
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/19153  holds various files of this Leiden University 
dissertation. 
 

Author: Claessens, Sanne          
Title: Programming the brain : towards intervention strategies  
Date: 2012-06-27 

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19153


General Introduction

CHAPTER 1



Table of contents
1.	 Developmental programming
2.	 Disruption of normal development
3.	 Maternal mediation
4.	 Naturally occurring variation in maternal care
5.	 Epigenetic programming
6.	 Resilience
7.	 Stress hypo-responsive period
8.	 Glucocorticoids during development
9.	 Scope of the thesis
10.	 Outline of the thesis

10



Introduction

1It is well documented that early-life experiences are involved in shaping later-
life phenotypes. Both human and animal studies have reported the impact of 
(adverse) early experiences on the development of the stress system, and its 
consequences for the development of stress-related disorders. The aim of 
the research described in this thesis is to explore the acute and long-lasting 
consequences of two distinct types of postnatal experience, varying substantially 
in nature and severity. The impact of both very subtle differences in maternal 
environment as well as of exposure to synthetic glucocorticoids during the early 
postnatal period was investigated. Furthermore, two potential intervention 
strategies will be introduced to prevent the frequently reported adverse effects of 
glucocorticoid-induced disruption of normal development and brain maturation.

In this introductory chapter, an overview is given of important concepts for the 
study of developmental programming. Additionally, several animal models used 
in experiments described in this thesis will be introduced.

1. Developmental programming
Early perinatal life represents a critical developmental period. Not only the quality 
of embryonic environment (1), also early postnatal experiences have long-lasting 
consequences for emotional and cognitive development and functioning in later-
life. Exposure to early adversity such as maternal stress during pregnancy, abuse 
or exposure to extreme poverty has been shown to increase the vulnerability to 
develop psychopathology in later-life. 

The term ‘developmental programming’ derives from the concept of 
‘developmental origin of adult disease’ introduced by Barker and colleagues 
and was based on a vast amount of epidemiological research documenting 
the relationship between low birth weight and an increased risk of developing 
metabolic and cardiovascular disorders (2-4). These findings led to what is currently 
known as the Barker Hypothesis (5). This concept has been since extended and is 
now frequently studied in the context of the hypothalamic-pituitary-adrenal (HPA) 
axis (6-10). Programming of the stress system is achieved through the actions of 
environmental cues acting at a specific time during development, resulting in 
permanent alterations in the functioning of the HPA axis (6-10). 

Both preclinical and clinical evidence suggests that this phenomenon has 
relevance for the etiology of mental disorders triggered by stressful life events, 
including depression and post-traumatic stress disorder (9-12).

2. Disruption of normal development
2.1 Human studies
Because of ethical considerations, the direct impact of stress on development cannot 
be investigated in humans. Therefore progress in this field relies on retrospective 
reports and correlational studies. There are however some experiments of nature 
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in which the impact of prenatal (intrauterine growth restriction, low birth weight) 
and postnatal (low socioeconomic status, maltreatment) adversity can be studied.

A series of studies have convincingly shown that exposure to early adverse 
events, such as childhood abuse, results in an increased risk to develop psychiatric 
dysfunctions (11-14). A dose-response relationship has been described between 
the number of experienced childhood adversities and mental health score in 
later-life (i.e. probability of lifetime depressive disorders) (15, 16). Besides these 
severe forms of adversity such as emotional neglect and abuse, there is also 
evidence that milder forms of adversity are associated with increased risk for stress 
related-pathologies. For instance, early-life socioeconomic disadvantage (17) but 
also subtle differences in parenting style (18-20) appear to affect health status 
of the individual in later-life. Therefore, there is no doubt that early adversity 
plays a crucial role in programming the development of a range of physical and 
psychiatric disorders which is likely to be mediated (at least partially) via the 
effects of early adversity on the functioning of the HPA axis. Several studies have 
shown the association between early-life adversity and enduring sensitization of 
the responsiveness of the HPA axis in humans. For instance, alterations in basal as 
well as stress-induced HPA axis activity at different life stages have been reported 
in human subjects exposed to adversity in early-life (13, 14, 21, 22). 

