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ABSTRACT

Data analysis in mass spectrometry-based proteomics struggles to keep pace 
with the advances in instrumentation and the increasing rate of data 
acquisition. Analyzing this data involves multiple steps requiring diverse 
software, using different algorithms and data formats. Speed and 
performance of the mass spectral search engines are continuously 
improving, although not necessarily as needed to face the challenges of 
acquired big data. Improving and parallelizing the search algorithms is one 
possibility, data decomposition presents another, simpler strategy for 
introducing parallelism. We describe a general method for parallelizing 
identification of tandem mass spectra using data decomposition that keeps 
the search engine intact and wraps the parallelization around it. We 
introduce two algorithms for decomposing mzXML files and recomposing 
resulting pepXML files. This makes the approach applicable to different 
search engines, including those relying on sequence databases and those 
searching spectral libraries. We use cloud computing to deliver the 
computational power and scientific workflow engines to interface and 
automate the different processing steps. We show how to leverage these 
technologies to achieve faster data analysis in proteomics and present three 
scientific workflows for parallel database as well as spectral library search 
using our data decomposition programs, X!Tandem and SpectraST.  
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INTRODUCTION

Mass spectrometry (MS), particularly tandem mass spectrometry (MS/MS), 
is currently the most used method for identifying unknown proteins present 
in biological samples. Advances in instrumentation have reduced 
acquisition time and increased resolution and  sensitivity, which in 
combination with complementary fragmentation mechanisms1, 2 and high 
resolving-power mass analyzers in both MS and MS/MS3-5 have led to very 
complex data. This has brought new challenges to proteomics, i.e. how do 
we store and process these large data volumes. Standard desktop computers 
often cannot process data at the rate it is being generated, creating an 
additional bottleneck in the analysis pipeline. The analysis of the mass 
spectrometry data typically involves several steps. One essential and 
computationally expensive step is peptide identification, i.e. the mapping of 
each spectrum to a unique peptide or one or more peptides. In this 
manuscript we describe a method of handling mass spectrometry “big data” 
by outsourcing computationally intensive tasks using off-the-shelf open 
source tools and in-campus cloud resources. We introduce a method for 
parallelizing common search engines like X!Tandem and SpectraST that are 
part of the Trans-Proteomic Pipeline (TPP)6, which can also work for most 
other available search engines. We show how peptide identification speed 
using workflow engines, cloud computing, and a new data 
decomposing/recomposing algorithm can easily be improved by a 
significant factor. In our tests we reached more than 30-fold speed 
improvement comparing X!Tandem running locally (one core) with the 
same program running on the cloud and a 7-fold improvement for the 
SpectraST spectral library search.

METHODS

One important step in the processing pipeline of mass spectrometry data is 
associating a particular (tandem) mass spectrum with a peptide sequence. 
There are three types of search engines for peptide identification, i.e. 
database, library, and de novo. Database search engines, like Mascot7,
SEQUEST8, or X!Tandem9, compare each spectrum obtained from the 
sample with theoretical spectra generated from a list of predicted peptides. 
The predicted peptides list is ideally derived from all of the protein 
sequences that could be expressed in the experiment sample. Library search 
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engines, like SpectraST6 or X!Hunter10 assume that the fragmentation of a 
particular molecule in a mass spectrometer is partially reproducible between 
analyses and instruments. One can therefore generate a library of ion 
fragmentation spectra with each spectrum being associated with a 
corresponding molecular structure. A library search engine assigns a 
specific structure to an experimental spectrum by comparing it with the 
entries in the library.

Peptide identification using a search engine is a main processing bottleneck 
in mass spectrometry based proteomics. A normal search of 30,000 spectra 
could take up to 40 minutes on common modern desktop with a 4-core 
processor, depending on the search parameters. In many cases this is 
impractical for scientists, especially if they want to include more 
modifications in their searches, which can significantly increase the search 
space. Enhancing search engine speed besides developing search algorithms 
for high performance computing environment are continuously under 
development.11-14 While making faster algorithms is a main objective of 
several groups14-17, we are only targeting the data itself leaving the search 
engine intact. This makes the approach applicable to many search engines. 
Search engines are legacy software that have gained acceptance and 
usability in the proteomics community and we therefore prefer to consider 
them as black boxes and not modify them in any way, but instead wrap the 
parallelization around them. In the rest of the section we describe the data 
formats used, the new decomposition and recomposition algorithms, the 
processing pipelines and how to scale these up to scientific workflows. 

