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1
Introduction

In this thesis we investigate the usefulness and validity of instrumental variable 
analysis in clinical epidemiological studies, particularly using physician’s preference 
as the instrument. First applications of this method in clinical epidemiology were 
met with enthusiasm, as it showed promise as a method to handle confounding by 
indication in a manner mimicking randomisation in a randomised controlled trial. We 
aim to evaluate this method in both practical applications using existing data and in 
simulation studies, to expose potential problems and limitations of the method and to 
identify the settings and types of questions for which it is most useful.

Confounding by indication in observational studies
For many important medical questions and diseases there are no data from randomised 
controlled trials (RCT) to guide medical practice. Moreover, even if RCTs exist, they 
might be of limited value for clinical practice if the study insufficiently addressed 
clinically relevant endpoints or had an insufficient follow-up period. A second problem 
is that effects of clinical trials often have limited external validity because of highly 
selected study populations and the controlled set-up of the study. There is therefore 
an urgent need for methods that enable valid estimation of therapeutic effects from 
observational studies. However, observational data analyses of anticipated effects of 
therapy are always suspected to be strongly confounded by factors that determine 
prognosis, because patient characteristics related to the patient’s prognosis also 
influence the decision how to treat the patient. Technically this is called ‘confounding 
by indication’.1 Usual methods for dealing with confounding, such as stratification, 
matching or multivariable analysis can adjust for measured factors only and therefore 
rely on the often implausible assumption of no unmeasured confounding.2;3 This also 
holds for techniques using propensity scores4 or confounder scores.2;5 

Instrumental variable analysis
A potential solution to the problem of unmeasured confounding is instrumental 
variable analysis, a technique which originates in econometrics. The first record of its 
use in econometrics to bypass confounding is in an appendix of The tariff on animal 
and vegetable oils by Philip Wright, published in 1928. This appendix describes how 
“the introduction of additional factors” can be used to estimate elasticity of supply and 
demand: factors which affect demand conditions without affecting cost conditions 
can be used to estimate elasticity of supply and factors which affect cost conditions 
without affecting demand conditions can be used to estimate elasticity of demand.6;7 
The term “instrumental variable” was first used in 1945 by Olav Reiersøl.8;9
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Instrumental variable analysis has flourished in econometrics, in which it is a main 
tool. However, in most of this thesis we will concentrate on the recent methodologic 
literature about instrumental variables in epidemiology, because this literature takes 
into account the developments within econometrics and additionally covers issues 
and considerations specific to instrumental variables in epidemiology. 

The general idea of instrumental variable analysis is to estimate the effect of the 
exposure on the outcome by utilising a factor (the instrument or instrumental variable) 
which is related to the exposure, but which is not related to the outcome other than 
through its association with the exposure (which we will define more formally 
later).10 Any difference in the outcome between levels of the instrument can then be 
attributed to the difference in the exposure between the levels of the instrument. An 
early application in the estimation of effects of medical treatment was a 1994 study 
by McClellan et al, which investigated the effect of intensive treatment of myocardial 
infarction patients on long-term survival. Differential distance to a catheterisation 
or revascularisation hospital versus a hospital without these facilities was used as an 
instrumental variable.11 The use of instrumental variables and specifically the use of 
clinician preference as an instrumental variable for the estimation of treatment effects, 
was discussed in a 1998 paper in a statistical journal, using an example of a study in 
orthodontics which we will consider in further detail later.12 Introductory papers 
on instrumental variable analysis subsequently appeared in 1998 in a public health 
journal13 and in 2000 in an epidemiological journal.14 The subsequent decade saw a 
great increase in both applications of instrumental variable analysis for estimation of 
effects of therapy15-19 and theoretical papers on instrumental variable analysis in the 
field of epidemiology.3;10;20-22

Using physician’s preference as an instrumental variable
Treatment choices by medical doctors are based on a mix of prognostic characteristics 
of the patient and an overall preference for a certain type of therapy. If two physicians 
differ in their overall preference for a certain type of therapy, they may make different 
treatment decisions when presented with identical patients. Physicians’ preferences can 
therefore result in variation in treatment which is unrelated to patient characteristics 
and prognosis and can therefore be used as an instrument in an instrumental variable 
analysis. The principle is that differences in outcomes between similar groups of 
patients treated by physicians with different treatment preferences are ascribed to 
the differences in treatment prescription (that occur solely due to the differences in 
preference). Of course, differences in physician’s preference will usually not result in 
different treatments for all patients as for some patients physicians are likely to choose 
the same treatment, e.g. for overriding prognostic reasons.
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Physician’s preference is not a directly measurable characteristic and therefore needs 
to be estimated from the data in some way. An estimate of the physician’s preference at 
the time of treating a given patient is usually obtained from the treatment choice by the 
physician for (one or more) previous patients (e.g., previous prescriptions). A patient 
is then analysed according to his probability of treatment based on his physician’s 
treatment preference as indicated by previous prescriptions, instead of according to 
his own actual treatment. The prognostic characteristics of previous patients have no 
bearing on the present patient (given that the main instrumental variable assumptions 
which will be discussed later hold). An indicator of therapy based on previous patients 
therefore should not be related to the baseline prognosis of the present patient. 

 The idea of using clinician’s treatment preference as a treatment assignment instrument 
was proposed by Korn and Baumrind in the setting of a study investigating the effect 
of tooth extraction on numerous physical measurements in orthodontic patients with 
crowding and irregularities of their teeth and jaws. Several different randomised and 
observational study designs were proposed. In brief, the most relevant proposal a 
design in which the orthodontists who treated the patients would evaluate blinded pre-
treatment records of each other’s patients, deciding whether they would have treated 
these patient with extraction. The analysis would then be restricted to those patients 
on whose treatment the orthodontists disagree. As an alternative to this design, which 
closely resembles an instrumental variable approach, a true instrumental variable 
analysis using orthodontist’s preference as an instrument was proposed (although not 
carried out in this paper).12 Several years later, physician’s prescribing preference was 
first formally used as an instrumental variable in a pharmaco-epidemiological study 
investigating the effect of selective COX-2 inhibitors in comparison to non-selective 
non-steroidal anti-inflammatory drugs (NSAIDs) on gastrointestinal complications. 
The previous prescription of the prescribing physician (for a COX-2 inhibitor or non-
selective NSAID) was used as a proxy for the preference of the prescribing physician 
in an instrumental variable analysis.15 Numerous other studies have used physician’s 
preference as an instrumental variable since.17;19;23 

Main assumptions for instrumental variable analysis
In order to be valid, an instrumental variable should fulfil three main assumptions. In 
case of physician’s preference, these assumptions are as follows:3;15;22;24

1.	 Variation in physician’s preference is related to the probability of treatment. 
2.	 Physician’s preference does not affect the outcome in other ways than through 

treatment choice (exclusion restriction).
3.	 Physician’s preference does not share causes with the outcome, e.g. is not related 

to characteristics of a physician’s patient population (independence assumption). 
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Figure 1 depicts these assumptions in a directed acyclic graph: physician’s preference 
Z affects the probability of receiving treatment X. An association of Z and X would 
also be sufficient for assumption 1. Assumption 2 is represented by the absence of an 
arrow from Z to Y, i.e. the absence of a direct effect of physician’s preference on the 
outcome or an effect of physician’s preference on outcome through any other factor 
than treatment X. If physician’s preference for treatment X also affected prescription 
of other treatments which affect outcome Y, this assumption would be violated. 
Assumption 3 is represented by the absence of an arrow from the patient characteristics 
C and U to physician’s preference Z and by the absence of any other common causes 
of Z and Y. This assumption would be violated if physician’s preference were related 
to characteristics of the physician’s patient population. If physician’s preference were 
related to measured patient characteristics only (i.e. an arrow from C to Z) this could 
be resolved by correcting for these measured patient characteristics in the instrumental 
variable analysis.
The above assumptions are only sufficient for the estimation of the upper and lower 
bounds of the average treatment effect.22;24 An additional assumption is required to 
obtain a point estimate and the interpretation of the point estimate depends on this 
additional assumption, as will be discussed in more detail later. 

Figure 1. Directed acyclic graph of the three main assumptions underlying the use of physician’s 
preference as an instrumental variable. C denotes measured confounders of the X-Y relation, U 
denotes unmeasured confounders of the X-Y relation.
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Statistical methods for instrumental variable analysis
Numerous statistical methods to estimate the effect of an exposure on the outcome 
through instrumental variable analysis exist. Two standard methods for estimation of 
a risk difference or mean difference are the Wald estimator and two-stage least squares 
regression. 
Intuitively, in case of a binary instrument, the Wald estimator divides the difference 
in the outcome between the two levels of the instrument by the difference in the 
exposure between the two levels of the instrument. This yields a risk difference (if the 
outcome is binary) or a mean difference (if the outcome is continuous) between two 
exposure or treatment options (if the exposure is binary) or for a difference of 1 unit in 
the exposure (if the exposure is continuous).
More formally, in case of a binary instrument Z the effect of exposure (treatment) X on 
outcome Y estimated through the Wald estimator is as follows:21;22 

in which the numerator is the mean difference or risk difference in the outcome 
between the two levels of the instrument and the denominator is the mean difference 
or risk difference in the exposure between the two levels of the instrument. 

Two-stage least squares instrumental variable regression involves two linear regression 
stages. The first stage is a regression of the exposure X (treatment) on the instrument 
Z (and optionally, potential confounders C). This is the used to obtain a predicted 
treatment . The second stage is a regression of the outcome Y on the predicted 
treatment (and optionally, potential confounders C).3 If no confounders are included, 
the two-stage least squares estimate equals the Wald estimate. The inclusion of 
potential confounders C in both regression stages (importantly, the same covariates 
should then be included in both stages) allows adjusting for potential confounding of 
the instrument-outcome relation.21 Like the Wald estimate, the two-stage least squares 
estimate is a mean difference or risk difference in the outcome for a unit difference in 
the exposure.

This highlights the main limitation of these methods: for binary outcomes the estimate 
of interest is usually not a risk difference, but an odds ratio or risk ratio. Several papers 
discuss potential methods for the estimation of odds ratios25;26 or risk ratios,22;26 but 
the various potential methods make different assumptions, estimate different causal 
parameters in case of odds ratios and their results can vary in practical applications.26

More formally, in case of a binary instrument Z the effect of exposure (treatment) X on outcome Y 

estimated through the Wald estimator is as follows:21;22

𝛽̂𝛽𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐸𝐸𝐸𝐸[𝑌𝑌𝑌𝑌|𝑍𝑍𝑍𝑍 = 1] − 𝐸𝐸𝐸𝐸[𝑌𝑌𝑌𝑌|𝑍𝑍𝑍𝑍 = 0]
𝐸𝐸𝐸𝐸[𝑋𝑋𝑋𝑋|𝑍𝑍𝑍𝑍 = 1] − 𝐸𝐸𝐸𝐸[𝑋𝑋𝑋𝑋|𝑍𝑍𝑍𝑍 = 0]

in which the numerator is the mean difference or risk difference in the outcome between the two 

levels of the instrument and the denominator is the mean difference or risk difference in the exposure 

between the two levels of the instrument. 

Two-stage least squares instrumental variable regression involves two linear regression stages. The 

first stage is a regression of the exposure X (treatment) on the instrument Z (and optionally, potential 

confounders C). This is the used to obtain a predicted treatment X� . The second stage is a regression of 

the outcome Y on the predicted treatment X� (and optionally, potential confounders C).3 If no 

confounders are included, the two-stage least squares estimate equals the Wald estimate. The 

inclusion of potential confounders C in both regression stages (importantly, the same covariates 

should then be included in both stages) allows adjusting for potential confounding of the instrument-

outcome relation.21 Like the Wald estimate, the two-stage least squares estimate is a mean difference 

or risk difference in the outcome for a unit difference in the exposure.

This highlights the main limitation of these methods: for binary outcomes the estimate of interest is 

usually not a risk difference, but an odds ratio or risk ratio. Several papers discuss potential methods 

for the estimation of odds ratios25;26 or risk ratios,22;26 but the various potential methods make different 

assumptions, estimate different causal parameters in case of odds ratios and their results can vary in 

practical applications.26

An additional assumption for point identification of a treatment effect
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An additional assumption for point identification of a treatment effect
The three assumptions mentioned above are only sufficient for the estimation of the 
bounds on a treatment effect.22 A further assumption is required to obtain a point 
estimate. There are several different options for this ‘fourth’ instrumental variable 
assumption, some of which will be discussed here. Importantly, the interpretation of 
the IV effect estimate is different for each of these options, as we will explain below. 

Under the assumption that the treatment effects are homogeneous, the estimator 
as described above is an asymptotically unbiased estimate of the average treatment 
effect in the population .22;24 However, this assumption is often unrealistic because 
effects of treatments likely vary depending on, for example, severity of disease. Hernan 
and Robins also argue that for binary outcomes, homogeneity of treatment effects is 
logically impossible (unless treatment has no effect for any subject).22 When treatment 
effects are heterogeneous, an alternative fourth assumption is the deterministic 
monotonicity assumption. For a binary instrument Z and treatment X this means that 
only three types of patients may exist, ‘always takers’ (who receive , ‘never takers’ and 
‘compliers’ (patients who would receive treatment X at if Z=1 and but not at Z=0). 
There may be no ‘defiers’: patients who would receive treatment X at if Z=0 and but 
not at Z=1. The effect estimated under this assumption is a local average treatment 
effect (LATE), which for a binary instrument and treatment corresponds to the 
treatment effect among the ‘compliers’: i.e. among those patients who would receive 
treatment X at instrument value A but not at instrument value B.22;24;27 More generally 
formulated the instrument must affect treatment monotonically in one direction 
for all subjects.22;28;29 Hernan and Robins also specifically discuss the deterministic 
monotonicity assumption for continuous instruments.22 An alternative version of the 
monotonicity assumption is the stochastic monotonicity assumption, which states that 
instrument should be related to treatment monotonically across subjects within strata 
of a sufficient set of measured and unmeasured common causes of treatment and the 
outcome.28;29 For a binary instrument this means that within each of these strata, the 
compliers should outnumber the defiers. The effect estimated under this assumption is 
a strength of IV weighted average treatment effect: i.e. a weighted average of the effects 
in these different strata, with more weight given to strata in which the instrument is 
stronger.28

Mendelian randomisation
Epidemiologic studies investigating aetiology rather than therapeutic effects 
frequently use a specific form of instrumental variable analysis called Mendelian 
randomisation, which uses genetic variation as the instrument. Like observational 
studies of therapeutic effects, observational etiologic studies suffer from confounding 
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due to unmeasured factors. Another issue in etiologic studies and another reason 
for performing a Mendelian randomisation study is reverse causation: the observed 
exposure-outcome association can be due to the ‘outcome’ causing the ‘exposure’ 
rather than the other way round. A well-known example is the observation that low 
serum cholesterol levels are associated with occurrence of cancer: presence of occult 
or early-stage cancer may lower cholesterol levels rather than low cholesterol levels 
causing cancer. Katan proposed to investigate whether genetically low cholesterol 
levels (i.e. apolipoprotein E variants) are also associated with cancer. Because cancer 
cannot affect apolipoprotein E variants the issue of reverse causation can hereby be 
avoided.30 Furthermore, because genetic variants are randomly allocated from parents 
to offspring, in Mendelian randomisation studies these variants will generally be 
unrelated to other factors which affect the outcome. Confounding of the association 
between genetically determined exposure levels and the outcome is therefore not 
expected.31

Aims and outline of this thesis
We start by examining the concept of physician’s prescribing preference itself: first 
and foremost whether it exists - it can always be argued that observed variation in 
prescription patterns among physicians in epidemiological datasets is due to differences 
in their patient populations. In Chapter 2 we therefore use survey data asking general 
practitioners whether they would treat eight fictitious subclinical hypothyroidism 
cases to investigate whether differences in prescription patterns are still present 
when physicians are presented with the same patients. Additionally we investigate 
the plausibility of the deterministic and stochastic monotonicity assumptions for 
physician’s prescribing preference by examining the preference patterns in these 
survey data. 

Most examples of applications of physician’s preference-based instrumental variable 
analysis were performed in large pharmacoepidemiologic databases.15;17;19 In Chapter 
3 we aim to investigate how valid and useful physician’s preference-based instrumental 
variable analysis is in clinical epidemiological studies of a more typical size, i.e. several 
hundred patients. To this aim, we compare instrumental variable estimates of the 
effect of preoperative corticosteroids on mechanical ventilation time and duration of 
intensive care and hospital stay, occurrence of infections, atrial fibrillation, heart failure 
and delirium using routine care data of elective cardiac surgery patients to estimates 
from conventional analyses in the same data and to results of a recent randomised 
controlled trial. 
After this application, we use theoretical derivations and simulations in Chapter 
4 to investigate how sample size influences how instrumental variable analyses and 
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conventional analyses compare with regard to the average deviation of the estimates 
from the true effect, depending on the strength of the instrument and the level of 
confounding.

In a situation in which no confounding by (contra-)indication is expected, e.g. if the 
outcome is an unknown or unpredictable side-effect, instrumental variable analysis 
should give the same estimate as a conventional analysis. We investigate whether this 
holds for the effect of third generation oral contraceptives versus second generation 
oral contraceptives on the occurrence of venous thromboembolism in Chapter 5, 
comparing instrumental variable estimates using general practitioner’s preference as 
an instrument to conventional estimates.

Chapter 6 is a comment to a publication on the reporting of instrumental variable 
analyses, in which we provide a suggestion for an additional reporting step: presenting 
the outcome by strata of the instrument prior to performing a formal instrumental 
variable analysis. This has an interest in itself since the assumptions required are less 
stringent than for the formal instrumental variable analysis. 

In the last two chapters we move from the use of physician’s preference as an 
instrumental variable for estimating effects of therapy to the use of genetic variation 
as an instrumental variable in etiologic studies. In Chapter 7 we provide a meta-
epidemiological overview of the different methodological approaches used in 
Mendelian randomisation studies and evaluate the reporting of the statistical methods 
and the discussion of the plausibility of Mendelian randomisation assumptions. In 
Chapter 8 we explain why selection bias may exist if Mendelian randomisation studies 
are performed in elderly populations. 
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Abstract

Background: Physician’s prescribing preference is increasingly used as an instrumental 
variable (IV) in studies of therapeutic effects. However, differences in prescribing 
patterns among physicians may reflect different preferences or differences in case-
mix. Furthermore, there is debate regarding the plausibility of possible assumptions 
required for obtaining a point estimate using physician’s preference as an instrument.

Methods: A survey containing eight fictitious cases of women with subclinical 
hypothyroidism was sent to general practitioners (GPs) in The Netherlands, the United 
Kingdom, New Zealand, Ireland, Switzerland and Germany. GPs were asked whether 
they would prescribe levothyroxine to these cases. We investigated (1) whether 
variation in physician’s preference was observable and to what extent it was explained 
by characteristics of the GPs and their patient populations and (2) to what extent the 
data were compatible with deterministic and stochastic monotonicity assumptions.

Results: There was substantial variation in levothyroxine prescriptions amongst the 
526 responding GPs. Between-GP variance in levothyroxine prescriptions (on a logit 
scale) was 9.89 (95% CI 8.02;12.20) in the initial mixed-effects logistic model, 8.26 
(6.67;10.23) after adding a fixed effect for country and 8.01 (6.47;9.93) after adding 
GP characteristics. The deterministic monotonicity assumption was falsified by the 
occurring prescription patterns. For all cases in all countries, the probability of receiving 
levothyroxine was higher if a different case of the same GP received levothyroxine, 
which is compatible with the stochastic monotonicity assumption. The data were not 
compatible with this assumption for a different definition of the instrument.

Conclusions: Our study supports the existence of physician’s preference as a 
determinant in treatment decisions. The deterministic monotonicity assumption will 
generally not be plausible for physician’s preference as an instrument. Depending on 
the definition of the instrument, the stochastic monotonicity assumption may be 
plausible.
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Introduction

Instrumental variable (IV) analysis is increasingly used in observational studies of 
therapeutic effects, with the aim of circumventing confounding by indication. This 
method requires a variable (the instrument) that meets the following conditions: 
(1) is associated with treatment, (2) does not affect the outcome other than through 
treatment (exclusion restriction) and (3) does not share a common cause with 
the outcome (independence assumption).1;2 One such instrument is physician’s 
prescribing preference, which exploits the notion that prescribing by a medical doctor 
is influenced not only by prognostic characteristics of the patient, but also by a general 
preference of the doctor for some type of therapy when different treatment options 
are available.

Because underlying preference cannot be observed, physician’s preference-based IV 
studies use an estimate of physician’s preference based on prescribing behaviour. The 
question remains, however, whether differences in prescribing behaviour between 
physicians truly reflect differences in preference rather than just differences in their 
patient populations. Furthermore, the three main IV conditions described above 
are only sufficient for the estimation of bounds of a treatment effect.3 To obtain a 
point estimate an additional (fourth) assumption is required. The assumption of no 
heterogeneity of treatment effects, under which the average treatment effect in the 
population can be estimated, is often implausible.3 A frequently used alternative is the 
monotonicity assumption, first described by Imbens and Angrist.4 According to the 
original (deterministic) monotonicity assumption, the instrument may only be related 
to treatment monotonically in one direction for all subjects.2;4-7 A less strict, stochastic 
version of the monotonicity assumption has been proposed, as we will explain later.5-7 

The notion that physician’s underlying prescribing preference affects prescribing 
behaviour cannot be proven in IV study data (at the most, the assumption that 
physician’s estimated prescribing preference is unrelated to characteristics of the 
physician’s patient population can be explored to some extent). Furthermore, the 
deterministic monotonicity assumption is generally not verifiable within IV study data 
and the validity of the stochastic monotonicity assumption can only be explored to some 
extent. Swanson et al recently proposed using a study design in the form of a survey, 
asking physicians what their treatment decision would be for the same set of cases, 
to assess the monotonicity assumption empirically.2 Here we perform such a study, 
using data from a survey originally performed with the aim of establishing differences 
in treatment strategies of general practitioners (GPs) for subclinical hypothyroidism 
by country and by patient characteristics.8 These data were therefore not primarily 
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intended for our current study, but can nevertheless provide a valuable insight into the 
plausibility of the different monotonicity assumptions. Our aims are twofold, (1) to 
establish whether variation in physician’s preference regarding treatment of subclinical 
hypothyroidism is observable when GPs are presented with the same set of patients 
and to what extent this variation is explained by characteristics of the GPs and (2) to 
establish to what extent the data are compatible with the deterministic and stochastic 
monotonicity assumptions.

Methods
Study data
The survey procedures have been described in detail elsewhere.8 An online survey was 
e-mailed to 2710 GPs in The Netherlands, Germany, England, Ireland, Switzerland 
and New Zealand. It contained eight fictitious cases of women with subclinical 
hypothyroidism. All cases had a normal BMI, non-specific complaints resulting in 
fatigue and a normal free thyroxine level. Cases varied in age (70 years/ 85 years), 
vitality status (vita /vulnerable) and thyroid stimulating hormone (TSH) (6 mU/L/15 
mU/L), (Table 1). For each case, GPs were asked if they would start treatment, 
and, if so, what levothyroxine starting dose they would choose. For the purposes of 
this study, we only consider the responses on whether treatment would be started. 
Furthermore, GPs were asked questions about their gender, years of experience as a 
GP, the percentage of elderly patients registered in their practice, the time since the last 
diagnosis of subclinical hypothyroidism and the time since last starting levothyroxine 
treatment in a patient with subclinical hypothyroidism. For the full survey, we refer 
to Appendix 2 of Den Elzen et al which reports the study for which the survey was 
originally performed.8

Table 1. Age, vitality status and thyroid stimulating hormone (TSH) of the eight cases in the survey.

Case Age Vitality status TSH (mU/L)
1 70 Vital 6
2 70 Vulnerable 6
3 70 Vital 15
4 70 Vulnerable 15
5 85 Vital 6
6 85 Vulnerable 6
7 85 Vital 15
8 85 Vulnerable 15

Adapted from Den Elzen et al, British Journal of General Practice 2015.
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Possible assumptions for point estimation
Deterministic monotonicity
For a dichotomous instrument the deterministic monotonicity assumption is usually 
defined as the absence of ‘def﻿iers’.1;2;6;9 The IV analysis then estimates a local average 
treatment effect (LATE) among the ‘compliers’.1;4 These ‘compliers’ or ‘marginal 
patients’ are those patients who would receive treatment at the ‘encouraging’ value of 
the instrument (e.g. preference for treatment), but not at the ‘non-encouraging’ value 
of the instrument (e.g. preference for no treatment).1;5;9;10 As discussed by Swanson et 
al and Small et al, for physician’s preference as an IV, the compliance class (whether the 
patient is a complier, defier, always taker or never taker) is generally not well defined.2;6

Hernan and Robins have formulated the deterministic monotonicity assumption 
for physician’s preference as a continuous instrument.3 This would translate to the 
example of subclinical hypothyroidism as follows: if physician A would treat a certain 
patient with subclinical hypothyroidism with levothyroxine, then all physicians with 
a preference greater than or equal to the preference of physician A should treat that 
patient with levothyroxine. It is this assumption which we will assess for our survey 
data. It would correspond to global monotonicity as described by Swanson et al.2 
(Local monotonicity was also described by Swanson et al: for this somewhat more 
relaxed version of the assumption monotonicity must hold for specific pairs of 
physicians.2) For continuous instruments, the LATE is a weighted average of treatment 
effects in multiple subgroups of patients (e.g. subgroups of patients who would receive 
levothyroxine from physicians with a certain preference but not from physicians with 
a lower preference).1;3 

Stochastic monotonicity
The alternative proposed is the stochastic monotonicity assumption, which states that 
the instrument should be related to treatment monotonically across subjects within 
strata of a sufficient set of measured and unmeasured common causes of treatment 
and the outcome.6

If we view the cases in our survey not as individual cases but as strata of patients with the 
same relevant characteristics, the stochastic monotonicity assumption requires GPs’ 
preference to be related to treatment monotonically in one direction across patients 
in each of these strata. This means that the probability of levothyroxine treatment for 
patients treated by GPs with preference A should be at least as high as for patients 
treated by GPs with a lower preference, within all strata of patients. 



24

Chapter 2

24

2

Under the stochastic monotonicity assumption the effect estimated is a weighted 
average of treatment effects in the different strata of patients, with more weight given 
to those strata in which the instrument is strongest.5;7 Small et al have named this the 
strength-of-IV weighted average treatment effect (SIVWATE).6 We point out that in 
their identification framework for the SIVWATE and LATE, Small et al formulate the 
three main IV assumptions differently to how we formulated these assumptions in our 
introduction.6

Analysis
Variation in preference for levothyroxine and its determinants
For each GP who completed all survey questions, we calculated the total number 
of cases treated with levothyroxine, as a measure of the GP’s relative preference for 
treatment with levothyroxine in subclinical hypothyroidism.
To investigate the effect of GP characteristics on their tendency to prescribe 
levothyroxine, we used mixed-effects logistic regression. All cases completed by the 
GPs were included, with treatment with levothyroxine (no/yes) as the outcome. We 
ran the following (pre-specified) models:
Model 1: A random effect for GP and fixed effects for characteristics of the case (age 
70 or 85, TSH 6 or 15 mU/L, vital or vulnerable disposition).
Model 2: Model 1 plus a fixed effect for country.
Model 3: Model 2 plus a fixed effect for GP gender and years of experience (<5, 5-10, 
11-15, 16-20, 21-25, >25 years).
Model 4: Model 3 plus a fixed effect for percentage of patients in the GP’s practice aged 
≥65 years (<10%, 10-20%, 20-30%, >30%) and time since last diagnosis of subclinical 
hypothyroidism (<1 wk, 1 wk-1 mth, 1 mth-1 yr, 1-3 yrs, >3 yrs). 
The parameter of interest was the variance of the random effect of the GP (“between-
GP variance in preference”), which is calculated on a log odds scale. The interest lies 
in whether this variance decreases as country and characteristics of the GP are added 
to the model.

Deterministic monotonicity assumption
To investigate the monotonicity assumption we made a matrix plot11 for each 
country, with cases 1 to 8 on the X-axis and the GPs, ordered from highest to lowest 
preference, on the Y-axis, the colour of each cell indicating whether levothyroxine was 
prescribed. This was used to visually examine whether the deterministic monotonicity 
assumption holds. GPs who did not complete the survey were not included in 
these plots. eFigure 1 shows a matrix plot with the pattern expected if deterministic 
monotonicity holds completely: physicians with a certain preference always prescribe 
levothyroxine to those cases for which physicians with the same or a lower preference 
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prescribe levothyroxine. (From these plots, which show the complete data pattern, it 
is also possible to derive whether deterministic monotonicity could hold for specific 
instruments such as treatment of the previous patient of the same GP.) 

