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Chapter 3

Abstract
Apparently balanced chromosome abnormalities are occasionally associated with
mental retardation (MR). These balanced rearrangements may disrupt genes. However,
the phenotype may also be caused by small abnormalities present at the breakpoints
or elsewhere in the genome. Conventional karyotyping is not instrumental for
detecting small abnormalities because it only identifies genomic imbalances larger
than 5-10 Mb. In contrast, high-resolution whole-genome arrays enable the detection
of submicroscopic abnormalities in patients with apparently balanced rearrangements.

Here, we report on the whole-genome analysis of 13 MR patients with
previously detected balanced chromosomal abnormalities, five ge novo, four inherited,
and four of unknown inheritance, using Single Nucleotide Polymorphism (SNP) arrays.
In all the cases, the patient had an abnormal phenotype. In one familial case and
one unknown inheritance case, one of the parents had a phenotype which appeared
identical to the patient’s phenotype. Additional copy number variants (CNVs) were
identified in eight patients. Three patients contained CNVs adjacent to one or either
breakpoints. One of these patients showed four and two deletions near the breakpoints
of a ge novo pericentric inversion. In five patients we identified CNVs on chromosomes
unrelated to the previously observed genomic imbalance.

These data demonstrate that high-resolution array screening and conventional
karyotyping is necessary to tie complex karyotypes to phenotypes of MR patients.

Introduction

Recent advances in molecular cytogenetic technologies provide a resolution
that exceeds that of conventional karyotyping and increased the detection of
aberrations from 5% to approximately 17% in patients with mental retardation (MR)
[13,16,17,19,23,28,31,32,34-36].

A disadvantage of the array technique is the incapability to detect
balanced structural abnormalities such as translocations and inversions. Balanced
rearrangements have a prevalence of at least 1:500 and in approximately 6% of
antenatal patients with a balanced rearrangement an abnormal phenotype is found
[20,37]. The abnormal phenotype of these patients can be explained by (1) breakpoint
regions directly disrupting genes or transcription regulatory regions [21], (2) indirectly
by submicroscopic copy number variants (CNVs) near one or both of the breakpoints
[4], (3) the rearrangement hosts ‘cryptic’ complex chromosomal rearrangements (CCRs)
[24], (4) submicroscopic CNVs unrelated to the translocation or inversion [3,6,18], or (5)
another unidentified genetic or environmental factor.

Reports of single patients or small series of patients with apparently balanced
aberrations have identified unexpected complexity and instability of the human
genome [3,6,18,24]. Some studies investigated the difference between additional CNVs
in carriers of de novo ‘balanced’ reciprocal translocations and CCRs with normal and
abnormal phenotypes [1,11]. In approximately 35% of the phenotypically abnormal
patients additional candidate disease-causing CNVs were identified, mostly occurring
around the breakpoints of the translocations. In the phenotypically normal cohort
no additional genomic CNVs were identified. Sismani and colleagues studied 12
MR patients both with ge 7ovo and familial apparently balanced translocations for
the presence of cryptic CNVs [33]. Two e novo and one familial case had additional
abnormalities. Recently, Schluth-Bolard and colleagues analysed 47 MR patients with de
novo and familial apparently balanced chromosomal rearrangements [30]. All familial
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rearrangements were inherited from phenotypically normal parents. Imbalances were
detected in 16 de novo cases (48.5%) and in 4 inherited cases (28.6%).

We report on 13 patients carrying an apparently balanced translocation or
inversion detected with conventional karyotyping. High-resolution Single Nucleotide
Polymorphism (SNP) array analysis was performed to search for cryptic CNVs. In eight
patients additional CNVs were detected. Herein we focus on the interpretation of the
detected CNV in relation to the phenotypes of the patients.

Materials and methods

Patients

This study included 13 patients with MR, with or without multiple congenital
malformations, and an apparently balanced translocation or inversion observed
with conventional karyotyping (five @de novo, four inherited, and four of unknown
inheritance). A summary of the clinical and cytogenetic data of all patients is shown in
Table 3.2.1. Karyotyping on GTG-banded chromosomes from cultured lymphocytes of
the patient was performed according to standard techniques. The study was approved
by the Leiden University Medical Center Clinical Research Ethics Board, conforming to
Dutch law and the World Medical association Declaration of Helsinki.

