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Preface

Neurological brain disorders form a major burden on modern society, because they 
often have devastating effects on the social life of patients and their family members, 
and because they are associated with high economic costs[1]. Still, for most of them, the 
pathological mechanism is largely unknown. Dedicated research aimed at elucidating 
these mechanisms is dearly needed to better understand the etiology of the diseases, 
and may ultimately lead to the development of better treatments for patients. Often, 
the clinical presentation of a brain disease is not isolated to the brain itself, but it 
also involves other organs. Examples include disorders such as Parkinson’s disease or 
cerebellar ataxia, in which total body motor coordination is severely disturbed. 

Movement is an essential function of virtually all organisms. Whether voluntary or 
reflex, movement requires complex patterns of muscular activity that is controlled by 
motor neurons. Located in the ventral horn of the spinal cord, somatic motor neurons 
reach the muscles in the periphery via their motor axons. In a functional sense, motor 
neurons execute commands from higher centers of the nervous system, such as motor 
centers in the brain stem and the cerebral cortex. Integration of sensory information 
occurs in the brain stem, which, among other things, is involved in the control of body 
posture, and eye and head motion. At the top of motor control hierarchy is the cerebral 
cortex that is involved in the selection of movement planning and the programming of 
sequences of movements (for review see Calton & Taube, 2009). Motor activity is also 
modulated by the action of basal ganglia and the cerebellum. While the basal ganglia 
are involved in the planning and initiation of movements, the cerebellum aims to 
coordinate movement by bringing intention to move in line with motor performance 
(for review see Ito, 2002). 

This functional hierarchy in motor control is evolutionarily conserved across species, 
and is, for instance, very similar between humans and mice. This similarity holds the 
promise that knowledge obtained from experiments in mice will help to understand 
the pathophysiology in humans with the same disease. An increasingly important tool 
to study movement and associated disorders is the use of genetically sensitized animals 
that either are naturally occurring or are transgenic mouse models with mutations in 
genes known to cause disease in humans. Such models will further our knowledge 
of pathophysiological mechanisms of, for instance, cerebellar ataxia (one of the main 
topics of this thesis) and thus enable the development of novel treatment strategies for 
patients.

Motor control in the peripheral nervous system

The axon of each motor neuron innervates up to several hundred muscle fibers, 
forming a motor unit. The combined action of motor units allows contraction of 
muscles through a complex cascade of electrical and biochemical events. Much of the 



10

General introduction

action is centered around important structures at the distal end of motor neurons: the 
neuromuscular junctions (NMJs). NMJs are highly specialized peripheral synapses, 
at which neuronal activity is transduced upon muscle fibers. An NMJ consists of a 
presynaptic motor nerve terminal, a synaptic cleft, and a postsynaptic muscle fiber 
membrane that is enclosed by a Schwann cell (Fig. 1).

Figure 1. Schematic drawing of a neuromuscular junction (NMJ). An NMJ is characterized by a presyn-
aptic motor nerve terminal, a synaptic cleft, and a postsynaptic muscle fiber membrane that is enclosed by a 
Schwann cell. The axon of a motor neuron enters the muscle and is split into many unmyelinated branches. 
These terminal fibers run along the myocytes and end at NMJs. At an NMJ, an action potential is transduced 
upon the muscle. Each motor neuron innervates a few to several hundred muscle fibers, but a particular 
muscle fiber receives input from only a single neuron. Adapted from Plomp et al., 2003.

The structure and function of NMJs have been well characterized and thus making 
NMJs a popular target to study the main characteristics of a single synapse (for review, 
see Sanes & Lichtman, 1999). The sequence of events is as follows. Electrical stimulation 
of the motor neuron will result in an action potential. When the action potential 
arrives at the motor nerve terminal, Ca2+ enters the neuron through specialized 
structures called voltage-gated Ca2+ channels. At the terminal, presynaptic active zones 
are present that contain synaptic vesicles filled with neurotransmitter; in the case of 
an NMJ the neurotransmitter is acetylcholine (ACh). Synaptic vesicles contain about 
equal amounts of ACh, also called quanta. As a result of Ca2+ entry, synaptic vesicles 
will fuse with the plasma membrane and ACh is released into the synaptic cleft; an 
approximately 50-nm-wide space between the nerve terminal and the muscle fiber. 
Massive release of quanta occurs as a result of an action potential (i.e., evoked release). 
Release of single quanta into the synaptic cleft is also possible (i.e., spontaneous 
release), but does not require an action potential. At the postsynaptic, i.e. muscle, side 
of the junction, the muscle fiber membrane is organized in postsynaptic junction folds 
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that contain acetylcholine receptors (AChRs) and voltage-gated Na+ channels. When 
ACh crosses the synaptic cleft and binds AChRs, the receptors open and an inward 
sodium current is generated. As a consequence, the postsynaptic muscle membrane 
becomes depolarized and a postsynaptic action potential is generated. This action 
potential will be propagated along the muscle fiber (i.e., all-or-nothing response), and 
will ultimately cause contraction of the muscle. Normally, more ACh will be released 
than is required to surpass the depolarization threshold for the generation of an action 
potential (i.e., the safety factor of the NMJ). This ensures that the contraction of muscles 
occurs with high fidelity, which is important for any organism (for review, see Wood 
& Slater, 2001). Finally, access acetylcholine in the synaptic cleft is broken down by 
acetylcholinesterase to choline.  