2.2 Animal studies
In contrast to human studies, animal studies allow the development of experimental 
models where individuals are submitted to acute or chronic adversity and the 
resulting outcome on brain and behaviour can be investigated. Experimental 
early-life manipulations can be largely subdivided in prenatal and postnatal 
manipulations. Prenatal manipulations involve stress during pregnancy, maternal 
synthetic glucocorticoid exposure, or nutrient restriction. For a review on the 
impact of prenatal manipulations, we refer to previous literature (23-26).

Postnatal manipulations frequently involve manipulating or depriving the 
infant from maternal behaviour.

2.2.1 Handling
In the 1950’s, it was discovered that exposing rat pups to daily handling sessions, 
which consisted of brief periods of separation from the dam (< 15 min) between 
postnatal day (pnd) 1 and 21, had a surprising and unexpected outcome (27). 
Levine, and others, found that handling induced long-lasting changes in adult 
phenotype such as HPA axis hypo-responsiveness (28-30), reduced emotionality 
(29), and increased cognitive performance (31) when compared to rats raised in 
undisturbed laboratory conditions, i.e. non handled. However, the use of such 
‘undisturbed’ control groups was recognized to be problematic later; see reviews 
(32-34). Because the handling procedure was considered at that time to be a 
stressful experience, these findings challenged the dominant theory stating that 
early-life stress invariably contributes to the development of ‘emotional instability’. 
Instead, the findings from Levine demonstrated that, in some instances (e.g. via 
handling), exposure to ‘moderate stress’ in early-life appeared to be beneficial for 
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Introduction

1the infant by promoting a greater ability of the organism to adapt to psychological 
and physiological stressors in adulthood (27). This same principle also serves as 
the basis for the stress inoculation-induced resilience theory developed several 
years later (35-39).

à In chapter 5 of this thesis the beneficial effects of neonatal handling will be 
used as a potential rescue strategy to compensate for the adverse effects of 
neonatal synthetic glucocorticoid exposure.

2.2.2 Maternal separation
Over the years new paradigms were introduced in an attempt to also study the 
mechanisms underlying developmental programming following exposure to more 
‘adverse’ experiences (40). Maternal separation consists of prolonged periods 
of maternal absence ranging from 1h to 24h. The reported effects of maternal 
separation appear to be more controversial compared to the effects of handling, 
in part because of the substantial variety in different experimental procedures 
across different laboratories in terms of duration, frequency, age of onset of the 
separation, gender and the choice of control group (41-43). Nevertheless, maternal 
separation appeared to ‘program’ the functioning of the HPA axis. As expected, 
this manipulation was reported to yield a more severe outcome, opposing the 
effects of handling, including HPA hyper-responsiveness following stress (40), 
increased emotionality (44), and impaired cognitive performance (28). For an 
extensive review of the consequences of postnatal manipulations, see: (28, 45).

3. Maternal mediation hypothesis
The use of the handling model in rodents raised an important question: how 
can short episodes of maternal absence result in such profound and enduring 
effects on adult stress-phenotype? The ‘maternal mediation hypothesis’ was 
proposed for the fist time as part of the mechanism underlying the lasting 
effects of handling by Smotherman and Bell (46). This theory postulates that the 
outcome of postnatal manipulations (such as handling and maternal separation) is 
mediated by changes in maternal behaviour directed towards the offspring upon 
reunion after a given period of mother-infant separation (47). It was observed 
that brief (15 min) episodes of handling resulted in increased levels of maternal 
care upon reunion between mother and offspring, sometimes reported to remain 
higher throughout the entire day (48). Longer periods (4 h) of maternal separation 
yielded an increase in active maternal care only directly after reunion of the dam 
with the pups but not at any other time point, leading overall to differences in the 
amount/quality of maternal care received by handled versus maternally separated 
pups (48). This suggests that the amount and quality of maternal care, at least in 
part, mediates effects of handling and maternal separation on functioning of the 
HPA axis in the offspring.
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However, certain findings challenged this theory. For instance, Macri and 
co-workers (32) reported inconsistencies in the maternal mediation hypothesis. 
They showed an overall increase in maternal care following both handling and 
maternal separation. Their findings revealed that directly following maternal 
separation dams increase their care to such an extent that they fully compensate 
for the separation time and reach a level comparable to dams of handled pups. 
Since handled and maternally separated offspring display significantly different 
endocrine and behavioural stress responses in later-life, it was concluded that 
maternal care cannot be the only mediator driving the effects of the postnatal 
manipulations (32, 33).

