0.230 100 5.27
infants* 493 0.852 253 2.84
Distribution neonates’ 23.2 1.30 90.6 2.93
volumeof 4, qqerst 159 343 24 7.26
central morphine
compartment infants* 5.90 9.27 9.35 13.4

MPE = mean prediction error, RMSE = root mean square error,
" neonates, PNA<30 days, n= 61,

ttoddlers, PNA=1 month-1 year, n= 87,

*infants, PNA>1 year n= 35

Table V. Bias (MPE) and precision (RMSE) of the predicted parameter values in the external datasets
stratified by age-group.

arameter age-orou systematic covariate model fixed allometric model
P ge-group MPE RMSE MPE RMSE
preterm 17.4 0.0667 192 0.444
Total morphine ~ neonates
clearance term neonates’ 29.74 0.274 85.5 3.91
toddlers? 29.3 1.64 -26.6 4.22
preterm 163 0.102 114 0.225
M3G clearance neonates
term neonates’ 31.0 0.463 108 0.928
toddlers? 5.48 0.818 172 1.34
preterm 125 0.0447 46.8 0.779
M6G clearance neonates
term neonates’ 35.6 0.0818 31.1 0.502
toddlers* 125 0.285 93.5 0.490
Distribution preterm -12.9 0.945 -115 1.46
volume of neonates
central morphine  term neonates' -10.3 2.03 -296 3.50
compartment toddlers? 345 3.47 -93.1 3.22

MPE = mean prediction error, RMSE = root mean square error

" preterm neonates, (PNA < 30 days and PMA at birth < 36 weeks), n=80
* term neonates, (PNA < 30 days and PMA at birth > 36 weeks), n=40
*infants, PNA = 1 month — 1 year, n=33
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8.4 Discussion

Asin childhood many physiological changes take place in quick succession, the paediatric
population is very heterogeneous. Additionally, studies in this population are often
performed during routine clinical practice, which increases the variability in both dosing
and sampling schemes, while due to limitations in sample size and frequency often only
sparse data are obtained. All these factors influence the evaluation of population and
covariate models for this young population. In the current study a framework of six
different evaluation criteria is proposed for the evaluation of paediatric models. Most
tools in the framework are not necessarily new, but in the context of paediatric model
evaluation adaptations to the standard methods are sometimes required or a shift in
emphasize on the various tools is essential.

As an example, two previously published paediatric population PK models for
morphine that were based on the same dataset but fundamentally different covariate
models, were evaluated with this framework. The systematic covariate model was
developed by regarding bodyweight and age as regular covariates in a systematic
covariate analysis (Chapter 3). The fixed allometric model was based on allometric
principles including bodyweight a priori using exponential functions with fixed
exponents and estimating an age-based function .

In itself the number of parameters in a model is not an evaluation criterion, however
according to the rule of parsimony a model should have the lowest possible number of
parameters. Large deviations of bootstrap parameter values from the original value, low
precision in parameter estimates as expressed by high RSE values in the model fit and
bootstrap procedures, small number of successful bootstrap runs and a condition number
higher than 1000 are all generally indicative of model inaccuracy, model instability, and ill-
conditioning 58 Testing covariates for significance and only retaining a covariate when
it significantly improves the model adheres to the rule of parsimony, does not introduce
specific assumptions into the model, and the resulting model is always supported by
data. In the current example, it is shown that the systematic covariate model performs
well on all the criteria of ill-conditioning. In case covariates in a model are not formally
tested for significance there is a risk of over-parameterization. The results for the fixed
allometric model in this example suggest the fixed allometric model to be an unstable
model for which precise parameter estimates cannot be obtained. It should also be noted
in this respect that with the increased number of fixed and random model parameters
in the fixed allometric model, the degrees of freedom in this model are increased as
well. More degrees of freedom improve the description of data by a model, but do not
necessarily improve the predictions by that model.
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As stated before, paediatric PK analyses are often based on sparse data. This is an
important aspect to consider when evaluating paediatric population PK models, because
when data are uninformative due to the scarcity of the data, the estimated variability
parameters may shrink to zero causing the individual post hoc parameter estimates
to move towards the population predictions. This shrinkage phenomenon makes
individual parameter estimates and the diagnostics based on them less reliable or even
misleading 2%l. Population predictions however, are solely based on the fixed effects
described in the structural and covariate model. As the random effects are not considered
in the population predictions, diagnostics based on population predictions are not
sensitive to shrinkage and therefore more reliable then diagnostics based on individual
predictions. The two models in the current study illustrate how diagnostics based on
individual predictions can be misleading when shrinkage is high, as, according to table
I1I, was the case for some of the parameters in both models. The plots of the individual
predicted versus observed concentrations in figure 2 inadvertently suggest the fixed
allometric model to perform better than the systematic covariate model, since especially
for morphine the data points are closer to the line of unity. However, in figure 3 large
differences in the predictive performance between the two models are revealed for both
the internal and external datasets when considering population predicted concentrations
instead of the individual predicted concentrations. For the systematic covariate model
there are no signs of model misspecification. The fixed allometric model on the other
hand shows significant bias towards under-prediction throughout the total concentration
range. Since diagnostics based on population predictions are generally more reliable,
these should always be included in the evaluation of paediatric (covariate) models.