Stochastic monotonicity assumption
The exact formulation of the stochastic monotonicity assumption depends on the 
definition of the instrument. Because Small et al discuss the stochastic monotonicity 
assumption in the context of a binary instrument, using treatment of the previous 
patient as an example, and because treatment of the previous patient is a frequently 
used physician’s preference-based instrument, we evaluated whether stochastic 
monotonicity could hold for this instrument. Because all GPs were presented with 
all cases in the same order, we cannot use the true previous case as instrument. We 
therefore considered each other case as a potential previous patient, i.e. for each case 
there were 7 potential previous patients per GP. We denote the potential previous 
patient as the ‘other patient’. Each possible index patient-other patient combination was 
classified according to the treatment of both patients and summed across GPs to a total 
per case (per country). For each case we calculated the probability of levothyroxine 
treatment if the other patient received levothyroxine and if the other patient did not 
receive levothyroxine.

As a sensitivity analysis we also assessed the stochastic monotonicity assumption for 
the proportion of all other cases the same GP decided to treat (although we note that 
Small et al only discussed the stochastic monotonicity assumption with respect to a 
dichotomous instrument)6. We performed this analysis for the two countries with the 
largest number of responding GPs (The Netherlands and Switzerland).

Missing data
There was a technical problem in the electronic questionnaire sent to the Dutch 
GPs, resulting in 16 missing answers for case 6. Missing answers due to this technical 
problem were imputed, using logistic regression (10 imputations) with country, the 
answers for all other cases and characteristics of the GP as predictors.

Analyses were performed using Stata 12 (College Station, TX: StataCorp LP. 2011).
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Results

A total of 526 GPs from 8 countries responded to the survey. eTable 1 lists the response 
rates per country. The overall response rate was 19% (526/2710) and ranged from 4% 
(New Zealand) to 41% (The Netherlands). The number of responding GPs ranged 
from 21 from Ireland to 262 from Switzerland. Table 2 shows the characteristics of 
the GPs. Of the 526 respondents, 468 (89%) answered all questions and 71% were 
male. The years of experience ranged from <5 years (8%) to >25 years (29%). Seventy 
percent of responding GPs had ≥20% patients aged 65 years and over in their practice 
and the vast majority (91%) had diagnosed a patient with subclinical hypothyroidism 
within the last year.

Table 2. Characteristics of participating general practitioners (GPs).

GP characteristics n=526
Country

The Netherlands 129 (25)
United Kingdom 22 (4)
New Zealand 31 (6)
Ireland 21 (4)
Switzerland 262 (50)
Germany 61 (12)

Male 373 (71)
Experience as a GP (years)

<5 41 (8)
5-10 70 (13)
11-15 90 (17)
16-20 82 (16)
21-25 88 (17)
>25 155 (29)

Patients aged 65 years and over in GP practice (%)
<10 35 (7)
10-20 122 (23)
20-30 188 (36)
>30 181 (34)

Time since last subclinical hypothyroidism diagnosis
<1 week 76 (14)
1 week-1 month 194 (37)
1 month-1 year 211 (40)
1-3 years 27 (5)
>3 years 18 (3)

All data are presented as n (%).
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Variation in number of levothyroxine prescriptions
Figure 1 displays the distribution per country of the total number of cases for which the 
GP decided to start levothyroxine. There was substantial variation in this total within 
each country. The most frequent number of levothyroxine prescriptions was 4 for the 
UK, New Zealand, Ireland and Switzerland, 0 for The Netherlands and 8 for Germany. 

Association between GP characteristics and treatment preference
Table 3 displays results of the mixed-effects logistic regression used to investigate the 
effect of GP characteristics on levothyroxine prescription. Country explained some of 
the variance in levothyroxine prescription between GPs, as shown by the reduction 
in between-GP variance from 9.91 (95%CI 8.04;12.22) to 8.27 (95%CI 6.68;10.23) 
after adding a fixed effect for country. Adding GP characteristics (Model 3) resulted 
in a very small reduction in between-GP variance in treatment to 8.15 (95%CI 
6.58;10.10). Adding time since last subclinical hypothyroidism diagnosis and the 
proportion of patients aged 65 years and over (Model 4) resulted in a similarly small 

Figure 1. Distribution per participating country of the number of cases for which a GP would 
prescribe levothyroxine. 
A. The Netherlands (n=117) 	 B. United Kingdom (n=21) 	 C. New Zealand (n=25) 
D. Ireland (n=15)	 E. Switzerland (n=235)	 F. Germany (n=55)
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reduction. There was therefore still substantial variation in levothyroxine prescription 
among GPs after adjusting for all available patient and doctor characteristics.

Deterministic monotonicity assumption
Figure 2 shows matrix plots per country of the treatment decisions for each case 
by each GP. GPs are ordered from highest (8 cases treated) to lowest preference (0 
cases treated). The prescription patterns of the UK (Figure 2B) only showed a single 
violation of deterministic monotonicity: the GP who prescribed levothyroxine to 5 
cases treated case 2 while the GP who prescribed levothyroxine to 6 cases did not 
treat case 2. There were more violations of deterministic monotonicity in the other 
countries. Treating all cases with a TSH of 15 mU/L was a common pattern in the UK, 
The Netherlands, New Zealand, Switzerland and Ireland. For example, 75 of 89 GPs 
who treated 4 cases in Switzerland decided to initiate levothyroxine in cases 3, 4, 7 and 
8. In both The Netherlands and Switzerland, most GPs with a lower preference treated 
(one or more) cases with a high TSH only and most GPs with a higher preference 
treated at least the high TSH cases. However, there was not a consistent pattern 
regarding the 5th, 6th or 7th case treated, or the 1st, 2nd or 3rd case treated within those 
with a TSH of 15 mU/L. Prescribing patterns in Germany differed from those in other 
countries: many GPs (25 of 55) treated all cases with levothyroxine, and for the other 
GPs the prescribing patterns were less consistent.

Stochastic monotonicity assumption
Table 4 displays the probability of levothyroxine prescription per case, dependent on 
treatment of a different patient of the GP. The probability of levothyroxine prescription 
was higher if the other patient was prescribed levothyroxine for nearly all cases in all 
countries. Exceptions were case 1 in the UK and in New Zealand, for whom treatment 
probability did not differ depending on the other patient’s treatment. Importantly, 
there were no cases for whom the probability of levothyroxine was higher if the other 

Table 3 Between general practitioner (GP) variance in treatment

Model Between GP variance (95% CI)
1: Random effect for GP; fixed effect for age, TSH and 
vitality status of case 9.89 (8.02;12.20)

2: Model 1 + fixed effect for country 8.26 (6.67;10.23)
3: Model 2 + fixed effect for gender and years of 
experience 8.15 (6.58;10.10)

4: Model 3 + fixed effect for time since last diagnosis of 
subclinical hypothyroidism and proportion of patients 
aged 65 years and over

8.01 (6.47;9.93)
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Figure 2. Matrix plots of the prescription patterns of the GPs within each country. GPs are ordered 
from highest to lowest preference, with their response for each case indicated by the colour of the cell 
(yes: dark-grey, no: light-grey, missing: mid-grey). GPs with equal preferences were ordered according 
to their preferences for case 1(first yes, then no) through to 8, and subsequently by their identification-
number (if all answers were equal).
A. The Netherlands (n=117) 	 B. United Kingdom (n=21) 	 C. New Zealand (n=25) 
D. Ireland (n=15) 	 E. Switzerland (n=235)	 F. Germany (n=55)

patient did not receive levothyroxine, i.e. the instrument was related to treatment in 
the same direction for all cases in all countries. The instrument strength (the difference 
between the probability of the index patient receiving levothyroxine if the other patient 
received levothyroxine and the probability of the index patient receiving levothyroxine 
if the other patient did not receive levothyroxine) varied across cases within each 
country. For example, in The Netherlands, it varied from 20% (case 1) to 47% (case 4). 

The sensitivity analysis in which we evaluated the stochastic monotonicity assumption 
for a continuous instrument (the proportion of all other cases treated) showed 
violations of this assumption (eTable 2). Although for both countries the probability 
of treatment increased as the value of the instrument increased for all cases, it did not 
increase monotonically. Specifically, the probability of treatment was higher if 3/7 
other cases were treated than if 4/7 other cases were treated.
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Discussion

This survey study showed marked within-country variation amongst GPs in their 
tendency to treat patients with subclinical hypothyroidism with levothyroxine. 
Presenting the same cases to all GPs ensured that observed differences in prescribing 
behaviour truly reflect differences in preference, rather than differences case-mix. The 
existence of underlying relative preference for levothyroxine treatment for subclinical 
hypothyroidism patients amongst GPs as a “pseudo-random” phenomenon is further 
supported by the very limited decrease in between-GP variance in levothyroxine 
prescription after adjusting for GP characteristics. Even country explained a relatively 
small amount of the variation: the within-country variation is considerable compared 
to between-country differences.

The minimal amount of between-GP variance in levothyroxine prescription 
explained by GP characteristics within countries is reassuring with regard to main IV 
assumptions. If GP gender and years of experience were related to relative preference for 
levothyroxine, this would threaten the validity of the exclusion restriction assumption: 
years of experience in particular may affect the prognosis of subclinical hypothyroidism 
patients through other ways than levothyroxine prescription. If the proportion of older 

Table 4. Probability of levothyroxine dependent on treatment of a different case by the same general 
practitioner (GP) 

Case

Country
Netherlands

(n=117)
UK

(n=21)
New Zealand

(n=25)
Ireland
(n=15)

Switzerland
(n=235)

Germany
(n=55)

–  + ∆ – + ∆ – + ∆ – + ∆ – + ∆ – + ∆
1 7 27 21 0 0 0 4 4 0 27 47 20 17 45 28 50 89 39
2 4 27 23 4 6 2 3 14 11 11 45 34 10 41 31 19 73 54
3 44 90 46 64 100 36 82 100 18 84 100 16 67 96 30 76 97 20
4 45 92 47 64 100 36 60 83 23 84 100 16 62 93 31 68 95 27
5 4 27 22 2 8 5 5 12 6 11 45 34 7 36 29 15 64 50
6 6 26 20 2 8 5 9 25 16 22 50 28 11 38 27 23 72 49
7 39 85 46 64 100 36 63 89 26 65 90 25 61 90 29 65 93 28
8 40 78 38 59 94 35 45 74 29 70 87 17 61 90 30 46 87 41

Percentage of yes answers per case within each country, dependent on the treatment of a 
different case (the ‘other patient’) by the same GP. Each other answer of the same GP was 
used as an ‘other patient’. Treatment of the ‘previous patient’ is indicated by – (no levothyrox-
ine) and + (levothyroxine). The columns indicate the following (in %): – : Pr[D=1|Z=0]; +: 
Pr[D=1|Z=1]; ∆: Pr[D=1|Z=1]-Pr[D=1|Z=0].
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patients were related to preference for levothyroxine this would threaten the validity 
of the independence assumption: the baseline prognosis of patients would then differ 
according to GP’s preference. With regard to the independence assumption, it is 
important to make the distinction between physician’s preference as assessed in this 
survey and physician’s preference as it is typically used as IV in observational studies. 
A measure of preference based on previous patients of the physician is typically 
used: the treatment of these previous patients is determined both by the underlying 
preference of the physician and by characteristics of these patients.2 Physicians with 
the same underlying preference (i.e. who would give the same responses to our survey 
questions) can have a different case-mix of patients, and an estimate of their preference 
based on treatment of these patients would then differ. Although the assumption of 
no confounding seems to hold for underlying preference in our survey data, it may 
well be violated in observational data if measures of preference based on treatment of 
previous patients are used, due to confounding by case-mix. This issue of confounding 
of instruments based on prescribing history was also discussed by Swanson et al.2

The preference patterns observed within the six countries deviated in varying degrees 
from the pattern expected if the deterministic monotonicity assumption would 
hold. The violation of the deterministic monotonicity assumption in this survey 
with relatively simple case descriptions indicates it is unlikely to hold for physician’s 
preference as an instrument in true prescription data. For a dichotomous instrument, 
the bias in the local average treatment effect (LATE) estimate caused by violation of 
deterministic monotonicity depends on the proportions of compliers and defiers and 
the difference in treatment effects for compliers and defiers.9 For a multi-levelled or 
continuous instrument the bias caused by violation of the deterministic monotonicity 
assumption will be determined by analogous factors: i.e. the severity and pattern of the 
deviation from monotonicity, and the level of heterogeneity of treatment effects. In 
our example, heterogeneity is most likely to exist according to TSH levels, but looking 
at TSH only, there is relatively little violation of deterministic monotonicity. 

In these data, the stochastic monotonicity assumption was not falsified when treatment 
of a different patient of the same GP was used as an instrument. However, in the 
sensitivity analysis using the proportion of all other patients of the same GP treated 
as an instrument, the data were not compatible with the stochastic monotonicity 
assumption for that instrument. This may be due to the specific setting of the study: 
a certain proportion of other patients treated often corresponds to a certain pattern 
of specific cases treated in these data. Overall, these results suggest that the stochastic 
monotonicity assumption may be plausible for physician’s preference-based IV 
studies, depending on how the instrument is defined. Estimates of preference based on 
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a larger number of previous patients may be more likely in general to violate stochastic 
monotonicity, because the probability of treatment must increase monotonically 
across all levels of these instruments for all strata of patients. 

The effect estimate under the stochastic monotonicity assumption is not the LATE 
but the strength-of-IV weighted treatment effect (SIVWATE), a generalisation of 
the LATE with a similar interpretation.6 There has recently been discussion on the 
usefulness of the LATE. It centres around the question whether the treatment effect for 
the compliers is a relevant effect,12;13 particularly because we cannot identify who the 
compliers are.12 The SIVWATE has similar drawbacks to the LATE: the interpretation 
is difficult, since it is a weighted average of effects in strata which we cannot identify 
and for which we do not know the weights. 

The existing survey data used for this study provided a unique opportunity to investigate 
the assumptions underlying the use of physician’s preference as an IV, but also 
presented some limitations. One limitation is the low response rate, which may have 
affected our results in various ways. Responding GPs may be more aware of guidelines 
and more alike in their prescription patterns: i.e. the deterministic monotonicity 
assumption could be violated to a greater extent in the entire GP population. There 
may have been more ‘random’ variation in answers if all GPs had responded (i.e. if 
underlying preference is a stronger determinant of treatment in the respondents than 
in GPs overall). This would have reduced the overall strength of GP’s preference as an 
instrument. However, we would not expect it to affect the validity of the stochastic 
monotonicity assumption for treatment of one other case as the instrument: we do 
not expect such vastly different patterns among non-respondents that treatment of a 
particular case would be inversely related to treatment of a different case.

All GPs were presented with the cases in the same order. Random ordering of the cases 
per GP would have been preferable for assessing preference in the context of an IV. It 
would have enabled us to use a true ‘previous case’ for the evaluation of the stochastic 
monotonicity assumption. Furthermore, the ordering of the cases may have had some 
influence on answers given for specific cases.

By evaluating the stochastic monotonicity assumptions across these eight patient 
types (strata) in the survey, we considered the characteristics that define these patient 
types, i.e. age, vitality status and TSH levels, to be a sufficient set of measured and 
unmeasured common causes of treatment and the outcome. While this may hold 
for the simplified survey data, this is unlikely to be a sufficient set in a true patient 
population. We were therefore only able to evaluate the stochastic monotonicity 
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assumption for the simplified setting of the survey. Related to this, the fictitious cases 
in the survey were not intended to represent any particular population of subclinical 
hypothyroidism patients for whom we may want to estimate the effect of levothyroxine 
treatment. Rather, the survey was designed in such a manner that characteristics which 
were thought to be important in the treatment decision varied among the cases. The 
cases were intended to represent a well-known clinical decision problem: whether to 
treat subclinical hypothyroidism. In this sense estimating a treatment effect for this 
group would be of potential interest, although the types of subclinical hypothyroidism 
patients represented by the cases are limited. For example, the cases were all women 
and there was no variation in the symptoms with which they presented. 

Findings which may be of interest to clinicians are that we can distinguish several 
groups of factors which are related to the decision whether to treat a patient with 
subclinical hypothyroidism: characteristics of the patient, country (and its guidelines), 
and GP’s preference. In this setting of treatment of subclinical hypothyroidism, the 
lack of stringent guidelines leaves substantial room for GP’s preference to play a role in 
treatment decisions. While this would provide an opportunity to utilise this variation 
in an IV study of the effect of treatment of subclinical hypothyroidism, the ultimate 
aim of such a study would paradoxically be to reduce this preference-based variation 
through the development of evidence-based guidelines.

In conclusion, our study supports the existence of physician’s preference as a 
determinant in treatment decisions. Little of the variation in preference was explained 
by characteristics of the GP or their patient population, indicating that main IV 
assumptions may be plausible for physician’s treatment preferences. The deterministic 
monotonicity assumption did not hold and will generally not be plausible for 
physician’s preference as an instrument. The stochastic monotonicity assumption may 
be plausible, depending on how the instrument is defined.
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eTable 2. Probability of levothyroxine dependent on treatment of all other cases by the same general 
practitioner (GP). 

Case
Country

The Netherlands (n=117) Switzerland (n=235)
0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 0/7  1/7 2/7 3/7 4/7 5/7 6/7 7/7

1 0 0 13 25 4 47 73 67 0 33 7 53 15 48 62 86
2 0 0 0 12 1 42 81 100 0 14 12 22 6 37 73 94
3 5 50 75 92 76 100 100 100 6 67 47 98 96 100 100 100
4 0 44 86 100 86 100 84 98 0 45 39 98 88 88 100 100
5 0 0 0 8 8 46 62 87 0 0 6 27 5 13 48 94
6 0 0 0 21 10 28 46 80 3 17 12 36 6 26 53 89
7 3 33 64 87 69 93 100 100 6 64 18 92 80 93 93 100
8 5 50 70 87 58 75 79 80 3 58 36 95 74 88 100 100

Percentage of yes answers per case within each country, dependent on the treatment of the 
other cases of the same GP. The column headings indicate the proportion of the other patients 
treated.

eTable 1. Response rates per country and overall

Country Responses Surveys sent out Response rate (%)
The Netherlands 129 315 41
United Kingdom 22 178 34
New Zealand 31 850 4
Ireland 21 150 14
Switzerland 262 1086 25
Germany 61 178 34
Total 526 2710 19

Adapted from Den Elzen et al, British Journal of General Practice 2015.
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Abstract

Background: Instrumental variable methods can potentially circumvent the 
unmeasured confounding inherent in observational data analyses. 

Methods: We investigated the validity and usefulness of physician’s preference 
instrumental variable analysis in the setting of a moderate-sized clinical study. Using 
routine care data from 476 elective cardiac surgery patients, we assessed the effect of 
preoperative corticosteroids on mechanical ventilation time and duration of intensive 
care and hospital stay, occurrence of infections, atrial fibrillation, heart failure and 
delirium. 

Results: Although results of the physician’s preference-based instrumental variable 
analysis corresponded in direction to results of a recent large randomized trial of the 
same therapy, the instrumental variable estimates showed much larger effects with 
very wide confidence intervals. 

Conclusion: The lesser statistical precision limits the usefulness of instrumental 
variable analysis in a study that might be of sufficient size for conventional analyses, 
even if a strong and plausible instrument is available. 
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Instrumental variable analysis can potentially circumvent confounding by indication 
that exists due to unknown or poorly recorded factors in observational data of 
anticipated therapy effects.1 Physician’s prescribing preference is a promising 
instrument, since differences among physicians in therapy preferences are ubiquitous. 
We used anesthesiologist’s preference in an instrumental variable analysis to investigate 
whether preoperative high-dose corticosteroids are beneficial in cardiac surgery 
patients because they suppress the procedure-induced inflammatory response.2;3 We 
compared instrumental variable analyses to standard regression techniques, and also 
to results from the recent Dexamethasone for Cardiac Surgery randomized trial.4

Methods

We used clinical data collected in the context of routine clinical care. The Leiden 
University Medical Centre review board waived the need of formal ethical approval 
and written informed consent.

Study population.
We assessed data on all adult patients who underwent elective cardiac surgery in 
the Leiden University Medical Centre in 2005. Patients had undergone a range of 
interventions, including coronary artery bypass grafting, valve repair/replacement, 
and heart failure surgery. Patients treated with corticosteroids prior to admission for 
cardiac surgery were excluded, leaving 476 patients, of whom 115 received prophylactic 
corticosteroids. All received regular care according to the fast-track protocol.5

Study end points. 
Data on demographic features, type of surgical intervention and EuroSCORE were 
extracted from electronic and paper patient records. The EuroSCORE is a validated 
prognostic score of in-hospital mortality, based on patient-related, cardiac-related, and 
operation-related factors.6;7 Primary endpoints were 30-day mortality, ventilation time, 
and durations of intensive care unit (ICU) and hospital stays. Secondary outcomes 
were atrial fibrillation, infections, heart failure, delirium, norepinephrine use, glucose 
and leukocyte count

Statistical analysis 
We first used linear regression to estimate the effect of corticosteroids on the outcomes. 
This included crude analyses, multivariable analyses (adjusting for age, sex, diabetes, 
EuroSCORE and type of surgery) and propensity score-adjusted analyses (including 
the variables in the multivariable model plus the surgeon). Next, we performed two-
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stage least squares instrumental variable analysis, with robust standard errors for 
dichotomous outcomes. The instrument was the proportion of all earlier patients of 
the same anesthesiologist who received corticosteroids. We selected this instrument 
based on the first-stage F-statistic and partial r2 and on the range of predicted 
treatment probabilities. IV analyses were based on 461 patients (excluding 3 patients 
with unknown anesthesiologist, the only 2 patients of one anesthesiologist, and all 
first patients of the 10 anesthesiologists). Instrumental variable assumptions for our 
study were as follows: (1) anesthesiologist’s preference affects the probability that a 
patient receives corticosteroids; (2) anesthesiologist’s preference for corticosteroids 
does not affect the outcome other than through the decision whether to administer 
corticosteroids and (3) anesthesiologist’s preference for corticosteroids is not related 
to characteristics of his patient population.8;9 The fourth assumption, required to obtain 
a point estimate,10;11 was the monotonicity assumption: no anesthesiologist would 
give corticosteroids to a certain patient unless all anesthesiologists with the same or 
a stronger preference would also give corticosteroids to that patient. The causal effect 
estimated is a local average treatment effect,11 a weighted average of the treatment 
effects in patients who would receive corticosteroids from anesthesiologists with 
a certain preference level, but not from anesthesiologists with a lower preference.10 
Statistical analyses were performed with Stata 12 and the extension ivreg2.12 
For additional information regarding study population, data-extraction, study 
endpoints, conventional analyses, instrumental variable analyses and sensitivity 
analyses, see the eAppendix.

Results

Table 1 displays patient characteristics and outcomes according to received treatment. 
The EuroSCORE was higher in patients who received corticosteroids, suggesting 
confounding.
For the selected instrument the first stage F-statistic was 126 and the partial r2 was 0.22 
(see eMethods and eTable 1). Table 2 shows patient characteristics across physician’s 
preference quintiles. There was no clear pattern across physician’s preference quintiles 
in EuroSCORE (see eFigure 2 for EuroSCORE per anesthesiologist) or other patient 
characteristics, suggesting physicians’ preference for corticosteroids was not related to 
differences in patients’ prognosis. Table 2 shows a decreasing pattern across physician’s 
preference categories for duration of ventilation and infections. 
Results of conventional and instrumental variable analyses are displayed in the Figure 
(dichotomous outcomes only) and eTable 2. In general, unadjusted conventional 
analyses showed poorer outcomes in patients treated with corticosteroids (except for 
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Table 1. Patient characteristics and outcomesa by treatment status.

Prophylactic corticosteroids
No 

(n=361)
Yes

 (n=115)
Patient Characteristics
Male 246 (68) 69 (60)
Age (years); mean (SD) 64.5 (13.5) 63.9 (12.9)
BMI (kg/m2); mean (SD) 26.6 (4.2) 26.4 (4.2)
Diabetes mellitus 54 (15) 15 (13)
EuroSCORE; median (IQR) 4 (2-8) 5 (3-10)
EuroSCORE category

1-2% 115 (32) 23 (20)
3-5% 110 (31) 35 (31)
≥6% 134 (37) 55 (49)

Type of surgery
Off-pump CABG 36 (10) 6 (5)
On-pump CABG 100 (28) 29 (25)
Valve 116 (32) 39 (34)
Combination/ Other 109 (30) 41 (36)

Outcomes
Mortality (30 days) 10 (2.8) 4 (3.5)
Ventilation time (hrs); median (IQR) 10 (7-19) 11 (7-20)
ICU stay (days); median (IQR) 1 (1-3) 2 (1-4)
Hospital stay (days); median (IQR) 7 (6-11) 8 (6-13)
Highest norepinephrine dose > 0.1μg/kg/min 112 (33) 35 (32)
Highest glucose (mmol/l); mean (SD) 10.4 (2.4) 11.4 (2.5)
Highest leukocyte count (109/L); mean (SD) 13.4 (4.0) 15.6 (5.1)
Atrial fibrillation 173 (48) 50 (44)
Infection 52 (15) 15 (13)
Heart failure 48 (13) 22 (19)
Delirium 54 (15) 20 (18)

Abbreviations: BMI, body mass index; CABG coronary artery bypass graft; IQR, interquartile 
range
a No. (%), unless otherwise indicated
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atrial fibrillation, infections and norepinephrine dose). Multivariable and propensity-
score-adjusted analyses generally showed a null effect. Instrumental variable results 
indicated a decreased risk of adverse outcomes (except atrial fibrillation) after 
corticosteroid administration. However, confidence intervals of IV estimates were 
much wider than those of conventional estimates. For example, crude analysis 
indicated the risk of a ventilation time >11 hours was 3.1% higher (95% confidence 
interval = -7.8% to 14.1%), propensity-score-adjusted analysis indicated it was 2.0% 
lower (-12.8% to 8.8%) and instrumental variable analysis indicated it was 28.1% 
lower (-52.4% to -3.9%) for patients who received corticosteroids. Instrumental 
variable estimates of differences in glucose and leukocyte count were slightly higher 
than estimates from the other analyses (eTable 2).

Figure 1 Estimates of the effect of prophylactic corticosteroids on clinical outcomes in cardiac surgery 
patients, from crude, multivariable, propensity-score-adjusted and instrumental variable analyses. 
Risk differences with 95% confidence interval are shown.
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Due to our small sample size we could compare our results only to secondary 
outcomes of the Dexamethasone for Cardiac Surgery randomized clinical trial.4 In 
general, effects in our instrumental variable analyses were similar in direction to the 
randomized clinical trial results (see eResults), but with considerably larger effect 
sizes. For example, whereas our instrumental variable analyses estimated the risk of 
a ventilation time >24 hours to be 16.3% lower (-33.2% to 0.5%) for patients who 
received corticosteroids, the randomized clinical trial estimated this difference to be 
-1.5% (-2.7% to -0.3%).4 
Neither adjusting the instrumental variable analysis for patient characteristics, nor 
using an instrumental variable based on the last 5 patients materially changed the 
results (eTable 3). Sensitivity analyses estimating relative risks yielded similar effect 
sizes (eTable 4). 