SNVP array's

DNA was extracted from whole blood by a Gentra Puregene DNA purification Kit
(Gentra Systems, Minneapolis, USA), following the manufacturer’s instructions. The
Affymetrix GeneChip Human Mapping 262K Asp/, 238K Szy/ arrays (Affymetrix, Santa
Clara, CA, USA) and Illumina HumanHap300, Human CNV370 BeadChips (Illumina Inc.,
San Diego, CA, USA) were performed following the manufacturers’ instructions and
data was analyzed as described previously [17]. Table 3.2.1 shows which SNP array
platform was used for each patient.

Fvaluation and validation of CVVs
Detected CNVs were evaluated as described previously [17]. The potentially pathogenic
CNVs were confirmed with Fluorescence /7 S/t Hybridization (FISH) analysis or another
type of SNP array using an independent DNA sample. If parents were available,
segregation analysis was performed by FISH or SNP array analysis. FISH analysis was
carried out by standard procedures as described previously [9]. BAC clones mapping
to the unbalanced chromosome regions were selected based on their physical location
within the affected region (http//: www.ensembl.org, Ensembl release 54 - May 2009,
Genome build NCBI36).

All potentially pathogenic CNVs were assessed with Ensembl (Ensembl release
54 - May 2009, Genome build NCBI36) and DECIPHER (https://decipher.sanger.ac.uk) for
gene content and patients with similar CNVs respectively. Finally, data of all patients
with (potentially) pathogenic CNVs was added to the DECIPHER database.

Results

SNP array analysis demonstrated 16 additional submicroscopic CNVs in eight of the 13
patients (61.5%); five out of the five g novo, one out of the four familial and two out of
the four unknown inheritance cases. In the remaining five patients no additional CNVs
were detected. The 16 CNVs consisted of 15 interstitial deletions ranging in size from
59 kb to 10.11 Mb and one interstitial duplication of 2.78 Mb. Results are described in
detail in Table 3.2.1.
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The parental origin of the known &e novo deletions could be determined in
three patients (1, 3, and 8). In all these patients the deletions occurred on the paternal
chromosome. In patients 4, 5, and 6 the breakpoints of the deletions were flanked by
segmental duplications (according to the Database of Genomic Variants, DGV; http://
projects.tcag.ca/variation).

CVVs at or near the breakpoint regions

Eight CNVs in three patients were located at or near one of the breakpoints of the
apparently balanced chromosome abnormalities (Table 3.2.1). Two of these patients (1
and 3) had more complex chromosome abnormalities.

Patient 1

The patient was a 1-year old boy with MR, sleeping problems, grand-mal seizures,
sensorineural deafness, severe loss of vision, epicanthic folds, strabismus, ventricular
septal defect (VSD) and general hypotonia. He was initially diagnosed with a @e novo
paracentric inversion of region 5922q31.3 (Fig. 3.2.1a). Additional SNP array screening
showed four ge novo interstitial deletions on band 5g14.3 (Fig. 3.2.1b and ¢) and two
de novo interstitial deletions on band 5q33.3 (Fig. 3.2.1b and d). The presence of the six
deletions was confirmed by a different SNP array platform (Nspl, Affymetrix). Based on
the SNP array data the inversion breakpoints were revised to 5q14.3 and 5g33.3. These
breakpoints were confirmed by high resolution G- banding. The 6 deletions contain
eight known coding genes (COX7C, RASAT, CCNH, TMEM 1678, MEF2C, FBFT, RVFT745 and
UBLCP)).

