Cover Page

The handle http://hdl.handle.net/1887/21012 holds various files of this Leiden University
dissertation

Author: Mostovenko, Ekaterina
Title: Towards high throughput and spatiotemporal proteomics : analytical workflows

and quantitative label-free mass spectrometry
Issue Date: 2013-06-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21012
https://openaccess.leidenuniv.nl/handle/1887/1�

Cloud Parallel Processing of 7
Tandem Mass Spectrometry-based

Proteomics

Yassene Mohammed,"* Ekaterina Mostovenko,!
Alex A. Henneman, Rob J. Marissen,! André M. Deelder,!
and Magnus Palmblad’

'Biomolecular Mass Spectromey Unit, Department of Parasitology,
Leiden University Medical Center, The Netherlands

Bistributed Computing Security Group and L3S,
University of Hannover, Germany

Journal of Proteome Research 2012, 11 (10), 5101-5108 ’:\.\w 5

ot

88

ABSTRACT

Data analysis in mass spectrometry-based proteomics struggles to keep pace
with the advances in instrumentation and the increasing rate of data
acquisition. Analyzing this data involves multiple steps requiring diverse
software, using different algorithms and data formats. Speed and
performance of the mass spectral search engines are continuously
improving, although not necessarily as needed to face the challenges of
acquired big data. Improving and parallelizing the search algorithms is one
possibility, data decomposition presents another, simpler strategy for
introducing parallelism. We describe a general method for parallelizing
identification of tandem mass spectra using data decomposition that keeps
the search engine intact and wraps the parallelization around it. We
introduce two algorithms for decomposing mzXML files and recomposing
resulting pepXML files. This makes the approach applicable to different
search engines, including those relying on sequence databases and those
searching spectral libraries. We use cloud computing to deliver the
computational power and scientific workflow engines to interface and
automate the different processing steps. We show how to leverage these
technologies to achieve faster data analysis in proteomics and present three
scientific workflows for parallel database as well as spectral library search
using our data decomposition programs, X!Tandem and SpectraST.

Chapter 4

INTRODUCTION

Mass spectrometry (MS), particularly tandem mass spectrometry (MS/MS),
is currently the most used method for identifying unknown proteins present
in biological samples. Advances in instrumentation have reduced
acquisition time and increased resolution and sensitivity, which in
combination with complementary fragmentation mechanisms"” > and high
resolving-power mass analyzers in both MS and MS/MS*” have led to very
complex data. This has brought new challenges to proteomics, i.e. how do
we store and process these large data volumes. Standard desktop computers
often cannot process data at the rate it is being generated, creating an
additional bottleneck in the analysis pipeline. The analysis of the mass
spectrometry data typically involves several steps. One essential and
computationally expensive step is peptide identification, i.e. the mapping of
each spectrum to a unique peptide or one or more peptides. In this
manuscript we describe a method of handling mass spectrometry “big data”
by outsourcing computationally intensive tasks using off-the-shelf open
source tools and in-campus cloud resources. We introduce a method for
parallelizing common search engines like X!Tandem and SpectraST that are
part of the Trans-Proteomic Pipeline (TPP)®, which can also work for most
other available search engines. We show how peptide identification speed
using workflow engines, cloud computing, and a new data
decomposing/recomposing algorithm can easily be improved by a
significant factor. In our tests we reached more than 30-fold speed
improvement comparing X!Tandem running locally (one core) with the
same program running on the cloud and a 7-fold improvement for the
SpectraST spectral library search.

METHODS

One important step in the processing pipeline of mass spectrometry data is
associating a particular (tandem) mass spectrum with a peptide sequence.
There are three types of search engines for peptide identification, i.e.
database, library, and de novo. Database search engines, like Mascot’,
SEQUESTS, or X!Tandemg, compare each spectrum obtained from the
sample with theoretical spectra generated from a list of predicted peptides.
The predicted peptides list is ideally derived from all of the protein
sequences that could be expressed in the experiment sample. Library search

Taverna. Cloud parallel processing

89

90

engines, like SpectraST® or X!Hunter'® assume that the fragmentation of a
particular molecule in a mass spectrometer is partially reproducible between
analyses and instruments. One can therefore generate a library of ion
fragmentation spectra with each spectrum being associated with a
corresponding molecular structure. A library search engine assigns a
specific structure to an experimental spectrum by comparing it with the
entries in the library.

Peptide identification using a search engine is a main processing bottleneck
in mass spectrometry based proteomics. A normal search of 30,000 spectra
could take up to 40 minutes on common modern desktop with a 4-core
processor, depending on the search parameters. In many cases this is
impractical for scientists, especially if they want to include more
modifications in their searches, which can significantly increase the search
space. Enhancing search engine speed besides developing search algorithms
for high performance computing environment are continuously under
development.'™* While making faster algorithms is a main objective of
several groups' "7, we are only targeting the data itself leaving the search
engine intact. This makes the approach applicable to many search engines.
Search engines are legacy software that have gained acceptance and
usability in the proteomics community and we therefore prefer to consider
them as black boxes and not modify them in any way, but instead wrap the
parallelization around them. In the rest of the section we describe the data
formats used, the new decomposition and recomposition algorithms, the
processing pipelines and how to scale these up to scientific workflows.