Discussion

We investigated whether physician’s preference-based instrumental variable analysis 
was valid and useful in a moderate-sized study for the question whether preoperative 
corticosteroids are beneficial in cardiac surgery. In contrast to crude and propensity 
score adjusted analyses, instrumental variable analysis using anesthesiologists’ 
preferences as an instrument showed beneficial effects, similar in direction to the 
Dexamethasone for Cardiac Surgery randomized clinical trial results,4 and compatible 
with pathophysiologic insights concerning prevention of operation-induced systemic 
inflammation.13-15 However, compared with the trial results, the instrumental variable 
estimates were extremely large and confidence intervals were so wide as to preclude 
useful conclusions.
A reason for the difference in magnitude between our instrumental variable estimates 
and the randomized clinical trial results could be effect modification due to baseline 
prognostic differences between the study populations. Our patients seemed to be more 
high risk, as indicated by longer ventilation and ICU stay times and higher incidences 
of most outcomes. 
There are also design-inherent explanations for the large size of the instrumental 
variable effect estimates. First, our smaller number of patients, compared with the 
randomized clinical trial, gives rise to less statistical precision, which is further 
aggravated in the IV analysis due to its two-stage approach.16 This lack of precision, 
reflected in the large confidence intervals, could lead to the instrumental variable 
estimates being more extreme by chance.
Second, main instrumental variable assumptions may be violated. We would 
not expect differences in patient characteristics depending on anesthesiologist’s 
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preference for corticosteroids (independence assumption), as patients are assigned to 
the anesthesiologist on duty on the day of surgery. The lack of a consistent pattern 
in measured patient characteristics across quintiles of the instrumental variable is 
therefore reassuring. The assumption that preference for corticosteroids does not 
affect outcomes other than through administration of corticosteroids is more difficult 
to assess but seems plausible, as anesthesiologists took care of the patients only during 
surgery and were not involved in subsequent ICU care. 
Third, violation of the monotonicity assumption could contribute to the extreme 
estimates. For example, if patients who receive corticosteroids from an anesthesiologist 
with a weak preference would not receive them from an anesthesiologist with a strong 
preference and if corticosteroids are of relatively little benefit to these patients, then 
the estimate of the effect of corticosteroids would be too favorable.
Fourth, estimands of the conventional and the instrumental variable analyses 
are different: the conventional analyses estimate average treatment effects in the 
population, while the instrumental variable analyses estimate local average treatment 
effects (as explained in the Methods section).
Fifth, finite sample bias might be a reason for the large instrumental variable effect 
estimates. However, the first-stage F-statistic of 126 should be sufficient for finite 
sample bias to be negligible.1 We further explored this using simulations under 
conditions similar to our study (100 to 500 patients; mean partial r2 of 0.17; 
unmeasured confounding and a binary outcome occurring in 50% of patients) (see 
eAppendix). Mean instrumental variable estimates were close to the “true” treatment 
effect of -0.10, even when the sample size was reduced to 100 patients, indicating no 
substantial finite sample bias with an instrument of this strength. 
In conclusion, despite availability of a strong instrument, plausibly fulfilling main 
instrumental variable assumptions, physician’s preference-based instrumental variable 
analysis in a moderate-sized study population showed results that differed greatly in 
magnitude from results of a major randomized clinical trial on the same intervention. 
We have explored possible reasons and conclude that this phenomenon is most likely 
due to the reduced statistical precision of the instrumental variable analysis in datasets 
of moderate size.
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eMethods

1.	 Study population (additional information)
During the study period prophylactic corticosteroids were not routinely administered 
to cardiac surgery patients in the LUMC. Data on administration of prophylactic 
corticosteroids were extracted from the automated registration system for the 
operating room in which all administered medications were registered. Of the 476 
patients in this study, 115 received prophylactic corticosteroids. Of the 361 patients 
who did not receive prophylactic corticosteroids, 73 did receive corticosteroids during 
the surgical procedure or as treatment of protamine-allergy at the end of surgery. After 
surgical intervention all patients were admitted to the cardio-thoracic intensive care 
unit (ICU). 
 
2.	 Data extraction and study end-points
Data were extracted from electronic patient record databases, routinely used in the 
operating room and in the ICU (Metavision®, Mirador®) in which clinical parameters 
are collected automatically. In case data was missing in these electronic records, data 
was extracted from paper patient charts. These were kept simultaneously during the 
conversion phase from paper patient charts to electronic patient records. We extracted 
data on demographic features and type of surgical intervention. Furthermore, the 
logistic EuroSCORE, routinely computed and registered by the thoracic surgery 
department, was obtained for all patients. This a validated prognostic score of in-
hospital mortality related to cardiac surgery, based on patient-related factors (age, 
sex, chronic pulmonary disease, extra cardiac arteriopathy, neurological dysfunction, 
previous cardiac surgery, serum creatinine, active endocarditis, critical pre-operative 
state), cardiac-related factors (unstable angina, left ventricular dysfunction, 
recent myocardial infarct, pulmonary hypertension) and operation-related factors 
(emergency, other than isolated CABG, surgery on thoracic aorta, post infarct septal 
rupture).1;2 The following clinical study end-points were recorded: 30-day mortality, 
ventilation time, duration of ICU and hospital stay. These study end-points are 
collected and checked systematically on a weekly basis by a quality manager and by 
the hospital billing department. The following clinical parameters were extracted from 
the electronic patient records and recorded for the study: highest necessary dose of 
norepinephrine, highest glucose value and highest leukocyte count in the first 24 
hours after intervention. The occurrence of atrial fibrillation, infections, heart failure 
or delirium during hospital stay was also extracted. Infection was defined as clinical 
symptoms requiring new antibiotic treatment; heart failure was defined as a clinical 
diagnosis requiring additive diuretic, or invasive supportive (intra-aortic balloon 
pump, assist device) treatment; delirium was defined as the need for haloperidol. 
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3.	 Main assumptions for instrumental variable analyses 
In order to be valid, an instrumental variable should fulfill three main assumptions, 
which we will discuss specifically applied to our study (see also eFigure 1). The 
first assumption is that anesthesiologist’s preference affects the probability that a 
patient receives corticosteroids. The second assumption is that the anesthesiologist’s 
preference for corticosteroids does not affect the outcome in other ways than through 
the decision of whether to administer corticosteroids (exclusion restriction); the 
third is that the anesthesiologist’s preference for corticosteroids is not related to 
characteristics of his patient population (independence assumption).3;4 The difference 
in outcomes can then be attributed entirely to the difference in the probability of 
receiving corticosteroids (based on the anesthesiologist’s preference). 

We explored whether there was variation in corticosteroid administration amongst 
anesthesiologists and whether this seemed independent of their patient population. 
The lower part of eFigure 2 shows the proportion of patients to whom the 
anesthesiologists administered prophylactic corticosteroids; the upper part shows 
box plots of the EuroSCORE of these patients. The percentage of patients to whom 
the anesthesiologists administered corticosteroids showed considerable variation, 
ranging from 0% to 63%. In our data, there is no consistent pattern in the EuroSCORE 
with increasing prescription of corticosteroids (in accordance with the independence 
assumption), giving general reassurance that we could use anesthesiologist’s preference 
as an instrumental variable 

4.	 Instrumental variable selection
In our study population there was large variation among anesthesiologists in frequency 
of administration of prophylactic corticosteroids, ranging from 0% to 63%. This 
indicated that anesthesiologist’s preference regarding administration of prophylactic 
corticosteroids was a potentially suitable instrument. We considered several estimates 
of anesthesiologist’s preference for use as an instrument, based on one, two, five, ten 
or all previous patients. For a given patient the proportions of these preceding patients 
who received prophylactic corticosteroids were calculated, to provide estimates of the 
anesthesiologist’s relative preference for prophylactic corticosteroids at the time of the 
treatment decision for this specific patient.

To identify which of our candidate instruments was most strongly related to treatment, 
we carried out the first stage of the two-stage least squares instrumental variable 
regression only, by means of linear regression of the treatment on the candidate 
instrument.5 We selected the strongest instrumental variable based on the F-statistic 
and partial r2 of the first stage of the two-stage least squares regression and on the range 
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of predicted probabilities of treatment. An F-statistic greater than 10 suggests that 
small sample bias is negligible and that the instrument is therefore sufficiently strong.6 
The partial r2 indicates which proportion of the variance of the treatment is explained 
by the instrumental variable.7

eTable 1 displays the regression coefficients, the F-statistic and the partial r2 for the first 
stage regression using each of the candidate instruments. The regression coefficient 
can be interpreted as follows for the instrument based on the last patient only: for a 
patient treated by an anesthesiologist who administered corticosteroids to the previous 
patient the probability of receiving corticosteroids was 0.28 higher than for a patient 
treated by an anesthesiologist who did not administer corticosteroids to the previous 
patient. Analogously, for a patient treated by an anesthesiologist who administered 
corticosteroids to all previous patients the expected probability of receiving 
corticosteroids would be 0.82 higher than for a patient treated by an anesthesiologist 
who administered corticosteroids to none of their previous patients. The strengths of 
instrumental variables based on 10 previous prescriptions or all previous prescriptions 
were very similar, with a partial r2 of 0.21 and 0.22 and F-statistics of 131 and 126 
respectively. These instruments were considerably stronger than the instruments 
based on just one or two previous prescriptions. Although the partial r2 and F-statistic 
were slightly higher for the instrument based on 10 previous prescriptions than for the 
instrument based on all previous prescriptions, the range of predicted probabilities 
of treatment was slightly larger for the latter instrument. We therefore selected the 
proportion of all previous patients who received prophylactic corticosteroids for use 
as an instrument in subsequent analyses.

5.	 Conventional statistical analyses
Crude analysis
For continuous outcomes we calculated a mean difference (MD) with 95% confidence 
interval (CI) between treatment groups. For binary outcomes we calculated a risk 
difference (RD) with 95% CI, because this effect measure can be compared directly 
to two-stage least squares instrumental variable results. Ventilation time in hours and 
duration of ICU and hospital stay in days were dichotomized (as shorter or longer than 
the median). Robust standard errors were used for dichotomous outcomes.

Multivariable model and propensity score adjusted analyses 
The above analyses were repeated using multivariable adjustment and propensity 
score adjustment. The multivariable model was adjusted for age, sex, diabetes mellitus, 
EuroSCORE and type of surgical procedure, for the 470 patients with information 
on all included covariates. Operating surgeon was not included in the multivariate 
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regression models because for many outcomes there were few events, limiting the 
number of covariates that can be included in the regression model. The propensity 
score was calculated by first performing a logistic regression model with receipt of 
prophylactic corticosteroids as the dependent variable and all variables used in the 
multivariable model plus the operating surgeon as covariates and then predicting the 
probabilities of treatment for each patient based on this model. This was done for the 
464 patients with information on all variables.

6.	 Sensitivity analyses
(1) an instrumental variable analysis adjusted for age, sex, EuroSCORE, type of 
intervention and diabetes, to explore the effect of additional adjustments. 
(2) an instrumental variable analysis using an alternative instrument based on 
treatment of the previous 5 patients only, which might accommodates preference 
changes over time better than an instrument based on all previous patients. 
(3) an analysis in which we replaced the second stage of the instrumental variable 
regression with a generalized linear model with a log-link, which gives relative risk 
estimates, because two-stage least squares regression is based on linear models and 
may pose problems if exposures and outcomes are dichotomous, including predicted 
values below 0 or above 1.

7.	 Timeline of analyses relative to the DECS randomized trial8

All major decisions about patient selection, choice of instrument, outcomes and types 
of analysis were made before we knew the DECS trial results, to which we compared 
our results. After the trial was published we performed additional analyses with cut-off 
points similar to those in the trial for a better comparison. 
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eFigure 1. Instrumental variable assumptions in this study.
Causal diagram depicting instrumental variable assumptions if anesthesiologist’s preference is 
used as an instrumental variable in a study investigating the effect of prophylactic corticosteroids 
in cardiac surgery patients.
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eFigure 2. 
Proportion of patients to whom an anesthesiologist administered prophylactic corticosteroids 
(lower part) and distribution of the EuroSCORE of these patients (upper part).
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eTable 1. Strength of instruments based on 5 different preference assignments.

Instrument Difference in probability 
of treatment (95% CI)*

F-statistic Partial r2

Previous patient† 0.28 (0.19-0.37) 39 0.08
Last 2 patients‡ 0.47 (0.36-0.58) 74 0.14
Last 5 patients‡ 0.68 (0.56-0.80) 117 0.20
Last 10 patients‡ 0.77 (0.64-0.91) 131 0.22
All previous patients‡ 0.82 (0.67-0.96) 126 0.22

†Administration of prophylactic corticosteroids in the previous patient of the same 
anesthesiologist.
‡Proportion of the last 2/ last 5/ last 10/ all previous patients of the same anesthesiologist who 
received prophylactic corticosteroids.
*All differences stated are regression coefficients and represent the difference in the probability 
of receiving prophylactic corticosteroid between patients with values of the instrument of 1 
and 0. For the instrument based on the previous patient 1 indicates that the previous patient 
received the treatment and 0 denotes that the previous patient did not receive the treatment. 
For the instrument based on all previous patient 1 would denote that all previous patients 
received the treatment, and 0 would denote that none of the previous patients received the 
treatment.
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eTable 3. Sensitivity analyses.

Instrumental 
variable:

unadjusted

Instrumental 
variable:
adjusteda

Instrumental 
variable (last 5)b

Primary outcome†
Mortality (30 days) -2.6 (-8.4,3.2) -1.9 (-7.7,4.0) -5.1 (-10.5,0.3)
Ventilation time >11 hrs -28.1 (-52.4,-3.9) -26.1 (-48.3,-4.0) -28.7 (-54.1,-3.4)
ICU stay >1 day -18.4 (-41.8,5.0) -16.6 (-38.4,5.1) -17.2 (-41.0,6.6)
Hospital stay >8 days -22.7 (-44.9,-0.5) -22.7 (-44.6,-0.8) -27.5 (-50.3,-4.6)
Ventilation time >24 hrs -16.3 (-33.2,0.5) -14.7 (-30.3,1.0) -18.7 (-35.5,-2.0)
ICU stay>2 days -16.2 (-37.2,4.8) -13.2 (-33.1,6.7) -24.0 (-45.7,-2.4)
Clinical parameters
Highest norepinephrine dose†
> 0.1μg/kg/min -27.1 (-47.9,-6.2) -26.5 (-45.9,-7.2) -28.1 (-49.9,-6.4)

Highest glucose (mmol/l)‡ 0.94 (-0.20,2.08) 0.82 (-0.28,1.92) 0.40 (-0.78,1.57)
Highest leukocyte count (109/L)‡ 3.01 (1.01,5.00) 3.15 (1.15,5.15) 3.09 (1.01, 5.16)
Complications †
Atrial fibrillation 5.4 (-17.4,28.1) 8.4 (-13.9,30.7) 11.7 (-12.1,35.5)
Infection -14.1 (-30.1,1.8) -16.1 (-32.3,0.0) -10.4 (-26.5,5.7) 
Heart failure -9.5 (-24.8,5.9) -8.6 (-23.1,5.8) -17.5 (-32.8,-2.2)
Delirium -6.9 (-23.4,9.6) -8.2 (-24.6,8.2) -6.2 (-23.3,10.8)

† risk difference in % (95% CI) 
‡ mean difference (95% CI)
a. Instrumental variable analysis adjusted for age, sex, EuroSCORE, type of intervention and 
diabetes.
b. Instrumental variable analysis using the proportion of the last 5 patients treated with 
corticosteroids as an instrument.
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eTable 4. Relative risk estimates.

RR (95% CI*) 
Primary outcome
Mortality (30 days) 0.38 (0.03,3.16)
Ventilation time >11 hrs 0.50 (0.25,0.89)
ICU stay >1 day 0.68 (0.42,1.08)
Hospital stay >8 days 0.56 (0.26,0.93)
Ventilation time >24 hrs 0.36 (0.10,1.03)
ICU stay>2 days 0.61 (0.27,1.16)
Clinical parameters
Highest norepinephrine dose > 
0.1μg/kg/min 0.42 (0.18,0.80)

Complications 
Atrial fibrillation 1.12 (0.69,1.71)
Infection 0.33 (0.06,1.21)
Heart failure 0.50 (0.12,1.31)
Delirium 0.62 (0.14,1.84)

Relative risk estimates obtained using a two-stage model with a linear first stage and a generalised 
linear model with log-link second stage. The instrumental variable used was the proportion of 
all previous patients treated with corticosteroids. Confidence intervals were obtained using a 
bootstrap procedure with 1000 samples, bias corrected.
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eResults. Comparison to DECS trial results.
The RCT found 3.4% of patients in the dexamethasone group and 4.9% in the placebo 
group had a ventilation time >24 hours, a difference of -1.5% (95% CI -2.7%,-0.3%). 
The percentage of patients with an ICU stay >48 hours was 10.2% in the dexamethasone 
group and 14.0% in the placebo group, a difference of -3.8% (95%CI -5.7%,-1.9%). 
For atrial fibrillation the percentages were 33.1% and 35.2% respectively, a difference 
of -2.1% (95% CI -4.9%, 0.7%); for infections 9.8% and 14.8%, a difference of -5.3% 
(95% CI -7.2%, -3.4%); for delirium 9.2% and 11.7%, a difference of -2.5% (95% CI 
-4.3%, -0.7%).1 In general the effects on these outcomes were similar in direction to the 
results of our instrumental variable analyses, but with considerably smaller effect sizes. 

References
(1)	 Dieleman JM, Nierich AP, Rosseel PM et al. Intraoperative high-dose dexamethasone for 

cardiac surgery: a randomized controlled trial. JAMA 2012;308:1761-1767.
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eAppendix. Simulation study to investigate the influence of finite sample bias.
Monte Carlo simulations for a series of study population sizes of 100, 200, 300, 400 
and 500. The instrument P was generated from the standard uniform distribution 
U(0,1). An unmeasured confounder Cu was generated from the uniform distribution 
U(0,1). 

Treatment X was generated from a binomial distribution with individual patients’ 
probabilities of treatment dependent on P and Cu according to the following equation:
P(X=1|P,Cu)= 0.7P + 0.2Cu

Binary outcome Y was generated from a binomial distribution with individual patients’ 
probabilities of the outcome dependent on treatment X and on Cu as follows:
P(Y=1| X,Cu)=0.2 - 0.1X + 0.7Cu .

Next, the treatment effect was estimated in each sample using ordinary least squares 
regression and two-stage least squares regression. The mean estimates and their 
standard deviation for each sample size across 2000 simulations are displayed in the 
table below. The mean partial r2 in the simulations was 0.17, slightly lower than in our 
study data. Even at sample size 100 the mean 2-SLS is very close to the true effect of 
-0.10, indicating small sample bias is not a concern. However, the 2-SLS estimates are 
very variable, as indicated by their large standard deviations.

Sample size OLS estimates, 
mean (SD)

2-SLS estimates, 
mean (SD)

100 -0.054 (0.100) -0.101 (0.270)
200 -0.051 (0.069) -0.107 (0.182)
300 -0.053 (0.056) -0.107 (0.145)
400 -0.052 (0.051) -0.100 (0.128)
500 -0.054 (0.045) -0.101 (0.111)

Stata code for simulations
*create a file in which to store results
drop _all
clear all
postfile simres ssize b1 b2 pr2 F using “filename”, replace

*programme for creating one dataset (called “finite”)
drop _all
capture program drop finite
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program finite, rclass
drop _all
// ssize = sample size, as a macro
args ssize
//generate patients
set obs `ssize’
gen n=_n
//generate the instrument P
gen P=runiform()
//generation of an unmeasured confounder U
gen U=runiform()
//generation of treatment X
gen PrX= 0.7*P+0.2*U
gen X1 = runiform()
gen X=recode(X1,PrX,1)
recode X (1=0) (else=1)
drop X1
//generation of outcome Y
gen PrY= 0.2-0.1*X+0.7*U
gen Y1 = runiform()
gen Y=recode(Y1,PrY,1)
recode Y (1=0) (else=1)
drop Y1
//ordinary least squares regression
quietly regress Y X 
scalar b1 = _b[X]
//two-stage least squares regression
quietly ivreg2 Y (X=P), first
scalar b2 = _b[X]
*also save first stage partial r2 and F-statistic
matrix tmp2 = e(first)
scalar pr2 = tmp2[2,1]
scalar F = tmp2[3,1]
post simres (`ssize’) (b1) (b2) (pr2) (F)
end

*run the simulations
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foreach ssize in 100 200 300 400 500{
simulate, reps(2000) seed(312): finite `ssize’
			   }	
			 
postclose simres
 
*analyse the results
use “filename”, clear
sort ssize
//calculation of mean and standard deviation of the OLS and 2-SLS estimates 
//per sample size across 2000 simulations
by ssize: summarize b1 b2 pr2, detail
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Abstract 

 

Objective Instrumental variable (IV) analysis is promising for estimation of 

therapeutic effects from observational data as it can circumvent unmeasured 

confounding. However, even if IV assumptions hold, IV analyses will not necessarily 

provide an estimate closer to the true effect than conventional analyses as this 

depends on the estimates’ bias and variance. We investigated how estimates from 

standard regression (ordinary least squares (OLS)) and IV (two-stage least squares) 

regression compare on mean squared error (MSE).  

 

Study Design We derived an equation for approximation of the ‘threshold’ sample 

size above which IV estimates have a smaller MSE than OLS estimates. Next, we 

performed simulations, varying sample size, instrument strength and level of 

unmeasured confounding. IV assumptions were fulfilled by design.  

 

Results Although biased, OLS estimates were closer on average to the true effect 

than IV estimates at small sample sizes due to their smaller variance. The ‘threshold’ 

sample size above which IV analysis outperforms OLS regression depends on 

instrument strength and strength of unmeasured confounding, but will usually be 

large given the typical moderate instrument strength in medical research. 

 

Conclusion IV methods are of most value in large studies if considerable 

unmeasured confounding is likely and a strong and plausible instrument is available.  
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2 
 

Introduction 

 

Conventional methods to estimate therapeutic effects from observational data are 

often inherently affected by residual confounding due to unmeasured patient risk 

factors for which they cannot adjust. A potentially promising tool for estimation of 

therapeutic effects from observational data which may circumvent this problem is 

instrumental variable (IV) analysis. This method requires the identification of a 

variable that determines the probability of treatment but is not in other ways 

associated with the outcome under study and thereby mimics randomization. 

Expressed more formally, an instrument must fulfil three main assumptions: (1) the 

instrument is associated with the exposure (treatment); (2) the instrument does not 

affect the outcome in any other way other than through the exposure (exclusion 

restriction); (3) the instrument and outcome do not share causes (independence 

assumption) [1-4]. The above assumptions allow estimation of bounds of the 

treatment effect [3;5]. One additional assumption which allows a point estimate to 

be obtained, is the assumption of no heterogeneity of treatment effects, in which case 

the IV analysis estimates the average treatment effect in the population [3;5]. Note 

that in case of heterogeneity alternative assumptions can be made, but this is beyond 

the scope of this paper. Examples of instruments used in studies of therapeutic effects 

include regional variation in treatment rates (i.e. probability of treatment depends on 

area of residence) [6] and physician prescribing preference [7-9]. In etiologic studies 

Mendelian randomisation, which uses genetic information as an IV, is increasingly 

used [10]. 

 

Violations of the exclusion restriction and independence assumption will lead to 

biased IV estimates [5;7;11]. If those assumptions hold, the IV estimator will be 
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asymptotically unbiased [1;11]. In contrast, the bias of ordinary least squares (OLS) 

linear regression depends on the amount of residual confounding. However, whether 

IV analysis effect estimates can be expected to be closer to the true effect than 

estimates from conventional analysis depends not only on the bias, but also on the 

variance of the estimates (larger variances leading to higher probability of deviating 

estimates). The variance of estimates from IV methods like two-stage least squares 

(2-SLS) regression is much larger than from linear regression at a given sample size, 

because IV methods involve two estimation stages instead of one [12]. 

 

IV methods have been applied in large pharmaco-epidemiological databases, 

typically exceeding 10.000 patients. However, study populations in clinical research 

practice are often much smaller. Although in principle the large variance of the IV 

estimate at smaller sample sizes may not influence the validity of the IV estimates, it 

does affect how informative and useful the IV estimate is. It translates into a very 

wide confidence interval and the mean squared error of the IV estimate may be much 

larger than that of the biased conventional estimate [1]. The influence of sample size 

on the error of IV estimates has been investigated in conjunction with violations of 

IV assumptions [13]. In contrast, we will focus on the ideal scenario in which the 

exclusion restriction and independence assumptions hold to focus on the role of 

sample size, confounding and strength of instrument. Using theoretical derivations 

and simulations we will investigate the influence of sample size on how OLS linear 

regression estimates and 2-SLS IV regression estimates compare in terms of mean 

squared error (which incorporates both the bias and the variance of the estimates), 

depending on instrument strength and level of confounding.  
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Two-stage least squares instrumental variable analysis 

Two-stage least squares (2-SLS) IV regression involves two linear regression steps. 

The first stage linear regression is used to obtain predicted probabilities of treatment 

for each patient, based on the instrument. Covariates can be included, giving 

predicted probabilities of treatment conditional on the instrument and these 

observed covariates. The independence assumption then states that the instrument 

is not related to patient prognosis given these covariates [2]. The second stage is a 

regression of the outcome on these predicted treatment probabilities (and covariates 

if included), thereby providing an estimate of the effect of the treatment on the 

outcome [2;7;14]. For continuous outcomes the obtained effect estimate is a mean 

difference and for binary outcomes a risk difference.  

The variance of the 2-SLS estimate is  

2
C.ZX,

2
C.X

2
CX,.Y

IV ρnσ
σ

)β̂var(


 ,  

where C.ZX,ρ  is the partial correlation between the instrument Z and the exposure X 

given covariates C, i.e. the strength of the instrument, and Y is the outcome [11;15]. 

The variance is therefore 2
C.ZX,1/ρ  times larger than the variance of an ordinary least 

squares linear regression (OLS) estimate. This implies that the confidence interval 

(CI) for the 2-SLS estimator is 1/ C.ZX,ρ times wider than the CI of the OLS 

estimator. For example, for a moderately strong instrument with a correlation 

between instrument and exposure of 0.2, the CI for the 2-SLS estimator will be 5-

fold wider than the CI of the OLS estimator. If IV assumptions hold the 2-SLS 

estimates are asymptotically unbiased: bias will exist in finite samples and depends 

on the sample size and strength of the instrument. This is known as small sample bias 

[5;11], finite sample bias [1] or weak instrument bias [16]. The partial F-statistic of 
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the first stage regression provides an indication of the magnitude of the small sample 

bias: generally small sample bias is negligible at an F-statistic above 10 [11].  

 

Mean squared error: a summary measure for bias and variance 

The mean squared error (MSE) measures the squared average deviation of an 

estimated effect from the true effect. It is equal to  

 

 
])ˆ[( 2  EMSE  (1) 

in which E denotes expectation, ̂  is the estimated treatment effect and β is the true 

treatment effect. It can be shown that the MSE is the sum of the variance and the 

squared bias of an estimate. It is a measure of how far on average the effect estimate is 

from the true effect. Comparison of the MSEs of the different analysis methods 

therefore indicates which estimate is closest on average to the true effect. 

 

Calculation of a sample size at which IV outperforms OLS on mean squared 

error 

The trade-off between the larger bias of the OLS estimates and the larger variance of 

the IV estimates means that OLS estimates will be closer on average to the true effect 

at small sample sizes, but IV estimates will eventually be closer on average to the true 

effect as sample size increases. We derived Equation 2 (the derivation is provided in 

eAppendix 1) to calculate the ‘threshold’ sample size (nthreshold) above which IV 

analysis will outperform OLS in terms of mean squared error. The equation is an 

approximation: it does not include small sample bias of the IV estimates and assumes 

that IV assumptions are fulfilled.  
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The threshold sample size equals  

 











 1

ρ
1

biasσ
σ

n 2
C.ZX,

2
OLS

2
C.X

2
CX,.Y

threshold , (2) 

in which OLSbias  is the bias of the OLS estimate. As can be seen from the equation, 

the more biased the OLS estimator and the stronger the instrument (the higher 

C.ZX,ρ ), the lower the sample size at which the IV estimator will outperform the 

OLS. The observed correlation between the instrument and exposure (treatment) 

[17] can be used to estimate C.ZX,ρ ; if adjustments for observed covariates are 

made, the partial correlation controlled for covariates is used. The partial r2 (the 

squared partial correlation) for the first stage of the IV analysis reported in several 

previous IV studies ranged from 0.004 for a very weak IV to 0.22 for a strong IV 

(hospital preference)[18-20].  

The expression 2
C.X

2
CX,.Y

OLS σ
σ

/bias  can be viewed as “standardised bias” in units of 

residual standard deviation of Y per standard deviation of X given covariates C. It is 

equal to the remaining correlation between the exposure and the outcome due to 

residual confounding. Especially in case of binary exposures and outcomes the 

standardised bias will typically be much lower than 0.2. For example, if exposure and 

outcome have the same prevalence and the effect of the exposure on the outcome is 

small, the standardised bias almost equals the unstandardised bias. A standardised 

bias of 0.10 would then approximately correspond to a bias in estimated risk 

difference of 10%.  

Using equation (2) we plotted the relationship between instrument strength and the 

threshold sample size for different levels of “standardised bias” in the OLS estimate 

in Figure 1. For example, for a standardised bias of 0.025-0.05 sample sizes of several 



Chapter 4

70

4

 

7 
 

thousand will be needed even if the instrument is very strong (i.e. Z.CX,ρ  of 0.4-0.5) 

to outperform OLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‘Threshold’ sample size: a practical example 

To determine how the theoretical considerations above translate to a real application 

of IV analysis, we applied the formula to the landmark study by Brookhart et al, 

which was the first to use physician’s preference as an IV [7]. Physician’s preference 

may produce variation in treatment prescription unrelated to patient characteristics 

and prognosis and can therefore be used as an IV. The study used physicians’ relative 

preferences for COX-2 inhibitors in comparison to non-selective NSAIDs as an IV to 

compare the effect of these drugs on gastrointestinal complications within 120 days 

Figure 1. Plot of the relationship between instrument strength (correlation between instrument Z 
and exposure X) and the threshold sample size for different levels of ‘standardised’ bias in the OLS 
estimate ( CY.X,X.COLS /óóbias ) according to Equation 2.
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of first prescription [7]. The size of the study population was 49,919 patients [7]. 