Log R Ratio

Figure 3.2.1 Cytogenetic and molecular results for patient 1. (a) Partial karyotype showing chromosome
5. Right: abnormal chromosome 5 with inversion 5q14.3g33.3. (b) SNP array copy number plot (lllumina
HumanHap 300 BeadChip) for chromosome 5. (c) Four deletions at 5q14.3 and (d) two deletions at 5q33.3
Patient 2

The patient was a 61-year old male with MR and psychiatric problems. Conventional
karyotyping showed a translocation between the long arm of chromosome 11 and
the short arm of chromosome 12. The breakpoints were determined at 11g13.3 and
12p12.3. In addition, a pericentric inversion of region 12p12.3q13.1 was observed in
the derivative chromosome 12. Subsequent SNP array analysis identified an interstitial
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deletion on band 12p12.3. The parents were not available for testing. The 2.51 Mb
deleted region contains eight known coding genes (R£RG, PTPRO, £PSS, STRAP, DERA,
SLCT5A5, MGSTT and LMO3).

Patient 3

The patient was a 15-year old mentally retarded girl. She had a severe anxiety disorder
and autistic features. The patient is described in detail by Dauwerse and colleagues
[10]. Conventional karyotyping showed a de novo paracentric inversion of region
7931.3g34. However, FISH analysis in order to map the exact breakpoints identified an
insertion of region 7g31.31g35 within band 7g21.3. SNP array screening demonstrated
a de novo interstitial deletion at the insertion site from chromosome bands 7g21.11 to
7921.3. The deletion contains approximately 40 known coding genes.

CNV5s on unrefated chromosormes
Six CNVs in four patients were detected on chromosomes not related to the
chromosomes involved in the balanced inversions or translocation (Table 3.2.1).

Patient 4

The patient was a 42-year old male, diagnosed with MR and obesity. Conventional
karyotyping showed a pericentric inversion of chromosome region 6p21.3q15 (Fig.
3.2.2a). Additional SNP array analysis identified two interstitial deletions on the long
arm of chromosome 18 in chromosome bands q21.31 and g21.32 (Fig. 3.2.2b and ¢).
The patient’s mother and brother showed a normal karyotype and normal SNP array
results. His father was not available for testing. The two deletions contain 13 known
coding genes (VEDD4L, ALPR2, MALTT, ZNF332, SECT7C, GRP, RAX, CPLX4, LMANT, CCBET,
PMAIPT, MC4R, CDHZ20).

P—

Log R Ratio

C

Figure 3.2.2 Cytogenetic and molecular results for patient 4. (a) Partial karyotype showing chromosome
6. Right: abnormal chromosome 6 with inversion 6p21.3q15. (b) SNP array copy number plot
(INumina HumanCNV370 BeadChip) for chromosome 18. (c) Two deletions at 18921.31g21.31 and
18921.32921.33.
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Patient 5

The patient was a 46-year old female with MR, deafness, heterochromia of the iris, a
depigmented forelock, hypertension and hypothyroidism. Mutations in the coding
region of M/7F (Waardenburg syndrome) were excluded by sequencing. Conventional
karyotyping showed a balanced translocation t(3;18)(p14.2;g23). SNP array analysis
identified one additional deletion on the long arm of chromosome 22 between bands
22g11.22 and q11.23. Conventional karyotyping and SNP array results of the father
were normal. The mother was not available for testing. However a healthy sister of the
proband showed the same t(3;18)(p14.2;923). The 22q deletion contains four known
coding genes (F7DR7, GNAZ, RAB36 and BCA).

Patient 6

The patient was a 5-year old boy with mild MR and hyperactivity. He had several
dysmorphic features, including microcephaly, coarse hair, hypotelorism, a narrow
nasal bridge, a long columella, large ears, pectus excavatum, syndactyly of 2-3 toes,
and patchy depigmentation of the skin. Conventional karyotyping identified a e
novo balanced translocation t(2;6)(q37.1;q13). SNP array results revealed an interstitial
deletion on the long arm of chromosome 13 band g12.3. In the 1.24 Mb deletion five
known coding genes (A74AA0774, SLC7AT, UBL3, KATNALT, HMGE]) are located. FISH
analysis on the parents showed that the deletion occurred e novo. Parental DNA for
SNP array analysis was not available.