Data formats

To build on other efforts, such as the TPP6, we chose to use common XML
formats such as mzXML'® ' for input and pepXML* as output. mzXML
and pepXML are two de facto open format standards still used for mass
spectrometry data. Converters from almost any other format to mzXML or
pepXML can be obtained.'*' Extension of our method to mzML?* is also
feasible, as only the logic in the data decomposition algorithm needs to be
modified with no further changes. Using open standard formats maintains
compatibility with other efforts and existing pipelines and avoids making
this work an isolated solution.

Chapter 4

Data decomposition and recomposition

Decomposition involves breaking down a complex system into smaller
pieces. It is the basis for finding the tasks that can run concurrently in
parallel applications. There are two major decomposition methods in
parallel programming, i.e. functional and data decomposition.”’ Data
decomposition is used more often and it depends mainly on the developer’s
knowledge about the data and how an algorithm processes the data. In order
to facilitate parallelism of peptide identification of mass spectrometry data
we developed two algorithms for decomposing and recomposing the inputs
and outputs of an arbitrary search engine. The only assumption made is that
each spectrum will be processed by the search engine independently from
other spectra. This is true for many search algorithms, but not subsequent
validation steps, such as PeptideProphet** and Percolator.”” However, the
latter are not nearly as computationally expensive as the initial peptide-
spectrum matching. The search engines we used to demonstrate our
parallelization approach, i.e. X!Tandem without model refinement®® and
SpectraST process each spectrum independently. OMSSA?’, MS-
GFDB/MS-GF+' and Crux/Tide'® ! are other search engines that could also
be parallelized in this way.

Processing Pipelines and Scientific Workflows

There are multiple software packages that allow stepwise processing of
mass spectrometry data, such as TPP®, Proteomatic™® and ProteoWizard.” In
this sense, processing pipelines and workflows are overloaded terms, and
sometimes used synonymously. We use processing pipelines to refer to a
multistep sequential processing of one dataset at a time, in which transitions
from one step to the next happen with some manual interaction as in the
TPP. Scientific workflows involve concurrency and parallel processing
capabilities, in which the transition between the processing steps can happen
automatically or with breakpoints according to the workflow design.
Scientific workflow engines like Galaxy30, Moteur ", Kepler32, and
Taverna® were introduced in the last decade to facilitate interfacing
modular processing steps, automating analysis pipelines, scaling them up to
workflows, and make analyses reproducible and sharable. We have
previously described®® how Taverna can be used to automate analysis
workflows in mass spectrometry based proteomics on a local machine. We
also demonstrated how workflow and data decomposition can scale up
processing pipelines to run in high performance computing environments.*

Taverna. Cloud parallel processing

91

92

Here we use Taverna 2.4 to build our processing workflows and to perform
job orchestration, i.e. to manage data and software transfer to and from the
cloud. In this respect, we use Taverna not only as a workflow manager, but
also as a technical enabler to build our adhocratic® *® experiment oriented
distributed computing environment using in-campus clouds. Taverna offers
various kinds of processors.”” *’ Scientists can chose between WSDL web
services, Beanshell processors, REST Web services, Rshell processors,
Tools and XPath processors. Details about these processors and how to use
them can be found in literature™ as well as in the Taverna documentation.”’
In the following we highlight the two processor types that are important for
our implementation.

Beanshell processors enable executing small Java code snippets as part of a
workflow. Typically they are used for small tasks like simple file and data
manipulation, parsing and formatting, saving to a local directory, calling
local program, interacting with the user, etc. Tool processors are very
suitable to call commands in a shell on any machine, to which Taverna can
obtain an SSH connection - including the local machine. We mainly use
Beanshell processors to launch software with their correct inputs locally,
and Tool processors to interact with the cloud resources, upload data, and
retrieve results. We used cloud resources based on the open source cloud
middleware OpenNebula.*® These cloud resources are freely available for
academic research users in the Netherlands. Such resources are common in
various universities. A cloud environment in regard to our method can
include any machine, to which Taverna could have an SSH connection.

Used Datasets for Testing

In order to profile our method and compare it with the local run of the used
search engines we ran multiple tests from realistic database search
scenarios. For these tests we used two ion trap datasets; the first consisted of
5 LC-MS/MS datasets from tryptically digested human serum samples and
the second of LC-MS/MS data from 20 fractions of one E. coli whole cell
lysate, also digested with trypsin. All data was acquired on amaZon ion trap
mass spectrometer (Bruker Daltonics, Bremen, Germany). The five human
datasets each contains around 27,000 spectra whereas the 20 E. coli datasets
each contains around 10,600 spectra (see Table 4.1 and Figure 4.6). In the
X!Tandem search, strict tryptic cleavage specificity were assumed (C-
terminally or R and K, not N-terminally of P), the precursor mass
measurement error tolerance -0.5 to 2.5 Da, 2 missed enzymatic cleavage

Chapter 4

allowed, and carbamidomethylation as the only and fixed modification.
Phosphorylation as variable modification and semi-tryptic cleavage were
also considered in the performance tests. In the SpectraST search, average
masses instead of monoisotopic masses were used and precursor mass
measurement error tolerance of 3 Th. All other parameters for X!Tandem
and SpectraST were as the defaults in the TPP package. For the X!Tandem

One sample (human) 5 samples (human) 20 samples (E. coli)
Size of
file(s)

Number
of spectra

113.8 MB 565.8 MB 1,540 MB

27,436 139,211 212,141

i:;li:: X!Tandem SpectraST X!Tandem SpectraST X!Tandem SpectraST
Size of
database/ | 356 MB* | 2123MB* | 356 MB® | 2,123 MB* | 1.75 MB* 303 MB*
library
Number
of
protein/sp = 70,254* 310,688"' 70,254% 310,688"' 4,303% 50,369%
ectra
entries

Wall time

monolithi

c running .) .