Using multivariable regression a risk difference of -0.06 per 100 patients (95% 

confidence interval (CI) -0.26 to 0.14) was found. Using IV regression a risk 

difference of -1.31 per 100 patients (95% CI -2.42 to -0.20) was found. The 

randomised trial used for comparison with the IV study found a risk difference of -

0.65 per 100 patients (95% CI -1.08 to -0.22) [7]. We used the difference between 

the multivariable regression result and the randomised trial result as the bias of the 

conventional analysis (0.59/100). We calculated the ‘standardised bias’, by dividing 

0.0059 by √(49,919)·0.0010 (i.e. OLSβ̂n  ), 

because    2
C.X

2
CX,.YOLS σnσβ̂var  . This yielded a standardised bias of 0.026. 

From the confidence intervals we calculated the standard deviation of the OLS risk 

difference estimate (0.00102) and the IV estimate (0.00566). Because the standard 

deviation of the IV estimate is Z.CX,1/ρ  times larger than the variance of the OLS 

estimate (see previous section), this means that the correlation between the 

instrument and the exposure is approximately Z.CX,ρ =0.00102/0.00566 =0.18.  

 

Next, we calculated the threshold sample size above which the IV estimate can be 

expected to be closer to the true effect than the OLS estimate over a range of levels of 

bias in the conventional regression estimate, given the correlation between the 

instrument and the exposure and the value of 2
CX,.Yσ / 2

C.Xσ  as calculated above. The 

results are displayed in Figure 2. The threshold sample size at the level of bias (0.59 

per 100 patients) would be approximately 45,000 patients. This is in the ideal 

scenario in which all IV assumptions hold and if small sample bias in the two-stage 

least squares estimator is ignored. 
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Figure 2. Example of the relationship between the level of bias of the conventional estimate and the 
threshold sample size using data from the study by Brookhart. The variance of the IV risk difference 
estimate was 0.005552, the variance of the OLS estimate was 0.00102 and the study sample size was 
32273.

Figure 3. Directed acyclic graph of the design of the simulation study, with treatment X, outcome 
Y, measured confounder Cm, unmeasured confounder Cu, physician’s preference P and estimated 
physician’s preference P*.
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The role of sample size: simulations  

The formula for a threshold sample size calculation discussed above is an 

approximation. We therefore also performed a simulation study, as this includes the 

small sample bias of the IV estimator. The design of the simulation study is depicted 

in a directed acyclic graph in Figure 3. We simulated a hypothetical study 

investigating the effect of treatment X (X=1: treatment, X=0: no treatment) on 

continuous outcome Y. We assumed that the study involves patients treated by one 

of several different physicians and that the probability of receiving treatment X is 

determined by both patient characteristics (some measured Cm, some unmeasured 

Cu) and by physician’s preference P. The patient characteristics Cm and Cu also affect 

the outcome Y and are therefore confounders. Physician’s preference P is related to 

treatment, but not to patient characteristics and does not affect outcome Y other 

than through treatment X, thereby fulfilling IV assumptions. We repeated 

simulations across a series of sample sizes for four different scenarios regarding 

instrument strength and strength of unmeasured confounding. 

 

Data generation 

We performed Monte Carlo simulations for a series of study population sizes ranging 

from 500 to 10000 patients (by increments of 500 patients). Per 50 patients a 

physician with a preference P from the standard uniform distribution U(0,1) was 

generated (i.e. physician’s preference is a continuous variable with a value between 0 

and 1). The order of patients in time was defined as the order in which patients were 

generated. A summary measure of all measured patient characteristics Cm and a 

summary measure of all unobserved patient characteristic Cu were generated from 

the uniform distribution U(0,1).  
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Treatment X was generated from a binomial distribution with individual patients’ 

probabilities of treatment dependent on physician’s preference and patient 

characteristics Cm and Cu according to the following equations: 

a. for scenarios 1 and 2 (weaker instrument): 

P(X=1|P,Cm,Cu)= 0.1 + 0.5P + 0.1Cm + 0.2Cu 

This means that two patients with the same values for confounders Cm and Cu would 

have a 50% difference in probability of receiving treatment if one of these patients 

had a physician with the highest possible preference (P=1) and the other patient a 

physician with the lowest possible preference (P=0). 

 

b. for scenarios 3 and 4 (stronger instrument): 

P(X=1|P,Cm,Cu)= 0 + 0.7P + 0.1Cm + 0.2Cu 

I.e. the coefficient for the instrument is larger in the scenarios with the stronger 

instrument. The intercept is different (0 instead of 0.1), to ensure that the overall 

probability of receiving treatment is 0.5 in all scenarios. 

 

Continuous outcome Y was generated dependent on treatment X and patient 

characteristics Cm and Cu as follows: 

a. for scenarios 1 and 3 (weaker confounder): 

Y= -1 + 0X + 1Cm + 1Cu + ε  with ε~N(0,1) 

 

b. for scenarios 2 and 4 (stronger confounder): 

Y= -1.5 + 0X + 1Cm + 2Cu + ε with ε~N(0,1) 

I.e. the coefficient for the unmeasured confounder is larger in the scenarios with 

stronger confounding. The intercept was chosen such that the expected value of Y 
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was 0 in all scenarios. Treatment has no effect on the outcome (indicated by the 

coefficient of 0). 

 

Estimation of physician preference and data analysis 

For a given patient we used the proportion of previous patients of the same physician 

who received treatment X as the estimated preference of his physician (indicated by 

P* in the directed acyclic graph of Figure 3) for use in the IV analysis (as true 

preference P would not be known). The IV used in the original description of 

physician preference-based IV analysis [7], the treatment of only the last previous 

patient, would be a much weaker instrument in these simulations (in which 

preference P does not change over time), because it is not as strongly related to P as 

an instrument based on multiple previous prescriptions. The treatment effect was 

estimated using OLS and 2-SLS IV regression, both adjusted for measured patient 

characteristic Cm. 

 

Monte Carlo simulations and subsequent analyses were performed using Stata 

version 12 (College Station, TX: StataCorp LP. 2011). 

 

Simulation results 

The first stage regression results, including the partial r2 and the first stage F-statistic 

are discussed in eAppendix 2 and eTable 1. The mean squared errors (graphically 

displayed as root MSEs) of the different analyses across the range of sample sizes in 

the four different scenarios are depicted in Figure 4. We excluded the samples in 

which the first stage F-statistic was below 10 (to exclude those samples in which an 

IV analysis would be unlikely to be performed). In scenario 1 (weaker instrument, 

weaker confounding), the MSE of the 2-SLS estimates was much larger than that of 
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the OLS estimate at smaller sample sizes. Whereas the MSE of the OLS estimate 

only decreased minimally with increasing sample size, the MSE of the 2-SLS 

estimates decreased substantially, although the 2-SLS estimates were still further on 

average from the true effect than the OLS estimates at sample size 10,000 (in further 

simulations for this scenario the 2-SLS estimates outperformed the OLS estimates in 

terms of MSE from 25,000 patients upwards). 

 

Scenario 2 (weaker instrument, stronger confounding) resulted in a larger MSE for 

the OLS estimates. These more biased OLS estimates were first outperformed by the 

2-SLS estimates at a smaller sample size of 7000 patients. The stronger instrument in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Plots of the root mean squared errors of the linear regression estimates and IV regression 
estimates in the following simulation scenario’s:
Scenario 1: weaker instrument, weaker unmeasured confounding.
Scenario 2: weaker instrument, stronger unmeasured confounding.
Scenario 3: stronger instrument, weaker unmeasured confounding.
Scenario 4: stronger instrument, stronger unmeasured confounding.
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scenario 3 (stronger instrument, weaker confounding) resulted in a reduced variance 

of 2-SLS estimates, closer on average to true effect than the OLS estimates at sample 

sizes of 8000 upwards. Due to the combination of a stronger instrument and stronger 

confounding the sample size at which the 2-SLS estimates were on average closer to 

the true effect than the OLS estimates by sample size 3000 in scenario 4. 

 

In our simulations the threshold value for scenario 4 was approximately 2600 

patients (Figure 2). Using equation 2, we calculated what the approximate threshold 

sample size would be, given the bias of the OLS estimates in scenario 4 (0.133) and 

the partial r2 (0.111) (See eTable 1). This would give a threshold sample size of 

about 2400 (See eAppendix 3), i.e. very similar to the threshold value observed in 

our simulation results, indicating that equation 2 gives a good approximation.  

 

 

Discussion 

 

We have shown how the performance of IV analysis in comparison to conventional 

analyses depends substantially on sample size. We have provided an equation that 

can be used to approximate a ‘threshold’ sample size above which the mean squared 

error of IV analyses will be lower than that of conventional analyses in case IV 

assumptions hold. We show that substantial sample sizes will generally be needed for 

IV analyses to provide a better estimate on average than conventional analyses in 

epidemiologic studies.  

 

In smaller studies the IV estimate may have a wide, uninformative, confidence 

interval, a point estimate far from the true value, and the possibility of small sample 
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scenario 3 (stronger instrument, weaker confounding) resulted in a reduced variance 

of 2-SLS estimates, closer on average to true effect than the OLS estimates at sample 

sizes of 8000 upwards. Due to the combination of a stronger instrument and stronger 

confounding the sample size at which the 2-SLS estimates were on average closer to 

the true effect than the OLS estimates by sample size 3000 in scenario 4. 

 

In our simulations the threshold value for scenario 4 was approximately 2600 

patients (Figure 2). Using equation 2, we calculated what the approximate threshold 

sample size would be, given the bias of the OLS estimates in scenario 4 (0.133) and 

the partial r2 (0.111) (See eTable 1). This would give a threshold sample size of 

about 2400 (See eAppendix 3), i.e. very similar to the threshold value observed in 

our simulation results, indicating that equation 2 gives a good approximation.  

 

 

Discussion 

 

We have shown how the performance of IV analysis in comparison to conventional 

analyses depends substantially on sample size. We have provided an equation that 

can be used to approximate a ‘threshold’ sample size above which the mean squared 

error of IV analyses will be lower than that of conventional analyses in case IV 

assumptions hold. We show that substantial sample sizes will generally be needed for 

IV analyses to provide a better estimate on average than conventional analyses in 

epidemiologic studies.  

 

In smaller studies the IV estimate may have a wide, uninformative, confidence 

interval, a point estimate far from the true value, and the possibility of small sample 
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bias. Although the average deviation of the OLS from the true value is smaller, the 

coverage of the 95% confidence will be generally smaller than 95%, because of the 

bias in the estimate. In practice, the direction of the bias based on OLS estimates is 

often known, especially in case of confounding by indication. Therefore we 

recommend in small studies to calculate the OLS estimate, accompanied by 

sensitivity analysis for bias due to unmeasured confounding as described by for 

example Greenland [21], rather than performing an IV analysis.  

 

For the present study we chose the MSE as a measure of performance of the different 

analyses, rather than the coverage of the confidence interval, because the MSE 

incorporates both the bias and the variance of estimates whereas the coverage of the 

confidence interval provides information on the type I error rate alone. Although we 

would not recommend in general to prefer the method with the smallest MSE, it 

should be considered if the trade-off is between bias with known direction and 

estimable magnitude and an extremely large variance. Further, the size of the point 

estimate inevitably draws the attention of the researcher and reader, which means 

that its deviance from the true effect is therefore also important (alongside correct 

coverage of the confidence interval). Another reason why the large variance of IV 

analysis should be noted is that publication bias of statistically significant findings 

would, in the case of the very large variances seen in IV analysis, lead to the 

publication of very large effect estimates. 

 

The trade-off between the bias of conventional estimates and the variance of IV 

estimates has been described and discussed previously, but not with a focus on the 

role of sample size. One simulation study varied the proportion of patients whose 

treatment was affected by the physician’s preference, thereby varying the strength of 

 

15 
 

the instrument and the variance of the IV estimates, but did not vary the sample size 

[12]. A health econometrics study compared IV estimates and OLS estimates 

varying the degree of violation of IV assumptions, instrument strength and sample 

size, all in case of extremely biased OLS estimates [13]. Here we have shown how 

sample size in itself can limit the usefulness of IV analysis in comparison to 

conventional analyses in case of moderately to considerably biased OLS estimates. 

 

A limitation of the equation we use for calculation of a threshold sample size is that it 

does not take into account the small sample bias (weak instrument bias) of the IV 

estimate. The level of small sample bias depends on the strength of the instrument 

and the sample size and is indicated by the first-stage F-statistic; an F-statistic above 

10 is generally considered sufficient for small sample bias to be negligible [11]. If the 

instrument is weak and small sample bias likely to be present, the benefit of IV 

analysis over OLS analysis will be further reduced. As our equation is intended to 

compare 2-SLS and OLS in terms of mean squared error, it cannot be used as a 

formal power calculation. Power calculations for IV analysis have been described by 

others [15;22]. 

 

The trade-off between bias of conventional analysis methods and variance of IV 

methods is a general issue and will also apply for alternative IV approaches such as 2-

stage logistic models [23], and similar types of calculations should be possible. 

 

We applied our threshold sample size equation to an example of an IV study by 

Brookhart et al [7], which yielded a very large threshold sample size of 

approximately 45,000 patients. Moreover, estimates from a physician preference 

based IV analysis that we performed in a study population of 476 patients had a very 
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formal power calculation. Power calculations for IV analysis have been described by 
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methods is a general issue and will also apply for alternative IV approaches such as 2-

stage logistic models [23], and similar types of calculations should be possible. 

 

We applied our threshold sample size equation to an example of an IV study by 

Brookhart et al [7], which yielded a very large threshold sample size of 

approximately 45,000 patients. Moreover, estimates from a physician preference 

based IV analysis that we performed in a study population of 476 patients had a very 
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large variance, despite a strong instrument (in press). This indicates the large 

variance of IV estimates at sample sizes of this order forms a problem in real 

applications of IV methods and not just in the particular design of our simulations.  

 

IV analysis may be useful in studies involving either a very strong IV or a very large 

sample. Typical clinical observational studies are unlikely to meet either of these 

conditions. However, IV analysis may also be used to adjust for incomplete 

compliance in randomised controlled trials. The instrument is then the 

randomisation, which plausibly meets IV assumptions and will generally be strongly 

related to the treatment received (unless compliance is very low). The IV analysis 

will then estimate the treatment effect among the compliers (assuming there are no 

defiers, i.e. no patients who would always receive the opposite of the treatment they 

are randomised for). Other opportunities for useful application of IV analysis will 

increasingly become available as we enter the era of “big data”. Within increasingly 

available very large cohorts IV methods can be feasible and useful; they will have an 

advantage over other methods if information on confounders is insufficient. 

 

In conclusion, even when all IV assumptions hold, IV analysis can only be expected 

to provide an estimate closer to the true treatment effect than conventional estimates 

in large study populations. The size of the study population above which this is the 

case depends on the strength of the available instrument and the expected amount of 

unmeasured confounding. IV methods will therefore be of most value in large studies 

of intended effects, when considerable unmeasured confounding is likely, but only if 

a strong and plausible instrument is available.  
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eAppendix 1: Derivation of equation 2 

We assume the following underlying true model: 

E[Y|X, C, U] =α+ βX+γC+δU,  

with C a vector of known confounders and U a vector of unknown confounders.   

Our aim was to determine from which sample size IV estimates would be on average 

closer to the true effect than OLS estimates. We assume that we have data of a study 

of size n, in which we have estimated the true treatment effect β by an IV regression 

analysis, yielding estimate IV
n̂  and by OLS, yielding estimate OLS

n̂ , adjusting in 

both analyses for known confounders. 

 

In the situation without confounders the two step IV estimator equals the ratio of the 

sample covariances:1;2  

XZ,YZ,
IV
n σ̂/σ̂β̂  .  

The asymptotic variance of this estimator is  

2
ZX,

2
X

2
Y.XIV

n ρnσ
σ

)β̂var(  , 

with 2
Y.Xσ  the residual variance of Y after adjusting for X, 2

Xσ the variance of the 

exposure X and Z,X  the correlation between the exposure X and instrument Z, 

which reflects the strength of the instrument.1;3 

The variance of the OLS estimate is  
nσ

σ
β̂var 2

X

2
Y.XOLS

n   

 

As a measure for the average deviation from the true effect we use the mean squared 

error (MSE), where the MSE of an estimate n̂  is defined as  
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    
 

2

nn ββ̂Eβ̂MSE  

     2n

2

nn ββ̂Eβ̂Eβ̂E 



   

   2nn β̂biasβ̂var   

In the best-case scenario in which IV assumptions hold and small sample bias can be 

ignored, the bias of the IV estimator  would be zero. Then  

 IV
nβ̂MSE  IV

nβ̂var  

The bias of the OLS estimate does not depend on the sample size n. Hence  

 OLS
nβ̂MSE   2

OLS
OLS
n biasβ̂var   

For the threshold sample size tn , the OLSIV MSEMSE    and  

    2
OLS

OLS
nt

IV
nt biasβ̂ varβ̂var         

Filling in the formulas for the variance of the OLS and the IV estimate we obtain that 

for the threshold sample size nt :  

2
OLS2

Xt

2
Y.X

2
zx,

2
Xt

2
Y.X bias

σn
σ

ρσn
σ

 ,  

from which it follows that  














 1

ρ
1

biasσ
σ

n 2
ZX,

2
OLS

2
X

2
Y.X

t . 

Extension to the situation with adjustments for measured confounders C is 

straightforward, by controlling variances and correlations for C, i.e 2
Xσ is replaced by 

2
X.Cσ  the residual variance of X after adjusting for C in a linear regression analysis,  

2
Y.Xσ  is replaced by 2

CY.X,σ , and ZX,ρ is replaced by Z.CX,ρ the partial correlation 

between X and Z, adjusted for C.  
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n
Scenario 1&2 Scenario 3&4

Average 
F-statistic

F-statistics 
<10 (%)

Average 
partial r2

Average 
F-statistic

F-statistics 
<10 (%)

Average 
partial r2

500 19.0 29.7 0.037 55.1 3.6 0.099
1000 40.5 4.8 0.039 117.9 0 0.106
1500 61.6 0.2 0.040 178.8 0 0.108
2000 83.1 0 0.041 241.4 0 0.109
2500 102.7 0 0.040 298.2 0 0.108
3500 148.4 0 0.041 427.9 0 0.111
4000 169.6 0 0.041 488.5 0 0.110
4500 187.3 0 0.041 544.8 0 0.110
5000 209.5 0 0.041 609.5 0 0.110
5500 234.2 0 0.042 676.9 0 0.111
6000 252.4 0 0.041 729.9 0 0.110
6500 276.4 0 0.042 793.7 0 0.111
7000 300.4 0 0.042 864.1 0 0.112
7500 314.2 0 0.041 911.2 0 0.110
8000 337.3 0 0.041 977.5 0 0.111
8500 360.4 0 0.041 1043 0 0.111
9000 380.8 0 0.041 1102 0 0.111
9500 403.2 0 0.041 1166 0 0.111

10000 422.5 0 0.041 1221 0 0.111

Average first-stage F-statistic, % of first-stage F-statistics <10 and average first stage partial r2 
across 1000 samples at each sample size for the weaker instrument (scenario 1&2) and the 
stronger instrument (scenario 3 and 4).

eAppendix 2: Strength of the instrument in the simulations

eTable 1 displays the mean F-statistic and partial r2 for the first-stage regression across 
the range of sample sizes for the weaker instrument (scenario 1&2) and the stronger 
instrument (scenario 3&4). The strength of the instrument-outcome association var-
ied from one sample to the next, which resulted in some samples with a very weak 
instrument by chance at the smallest sample sizes. For the weaker instrument, 29.7% 
of samples had an F-statistic smaller than 10 at sample size 500. This quickly decreased 
with increasing sample size, all samples having an F-statistic above 10 at sample size 
2000. For the stronger instrument 3.6% of samples had an F-statistic smaller than 10 
at sample size 500 and none at a larger sample size. The average partial r2 was 0.041 for 
the weaker instrument and 0.111 for the stronger instrument (at sample size 10000).
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eAppendix 3: Threshold sample size calculation for simulation scenario 4. 

In this scenario the threshold sample size would be  














 1

ρ
1

biasσ
σ

n 2
C.ZX,

2
OLS

2
C.X

2
CX,.Y

threshold
mm

m ,  

with Z the instrument used . 

In scenario 4 we simulated from the following model:  

P(X=1|P,Cm,Cu)= 0 + 0.7P + 0.1Cm + 0.2Cu  and     

 Y= -1.5 + 0X + 1Cm  + 2Cu  + ε with ε~N(0,1),  

with Cm, Cu,P ~uniform (0,1). 

In this scenario 2
CX,.Y m

σ = 4var(Cu) + var(ε).  

The variance of the unknown confounder is equal to var (Cu) =1/12, because Cu is 

uniformly distributed on [0,1], which gives 2
CX,.Y m

σ =1.33. 

The residual variance of X after controlling for Cm is 2
X

2
X.Cm

2
X.Cm )σρ(1σ   .  

Since 2
X

2
Cu

22 /σσ0.1ρ
CX,
 = 0.0033, )0033.01(σ2

X.Cm  0.25=0.25. 

In the simulations the mean bias of the OLS estimates in scenario 4 was 0.133 and 

the mean partial r2 between the instrument Z and treatment X was 0.111.  

Using this yields 

24151
0.111
1

133.025.0
1.33n 2threshold 






 


  
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Abstract

Purpose: A potentially useful role for instrumental variable (IV) analysis may be as a 
sensitivity analysis to assess the presence of confounding when studying adverse drug 
effects. There has been discussion on whether the observed increased risk of venous 
thromboembolism (VTE) for 3rd generation oral contraceptives versus 2nd generation 
oral contraceptives could be (partially) attributed to confounding. We investigated 
how prescribing preference IV estimates compare to conventional estimates.

Methods: Women in the Clinical Practice Research Database who started a 2nd or 3rd 
generation oral contraceptive from 1989-2013 were included. Ordinary least squares 
and two-stage least squares regression were used to estimate risk differences in VTE. 
Cox regression and IV for Cox proportional hazards regression were used to calculate 
hazard ratios (HR). The instrument used was the proportion of prescriptions for 3rd 
generation oral contraceptives by the general practitioner in the year preceding the 
current prescription.
 
Results: All analyses pointed in the direction of an increased VTE risk for 3rd generation 
oral contraceptives. The adjusted HR from the conventional Cox regression was 1.62 
(95% CI 1.16-2.27) and the fully adjusted HR from the IV Cox regression was 3.45 
(95% CI 0.97-11.7), showing a larger risk and wider confidence intervals in the IV 
analysis.

Conclusions: The similarity in direction of results from the IV analyses and 
conventional analyses suggests major confounding is unlikely. The conventional 
observational analysis may have been conservative. IV analysis can be a useful 
sensitivity analysis to assess the presence of confounding in studies of adverse drug 
effects in very large databases.
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Introduction

Observational data analyses of intended effects of drug therapy are always suspected 
to be strongly confounded by factors that determine prognosis. This has been termed 
‘confounding by indication’.1 However, it has been argued, and there is empirical 
evidence, that this is not the case for adverse effects.2-4 Although confounding by 
contra-indication5 can exist, for many adverse effects of treatments little confounding 
is expected because these adverse effects are difficult to predict.2;6 Still, controversies 
can emerge due to different views about the potential for confounding when studying 
adverse effects. Performing an instrumental variable (IV) analysis may then be a 
consideration, because this method rests upon different assumptions. It requires 
identification of a variable that determines treatment but is not otherwise associated 
with the outcome - thereby mimicking randomisation. We explore the value of IV 
analysis as a ‘sensitivity analysis’ to assess the presence of confounding when studying 
adverse effects. 

As an example we use the controversy about the risk of venous thromboembolism 
(VTE) of 3rd vs 2nd generation combined hormonal oral contraceptives (OCs). In 
general, it can be expected that prescribers did not take a patient’s thrombosis risk 
into account when choosing between different OCs before 1995, when evidence 
of an increased risk of VTE in 3rd generation in comparison to 2nd generation OCs 
was published.2;7-9 Users of different classes of OCs before 1995, included in the 
studies published in 1995 and major studies based on data from before 1995,7-11 can 
therefore be expected to have had a comparable background risk of VTE. However, 
there was an extensive debate on (the direction of) the relation between thrombosis 
risk and OC choice in these studies and the resulting confounding.12-14 After 1995 
general practitioners (GPs) will have become aware of the increased VTE risk for 3rd 
generation OCs and may have started taking patients’ thrombosis risk into account 
when choosing between OCs.7-9 Yet this risk is difficult to predict in young women, 
and we therefore expect confounding by contra-indication to have remained limited. 

If the observed difference in risk of VTE between 2nd and 3rd generation OCs were 
only based on confounding, in principle, an IV analysis (e.g. using GP’s preference as 
an instrument) should show no difference in VTE incidence. On the other hand, if 
there is indeed little confounding by contra-indication for the association between 3rd 
vs 2nd generation OCs and VTE, effect estimates from conventional analyses and IV 
analyses should yield similar results. Therefore, we investigated how GP’s preference 
IV estimates of the effect of 3rd vs 2nd generation OCs on occurrence of VTE compare 
to conventional estimates from observational data. 
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Methods

Study population
The study population comprised all women aged 15-44 with a first prescription for 
a combined hormonal OC between 1987 and 2013 included in the Clinical Practice 
Research Datalink (CPRD). Those with a first prescription within six months of their 
registration date or date on which practice data were up-to-standard were excluded 
(n=366 354) as this may be a repeat prescription. Further reasons for exclusion were: 
a prescription for emergency contraceptives only (n=11 575), a first prescription with 
a repeat prescription code (n=29), occurrence of VTE before the first prescription 
(n=509) or an unknown prescriber for the first prescription (n=11561). Of the 502163 
remaining women, 444542 were first prescribed a 2nd or 3rd generation combined 
hormonal OC (as defined below) and were included in the study population.

Exposure
Second generation OCs were defined as OCs containing levonorgestrel, lynestrenol 
or norethisterone as a progestagen and < 50μg of oestrogen. Third generation OCs 
were defined as OCs containing desogestrel, gestodene or norgestimate progestagen 
and < 50μg of oestrogen. Supplementary Codelist 1 lists the codes used. Users 
of contraceptives containing other progestagens, such as drospirenone, were not 
included.

Outcomes
Outcomes were defined based on records of Read codes for deep vein thrombosis or 
pulmonary embolism (Supplementary Codelist 2). Codes for deep vein phlebitis or 
thrombophlebitis were also included, as these may contain misclassified VTE events. 
An additional requirement was prescription of anticoagulant treatment in the period 
from 1 month before until 6 months after the diagnosis code date. For the analyses 
estimating risk differences we included events which occurred within one year or three 
years after the first OC prescription. Patients who started OCs after 31st December 
2012 (1 year) or after 31st December 2010 (3 years) were excluded from these analyses. 
For the Cox regression analyses only events occurring during the continuous period of 
use of the same OC since the first prescription were included.

Other patient characteristics
Information on smoking and BMI was obtained if available. The most recent 
information before the first prescription for OCs was used, with a minimum age of 12 
for smoking behaviour and 14 for BMI. BMI values >14 or <60 were excluded. 
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Instrument definition
We used previous prescriptions of the patient’s GP as a proxy for GP’s preference 
for 2nd or 3rd generation OCs at the time of that patient’s first OC prescription. We 
considered the following instruments:
1.	 The previous first-time OC prescription of the same GP.
2.	 The proportion of 3rd generation OCs among the previous five first-time 

prescriptions of the same GP.
3.	 The proportion of 3rd generation OCs among all first-time prescriptions of the 

same GP in the year preceding the current treatment decision.
The strength of all three instruments (first-stage risk difference for 3rd generation OC 
prescription, partial r2 and partial F-statistic) was determined (Supplementary Table 
1). Instrument 3 (unadjusted: partial r² 0.191, F-statistic 99357; adjusted for calendar 
time: partial r² 0.085, F-statistic 38881) was selected for use in the IV analyses. We 
preferred this instrument over instrument 2 because of the fixed time interval in which 
preference was determined. All further analyses were performed in the 420152 subjects 
with a value for this instrument (excluding subjects whose GP had not prescribed any 
combined hormonal OC in the year preceding their prescription date).

IV assumptions
Figure 1 depicts the assumed causal relations in this study. For previous prescription(s) 
of the GP to be a valid instrument the following assumptions must hold: 
1.	 Previous first-time prescriptions of the same GP for 2nd or 3rd generation OCs must 

be associated with the type of OC prescribed to the current patient.
2.	 The prescriptions of previous patients may not affect the VTE risk of the current 

patient other than through the type of OC the current patient receives.
3.	 The prescriptions of previous patients and the baseline VTE risk of the current 

patient do not have a common cause. 