4. Naturally occurring variation in maternal 
care
4.1 Rodent studies
The most compelling set of evidence for the importance of the amount and 
quality of maternal care on the development of the stress-regulating system 
came from studies performed by Meaney and colleagues (49). Employing a non-
invasive naturalistic approach, they studied the impact of naturally occurring 
variation in maternal care on the development of the HPA axis in rodents. This 
model is based on extreme differences among lactating rats in the frequency of 
licking and grooming (LG) they provide to their pups. It shows that variation in the 
amount of maternal LG, a form of tactile stimulation, modulates the development 
of the structure and function of the neural circuitry underlying stress regulation, 
emotionality, and cognitive processes (49-54). Reminiscent of the outcome of 
handling, offspring of high, relative to low LG dams, show decreased behavioural 
and endocrine responsiveness to stress, reduced emotionality, and enhanced 
performance in tests of spatial learning (49, 51, 54). These effects are largely 
reversed with cross-fostering, in which the biological offspring of a high LG 
mother is cross-fostered to a low LG mother or vice versa. This suggests that 
variation in maternal care transfers phenotypic differences to the offspring in a 
non-genetic way (55).

à This model is based on the assumption that maternal care is equally distributed 
over individual pups sharing a litter, such that each individual develops a similar 
phenotype later in life. In chapter 2 of this thesis this assumption is tested. We 
hypothesize that the distribution of maternal care directed towards individual 
pups within a litter is homogenous and therefore results in a uniform ‘stress 
phenotype’ in later-life.

4.2 Human studies
As with animal models, the mediating role of the mother (or another caregiver) 
in the regulation of the HPA axis of the infant has also been demonstrated in 
humans (56). Several studies show that when children are exposed to adequate 
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Introduction

1care, they display diminished cortisol responsiveness, an increased threshold to 
evoke a cortisol response to various stressors (56), and a better cortisol recovery 
after stress (i.e. enhanced glucocorticoid negative feedback) (57). This is explained 
by suggesting that children, under high care-giving conditions, anticipate that a 
caregiver will protect them and therefore they feel able to cope with a threatening 
situation (56). Additionally, it has been reported that subtle differences in parenting 
style are associated with the degree of antisocial behaviour in adolescents (19). 
Moreover, differences in within-family parenting style appear to be associated with 
variation in antisocial behaviour and depressive symptoms in the offspring (18).

5. Epigenetic programming of the HPA axis
The neuro-endocrine (49), behavioural (51, 58, 59), and cognitive alterations (50, 
52) observed in response to naturally-occurring variations in maternal care (60) are 
suggested to be the consequence of alterations in HPA axis activity, hippocampal 
glucocorticoid receptor (GR) expression  and synaptic plasticity.

A major breakthrough in the field of developmental programming came with 
the discovery of epigenetic modifications in the promoter area of the GR gene, 
revealing a mechanism underlying these environmentally driven effects on later-
life stress phenotype. It was shown that increased levels of maternal LG during the 
first week of life alter the methylation pattern of the GR gene in the hippocampus 
of the offspring (61). These changes persist into adulthood and alter the 
expression of the GR throughout life via modification of the chromatin structure. 
Cross fostering of the offspring (from a high to a low LG dam or vice versa) shows 
a complete reversal of methylation patterns, demonstrating that DNA can be 
structurally modified (without alterations to sequence) through environmental 
influences, thus leading to changes in gene expression (61, 62). 

