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1
NOISE : BASIC THEORETICAL

CONCEPTS

The flow of electrons in a conductor is a stochastic random process due to the dis-
crete nature and randomness in its transfer. The flow of electrons fluctuates around
a mean value i.e. the average current. The fluctuation away from the mean cur-
rent is known as current noise. It has two components: a) The equilibrium noise i.e.
thermal noise also known as Johnson-Nyquist noise. It originates from the random
motion of electrons in the conductor within the kB T width of the Fermi distribution
function. b) The non-equilibrium noise i.e. shot noise. The origin of shot noise is due
to the randomness in electron reflection at a scatterer. The first full expression for the
shot noise in mesoscopic conductors was first derived by Lesovik and Levitov [1].
Since then much advancement has been made in theoretical understanding of the
non equilibrium phenomena in mesoscopic devices. Scattering theory, Green func-
tion formalisms, Boltzmann-Langevin and counting field theory approaches have
been developed to understand the noise in mesoscopic systems. The scattering ap-
proach, also known as Landauer-Büttiker approach is a simple quantum mechan-
ical approach which relates the transport properties of the device to the scattering
properties of quasiparticles. Here, I introduce scattering matrix formalism to relate
the fluctuations in electron transport to the transport properties. Although this ap-
proach fails to take into account the effect of inelastic scattering and electron spin
correlations in noise, which are central themes of this thesis, it explains beautifully
the suppression of noise in atomic contacts. The extensions to inelastic scattering
and spin correlations in noise will be developed in later chapter.
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2 1. NOISE : BASIC THEORETICAL CONCEPTS

1.1 STATISTICS: AN INTRODUCTION TO RANDOM PRO-
CESSES AND MOMENTS OF A DISTRIBUTION

LET us first look into some basic concepts of statistics[2]. The probability P (x, t )
of outcome x at time t is defined as the ratio of outcome x to all possible out-

comes for a series of events x(t ). It defines the average behavior of events x(t ) for
determination of x ′s rate of occurrence. The distribution function W (x1, t1) defin-
ing the probability can be written in terms of the probability itself i.e. W (x1, t1) =
P {x(t1) ≤ x1}. It states the probability for x at t1 to have a value smaller or equal
to x1. If the distribution function of the random process is differentiable then its
probability density function can be written in terms of its distribution function:

w (x1, t1) = ∂W (x1, t1)

∂x1
(1.1)

One can use the probability density function, to calculate the mean of the ran-
dom processes.

〈x(t )〉 =
∫ ∞

−∞
x (t )dW (x) =

∫ ∞

−∞
d x x w(x, t ) (1.2)

Similarly, higher order moments can be computed from the probability density
function using 〈δx(t )〉 = 〈x(t )−〈x〉〉 which is the deviation of a random quantity
x(t ) from its mean value 〈x〉.

〈[δx(t )]r 〉 =
∫ ∞

−∞
d x [δ(x)]r w (x, t ) (1.3)

The second order central moment is the most important moment of the ran-
dom process. It is known as the variance. It is also known as fluctuations or noise.
Hence, noise measurement is nothing but measurement of the variance of the
random processes. Now let’s try to understand why the study of fluctuations and
higher order moments are important. Figure (1.1) depicts three different hypothet-
ical experiments, counting the rate of occurrence of certain events. The mean rate
of occurrence of the events is 10 in all three experiments. Hence by just looking at
the mean we will not be able to see the difference between these experiments. If
we look at the histograms of these experiments then we can easily see that while
(a) and (b) have similar shapes of the probability distribution functions, (c) has a
different one. Regarding the variance of (a) and (b), one observes that (a) has a
higher variance than (b).