In order to obtain a point estimate we further assume stochastic monotonicity, under 
which a strength-of-IV weighted average treatment effect is estimated (for details we 
refer to elsewhere).15

Statistical analyses
All statistical analyses were performed using Stata 10.1. 
1.	 Ordinary least squares analysis (OLS)

First OLS regression was used to estimate the difference in risk of VTE between 
users of 3rd generation OCs and users of 2nd generation OCs 1 year and 3 years after 
first prescription. We performed these analyses: 1) unadjusted; and 2) adjusted for 
calendar year (using year continuously, ≤1995 versus ≥1996, and their interaction 
term), age, BMI and smoking (non-smoker/ smoker/ ex-smoker).
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2.	 Two-stage least squares analysis (2-SLS)
Next 2-SLS regression was performed, using the instrument selected previously. 
The estimates obtained are risk differences of VTE for 3rd vs 2nd generation OCs. 
Heteroscedasticity-robust standard errors were used. We performed these analyses: 
1) unadjusted; 2) adjusted for calendar year; and 3) adjusted for calendar year, age, 
BMI and smoking.

3.	 Cox proportional hazards regression
Next, Cox proportional hazards regression was performed to estimate the hazard 
ratio for venous thrombolism for users of 3rd generation OCs versus users of 2nd 
generation OCs. We used the full period of uninterrupted use of the first prescribed 
OC as the observation period (ending if OC use was stopped, if a switch to another 
class of OC was made (e.g. from a 2nd to a 3rd generation OC), if the patient was no 
longer registered in the practice, if the patient developed a VTE, or if the patient 
died). We performed this analysis: 1) unadjusted; and 2) adjusted for calendar 
year, age, BMI and smoking.

4.	 IV for Cox proportional hazards regression
We used an adapted version of IV regression to take into account the length of 
follow-up. The model used was an IV for Cox proportional hazards model, the use 
of which has been shown to be appropriate in case of a rare outcome.16 The first 
stage of this model is linear regression of the treatment on the instrument (and, 

Figure 1. Directed acyclic graph of the assumed causal relations in this study.
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for the adjusted analysis, the covariates). The second stage is Cox regression, with 
the fitted probability of a 3rd generation OC from the first stage as the independent 
variable (and, for the adjusted analysis, including the same covariates as in the first 
stage). To obtain a confidence interval we used nonparametric bootstrap (1000 
runs). We performed the analysis: 1) unadjusted; 2) adjusted for calendar year; 
and 3) adjusted for calendar year, age, BMI and smoking. For the fully adjusted 
analysis the average of the 2.5th and 97.5th bootstrap percentile across the 10 
imputations were used as an approximation, which gives a slightly too narrow 
confidence interval.

Initially, we planned to perform all analyses in two time periods, namely the time 
periods before and after publication of evidence of an increased risk of VTE for third 
generation OCs in 1995; i.e. 1987-1994 and 1996-2011. Unfortunately, due to the low 
number of patients newly starting a 2nd or 3rd generation OC before 1995 (n=46747, 
n=45354 with a value of the instrument), this was not feasible.

Missing values
Missing values for BMI and smoking were imputed using multiple imputation using 
chained equations, using linear regression for BMI and multinomial logistic regression 
for smoking. All versions of the outcome from the different analyses, log-transformed 
follow-up time, the exposure (second or third generation OCs), the instrument and all 
covariates were included in the imputation model.

Sensitivity analyses
The exclusion of women with a first prescription within six months of the entry date 
may not be sufficient to exclude all patients for whom the first prescription recorded 
is a repeat prescription. We therefore performed sensitivity analyses in which we 
excluded all patients with a first prescription within a year of the entry date.

The requirement of a record of a prescription for anticoagulation by the GP within 6 
months after the potential thromboembolic event may be too strict, as some patient 
may have received all prescriptions for anticoagulants via the hospital. We therefore 
performed sensitivity without this requirement.
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Results

Patient characteristics
Characteristics of the study subjects are shown in Table 1, both by actual treatment 
and by value of the instrument. Patients who received a 3rd generation OC were older 
(median age 24.3 years versus 20.3 years) and smoked slightly more (26.5% versus 
25.0%) than patients who received a 2nd generation OC. As the percentage of 3rd 
generation prescriptions in the preceding year by the same GP increased, the age of the 
patients increased (median of 23.2 years in the highest group versus 20.0 years in the 
lowest group) and the percentage of smokers also increased (highest group: 27.3%; 
lowest group: 23.8%).

Table 1. Patient characteristics by actual type of oral contraceptive and by quintiles of prescriptions 
for 3rd generation oral contraceptives by their GP in the past year.

Actual prescription Prescriptions of the same GP in past year                            
(% 3rd generation)

2nd 
generation

3rd 
generation

0 Q1             
(1.6-20.0)

Q2             
(20.2-44.4)      

Q3             
(44.6-100)     

N 309508 110644 133349 98423 94119 94261
Actual 
prescription 
3rd generation

N/A N/A 16121 
(12.1)

15068 
(15.3)

23967 
(25.5)

54796 
(58.7)

Age (y), 
median (IQR)

20.3
(17.0-28.1)

24.3
(18.5-30.6)

20.0 
(17.0-27.7)

21.0 
(17.2-28.7)

22.1
 (17.6-29.4)

23.2
 (17.9-29.9)

BMI (kg/m²), 
median (IQR)†

22.9 
(20.6-26.2)

22.8 
(20.7-25.8)

23.0 
(20.5-26.3)

23.0
(20.7-26.4)

22.9 
(20.6-26.0)

22.7 
(20.6-25.7)

Smoking‡

Yes 62515 
(25.0)

22612 
(26.5)

26356 
(23.8)

20408 
(25.4)

19414 
(25.9)

18949 
(27.3)

Ex 20304 
(8.1)

7800 
(9.2)

9349 
(8.4)

6997 
(8.7)

6470 
(8.6)

5288 
(7.6)

Venous throm-
bo-embolism*

1 year 91 (0.03) 45 (0.04) 48 (0.04) 27 (0.03) 26 (0.03) 35 (0.04)
3 years 180 (0.07) 101 (0.10) 81 (0.08) 55 (0.06) 64 (0.08) 81 (0.09)

Data are presented as n(%) unless stated otherwise.
†Data available for 239593 patients.
‡Data available for 335553 patients.
*Available for 403864 patients (1year) and 364211 patients (3 years).
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Changes in prescription behaviour over time
A reason why the instrument was related to age and smoking is that the instrument 
was strongly related to calendar time. In Figure 2, we show the proportion of 
prescriptions for 3rd generation and 2nd generation OCs (and drospirenone-containing 
contraceptives) per calendar year. From 1989 (40%) to 1994 (78%) the proportion of 
prescriptions for 3rd generation OCs increased. During 1995 (68%) this trend stopped, 
leading into a drop in 3rd generation OC prescriptions in 1996 (21%). After 1996 the 
proportion of 2nd generation OCs remained relatively constant between 75%-80%, 
with the proportion of 3rd generation OCs gradually decreasing as the proportion of 
drospirenone-containing OCs increased. Supplementary Table 7 shows that the age at 
first prescription and the proportion of smokers decreased over time.

OLS and 2-SLS regression
Differences in 1-year and 3-year risk of VTE between 3rd generation and 2nd generation 
OCs obtained using OLS regression and 2-SLS IV regression are displayed in Table 2. 
All OLS results show an increased risk for VTE for 3rd generation OCs in comparison 
to 2nd generation OCs: the adjusted 1-year risk difference was 1.2 events per 10000 
patients (95% CI -0.2;2.6) and the adjusted 3-year risk difference was 2.0 events per 

Figure 2. Proportion of prescriptions for 3rd generation and 2nd generation oral contraceptives (and 
drospirenone-containing contraceptives) per calendar year.
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Table 2. Conventional and instrumental variable estimates of the risk differences of venous 
thromboembolism per 10,000 patients for 3rd generation versus 2nd generation oral contraceptives 
within 1 year and within 3 years of first prescription.

                                                               Ordinary least squares                                                   
(Risk difference per 10,000)

Two-stage least squares                                                                                 
(Risk difference per 10,000)

Time No. 
Events

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted 
for calendar 

year

Adjusted for 
calendar year, age, 
BMI and smoking

1 y 136 1.1 
(-0.2;2.4)

1.2 
(-0.2;2.6)

0.8 
(-2.4;4.0)

4.0 
(-1.1;9.1)

3.5 
(-1.7;8.7)

3 y 281 3.0 
(1.0;5.0)

2.0 
(-0.2;4.2)

4.1 
(-0.8;9.0)

3.8 
(-3.7,11.4)

3.0 
(-4.7;10.6)

Table 3. Conventional and instrumental variable estimates of the hazard ratio of venous 
thromboembolism for 3rd generation versus 2nd generation oral contraceptives.

Conventional Cox proportional 
hazards regression

IV for Cox proportional hazards regression*

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted for 
calendar year

Adjusted for 
calendar year, age, 
BMI and smoking

1.78 (1.30-2.44) 1.62 (1.16-2.27) 2.05 (0.96-4.39) 4.16 (1.22-13.0) 3.45 (0.97-11.7)

*IV regression with a linear regression first stage and a Cox regression second stage, confidence 
intervals derived using bootstrapping (see Methods for details)

10000 patients (-0.2;4.2). All point estimates from the 2-SLS regression were also in 
the direction of an increased risk for VTE for 3rd generation OCs, but with much wider 
confidence intervals. The fully adjusted 2-SLS analyses gave a 1-year risk difference of 
3.5 events per 10000 patients (-1.2;8.3) and a 3-year risk difference of 3.0 events per 
10000 patients (-4.5;10.4).

Cox proportional hazards and IV for Cox proportional hazards regression
Median follow-up time was 234 days, 38% had at least 1 year and 11% had at least 3 
years of continuous use of the same OC. There were 179 events during a continuous 
period of use of the same OC. Hazard ratios (HRs) for VTE of 3rd generation OCs 
compared with 2nd generation OCs obtained using conventional Cox proportional 
hazards regression and IV for Cox proportional hazards regression are displayed in 
Table 3. Both the conventional Cox regression (adjusted HR 1.62, 95% CI 1.16-2.27) 
and the IV Cox regression (fully adjusted HR 3.45, 95% CI 0.97-11.7) indicated an 
increased VTE risk for 3rd generation OCs.
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Sensitivity analyses
The sensitivity analysis requiring a minimal registration time of 1 year gave slightly 
larger 1-year risk difference estimates in both the OLS analysis (adjusted RD 1.7, 95% 
CI 0.2;3.3) and the 2-SLS analysis (fully adjusted RD 5.7, 95% CI 0.0;11.4). Other 
results did not change materially (Supplementary Tables 2-4). 

The sensitivity analysis without requirement of a record of anticoagulant treatment 
in the event definition resulted in a larger absolute number of events, and somewhat 
larger risk differences in the OLS analyses (Supplementary Table 5). All other results 
(Supplementary Tables 5 and 6) were very similar to those from the main analyses.

Discussion

The results of the IV analyses showed a similar picture to results from the conventional 
analyses. All estimates were consistently in the direction of an increased risk of VTE 
for 3rd generation OCs in comparison to 2nd generation OCs. The point estimates from 
the IV analysis were generally higher than those from the conventional analyses, albeit 
with wide confidence intervals. The results of the IV analyses do not indicate that 
unknown confounding could explain the higher VTE incidence with 3rd generation 
OCs.

To our knowledge, no previous studies have used IV analysis to investigate the effect 
of 3rd vs 2nd generation OCs on the risk of VTE. Previous studies include both case-
control studies,7;8;14;17-19 and cohort studies.9;14;17;20 Many of these studies compared 
levonorgestrel-containing contraceptives with gestodene- or desogestrel-containing 
contraceptives,7;9;17;20 whereas we included a broader range of 2nd and 3rd generation 
OCs (although there has been discussion whether norgestimate-containing OCs 
should be grouped with 3rd generation OCs)12. To mimic the randomised trial situation, 
we only used ‘incident users’ of OCs in our analysis.21-23 For the Cox proportional 
hazards regression analyses we only included the period of use of the class of OC a 
patient was first prescribed. This highlights a limitation of the least squares analyses: 
these included women who started using a certain OC, but switched, stopped or were 
lost to follow-up. 

A limitation of IV analysis in general is the larger variance in comparison to conventional 
analyses. Although our study population was very large, the number of events was 
small, resulting in large confidence intervals for the IV estimates in particular. A further 
limitation is the difficulty of identifying all true VTE events. We used an extensive 
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list of diagnosis codes, and required a record of an anticoagulant prescription for the 
events in our main analyses as an additional safeguard against misclassification (as in 
previous studies). However, this may have resulted in exclusion of some true events. 
Sensitivity analyses without the anticoagulant requirement did not yield substantially 
different results. 

The analysis across the twenty-five year time period and the changes in prescribing 
preferences over time posed some problems. Because both prescribing preference and 
the age and smoking behaviour of patients who were first prescribed an OC changed 
substantially over time, prescribing preference was related to age and smoking 
behaviour. This violates the independence assumption (the instrument may not be 
related to other factors which affect the outcome). Restrict the data to a shorter time 
period across which prescribing preference was more or less stable was not possible 
due to the low incidence of VTE which would result in a study with a very low power. 
Adjusting the IV analyses for calendar year was considered the best alternative. 

The similarity of the results from the conventional and IV analysis suggests major 
confounding is unlikely. If anything, the larger point estimates from the IV analyses 
suggest the conventional estimates are conservative, and do not support the objection 
by some researchers in the late 1990s that the higher VTE incidence for 3rd generation 
contraceptives was due to selective prescribing of 3rd generation OCs to women at an 
increased risk of VTE. Selective prescribing of 3rd generation OCs to women at low 
risk of VTE after 1995 could have resulted in some degree of confounding by contra-
indication. In general, the degree to which confounding by contra-indication is likely to 
be present will depend on the predictability of the adverse effect studied. For example, 
whereas the risk of bleeding upon use of oral anti-coagulation is relatively predictable, 
the risk of developing a cough upon use of angiotensin-converting enzyme inhibitors 
is essentially unpredictable.

In conclusion, we found an increased risk of VTE for 3rd generation OCs in comparison 
to 2nd generation OCs using both IV analyses and conventional analyses. We conclude 
that major confounding is unlikely in this study of a minimally predictable side-effect. 
IV analysis can be a useful sensitivity analysis to assess the presence of confounding in 
studies of adverse effects in very large databases.
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Supplementary Table 1. First-stage associations of three potential instruments with actual 
prescription of a 3rd generation oral contraceptive. 

Potential instrument Difference in 
probability of 
prescription*

Partial 
r2†

Partial            
F-statistic†

Previous prescription 
Unadjusted 0.308 0.095 44626
Adjusted for calendar year 0.191 0.037 16173
Adjusted for calendar year, age, BMI and smoking 0.190 0.036 15859

Proportion of past 5 prescriptions for 3rd generation 
oral contraceptives

Unadjusted 0.628 0.184 96055
Adjusted for calendar year 0.464 0.081 37369
Adjusted for calendar year, age, BMI and smoking 0.461 0.080 36728

Proportion of prescriptions in past year for 3rd 
generation oral contraceptives

Unadjusted 0.669 0.191 99357
Adjusted for calendar year 0.503 0.085 38881
Adjusted for calendar year, age, BMI and smoking 0.498 0.084 38293

*Difference in probability of a prescription for a 3rd generation oral contraceptive for patients 
with a GP whose previous prescription was a 3rd generation oral contraceptive versus patients 
with a GP whose previous prescription was a 2nd generation oral contraceptive. Difference in 
probability of a prescription for a 3rd generation oral contraceptive for patients with a GP whose 
previous 5 prescriptions were all 3rd generation oral contraceptives versus patients with a GP 
whose previous 5 prescriptions were all 2nd generation oral contraceptives. Difference in risk of 
a prescription for a 3rd generation oral contraceptive for patients with a GP whose prescriptions 
in the past year were all 3rd generation oral contraceptives versus patients with a GP whose 
prescriptions in the past year were all 2nd generation oral contraceptives. 
†For the fully adjusted analysis the partial r2 and partial F-statistic were approximated by their 
averages across 10 imputations.
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Supplementary Table 2. Patient characteristics by actual type of oral contraceptive and by quintiles 
of prescriptions for 3rd generation oral contraceptives by their GP in the past year for patients with a 
minimal time between entry date and date of first prescription of 1 year.

Actual prescription Prescriptions of the same GP in past year                   
(% 3rd generation)

2nd 
generation

3rd 
generation

0 Q1             
(1.5-21.9)

Q2             
(21.9-50.0)      

Q3             
(50.5-100)     

N 265366 90760 133200 74342 86862 61722
Actual 
prescription 3rd 
generation

N/A N/A 14571 
(10.9)

11054 
(14.9)

23848 
(27.5)

41287 
(66.9)

Age (y), 
median (IQR)

19.3      
(16.8-27.5)

23.6      
(18.0-30.6)

19.1     
(16.8-27.0)

19.9     
(17.0-28.2)

21.0     
(17.2-29.2)

22.7     
(17.7-29.9)

BMI (kg/m²),  
median (IQR)†

22.8      
(20.5-26.2)

22.8      
(20.6-25.8)

22.9     
(20.5-26.2)

22.9     
(20.6-26.3)

22.8     
(20.5-25.9)

22.6     
(20.5-25.6)

Smoking‡

Yes 51588 
(24.4)

17831 
(26.2)

25386 
(23.3)

14937 
(25.3)

17158 
(25.4)

11938 
(27.5)

Ex 15324 (7.3) 5661 (8.3) 8323 (7.6) 4489 (7.6) 5255 (7.8) 2918 (6.7)
Venous 
thrombo-
embolism

1 year 77 (0.03) 40 (0.05) 43 (0.03) 22 (0.03) 26 (0.03) 26 (0.04)
3 years 155 (0.07) 85 (0.10) 80 (0.08) 52 (0.08) 52 (0.07) 56 (0.10)

Data are presented as n(%) unless stated otherwise.
†Data available for 192252 patients.
‡Data available for 279155 patients.

Supplementary Table 3. Conventional and instrumental variable estimates of the risk differences 
of venous thromboembolism per 10000 patients for 3rd generation versus 2nd generation oral 
contraceptives within 1 year and within 3 years of first prescription, for patients with a minimal time 
between entry date and date of first prescription of 1 year.

                                                               Ordinary least squares           
(Risk difference  per 10,000)

Two-stage least squares                                    
(Risk difference per 10,000)

Time No. 
Events

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted 
for calendar 

year

Adjusted for 
calendar year, age, 
BMI and smoking

1 year 117 1.5 
(0.0;2.9)

1.7 
(0.2;3.3)

2.0 
(-1.4;5.5)

6.2 
(0.5;11.9)

5.7 
(0.0;11.4)

3 year 240 3.2 
(1.0;5.4)

2.2 
(-0.2;4.7)

4.4 
(-0.8;9.7)

4.7 
(-3.3;12.8)

3.7 
(-4.4;11.9)
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Supplementary Table 4. Conventional and instrumental variable estimates of the hazard ratio of 
venous thromboembolism for 3rd generation versus 2nd generation oral contraceptives, for patients with 
a minimal time between entry date and date of first prescription of 1 year.

Conventional Cox proportional 
hazards regression

IV for Cox proportional hazards regression*

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted for 
calendar year

Adjusted for 
calendar year, age, 
BMI and smoking

1.86 
(1.31-2.62)

1.69 
(1.17;2.44)

2.25 
(0.96-4.93)

4.57 
(1.33-14.45)

3.77 
(1.07;11.8)

*IV regression with a linear regression first stage and a Cox regression second stage, confidence 
intervals derived using bootstrapping (see Methods for details).

Supplementary Table 5. Conventional and instrumental variable estimates of the risk differences 
of venous thromboembolism per 10000 patients for 3rd generation versus 2nd generation oral 
contraceptives within 1 year and within 3 years of first prescription, without requirement of a record 
of anticoagulant prescription for the thromboembolic events.

                                                               Ordinary least squares           
(Risk difference  per 10,000)

Two-stage least squares                                    
(Risk difference per 10,000)

Time No. 
Events

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted 
for calendar 

year

Adjusted for 
calendar year, age, 
BMI and smoking

1 year 209 2.3 
(0.7;3.9)

2.0 
(0.2;3.7)

2.7 
(-1.4;6.7)

4.0 
(-1.7;9.8)

3.5 
(-2.4;9.3)

3 year 453 4.2 
(1.7;6.8)

2.4 
(-0.4;5.1)

6.8 
(0.6;13.0)

3.3 
(-5.8;12.4)

2.4 
(-6.8;11.6)

Supplementary Table 6. Conventional and instrumental variable estimates of the hazard ratio 
of venous thromboembolism for 3rd generation versus 2nd generation oral contraceptives, without 
requirement of a record of anticoagulant prescription for the thromboembolic events.

Conventional Cox proportional 
hazards regression

IV for Cox proportional hazards regression*

Unadjusted Adjusted for 
calendar year, age, 
BMI and smoking

Unadjusted Adjusted for 
calendar year

Adjusted for 
calendar year, age, 
BMI and smoking

1.74 (1.34;2.24) 1.59 (1.22;2.09) 2.11 (1.19;3.75) 3.53 (1.42;8.66) 3.03 (1.16;7.19)

*IV regression with a linear regression first stage and a Cox regression second stage, confidence 
intervals derived using bootstrapping (see Methods for details).
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Supplementary Table 7. Patient characteristics by calendar year.

Year
1989-1993 1994-1998 1999-2003 2004-2008     2009-2013     

N 35861 50760 107205 126810 99516
Age (y),     
median (IQR)

24.7    
(19.5-29.8)

23.7 
(18.0-30.1)

22.3 
(17.6-29.8)

20.4 
(17.0-28.3)

19.4 
(16.9-26.9)

BMI (kg/m²), 
median (IQR)†

22.5 
(20.6-25.3)

22.5 
(20.5-25.4)

22.9 
(20.7-26.1)

23.1 
(20.7-26.4)

23.0 
(20.5-26.4)

Smoking, n(%)‡
Yes 6797 (32.1) 10859 (30.0) 21936 (30.4) 28344 (25.3) 17191 (18.4)
Ex 1074 (5.1) 2224 (6.1) 6100 (8.5) 10845 (9.7) 7861 (8.4)

†Data available for 239593 patients.
‡Data available for 335553 patients.
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Supplementary Codelists

Codelist 1. British National Formulary codes for combined hormonal contraceptives

Product 
code

Product name BNF code

Oral combined hormonal contraceptives
2nd generation

41 Microgynon 30 tablets (Bayer Plc) 7030152
978 Logynon tablets (Bayer Plc) 7030152

1062 Ovranette 150microgram/30microgram tablets (Pfizer Ltd) 7030152
2026 Logynon ED tablets (Bayer Plc) 7030152
2084 Ovran 30 Tablet (Wyeth Pharmaceuticals) 7030100
4917 Microgynon 30 ED tablets (Bayer Plc) 7030152
6686 Ethinylestradiol 30microgram / Levonorgestrel 150microgram 

tablets
7030152

12631 Ethinylestradiol with levonorgestrel and placebo 30micrograms + 
150micrograms Tablet

7030100

15886 Ethinylestradiol with levonorgestrel - triphasic 6x30+50mcg; 
5x40+75mcg; 10x30+125mcg Tablet

7030100

23897 Ethinylestradiol with levonorgestrel - triphasic with placebo 
6x30+50mcg; 5x40+75mcg; 10x30+125mcg Tablet

7030100

42510 Ethinylestradiol with levonorgestrel Tablet 7030100
43003 Levest 150/30 tablets (Morningside Healthcare Ltd) 7030152
44046 Rigevidon tablets (Consilient Health Ltd) 7030152
44278 TriRegol tablets (Consilient Health Ltd) 7030152
45059 Ethinylestradiol with levonorgestrel 30micrograms + 50micrograms 

Tablet
7030100

45557 Levest 150/30 tablets (Actavis UK Ltd) 7030152
47281 Elevin 150microgram/30microgram tablets (MedRx Healthcare 

LLP)
7030152

51482 Generic Microgynon 30 ED tablets 7030152
52443 Microgynon 30 tablets (Mawdsley-Brooks & Company Ltd) 7030152
56868 Generic Logynon ED tablets 7030152

1352 Loestrin 30 tablets (Galen Ltd) 7030150
1354 Brevinor 500microgram/35microgram tablets (Pfizer Ltd) 7030152
1427 Loestrin 20 tablets (Galen Ltd) 7030150
1601 Trinovum tablets ( Janssen-Cilag Ltd) 7030100
1988 Binovum tablets ( Janssen-Cilag Ltd) 7030152
2354 Ovysmen 500microgram/35microgram tablets ( Janssen-Cilag Ltd) 7030152
2856 Norimin 1mg/35microgram tablets (Pfizer Ltd) 7030152
3472 Trinovum ed ED tablets ( Janssen-Cilag Ltd) 7030100
3538 Neocon 1/35 Tablet (Cilag Pharmaceuticals Ltd) 7030100
5576 Synphase tablets (Pfizer Ltd) 7030152
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7814 Ethinylestradiol 35microgram / Norethisterone 500microgram 
tablets

7030152

8176 Ethinylestradiol 20microgram / Norethisterone acetate 1mg tablets 7030150
8482 Ethinylestradiol 35microgram / Norethisterone 1mg tablets 7030152

14670 Ethinylestradiol with norethisterone - biphasic 7 x 35mcg+500mcg; 
14 x 35mcg+1mg Tablet

7030100

15987 Ethinylestradiol with norethisterone - triphasic 7 x 35+500mcg; 7 x 
35+750mcg; 7 x 35mcg+1mg Tablet

7030100

18823 Ethinylestradiol 30microgram / Norethisterone acetate 1.5mg 
tablets

7030150

31528 Ethinylestradiol with norethisterone - triphasic 7x35+500mcg; 
9x35mcg+1mg; 5x35+500mcg Tablet

7030100

40650 Ethinylestradiol with norethisterone 35micrograms + 
750micrograms Tablet

7030100

56553 Generic Trinovum tablets 7030100
3rd generation

443 Desogestrel with ethinylestradiol 150micrograms with 
20micrograms tablets

7030100

935 Marvelon tablets (Merck Sharp & Dohme Ltd) 7030152
1378 Mercilon 150microgram/20microgram tablets (Merck Sharp & 

Dohme Ltd)
7030150

13248 Ethinylestradiol 30microgram / Desogestrel 150microgram tablets 7030152
16110 Ethinylestradiol 20microgram / Desogestrel 150microgram tablets 7030150
23211 Desogestrel with ethinylestradiol 150micrograms with 

30micrograms tablets
7030100

44336 Gedarel 30microgram/150microgram tablets (Consilient Health 
Ltd)

7030152

44457 Gedarel 20microgram/150microgram tablets (Consilient Health 
Ltd)

7030150

49700 Marvelon tablets (Doncaster Pharmaceuticals Ltd) 7030152
58642 Cimizt 30microgram/150microgram tablets (Morningside 

Healthcare Ltd)
7030152

936 Femodene tablets (Bayer Plc) 7030150
977 Minulet tablets (Wyeth Pharmaceuticals) 7030150

3471 Femodene ED tablets (Bayer Plc) 7030152
3693 Triadene tablets (Bayer Plc) 7030152
4964 Femodette tablets (Bayer Plc) 7030150
7776 Ethinylestradiol 30microgram / Gestodene 75microgram tablets 7030150

11910 Ethinylestradiol 20microgram / Gestodene 75microgram tablets 7030150
14977 Ethinylestradiol with gestodene - triphasic 6 x 30+50mcg; 5 x 

40+70mcg; 10 x 30+100mcg Tablet
7030100

18569 Gestodene with ethinylestradiol 75microgramwith20microgram 
Tablet

7030100
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19131 Ethinylestradiol with gestodene and placebo 30micrograms + 
75micrograms Tablet

7030100

21733 Gestodene with ethinylestradiol 75microgramwith30microgram 
Tablet

7030100

36829 Katya 30/75 tablets (Stragen UK Ltd) 7030150
37073 Sunya 20/75 tablets (Stragen UK Ltd) 7030150
44229 Millinette 20microgram/75microgram tablets (Consilient Health 

Ltd)
7030150

44994 Millinette 30microgram/75microgram tablets (Consilient Health 
Ltd)

7030150

56483 Generic Tri-Minulet tablets 7030152
1071 Cilest 250microgram/35microgram tablets ( Janssen-Cilag Ltd) 7030152

14601 Ethinylestradiol 35microgram / Norgestimate 250microgram tablets 7030152
25263 Norgestimate with ethinylestradiol 250micrograms + 35micrograms 

Tablet
7030100

49214 Cilest 250microgram/35microgram tablets (Mawdsley-Brooks & 
Company Ltd)

7030152

57181 Lizinna 250microgram/35microgram tablets (Morningside 
Healthcare Ltd)

7030152

drospirenone-containing
697 Yasmin tablets (Bayer Plc) 7030152

6716 Ethinylestradiol 30microgram / Drospirenone 3mg tablets 7030152
47057 Yasminelle 3mg+20microgram Tablet (Bayer Plc) 7030100
52818 Yasmin tablets (Mawdsley-Brooks & Company Ltd) 7030152
56311 Yaz tablets (Imported (United States)) 07030152/

13060202
Other

125 Dianette tablets (Bayer Plc) 13090200/
13060202/
07030100

2769 Cyproterone acetate with ethinylestradiol 2mg with 35micrograms 
tablets

07030100/
13060202

4608 Dianette tablets (Generics (UK) Ltd) 13060202/
13090200/
07030100

6431 Co-cyprindiol 2000microgram/35microgram tablets 07030100/
13060202/
13090200

22603 Clairette 2000/35 tablets (Stragen UK Ltd) 07030100/
13060202/
13090200

23218 Ethinylestradiol with cyproterone acetate 35microgram with 2mg 
tablets

07030100/
13060202
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25124 Acnocin 2000microgram/35microgram tablets (Sandoz Ltd) 13060202/
13090200/
07030100

31902 Cicafem 2000/35 tablets (Galen Ltd) 13090200/
07030100/
13060202

33098 Diva 2000/35 tablets (Zeroderma Ltd) 07030100/
13060202/
13090200

38500 Co-cyprindiol 2000microgram/35microgram tablets (Fannin UK 
Ltd)

13090200/
07030100/
13060202

47132 Co-cyprindiol 2mg+35microgram Tablet (Sandoz Ltd) 13060202/
07030100

53201 Dianette tablets (Lexon (UK) Ltd) 07030100/
13090200/
13060202

8103 Conova 30 Tablet (Pharmacia Ltd) 7030100
40305 Qlaira tablets (Bayer Plc) 7030100
40618 Estradiol valerate and (estradiol valerate with dienogest) tablets 7030100
56539 Zoely 2.5mg/1.5mg tablets (Merck Sharp & Dohme Ltd) 7030152
57264 Estradiol 1.5mg / Nomegestrol 2.5mg tablets 7030152

3436 Ortho-novin 1/50 Tablet ( Janssen-Cilag Ltd) 7030100
5862 Norinyl-1 tablets (Pfizer Ltd) 7030152
9119 Minilyn Tablet (Organon Laboratories Ltd) 7030100

14459 Gynovlar 21 Tablet (Schering Health Care Ltd) 7030100
17756 Mestranol 50microgram / Norethisterone 1mg tablets 7030152
19551 Controvlar Tablet (Schering Health Care Ltd) 7030100
21343 Minovlar ed Tablet (Schering Health Care Ltd) 7030100
43009 Minovlar 21 Tablet (Schering Health Care Ltd) 7030100

Vaginal combined hormonal contraceptives
39517 NuvaRing 0.12mg/0.015mg per day vaginal delivery system (Merck 

Sharp & Dohme Ltd)
07030151

40512 Ethinylestradiol 2.7mg / Etonogestrel 11.7mg vaginal delivery 
system

07030151

Transdermal patches
6166 Evra transdermal patches ( Janssen-Cilag Ltd) 07030101
6596 Norelgestromin with ethinylestradiol 203micrograms + 

33.9micrograms/24hours Transdermal patch
07030100

29499 Ethinylestradiol 33.9micrograms/24hours / Norelgestromin 
203micrograms/24hours transdermal patches

07030101
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Codelist 2. Oxford Medical Information Systems and Read codes used to define the outcome of 
venous thromboembolism.