Experimentally, the characteristics of NMJs can be studied with relative ease in 
diaphragm preparations that contain muscle and an innervating phrenic nerve. A 
microelectrode is placed in the muscle to measure postsynaptic voltage changes that 
are the result of depolarizations of the plasma membrane after the binding of ACh to 
AChRs. In the case of spontaneous release, single quanta cause small depolarizations or 
miniature end-plate potentials (MEPPs). MEPPs normally occur at a rate of about 0.5 - 
1.5 per second. Evoked release after a single action potential causes proportionally larger 
depolarizations or end-plate potentials (EPPs). The total number of vesicles released, 
can also be determined and is called quantal content. Analysis of the parameters of 
spontaneous and evoked release provides important information on the functioning of 
synapses in the peripheral motor system[4, 7].

Motor control by the central nervous system

Various structures in the central nervous system (CNS) contribute to motor control, 
including the cerebral (motor) cortex, the basal ganglia, the cerebellum, the brain 
stem, and the spinal cord. Most relevant for this thesis is the role of the cerebellum 
in the fine-tuning of ongoing movement. Therefore its structure and function will be 
discussed below. 

Anatomy and morphology of the cerebellum
The cerebellum is a symmetric, highly foliated structure of the hind brain. In brief, 
deep horizontal fissures separate the anterior, the large posterior, and the smaller 
flocculo-nodular lobes of the cerebellum. Two longitudinal grooves running through 
the posterior lobes demarcate a mid-line vermis and two hemispheres, each containing 
ten smaller lobules (for review, see Voogd & Glickstein, 1998).

The morphology of the cerebellum is well described and has two main components: 
the cerebellar cortex and the various nuclei embedded in the underlying white matter. 
In humans, the cerebellum has four deep cerebellar nuclei (DCN). From lateral to 
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medial, these nuclei are known as dentate, emboliform, globose, and fastigial nuclei. 
Mice do not have distinct emboliform and globose nuclei, but instead have a single, 
fused interposed nucleus. In addition, closely related to the cerebellum, there are the 
hind brain structures: inferior olivary nuclei, consisting of neurons part of medulla 
oblongata, and the vestibular nuclei, formed by the neurons of the vestibular nerve. 
There are three sources that provide input to the cerebellum: (1) the pontine nuclei, 
which carry information from the contralateral side of the cerebral cortex; (2) the 
spinocerebellar tract, delivering information from the ipsilateral side of the spinal 
cord; and (3) the inferior olivary nuclei, providing input from the contralateral side of 
the body. 

The cerebellar cortex consists of three layers: the Purkinje cell layer, the inner granular 
cell layer, and the outer molecular layer. 

The Purkinje cell layer consists of a monolayer of Purkinje cells (PCs) that is 
located between the molecular and granule cell layers. PCs are large neurons with a 
characteristic beet-shaped morphology[9]. In addition, PCs have very characteristic 
extensive and heavily branched dendrite trees with an extremely flat structure (average 
PC dimensions are 250 μm × 250 μm × 6 μm). Notably, PCs form the sole output of the 
cerebellar cortex with their axons projecting to cerebellar and vestibular nuclei. 

The granule cell layer contains the cell bodies of small granule cells and several types 
of large neurons. The latter include the Golgi cells and less known neurons, such as 
the neuron of Lugaro, and the unipolar brush neuron (for reviews, see Ambrosi et 
al., 2007; Simat et al., 2007). Granule cells are excitatory, glutamatergic, neurons and 
are by far the most abundant type of neurons in this layer. Axons of granule cells are 
unmyelinated and ascend towards the molecular layer[11], where they bifurcate into 
so-called parallel fibers[8].

Finally, the molecular layer contains the dendritic trees of PCs (and Golgi cells), the 
parallel fiber tracts originating from the granule cells, and climbing fiber endings 
originating from the inferior olive nucleus in the brainstem. Although not cell dense, 
the molecular layer also contains two types of inhibitory interneurons: the stellate and 
the basket cells. These interneurons form GABAergic synapses onto PC dendrites[13].

In mammals, the cerebellar cortex is functionally organized in a pattern of parallel 
longitudinal zones[14]. PCs of a specific zone receive input only from a particular region 
of the inferior olive, and in turn send output to a particular region of the DCN, thereby 
forming discrete olivo-cerebellar complexes (for review, see Voogd & Glickstein, 1998). 

Function of the cerebellum
The cerebellum coordinates movement by integrating afferent information into 
electrical signals guiding the precise execution and timing of motor tasks. To this 
end, the cerebellum continuously compares objectives (i.e., motor cortex input) 
and outcomes (i.e., proprioceptive feedback) (for review, see Ito, 1984). In addition 
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to its role in the coordination of 
movements, the cerebellum is also 
involved in reflex adaptation, motor 
learning, and possibly cognition 
(for review, see Glickstein & Doron, 
2008). Investigating the cerebellum 
is specifically interesting because 
this structure has an unique way of 
processing information that requires 
action and feedback from various 
neurons: the cerebellar circuitry 
(Fig. 2). The characteristics of 
the cerebellar circuitry are being 
unraveled rapidly and will further our 
understanding of cerebellar function 
and its role in motor coordination 
dysfunction (for reviews see, Houk 
et al., 1997; D’Angelo & De Zeeuw, 
2009). 