Data formats

To build on other efforts, such as the TPP6, we chose to use common XML 
formats such as mzXML18, 19 for input and pepXML20 as output. mzXML 
and pepXML are two de facto open format standards still used for mass 
spectrometry data. Converters from almost any other format to mzXML or 
pepXML can be obtained.19-21 Extension of our method to mzML22 is also 
feasible, as only the logic in the data decomposition algorithm needs to be 
modified with no further changes. Using open standard formats maintains 
compatibility with other efforts and existing pipelines and avoids making 
this work an isolated solution. 
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Data decomposition and recomposition

Decomposition involves breaking down a complex system into smaller 
pieces. It is the basis for finding the tasks that can run concurrently in 
parallel applications. There are two major decomposition methods in 
parallel programming, i.e. functional and data decomposition.23 Data 
decomposition is used more often and it depends mainly on the developer’s 
knowledge about the data and how an algorithm processes the data. In order 
to facilitate parallelism of peptide identification of mass spectrometry data 
we developed two algorithms for decomposing and recomposing the inputs 
and outputs of an arbitrary search engine. The only assumption made is that 
each spectrum will be processed by the search engine independently from 
other spectra. This is true for many search algorithms, but not subsequent 
validation steps, such as PeptideProphet24 and Percolator.25 However, the 
latter are not nearly as computationally expensive as the initial peptide-
spectrum matching. The search engines we used to demonstrate our 
parallelization approach, i.e. X!Tandem without model refinement26 and 
SpectraST process each spectrum independently. OMSSA27, MS-
GFDB/MS-GF+1 and Crux/Tide16, 17 are other search engines that could also 
be parallelized in this way. 

Processing Pipelines and Scientific Workflows 

There are multiple software packages that allow stepwise processing of 
mass spectrometry data, such as TPP6, Proteomatic28 and ProteoWizard.29 In 
this sense, processing pipelines and workflows are overloaded terms, and 
sometimes used synonymously. We use processing pipelines to refer to a 
multistep sequential processing of one dataset at a time, in which transitions 
from one step to the next happen with some manual interaction as in the 
TPP. Scientific workflows involve concurrency and parallel processing 
capabilities, in which the transition between the processing steps can happen 
automatically or with breakpoints according to the workflow design. 
Scientific workflow engines like Galaxy30, Moteur31, Kepler32, and 
Taverna33 were introduced in the last decade to facilitate interfacing 
modular processing steps, automating analysis pipelines, scaling them up to 
workflows, and make analyses reproducible and sharable. We have 
previously described34 how Taverna can be used to automate analysis 
workflows in mass spectrometry based proteomics on a local machine. We 
also demonstrated how workflow and data decomposition can scale up 
processing pipelines to run in high performance computing environments.23
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Here we use Taverna 2.4 to build our processing workflows and to perform 
job orchestration, i.e. to manage data and software transfer to and from the 
cloud. In this respect, we use Taverna not only as a workflow manager, but 
also as a technical enabler to build our adhocratic35, 36 experiment oriented 
distributed computing environment using in-campus clouds. Taverna offers 
various kinds of processors.33, 37 Scientists can chose between WSDL web 
services, Beanshell processors, REST Web services, Rshell processors, 
Tools and XPath processors. Details about these processors and how to use 
them can be found in literature33 as well as in the Taverna documentation.37

In the following we highlight the two processor types that are important for 
our implementation.  

Beanshell processors enable executing small Java code snippets as part of a 
workflow. Typically they are used for small tasks like simple file and data 
manipulation, parsing and formatting, saving to a local directory, calling 
local program, interacting with the user, etc. Tool processors are very 
suitable to call commands in a shell on any machine, to which Taverna can 
obtain an SSH connection - including the local machine. We mainly use 
Beanshell processors to launch software with their correct inputs locally, 
and Tool processors to interact with the cloud resources, upload data, and 
retrieve results. We used cloud resources based on the open source cloud 
middleware OpenNebula.38 These cloud resources are freely available for 
academic research users in the Netherlands. Such resources are common in 
various universities. A cloud environment in regard to our method can 
include any machine, to which Taverna could have an SSH connection. 