Hence, the higher moments of the fluctuations reveal more information than
contained in just the mean values. Figure (1.2) shows the physical significance of
the first few central moments. It shows that one should examine also the higher
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FIGURE 1.1: Fluctuations in measurement: Showing three different simulated measurements along
with their frequency spectra. (a) Gaussian events with σ = 0.8. (b) Gaussian events with σ = 0.02. (c)
Poissonian distribution with µ= 10.
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FIGURE 1.2: Probability density function showing the significance of the lowest order moments. C1 is
the mean, C2 is the variance, C3 is the skewness (asymmetry between left and right tails) and C4 is the
sharpness of the tails.

order of moments, not only the mean values to understand the underlying phe-
nomena in random processes.
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1.2 CORRELATION TECHNIQUES

IN studies of random processes different correlation techniques are employed to
look into any statistical regularity in the random processes. Coming back the

noise, which is just the second order moment of the probability distribution func-
tion of the random process, it is usually measured in terms of the power in each
frequency bin. The noise power can be calculated using the autocorrelation func-
tion. The autocorrelation function gives the correlation of a random signal x(t )
with the function itself but delayed by a time interval of τ. The autocorrelation
function for a stationary stochastic random process is defined as:

φx (τ) = lim
T→∞

1

T

∫ T /2

−T /2
x(t )x(t +τ)d t . (1.4)

It measures the correlation of the random process w.r.t. time. The spectral density
of noise can be calculated using the Fourier transformation of the autocorrelation
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FIGURE 1.3: Fluctuations in the measurement and its bandwidth limited measurement using the
quadratic detector: (a) A conceptual demonstration of the noise measurement (b) Noise and its spec-
tral density. The roll off in the spectral density is due to effective low pass behavior of the measurement
system.
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function [Wiener - Khintchine formula][3, 4].

Sx (ω) =
∫ ∞

−∞
φx (τ)e− jωτd t . (1.5)

For a bandwidth limited measurement, which is more realistic to the experi-
mental world, the power spectral density is measured per unit frequency. A simple
schematic representation of noise measurement is shown in figure (1.3). Here the
fluctuation power spectral density is measured using a quadratic detector. Power
spectral density is plotted on a logarithmic scale. The signal is measured around a
central frequency f0 with effective bandwidth of δ f .

1.3 QUANTUM TRANSPORT: A SCATTERING APPROACH

QUANTUM transport refers to the transport of electrons within their phase co-
herence length. A typical quantum conductor is shown in figure (1.4). The
constriction in the narrow neck regime is provides the quantum confinement

i.e. the width of the neck should be smaller than the scattering length. Due to the
quantum confinement in the narrow neck regime, electrons in that regime can be
treated as particles in a box. Here, the electrons are confined along the x and y
axis but they are free to move along the z axis. The Schrödinger equation for the
electrons in the confining potential can be written as:

ħ2

2m∗∇2ψ(x, y, z)+V (x, y, z)ψ= Eψ(x, y, z) (1.6)

where V (x, y, z) is the confining potential and ψ(x, y, z) is an eigen state of elec-
trons confined in the box. Solving the above equation for the case of particles in a
long box,

E = Ex +Ey + ħ2kz

2m∗ , (1.7)

where Ex = ħ2

2m∗

(
nxπ

wx

)2

and Ey = ħ2

2m∗

(
nyπ

wy

)2

, and wx and wy are the width of

the constriction in x and y directions, respectively. These eigen states are called
transmission channels and the corresponding eigen vectors are called modes. A
pictorial representation is shown in figure (1.4). Equation (1.7) states that for a
given Fermi energy and constriction width, only certain transverse states are al-
lowed. Such a phenomenon was first observed in a 2-dimensional electron gas by
van Wees et al. and Wharam et al. [5, 6] in 1988, where they changed the con-
striction by means of a gate potential and observed a variation in the current in
discrete steps. These discrete steps are integral multiples of the universal con-
ductance quantity 2e2/h, that we will refer to as the quantum conductance G0.
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FIGURE 1.4: A schematic of a ballistic conductor attached to perfect leads: (a) The dotted-dashed line
shows the quantum conductor. The electrons are emitted from the left and right leads into the quantum
conductor, with an electron chemical energy µL and µR , respectively. (b) The grey shaded region shows
the scattering region connected to bulk reservoirs through perfect leads having incoming and outgoing
states.