The significance of these findings in the field of psychiatry is unclear but 
recent studies in humans revealed that epigenetic programming of the HPA 
axis via changes in DNA methylation of GR may occur in human infants born to 
mothers whom experienced depression during pregnancy (63). Additionally, there 
are indications of epigenetic regulation of GR in the brains of individuals with a 
history of adverse childhood experiences whom committed suicide following a 
stressful life event (64).

6. Resilience
Traditionally, research in the field of developmental programming has focused 
on the detrimental consequences of stress and far less on the ability to develop 
resilience to stress or stress-related diseases. Recent findings are challenging 
this view and suggest that the outcome of early experience is not necessarily 
deterministic and cannot be perceived as good or bad. 

15



6.1 Resilience through matching environments
From an evolutionary perspective, biological mechanisms leading to ‘programming’ 
effects are generally meant to be adaptive and not necessarily a substrate for 
diseases. This is the basis of the ‘predictive adaptation plasticity hypothesis’ (65-69). 
This theory is based on the concept that a developing organism responds to cues 
(e.g. maternal care) in its environment by changing certain aspects of its homeostatic 
regulation (e.g. HPA axis) in order to produce a phenotype that is highly adapted to 
its current and anticipated future environment. This concept led to the idea that a 
high degree of ‘mismatch’ between the early- and later-life environments accounts 
for an increased risk to develop diseases in adulthood (66-69). There is much 
evidence to support this view in the field of metabolic and cardiovascular disorders 
(67, 70). However in psychiatric research, the validity of this concept is uncertain. 

Recent evidence from animal studies however suggests that the concept of 
‘mismatch’ can also apply to the development of individual differences in stress 
sensitivity. It was recently shown that the outcome of early experiences on stress-
related parameters is dependent on later-life environmental context (50, 52). 
Specifically, it was reported that adult offspring of low LG mothers (considered 
as a form of adversity) show indeed the expected poor cognitive performance 
in a low-stress context. However, in a high-stress context their performance was 
better compared to animals that had received high levels of maternal LG, which in 
turn were impaired under the same stressful conditions (50, 52). Additionally early 
deprivation of maternal care (a severe form of adversity) has been reported to result 
in impaired cognition under low stress but enhanced performance under high 
stress conditions (71). These findings suggest that the influence of environmental 
experiences during development might serve as a basis for resilience to stressful 
challenges in later life.

6.2 Intervention
Interventions, when made at a specific time during development, can mediate the 
developmental programming of a certain phenotype, as is shown by studies on 
infants raised in orphanages. These infants have been reported to show changes 
in cognitive performance (72) and neuronal function in the hippocampus, when 
compared to never-institutionalized children (73). However, these deleterious 
effects appear to be reversible when intervention occurs within a certain time 
window. Placement of institutionalized infants in foster families significantly 
improves long-term learning and memory performance, with earlier intervention 
leading to better outcome (74).

The impact of interventions has also been described in animal studies. It has 
been reported that the cognitive impairment in animals either receiving low levels 
of maternal LG (75) or being exposed to prolonged periods of maternal separation 
(76) in early-life can be reversed by exposing them in the peri-pubertal period 
to environmental enrichment, an effect that might be mediated via structural 
changes in the hippocampus (77). These findings indicate that even ‘adversely’ 
programmed individuals can be ‘rescued’ by environmental interventions.
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Introduction

1à In chapters 3 and 5 two intervention strategies to overcome the frequently 
reported adverse effects of neonatal glucocorticoid exposure will be described

7. The stress hypo-responsive period
The outcome of early-life experiences largely depends on the timing, frequency 
and duration an individual is exposed to particular environmental experiences 
(78-81). For instance, the timing of handling and 24h maternal separation is 
crucial for the outcome on adult phenotype, with handling effects being more 
profound if performed during the early postnatal period as compared to later in 
the postnatal period (78, 80). This is important since the early postnatal period 
coincides with onset of the stress hypo-responsive period (SHRP). The SHRP 
begins several days after birth and terminates around pnd 14 in rodents (28, 45). 
This period is characterized by very low basal corticosterone (CORT) levels and 
a reduced ability to show an increase in circulating CORT levels in response to 
mild stressors that are capable of triggering a profound glucocorticoid response 
in the adult animal (82). While during the SHRP the neonate’s pituitary-adrenal 
axis is mostly hypo-responsive (83), the central component of the HPA axis does 
respond to stressors as is revealed by activation of hypothalamic paraventricular 
(PVN) neurons (84). This hypo-responsiveness of the adrenals is time and stressor 
specific because more severe stressors have been shown to induce a substantial 
CORT response (85, 86).