The cerebellar circuitry
The cerebellum receives sensory 
and cortical input from the mossy 
fibers (for review, see Glickstein, 
1997). Mossy fibers deliver their 
information to DCN neurons, but 
also to granule and Golgi cell neurons 
of the granule layer[21]. Granule cells, 
which form the sole output of the 
granule layer, deliver the information 
further through their ascending 
axons (directly and via the parallel fibers) to interneurons of the molecular layer[22] and 
to many tiny distal branchlets of PC dendrites[23]. While a parallel fiber forms only a 
few synapses with a given PC, each PC is innervated by no less than 150,000 to 200,000 
parallel fibers. The efficiency of a given parallel fiber-to-PC (PF-PC) synapse is low[24]. 
However, when between 30 and 150 parallel fibers are simultaneously activated, an 
action potential, i.e. simple spike, can be generated in a PC. The frequency and pattern 
of these simple spikes is important for motor behavior, since they comprise the output 
of the cerebellar cortex[25, 26, 27].

Next to the “mossy-fiber–granule-cell–parallel-fiber” pathway, PCs receive input from 
climbing fibers. Climbing fibers originate from the inferior olivary complex and their 
input is believed to signal motor error or discoordination (for review, see Gibson et al., 
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Figure 2. Schematic representation of the cerebellar 
circuitry. The climbing fiber and mossy fiber pathways 
are the main types of afferents of the cerebellum. 
Climbing fibers originate from the inferior olivary 
complex and directly innervate the Purkinje cells 
(PCs). Mossy fibers originate from precerebellar 
nuclei (i.e. the pontine nuclei and the spinocerebel-
lar tract) and project to neurons at the deep cerebellar 
nuclei (DCN) with axon collaterals innervating cere-
bellar granule cells. These granule cells project further 
to PCs via ascending axons (known as parallel fibers) 
and through inhibitory interneurons of the molecular 
layer. PCs form the sole output of the cerebellar cortex 
and project to neurons of the DCN and the vestibular 
nuclei. Adapted from Wang and Zoghbi, 2001.
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2004). The primary projections of a climbing fiber are multiple, powerful synapses that 
dock close to the proximal end of a PC dendrite (for review, see Sugihara, 2006). In 
adult brain, each climbing fiber makes contact with several PCs, but each PC receives 
input from only a single climbing fiber. Approximately 1,500 synaptic contacts are 
activated simultaneously, thus triggering extremely powerful postsynaptic responses 
that override all other synaptic input[30]. A PC action potential generated in response 
to climbing fiber activation is called a complex spike. A complex spike is followed by a 
slow after-hyperpolarization of the PC plasma membrane, interrupting the simple spike 
activity (i.e. climbing fiber pause). Both simple and complex spike activity determine 
the PC firing pattern.

In summary, the cerebellar circuitry receives sensory and cortical information, 
processes this information, and provides feedback to DCN neurons by changing the 
firing pattern of the (inhibitory) PCs (for review, see D’Angelo & De Zeeuw, 2009).  
The information content is then transmitted further downstream to, for instance, the 
thalamus and motor centers in the brain stem and the spinal cord, ultimately resulting 
in adaptations of motor behavior.

Experimental methods investigating cerebellar function
Neuronal activity in the cerebellar circuitry is constantly adapting during movement. 
For instance, PCs, which are tonically active at rest change their firing frequency upon 
sensory input. By recording PC activity, such as recording simple and complex spike 
frequency during various motor tasks, one can obtain information about the function 
of the cerebellum in relation to the timing and the coordination of movement. The 
analysis of compensatory eye movements is a popular test paradigm to study cerebellar 
control of movement[31]. Compensatory eye movements occur, for instance, when one 
looks out of a train window and tries to lock on a nearby object; to perform the task, 
the motor system tries to minimize the movement of the image on the retina retina 
(i.e., to minimize the retinal slip). As a consequence, the eye follows the object as long 
as possible until it quickly returns to its original position and the sequence restarts. 
What happens is that the optokinetic reflex (OKR) aims to constrain the moving image 
on a part of the retina. Similarly, the vestibulo-ocular reflex (VOR) moves the eye in 
response to head movement in an attempt to reduce retinal slip. Performance in OKR 
and VOR (and the combined visually-enhanced VOR, VVOR) tests is presented as gain 
and phase values (Fig. 3). While gain values represent the ratio between the amplitude 
of the eye and the stimulus velocity, phase values correspond to the time difference 
between eye and stimulus expressed in degrees. Both gain and phase are important 
indicators for the function of the cerebellum and its ability to integrate the vestibular 
and/or optokinetic sensory information needed for controlling movement[32].
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Figure 3. Schematic drawing of the training 
paradigm used to study optokinetic reflex 
(OKR) and vestibulo-ocular reflex (VOR) in 
mice. While the OKR allows the eye to follow 
objects in motion when the head remains sta-
tionary, VOR preserves the image on the center 
of the visual field during head movement by 
moving the eyes in the direction opposite to 
head movement.  The “gain” of the VOR for 
example is defined as the change in the eye 
angle divided by the change in the head angle 
during the head turn. “Phase” is a parameter 
that describes the timing relationship between 
head movement and the reflexive eye response. When the head and eyes move at exactly the same velocity 
in opposite directions, they are said to be completely out of phase, or 180°. If the reflex eye movement leads 
the head movement, a phase lead is present. Likewise, if the compensatory eye movement trails the head 
movement, a phase lag is present.

Neuronal calcium influx 

Ca2+ is important for the functioning of the motor system, both at the periphery and 
in the CNS. Most relevant to this thesis is the entry of Ca2+ into the neurons through 
voltage-gated Ca2+ channels, which results in the release of neurotransmitters, the 
generation of postsynaptic currents, and, thereby, the regulation of synaptic activity[33]. 