The simple particle-in-a-box model helps to understand the quantized conduc-
tance of a narrow channel, but it fails to explain the fluctuations in the current.
The simplest approach to a better understanding of quantum conductance is to
use the scattering approach, also known as the Landauer-Büttiker formula. In this
approach, a quantum conductor is modeled as a scattering regime connected to
electron reservoirs through perfectly transmitting leads. There are four main as-
sumptions in this formalism:

* The quantum conductor is modeled as a scattering regime connected to a
reservoirs through perfectly transmitting leads.

* The reservoirs act as a perfect sources and sinks for the transmitted and re-
flected electrons irrespective of their initial energy states.

* The energy and phase of the electron states is preserved in the scasttering
region and in the leads.
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* The quantum conductor can be either in equilibrium or in a non-equilibrium

state. This is included in the formalism through the Fermi Dirac distribution
function of the reservoirs connected to the leads.

Now let us implement this approach for a two-terminal quantum conductor. Elec-
trons propagate through the leads as plane waves with longitudinal momentum
k‖ and quantized transverse momentum k⊥. If there are N independent scat-
tering states in the quantum conductor then there will be 2N states in the leads
(each scattering state will be accompanied by a partially reflected and a transmit-
ted state) as shown in figure (1.4). Let us introduce four operators which can create
and annihilates the electrons in the states defined by the quantum conductor: b̂αi

and b̂†
αi are the annihilation and creation operators in i th outgoing eigen state of

the lead α(= L,R). They annihilate and create the electrons in states moving away
from the scattering center. âαi and â†

αi are annihilation and creation operators for

the i th incoming eigen states in lead α(= L,R). The incoming and outgoing states
can be related to each other using a scattering matrix s.

b̂L1

b̂L2
...

b̂Ln

b̂R1

b̂R2
...

b̂Rn


= s



âL1

âL2
...

âLn

âR1

âR2
...

âRn


(1.8)

Here s is a scattering matrix of dimension 2N ×2N 1. The block structure of s
matrix is given as:

s =
(
r t ′
t r ′

)
(1.9)

where rN×N and r ′
N×N are square sub matrices describing the reflected electron

wave for the left and right leads respectively. The off-diagonal matrices tN×N and
t ′N×N describe the effective transfer of electrons through the scattering regime.
Since the number of electrons is fixed, s is unitary. In absence of a magnetic field
i.e. under time reversal symmetry, s is symmetric. The fact that s is unitary and

1Here the size of the scattering matrix depends on the number of modes in the left and the right leads.
In general, the sizes of the left and right lead can differ, in which case the dimension would be (M +
N )× (M +N )
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symmetric permits us to diagonalize the matrices into scattering matrices of in-
dependent channels. This allows us to determine the current in each eigen state
or channel 2 and sum over all independent quantum channels to obtain the total
current. The net current in a quantum channel is the difference between the in-
coming and the outgoing state occupation numbers of the electrons. The current
in lead α and quantum channel n is given as:

Îαn(t ) = 2e

2πħ
∫

dE dE ′e i (E−E ′)t/ħ
(
â†
αn(E)âαn(E ′)− b̂†

αn(E)b̂αn(E ′)
)

. (1.10)

Hereα,β represent the L,R reservoirs connecting to the scattering regime. For sim-
plicity we take the current in the left lead only, from here onwards. Using the scat-
tering matrix relation 1.8 the current in lead α= L and for the single-channel case
can be written in terms of âα and âα†,

ÎL(t ) = 2e

2πħ
∑
αβ

∫
dE dE ′e i (E−E ′)t/ħ(â†

αAαβ(L;E ,E ′)âβ(E ′)) (1.11)

and Aαβ(L;E ,E ′) represents the matrix defined from scattering matrix s i.e. Aαβ(L;E ,E ′) =
δαLδβL − s†

Lα(E)sLβ(E ′). The average current 〈IL(t )〉 can be given as:

〈ÎL(t )〉 = 2e

2πħ
∫

dE dE ′e i (E−E ′)t/ħ〈â†
αAαβ(L;E ,E ′)âβ(E ′)〉 (1.12)