Read 
Code

Description

Deep vein thrombosis
G801.11 Deep vein thrombosis
G801.12 Deep vein thrombosis, leg
G801.13 DVT- Deep vein thrombosis
G801C00 Deep vein thrombosis of leg related to air travel
G801D00 Deep vein thrombosis of lower limb

G801E00 Deep vein thrombosis of leg related to intravenous 
drug use

G801F00 Deep vein thrombosis of peroneal vein
G822.00 Embolism and thrombosis of the vena cava
G824.00 Axillary vein thrombosis
G825.00 Thrombosis of subclavian vein

Thrombophlebitis
G801.00 Deep vein phlebitis and thrombophlebitis of the leg
G801500 Deep vein phlebitis of the leg unspecified
G801600 Thrombophlebitis of the femoral vein
G801700 Thrombophlebitis of the popliteal vein
G801800 Thrombophlebitis of the anterior tibial vein
G801A00 Thrombophlebitis of the posterior tibial vein
G801B00 Deep vein thrombophlebitis of the leg unspecified

G801z00
Deep vein phlebitis and thrombophlebitis of the leg 
NOS

G80y.11 Phlebitis and/or thrombophlebitis of iliac vein
G80y400 Thrombophlebitis of the common iliac vein
G80y500 Thrombophlebitis of the internal iliac vein
G80y600 Thrombophlebitis of the external iliac vein
G80y700 Thrombophlebitis of the iliac vein unspecified
G80y800 Phlebitis and thrombophlebitis of the iliac vein NOS

Pulmonary embolism
G401.00 Pulmonary embolism
G401.12 Pulmonary embolus
G401000 Post operative pulmonary embolus
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Codelist 3. Oxford Medical Information Systems and Read codes used to define a history of venous 
thromboembolism (deep vein thrombosis or pulmonary embolism), in addition to the codes listed in 
Table 2.

Read 
Code

Description

14A8100 H/O: Deep Vein Thrombosis
14A8.12 H/O: Thrombosis

ZV12900 [V] Personal history of pulmonary 
embolism

ZV12811 [V] Personal history DVT- deep vein 
thrombosis

14A8.00 H/O: thrombo-embolism
14A8.11 H/O: embolism
ZV12800 [V] Personal history deep vein thrombosis
14AC.00  H/O: pulmonary embolus
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To the editor:

Swanson and Hernan1 discuss the reporting of instrumental variable analyses, and 
propose a step-by-step checklist. Two phases can be distinguished in their suggested 
steps. The first comprises discussion of the three main instrumental variable 
assumptions. The second phase concerns estimation of the effect; they propose that 
authors should first discuss whether the effect in the population or the effect in the 
compliers is of interest, should then estimate bounds for the effect and should finally, if 
appropriate, justify an additional assumption that allows estimation of a point estimate. 

We would like to suggest an intermediate reporting step, in between these two phases: 
to present the distribution of the outcome across instrumental variable values. This 
amounts to a crude analysis of the effect of levels of the instrumental variable on the 
outcome. It resembles the form of the usual epidemiologic study in which two or more 
groups are contrasted, with different levels of exposure frequency.

For a dichotomous instrument the presentation of the outcome across values of the 
instrument is straightforward. The comparison of the outcome between the two values 
of the instrument gives an effect estimate which can be thought of as similar to an 
intention-to-treat effect in a randomised trial. Davies et al provide a specific reporting 
suggestion in case instrument, treatment and outcome are all dichotomous, namely 
tabulation of frequencies of all combinations of instrument treatment and outcome.2 
An example of how our suggested step can be reported if the instrument is continuous, 
is presented in a paper by Stukel et al.3 They performed an instrumental variable 
analysis with regional cardiac catheterisation rates as an instrument to investigate 
the effect of cardiac catheterisation (as a marker of intent to treat invasively) on 
long-term survival in acute myocardial infarction. They provide a table [Table 4 in 
their paper] with baseline characteristics as well as the outcome (mortality) across 
quintiles of regional cardiac catheterisation rate. Direct comparison of the outcome 
across instrument quintiles shows a decrease in mortality with increasing regional 
cardiac catheterisation rate. The display of baseline characteristics across the same 
quintiles allows the reader to evaluate how comparable patient characteristics in these 
quintiles are (third instrumental variable assumption: the instrument is independent 
of confounders2). 

Such an additional step in the reporting of instrumental variable analyses provides a 
presentation of the data before a decision is made about reporting bounds only or a 
point estimate. An intermediate analysis might be done on these data, e.g. by doing a 
comparative analysis of a dichotomous instrumental variable, or by directly contrasting 
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the lowest and highest categories of a continuous instrumental variable distribution. 
The validity of this comparison does of course depend on the three main instrumental 
variable assumptions and violations of these assumptions will lead to bias. However, 
the bias amplification which can occur when using standard instrumental variable 
methods to obtain effect estimates4 will not affect the comparison of the outcome 
across strata of the instrument. Falsification tests of the third instrumental variable 
assumption are discussed by Swanson and Hernan1 and Davies et al2. Showing the 
distribution of patient characteristics across values of the instrument (in parallel to the 
distribution of the outcome across values of the instrument) may also aid in detecting 
potential violations of this assumption.
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Abstract

Background: Mendelian randomisation (MR) studies investigate the effect of genetic 
variation in levels of an exposure on an outcome, thereby using genetic variation as 
an instrumental variable (IV). We provide a meta-epidemiological overview of the 
methodological approaches used in MR studies, and evaluate the discussion of MR 
assumptions and reporting of statistical methods.
Methods: We searched PubMed, Medline, Embase and Web of Science for MR 
studies up to December 2013. We assessed 1) the MR approach used; 2) whether the 
plausibility of MR assumptions was discussed, and 3) whether the statistical methods 
used were reported adequately.
Results: Of 99 studies using data from one study population, 32 used genetic 
information as a proxy for the exposure without further estimation, 44 performed a 
formal IV analysis, 7 compared the observed with the expected genotype-outcome 
association, and 1 used both the latter two approaches. The 80 studies using data 
from multiple study populations used many different approaches to combine the 
data. Fifty-two of these studies used some form of IV analysis. Forty-four percent of 
studies discussed the plausibility of all three MR assumptions in their study. Statistical 
methods used for IV analysis were insufficiently described in 14% of studies. 
Conclusions: Most MR studies either use the genotype as a proxy for exposure 
without further estimation or perform an IV analysis. The discussion of underlying 
assumptions and reporting of statistical methods for IV analysis are frequently 
insufficient. Studies using data from multiple study populations are further complicated 
by the combination of data or estimates. We provide a checklist for the reporting of 
MR studies.

Key words: Mendelian randomisation, instrumental variable, aetiology.
Medical Subject Headings: Mendelian Randomization Analysis; Genetic Variation; 
Confounding Factors (Epidemiology); Causality.

Key messages:
$	 The specific methods used in Mendelian randomisation studies vary widely.
$	 These methods broadly fall into three categories: 1) using genetic information as a 

proxy for the exposure without further estimation, 2) performing an instrumental 
variable analysis; 3) comparing the observed with the expected genotype-outcome 
association.

$	 Mendelian randomisation studies frequently insufficiently discuss underlying 
assumptions and report statistical methods for IV analysis.

$	 A checklist for the reporting of Mendelian randomisation studies is provided.
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Introduction

Observational studies are limited in their ability to identify whether exposures are 
causally related to disease occurrence or other outcomes. Adjustment for confounding 
is only possible for those factors which are identified and measured and will inevitably 
be incomplete: some degree of residual confounding will always remain. Reverse 
causation, an effect of the outcome on the studied exposure, may also explain 
associations found in an observational study.1,2 An approach which can circumvent 
both reverse causation (as first proposed in 1986)3 and residual confounding in order 
to establish the causal effect of the exposure on the outcome is to investigate the effect 
of genetic variation in levels of the exposure on the outcome. This approach has come 
to be known as Mendelian randomisation over the last decade.2 The random allocation 
of genetic variants from parents to offspring means these variants will generally be 
unrelated to other factors which affect the outcome.1 Furthermore, associations 
between the genotype and the outcome will not be affected by reverse causation 
because disease does not affect genotype.1 

Mendelian randomisation studies use genetic variation as an instrumental variable 
(IV) and must fulfil instrumental variable assumptions. Applied to Mendelian 
randomisation, these assumptions are that (1) the genotype is associated with the 
exposure; (2) the genotype is associated with the outcome through the studied 
exposure only (exclusion restriction assumption); and (3) the genotype is independent 
of other factors which affect the outcome (independence assumption).4 Potential 
threats to the validity of these assumptions, such as population stratification, linkage 
disequilibrium, and pleiotropic effects are discussed in detail elsewhere.1,5 

These general principles of Mendelian randomisation are increasingly used in 
aetiologic research, but the specific methods used in these studies can vary widely. In 
this study we review the methodology used in studies from the past 10 years which 
were described by the authors as Mendelian randomisation studies. We provide an 
overview of the use of the different approaches to Mendelian randomisation and 
where applicable the specific statistical methods used for estimation. We evaluate 
whether the plausibility of the Mendelian randomisation assumptions is discussed. 
Further we evaluate whether the statistical methods used are sufficiently described 
(including how the confidence interval was obtained) for those studies which perform 
an instrumental variable analysis or compare the observed and expected genotype-
outcome association.
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Methods

Search strategy and inclusion criteria
We searched PubMed, Medline, Embase and Web of Science for studies containing 
the term “Mendelian randomisation” or “genetic instrumental variable” or a related 
term (e.g. “genetic instrument”) from January 1st 2003 to December 31st 2013. The full 
search strategies for each of the databases are included in the Supplementary Methods. 
We excluded publications that (1) were conference abstracts, letters, commentaries, 
editorials, reviews, study proposals or theoretical papers; (2) did not use Mendelian 
randomisation (i.e. did not state Mendelian randomisation or a genetic instrumental 
variable was used in the text, abstract or title and did not include “Mendelian 
randomisation” or “genetic instrumental variable” or a related term as a keyword); (3) 
identified potential genetic instruments for future Mendelian randomisation studies; 
(4) were primarily methodological using an application of Mendelian randomisation 
as an example; or (5) were published in a health economics journal (rather than a 
biomedical journal).

Classification of Mendelian randomisation approach used
First we classified publications into studies which used data from a single study 
population and studies which used data from multiple study populations. We then 
classified included studies according to their general Mendelian randomisation 
approach: i.e. how they utilised the genetically determined variation in exposure. 
A.	 For studies performed in a single study population we identified the following 

three main approaches:
1.	 Use of genetic variation as a proxy for the exposure, without further estimation. 
	 These studies investigate the association between a genotype (which affects the 

exposure) and the outcome. No comparison is made to the expected association 
between this genotype and the outcome, and no IV estimate of the effect of the 
exposure on the outcome is obtained.

2.	 Comparison of the observed and expected genotype-outcome associations.
	 These studies compare the observed association between the genotype and the 

outcome to the association which would be expected if the observed exposure-
outcome association were causal. This expected association is calculated by 
multiplying the observed genotype-exposure association with the observed 
exposure-outcome association (sometimes termed the ‘triangulation’ approach, 
although this is not a specific term). See Figure 1 for an illustration and further 
explanation. The confidence interval of the expected genotype-outcome 
association can be estimated analytically or using bootstrap techniques.
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3.	 Formal instrumental variable analysis using genetic variation as the instrument.
	 These studies perform a formal IV analysis to obtain a causal estimate of the 

effect of genetically determined variation in the exposure on the outcome. 
Different statistical techniques can be used for this purpose, as we will further 
explain below.

B.	 We classified the studies including more than one study population into the 
following pre-specified main categories:
1.	 Pooling of the data, followed by any of the approaches A1-3 listed above.
2.	 IV analysis in each of the study populations, followed by a meta-analysis.
3.	 Meta-analysis using the genotype as a proxy for the exposure, without further 

estimation.
4.	 Meta-analyses of the genotype-exposure, exposure-outcome and genotype-

outcome associations, followed by comparison of observed and expected 
genotype-outcome associations (as in approach A2).

Figure 1. Diagram of the approach used by Mendelian randomisation studies which compare the 
observed genotype-outcome association to the expected genotype-outcome association. 
β1 regression coefficient of the genetic variant-exposure association.
β2 regression coefficient of the exposure-outcome association.
β3OBS observed regression coefficient of the genetic variant-outcome association.
β3EXP expected regression coefficient of the genetic variant-outcome association.
The point estimate of β3EXP is calculated as follows:
β3EXP = β1 · β2
The confidence interval of the expected genotype-outcome association can be estimated 
analytically or using bootstrap techniques.
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5.	 Meta-analyses of the genotype-exposure and genotype-outcome associations, 
followed by a Wald-type/ratio estimate (see Didelez et al for a description of 
Wald-type estimators)6 .

6.	 Data analysed separately for more than 1 population, followed by any of the 
approaches A1-3.

Further categories were added for those studies which did not fall into any of the above 
categories.

Assessment of discussion of Mendelian randomisation assumptions
Regardless of the approach used, Mendelian randomisation studies rely on three main 
assumptions as briefly mentioned in the introduction. 
1.	 The genotype is associated with the exposure.
	 This assumption can and should be verified in the data. Reporting guidelines for IV 

analyses recommend the use of the partial F-statistic as a measure of the strength 
of the association between the IV and the exposure.7,8 It encompasses information 
on the strength of the instrument and on the number of observations in the 
analysis.9 We assessed whether studies reported the strength of the genotype-
exposure association in the data using a partial F-statistic or using another measure 
(e.g. mean difference in exposure by genotype). If not, we assessed whether they 
reported the strength of this association from literature.

2.	 The genotype is associated with the outcome through the studied exposure only 
(exclusion restriction assumption).

	 This assumption is violated if the genotype has multiple (pleiotropic) effects, if 
a nearby variant with which it is in linkage disequilibrium affects the outcome in 
other ways than through the exposure of interest, or if developmental canalisation 
occurs.1 For all studies we evaluated whether the plausibility of this assumption was 
discussed. Mentioning the assumption in general terms was not deemed sufficient: 
a specific discussion of its plausibility in the particular study was required.

3.	 The genotype is independent of other factors which affect the outcome 
(independence assumption).

	 This assumption is violated if subgroups in the study population have both different 
genotype frequencies and different distributions of the outcome (population 
stratification).1 It is also violated if there is an association between the genotype 
used as an instrument and confounders. For all studies we assessed whether the 
association between the genetic instrument and measured confounders was 
reported, as recommended in IV reporting guidelines.7 Furthermore, we assessed 
whether potential associations of the genotype with unmeasured confounders 
were discussed and/or population stratification was discussed. Again, a specific 
discussion of the plausibility of the assumption in the particular study was required.
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Assessment of reporting of statistical analysis.
This section only applies to the studies which used the IV approach or the observed-
expected approach, because using genetic variation as a proxy for the exposure without 
further estimation does not involve any special statistical methods. 
1.	 For studies which obtained an IV estimate of the effect of the exposure on the 

outcome we determined which statistical method was used, assessed whether 
it was described sufficiently, and whether a confidence interval was reported. A 
frequently used IV method is two-stage least squares analysis. This involves two 
stages of linear regression. The first stage is a linear regression with the exposure as 
the dependent variable and the instrument (genotype) as the independent variable, 
which is then used to obtain predicted exposure levels based on the instrument. 
The second stage is a regression with the outcome as the dependent variable and 
these genetically predicted exposure levels as the independent variable. Software 
for two-stage least squares regression takes into account the errors in both stages of 
the analysis to give a correct confidence interval. Additionally, we determined the 
type of outcome investigated (continuous, binary, time-to-event) and for binary 
outcomes what kind of target parameter was estimated (risk difference, odds ratio, 
relative risk, probit coefficient). We also determined whether a statistical test was 
used to compare the IV estimate to the ‘conventional’ estimate of the effect of the 
exposure on the outcome, what type of genetic instrument was used (single SNP 
or allele, multiple SNPs in separate analyses, multiple SNPs in a single analysis, 
combinations of SNPs e.g. haplotypes or a genetic risk score) and for those studies 
which used multiple SNPs in a single analysis, whether weak instrument bias was 
discussed. In the IV studies within one study population we also determined 
whether the genetic variant used as an instrument was identified or selected in the 
same population or if the weights for a weighted genetic risk score were derived in 
the same population.

2.	 For studies comparing the observed and expected genotype-outcome association 
we assessed whether the method used to obtain a point estimate of the expected 
genotype-outcome association was described. If the description was such that 
calculation of this point estimate should be possible using the data provided, we 
assessed whether the point estimate corresponded to our calculations (only in 
those studies within one population). Further, we assessed whether a confidence 
interval for the expected genotype-outcome association was reported, whether 
the method used to obtain this confidence interval was described, and whether 
the confidence interval incorporated the variance of both the genotype-exposure 
association and the exposure-outcome association.
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Results

Our search returned 1911 hits, of which 594 hits remained after exclusion of 
conference abstracts and duplications. After reviewing the title and abstract and if 
necessary the fulltext article, a further 415 records were excluded for reasons listed in 
the flowchart in Figure 2, resulting in 179 eligible Mendelian randomisation studies. 
Of these 179 studies, 99 studies used data from a single study population for their 
main analyses,10-59,60-108 and 80 studies used data from more than one study population 
(Table 1).109-158,159-188The included studies were published between May 2005 and 

 

PubMed  468 search hits 
Medline  540 search hits 
Embase   644 search hits 
Web of Science 259 search hits 

1126  duplicates removed 

594 unique hits 

179 eligible studies 

 

records excluded: 
153 reviews/educational/theoretical papers 
111  studies not claiming to use Mendelian randomisation 
103  letters/commentaries/editorials 
23 primarily methodological studies 
9  studies investigating a potential genetic instrument 
8  conference abstracts/papers/reports 
4 studies in health economics journals 
3  study proposals 
1 erratum 
 

conference abstracts removed: 
113  Embase 
78 Web of Science 

Figure 2. Summary of literature search.
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Table 1 Approaches used in Mendelian randomisation studies

Data from 1 study population (n=99) Refs
1.	 Genotype used as a proxy for exposure, without further estimation a 38 10-47
2.	 Comparison of observed and expected genotype-outcome associa-

tion 10 48-57

3.	 IV analysisb 48 58-105
4.	 Comparison of observed and expected genotype-outcome associa-

tion and IV analysis 1 106

1.	 Unclear 2 107; 108
Data from more than 1 study population (n=80)
1.	 Data pooled, then analysed

a.	 Genotype used as a proxy for exposure, without further estima-
tion 2 109; 110

b.	 Comparison of observed and expected genotype-outcome as-
sociation a 3 111-113

c.	 IV analysisb 14 114-127
d.	 Comparison of observed and expected genotype-outcome asso-

ciation and IV analysis 7 128-134

2.	 IV analyses, then meta-analysis 10 135-144
3.	 Meta-analysis using genotype as a proxy for exposure, without fur-

ther estimation 15 134-136; 
145-157

4.	 Meta-analyses*, followed by comparison of observed and expected 
genotype-outcome associationc 13 139; 144; 

157-167 
5.	 Meta-analyses*, followed by a Wald-type/ratio estimate 9 168-176
6.	 Data analysed and reported separately for more than 1 population

a.	 Genotype used as a proxy for exposure, without further estima-
tionc 3 177; 179; 

180

b.	 IV analysis 3 178; 181; 
182

7.	 Multivariate meta-analysis 2 155; 183
8.	 Bayesian meta-analysis 1 184
9.	 Separate study IV-analysis 1 185
10.	Meta-analysis of gene-exposure association, then ratio estimate, 

then meta-analysis 1 186

11.	Other/unclear** 2 187; 188

Some studies used multiple approaches in non-identical sets of study populations.
a Two studies also performed an IV analysis for which it was unclear how the data were 
combined.112;113

b One study performed some of the analyses in a single study population.118

c Two studies also performed an IV analysis in a single study population.158;177

*Meta-analyses of genotype-exposure, exposure-outcome and/or genotype-outcome 
associations.
** One study first investigated the genotype-outcome association and then performed further 
analyses for which the approach was unclear.187 One study used a “likelihood-based method for 
combining summarised genetic association estimates”.188
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December 2013. An overview of the exposures studied and the genetic instruments 
used is presented in Supplementary Table 1. The most frequently studied exposures 
were C-reactive protein (29 studies) and adiposity measures such as body mass index, 
fat mass and percentage body fat (25 studies). 

Of the 99 studies which used data from a single study population, 38 studies (38%) 
used the genetic information as a proxy for the exposure by investigating the genotype-
outcome association without further estimation of either the causal effect of the 
exposure on the outcome or of the expected genotype-outcome association (Table 
1). Forty-eight studies (48%) used IV analysis to estimate the effect of genetically 
determined variation in exposure levels on the outcome. Ten studies compared the 
observed association between the genotype and the outcome with the expected 
association based on the genotype-exposure association and the exposure-outcome 
association. One study used both these latter two approaches. For two studies we 
could not categorise the methods used into any of the aforementioned approaches. 

Of the 80 studies which used data from multiple study populations, 26 (33%) studies 
pooled the data from the different studies and subsequently analysed the pooled data 
(Table 1). Ten studies performed an IV analysis in the different studies followed by a 
meta-analysis. Forty-one studies (51%) first performed a meta-analysis of one or more 
of the genotype-exposure, exposure-outcome and genotype-outcome associations, 26 
of which subsequently used these meta-analysed associations for further estimation of 
either the causal effect of the exposure on the outcome or of the expected genotype-
outcome association. In total, 52 studies (65%) used some form of IV analysis to 
obtain a causal effect of the exposure on the outcome. A further 23 studies compared 
the observed and expected genotype-outcome associations.

Table 2 summarises the reporting of the Mendelian randomisation assumptions. 
Reporting of assumptions was assessed in 178 studies, because the design of one 
study was so different from the general Mendelian randomisation design that the 
assumptions could not be assessed. A total of 37 out of 98 studies (38%) which used 
a single study population and 42 out of 80 studies (53%) which used multiple study 
populations explicitly discussed the plausibility of all three Mendelian randomisation 
assumptions in the context of their study.

Among the studies which performed an IV analysis, those using a single study 
population most frequently studied a continuous outcome, whereas those using 
multiple study populations most frequently studied a binary outcome and estimated 
an odds ratio (Table 3). The statistical methods used in these formal IV studies are 
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Table 2. Reporting of Mendelian randomisation assumptions.

Criterium 1 Study 
population 

(n=98)

>1 Study 
population 

(n=80)
Strength of genetic instrument-exposure association (assumption 
1)

Verified in data using F-statistic 33 26
Otherwise verified in data (e.g. using risk difference or odds 
ratio) 53 45

Reported from literature 4 4
Not reported 8 5‡

Plausibility of exclusion restriction assumption discussed (as-
sumption 2) 56 55

Independence assumption (assumption 3)
Instrument-confounder associations shown & assumption 
further discussed theoretically† 20 16

Instrument-confounder associations shown, assumption not 
further discussed 30 21

Investigation of instrument-confounder associations men-
tioned, not shown & assumption further discussed theoreti-
cally

4 0

Investigation of instrument-confounder associations men-
tioned, not shown & assumption not further discussed 8 0

Plausibility of assumption theoretically discussed only 7 18
Plausibility of assumption not discussed 29 25

*Reporting of assumptions was not assessed in one study, because its design was vastly differ-
ent from the general design of a Mendelian randomisation study. The total number of studies 
within 1 study population is therefore 98.
†Potential association with unmeasured confounders discussed and/or population stratifica-
tion discussed.
‡Two studies reported a p-value only.

shown in Table 4. Two-stage least squares (2-SLS) regression was the most common 
method used in studies within one study population (n=26, 53%). Ten studies within 
multiple study populations also used this method. One study used 2-SLS with a binary 
outcome, but it did not mention whether heteroskedasticity robust standard errors 
were used.69 Among the studies which used multiple study populations a Wald-type 
or ratio estimator was most frequently used (n=16, 31%). The method used to obtain 
the confidence interval for the ratio estimate was a Taylor series expansion (termed 
the delta method138,141,168,169,186 or Taylor expansion170), Fieller method,120,176-178 or 
was not described. Three studies in a single study population also used a Wald-type/
ratio estimator, but two of these studies did not report a confidence interval. Other 
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methods used were control functions (n=8 in total), IV probit regression (n=4), 
generalised method of moments (n=8), generalised least squares regression (n=5), 
quasi-likelihood and variance function (n=4) and a two stage approach with a linear 
first stage and a logistic second stage (n=5). Four of the studies which used this last 
approach did not report how the correct confidence interval was obtained,125,133,135,158 
and the fifth used a sandwich estimator.114 The IV method was insufficiently described 
in fourteen studies. In six of these studies there was a discrepancy between the statistical 
method reportedly used (2-SLS) and the effect estimate reported (OR).100,128-131,134 
Another study seemingly did not take into account the variance of the genotype-
exposure association in the variance of the IV estimate, which would result in too 
narrow a confidence interval.101 

Of the 101 studies which used one of the approaches which yields an IV estimate, 
48 reported tests of the difference between the IV estimate and the conventional 
estimate: the most commonly used were (a variant of) the Durbin-Wu-Hausman test 
(29 studies),58-60,62,64-66,68,70-72,74-77,79-87,94,98,105,116,139 and (a variant of) the Bland-Altman 
test (10 studies).112,113,117,119,128-132,134 The types of genetic instrument used (e.g. a single 
SNP or a genetic risk score) in the IV analysis studies are listed in Supplementary 
table 2. Of the 25 studies which used multiple SNPs in a single analysis 13 mentioned 

Table 3. Types of outcome and parameters estimated in IV Mendelian randomisation studies. 