Voltage-gated Ca2+channels
Voltage-gated Ca2+ channels (VGCC) are responsible for Ca2+ influx into many excitable 
cells[34]. It has been known since 
the 1980’s[35] that Ca2+ channels 
are multimeric protein complexes, 
with a pore-forming α1 subunit and 
auxiliary subunits β and α2δ. In 
some cases, a γ subunit makes up 
part of the protein complex (Fig. 4).

VGCCs differ with respect to protein 
composition, location of expression, 
as well as pharmacological and 
electrophysiological properties (for 
review, see Doering & Zamponi, 
2003) (Table 1). The nomenclature 
of VGCCs is based on the presence 
of a specific α1 subunit[37].

At the genetic level, four genes 
encoding β subunits (i.e., β1 to β4), 

OKR VOR

Figure 4. Schematic structure of voltage-gated Ca2+ 

channels. A voltage-gated Ca2+ channel consists of a 
pore-forming α1 subunit, a dimeric α2δ subunit, an 
intracellular β subunit, and in some cases a γ subunit.
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four genes encoding α2δ subunits (i.e., α2δ-1 to α2δ-4), and eight genes encoding g 
subunits (i.e., g1 to g8) have been identified (for review, see Arikkath & Campbell, 
2003). α2δ and γ subunits are membrane-associated proteins, while the β subunit is 
localized entirely in the cytoplasm. The function of auxiliary subunits is to modify 
the biophysical properties of their respective channel (for review, see Dolphin et al., 
2009). These subunits can also effect the expression of Ca2+ channels in the plasma 
membrane[39]. Since there are many possibilities of, for instance, b and a2d to associate 
with a1 subunits, there is an enormous diversity of VGCCs that are expressed in a cell 
type-specific and tissue-specific manner[40]. 

CaV2.1 channels
The main focus of this thesis is on a particular type of VGCC, namely CaV2.1 channels. 
The α1 subunit of CaV2.1 channel is encoded by the CACNA1A gene. Many CaV2.1 
channels contain β4 and α2δ-2 auxiliary subunits, but combinations with other 
auxiliary subunits have been also be found. Alternative splicing of the CACNA1A 
gene results in further diversity in the composition of CaV2.1 channels. Depending on 
their composition, the CaV2.1 channels exhibit (sometimes subtle) differences in their 
electrophysiological properties. For instance, alternative splicing can result in CaV2.1 
a1 subunits that produce either P- or Q-type Ca2+ currents as can be deduced from 
their pharmacological profile in response to specific CaV2.1 channel blockers[41]. 

Although CaV2.1 channels are broadly expressed throughout the central nervous 
system, their expression is particularly high in the cerebellum[42, 43]. Most neurons 
of the cerebellar circuitry are to a considerable extent dependent on CaV2.1 channel 

Channel 
Type

a1 
Subunit

a1 
Gene

Ca2+ 
current Specific blocker(s) Primary localization of channel

CaV1.1 α1S CACNA1S L-type

Dihydropyridines  
Phenylalkylamines 
Benzothiazepines

Skeletal muscle; transverse tubules

CaV1.2 α1C CACNA1C L-type
Cardiac & smooth muscle 
myocytes; endocrine and neuronal 
cells

CaV1.3 α1D CACNA1D L-type Endocrine cells and neurons; atrial 
myocytes & pacemaker cells

CaV1.4 α1F CACNA1F L-type Retina & spinal cord, glands

CaV2.1 α1A CACNA1A P/Q-type w-Agatoxin IVA
w-Conotoxin-MVIIC Nerve terminals and dendrites

CaV2.2 α1B CACNA1B N-type w-Conotoxin-GVIA
w-Conotoxin-MVIIC Nerve terminals and dendrites

CaV2.3 α1E CACNA1E R-type SNX-482 Neuronal cell bodies and dendrites

CaV3.1 α1G CACNA1G T-type Mibefradil 
Kurtoxin 
Amiloride

Neuronal cell bodies and dendrites; 
cardiac and smooth muscle 
myocytes

CaV3.2 α1H CACNA1H T-type

CaV3.3 α1I CACNA1I T-type

Table 1. Nomenclature according to Ertel et al., 2000 and certain properties of voltage-gated calcium channels
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function: in PCs, over 90% of Ca2+ current density is CaV2.1 channel-dependent[44]; and 
in granule cell neurons this figure is about 50%[45]. Outside the CNS, CaV2.1 channels 
are crucial for synaptic transmission at NMJs[46]. 

Diseases of the motor system in which Cav2.1 channels play a role

Normal CaV2.1 channel function is necessary for proper motor coordination. Most 
relevant to this thesis, is the dysfunction of these calcium channels, which can result 
in impairment of the sensorimotor system and cerebellar ataxia. This impairment is 
characterized by gait disturbances, poor coordination of movement, and a wide-based, 
unsteady gait. During ataxic movements, motor behavior is typically characterized 
by abnormal timing with delayed muscle activation and/or sudden interruptions of 
movement, followed by exaggerated corrections[47]. Cerebellar ataxia can occur during 
attacks, can be present chronically, and, depending on the type of ataxia, can progress 
during the course of the disease (for review, see Manto & Marmolino, 2009).

CaV2.1-dependent diseases with cerebellar ataxia signs 
Cerebellar ataxia associated with CaV2.1 channel dysfunction can be either the main 
clinical feature as in Episodic Ataxia type 2 (EA2) and Spinocerebellar Ataxia type 6 
(SCA6), or it can be part of a more complex clinical syndrome such as in Familial 
Hemiplegic Migraine (FHM) with ataxia (with or without additional clinical symptoms 
of epilepsy and/or mild head trauma-induced edema), or in the autoimmune diseases 
Lambert Eaton Myasthenic Syndrome (LEMS) and Guillain-Barré Syndrome (GBS).