Using 〈â†
α(E)âβ(E ′)〉 = δαβδ(E −E ′) fα(E), where fα(E) describes the Fermi Dirac

distribution in reservoir α, and taking into account the unitary property of matrix
s, the average current can be given as,

〈Î (t )〉 = 2e

2πħ
∫

dE
(

fL(E)− fR (E)
)

t∗(E)t (E). (1.13)

Neglecting the energy dependence of t (E) on the scale of kBT and eV , one obtains
the conductance for the single channel case as,

G = 2e2

h
τ, (1.14)

with τ = t∗(E)t (E). Generalizing the Landauer-Büttiker formalism for multiple
channels gives simply a superposition of all transmission eigen channels. Since
t †t has been diagonalized the conductance G can be given as,

G = 2e2

h

N∑
i=1

τi . (1.15)

2The concepts of eigen channel and eigen states are interchangeable
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Hence the Landauer-Büttiker formalism states that the effective conductance is
the linear addition of the transmission probabilities of all eigen channels. It is quite
intuitive to state that the effective numbers of channels is limited by the narrowest
region in the quantum conductor3.

Equation (1.15), does not yet explain the fluctuations in the current. The fluc-
tuations in the current due to the random flow of discrete electrons has two com-
ponents: equilibrium noise i.e. thermal noise and non-equilibrium noise i.e. shot
noise. Noise is characterized by its spectral density as stated in equation (1.4). The
power spectral density is the Fourier transform of the current - current correlation
function.

S(ω) = 2
∫ ∞

0
d te iωt 〈δI (t + t0)δI (t0)〉 (1.16)

For the simplest case of a single-channel two-terminal device the noise spectrum
can be written as

S(ω) = 1

2

∫ ∞

0
d te iωt 〈δÎα(t )δÎβ(0)+δÎβ(0)δÎα(t )〉, (1.17)

where δÎ (t ) = Î −〈Î 〉. From equation(1.10) and (1.11) δÎ (t ) can be written as:

δÎ (t ) = 2e

2πħ
∫

dE dE ′∑
αβ

Aαβ[â†
α(E)âβ(E ′)−〈â†

α(E)âβ(E ′)〉]e i (E−E ′)t/ħ (1.18)

Using the above equations, the noise power can be further simplified to

S I (ω) = 2e2

2πħ
∑
αβ

∫
dE A2

αβ

[
fα(E)(1− fβ(E +ħω))+ fα(E +ħω)(1− fβ(E))

]
(1.19)

In the zero frequency limit, ω→ 0 the noise power density can be written as:

S I = 2e2

2πħ
∑
αβ

∫
dE A2

αβ

[
fα(E)(1− fβ(E)+ fα(E)(1− fβ(E)

]
(1.20)

For the case of a single quantum channel Aαβ(L) = δαLδβL − s†
LαsLβ, hence the

noise power spectral density is:

S I = 2e2

h

∫
dE τ(E)

[
( fα(1− fα)+ fβ(1− fβ))+τ(E)(1−τ(E))( fα− fβ)2] . (1.21)

3In 2 DEG quantum point contacts the steps of quantum conductance are seen in the conductance due
to the constriction that is controlled by the applied gate potential. Similar kinds of quantized steps
are seen in atomic conductors, but here the conductance channels are attributed to the hybridized
valence orbitals of atoms or molecules bridging the bulk leads. The interpretation is based on cal-
culations, for example, using a tight a binding approach by Cuevas et al.[7], and was experimentally
verified by Scheer et al.[8] and Brom et al.[9].
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Since τ(E) changes insignificantly on the experimental energy scale we can neglect
its energy dependence, so that we obtain

S I = 2e2

h

[
eV coth(

eV

2kB T
)τ (1−τ)+2kB Tτ2

]
. (1.22)

The above equation (1.22) can be generalized to the multi-channel case, known as
the Lesovik-Levitov expression,

S I = 2e2

h

[
eV coth(

eV

2kB T
)

N∑
n=1

τn (1−τn)+2kB T
N∑

i=1
τ2

n

]
. (1.23)