Type of outcome 1 Study 
population 

(n=49)

Refs >1 Study 
population* 

(n=52)

Refs

Continuous 37 58-68; 70-89; 
94; 98; 103-106 14 114-116; 118; 126;135-

139; 168; 170; 182; 185
Binary

Risk difference 3 69; 93; 99 0 -
Relative risk 2 81; 102 2 118; 124

Odds ratio 7 67; 82; 88; 90-
92; 100 37

112-114; 117; 119-121; 
123; 125; 128-135; 139-
144; 155; 158; 168; 169; 
171-176; 178; 181; 183; 

184; 186
Probit coefficient 1 83 1 122

Time-to-event 4 95-97; 101 5 124; 138; 168; 177; 178
Unclear 0 - 1 127

The total number of types of outcome and parameters estimated exceeds the total number of 
studies because some studies included multiple types of outcomes. 
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Table 4 Statistical methods used in the instrumental variable studies.

Method 1 Study 
population 

(n=49)

Refs >1 Study 
population* 

(n=52)

Refs

Two-stage least squares 26 58-83 10 114-116; 118; 135-
139; 182

Instrumental variable regres-
sion in Stata, not further speci-
fied (2-SLS, GMM or LIML)

5 84-88 0 -

Control function 6 81; 82; 
89-92 2 139; 143

Instrumental variable probit 
regression 3 67; 83; 93 1 122

GMM 2 94;98 0 -
Multiplicative GMM 0 - 6 117-121; 124
Generalised least squares re-
gression 1 95 4 112; 113; 123; 132

Two-stage: linear first stage, 
logistic second stage 0 - 5 114; 125; 133; 135; 

158
Quasi-likelihood and variance 
function 1 88 3 140; 144; 181

Ratio/Wald-type estimator 1 99 17 120; 124; 138; 141; 
142; 168-178; 186

Ratio/Wald-type estimator 
without confidence interval 2 96;97 0 -

Insufficiently described/unclear 7 100-106 7 126-131; 134
Other** 0 - 4 155; 183-185

The total number of statistical methods exceeds the total number of studies because some 
studies investigated multiple statistical methods. 
Abbreviations: 2-SLS, two-stage least squares; GMM, generalised method of moments; LIML, 
limited-information maximum likelihood.
*Including the two studies which used multiple study populations, but performed the IV 
analysis in a single study population.
** See Table 1.

weak instrument bias, with two studies very specifically discussing it in relation to 
using multiple instruments.117,185 Of the 49 studies which used IV methods and were 
performed in one study population, 14 evidently identified or selected the genetic 
variant used as an instrument in the same population or derived weights for a weighted 
genetic risk score in the same population.61,62,65,66,70,71,82,85,87,91,93,102,104,105
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In 3 of the 11 studies comparing the observed gene-outcome association to the 
expected gene-outcome association in one study population we could not reconstruct 
the point estimate of the expected association from the data.48,50,57 Four studies did not 
report a confidence interval for the expected genotype-outcome association.52,54,56,106 
In a further five studies the methods used to calculate this confidence interval were 
unclear,48-50,53,57 and in one study only the error in the exposure-outcome association 
seemed to have been taken into account in the calculation of this confidence interval.55 
Only one study adequately described the methods used to obtain the point estimate 
and confidence interval (bootstrapping) of the expected genotype-outcome 
association.51 In the 23 studies which employed this approach using more than one 
study population, three only took into account the error in the exposure-outcome 
association and not the error in the genotype-exposure association,159,164,165 and 16 
studies did not describe how the confidence interval was obtained.

Discussion

Most Mendelian randomisation studies either performed some form of IV analysis 
(49% of studies within 1 study population and 65% of studies within multiple study 
populations) or used the genotype as a proxy for the exposure without further 
estimation. A third approach used less frequently was to compare the observed 
genotype-outcome association to the expected genotype-outcome association. 
Although validity of the three main Mendelian randomisation assumptions is required 
regardless of the approach used, only 44% of studies adequately discussed the 
plausibility of these assumptions. The methods used to obtain an IV estimate were not 
always adequately described. For those studies which are performed using multiple 
study populations, the range of approaches used was very broad, because of further 
differentiation according to the way the data from the different studies were combined. 
Here we will discuss our findings and propose recommendations for the reporting of 
Mendelian randomisation studies.

To our knowledge there is one paper which previously reviewed MR studies, which 
included a much smaller number of studies. Its main focus was on whether the 
Mendelian randomisation studies reported results that were compatible with a causal 
association, which was the case for over half of their reviewed studies.189 In contrast, 
our review focussed on the approach used and on the discussion of the assumptions 
and the reporting of the statistical methods used. The previous review also noted that 
many studies applied IV analysis to a binary outcome, using methods which had not 
quite been validated,189 which is an issue which we will also discuss later.
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Our meta-epidemiological study has several limitations. With respect to study 
selection, we investigated what methods were used in studies stating that they used 
Mendelian randomisation or that they used a genetic IV. Importantly, we were 
unable to include studies which apply the same principles without using the term 
Mendelian randomisation or genetic IV because these could not feasibly be found 
using a systematic search strategy. We do not know to what extent our results apply to 
these studies, but suspect the discussion of Mendelian randomisation assumptions in 
particular is likely to be insufficient in many of these studies. Importantly, the focus of 
our review was on the quality of reporting of methods used in Mendelian randomisation 
studies. We did not assess whether the statistical method used to obtain an IV estimate 
was actually appropriate. We investigated whether the statistical method used was 
adequately described, whether it was consistent with the estimates reported, and if 
any evident mistakes were made. Similarly, we focussed on whether plausibility of MR 
assumptions was discussed, not on whether we considered them likely to hold. 

With regard to the Mendelian randomisation approach used we found that a majority 
of studies performed some form of IV analysis, but a substantial proportion of studies 
used the genotype as a proxy for the exposure without performing a formal IV analysis.
This raises the question whether either of these approaches, or the third option of 
comparing the observed and expected genotype-outcome association should be 
preferred. This depends on the aim of the study: for a test of causality testing the 
presence of a genotype-outcome association is sufficient.1,190 Often the aim will be a 
quantification of the causal effect of the exposure on the outcome. We note that IV 
analysis is more suited to this aim than a comparison of the observed and the expected 
effect of the genotype on the outcome, although some may find the latter approach 
more intuitive. Showing the association between the genotype (or genetic score) 
and the outcome is always advisable as it increases the transparency of the study by 
showing the data as they are. Further analyses can subsequently be undertaken.191 
When considering whether a formal IV analysis is appropriate, further aspects of 
the underlying biology of the genotype-phenotype association need to be taken 
into account to avoid misleading inferences.192 A recent paper discusses a number 
of situations in which a formal IV analysis may give biased results, but a Mendelian 
randomisation approach looking only at the genotype-outcome association can validly 
be used as a test of causality.190 Another recent paper specifically discusses smoking 
as an example of an exposure for which the measurement does not fully capture the 
underlying exposure, which gives a biased estimate of the effect of the measured 
exposure on the outcome if an IV analysis is performed in a Mendelian randomisation 
study.4
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With regard to the discussion of the Mendelian randomisation assumptions we found 
that fewer than half of studies adequately discussed all three assumptions. Some studies 
did mention what the assumptions are and how they can be violated in general terms, 
but did not discuss how plausible the assumptions were for the specific setting of their 
study. An aspect of the assumptions which can be evaluated using the data is whether 
there is an association between the genetic instrument and measured confounders. 
This may be more difficult for studies which use multiple study populations, but an 
effort to obtain this information from those studies in which it is available is warranted. 
Among the studies which performed an IV analysis in a single study population, 
we identified 14 studies in which SNPs were detected or selected, or genetic risk 
score weights were derived in that same study population. This can bias Mendelian 
randomisation estimates.116,193 The number of studies in which we found this to have 
occurred may be an underestimation, because some study populations are used for 
multiple Mendelian randomisation studies and the later studies may not report the 
detection of SNPs in a previous study in the same population.

With regard to the IV methods used, we found that two-stage least squares regression 
and a Wald-type/ratio estimator were the most commonly used methods. We also 
found that a considerable number of the Mendelian randomisation studies which used 
IV methods estimated an odds ratio or risk ratio, especially in those studies which 
used data from multiple study populations. However, which methods are appropriate 
for IV estimation of causal odds ratios or risk ratios is a methodological challenge of 
IV analysis that has not yet been fully resolved. Several methodological studies have 
investigated this issue in recent years.194-198 One of the reviewed MR studies mentioned 
that the Wald-type estimator used to estimate an odds ratio was an approximate 
method.169 The properties and limitations of these IV methods used to estimate a 
causal odds ratio deserve more attention in the Mendelian randomisation studies in 
which they are used.

Overall, we conclude from our review the standard of reporting of Mendelian 
randomisation studies should be improved. Existing guidelines and recommendations 
for the reporting of IV analyses largely apply to Mendelian randomisation studies (the 
extent depending on the Mendelian randomisation approach used).7,8 In addition to 
these recommendations we have formulated a checklist of Mendelian randomisation-
specific reporting recommendations in Box 1.

In conclusion, studies stating that they perform a Mendelian randomisation study 
within one study population broadly fall into three categories: studies using a genotype 
as a proxy for exposure without further estimation, studies performing IV analysis 
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using a genotype as an instrument and studies comparing observed and expected 
genotype-outcome associations. Plausibility of underlying Mendelian randomisation 
assumptions are not always discussed, but as these assumptions are crucial for validity 
of MR studies, they should always be discussed in the specific context of the study. If 
IV methods are used to estimate a causal effect of the exposure, the statistical methods 
used should be clearly explained. Studies using data from multiple populations should 
also clearly report how data or estimates are combined.
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Box 1 Proposed checklist for reporting Mendelian randomisation studies

Methods
$	 If an expected genotype-outcome association is calculated, report how this was 

calculated and how the confidence interval was obtained. Take into account the 
variance of both the genotype-exposure and the exposure-outcome association.

$	 If an instrumental variable analysis is performed, report in detail which method 
was used and how the confidence interval was obtained. For non-standard 
instrumental variable methods (e.g. methods used to estimate an odds ratio), 
discuss the properties of these methods.

$	 If data from multiple populations are used, clearly explain how and at what stage 
the data/estimates were combined. 

Results
$	 Report the strength of the association between the genetic instrument and the 

exposure, using a partial F-statistic if possible.
$	 Show the association between the genetic instrument and measured confounders. 

If multiple study populations are used, show this for those populations for which 
this information is available.

$	 Report the association of the genotype and the outcome

Discussion
$	 Discuss the plausibility of the second and third instrumental variable assumptions 

in the specific setting of the study: could pleiotropy, linkage disequilibrium, 
canalisation, population stratification or unmeasured confounding of the genotype-
outcome relation affect results in this study?
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Supplementary methods: Search strategy

PubMed
Restrictions: date 01/01/2003-31/12/2013
Query:
(”Mendelian Randomization Analysis”[Mesh] OR ”Mendelian randomisation”[all 
fields] OR ”Mendelian randomization”[all fields] OR (Mendelian[all fields] AND 
randomi*[all fields]) OR ”genetic instrumental variable”[all fields] OR ”genetic 
instrumental variables”[all fields] OR ”genetic instrument”[all fields] OR ”genetic 
instruments”[all fields] OR ”genes as instruments”[all fields] OR ”gene as instrument”[all 
fields] OR ”genes as instrument”[all fields] OR ”gene as instruments”[all fields] OR 
(instrument*[ti] AND (gene[ti] OR genes[ti] OR genetic*[ti] OR mendel*[ti])) 
OR ((”instrumental variable”[all fields] OR ”instrumental variables”[all fields] 
OR ”instrumented analysis”[all fields] OR ”instrumented analyses”[all fields] OR 
”instrumental variable analysis”[all fields] OR ”instrumental variable analyses”[all 
fields] OR ”instrumental variables analysis”[all fields] OR ”instrumental variables 
analyses”[all fields]) AND (gene OR genes OR genetics OR mendel OR mendelian)) 
OR (“mendelian”[all fields] AND (“randomisation”[all fields] OR “randomization”[all 
fields] OR “randomising”[all fields] OR “randomizing”[all fields])))

Medline
Restrictions: year 2003-2013
Query:
(Mendelian Randomization Analysis/ OR ”Mendelian randomisation”.af OR 
”Mendelian randomization”.af OR ”genetic instrumental variable”.af OR ”genetic 
instrumental variables”.af OR ”genetic instrument”.af OR ”genetic instruments”.
af OR ”mendel randomise” OR ”mendel randomize” OR ”mendel randomization” 
OR ”mendel randomisation” OR ”random Mendelian” OR ”genes as instruments”.
af OR ”gene as instrument”.af OR ”genes as instrument”.af OR ”gene as instruments”.
af) OR (instrument*.ti AND (gene.ti OR genes.ti OR genetic*.ti OR mendel*.ti)) 
OR ((”instrumental variable”.af OR ”instrumental variables”.af OR ”instrumented 
analysis”.af OR ”instrumented analyses”.af OR ”instrumental variable analysis”.af 
OR ”instrumental variable analyses”.af OR ”instrumental variables analysis”.af OR 
”instrumental variables analyses”.af) AND (gene OR genes OR genetics OR mendel 
OR mendelian).af) OR (“mendelian”.af AND (“randomisation”.af OR “randomization”.
af OR “randomising”.af OR “randomizing”.af))
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Embase
Restrictions: year 2003-2013, no conference abstracts.
Query:
(Mendelian Randomization Analysis/ OR ”Mendelian randomisation”.af OR 
”Mendelian randomization”.af OR ”genetic instrumental variable”.af OR ”genetic 
instrumental variables”.af OR ”genetic instrument”.af OR ”genetic instruments”.
af OR ”mendel randomise” OR ”mendel randomize” OR ”mendel randomization” 
OR ”mendel randomisation” OR ”random Mendelian” OR ”genes as instruments”.
af OR ”gene as instrument”.af OR ”genes as instrument”.af OR ”gene as instruments”.
af) OR (instrument*.ti AND (gene.ti OR genes.ti OR genetic*.ti OR mendel*.ti)) 
OR ((”instrumental variable”.af OR ”instrumental variables”.af OR ”instrumented 
analysis”.af OR ”instrumented analyses”.af OR ”instrumental variable analysis”.af 
OR ”instrumental variable analyses”.af OR ”instrumental variables analysis”.af OR 
”instrumental variables analyses”.af) AND (gene OR genes OR genetics OR mendel 
OR mendelian).af) OR (“mendelian”.af AND (“randomisation”.af OR “randomization”.
af OR “randomising”.af OR “randomizing”.af))

Web of Science
Restrictions: year 2003-2013, no conference abstracts.
Query:
TI=((”Mendelian randomisation” OR ”Mendelian randomization” OR ”genetic 
instrumental variable” OR ”genetic instrumental variables” OR ”genetic instrument” 
OR ”genetic instruments” OR ”mendel randomise” OR ”mendel randomize” OR 
”mendel randomization” OR ”mendel randomisation” OR ”random Mendelian” OR 
”genes as instruments” OR ”gene as instrument” OR ”genes as instrument” OR ”gene as 
instruments” OR ”instrumental genetic variable” OR ”instrumental genetic variable”)
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Supplementary Table 1 Exposures and genetic instruments used .

Exposure Number 
of 

studies

Genes in which variation was used as an instrument

C-reactive protein 29 CRP,1-28 LEPR,13;14 HNF1A,7;14 IL6R,7;14;24 APOE7;14, 
genetic risk score29

BMI/ fat mass/ percentage body 
fat

25 FTO,8;12;30-45 MC4R,12;32;37-39;41;43;44 TMEM18,32;37;38;44 
VEGFA, 46genetic risk score47-52

Alcohol use 12 ALDH2,53-58 ADH1B,59-63 ADH1C61;64

Vitamin D levels 10 GC,65-69 DHCR7/NADSYN1,65-67;70 CYP2R1,65-67;70 
CYP24A1,66;67 FLG,68;71 VDR,72 genetic risk scores47;73

Homocysteïne 8 MTHFR74-81

“Folate metabolism” 4 MTHFR82-85

LDL-cholesterol 8 SORT1,86 PCSK9,86-89 LDLR,86-88;90 HMGCR,86 
ABCG8,86;89 APOE,86;88;89;91 APOB,87;88 genetic risk 
score24;92 

HDL-cholesterol 5 LIPC,87;93 LIPG94, ABCA1,87 LCAT,95 genetic risk score92;94

Total cholesterol 4 APOE91;96-98

Remnant cholesterol 3 APOA5,87;99 TRIB1,87 GCKR87, genetic risk score24

Remnant cholesterol:HDL ratio 1 LPL87

Triglycerides 5 APOA5,99-101 genetic risk score92;102

Lipoprotein(a) 7 LPA103-109

Lp-PLA2 (activity) 4 PLA2G7,15;110;111 PLA2G2A112

ApoAI 1 APOA5-A4-C3-A115

ApoB 1 APOB15

Uric acid 7 SLC2A9,32;37;49;113-115 ABCG2,113;115 SLC17A1,115 
SLC22A11,115 SLC22A12,115 genetic risk score116

IL-6/ IL-6 receptor signalling 5 IL6,117;118 IL6R26;119;120

Fetuin-A 4 AHSG35;121-123

Adiponectin 4 ADIPOQ124-127

Fibrinogen 4 FIBA-B-G cluster,15 FGB128-130

Fasting glucose 3 genetic risk score50;131;132

HOMA-IR 2 GCKR,125 ADAMTS9,133 PPARG2133

Beta-cell function 2 ADAMTS9,133 TCF7L2134

Non-fasting glucose 1 GCK,135 G6PC2,135 ADCY5,135 DGKB,135 ADRA2A135

Fasting insulin 1 INSR,136 IRS1136

Type 2 diabetes 2 genetic risk score131;137

Type 1 diabetes 1 genetic risk score137

Milk consumption 3 LCT138-140

Iron status (ferritin/serum iron) 3 HFE,141;142 TMPRSS6141;143

Bilirubin 3 UGT1A1144-146

SHBG 3 SHBG147-149

Testosterone 2 SHBG,150 FAM9B,150 CYP19A1,151 ESR2151
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Prenatal testosterone exposure 1 Sex of co-twin152

Caffeine (intake) 2 CYP1A2,153;154 NAT2,154 GSTA1154

Vitamin B-12 2 FUT2,155;156 TCN2,155 CUBN156

Total transcobalamin 1 TCN2156

Smoking 2 CHRNA5–CHRNA3–CHRNB4 cluster157;158

PAI-1 levels 2 PAI14G/5G26;78

Malaria infection 2 HbAS phenotype159;160

IL-18 2 IL1826;161

Macrophage migration 
inhibitory factor

2 MIF26;162

6-propylthyouracil tasting 1 TAS2R38163

Monocyte chemotactic 
protein-1

1 CCL21

Leukocyte telomere length 1 genetic risk score164

Triacylglycerol 1 genetic risk score50

sPLA2-IIa 1 PLA2G2A165

γ-glutamyltransferase 1 GGT1166

Δ5-desaturase and Δ6-desaturase 
activity

1 FADS1167

Monocyte CD36 expression 1 CD36168

Factor VII 1 F715

Retinol-binding protein 4 1 RBP4169

Complement factor H 1 CFH170

Surfactant protein D 1 SP-D171

MiR-34b 1 Pri-miR-34b/c172

ICAM-1 1 ICAM1173

P-selectin 1 SELP173

CSF ApoE 1 APOE,174 genetic risk score174

NT-pro-BNP 1 BNP175

APC resistance 1 FVL78

ACE activity 1 ACE D/I78

Prothrombin levels 1 F278

Beta-carotene 1 BCMO1176

Arsenic metabolism efficiency 1 AS3MT177

IL-1RA 1 IL1RN26

Inflammatory/auto-immune 
disease

1 IL23R, PTPN2, PTPN22, SH2B3, IL2RA (+ 31 
others)26

Ceruloplasmin 1 CP178

Organophosphate exposure 1 PON1179
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Mendelian randomization studies use genetically determined variation in exposure 
levels to study causal effects. Unmeasured confounding and reverse causation, 
which hamper the estimation of causal effects of exposures in conventional analysis, 
can thereby be circumvented.1 The genetic variant used as an instrument should 
fulfil the following conditions: (1) it is associated with the exposure; (2) it only 
affects the outcome through the exposure; and (3) it is not related to other factors 
which affect the outcome.1-3 If these main assumptions are fulfilled, the effect of the 
genetic variant on the outcome can be attributed to the effect of the exposure on the 
outcome. An overview of numerous scenarios in which these assumptions are violated 
was published recently, with a discussion of the consequences and suggestions for 
alternative approaches to Mendelian randomization studies.3 
Another scenario in which the assumptions could be violated is if a Mendelian 
randomization study is performed in an elderly population. Let us think of a Mendelian 
randomization study in which the effect of exposure X on outcome Y is studied in 
a population aged > 80 years, using genetic variant G as the genetic instrument to 
circumvent the confounding by unmeasured factors U1 of the X-Y relation. If the 
genetic variant G, through its effect on the exposure X has affected survival up to 
age 80, collider stratification bias (selection bias) may occur. This is illustrated in the 
Figure: both genotype G (through exposure X) and other risk factors U2 affect survival 
up to age 80. Survival S is therefore a collider and restriction of the population to 
those who have survived up to age 80 results in collider stratification bias by inducing 
an association between G and U2. The intuitive interpretation of this phenomenon 
is as follows. We assume that genotype G increases mortality rates. If a person with 
a genotype G is still alive at age 80, this person will be less likely to have other risk 
factors for mortality (high blood pressure, smoking, etc.) compared to people without 
genotype G. This means that in the population aged over 80 the genetic variant is 
associated with other factors which affect the outcome, violating assumption 2. The 
effect of the genetic variant G on the outcome Y can therefore no longer be solely 
attributed to the effect of the exposure X on outcome Y.
An example in which this collider stratification bias might occur is a Mendelian 
randomization study in subjects aged over 80 using APOE variants (G) as an instrument 
for cholesterol level (X), with (for example) myocardial infarction as the outcome (Y). 
APOE variants are known to cause variation in cholesterol levels. Because cholesterol 
levels will have influenced survival up to age 80 (S) and hence selection into the study 
population, an association of APOE variants with other risk factors which influenced 
survival up to age 80 (U2, e.g. smoking) is introduced. For example, among those with 
a cholesterol increasing APOE-variant who have survived up to age 80 there will be 
fewer smokers than among those without the variant. If these other factors also affect 
the risk of myocardial infarction, the genotype-outcome relation will be biased: in this 
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example the bias in the estimated effect of genetically increased cholesterol will be 
towards a lower risk of myocardial infarction due to the inverse relation with smoking. 
This also applies if the outcome is survival (from age 80).
The bias introduced by selection on survival will of course be most prominent for 
Mendelian randomization studies investigating exposures which strongly affect 
survival. 

Figure. Genetic variant G is an instrument for the effect of exposure X on outcome Y, with unmeasured 
factors U1 confounding the X-Y relation. Both X and unmeasured risk factors U2 affect survival S, and 
U2 also affects Y. Because of selection on S, there is an association between G and U2.
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In this thesis we aimed to investigate the validity of instrumental variable analysis, 
in particular using physician’s preference as an instrument, to evaluate beneficial or 
adverse effects of interventions and we aimed to identify the settings and types of 
questions for which it most useful. In this chapter we present a summary of our main 
findings, discuss strengths and limitations of our research and consider its implications.

Summary of the principal findings
In Chapter 2 we found substantial variation amongst general practitioners in their 
treatment decisions when presented with the same set of eight fictitious cases of patients 
with subclinical hypothyroidism, supporting the existence of physician’s prescribing 
preference. Further, we found that the deterministic monotonicity assumption (that 
the instrument is related to treatment monotonically in one direction for all patients) 
did not hold even in a relatively simple setting, suggesting that this assumption is not 
plausible when physician’s preference is used as an instrumental variable. In contrast, 
we found that the stochastic monotonicity assumption (that the instrument is related 
to treatment monotonically across subjects within strata of a sufficient set of measured 
and unmeasured common causes of treatment and the outcome) held in the survey 
data when a different ‘prescription’ of the same general practitioner was used as the 
instrument. This suggests that a more relaxed version of the monotonicity assumption 
may be plausible when physician’s preference is used as an instrumental variable.

We subsequently applied physician’s preference based instrumental variable analysis 
in a clinical epidemiological study of typical size (a few hundred patients) in Chapter 
3. We found that estimates of the effect of preoperative corticosteroids on mechanical 
ventilation time, duration of intensive care and hospital stay, occurrence of infections, 
atrial fibrillation, heart failure and delirium in elective cardiac surgery patients were 
similar in direction to estimates from a randomised controlled trial. However, the 
estimated effects were much larger with uninformative wide confidence intervals. We 
concluded that the lesser statistical precision of instrumental variable analysis limits its 
usefulness in a study that might be of sufficient size for conventional analyses - even if 
a strong and plausible instrument is available. 

In Chapter 4 we showed through simulations how the performance of instrumental 
variable analysis in comparison to conventional analyses, a bias-variance trade-off, 
depends substantially on sample size. Other determinants are the strength of the 
instrument and the strength of confounding. We derived an equation that can be 
used to approximate a ‘threshold’ sample size above which the mean squared error 
(a summary measure of bias and variance) of instrumental variable analyses will be 
lower than that of conventional analyses. Further, we showed that substantial sample 



General discussion

171 

9

sizes will generally be needed for the bias-variance trade-off to be in favour of an 
instrumental variable analysis in epidemiologic studies.

In Chapter 5, we investigated whether instrumental variable analysis is useful as a 
sensitivity analysis in studies of adverse effects to assess the presence of confounding. 
The topic of the study was the comparison of the occurrence of venous thrombosis 
in users of third generation oral contraceptives vs. second generation contraceptives. 
In principle, this is an unpredictable unintended effect and we therefore investigated 
whether an instrumental variable analysis would yield the same estimates as an analysis 
using standard statistical methods to adjust for confounding (as in principle we would 
expect little confounding). The study population consisted of new users of second or 
third generation oral contraceptives, derived from a very large primary care database. 
We showed that the instrumental variable estimates (using general practitioner’s 
preference as an instrument) of the effect of third versus second generation oral 
contraceptives on occurrence of venous thromboembolism were similar to estimates 
from conventional analyses. If anything, the conventional analysis seemed to be more 
conservative than the instrumental variable analysis. However, even in this very large 
study population the variance of the instrumental variable estimates was very large, 
due to the relatively rare outcome. Further, the analysis was complicated because 
changes in both prescribing preference and patient characteristics over time resulted in 
violation of the independence assumption and necessitated an adjusted instrumental 
variable analysis. We concluded that major confounding was unlikely due to the 
similarity of the estimates obtained under different sets of assumptions.

In Chapter 6 we recommended to report the association between the instrument 
and the outcome before performing any formal instrumental variable analysis, which 
amounts to a conventional epidemiologic analysis. This is important because it 
shows the association which is subsequently extrapolated in the formal instrumental 
variable analysis. This recommendation was proposed in response to a paper outlining 
guidelines for the reporting of instrumental variable analysis.

We then shifted our focus from physician’s preference based instrumental 
variable analysis to Mendelian randomisation studies. In Chapter 7 we reviewed 
methodological approaches used in Mendelian randomisation studies and found 
that the specific methods used vary widely, falling broadly into three categories: 1) 
using genetic information as a proxy for the exposure without further estimation, 
2) performing an instrumental variable analysis; 3) comparing the observed with 
the expected genotype-outcome association. Further we found that Mendelian 
randomisation studies often insufficiently discuss underlying assumptions and 
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report statistical methods for IV analysis. In a certain sense the fact that Mendelian 
randomisation studies are also instrumental variable studies (with or without a formal 
instrumental variable analysis) is often disregarded. We therefore devised a checklist 
for the reporting of Mendelian randomisation studies. Finally, in Chapter 8 we 
explained that collider-stratification bias may exist if Mendelian randomisation studies 
are performed in elderly populations, as both the genetic variant used as an instrument 
and other causes of the outcome may be causally related to survival up to the age at 
which the population is selected. 