Used Datasets for Testing 

In order to profile our method and compare it with the local run of the used 
search engines we ran multiple tests from realistic database search 
scenarios. For these tests we used two ion trap datasets; the first consisted of 
5 LC-MS/MS datasets from tryptically digested human serum samples and 
the second of LC-MS/MS data from 20 fractions of one E. coli whole cell 
lysate, also digested with trypsin. All data was acquired on amaZon ion trap 
mass spectrometer (Bruker Daltonics, Bremen, Germany). The five human 
datasets each contains around 27,000 spectra whereas the 20 E. coli datasets 
each contains around 10,600 spectra (see Table 4.1 and Figure 4.6). In the 
X!Tandem search, strict tryptic cleavage specificity were assumed (C-
terminally or R and K, not N-terminally of P), the precursor mass 
measurement error tolerance -0.5 to 2.5 Da, 2 missed enzymatic cleavage 
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allowed, and carbamidomethylation as the only and fixed modification. 
Phosphorylation as variable modification and semi-tryptic cleavage were 
also considered in the performance tests. In the SpectraST search, average 
masses instead of monoisotopic masses were used and precursor mass 
measurement error tolerance of 3 Th. All other parameters for X!Tandem 
and SpectraST were as the defaults in the TPP package. For the X!Tandem  

One sample (human) 5 samples (human) 20 samples (E. coli)

Size of 
file(s) 113.8 MB 565.8 MB 1,540 MB 

Number
of spectra 27,436 139,211 212,141 

Search
engine X!Tandem SpectraST X!Tandem SpectraST X!Tandem SpectraST

Size of 
database/

library 
35.6 MB40 2,123 MB41 35.6 MB40 2,123 MB41  1.75 MB39 303 MB42

Number
of

protein/sp
ectra

entries

70,25440 310,68841 70,25440 310,68841 4,30339 50,36942

Wall time 
monolithi
c running 
locally1 (1 
core / 4 

cores) in 
min:sec

39:32 /
10:17 27:43 191:53 / 

55:13 52:32 40:16/
28:09 43:22

Wall time2

parallel
running
on the

cloud in 
min:sec

2:15 4:17 5:42 7:09 10:34 11:31 

Speedup
in fold 18 / 4.6 6.8 34 / 10 7 3.8/2.7 3.8 

1 The used system to run all the local experiments was an HP Elite 8200 computer with Windows® 7 
Enterprise 64bit operating system, Intel® i7-2600 processor running at 3.40 GHz, and 8 GB of RAM.  

2 Wall time here refers to the actual time experienced by the user, i.e. the time needed to 
decompose, transfer, analyze and recompose data, starting with the spectra in mzXML file(s) on the 
user local computer and ending with the peptide identification in pepXML format stored in the same 
directory as the mzXML file. 

Table 4.1. Performance tests of the described method comparing elapsed time for 
analyzing multiple input datasets. 
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search, the used databases for the human serum and for E. coli datasets were 
retrieved from UniProt.39, 40 The spectral libraries for human and E. coli 
from National Institute of Standards and Technology (NIST) were used for 
the SpectraST searches.41, 42

Related Work 

Duncan et al. have developed a parallel version of a X!Tandem for Message 
Passing Interface  (MPI) enabled cluster.11 It is beneficial to run a search 
engine on a cluster using MPI in terms of speed; this demands anyhow the 
availability of an MPI enabled server/cluster to the scientist. Pratt et al.13

developed a cloud parallel peptide identification using parallel X!Tandem11,
Hadoop43, 44,  and MapReduce.45, 46 They used a similar approach to 
X!!Tandem12 in extending X!Tandem’s threading onto a network, but used 
Hadoop and MapReduce instead of MPI. Their implementation is meant for 
Amazon Elastic Cloud and they achieved speedup of 31-fold using 200 
Amazon cloud instances (corresponding to processing unit or a core). The 
current TPP version allows outsourcing X!Tandem searchs to Amazon 
Elastic Cloud to run multiple searches at the same time. We are not aware of 
any parallel implementation of SpectraST, but Baumgardner et al.  have 
recently implemented their own spectral library search algorithm for GPUs 
using CUDA.14 Our goal is to achieve data parallelism to accelerate peptide 
identification while preserving the search engine without any modification 
to its code. In principle, this makes the solution compatible also with closed-
source algorithms.  