Interestingly, the presence of the mother is highly important in maintaining 
the SHRP (87, 88). Maternal presence in rodents - resulting in active maternal 
care and feeding - is suggested to actively regulate the responsiveness of the 
neonate’s HPA axis during the SHRP (82, 89). Adrenocorticotropic hormone 
(ACTH) and CORT levels slowly increase if pups are separated from the mother, 
reaching peak levels after 8 h (90-92). The SHRP is disrupted and an adrenal 
CORT response is more easily activated after exposure to mild stressors and 
exogenous ACTH administration (91, 93, 94). When certain aspects of maternal 
behaviour are reinstated during separation, by stroking and feeding of the pups, 
the effects evoked by separation can be reversed (95)(see figure 1). Therefore 
maternal presence serves to ‘buffer’ the impact of stressors on the neonate. 
There is accumulating evidence that a human analogue to the rodent stress 
hyporesponsive period exists, emerging in infancy and lasting throughout most 
of childhood (56).

7.1 Social buffering and attachment learning
The importance of the SHRP and the role of the mother were also illustrated 
in the context of attachment learning. During the first days of life, rodent pups 
strongly depend on the mother for survival. They must learn to approach her and 
exhibit certain behaviours to elicit nursing behaviour from the mother. Since pups 
do not see or hear during the early postnatal period, attachment to the mother 
is based on odour learning, supported by a circuitry involving the olfactory bulb 
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and locus coeruleus. Pups readily learn to approach the mother based on her 
smell. Additionally, they learn to approach artificial odours when paired with 
positive stimuli such as stroking and warmth, and during the very early postnatal 
period even to negative stimuli such as a shock, indicating that the neonate is 
programmed for attachment rather than avoidance (96). 

Interestingly, this attachment learning only occurs under low CORT conditions. 
When the neonate reaches the end of the SHRP, and mild stimuli start to elicit 
a rise in CORT levels, the buffering role of the mother becomes important for 
maintaining attachment learning. A novel odour paired with a shock will not result 
in a rise in CORT in presence of the mother, and the pup will learn to approach 
this odour. However if conditioning takes place in absence of the mother, the pup 
will display increased CORT levels in response to the shock, which will activate 
the amygdala, and will result in a shift from odour preference to odour avoidance. 
Older rodents (weaning age and older), having a mature HPA axis, will always show 
aversion to odours paired with negative stimuli since they elicit a rise in CORT 

Figure 1. Stress-induced HPA axis activity of an adult, neonate and maternally-deprived 
neonate rat. During the SHRP the neonate rat shows a central response to stressors, which is 
not translated to a corticosterone response. The SHRP is characterized by hyporesponsiveness 
of the adrenals to stress resulting in low and stable levels of circulating corticosterone which is 
unbound because corticosteroid binding globulin is virtually absent at that age. Also on other 
levels of the HPA axis there are differences in sensitivity and reactivity compared to an adult 
animal. Interestingly, the HPA axis of a maternally-deprived neonate is responsive to stressors, 
showing some resemblance to that of an adult animal and therefore suggesting premature 
maturation of the stress pathways. However, when certain aspects of the maternal behaviour 
repertoire are reinstated (by stroking and/or feeding the neonate) during deprivation, several 
deprivation-induced alterations can be reversed. The size and thickness of symbols and lines 
represent the magnitude of responsiveness. - depicts suppression of stress-induced activity. 
PVN: paraventricular nucleus of the hypothalamus; CRH: corticotropin-releasing hormone, 
ACTH: adrenocorticotropic hormone, CORT: corticosterone.
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Introduction

1levels and subsequently activate the amygdala-fear pathway. Activation of this 
avoidance learning is obviously an important survival strategy for animals that can 
no longer depend on their caregiver and have to face the challenges of the world 
outside the nest (96, 97). However, when this fear pathway is triggered during the 
very early ‘sensitive’ postnatal period, due to prematurely elevated CORT levels, 
there will be long-term consequences for functioning of the amygdala and related 
pathways with a bias to enhanced activation (Daskakalis et al., submitted).