- Episodic Ataxia type 2
EA2 manifests as recurrent attacks of cerebellar ataxia lasting from hours to days that 
can differ widely in severity (for review, see Jen et al., 2004). Clinical symptoms include 
gait disturbances, nystagmus, vertigo, and generalized weakness. Migraine occurs in 
as many as half of the patients. Interictal cerebellar symptoms are not uncommon 
and include gaze-holding deficits, saccadic smooth pursuit, and impaired visual 
suppression of the vestibulo-ocular reflex, especially downbeat nystagmus. Cerebellar 
atrophy, especially of the anterior vermis, has been observed in many cases (for review, 
see Strupp et al., 2007). EA2 is an autosomal dominant genetic disorder that is caused 
by mutations in the CACNA1A gene[51]. EA2 mutations include truncation and certain 
missense mutations that result in a severely dysfunctional or non-functional CaV2.1- 
a1 protein[52, 53]. EA2 mutations are loss-of-function mutations and are predicted to 
decrease neurotransmitter release[54]. In cellular assays, EA2 mutations were shown to 
exert a dominant-negative effect, thereby leading to inactivity of co-expressed normal 
a1 protein[54, 55]. 
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- Spinocerebellar ataxia type 6
SCA6 is a late-onset, permanent, slowly progressive autosomal dominant type of ataxia 
with nystagmus, dysarthria, and sensory loss, and exhibits considerable phenotypic 
overlap with EA2 (for review, see Frontali, 2001). SCA6 is caused by moderate expansions 
of a polyglutamine (CAG) stretch in the part of CACNA1A gene that encodes the 
carboxyl terminus of the CaV2.1-a1 protein[57]. Healthy individuals have between 4 and 
18 CAG-repeats, while SCA6 patients have 20 to 30 repeats. It is not entirely clear what 
the consequences are of the SCA6 CaV2.1-a1 protein, but evidence suggests that toxic 
protein aggregates can be formed[58]. Investigating the electrophysiological properties 
of the SCA6 protein in transfected cells yielded contradictory results: both an increased 
CaV2.1 current density[59] and normal CaV2.1 current densities accompanied by a 
negative shift in the voltage dependence of inactivation[60] have been reported. 

- Familial hemiplegic migraine with cerebellar ataxia
FHM is a rare subtype of migraine with aura that is characterized by hemiparesis during 
the aura phase. The aura precedes the headache and is caused by a phenomenon called 
cortical spreading depression (CSD), a wave of neuronal and glial cell depolarization 
that starts in the occipital cortex and slowly progresses to more frontal regions of 
the brain[61]. The headache is caused by dysfunction of the trigeminovascular system 
(for review, see Goadsby, 2005). Experiments in rats have suggested that CSD may 
activate brain stem nuclei, and thereby trigger headache mechanisms[63], indicating 
the relevance of CSD in rare FHM and common migraine. Three genes have been 
identified in FHM (i.e., FHM1, FHM2, and FHM3), all encoding ion transporters (for 
review, see van den Maagdenberg et al., 2007). FHM1 is caused by certain heterozygous 
missense mutations in the CACNA1A gene, which encodes the a1 subunit of CaV2.1 
channels[51]. In about 20% of FHM1 patients, cerebellar ataxia is observed. Depending 
on the mutation, epilepsy, mental retardation, and mild head trauma-triggered delayed 
brain edema (that can even result in the death of a patient) can also be part of the 
clinical spectrum[65]. Detailed electrophysiological investigation of the functional 
consequences of CACNA1A mutations has revealed that, , due to a combination of 
increased channel open probability and/or a rather dramatic left-shift in channel 
activation, specifically at lower voltages, all eight studied FHM1 mutations (including 
mutations R192Q, S218L, and T666M that are specifically relevant for this thesis) show 
enhanced single-channel Ca2+ influx over a broad voltage range[66, 67, 68]. Consequently, 
FHM1 mutations are portrayed as gain-of-function mutations. Notably, whole-cell 
experiments pointed to a loss-of-function effect of FHM1 mutations[66, 67, 69], and resulted 
in considerable debate on the consequences of FHM1 mutations. Clearly, FHM seems 
to be the result of a disturbed ionic (and neurotransmitter) balance in the brain, with 
single-channel data pointing to an increased release of the excitatory neurotransmitter 
glutamate (for review, see Moskowitz et al., 2004). 
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- Lambert-Eaton Myasthenic Syndrome and Guillain-Barré Syndrome
Finally, there are acquired immune-mediated motor coordination problems in patients 
with LEMS[71] and GBS[72] that are caused by auto-antibodies that target CaV2.1 
channels. LEMS is characterized by muscle weakness, impaired tendon reflexes, and 
autonomic dysfunction and is associated with small-cell lung cancer of endocrine 
origin in approximately 60% of patients[73]. GBS is an acquired peripheral neuropathy 
that is characterized by an acute motor axonal neuropathy, and acute inflammatory 
demyelinating polyneuropathy[74]. Both LEMS and GBS are, at least partly, caused by 
CaV2.1 auto-antibodies blocking and/or causing the removal of Cav2.1 channels from 
the plasma membrane, resulting in the severe impairment of neurotransmission and 
the clinical symptoms[75].