RESULTS AND DISCUSSION 

The employed technologies can be divided into three categories: data 
decomposition, cloud computing and scientific workflow engines. Data 
decomposition/recomposition is the parallelization enabler. The virtual and 
physical computers in the cloud delivers the processing and storage power. 
Finally, scientific workflows are used to imbed the logic of the data analysis 
into interfaced processing steps, to scale analysis pipelines up to workflows, 
and to orchestrate the parallel processing. In the following we explain how 
we are leveraging these technologies in our implementation. 



Taverna. Cloud parallel processing 95

Data decomposition and recomposition algorithms 

Our decomposition algorithm splits an mzXML file into multiple smaller 
syntactically correct mzXML files. Syntactically correct here means that 
each daughter file is itself a valid mzXML file according to the mzXML 
schema.19 The requested number of daughter files is passed to the algorithm 
as an input. Typically, LC-MS or LC-MS/MS datasets incorporate many 
low quality (information-poor) spectra; particularly at the beginning and 
near the end of the chromatographic gradient, while the good (information-
rich) spectra are concentrated in the middle of the chromatographic run. 
Simply dividing the data in equal and sequential time intervals would 
therefore be suboptimal, as the early and late time intervals contains many 
spectra that would be immediately filtered out by the search engine. These 
data subsets would therefore process much faster than subsets from the 
middle of the gradient. To avoid this, we designed the algorithm to 
distribute the spectra from the original mzXML file randomly to all 
daughter files. This is an ad hoc approach to distribute good and bad spectra 
in order to divide the computational load evenly over the processing nodes. 
This also makes the method scaleable and independent on the 
chromatographic gradient and experimental design. Our data recomposition 
algorithm takes multiple pepXML files and composes them into one 
pepXML file. The algorithm takes into account the different original naming 
of the file and corrects the scan numbers to make the composed pepXML 
file schematically correct.20 Both algorithms are written in Java and are 
available on ms-utils.org/decomposition.  

Cloud computing 

We used a dedicated infrastructure for cloud computing at SARA.47 The 
infrastructure runs on OpenNebula cloud middleware. The 
instances/workers we used were minimal Ubuntu 11.04 server 64-bit virtual 
machines with Oracle (Sun) Java 6 build 1.6.0_26 installed. Depending on 
the workflow, a number of identical images can be initiated and used. For 
our tests we always used 8 instances, each of 8 virtual CPUs. Currently 
starting the workers from the workflow using OpenNebula Cloud 
Computing Interface services48 is not permitted due to the security policy of 
the provider. All necessary software to run a workflow, for instance the 
search engines, will be deployed on the target machine from within the 
workflow. This keeps the cloud instances lightweight and the workflows 
easier to update and adjust to the target cloud architecture. In case one 
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prefers another version of the search engine, or using a 32-bit server, only 
the corresponding executable has to be provided as an input to the 
workflow.

Scientific workflows 

The minimal workflow consists of three main processors: the mzXML 
decomposer, a search engine, and the pepXML composer (see Figure 4.1 
and 4.2). One extra processor is needed to uncompress (unzip) the 
downloaded data from the cloud. Moving compressed (zipped) data between 
the cloud and the local machine and vice versa reduces the latency regarding 
the network speed. This is very helpful when the data is in ASCII format 
and can be compressed down to 68% of its original size like in mzXML and 
pepXML formats. The NIST spectral libraries can be compressed down to 
32% of their original size. Each workflow processor includes the needed 
logic to run the corresponding program from the command line. The firing 
mechanism in Taverna is the availability of the data on the inputs of each 
processor. Taverna takes care of transferring the data between the 
processors. The data decomposing/recomposing processors are Beanshell  