8. Glucocorticoids during development
The purpose of the SHRP might be to protect the rapidly developing brain from 
the impact of high levels of glucocorticoids. Appropriate levels of glucocorticoids 
are necessary for normal development (88, 98, 99). However, not only exposure 
to high levels of glucocorticoids is disadvantageous, also very low or absent 
glucocorticoid levels adversely affect development. During normal pregnancy the 
activity of the maternal HPA axis is dramatically changed, leading to increased 
circulating glucocorticoid and ACTH levels (100). 

The impact of glucocorticoids during development is frequently studied in the 
context of lung development. Glucocorticoid receptors (GR) are expressed in most 
foetal tissue and mediate the glucocorticoid action that is essential for survival. GR 
null mice die several hours after birth because of insufficient lung development 
and respiratory failure (101). Additionally, animals devoid of the actions of 
glucocorticoids suffer perinatally from abnormal pulmonary development due to 
hyper-proliferation and can be rescued by (prenatal) glucocorticoid treatment, a 
treatment that is obviously ineffective in GR null mice (102, 103).

In prematurely born infants, who frequently display underdeveloped lungs 
at birth, glucocorticoid treatment can enhance lung maturation (104, 105) by 
stimulating differentiation of epithelial cells (106). Exogenous glucocorticoid 
administration during normal development however leads to hypo-proliferation, 
as well as pulmonary epithelial maturation (107). It appears that glucocorticoid 
exposure enhances maturation/differentiation at the expense of growth/
proliferation, as is reviewed by Bolt (108). These effects can be either beneficial 
or detrimental depending on the developmental context.

8.1 Synthetic glucocorticoid treatment for prematurity associated respiratory 
distress syndrome
The initial, and accidental, discovery that antenatal glucocorticoid treatment was 
associated with accelerated lung maturation (109) led to a first controlled study 
showing that this treatment prevented respiratory distress syndrome in prematurely 
born infants (110). Since this important publication numerous reports of randomised 
controlled trials have been published on this topic (111). Several major health 
organisations started to recommend the use of antenatal glucocorticoids to reduce 
the incidence of respiratory distress syndrome (112-114).
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Also the postnatal administration of glucocorticoids to attenuate pulmonary 
inflammation contributing to the pathogenesis of bronchopulmonary dysplasia 
became common practice (115). By the end of the 1990’s glucocorticoid use 
peaked at around 25% (postnatal) and 60-75 % (antenatal) of all preterm infants 
(116, 117). However, besides acute beneficial effects leading to reduced mortality 
and bronchopulmonary dysplasia, there was growing evidence that repeated 
courses of antenatal (118) and also early postnatal glucocorticoid treatment (119) 
led to adverse neurodevelopmental effects. Its image of ‘magic bullet’ changed 
into ‘misguided rocket’ (120)(see table 1).

Although long-term follow up studies are scarce (because treated subjects are 
still relatively young), there are now several reports on the ‘long-lasting’ outcome 
of neonatal glucocorticoid treatment showing alterations in cardiovascular, 
endocrine, immune, motor and cognitive functioning (121-124). Meta-analyses 
on the lasting effects of this treatment are unfortunately not yet available.

8.2 Impact of neonatal glucocorticoid treatment: rodent studies
To elucidate the neurobiological mechanism underlying the neurodevelopmental 
side effects reported in human preterm infants, the consequences of neonatal 
glucocorticoid treatment have been investigated using animal models. The use 
of rats is especially interesting since rodent pups are born prematurely by nature. 
The growth spurt of the brain during early postnatal development in rat pups 
shows similarities with that of human babies during the last trimester of gestation, 
see Box 1 (137). Since neonatal glucocorticoid treatment is usually administered 
between 26 and 33 weeks postmenstrual age (last trimester) in the neonatal 
nursery, the neonate rat pup can be used to study the neurodevelopmental 
impact of glucocorticoid treatment in the premature infant. 