In the limit of V → 0 the noise power spectral density reduces to

S I (0) = 4kB TG , (1.24)

which is the equilibrium noise as the both leads are in equilibrium within the kB T
width of their Fermi Dirac distribution. This is also known as thermal noise or
Johnson-Nyquist noise. The first term in equation(1.22) is voltage dependent and
hence contributes to the non-equilibrium noise which is also known as shot noise.
The cross over from the shot noise to thermal noise is quite smooth. For eV ¿ kB T ,
thermal noise dominates over shot noise and the non-linear dependence on V is
gradually smoothed to a linear dependence of the noise on V at lower tempera-
tures. This cross over phenomenon was first observed by H. Birk et al.[10]. Ther-
mal noise does not give much information about the conductor apart from the
impedance or electron temperature of the sample. Thermal noise is often used as
a calibration measurement for the shot noise measurement. I will discuss this pro-
cedure in the section on Shot noise analysis in more detail below. For T → 0 shot
noise in the conductor is given as:

S I (0) = e3V

πħ
N∑

n=1
τn(1−τn). (1.25)

Hence, shot noise is not determined just by the conductance, like thermal noise,
but it is dependent on the effective transmission and reflection coefficients of the
quantum channels. In the case of completely closed and open channels, the shot
noise vanishes completely. The maximum shot noise level is seen for a half-open
quantum channel. Taking τn → 0, for all n, the shot noise takes the Poisson value
as stated by Schotkky in 1926.

S I (0) = e3V

πħ
N∑

n=1
τn (1.26)
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This is known as full shot noise. Comparing equation (1.25) with (1.26) shot noise
in a quantum conductor always deviates from the full shot noise as S I (0) = 2eI F .
The factor measuring the deviation is known as the Fano factor F , which can be
written as,

F =

N∑
n=1

τn (1−τn)

N∑
n=1

τn

, (1.27)

with 0 ≤ τn ≤ 1. The Lesovik-Levitov expression, equation(1.23) is a function of
the Fano factor F , temperature T and the bias voltage V . Expression (1.23) can be
written as the difference between noise at non-equilibrium S I (0) and the thermal
noise Sth(0),

S I (0)−Sth(0) = 2e2

h

[
2kB T

N∑
n=1

τ2
n +eV coth

(
eV

kB T

) N∑
n=1

τn (1−τn)

]
−4kB T

2e2

h

N∑
n=1

τn .

(1.28)
Let us define the excess noise as Sex = S I (0)−Sth(0), then the expression for the

normalized excess noise can be simplified to,

Sex

Sth(0)
= F

[
eV

2kB T
coth

(
eV

2kB T

)
−1

]
(1.29)

(a) (b)

FIGURE 1.5: Shot noise w.r.t. bias voltage: (a) Noise is a non linear function of Vbi as for eV ≤ kB T

and approaches a linear function for eV > kB T (b)The normalized excess noise, i.e. Sexc
Sth (0) plot w.r.t. the

reduced bias X = eV
2kB T coth

(
eV

2kB T

)
is a simple linear function for which the slope gives the Fano factor.
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Hence, expression (1.29) shows that slope of the normalized excess noise w.r.t. re-

duced bias X = eV
2kB T coth

(
eV

2kB T

)
gives the Fano factor, as can be seen from figure

(1.5).

A note on shot noise
From the Lesovik-Levitov expression (1.23), it follows that for τn = 1 or τn = 0,
for all channels n noise is absent in the quantum conductor. But for a channel
with 0 < τn < 1, the electron wave packet splits into a reflected and a transmitted
wave packet and this occurs randomly. The electron is detected as transmitted or
reflected and this occurs randomly. This randomness gives the shot noise in the
quantum conductor. Hence shot noise is due to both the wave and the particle
nature of the electron. This is shown in figure (1.6) as an example. The different
kinds of interaction of the traversing electron in the conductor leads to deviations
of noise from the Lesovik-Levitov value. These deviations can be lumped into the
factor called the Fano factor. Hence, the study of the Fano factor gives information
about the kinetics of the electron transport in the quantum conductor. In meso-
scopic physics, shot noise is currently extensively used to determine the different
kinds of underlying kinetics of the electron during its transport.