1 39:32/ . 191:53/ . 40:16/)

locally” (1 1017 27:43 5513 52:32 28:09 43:22
core /4

cores) in
min:sec

Wall time?
parallel
running
on the
cloud in
min:sec

2:15 4:17 5:42 7:09 10:34 11:31

Speedup | 45,46 6.8 34/10 7 3.8/2.7 3.8
in fold

" The used system to run all the local experiments was an HP Elite 8200 computer with Windows® 7

Enterprise 64bit operating system, Intel® i7-2600 processor running at 3.40 GHz, and 8 GB of RAM.

2 Wall time here refers to the actual time experienced by the user, i.e. the time needed to
decompose, transfer, analyze and recompose data, starting with the spectra in mzXML file(s) on the
user local computer and ending with the peptide identification in pepXML format stored in the same
directory as the mzXML file.

Table 4.1. Performance tests of the described method comparing elapsed time for
analyzing multiple input datasets.

Taverna. Cloud parallel processing 93

94

search, the used databases for the human serum and for E. coli datasets were
retrieved from UniProt.*” * The spectral libraries for human and E. coli
from National Institute of Standards and Technology (NIST) were used for
the SpectraST searches.*""*

Related Work

Duncan et al. have developed a parallel version of a X!Tandem for Message
Passing Interface (MPI) enabled cluster." It is beneficial to run a search
engine on a cluster using MPI in terms of speed; this demands anyhow the
availability of an MPI enabled server/cluster to the scientist. Pratt et al."
developed a cloud parallel peptide identification using parallel X!Tandem'’,
Hadoop™ *, and MapReduce.*> *° They used a similar approach to
X!!'Tandem'? in extending X!Tandem’s threading onto a network, but used
Hadoop and MapReduce instead of MPI. Their implementation is meant for
Amazon Elastic Cloud and they achieved speedup of 31-fold using 200
Amazon cloud instances (corresponding to processing unit or a core). The
current TPP version allows outsourcing X!Tandem searchs to Amazon
Elastic Cloud to run multiple searches at the same time. We are not aware of
any parallel implementation of SpectraST, but Baumgardner et al. have
recently implemented their own spectral library search algorithm for GPUs
using CUDA." Our goal is to achieve data parallelism to accelerate peptide
identification while preserving the search engine without any modification
to its code. In principle, this makes the solution compatible also with closed-
source algorithms.

RESULTS AND DISCUSSION

The employed technologies can be divided into three categories: data
decomposition, cloud computing and scientific workflow engines. Data
decomposition/recomposition is the parallelization enabler. The virtual and
physical computers in the cloud delivers the processing and storage power.
Finally, scientific workflows are used to imbed the logic of the data analysis
into interfaced processing steps, to scale analysis pipelines up to workflows,
and to orchestrate the parallel processing. In the following we explain how
we are leveraging these technologies in our implementation.

Chapter 4

Data decomposition and recomposition algorithms

Our decomposition algorithm splits an mzXML file into multiple smaller
syntactically correct mzXML files. Syntactically correct here means that
each daughter file is itself a valid mzXML file according to the mzXML
schema."” The requested number of daughter files is passed to the algorithm
as an input. Typically, LC-MS or LC-MS/MS datasets incorporate many
low quality (information-poor) spectra; particularly at the beginning and
near the end of the chromatographic gradient, while the good (information-
rich) spectra are concentrated in the middle of the chromatographic run.
Simply dividing the data in equal and sequential time intervals would
therefore be suboptimal, as the early and late time intervals contains many
spectra that would be immediately filtered out by the search engine. These
data subsets would therefore process much faster than subsets from the
middle of the gradient. To avoid this, we designed the algorithm to
distribute the spectra from the original mzXML file randomly to all
daughter files. This is an ad hoc approach to distribute good and bad spectra
in order to divide the computational load evenly over the processing nodes.
This also makes the method scaleable and independent on the
chromatographic gradient and experimental design. Our data recomposition
algorithm takes multiple pepXML files and composes them into one
pepXML file. The algorithm takes into account the different original naming
of the file and corrects the scan numbers to make the composed pepXML
file schematically correct.”” Both algorithms are written in Java and are
available on ms-utils.org/decomposition.

Cloud computing

We used a dedicated infrastructure for cloud computing at SARA.*" The
infrastructure runs on OpenNebula cloud middleware. The
instances/workers we used were minimal Ubuntu 11.04 server 64-bit virtual
machines with Oracle (Sun) Java 6 build 1.6.0 26 installed. Depending on
the workflow, a number of identical images can be initiated and used. For
our tests we always used 8 instances, each of 8 virtual CPUs. Currently
starting the workers from the workflow wusing OpenNebula Cloud
Computing Interface services™ is not permitted due to the security policy of
the provider. All necessary software to run a workflow, for instance the
search engines, will be deployed on the target machine from within the
workflow. This keeps the cloud instances lightweight and the workflows
easier to update and adjust to the target cloud architecture. In case one

Taverna. Cloud parallel processing

95

96

prefers another version of the search engine, or using a 32-bit server, only
the corresponding executable has to be provided as an input to the
workflow.