Simulation-based diagnostics known as posterior predictive checks (PPC) are diagnostics
that create a reference distribution of an observation of interest by performing multiple
model simulations with inclusion of both fixed and random effects and subsequently
compare the actual observations to this reference distribution ™. A visual predictive
check (VPC) is a commonly used and easily interpretable form of a PPC that graphically
presents the reference distribution and observed data 1. A VPC can be used for the
evaluation of paediatric models as well, however when data are obtained during routine
clinical practice and variability in individual dosing and sampling schemes are high,
the NPDE methodology " is often easier to perform and interpret. Shrinkage does not
influence the results of simulation-based diagnostics '?. The results of the NPDE analysis
of the models in the current example demonstrate that the systematic covariate model
can quite accurately predict median concentrations for morphine and the glucuronides,
but that it slightly over-predicts the variability in the overall dataset. This over-prediction
of the variability is constant over time and over the concentration range. If this model
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were to be used in simulation exercises the predictions would be unbiased and the
inferences made on the variability in the population would be on the conservative side
as the variability is predicted to be higher than it actually is. Based on the trend towards
under-prediction by fixed allometric model, it can be concluded that significant bias in
the predictions would occur if this model would be used in simulation exercises. The
under-prediction of concentrations by the fixed allometric model increases the risk of
overdosing when deriving morphine doses based on this model. These NPDE results
substantiate the results obtained in the population predicted versus observed plots in
figure 3.

Due to the heterogeneity in the paediatric population it is very important to not
only perform diagnostics on the population as a whole, but to also look at various
subpopulations by stratifying the datasets based on bodyweight or age.

For both models in the example, stratification showed the same descriptive and
predictive performance inall age-groups. For the systematic covariate model the predictive
performance of the model was adequate in all age-ranges. The trends towards under-
prediction identified for the fixed allometric model was also similar across all age-ranges.
Despite the fact that stratification of the diagnostics did not reveal new information in
the current examples, this adjustment of the various validation tools remains imperative
for the detection of previously unidentified age-related misspecifications.

To corroborate the obtained covariate relationships in paediatric models, the plots of
individual and population parameter values versus the covariate presented here in figure
5, together with a numerical representation of bias and precision in table IV, have proven
to be highly informative. Even in case of high shrinkage this diagnostic will enable the
identification of bias in the population predictions of parameters. In this study, in both
models bodyweight was the most important covariate for clearances and distribution
volumes. For the systematic covariate model, population predicted parameter values
are adequately centred in the range of individual predicted values for all parameters
and across the entire bodyweight- and age-range. However, for the fixed allometric
model, the population predicted parameter values are biased compared to the individual
predicted values. For some parameters this bias exists over the total weight and age-
range, for others only over part of these ranges. The results in the plots in figure 5 and
table IV provide an explanation for the adequate individual concentration predictions by
the fixed allometric model and the highly biased population predictions by this model,
as observed with the other evaluation tools. Structural model misspecifications in the
population parameter values result in biased population predictions that are corrected
by the error models to yield good individual predictions. This type of diagnosticis hardly
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ever published, however the information contained in these plots and tables is crucial
and should become a standard diagnostic tool with paediatric population PK models.