Incident

Reflected

Transmitted

I(t)

time

(a) (b)

FIGURE 1.6: Shot noise in a tunnel junction due to random motion of the electron: Electrons approach
the contact at regular intervals but get reflected randomly and hence the pulses of transmitted electrons
are random, giving noise in measurement. Each transmitted electron pulse gives a tick in the current
meter. These series of ticks over the large measurement time ensemble gives a measure of the average
noise.

I give a short overview of experimental studies of shot noise on different sys-
tems: The first observations of suppression of shot noise by high-transmission
conductance channels in point contacts were made in two dimensional electron
gas systems by Renikov et al. [11] and Kumar et al. [12]. They measured the noise
for a point contact. The shot noise evolves from the full shot noise with F ∼ 1 at
the nearly pinched-off regime to F ∼ 0 on the first plateau of the quantum con-
ductance, as expected from the theory. In another series of experiments, by de-



1.4. RANDOM TELEGRAPH NOISE 13

{{1
Picciotto et al. [13] and Saminadayar et al. [14], the fractional charge in the frac-
tional quantum hall regime was measured. This experiment was a direct mani-
festation of Laughlin’s concept of the quasiparticles having fractional charge and
taking part in the charge transport in the fractional quantum Hall regime.

In a completely different system, a superconductor-normal metal diffusive con-
tact, the shot noise measurement revealed the 2e charge of elementary processes
taking part in the conduction [15]. This shot noise measurement revealed the ef-
fective charge of the quasiparticles taking part in the conduction. In similar 2DEG
point contacts as mentioned above, non-integer conductance steps are seen at
0.7G0, widely known as the 0.7 anomaly. This 0.7 anomaly has been reported to
be related to the intrinsic electron spin. This spin interaction effect was first re-
vealed in shot noise measurements by Roche et al. [16]. The shot noise measure-
ment shows the spin polarized channel taking part in the conductance. Parallel to
above developments, shot noise measurements in atomic contacts have been used
to identify the number of eigen channels participating in the conductance. First
such measurement were reported by van den Brom et al. [9] on Au and Al atomic
contacts, revealing 1 and 3 channels taking part in the conduction, respectively. In
a similar system, Dj/"ukic et al. [17] have shown the presence of a single domi-
nant channel in the single-molecule junction Pt-D2-Pt. Shot noise measurements
were used as a tool by Tal et al. [18] to show the cross over between point contact
spectroscopy and inelastic tunneling spectroscopy at τ = 0.5. In this thesis we re-
port on the use of noise to show the effect of electron-electron and electron-vibron
interaction in quantum electron transport in atomic and molecular junctions.

1.4 RANDOM TELEGRAPH NOISE

RANDOM telegragh noise is associated to Markovian processes where a random
process x(t) is a continuous time function randomly jumping between two well

defined states. A process is called Markovian if the probability of the transition
between the states depends upon the present state and does not depend upon its
previous history. Hence Markovian processes are memoryless.

Such processes are common in systems like atomic contacts, molecular junc-
tions, single electron transistors, tunnel junctions etc., where the resistance of the
system fluctuates between a higher resistance Ru and a lower resistance Rl due to
the movement of atoms between two metastable states or due to charge fluctua-
tions in a double-well potential. A schematic of such process is shown in figure
(1.7). The probability of making a single transition from state Ri to state R j in a
small interval time δt is inversely proportional to the mean life time τi of state
Ri . Hence the decay rate for occupational probability of states Rl and Ru can be
defined as δt/τl and δt/τu . The probability to find the system in state Ri can be
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FIGURE 1.7: Illustration of two-level fluctuations. (a) A quantum system is jumping between two
metastable states with finite mean life time and the electrons participating in the quantum transport
sense the two states. Hence the effective transmission probability of the electron fluctuates between
two values. Here, such phenomenon is translated in a change in the resistance of the system δR with
finite life time τu for the higher resistive state and τl for the lower resistive state. (b) The power spectral
density of the corresponding two level fluctuations with a Lorentzian line shape with cut-off frequency
given by the mean life time i.e. f0 = 1

τu+τl
of the two states.

given as,

Pi = τi∑
i=u,l

τi
. (1.30)

Since a random telegraph signal is memoryless, the switching between two
states with known average rates can be described by a Poisson distribution and
its characteristic function. The autocorrelation function for this Poisson process is
given as:

φ(τ) = P1P2(Rl −Ru)2e−(ν1+ν2)τ

= P1P2(δR)2e−ντ
(1.31)

where ν= (ν1+ν2) and νi = 1/τi . The Fourier transform of φ(τ), using the Wiener-
Khintchine theorem, gives its power spectral density.