Patient 7

The patient was a 1-year old boy with mild developmental delay, a unilateral cleft
palate and dysmorphic features, including protruding ears and a unilateral preauricular
earpit, long eyelashes, prominent arched eyebrows and strabismus. On his philtrum
he had a dimple. X-ray of the spine showed posterior fusion defects of several thoracic
vertebrae. Conventional karyotyping showed a de novo balanced translocation
t(2;6)(q24.1;p24.3). SNP array results revealed a de novo interstitial duplication on
chromosome 1p32.3p32.2 that contains 23 known coding genes. The parental origin of
this duplication could not be determined with SNP array analysis.

CWV at or near the breakpoint plus additional, unrelated CNV

Patient 8

The patient was a new born girl with low-set ears, a prominent forehead, pulmonary
stenosis and a VSD. Conventional karyotyping showed a @e s7ovo translocation t(12;14)
(g21.3;932.1). Subsequent SNP array analysis detected three de novo deletions on
chromosome bands 3p12.3, 4928.3931.23, and 12921.31921.33, the latter at the
breakpoint of the translocation. The deletions contain in total 52 known coding genes.

Discussion

The development of high-resolution array platforms allows the detection of CNVs
in carriers of apparently balanced chromosome aberrations. In this study we have
analyzed 13 MR patients with previously detected apparently balanced chromosomal
rearrangements. Three of the patients had a breakpoint-associated imbalance, four had
an imbalance on an unrelated chromosome and one patient had both an additional
imbalance near the breakpoint of a translocation as well as cryptic deletions on
unrelated chromosomes.
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CVVs at or near the breakpoint regions

Three of the 13 patients showed additional CNVs at the breakpoints (patients
1-3). The deletions in patients 1 and 3 are highly likely contributing to the patients’
phenotypes, since both are de novo and other patients have been reported with
deletions in the same regions.

The 5q14.3 deletion region of patient 1 is recently described, five patients
showed a 5q14.3 microdeletion and phenotypic similarities, including severe MR with
absent speech, epilepsy, hypotonia and stereotypic movements [22]. The minimal
overlapping region in their study encompassed the M£F2C gene. The phenotype of
patient 1 is therefore most probably caused by haploinsufficiency of the M££2C gene.
None of the 12 breakpoint regions of the 6 de novo deletions in patient 1 contained
low copy repeats (LCRs). It is therefore not likely that non-allelic homologous
recombination (NAHR) underlies this complex single chromosome rearrangement. Poot
and colleagues proposed that such a complex single chromosome rearrangement may
be the result of mismatched repair of multiple double-strand breaks that co-localize in
a chromosome at the time of DNA-damage induction [25].

None of the genes in the 12p12.3 deletion of patient 2 could be directly related
to the phenotype. To our knowledge, a deletion of the same region has not been
reported yet. Since we were not able to investigate the parents, pathogenicity of the
deletion remains uncertain.

The phenotype of patient 3 overlaps with patients reported with e novo
7921.1921.3 deletions [8]. As explained previously disruption of the C70rf58 gene in
band 7g31.31, one of the insertion breakpoints, may explain anxiety disorder and/or
autistic features [10].

CNVs on unrelated chromosomes

In four patients the translocation or inversion appeared balanced, but SNP array analysis
detected cryptic CNVs on unrelated chromosomes (patients 4-7). Haploinsufficiency of
one or more genes in the deletions of patients 4, 5, and 6 may have contributed to the
patients’ phenotypes.

Partial deletions of the long arm of chromosome 18 lead to variable
phenotypes. The region 18q12.1921.33 could be associated with mild to severe MR
[12,14], explaining the phenotype of patient 4. Furthermore, MC4F (melanocortin
4 receptor) may have contributed to the obesity in this patient. The #/C4# gene is a
member of the melanocortin receptor family and represents a G-protein coupled seven
transmembrane receptor. Genetic studies related melanocortin receptors to genetically
determined obesity [5,7].