Over the last decade many studies were published on the impact of neonatal 
dexamethasone treatment in rats. Among the numerous findings were reports on 
altered social behaviour in adolescence and adulthood (142), impaired spatial 
learning (144) and hippocampal synaptic plasticity (144, 145), altered endocrine 

Table 1. Adverse side effects of glucocorticoid treatment in preterm infants.

Effect Reference

Growth Reduced somatic growth (125-129) 
Reduced head circumference (129) 
Reduced gray matter growth (130) 

Motor Impaired motor performance (131)
Endocrine Suppressed HPA activity (123, 132-134)
Metabolic Hyperglycaemia (119, 126, 127, 129, 135, 136) 
Immune Altered Th1-Th2 balance (123) 
Gastrointestinal Perforation (119, 126) 
Cardiovascular Hypertension (119, 126, 129, 135, 136) 
Cognition IQ (124, 129) 
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1

responsiveness to stress (141, 146, 147) and a significant shortening of the lifespan 
(143, 148, 149). This reduction in lifespan has been associated with heart and 
kidney failure (143, 149-152). Additionally, immune function has been reported to 
be affected by neonatal glucocorticoid exposure (153, 154). For an overview of 
findings in rodents, see table 2.

à In chapters 3, 4 and 5 of this thesis the acute and long-lasting impact of 
neonatal dexamethasone treatment in rats will be described. Additionally, two 
intervention strategies to overcome the frequently reported adverse effects will 
be introduced.

9. Scope of the thesis
It is well documented that early-life experiences have an impact on development 
and aging. The aim of the research described in this thesis is to explore the short- 
and long-term consequences of two distinct types of early postnatal experiences: 

Box 1. Relevance of treatment design for human clinical situation.

Extrapolating findings from animal studies to humans can only be done 
with great caution. Although there is much variation between species in the 
complexity of the mature brain and in the timing of neurodevelopmental 
processes in relation to the timing of birth, there are great similarities between 
rodents and humans in the sequence of events during brain development. 
The human brain shows a growth spurt during the last trimester of pregnancy 
that peaks around birth. In rodents, this growth spurt takes place during the 
first 10 postnatal days. This suggests that the developmental stage of a rodent 
brain on postnatal day 1 corresponds to a human brain at the start of the 
third trimester of pregnancy (137), i.e. a premature infants’ brain. Therefore, 
exposing rodents to glucocorticoids during the first postnatal days can be 
used as a model to study the neurodevelopmental impact of glucocorticoid 
treatment in the preterm infant.

Clinical protocols show much variation in timing of treatment initiation 
(due to timing of preterm birth), duration (1-42 days), as well as cumulative 
dose (0.2-14 mg/kg) of postnatal dexamethasone treatment. Dosage starts 
however frequently at 0.5 mg/kg (138, 139). With the current design, a 3-day 
course of dexamethasone treatment (0.5, 0.3, 0.1 mg/kg), we aimed to deliver 
a relevant treatment in terms of dosage and timing/duration. Although the 
cumulative dose seems relatively low, the finding that the rodent is relatively 
corticosteroid-sensitive compared to man (140), might explain why such severe 
developmental alterations have been reported in rats using a similar dosage 
regimen (141-144).
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1) very subtle variations in maternal environment, and 2) exposure to synthetic 
glucocorticoids. Since the outcome of neonatal glucocorticoid exposure has been 
reported to be detrimental, we additionally investigated the possibility to reverse 
these frequently reported adverse effects of glucocorticoid exposure by both 
pharmacological and behavioural intervention.

Table 2. Effects of neonatal glucocorticoid treatment in rodents.