Mouse models of CaV2.1 channels

The discovery of CaV2.1 gene mutations (Fig. 5) that result in motor coordination 
dysfunction, has stimulated the search and development of suitable experimental animal 
models. Over the last decade, several mouse strains were shown to have spontaneously 
occurred mutations in the CaV2.1 channel genes (see Naturally occurring CaV2.1 
mutant mice). In the same time attempts were also made to generate transgenic mice in 
which the genome has been manipulated (see Cacna1a transgenic mice). Both types of 
mouse models have been a very useful in the study of disease mechanisms, not only of 
motor coordination dysfunction, but also of the other CaV2.1-associated diseases such 
as epilepsy, dystonia, and in particular, migraine. A brief overview is given below of the 
phenotypes and main findings in these mouse models that were already available for 
investigation before the start of the research discussed in this thesis. For more detailed 
reviews on naturally occurring and transgenic CaV2.1 channel mutant mice see Fletcher 
& Frankel, 1999, and van de Ven et al., 2007. 

Naturally occurring CaV2.1 mutant mice
Tottering mice exhibit highly stereotyped episodes of motor dysfunction and, between 
episodes, a mild ataxic gait, beginning after four weeks of age[79, 80]. In addition, the mice 
exhibit absence seizures[81]. Tottering is caused by a recessive P601L missense mutation 
in the Cacna1a gene[82]. At their NMJs, tottering mice show an increased spontaneous 
acetylcholine release[83] and a decreased CaV2.1-dependent neurotransmission[84]. 
Cellular studies of transfected and dissociated PCs have revealed a reduction in CaV2.1 
current density that is not associated with changes in single channel conductance[85]. 
Relevant to this thesis, PF-PC synapses of tottering mice show a decreased synaptic 
efficacy[86], although there is controversy on the subject as compensation from other 
Ca2+ channel types can occur[87]. The tottering mutation causes increased irregularity of 
PC firing, offering a likely explanation for the motor discoordination in these mice[25, 

88]. With respect to (ultra)structural abnormalities in tottering mice, mild PC loss[89] 
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Figure 5. Schematic representation of CaV2.1 channels and their subunits with the position of disease-causing 
mutations in mice and humans that are relevant to this thesis. The a1 subunit of CaV2.1 channels has four 
repeats (I-IV), each consisting of six (S1-S6) transmembrane domains. N - amino terminus; C - carboxyl 
terminus. Naturally occurring mouse mutations and human mutations introduced in knockin mouse models 
are depicted. Ducky, lethargic, and stargazer mice are knockouts of the subunits α2δ-2, β4, and γ2, respectively. 
Adapted from van de Ven et al. (2007) and Barrett et at. (2008).



21

General introduction

and an increase in the multisynaptic index of the PF contacts, somatic inclusions, and 
axonal swellings[90] have been reported. 

Leaner mice are severely affected: they remain much smaller than their wild-type 
littermates and develop progressive ataxia, absence seizures, and dystonia starting 
at P10[79]. If left unaided, leaner mice will die between P20 and P28. The phenotype 
is caused by exon-skipping and the inclusion of intronic sequences in the aberrantly 
spliced C-terminus, resulting in shorter and longer Cacna1a transcripts[82]. 
Electrophysiological analysis showed a nearly 50% reduction in the neurotransmitter 
release at leaner NMJs[91]. CaV2.1 channels of leaner PCs revealed a right shift in voltage 
dependence of activation and inactivation as well as a reduction in channel open 
probability[92, 93]. Reduced CaV2.1 channel function was associated with a decrease in 
excitatory neurotransmission at PF-PC synapses[94] and, like in tottering, an increased 
irregularity of intrinsic PC firing[26]. Cerebellar granule cell loss in leaner mice, starts at 
P10, but Purkinje and Golgi cell loss is not detected until P40[95]. Other PC abnormalities 
include multiple dendritic spines contacting single parallel fiber varicosities[90]. 

Rolling Nagoya mice exhibit severe dyscoordination of the hind limbs and an ataxic 
gait[96, 97]. This phenotype is the result of a recessive R1262G missense mutation[98]. 
Muscle weakness and fatigue have been reported for this strain of mutant mice. Evoked 
neurotransmission release at NMJs is 50-75% reduced in rolling Nagoya[99]. Dissociated 
rolling Nagoya PCs revealed a reduced voltage-sensitivity and a CaV2.1 Ca2+ current 
density[98]. Dysfunctions in the parallel and climbing fiber systems, but also basal 
ganglia, have been suggested to underlie the ataxic phenotype in rolling Nagoya mice[86, 

100]. At the (ultra)structural level, rolling Nagoya mice exhibit  a reduced cerebellar 
weight, a decreased number of granule cells and PCs, and PC  abnormalities, such 
as multiple dendritic spines synapsing on single parallel fiber varicosities and axonal 
swelling[101, 102]. Notably, an increased expression of Cav2.1 channels was reported for 
deep cerebellar nuclei of rolling Nagoya mice[103]. 

Finally, Rocker mice display absence seizures as well as cerebellar ataxia. This phenotype 
is caused by a recessive T1310K missense mutation in the Cacna1a gene[104]. Abnormal 
PC morphology without their loss has been reported, likely underlying the motor and 
cerebellar dysfunction in this strain of natural mutants[104].

There are also natural mutants relevant to this thesis that have mutations in a CaV2.1 
channel subunit other than the a1 subunit. These include ducky, lethargic, and stargazer 
that lack functionally auxiliary subunits α2δ-2, β4, and γ2, respectively. Their main 
characteristics are described below. 