Figure 4.1. A scientific workflow for searching LC-MS/MS mass spectrometry data using 
X!Tandem on the cloud. The workflow consists of 5 processors. The objectLogic processor 
prepares all inputs in the right format, i.e. keeping or converting strings into file object 
according to the following processor. The mzxmlDecomposer and pepxmlComposer run the 
decomposing/recomposing algorithms. objectLogic, mzxmlDecomposer and 
pepxmlComposer are Beanshell processors and they run locally. Xtandem runs X!Tandem 
on a remote machine and pepxmlUnzip unzip the pepXML files to a local directory; both 
are Tool processors. 
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Figure 4.2. A scientific workflow for searching LC-MS/MS data using SpectraST on the 
cloud. The processor mzxmlDecomposer, pepxmlUnzip and pepxmlComposer are identical 
to the one in the X!Tandem workflow (Figure 5.1). The only difference is that the Xtandem
processor is exchanged with the Spectrast processor and the constant inputs are adjusted to 
SpectraST. This approach is also possible for other search engines as described in the Data
decomposition and recomposition paragraph

processors and run locally. The search engine is a tool processor and runs on 
the cloud. Taverna stores the IP addresses and passwords of the cloud 
worker nodes in its credential management. The password repository is 
protected with a master password, i.e. the user need to authenticate only 
once when starting Taverna. 

Figure 4.1 shows a workflow to run X!Tandem on the cloud. The workflow 
takes the mzXML file(s), zipped search data base file in FASTA format and 
the number of the daughter mzXML files as inputs. Ideally the number of 
the daughter files is an integer factor of the available cloud workers. The 
search engine parameters are included in the runTandemExe processor. 
Figure 4.2 shows a simple scientific workflow to run SpectraST on the 
cloud. Similarly, the workflow takes the mzXML file(s), the zipped search 
library files (including the .splib, .spidx and .pepidx files) and the number of 
daughter mzXML files as inputs. SpectraST search parameters are included 
in the spectrastParameters processor, which is a string and is adjustable for 
different experiments. The processing logic of both workflows is very 
similar. The decomposition, recomposition and unzip pepXML processors 
are identical. The search engine calling processors are adjusted to each 
search engine, but are still logically very similar. This processor can be 
readjusted for other search engines. It is sometimes beneficial to separate 
the preprocessing/decomposing of the mzXML files from the logic of  

4
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Figure 4.3. An advanced scientific workflow for searching LC-MS data using SpectraST 
on the cloud. Uploading the libraries is optimized to achieve better performance, which 
makes this workflow more suitable for processing mzXML spectra files from human 
samples, as the corresponding NIST library needed by SpectraST is larger than 2 GB. Here 
we connect 3 nested workflows, in which the first 2, i.e. decomposeMzxml and 
uploadToCloud run in parallel while the third nested workflow, i.e. runSpectrastOnCloud
will start only if uploadToCloud finished all iteration. runSpectrastOnCloud and 
decomposeMzxml can still run in parallel. 

uploading big data like the NIST human spectral libraries41, 42 for 
SpectraST. Figure 4.3 illustrates an advanced workflow for SpectraST, in 
which the needed library and executables for the processing are uploaded 
simultaneously while decomposing the input mzXML files. The three 
workflows are available from ms-utils.org/cloud. 
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Speed performance comparison 

We compared the elapsed wall clock time needed to analyze one file of the 
human dataset, the whole human data set, and the whole E. coli dataset on a 
local workstation and on the cloud using our method. The results are 
summarized in Table 4.1 and Figure 4.6. In the simplest scenario of 
analyzing one mzXML file we achieved speedup of 11-fold in case of 
X!Tandem running on single core and of 6-fold in case of SpectraST. 

In order to exploit our implementation and test it for possible future big data 
challenges, we used spectra from fractioned sample to construct a single 
large mzXML file of 213,788 spectra. We profiled the number of cores in 
relation to the elapsed wall clock time needed to process these spectra and 
the results are illustrated in Figure 4.4. We were able to perform the peptide 
identification using X!Tandem and 8 cloud machines each of 8 processors 
within 12 min, a 26-fold faster than running it on a single core machine. 
When allowing phosphorylation as a variable modification, it was possible 
to obtain identical results within 72 minutes using 64 CPUs, or 5 hours on a 
single 8 CPU cloud node (comparable to an 8 CPU local machine). 