The deletion detected in patient 5 overlaps partly with a known microdeletion
syndrome. The recurrent 22q11.2 distal deletions are either approximately 1.4 Mb or
2.1 Mb in size with a common proximal breakpoint flanked by LCR22-4 [2]. They differ
at the distal breakpoints flanked by either LCR22-5 for the smaller deletion or LCR22-6
for the larger deletion [2]. The breakpoints for the deletion of patient 5 are LCR22-5
and LCR22-6. The same deletion has been reported before in one patient and her
healthy father [26]. This patient had a congenital heart defect, normal appearance and
psychomotor development, and minimal dysmorphic features. The clinical features of
patient 5 do not resemble the previously reported patient.

Patients with larger 13q deletions than patient 6 have been reported, but
presented no recognizable phenotype [29]. One patient, with a deletion of 1.43 Mb on
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13912.3 (DECIPHER ref. 2154), is partly overlapping with the deletion in our patient. The
common clinical features are MR, microcephaly, and large ears. The smallest region of
overlap contains two genes, AA7NVAL7 and AMGE7, which might be responsible for the
overlap in phenotype.

The clinical relevance of the ge novo interstitial 1p duplication in patient 7 is
not clear. Interstitial duplications of chromosome 1p are rare and are associated with
a variable phenotype [15]. One patient has been described with a similar duplication,
however this patient also carried a deletion within 1p36.32 [15].

CVVs at or near the breakpoint plus additional, unrelated CVV

All three deletions in patient 8 occurred e novo and it is highly likely that
haploinsufficiency of one or more genes have contributed to the patient’s phenotype.
Each deletion partly overlaps with patients described in the DECIPHER database (refs.
2059, 790 and 1020), although no similar phenotypes have been described.

General discussion and conclusion

Since there is no applicable technique available yet to detect balanced chromosome
rearrangements and cryptic imbalances in one experiment, both high-resolution
array screening and conventional karyotyping were necessary to unravel the complex
karyotypes described in this paper. In 61.5% of our patients with an apparently
balanced aberration, we detected an additional cryptic CNV.

In all five de novo cases an additional cryptic CNV was identified. Previous
published data have shown cryptic imbalances in approximately 30-50% of MR
patients with @e r7ovo apparently balanced chromosome rearrangements [11,33]. The
high occurrence in our study is probably due to the small sample size. In only two
of the four patients with an inherited translocation or inversion, one of the parents
showed a similar phenotype as the proband. No additional CNVs were detected in
these two cases. In one of the other familial cases an additional CNV not related to the
translocation was detected (patient 4). Since, DNA of the mother was not available the
inheritance of this CNV could not be determined.

By SNP haplotype analysis we could determine for three of the patients that
the deletions had occurred in the paternal allele. This observation is consistent with
previous studies suggesting that male gametogenesis is more susceptible to this type
of chromosome abnormalities [11].

In the remaining patients where no additional abnormalities were detected
the presence of cryptic imbalances explaining the phenotype obviously cannot be
excluded. It is possible that higher resolution arrays may reveal smaller aberrations that
could have been missed in our analysis. Alternatively, the breakpoints of the apparently
balanced rearrangements might disrupt putative disease genes or cause a position
effect giving rise to the abnormal phenotype.

With the advent and application of high-resolution array screening it was
demonstrated that man is more genetically variable than previously considered [27].
Each individual (healthy or not) presents multiple CNVs in its genome. Yet, unless
reported in healthy individuals or patients with similar phenotypes, the pathogenicity
of a substantial number of CNVs remains uncertain. The clinical interpretation of CNVs
is even more difficult in patients with multiple chromosomal aberrations like the ones
described in this paper, as the phenotypes might be the result of a combination of two
or more chromosome aberrations [3,6,18].
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The findings described here once more illustrate that genomic CNVs are an
important cause of phenotypic abnormalities in carriers of apparently balanced
chromosome aberrations [1,3,6,11,18,24,30,33]. We recommend re-evaluating MR
patients with an apparently balanced karyotype (translocation, inversion or CCR)
by whole-genome high-resolution array analysis. Furthermore, we advise to first
investigate MR patients with a SNP array analysis and if more complex abnormalities
are suspected a follow-up by conventional karyotyping [17].
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