Ducky mice exhibit a wide-open gait, severe ataxia, spike-wave discharges, and 
paroxysmal dyskinesia[105]. The ducky phenotype results from a homozygous partial 
genomic duplication giving rise to two possible transcripts of the Cacna2d2 gene, only 
one of which is actually translated into a protein, but lacks most of the a2 domain. 
As a consequence, the ducky mutation is a functional α2δ-2 knockout[106]. Dissociated 
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ducky PCs show approximately 35% reduction in CaV2.1 Ca2+ current density[105], that is 
associated with increased irregularity of intrinsic PC firing[26]. At the (ultra)structural 
level, mutant PCs present with severely reduced dendritic arborization, thickening of 
the dendrites, and a so-called “weeping willow”-like structure[106]. 

Lethargic mice exhibit a phenotype of severe ataxia and slow (lethargic) movement[107]. 
The onset of the phenotype is around P10, and mice pass through a critical period 
between P15 and P60, during which they show increased mortality rate, weight 
loss and severe lymphocytopenia[108]. The lethargic mutation is a homozygous four 
nucleotide insertion of a splice site of the Cchb4 gene, which results in the translation 
of a truncated, non-functional β4 protein[39]. CaV2.1 Ca2+ current density in lethargic 
PCs is not affected[39]. At the (ultra)structural level, no abnormalities in the cerebellum 
were reported.

Finally, stargazer mice display ataxia, paroxysmal dyskinesia, spike-wave discharges 
(indicative of absence epilepsy), and typical head-tossing movements[109]. The stargazer 
mutation is a homozygous insertion in the Cacng2 gene, leading to a non-functional 
γ2 protein product[110, 111]. The cerebellar morphology of stargazer mice appears normal 
however, loss and/or reduction of the receptors in cerebellar granule cells has been 
noted[112].

Cacna1a transgenic mice
Various transgenic knockout (KO) models (see Section 6.4; Generation of transgenic 
mice) have been generated that target the Cacna1a gene[91, 113, 114]. By disrupting the 
Cacna1a gene sequence, the KO mice lack functional CaV2.1 channels. Homozygous 
KO mice exhibit a severe phenotype of ataxia and dystonia that starts around P10 and 
is very similar to what is seen in leaner mice. KO mice die around 3 weeks after birth. 
Heterozygous KO mice have been considered a possible model for EA2, but they do not 
exhibit the (relevant) phenotype. Notably, only one strain of KO mice shows decrease 
in CaV2.1 Ca2+ current density in cerebellar granule neurons of heterozygous mice[114], 
whereas in the other strain CaV2.1 Ca2+ current density is normal[113], possibly due to 
the fact that, in the latter strain, truncated a1 proteins may have been produced that 
prevent transcriptional compensation of the wild-type allele. A mouse model has been 
generated also for SCA6. Transgenic knockin mice expressing a “hyperexpanded” (i.e., 
far beyond the expansion seen in SCA6 patients)’ glutamine repeat in the a1 protein 
developed progressive motor impairment and aggregation of mutant CaV2.1 channels, 
but no changes in intrinsic electrophysiological properties of the mutant channels were 
observed[115]. 

Finally, knockin mice were generated that harbor the human pathogenic R192Q 
mutation in the Cacna1a gene[116]. In humans, mutation R192Q causes FHM without 
cerebellar ataxia[51]. R192Q mutant mice did not exhibit an overt phenotype. At the 
molecular level, several gain-of-function effects were found in homozygous mutants 
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that include increased CaV2.1 current density in cerebellar granule cell neurons, 
enhanced spontaneous and evoked neurotransmission at NMJs, and, in the intact 
animal, an increased susceptibility for CSD[116]. A detailed analysis of NMJs revealed a 
gene dosage-dependent increase in neurotransmitter release that was not accompanied 
by overt structural adaptations[118].

Limitations of the existing mouse models
Attempts to unravel the neuronal basis of motor coordination dysfunction using 
natural mutants and transgenic knockout and knockin Cav2.1 mice have been 
hampered by the widespread expression of CaV2.1 channels throughout the brain. That 
is, the relative contribution of a cell type cannot be assessed in the existing mice. This 
is especially relevant since a lack of CaV2.1 channel expression during development has 
been shown to cause cell-specific compensatory upregulations of other Ca2+ channel 
types (for review, see Urbano et al.., 2002). Expression or lack of expression of mutant 
and/or normal CaV2.1 channels in specific cell types is needed to address the problem. 
Notwithstanding, it would also be very interesting to compare knockin mouse models 
harboring FHM1 mutations that are (i.e., S218L) or are not (i.e., R192Q) associated 
with cerebellar ataxia. 

Generation of transgenic mice
There are two main strategies to generate transgenic mice: conventional transgenesis 
and gene targeting. 

In the conventional transgenesis strategy, one or more copies of a transgene (often a 
cDNA with a specific promoter or a piece of genomic DNA) gets randomly integrated 
into the mouse genome after the microinjection of DNA into the male pronucleus of 
a fertilized oocyte. Relevant to this thesis, a modified promoter of the L7 gene can be 
used to obtain expression of the cDNA of a gene of interest exclusively in cerebellar 
Purkinje cells[118].