Scientific workflows

The minimal workflow consists of three main processors: the mzXML
decomposer, a search engine, and the pepXML composer (see Figure 4.1
and 4.2). One extra processor is needed to uncompress (unzip) the
downloaded data from the cloud. Moving compressed (zipped) data between
the cloud and the local machine and vice versa reduces the latency regarding
the network speed. This is very helpful when the data is in ASCII format
and can be compressed down to 68% of its original size like in mzXML and
pepXML formats. The NIST spectral libraries can be compressed down to
32% of their original size. Each workflow processor includes the needed
logic to run the corresponding program from the command line. The firing
mechanism in Taverna is the availability of the data on the inputs of each
processor. Taverna takes care of transferring the data between the
processors. The data decomposing/recomposing processors are Beanshell

{Workflow input ports

pepxmlCnmpusErExEl lmzxmlDEcumpuserExE”runTandemExE] [tandem?xmlExel l tandEmExE] [nrOfDaughtErs] IfastaFiIeZippEd] [mzxmlFile I A .
objectLogic

=]\

pepxmliUnzip I

wDrkfluwgu[p [pnr[s N .

i'nzxrnlDecomposer_stdouli [Xtandem_stdnutl lpepxmlunzip_stdout} i:epxmltomposer_stdouq v

Figure 4.1. A scientific workflow for searching LC-MS/MS mass spectrometry data using
X!Tandem on the cloud. The workflow consists of 5 processors. The objectLogic processor
prepares all inputs in the right format, i.e. keeping or converting strings into file object
according to the following processor. The mzxmlDecomposer and pepxmIComposer run the
decomposing/recomposing algorithms. objectLogic, mzxmlDecomposer and
pepxmlComposer are Beanshell processors and they run locally. Xtandem runs X!Tandem
on a remote machine and pepxmlUnzip unzip the pepXML files to a local directory; both
are Tool processors.

Chapter 4

Wurkflowlnpulpurts

[spec! :||r'-m""‘ rExe | 1D '"“' xe|[sp E | : |nrﬂ'l“ gh s” mzxmiFile ||N|5TLIbraryZIppad|‘

\

ab;

jec
mzx mIDuomposcrl
i

:FnzxmlDecomposer_stdou*ISpectraST_ﬂdoutl: ipPeps _stdouf.lll,' i _stdou*Vé

Figure 4.2. A scientific workflow for searching LC-MS/MS data using SpectraST on the
cloud. The processor mzxmlDecomposer, pepxmlUnzip and pepxmlComposer are identical
to the one in the X!Tandem workflow (Figure 5.1). The only difference is that the Xtandem
processor is exchanged with the Spectrast processor and the constant inputs are adjusted to
SpectraST. This approach is also possible for other search engines as described in the Data
decomposition and recomposition paragraph

processors and run locally. The search engine is a tool processor and runs on
the cloud. Taverna stores the IP addresses and passwords of the cloud
worker nodes in its credential management. The password repository is
protected with a master password, i.e. the user need to authenticate only
once when starting Taverna.

Figure 4.1 shows a workflow to run X!Tandem on the cloud. The workflow
takes the mzXML file(s), zipped search data base file in FASTA format and
the number of the daughter mzXML files as inputs. Ideally the number of
the daughter files is an integer factor of the available cloud workers. The
search engine parameters are included in the runTandemExe processor.
Figure 4.2 shows a simple scientific workflow to run SpectraST on the
cloud. Similarly, the workflow takes the mzXML file(s), the zipped search
library files (including the .splib, .spidx and .pepidx files) and the number of
daughter mzXML files as inputs. SpectraST search parameters are included
in the spectrastParameters processor, which is a string and is adjustable for
different experiments. The processing logic of both workflows is very
similar. The decomposition, recomposition and unzip pepXML processors
are identical. The search engine calling processors are adjusted to each
search engine, but are still logically very similar. This processor can be
readjusted for other search engines. It is sometimes beneficial to separate
the preprocessing/decomposing of the mzXML files from the logic of

Taverna. Cloud parallel processing

97

98

s Workflow input ports

|mzmeDImﬂory| |nr0fDaughter;||NISTLIbraryZ\ppeﬂ|| nrofWorkers | A

[listhtzxmiFies || = Exe][mzxmiDec Exe|

1 |
deco mposeMzxml upleadToef loud
“Workflbw input ports T s | Werkflod inpit ports T TN T :
: B r :