Figure 4.4. The wall time needed to 
search a large input file against a human 
sequence database40 as a function of the 
number of cores with only fixed 
modifications (solid, squares) and with 
phosphorylation as variable modification 
(dashed, diamonds).  By implementing 
data parallelism on the workflow level, it 
was possible to process 213,788 spectra 
in a 1.3 GB mzXML file with a search 
window of -0.5 to 2.5 Da in 12 minutes 
with only fixed modifications, a job 
which would take more than 5 hours on a 
desktop computer. When allowing 
phosphorylation (on serine, threonine 
and tyrosine) as a variable modification, 
the search took 72 minutes using 64 
processors.
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To evaluate the performance in common practice, where the enzyme fidelity 
is not known a priori or other proteases may have been active, we ran a 
series of tests with semi-specific cleavage on a smaller set of 27,000 spectra 
and measured a 27-fold increase in speed (see Figure 4.5). When allowing 
three variable PTMs, the 64 CPU cloud finished searching these spectra 36 
times faster than a 4-core local machine. 

CONCLUSIONS

In data mining, data decomposition is considered the “most useful form of 
transformation of datasets”.49, 50 With our approach of wrapping data 
parallelism via decomposition and recomposition around the search engine, 
we were able to parallelize more than one peptide identification software. 
We demonstrated this using a common database search engine - X!Tandem 
- and a spectral library search engine - SpectraST. We achieved the 
parallelism by an ad hoc approach using off-the-shelf open source software 
for scientific workflow, i.e. Taverna workbench, and OpenNebula for cloud 
computing. We believe that such adhocratic cloud implementations can 
scale with future needs to handle big data in mass spectrometry based  
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Figure 4.5. Comparison of different 
search times with either variable 
modification or semi-specific cleavage 
(a). The X!Tandem workflow was used 
to search a human dataset of 27,436 
spectra against the human sequence 
database,40 with strict tryptic cleavage 
and allowing for phosphorylation 
(dashed gray, triangles), and with semi-
tryptic cleavage and only fixed 
modifications (solid gray, diamonds) as 
variable modification. Speed 
improvement of parallel processing in 
the 64-CPU cloud compared to 4 local 
CPUs of the same searches (b). 
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proteomics. A single large mzXML file of 1.3 GB containing 213,788 
spectra was searched using our cloud parallel X!Tandem in 12 min. 
Compared to other parallel implementation of search engines like the 
Message Passing Interface (MPI) enabled parallel X!!Tandem, or the 
Hadoop MapReduce deployment on Amazon web services – MR-Tandem, 
our method does not require dedicated MPI hardware or rewriting of the 
search algorithm. We designed our method to be generally applicable to any 
software that searches spectra independently and demonstrated this with 
X!Tandem and SpectraST. The method can possibly be used in combination 
with the other parallel programs. The decomposition/recomposistion 
algorithms and slightly modified workflows can then be used to distribute 
an mzXML file to multiple machines with the Hadoop MapReduce 
X!Tandem deployment or multiple machines with the MPI-parallel 
X!!Tandem. In this case the workflow can be modified to use the already 
installed search engine. In comparing speed performance by running 
identical searches on local machines and in parallel, our method achieved 
more than twice the increase in speed reported by the MPI-parallel 
X!!Tandem. Compared to the 31-fold speedup on 200 processors reported 
by the Hadoop MR-Tandem implementation, our method achieved 36-fold 
speedup on 64 processors. 

To make the implementation useful to the research community, we used 
common standards for input and output. Furthermore, cloud instances from 
providers like Amazon or in-campus clouds can be used as long as they are 
associated with public IP addresses. In such cases our implementation can 
be used without modification. Where the instances have private IP 

Figure 4.6. The performance of the cloud compared to local runs for the same search 
engines and data. Three experiments are compared, the details for which are listed in Table 
5.1.
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addresses, one can still launch the workflow from one of these instances 
without modification. Researchers can also build their own cloud 
environment by accessing accounts on different Linux machines without the 
need to install additional software; only Java is required, which is available 
for nearly all platforms. The decomposition and recomposition algorithms 
can be used in other scenarios, with or without clouds. For instance, when 
using a computer cluster or a computer with a multi-core CPU, the 
researcher can still use the data decomposition and recomposition with 
single-threaded algorithms such as SpectraST to gain parallelism.  

We are currently working with the developers of scientific workflow 
managers and cloud providers to address different issues including starting 
and shutting down the virtual machines on the cloud entirely from within 
the workflow, using certificates authentication, and enhancing the security 
on the cloud. We are convinced the 36-fold speedup reported here is still not 
exploiting the available resources to their full potential and also work to 
further improve the acceleration of these algorithms using cloud. 
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