SR (ω) = 4δR2P1P2

[ τ

1+ω2τ2

]
(1.32)

The power spectrum of a random telegraph signal (RTS) is Lorentzian in shape
with a cutoff frequency given by the mean life time of the two states, and one such
spectrum is shown in figure (1.7).
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{{11.5 1/ f NOISE
1

f
NOISE or flicker noise as it was termed by Schottky, often hampers low frequency
noise measurements. It has universal presence in all kinds of conductors and
semiconductors. Its power spectral density increases with the decrease of fre-

quency as suggested by its onomatopoetic name 1/ f . There is a famous paradox
related to 1/ f noise, "If 1/ f noise behavior holds down to zero frequency then
its noise power would be infinite"[19]. Until today no experimental evidence has
shown this behavior. All the experiments have finite frequency bandwidths. The
lower bound of frequency( fl ) is limited by the measurement time(t ) i.e. fl ∝ 1

t and
hence to observe such an infinite power, one needs to measure for infinite dura-
tion of time. However, until now none of the experiments has shown any plateau
appearing for f approaching zero. At higher frequency, the power spectral density
of 1/ f noise diminishes until it reaches the noise floor of amplifier and hence it
becomes immeasurable at higher frequency. The corner frequency of 1/ f noise
is defined as the frequency point at which its noise spectral density sinks into the
noise floor of the amplifier. Depending upon the nature of the system, its corner
frequency ranges from 102 to 106Hz. Figure (1.8b) shows the typical 1/ f noise in
an atomic or molecular junction.

Although its presence is universal in all kinds of conductors, there is no cen-
tral cause for its origin. Its origin is often more complex and widely unknown in
condensed matter physics. The most accepted view for its origin in metals is that

(a.u.)

(a
.u

.)

1/f noise

(b)(a)

Ampli�er noise �oor

FIGURE 1.8: (a) Conceptual model for the origin of 1/ f noise as a superposition of different two-level
fluctuations with different effective mean life times, adding up to 1/ f noise behavior. The envelope of
the cumulative Lorentzian shapes is shown as the dashed, resembling 1/ f behavior. (b) Power spectral
density of 1

f noise in a Au−O2 −Au junction. The typical corner frequency for such systems is around

30KHz.
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it can be interpreted as a superposition of many two-level fluctuations with dif-
ferent amplitudes δRi and a range of decay rates νi . Its power spectrum can be
calculated as the sum over all individual RTS. If the time constant of the ensemble
is within the limit τ ∈ {τ1,τ2} and the probability distribution of the system to stay
in state Ri at time t is given as Pi with its power spectral densitySRT S (ω,τi ) given
by equation(1.32), then total power spectrum would be given by,

S(ω) =
∫ τ2

τ1

SRT S (ω,τi )Pi dτi ∝ 1

f
(1.33)

for the frequency range 1
τ2

< f < 1
τ1

. A conceptual demonstration is shown in figure
(1.8a), where different Lorentzians with different time constants are integrated to
obtain a 1/ f -like spectral density behavior.

Detailed studies on the properties of 1/ f noise have been done on metallic
and semiconductor systems by Hooge [20]. He has proposed a phenomenological
expression for metallic systems,

Sν( f ) = γ V 2+β

Nc f α
(1.34)

This formula is known as Hooge’s formula. Hereα, β and γ are constants. Nc is the
number of charge carriers in the sample. The typical values for metallic systems
are: 0.9 ≤α≤ 1.4, γ' 2×10−3, β' 0.
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