‘ spectrastExe ‘ |InﬂexmzxmlExe | |NISTLIbraryZIpped|| nrOfWor kers | ‘

| indexmzxmlExe ‘ | spectrastExe |

Floudworkl ngDi rectory‘ -| objectLogic

;'workﬂow oufput ports

Floudworkl g Ol rectory| v |Copy Li brary_stdout|

ruffSpectrastOnCloud
IWorkfioly input ports T o
o L

|outpuﬂ3\rectory|klouﬂworklngblmcmrﬂi

(]spzctrasLParamerLgrs” listZipFiles D

¥

‘Wor kflow cutplt ports

V |pzm<m IUnz Ip_smout| |Spe1:r.raST_sldou1

S
pepxmlComposer|

;'work[low outpul ports

Figure 4.3. An advanced scientific workflow for searching LC-MS data using SpectraST
on the cloud. Uploading the libraries is optimized to achieve better performance, which
makes this workflow more suitable for processing mzXML spectra files from human
samples, as the corresponding NIST library needed by SpectraST is larger than 2 GB. Here
we connect 3 nested workflows, in which the first 2, ie. decomposeMzxml and
uploadToCloud run in parallel while the third nested workflow, i.e. runSpectrastOnCloud
will start only if uploadToCloud finished all iteration. runSpectrastOnCloud and
decomposeMzxml can still run in parallel.

uploading big data like the NIST human spectral libraries* ** for
SpectraST. Figure 4.3 illustrates an advanced workflow for SpectraST, in
which the needed library and executables for the processing are uploaded
simultaneously while decomposing the input mzXML files. The three
workflows are available from ms-utils.org/cloud.

Chapter 4

Speed performance comparison

We compared the elapsed wall clock time needed to analyze one file of the
human dataset, the whole human data set, and the whole E. coli dataset on a
local workstation and on the cloud using our method. The results are
summarized in Table 4.1 and Figure 4.6. In the simplest scenario of
analyzing one mzXML file we achieved speedup of 11-fold in case of
X!Tandem running on single core and of 6-fold in case of SpectraST.

In order to exploit our implementation and test it for possible future big data
challenges, we used spectra from fractioned sample to construct a single
large mzXML file of 213,788 spectra. We profiled the number of cores in
relation to the elapsed wall clock time needed to process these spectra and
the results are illustrated in Figure 4.4. We were able to perform the peptide
identification using X!Tandem and 8 cloud machines each of 8 processors
within 12 min, a 26-fold faster than running it on a single core machine.
When allowing phosphorylation as a variable modification, it was possible
to obtain identical results within 72 minutes using 64 CPUs, or 5 hours on a
single 8 CPU cloud node (comparable to an 8 CPU local machine).

Figure 4.4. The wall time needed to
search a large input file against a human
sequence database® as a function of the
number of cores with only fixed
modifications (solid, squares) and with
phosphorylation as variable modification
(dashed, diamonds). By implementing
data parallelism on the workflow level, it
was possible to process 213,788 spectra
in a 1.3 GB mzXML file with a search
window of -0.5 to 2.5 Da in 12 minutes
with only fixed modifications, a job
which would take more than 5 hours on a
desktop computer. When allowing
phosphorylation (on serine, threonine

elapsed time (min)

O r— T Tr— 1T T T
0 8 16 24 32 40 48 56 64 72

cores and tyrosine) as a variable modification,
the search took 72 minutes using 64
processors.

Taverna. Cloud parallel processing 99

100

a 250

. i I Figure 4.5. Comparison of different
E 2004 b 1| search times with either variable
= | I modification or semi-specific cleavage
g 1501 - [- (a). The X!Tandem workflow was used
g ool - to search a. human dataset of 27,436
o | I spectra %am’st thg humaq sequence
S 504 S [database, = with strict tryptic cleavage
Ko oLl A and allowing for phosphorylation

0 8 16 24 32 40 48 56 64 72 (dashed gray, triangles), and with semi-
tryptic cleavage and only fixed
modifications (solid gray, diamonds) as
b 40 variable modification. Speed

cores

° sod [improvement of parallel processing in
8 the 64-CPU cloud compared to 4 local
g 204 |- - --| CPUs of the same searches (b).
®©
5 104+------{ |----—-—---- - - -
[}
% 0 | —_-—
Phosphorylation and | Fixed modification
strict tryptic cleavage and semi-tryptic
B Local 4 CPU run 29 1.98
O Parallel cloud run 36 26.9

To evaluate the performance in common practice, where the enzyme fidelity
is not known a priori or other proteases may have been active, we ran a
series of tests with semi-specific cleavage on a smaller set of 27,000 spectra
and measured a 27-fold increase in speed (see Figure 4.5). When allowing
three variable PTMs, the 64 CPU cloud finished searching these spectra 36
times faster than a 4-core local machine.

CONCLUSIONS

In data mining, data decomposition is considered the “most useful form of
transformation of datasets”.*” ** With our approach of wrapping data
parallelism via decomposition and recomposition around the search engine,
we were able to parallelize more than one peptide identification software.
We demonstrated this using a common database search engine - X!Tandem
- and a spectral library search engine - SpectraST. We achieved the
parallelism by an ad hoc approach using off-the-shelf open source software
for scientific workflow, i.e. Taverna workbench, and OpenNebula for cloud
computing. We believe that such adhocratic cloud implementations can

scale with future needs to handle big data in mass spectrometry based

Chapter 4

450
400 - T T e I ey
'o)
g 350 -
o L e [] N R
P 250 |
=
1) 7200 e e e [R [R
©
s (1[0 Iy I bbb) RN) R
O
0] 100 [~ e
o
(2] 501 gl [l e [|:| -
0
X!Tandem | SpectraST | X!Tandem ‘ SpectraST | X!Tandem | SpectraST
One sample (human) 5 samples (human) 20 samples (E. coli)
OLocal run 1 CPU 11 16 12 44 50 46
M| ocal run 4 CPUs 44 n/a 42 n/a 71 n/a
O Parallel cloud run 203 106 407 324 191 175