In the gene targeting strategy, a specific part of the mouse genome of embryonic 
stem cells is replaced by sequences from the targeting construct by a process called 
homologous recombination. There are three frequently used types of gene targeting: 
knockout, conditional knockout, and knockin. The use of knockouts to obtain mice that 
lack, for instance, CaV2.1 channels was discussed above. This can be achieved by either 
introducing the resistance cassette (mostly neomycine that is used to select for targeted 
embryonic stem cells) into an exonic sequence or by using a deletion construct in 
such a way that the expression of the target gene is abnormal and can no longer lead 
to translation of a functional protein. In a conditional knockout mice, the resistance 
cassette is placed in an intron. The cassette is flanked by two so-called loxP sites. A third 
loxP site is placed in another intron in such a way that the floxed resistance cassette and 
the third loxP site flank one or more exons. Sequences between loxP sites are deleted at 
the genomic level in cells where the enzyme Cre recombinase is expressed. Crossing of 
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gene-targeted mice containing the three loxP sites with conventional transgenic mice 
expressing Cre recombinase driven by the EIIA promoter (i.e., Cre-deleter mice)[119], 
can result in mice that contain two loxP sites and no longer the resistance cassette. 
These mice are called conditional knockout mice. In the subsequent crossing of the 
conditional knockout mice with Cre-transgenic mice that express the recombinase 
in a specific spatial and temporal manner, novel mutant mice can be generated in 
which the target gene product is deleted only in these cells in which Cre is expressed. 
For example, transgenic L7-driven Cre mice can be used to specifically ablate a gene 
product in PCs[120]. The third type of gene targeting yields knockin mice. In knockin 
mice, a floxed resistance cassette is placed in an intron close to the exon in which, for 
instance, a mutation is introduced. Using the Cre-deleter mice, the cassette is removed, 
yielding knockin mice that only contain the mutation and essentially one remaining 
intronic loxP site. Heterozygous, homozygous, and wild-type control mice are usually 
compared in experimental designs.  

Outline of the thesis  

The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 
channel function can cause disease, in particular motor coordination dysfunction. 
The chapters illustrate how various neuronal cell types in the periphery (peripheral 
nervous system: PNS) and the central nervous system (CNS) are affected by mutations 
in subunits of CaV2.1 channels. Using existing and newly generated mouse models, 
the consequences of such mutations were investigated at the molecular, cellular, and 
systems level so as to unravel pathways involved in motor coordination.

Using the peripheral neuromuscular junction (NMJ) synapse as a model, Chapters 2 
and 3 describe the role of various subunits of CaV2.1 channels on neurotransmission. 
Naturally occurring mouse models, i.e., ducky, lethargic, and stargazer, with mutations 
in CaV subunits α2δ-2, β4, and γ2, respectively, were the subject of detailed investigations 
(Chapter 2). As NMJ functioning did not seem to be affected in these mutants, either  
these subunits are not expressed at the mouse NMJ or adequate compensation by other 
subunit proteins occurs. The generation of a conditional mouse model that carries a 
so-called “floxed” Cacna1a allele is described in Chapter 3. This model allows for the 
spatial and temporal ablation of the Cacna1a-encoded CaV2.1-a1 protein, and thereby 
the specific ablation of CaV2.1 channels. Crossing the floxed mice with EIIA promoter-
driven Cre-deleter mice resulted in KO mice that had a severe, early postnatal lethal 
phenotype that is identical to that seen in conventional CaV2.1 KO mice.

The consequences of CaV2.1-a1 mutations in various neuronal cell types of the CNS 
are described in Chapters 4 and 5, focusing on cell types in the cerebellar cortex 
where CaV2.1 channels are highly expressed. We used cell-specific Cre recombinase–
expressing transgenic mice to study the effect of specific ablation of CaV2.1 channels in 
either Purkinje (i.e., Purkinje CaV2.1 KO or L7CreCacna1a KO) (Chapter 4) or granule 
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(i.e., granule CaV2.1 KO or a6CreCacna1a KO) (Chapter 5) cell neurons to dissect their 
CaV2.1-mediated role on cerebellar motor coordination. It was shown that the lack of 
CaV2.1 channels in PCs, but not in granule cells is sufficient to cause cerebellar ataxia. 
Moreover, it could be demonstrated that CaV2.1 channels in granule cells exert an as 
yet undiscovered role in the consolidation of newly acquired motor learning. Chapter 6 
describes transgenic mice expressing mutant human CaV2.1-a1 from a transgene, driven 
by a Purkinje cell-specific promoter, that contained a CACNA1A cDNA construct with 
the T666M mutation. In humans, this T666M mutation causes familial hemiplegic 
migraine type 1 (FHM1) and in most patients with this mutation also cerebellar ataxia. 
The transgenic mice did not, however, exhibit a noticeable phenotype, which may be 
due to the relatively low expression level of the transgene.

Chapter 7 elucidates several phenotypic and neurobiological features in transgenic 
mouse models that are associated with mutant CaV2.1 channels when expressed in 
the PNS and CNS. Two knockin mouse models were compared that carry human 
pathogenic Cav2.1-a1 mutations that are at both ends of the clinical spectrum of FHM1. 
While the FHM1 R192Q mutation in patients causes pure FHM without additional 
neurological symptoms, a much more severe phenotype of FHM with cerebellar ataxia, 
seizures, and severe, sometimes lethal, head trauma-triggered edema is observed in 
patients with the FHM1 S218L mutation. The molecular consequences of the S218L 
mutation can explain why S218L KI mice, and not R192Q KI mice, exhibit permanent 
ataxia and an increased susceptibility to epilepsy. In Chapter 8, the consequences of 
the S218L mutation in the cerebellum of S218L KI are expolred in much greater detail 
and reveal that abnormal synapse organization leads to a relevant disturbance of the 
amount of Ca2+ influx in neurons, which in turn causes irregular firing of Purkinje cells 
and thereby to cerebellar ataxia. 

A general discussion on the experimental findings presented in this thesis is presented 
in Chapter 9, and suggestions for future research are included.
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