Effect Drug Time (days) Reference

Development

Body weight ↓ D 1-3 / 1-5 / 3-6 / 4 (142, 145, 146, 155, 156) 
Brain weight ↓ D 4 / 3-6 / 7 (147, 155-157) 
Cell proliferation ↓ HC 1-4 / 1-7 (158-160)
Adrenal Weight ↓ D 1-5 (146)
Eye opening ↑ D 3-6 (147, 156) 
Social behaviour

Social play ↓ C,D 1-4 (161)
↑ D 1-3 (142) 

Submission ↑ C 3-5 (162)
↓ D 1-3 (142) 

Sexual performance = C 1-2 (161)
↑ D 1-3 (142) 
↓ C 1-3 (163)

Learning and Memory

Water maze ↓ D 4 / 7 /1-3 (144, 155, 157, 164) 
Hippocampal 
synaptic plasticity

↓ D 1-3 (144, 145, 165) 

Passive avoidance = D 1-3 (145, 156)
Anxiety

Elevated plus maze = D 1-3 (142) 
Closed arms ↑ D 3-6 (156) 

Adult HPA axis

Basal CORT = D 1-3 /1-5 (141, 146) 
Stress-induced CORT Novelty:↓ D 1-3 (141)

Conditioned fear: = D 1-3 (141) 
LPS challenge: ↓ D 1-3 (153) 

Crowding: ↑ D 3-6 (156) 
Restraint: ↓ D 1-5 (146) 

ACTH-induced CORT = D 1-3 (141) 
Lifespan

Survival ↓ D 1-3 (143)

C: corticosterone, HC: hydrocortisone, D: dexamethasone
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Introduction

1Within-litter differences in maternal care
To investigate the consequences of experiencing subtle differences in maternal 
environment we used an adjusted model of naturally occurring variations in 
maternal care allowing the study of individual within-litter differences in maternal 
licking and grooming in Wistar rats. Endocrine responsiveness to an acute novelty 
stressor was investigated in adolescence and adulthood.

Hypothesis: Maternal care is equally distributed across littermates, resulting in 
the development of a uniform stress phenotype within the litter.

Neonatal synthetic glucocorticoid exposure
To investigate the impact of neonatal exposure to synthetic glucocorticoids, 
newborn Long Evans rats were injected with dexamethasone. We investigated 
the consequences of this treatment in early-life, adulthood, middle age and 
senescence using behavioural and molecular techniques. Additionally, we tested 
the rescuing potential of behavioural and pharmacological intervention strategies.

Hypotheses:
1.	 Neonatal dexamethasone treatment acutely affects brain development
2.	 Neonatal dexamethasone treatment results in long-lasting alterations in 

endocrine and behavioural reactivity
3.	 These effects can be prevented by 

I. blocking central GR activation prior to dexamethasone exposure
II. handling of the neonate during the first 3 weeks of life

10. Outline of the thesis
Chapter 2 describes an adjustment of the original maternal care model as 
described in section 4.1 which allows the study of individual within-litter differences 
in maternal care. We report that besides differences in maternal care between 
litters, differences within the litter exist. Furthermore, these subtle differences 
in early maternal environment have long-lasting effects on the offspring’s stress 
phenotype, although in a gender-dependent manner. 

Chapter 3 describes the acute central effects of neonatal dexamethasone 
treatment. We report that hippocampal cell proliferation is acutely, but transiently 
reduced. The number of astrocytes is reduced one week post-treatment, an effect 
that can be fully prevented by central GR antagonist pre-treatment, which is 
proposed as a potential intervention strategy to prevent certain dexamethasone-
induced changes in the developing brain.

Chapter 4 describes the long-term effects of neonatal exposure to 
dexamethasone using several behavioural paradigms. We report that although 
neonatal dexamethasone treatment leads to developmental alterations, the 
frequently reported adverse effects on adult phenotype were not observed. It is 
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suggested that handling of the infant during the postnatal period mediates - and 
potentially overrides - the outcome of neonatal dexamethasone exposure.

In chapter 5 this hypothesis is further investigated with the goal to examine 
the potential of neonatal handling to reverse adverse effects induced by neonatal 
dexamethasone treatment. We report that the effects of dexamethasone 
treatment interact with those of neonatal handling in shaping the adult endocrine 
and behavioural phenotype. 

In chapter 6 all experimental findings are summarized and the relevance of 
their interactions in shaping the adult phenotype is discussed.
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