Figure 4.6. The performance of the cloud compared to local runs for the same search
engines and data. Three experiments are compared, the details for which are listed in Table
5.1.

proteomics. A single large mzXML file of 1.3 GB containing 213,788
spectra was searched using our cloud parallel X!Tandem in 12 min.
Compared to other parallel implementation of search engines like the
Message Passing Interface (MPI) enabled parallel X!!Tandem, or the
Hadoop MapReduce deployment on Amazon web services — MR-Tandem,
our method does not require dedicated MPI hardware or rewriting of the
search algorithm. We designed our method to be generally applicable to any
software that searches spectra independently and demonstrated this with
X!Tandem and SpectraST. The method can possibly be used in combination
with the other parallel programs. The decomposition/recomposistion
algorithms and slightly modified workflows can then be used to distribute
an mzXML file to multiple machines with the Hadoop MapReduce
X!Tandem deployment or multiple machines with the MPI-parallel
X!!'Tandem. In this case the workflow can be modified to use the already
installed search engine. In comparing speed performance by running
identical searches on local machines and in parallel, our method achieved
more than twice the increase in speed reported by the MPI-parallel
X!!'Tandem. Compared to the 31-fold speedup on 200 processors reported
by the Hadoop MR-Tandem implementation, our method achieved 36-fold
speedup on 64 processors.

To make the implementation useful to the research community, we used
common standards for input and output. Furthermore, cloud instances from
providers like Amazon or in-campus clouds can be used as long as they are
associated with public IP addresses. In such cases our implementation can
be used without modification. Where the instances have private IP

Taverna. Cloud parallel processing

101

102

addresses, one can still launch the workflow from one of these instances
without modification. Researchers can also build their own cloud
environment by accessing accounts on different Linux machines without the
need to install additional software; only Java is required, which is available
for nearly all platforms. The decomposition and recomposition algorithms
can be used in other scenarios, with or without clouds. For instance, when
using a computer cluster or a computer with a multi-core CPU, the
researcher can still use the data decomposition and recomposition with
single-threaded algorithms such as SpectraST to gain parallelism.

We are currently working with the developers of scientific workflow
managers and cloud providers to address different issues including starting
and shutting down the virtual machines on the cloud entirely from within
the workflow, using certificates authentication, and enhancing the security
on the cloud. We are convinced the 36-fold speedup reported here is still not
exploiting the available resources to their full potential and also work to
further improve the acceleration of these algorithms using cloud.

ACKNOWLEDGMENTS

This work was supported by the Dutch Organization for Scientific Research
(De Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO),
grants NRG-2010.06, BG-043-11 and VI-917.11.398. Used cloud resources
are part of the Dutch e-Science Grid — “BigGrid”.

SUPPLEMENTARY MATERIAL

The used data decomposition and recomposition algorithms are written Java
and are available from www.ms-utils.org/decomposition. The Taverna
workflows are available from www.ms-utils.org/cloud and on
www.myExperiment.org.

Chapter 4

REFERENCES

Kim, S.; Mischerikow, N.; Bandeira,
N.; Navarro, J. D.; Wich, L.
Mohammed, S.; Heck, A. J.; Pevzner,
P. A., The generating function of CID,
ETD, and CID/ETD pairs of tandem
mass spectra: applications to database
search. Mol Cell Proteomics 2010, 9,
(12), 2840-52.

Swaney, D. L.; McAlister, G. C;
Coon, J. J., Decision tree-driven
tandem mass spectrometry for shotgun
proteomics. Nat Methods 2008, 5,
(11), 959-64.

Resemann, A.; Wunderlich, D.;
Rothbauer, U.; Warscheid, B.;
Leonhardt, H.; Fuchser, J.; Kuhlmann,
K.; Suckau, D., Top-down de Novo
protein sequencing of a 13.6 kDa
camelid single heavy chain antibody
by matrix-assisted laser desorption
ionization-time-of-flight/time-of-flight
mass spectrometry. Anal Chem 2010,
82, (8), 3283-92.

Michalski, A.; Damoc, E.; Hauschild,
J. P.; Lange, O.; Wieghaus, A.;
Makarov, A.; Nagaraj, N.; Cox, J;
Mann, M.; Horning, S., Mass
spectrometry-based proteomics using
Q Exactive, a high-performance
benchtop quadrupole Orbitrap mass
spectrometer. Mol Cell Proteomics
2011, 10, (9), M111 011015.

Frese, C. K.; Altelaar, A. F.; Hennrich,
M. L.; Nolting, D.; Zeller, M.; Griep-
Raming, J.; Heck, A. J.; Mohammed,
S., Improved peptide identification by
targeted fragmentation using CID,
HCD and ETD on an LTQ-Orbitrap
Velos. J Proteome Res 2011, 10, (5),
2377-88.

Keller, A.; Eng, J.; Zhang, N.; Li, X.
J.; Aebersold, R., A uniform
proteomics MS/MS analysis platform

10.

11.

12.

13.

utilizing open XML file formats. Mol
Syst Biol 2005, 1, 2005 0017.