Especially in drug development, population PK models in paediatric subpopulations
are often used for extrapolations to younger age-ranges. When a model is used for
this purpose, the obtained covariate relationships should be thoroughly evaluated, for
instance by using the diagnostic in figure5 and table IV. In the current study, two out of
five external datasets (Ext 4 and Ext 5) include preterm patients, a younger and smaller
population than the population in the internal dataset. For both models the results of the
various tools in the framework were similar irrespective of the age-range in the dataset
that was used, indicating that the inclusion of a new patient population in the external
validation did not influence the overall results

A systematic covariate analysis is a data driven approach, therefore the
extrapolation potential of the resulting model cannot be known a priori. It is clear that for
the systematic covariate model in the current analysis extrapolations to older (heavier)
children is not possible as the bodyweight based exponential equation for clearance
predicts rapidly increasing clearances at higher weight-ranges. Figure 5 indicates that for
this model, population parameter predictions are unbiased in the lower weight-ranges,
suggesting that extrapolation to smaller children could be possible. The extensive
evaluation procedures in the current example prove this to be the case in this particular
example.

It is claimed that the allometric equations used in the fixed allometric model
are based on ‘sound biological principles’ ? and that the methodology based on these
equations therefore yields mechanistic models that can be used for extrapolations outside
the studied age- or weight-range. It is argued that the influence of size (parameterized
by bodyweight) and maturation (parameterized by age) on the parameters in paediatric
population PK models are disentangled by using the fixed allometric equations
augmented by age-based functions “*!. However, the theory of allometry is based on the
empirical observation that over a wide weight-range, metabolic rates of animal species
increase with bodyweight to the power of 0.75 1. The fixed allometric exponents have
no biological or physiological meaning, although reports exist that propose possible
physiological explanations %, Conversely, a large body of evidence exists against the
existence of one unique value for the allometric clearance exponent ! and against
the application of these allometric equations in human paediatric PK models %1,
Additionally, the maturation function based on age, only reflects a mathematical residue
of the age-effect that remains after the inclusion of the correlated covariate bodyweight. In
the current study, in the fixed allometric model the model-predicted increase in clearance
comes to a plateau with increasing bodyweight. Therefore, it can not be excluded that
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this model can be used for extrapolations to higher weight-ranges. The prospective
properties of this model in preterm neonates is however very poor, albeit comparable to
the predictions in the older children that comprised the learning dataset. As a result, the
extrapolation potential of fixed allometric models in general can neither be confirmed
nor disputed based on the results in the current study.

8.5 Conclusion

The framework of six evaluation criteria proposed in the current study takes into
consideration the specific issues encountered in the evaluation of paediatric population
models. The application of this framework to two models for morphine and its two major
metabolites in children younger than three years with fundamentally different covariate
models demonstrates how to detect over-parameterization, which is a risk with models
based on sparse data. Additionally it illustrates the importance of diagnostics that are
based on population predictions rather than individual predictions, as high shrinkage
due to sparse data may yield misleading individual prediction-based diagnostics. Finally,
the diagnostic comparing population parameter predictions with individually observed
parameter values proved to be highly informative in assessing obtained covariate
relationships as in the current example it detected the cause of model misspecification by
the fixed allometric model. Stratification of the various diagnostics did not yield much
additional information in the current examples, however due to the heterogeneity of
the paediatric population this adaption of standard validation tools may be of value for
other paediatric models.

The differences observed in model performance between the systematic
covariate model and the fixed allometric model in the current study do not imply that any
of the two methodologies for covariate model development is superior over the other.
The current study does however highlight the importance of corroborating results in
evaluation procedures. It also illustrates that information in data should not be ignored
and that one should never be guided by theories alone.
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