Implications and recommendations
Instrumental variable analysis as a primary analysis
Instrumental variable analysis for estimation of therapeutic effects has the greatest 
potential in situations in which very large datasets are available and in which there is 
substantial confounding by indication and also little available information on these 
confounding factors (see conclusion of Chapter 4). However, if the direction of this 
confounding is predictable, sensitivity analyses could alternatively be used to derive 
a plausible range of the treatment effect.1-3 Instrumental variable analysis would 
therefore more specifically be suited to situations in which there is confounding 
with such complexity that the direction and magnitude of the resulting bias is 
unpredictable. Further we remark that although instrumental variable analysis is of 
most value in situations with substantial unmeasured confounding, paradoxically, 
substantial unmeasured confounding limits the potential strength of any instrument 
(as this confounding will determine a substantial part of the variation in exposure).4

Instrumental variable analysis as a sensitivity analysis
In case of unpredictable adverse effects, such as the increased risk of venous 
thromboembolism of 3rd generation oral contraceptives in comparison to 2nd 
generation oral contraceptives, confounding by (contra-)indication5 is unlikely and 
instrumental variable analysis would therefore not be particularly suitable as a primary 
analysis. However, it may be used as a sensitivity analysis: if results of an instrumental 
variable analysis are similar to those of the conventional analyses, this supports the 
notion that there is little confounding by contra-indication (provided, of course, 
that instrumental variable assumptions hold, and that suitably large databases exist). 
Instrumental variable analysis may also have a role as a sensitivity analysis in studies 
of intended effects.6 Looking at the same data under different sets of assumptions can 
contribute to the understanding of causal effects.7

Types of therapeutic question for which instrumental variable analysis is most useful
Instrumental variable analysis for estimation of therapeutic effects seems primarily 
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suited to therapeutic decisions in which there are two clearly defined alternatives. 
Davies et al compare 5 different treatment options (2 selective COX-2 inhibitors and 
3 non-specific NSAIDs) as a sensitivity analysis in a study primarily comparing the 
2 drug classes.8 However, examples of instrumental variable studies in which more 
than two treatment options are compared are rare, although there are many situations 
in which there are more than two alternatives to consider in a treatment decision. 
Even if only two options are primarily of interest for the research question at hand, 
exclusion of patients who received other treatment options may result in inclusion 
of different subsets of the patient population for different physicians, threatening 
the validity of the independence assumption (i.e. that there is no confounding of the 
instrument-outcome relation). This may have been an issue in Chapter 5, in which the 
introduction of drospirenone-containing oral contraceptives resulted in an additional 
option besides 2nd and 3rd generation oral contraceptives. Whereas formerly the 
comparison of 2nd and 3rd generation oral contraceptives will have included (nearly) all 
women who started using a combined hormonal oral contraceptive, the introduction 
of an additional option will have reduced this population in a manner which is not 
necessarily random.

Instrumental variable analysis of randomised controlled trials
In the ideal randomised controlled trial with complete compliance and complete follow-
up, the treatment effect estimated is the average treatment effect in the population. 
This changes when compliance is incomplete, in which case an intention-to-treat effect 
is usually estimated. This estimates the effect of assigning the treatment rather than 
the effect of taking the treatment, and is therefore not always the effect of interest.9;10 
The intention-to-treat effect is a conservative estimate of the effect of taking treatment, 
i.e. biased towards the null. This can be particularly problematic in studies of adverse 
effects or in non-inferiority trials.11 An as-treated analysis or a per-protocol analysis 
on the other hand essentially negates the randomisation, resulting in incomparable 
populations and an estimate without a clear causal interpretation.9;11 The analysis of 
RCTs with non-compliance using methods common to observational studies has been 
advocated, in order to obtain a valid estimate of the effect of taking treatment (besides 
the intention-to-treat estimate of the effect of assigned treatment).11 One such way is 
to perform an instrumental variable analysis, using treatment arm as an instrumental 
variable. This will usually be a strong instrumental variable, as treatment arm strongly 
predicts treatment unless compliance is very low.12 In the context of a randomised 
trial, the deterministic monotonicity assumption, i.e. the absence of defiers (subjects 
who would take the opposite of what they are assigned to in either treatment arm) 
is usually reasonable. Under this assumption the instrumental variable analysis 
estimates the effect within the compliers: those who take the treatment to which they 
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are assigned. Importantly, the interpretation of this estimate therefore differs from 
the average treatment effect in the population and from the intention-to-treat effect. 
The estimate can for example be obtained using the Wald estimator, which divides the 
intention-to-treat effect by the difference in probability of being treated with the study 
treatment.10;12 For time-varying treatments (time-varying adherence) more complex 
instrumental variable methods such as g-estimation can be used.11;13 Examples of 
instrumental variable analysis in RCTs are as yet rare. One example is a randomised 
trial investigating the effect of yoga (in addition to usual general practitioner care) on 
chronic low back pain. The intention-to-treat estimate of the effect of assignment to 
yoga in addition to usual care on 3-month Roland Morris Disability Questionnaire 
score was -2.17 (95% CI -3.31; -1.03), whereas the complier-average-causal-effect 
estimate of attending at least one yoga class was -2.45 (-3.67;-1.24) and the complier-
average-causal-effect estimate of attending all 12 offered yoga classes was -3.30 (-4.90;-
1.70).14

Physician’s preference as an instrumental variable
Physician’s preference can specifically be useful as an instrumental variable in situations 
in which there are no stringently applied medical practice guidelines, i.e. when there 
is room for preference to play a role in treatment decisions. An example of such a 
situation is the decision whether to treat patients with subclinical hypothyroidism. The 
Dutch general practitioners’ guideline, for example, does not recommend treatment of 
subclinical hypothyroidism in general, but states that general practitioners may choose 
to try levothyroxine treatment and evaluate whether symptoms improve.15 We showed 
in Chapter 2 that there was substantial variation in treatment decisions among general 
practitioners presented with the same subclinical hypothyroidism cases. In these 
survey data, this variation remained after adjusting for characteristics of the GP and 
their patient population, which was reassuring with regard to the main instrumental 
variable assumptions.

However, a note of caution is warranted with regard to the exclusion restriction 
assumption. In applications of physician’s preference based instrumental variable 
analysis, the treatment choice by the physician for (one or more) previous patients 
is usually used as an estimate of physician’s preference, because this preference is not 
a directly measurable characteristic. Yet situations may occur in which instrumental 
variable assumptions hold for the underlying preference, but not for an estimate of this 
preference based on previous prescriptions.16 We will explain this using the directed 
acyclic graph depicted in Figure 1. In this figure the treatment of the previous patient 
Z* is used as a proxy for underlying preference of Z. If there is variation in the case-mix 
M of the different physicians in the study, the current patient and the previous patient 
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are likely to be more similar than any random two patients from the entire study 
population. The instrument Z* will then be related to characteristics of the current 
patient C and U, through case-mix M and characteristics of the previous patient V, 
violating the independence assumption. Note that underlying preference Z is still a 
valid instrument, because Z* acts as a collider, blocking the path between Z and patient 
characteristics C and U. In the setting of Chapter 3, we think this is unlikely to have 
occurred, as patients will have been treated by the anaesthesiologist on duty and 
systematic differences in case-mix are therefore unlikely to exist. For studies in which 
preference of general practitioners is used as an instrument, differences in case-mix are 
likely (e.g. due to geographical variation in socio-economic status and demographic 
characteristics) and the confounding described may therefore threaten the validity of 
previous prescriptions of the GP as an instrument.

What does an instrumental variable analysis estimate?
As stated previously, in the ideal randomised controlled trial with complete compliance 
and complete follow-up, the treatment effect estimated is the average treatment effect 
in the study population. If the study population is representative of the population 
of interest, the estimate represents the average treatment effect in the population of 
interest. However, due to inclusion and exclusion criteria, RCT populations are often 
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not representative of the population of interest, which limits the generalisability of 
results. An often stated advantage of observational studies over randomised controlled 
trials (RCTs) is the greater generalisability of the results, because subjects who are 
unlikely to be included in RCTs can be part of the study population in an observational 
study. Conventional methods to adjust for confounding in observational studies results 
in estimates which represent average effects in the study population conditional on 
the confounders for which they have adjusted. For results of an instrumental variable 
study the question to whom the results apply and how to interpret the estimate is more 
complicated. It depends on the assumption which is made in order to obtain a point 
estimate (the “fourth” assumption, in addition to the three main instrumental variable 
assumptions). Under the assumption of homogeneity of treatment effects the results 
apply to the entire study population. However, if homogeneity of treatment effects is 
not realistic, another assumption is necessary in order to obtain an interpretable point 
estimate. This is often some form of the monotonicity assumption, in which case the 
question to which population the results apply is more complex. 

The exact interpretation of the instrumental variable estimate depends on the 
version of the monotonicity assumption. The situation with a binary instrument 
and the deterministic monotonicity assumption is relatively easy: the point estimate 
represents the average effect among the ‘compliers’. However, the compliers in the 
study population cannot be identified: all subjects only experienced the treatment 
they received at the actual value of the instrument and the treatment they would have 
received at the counterfactual value of the instrument is unknown. A description of 
the distribution of the characterisation of the compliers is possible however,17;18 as 
described by Angrist and Pischke.18 

Under the stochastic monotonicity assumption the question to which patients the 
results apply becomes more difficult, as the estimate is a weighted average of treatment 
effects. Clearly, the results do not apply to those subjects who evidently would have 
received the same treatment regardless of the value of the instrument (i.e. regardless 
of the preference of their physician – e.g. because of overriding medical reasons). The 
degree to which results apply to other patients depends not only to the proportion of 
the study population which consisted of that type of patient, but also on the strength 
of the instrument for the specific type of patient: the stronger the instrument, the 
higher the relative contribution of that specific type of patients to the estimate. A 
characterisation of the strength of instrumental variable weighted average treatment 
effect (SIVWATE) population would be rather more difficult than the characterisation 
of the compliers described previously.
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In part because of the difficulty in the interpretation of the point estimate from an 
instrumental variable analysis and the additional assumption required, the reporting 
of bounds of the instrumental variable estimate has been advocated in reporting 
guidelines for instrumental variable analysis.17 These bounds represent the upper 
and lower limits of the average causal effect in the study population.19 Balke and 
Pearl describe the calculation of these bounds and how they can be narrowed under 
different assumptions.20 In practice these bounds will generally be so disparate that 
they are uninformative. The main value in calculating bounds lies in the subsequent 
explicit decision on which fourth assumption is plausible and how the point estimate 
consequently should be interpreted.

Reflections on Mendelian randomisation and subsequent considerations for other forms of 
instrumental variable analysis
There is discussion on whether Mendelian randomisation should be viewed as 
instrumental variable analysis with genetic instrumental variables.21;22 One point of 
discussion is that some studies qualify as Mendelian randomisation studies but do 
not perform a formal instrumental variable analysis.22 More recently the question if 
and when formal instrumental variable analysis should be performed in Mendelian 
randomisation studies has been addressed by VanderWeele.23 Most importantly this 
depends on the definition of the exposure and the consequences of this definition 
for the validity of the main instrumental variable assumptions: in some situations an 
estimate of the effect of the genetic instrument on the outcome may be valid, while 
no valid IV estimate of the effect of the exposure on the outcome can be obtained.23 
One example discussed by VanderWeele is that the effect of certain genetic variants 
on smoking behaviour will not be entirely captured by the effect on the number of 
cigarettes smoked per day: IV analysis estimating the effect of the number of cigarettes 
per day on lung cancer using these variants as instruments will then be biased because 
there are additional pathways from the variants to lung cancer (via other aspects of 
smoking behaviour). Investigating the association between the variants and lung 
cancer is a valid test of the presence of an effect of smoking behaviour in a more general 
sense on lung cancer.23

The question if and when a formal instrumental variable analysis should be performed 
applies not just to MR studies, but also to other instrumental variable studies. In case 
of studies of therapeutic effects, adequately capturing all aspects of the association 
between the instrument and the exposure may not be as difficult as in Mendelian 
randomisation studies. However, the outcome of interest in a study of therapeutic 
effects is often a binary or survival outcome. Formal IV analysis methods for such 
outcomes are not yet well-established and obtaining a valid quantitative estimate of 
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effect of the therapy on the outcome is therefore difficult, but estimation of the effect 
of the exposure on the outcome can serve as a test of causality. For many therapeutic 
questions quantification of the therapeutic effect will be important however, and 
without a formal instrumental variable analysis only the existence and direction of the 
effect can be evaluated.

Based on our findings in Chapter 7 we would argue that for some aspects of Mendelian 
randomisation studies the instrumental variable perspective can be valuable. For 
example, reporting guidelines for instrumental variable analysis largely apply to 
Mendelian randomisation studies and can aid in improving the reporting of future MR 
studies. Furthermore, many Mendelian randomisation studies obtain an instrumental-
variable type estimate of the effect of the exposure on the outcome using statistical 
methods which are not well-established (e.g. estimation of an odds ratio using a 
method similar to the Wald estimator). It is important that those who perform such 
studies are aware that the problems and limitations of instrumental variable analyses 
with binary or survival outcomes also apply to MR studies using these methods. 

Conclusions
We set out to investigate the validity and usefulness of instrumental variable 
analysis, in particular using physician’s preference as an instrument, in clinical 
epidemiological studies. We aimed to expose potential problems and limitations of 
this method and to identify the settings and types of questions for which it is most 
useful. By exploring several aspects of the method in both applications using existing 
data and in simulation studies we came to a number of conclusions. Instrumental 
variable analysis can be of value as a primary analysis in very large epidemiological 
studies with substantial unmeasured confounding (of unpredictable direction and 
magnitude) and a strong instrument. For studies of a more typical size in clinical 
epidemiology, e.g. several hundreds of patients an instrumental variable estimate will 
generally be uninformatively imprecise. A more broadly suitable role for instrumental 
variable analysis could be as a sensitivity analysis, for example to assess the presence 
of confounding (by contra-indication) in studies of adverse effects. Treatment 
preference differences exist between physicians, independent of characteristics of 
these physicians and their patient populations. Ascertaining that IV assumptions hold 
not only for underlying physician’s preference, but also for the estimate of preference 
used as a proxy instrument, is paramount. For physician’s preference as an instrument 
the stochastic monotonicity assumption may be a plausible assumption for obtaining 
a point estimate. Viewing Mendelian randomisation studies as instrumental variable 
studies can aid in improving the reporting of Mendelian randomisation studies, even if 
no formal instrumental variable analysis is performed.
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Introductie
Voor het beoordelen van een effect van een behandeling worden resultaten van een 
gerandomiseerde trial vaak als ideaal beschouwd. Gegevens uit gerandomiseerde 
trials zijn voor veel belangrijke vragen rondom medische behandelingen echter niet 
beschikbaar. Er is daarom dringend behoefte aan methoden waarbij de effecten van 
een behandeling op valide wijze geschat kunnen worden in observationele data. 
Een belangrijk probleem in observationeel onderzoek is dat patiëntkarakteristieken 
meewegen bij behandelingsbeslissingen: behandelde patiënten en niet-behandelde 
patiënten (of patiënten behandeld met A en patiënten behandeld met B) zijn daardoor 
niet vergelijkbaar. Anders geformuleerd, factoren (kenmerken van de patiënt) die 
zowel de behandelingsbeslissing als de uitkomst beïnvloeden zullen het effect van de 
behandeling vertekenen. Dit wordt confounding by indication genoemd. Gebruikelijke 
analysemethodes kunnen alleen corrigeren voor die kenmerken van de patiënt die 
gemeten zijn en nemen daarbij aan dat er geen verdere ongemeten factoren zijn die het 
effect nog vertekenen, wat veelal niet plausibel is. 

Een methode, afkomstig uit de econometrie, die in potentie zowel gemeten als 
ongemeten confounding kan omzeilen is de instrumentele variabele analyse. Deze 
methode zoekt een surrogaat voor de randomisatie; een factor die de behandeling 
mede bepaalt, maar niet op een andere manier dan via de behandeling geassocieerd 
is met de uitkomst. Voorbeelden zijn afstand tot een ziekenhuis met bepaalde 
behandelingsmogelijkheden, of behandelingsvoorkeur van ofwel het ziekenhuis, 
ofwel de arts. In formelere zin moet een instrumentele variabele (instrument) aan 3 
hoofdaannames voldoen: 1) het instrument is geassocieerd met de behandeling; 2) 
het instrument heeft geen effect op de uitkomst, anders dan via de behandeling; 3) er 
zijn geen factoren die een effect hebben op zowel het instrument als op de uitkomst. 
Als aan deze aannames wordt voldaan is een associatie tussen het instrument en de 
uitkomst volledig toe te schrijven aan verschillen in de behandeling. Hiermee kan het 
oorzakelijke effect van de behandeling op de uitkomst geschat worden.

Het doel van dit proefschrift was te onderzoeken hoe valide instrumentele variabele 
analyse is als methode om zowel beoogde effecten als bijwerkingen van een behandeling 
te bepalen, en voor welke vragen en in welke situaties deze analyse bruikbaar is. 

Voorschrijfvoorkeur als instrumentele variabele
We hebben ons vooral gericht op het gebruik van ‘voorschrijfvoorkeur’ als 
instrumentele variabele. De keuze voor een behandeling door artsen wordt bepaald 
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door zowel kenmerken van de patiënt als door een onderliggende voorkeur van 
de arts voor een bepaalde behandeling. Door verschillen in deze onderliggende 
voorkeur kan het zijn dat verschillende artsen verschillende behandelingskeuzes 
zouden maken voor dezelfde patiënt. Door verschillen in onderliggende voorkeur 
ontstaat dus variatie in behandeling die onafhankelijk is van patiëntkenmerken: 
ofwel, onderliggende behandelingsvoorkeur (of ‘voorschrijfvoorkeur’) kan fungeren 
als instrumentele variabele. Het concept ‘voorschrijfvoorkeur’ hebben we nader 
onderzocht in Hoofdstuk 2: bestaat er echt variatie in voorkeur voor behandeling, 
of komt de variatie in keuze voor behandeling tussen artsen door verschillen in hun 
patiëntenpopulatie? We bekeken gegevens uit een enquête onder huisartsen, waarin 
werd gevraagd of zij acht fictieve patiënten met subklinische hypothyreoïdie zouden 
behandelen met levothyroxine. We vonden aanzienlijke variatie in de keuze om 
patiënten al dan niet met levothyroxine te behandelen, waaruit we concluderen dat 
verschillen in voorschrijfvoorkeur bestaan. 

Om met een instrumentele variabele analyse een puntschatting te krijgen van het effect 
van de behandeling is naast de hierboven besproken 3 hoofdaannames nog een vierde 
aanname nodig. Er bestaan verschillende mogelijkheden voor deze vierde aanname, 
en voor elk van deze mogelijkheden is de interpretatie van het geschatte effect iets 
anders. In Hoofdstuk 2 concluderen we op basis van de voorschrijfpatronen uit de 
enquête dat voor voorschrijfvoorkeur de zgn. stochastische monotoniciteitsassumptie 
aannemelijk is (maar de strengere deterministische monotoniciteitsassumptie niet). 
De interpretatie van de effectschatting onder deze aanname is ingewikkeld: het is een 
gewogen gemiddelde van de effecten in bepaalde subgroepen van de studiepopulatie. 
Hoe sterker het instrument gerelateerd is aan de behandeling in de subgroep, hoe 
zwaarder het effect in die subgroep meeweegt.

In welke situaties is instrumentele variabele analyse een geschikte analyse?
In Hoofdstuk 3 werd instrumentele variabele analyse met voorschrijfvoorkeur 
als instrument toegepast in een studie met enkele honderden patiënten, een 
populatiegrootte die gebruikelijk is in epidemiologische studies. Schattingen van het 
effect van preoperatieve corticosteroïden op beademingsduur, verblijf op de intensive 
care en in het ziekenhuis, het optreden van infecties, boezemfibrilleren, hartfalen en 
delier bij patiënten die een hartoperatie ondergingen waren qua richting hetzelfde als 
effectschattingen uit een gerandomiseerde trial. De gevonden effecten waren echter 
veel groter, en de schattingen waren zo onnauwkeurig dat ze weinig informatief waren. 
Hieruit concluderen we dat de geringe precisie van instrumentele variabele analyse 
een grote beperking vormt voor de toepasbaarheid in studies met patiëntaantallen die 
voor gebruikelijke analyses groot genoeg zijn.
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Als er sprake is van ongemeten confounding zal een analyse waarbij alleen gecorrigeerd 
wordt voor gemeten confounding een systematisch vertekende schatting geven: 
er is sprake van bias. Als een instrumentele variabele beschikbaar is die aan de drie 
hoofdaannames voldoet dan zal de schatting uit de instrumentele variabele analyse 
niet systematisch vertekend zijn (enkele kanttekeningen hierbij laten we hier buiten 
beschouwing), maar deze schatting is veel onnauwkeuriger: de variantie is veel groter. 
Welke schatting gemiddeld dichter bij het ware effect zal zijn is een trade-off tussen 
de bias van de gebruikelijke analyse en de variantie van de instrumentele variabele 
analyse. In Hoofdstuk 4 hebben we in een simulatiestudie laten zien dat de richting 
waarin deze balans uitslaat in grote mate afhangt van de grootte van de studiepopulatie, 
en daarnaast van de sterkte van het instrument en de sterkte van de ongemeten 
confounding. We hebben een formule opgesteld waarmee kan worden berekend vanaf 
welke studiepopulatiegrootte de instrumentele variabele schatting gemiddeld minder 
ver afwijkt van het ware effect dan de gebruikelijke schatting. Dit geldt in het algemeen 
pas vanaf zeer grote aantallen .

In Hoofdstuk 5 werd onderzocht of in observationele studies naar bijwerkingen 
instrumentele variabele analyse bruikbaar is als sensitiviteitsanalyse om te 
beoordelen of er sprake is van confounding. In een grote groep nieuwe gebruiksters 
van gecombineerde hormonale anticonceptiepillen hebben we het risico op diep 
veneuze trombose en longembolieën vergeleken tussen gebruikers van de tweede 
en derde generatiepil. In principe is dit een weinig voorspelbare bijwerking: we 
verwachtten daarom niet dat de soort pil die wordt voorgeschreven gerelateerd is 
aan het onderliggende risico op trombose van de patiënt (geen confounding). Als 
dit het geval is zou een instrumentele variabele analyse een zelfde schatting geven als 
een gebruikelijke analyse. Dit is ook wat we vonden: de schattingen uit beide soorten 
analyses suggereerden een hoger risico op trombose voor de derde generatiepil. Echter, 
zelfs in deze zeer grote studiepopulatie van enkele honderdduizenden vrouwen was 
de instrumentele variabele schatting onnauwkeurig, omdat trombose een zeldzame 
uitkomst is. Vanwege de overeenkomst tussen de resultaten van de verschillende 
analyses die rusten op verschillende aannames concluderen we dat de aanwezigheid 
van een aanzienlijke hoeveelheid confounding onwaarschijnlijk is.

Het rapporteren van een instrumentele variabele analyse
In Hoofdstuk 6 gaven we de aanbeveling om in een studie waarin een instrumentele 
variabele analyse wordt gedaan altijd eerst te laten zien wat de associatie is tussen de 
instrumentele variabele en de uitkomst (voordat de formele instrumentele variabele 
analyse wordt gedaan). Dit is belangrijk, omdat dit de associatie is die in een formele 
instrumentele variabele analyse wordt geëxtrapoleerd. Deze aanbeveling hebben 



Nederlandse samenvatting

184

we gedaan in reactie op een artikel waarin richtlijnen voor het rapporteren van een 
instrumentele variabele analyse waren opgesteld.

Mendeliaanse randomisatie
In de laatste twee hoofdstukken hebben we ons gericht op een andere vorm van 
instrumentele variabele analyse: mendeliaanse randomisatie. Hierbij worden 
genetische varianten als instrumentele variabele gebruikt om het effect van een 
blootstelling op een uitkomst te onderzoeken. Het idee is dat genetische varianten 
willekeurig overerven van ouders naar hun kinderen en dat deze varianten daarom 
over het algemeen niet gerelateerd zijn aan andere factoren die een effect hebben op 
de uitkomst (zoals leefstijlfactoren). Het effect op de uitkomst van deze genetische 
variatie in de blootstelling zou daarom niet vertekend moeten worden door deze andere 
factoren. In Hoofdstuk 7 hebben we d.m.v. een systematische review onderzocht wat 
voor aanpak in mendeliaanse randomisatie studies werd gebruikt. Hierbij werden drie 
hoofdcategorieën onderscheiden: 1) alleen onderzoeken van de associatie tussen 
het genetische instrument en de uitkomst; 2) een formele instrumentele variabele 
analyse met een genetisch instrument; 3) een vergelijking van de geobserveerde en 
de verwachte associatie tussen het genetische instrument en de uitkomst. Verder 
hebben we gevonden dat de hoofdaannames voor een instrumentele variabele, die 
ook gelden voor Mendeliaanse randomisatie, vaak onvoldoende besproken werden 
en dat de gebruikte statistische methoden vaak niet duidelijk gerapporteerd werden. 
Daarom hebben we een checklist opgesteld voor het rapporteren van mendeliaanse 
randomisatie studies.

In Hoofdstuk 8 hebben we uitgelegd dat in mendeliaanse randomisatiestudies in 
oudere populaties (bijv. >80 jaar) sprake kan zijn van vertekening van het onderzochte 
effect door de selectie op leeftijd. De genetische variant die de instrumentele variabele 
is in een dergelijke studie, kan invloed hebben gehad op overleving tot 80 jaar. Andere 
factoren, zoals roken, zullen de overleving tot 80 jaar beïnvloed hebben. Hoewel op 
jonge leeftijd geen verband zal bestaan tussen de genetische variant en rookgedrag, kan 
dit verband er in een oudere populatie wel zijn: extreem geformuleerd zullen mensen 
die ondanks een ongunstige genetische variant de leeftijd van 80 jaar hebben bereikt 
waarschijnlijk niet roken. Als dit verband bestaat voldoet de genetische variant niet 
meer aan één van de onderliggende aannames van mendeliaanse randomisatie: aan 
de aanname dat het instrument niet gerelateerd is aan andere factoren die een effect 
hebben op de uitkomst wordt niet voldaan.
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Conclusies
Een belangrijke conclusie van dit proefschrift is dat instrumentele variabele analyse 
alleen in zeer grote epidemiologische studies met aanzienlijke ongemeten confounding 
en een sterk verband tussen het instrument en de behandeling of blootstelling zinvol 
is als primaire analyse. Veel epidemiologische studies hebben een studiepopulatie 
van enkele honderden personen. In dit geval zal een schatting uit een instrumentele 
variabele analyse dusdanig onnauwkeurig zijn dat het weinig informatie geeft. Een 
instrumentele variabele analyse zal wellicht vaker geschikt zijn als sensitiviteitsanalyse, 
bijvoorbeeld om te beoordelen of er sprake is van confounding in studies naar 
bijwerkingen. 

Verder hebben we gevonden dat artsen verschillen in hun behandelingsvoorkeur 
voor eenzelfde patiënt, onafhankelijk van kenmerken van deze artsen en hun 
patiëntpopulaties. De stochastische monotoniciteitsassumptie lijkt een plausibele 
aanname om een puntschatting te verkrijgen, (als het behandelingseffect niet gelijk 
verondersteld kan worden). Een probleem hierbij is dat het geschatte effect uit een IV 
analyse moeilijk interpreteerbaar is. 

Tenslotte concluderen we dat door mendeliaanse randomisatiestudies als 
instrumentele variabele studies te beschouwen het rapporteren van mendeliaanse 
randomisatiestudies kan worden verbeterd, ook als geen formele instrumentele 
variabele analyse wordt verricht.
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Stellingen behorend bij het proefschrift

Obtaining causal estimates of 
therapeutic effects in observational studies: 

the usefulness and validity of 
physician’s preference as an instrumental variable.

 

1. 	 Instrumental variable analysis is primarily useful as a complementary analysis rather than as 
a primary analysis within clinical epidemiology. (this thesis)

2. 	 The population in which an instrumental variable study is performed will rarely be the 
population to which the instrumental variable estimate applies. (this thesis)

 
3. 	 Although variation in treatment preference among physicians exists for many therapeutic 

questions, the potential for physician’s prescribing preference to be used as an instrumental 
variable is limited because it is not a directly measurable characteristic. (this thesis)

 
4. 	 Mendelian randomisation studies should be viewed as and reported as an instrumental 

variable study, even if no formal instrumental variable analysis is performed. (this thesis)
 
5. 	 In a study in which considerable confounding can be expected, one should be aware that the 

existence of a very strong instrument within the IV assumptions is impossible. 
	 E.P. Martens, W.R. Pestman, A. de Boer, S.V. Belitser, O.H. Klungel, Epidemiology 2006;17(3): 

260-7.
 
6. 	 IV methods are not an epidemiologist’s dream come true. 
	 M.A. Hernán and J.M. Robins, Epidemiology 2006;17(4):360-72.
 
7. 	 Even if a doctor’s every fully articulated thought regarding a treatment decision could be 

recorded and adjusted for, confounding by indication in observational studies of treatment 
effects would still not be completely resolved.

 
8. 	 Propensity score methods have a high propensity for being misinterpreted.
 
9. 	 The peer review process would benefit from reviewers being reviewed.

Anna G.C. Boef
Leiden, 10 februari 2016