Perkins, D. N.; Pappin, D. J. C,;
Creasy, D. M.; Cottrell, J. S,
Probability-based protein identification
bu searching sequence databases using
mass spectromery data. Electrophoresis
1999, 20, (18), 3551-2567.

Yates, J. R., 3rd; Eng, J. K,
McCormack, A. L.; Schieltz, D.,
Method to correlate tandem mass
spectra of modified peptides to amino

acid sequences in the protein database.
Anal Chem 1995, 67, (8), 1426-36.

Craig, R.; Beavis, R. C., TANDEM:
matching proteins with tandem mass
spectra. Bioinformatics 2004, 20, (9),
1466-7.

Craig, R.; Cortens, J. C.; Fenyo, D.;
Beavis, R. C., Using annotated peptide
mass spectrum libraries for protein
identification. J Proteome Res 2006, 5,
(8), 1843-9.

Duncan, D. T.; Craig, R.; Link, A. J,,
Parallel tandem: A program for parallel
processing of tandem mass spectra
using PVM or MPI and X!Tandem.
Journal of Proteome Research 2005, 4,
(5), 1842-1847.

Bjornson, R. D.; Carriero, N. J;
Colangelo, C.; Shifman, M.; Cheung,
K. H.; Miller, P. L.; Williams, K.,
X!!Tandem, an improved method for
running Xl!tandem in parallel on
collections of commodity computers. J
Proteome Res 2008, 7, (1), 293-9.

Pratt, B.; Howbert, J. J.; Tasman, N. I.;
Nilsson, E. J., MR-Tandem: parallel
X!Tandem using Hadoop MapReduce
on Amazon Web Services.
Bioinformatics 2012, 28, (1), 136-7.

Taverna. Cloud parallel processing

103

104

14.

15.

16.

17.

18.

19.

20.

Baumgardner, L. A.; Shanmugam, A.
K.; Lam, H.; Eng, J. K.; Martin, D. B.,
Fast parallel tandem mass spectral
library searching using GPU hardware
acceleration. J Proteome Res 2011, 10,
(6), 2882-8.

Pratt, B., GPU-ACCELERATED
PEPTIDE SEARCH. In Funded by
Department of Health and Human
Services, IR43HG006414-01: 2011.

Park, C. Y.; Klammer, A. A.; Kall, L.;
MacCoss, M. J.; Noble, W. S., Rapid
and accurate peptide identification
from tandem mass spectra. J Proteome
Res 2008, 7, (7), 3022-7.

Diament, B. J.; Noble, W. S., Faster
SEQUEST searching for peptide
identification from tandem mass
spectra. J Proteome Res 2011, 10, (9),
3871-9.

Pedrioli, P. G.; Eng, J. K.; Hubley, R.;
Vogelzang, M.; Deutsch, E. W
Raught, B.; Pratt, B.; Nilsson, E;
Angeletti, R. H.; Apweiler, R.;
Cheung, K.; Costello, C. E,;
Hermjakob, H.; Huang, S.; Julian, R.
K.; Kapp, E.; McComb, M. E.; Oliver,
S. G.; Omenn, G.; Paton, N. W
Simpson, R.; Smith, R.; Taylor, C. F.;
Zhu, W.; Aebersold, R., A common
open representation of mass
spectrometry data and its application to
proteomics research. Nat Biotechnol
2004, 22, (11), 1459-66.

Seattle Proteome Center/Institute for
Systems Biology mzXML Format.

http://tools.proteomecenter.org/
wiki/index.php?title=Formats:m
zXML (June 13),

Seattle Proteome Center/Institute for
Systems Biology pepXML Format.

http://tools.proteomecenter.org/
wiki/index.php?title=Formats:pe
pXML (June 13),

21.

22.

23.

24.

25.

26.

27.

List of free software for analysis of
mass spectrometry data. Www.ms-
utils.org (June 13),

Martens, L.; Chambers, M.; Sturm, M.;
Kessner, D.; Levander, F.; Shofstahl,
J.; Tang, W. H.; Rompp, A.; Neumann,
S.; Pizarro, A. D.; Montecchi-Palazzi,
L.; Tasman, N.; Coleman, M.
Reisinger, F.; Souda, P.; Hermjakob,
H.; Binz, P. A.; Deutsch, E. W,
mzML--a community standard for mass
spectrometry data. Mol Cell Proteomics
2011, 10, (1), R110 000133.

Mohammed, Y.; Shahand, S.; Korkhov,
V.; Luyf, A. C. M.; Schaik, B. D. C. v;
Caan, M. W. A.; Kampen, A. H. C. v.;
Palmblad, M.; Olabarriaga, S. D., Data
Decomposition in Biomedical e-
Science Applications. In IEEE 7th
International Conference on E-Science,

e-Science 2011, Workshop
Proceedings, Stockholm, Sweden,
2011.

Keller, A.; Nesvizhskii, A. 1.; Kolker,
E.; Aebersold, R., Empirical statistical
model to estimate the accuracy of
peptide identifications made by MS/MS
and database search. Anal Chem 2002,
74, (20), 5383-92.

Kall, L.; Canterbury, J. D.; Weston, J.;
Noble, W. S.; MacCoss, M. J., Semi-
supervised learning for peptide
identification from shotgun proteomics
datasets. Nat Methods 2007, 4, (11),
923-5.

Craig, R.; Beavis, R. C., A method for
reducing the time required to match
protein sequences with tandem mass

spectra. Rapid Commun Mass
Spectrom 2003, 17, (20), 2310-6.

Geer, L. Y.; Markey, S. P.; Kowalak, J.
A.; Wagner, L.; Xu, M.; Maynard, D.
M.; Yang, X.; Shi, W.; Bryant, S. H.,
Open mass spectrometry search

Chapter 4

28.

29.

30.

31.

32.

33.

34.

algorithm. J Proteome Res 2004, 3,
(5), 958-64.

Specht, M.; Kuhlgert, S.; Fufezan, C.;
Hippler, M., Proteomics to go:
Proteomatic enables the user-friendly
creation of versatile MS/MS data
evaluation workflows. Bioinformatics
2011, 27, (8), 1183-4.

Kessner, D.; Chambers, M.; Burke, R.;
Agus, D.; Mallick, P., ProteoWizard:
open source software for rapid
proteomics tools development.
Bioinformatics 2008, 24, (21), 2534-6.

Goecks, J.; Nekrutenko, A.; Taylor, J.,
Galaxy: a comprehensive approach for
supporting accessible, reproducible,
and transparent computational research

in the life sciences. Genome Biol
2010, 11, (8), R86.

Maheshwari, K.; Montagnat, J. In
Scientific Workflow Development
Using Both Visual and Script-Based
Representation, Services (SERVICES-
1), 2010 6th World Congress on, 5-10
July 2010, 2010; 2010; pp 328-335.

Altintas, [.; Berkley, C.; Jaeger, E.;
Jones, M.; Ludascher, B.; Mock, S.,
Kepler: An Extensible System for
Design and Execution of Scientific
Workflows. In Proceedings of the 16th
International Conference on Scientific
and Statistical Database Management,
IEEE Computer Society: 2004; p 423.

Oinn, T.; Addis, M.; Ferris, J.; Marvin,
D.; Senger, M.; Greenwood, M.;
Carver, T.; Glover, K.; Pocock, M. R.;
Wipat, A.; Li, P., Taverna: a tool for
the composition and enactment of
bioinformatics workflows.
Bioinformatics 2004, 20, (17), 3045-
3054.

de Bruin, J. S.; Deelder, A. M,
Palmblad, M., Scientific Workflow
Management in Proteomics. Mol Cell
Proteomics 2012.

35.

36.

37.

38.

39.

40.

41.

42.

Waterman, R. H., Jr., 'Adhocracy"
lessons from the changemasters.
Hospitals 1991, 65, (1), 56.

Waterman, R. H., Jr., Adhocracy W.
W. Norton & Company: 1993; p 128.

Taverna Website.
www.taverna.org.uk/ (June 13),
OpenNebula Website.

www.opennebula.org/ (June 13),

Uniprot canonical sequence in FASTA
format, obtained from
WWW.uniprot.org on June 18, 2012
with the search string:
“organism:Escherichia AND coli AND
keyword:181 AND keyword:1185
AND reviewed:yes”.

Uniprot canonical sequence in FASTA
format, obtained from
WWWw.uniprot.org on June 4, 2012
with the search string:
“organism:"Homo sapiens" AND
keyword:181”.

Eds. S.E. Stein and P.A. Rudnick,
NIST Peptide Tandem Mass Spectral
Libraries. E. coli Peptide Mass Spectral
Reference Data, E. coli, ion trap,
Official Build Date: April 20, 2012.
National Institute of Standards and
Technology, Gaithersburg, MD, 20899.
Downloaded from
http://peptide.nist.gov on June 18,
2012. In.

Eds. S.E. Stein and P.A. Rudnick,
NIST Peptide Tandem Mass Spectral
Libraries. Human Peptide Mass
Spectral Reference Data, H. sapiens,
ion trap, Official Build Date: May 26,
2011. National Institute of Standards
and Technology, Gaithersburg, MD,
20899. Downloaded from
http://peptide.nist.gov on June 6,
2012. In.

Taverna. Cloud parallel processing

105

106

43.

44.

45.

46.

47.

48.

49.

50.

Apache Hadoop.
http://hadoop.apache.org/ (June
13),

White, T., Hadoop: The Definitive
Guide. O’Reilly Media, Inc.:
Sebastopol, CA 95472.,2009.

Dean, J.; Ghemawat, S., MapReduce:
simplified data processing on large
clusters. Commun. ACM 2008, 51, (1),
107-113.

Taylor, R. C., An overview of the
Hadoop/MapReduce/HBase
framework and its current applications
in bioinformatics. BMC
Bioinformatics 2010, 11.

SARA cloud. www.cloud.sara.nl
(May 30),

Open Grid Forum, Open Cloud
Computing Interface Specification. In
2009.

Kusiak, A., Decomposition in data
mining: An industrial case study. Ieee
Transactions on Electronics Packaging
Manufacturing 2000, 23, (4), 345-354.

Maimon, (O Rokach, L.,
Decomposition ~ Methodology for
Knowledge Discovery and Data
Mining. In DATA MINING AND
KNOWLEDGE DISCOVERY
HANDBOOK, Maimon, O.; Rokach,
L., Eds. Springer: New York, 2005; pp
981-1003.

Chapter 4

