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Abstract 

Soluble egg antigens of the parasitic helminth Schistosoma mansoni (SEA) induce 

strong Th2 responses both in vitro and in vivo. However, the specific molecules that 

prime the development of Th2 responses have not been identified. Here we report 

that omega-1, a glycoprotein secreted from S. mansoni eggs and present in SEA, is 

capable of conditioning human monocyte-derived DCs in vitro to drive Th2 polarization 

with similar characteristics as whole SEA. Furthermore, using IL-4 dual reporter mice 

we show that both natural and recombinant omega-1 alone are sufficient to generate 

Th2 responses in vivo even in the absence of IL-4R signaling. Finally, omega-1-depleted 

SEA displays an impaired capacity for Th2 priming in vitro, but not in vivo, suggesting 

the existence of additional factors within SEA that can compensate for the omega-1-

mediated effects. Taken together, we identify omega-1, a single component of SEA, as 

a potent inducer of Th2 responses.   
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Introduction 

Helminth parasites are the most potent natural inducers of T helper 2 (Th2) cell-

polarized responses. Infection with Schistosoma mansoni elicits strong Th2 responses, 

in humans and in experimental animal models. The development of this Th2 

polarization coincides with the onset of egg production by adult worms [1]. The ability 

of S. mansoni eggs to induce Th2 differentiation during infection is underscored by the 

observation that schistosome eggs alone, or S. mansoni soluble egg antigen (SEA) are 

sufficient to drive Th2 polarization in naïve mice even in the absence of infection [2;3]. 

Various cells of the innate immune system are thought to contribute to the 

activation of Th2 responses after infection with S. mansoni. Granulocytes like 

basophils, eosinophils and mast cells, have been shown to represent potential innate 

sources of Th2-associated cytokines like IL-4, during infection, which can contribute to 

the polarization, sustenance and amplification of Th2 responses [4;5]. Although these 

cells may well support Th2 development, professional antigen presenting cells (APCs), 

in particular dendritic cells (DCs), are thought to play a dominant role in the initiation 

of these T cell responses [6]. DCs have been shown to efficiently sense, capture and 

process antigens derived from S. mansoni eggs [7;8], resulting in the capacity of these 

DCs to prime for strong Th2 polarization both in vitro and in vivo [9;10].  

While the ability of S. mansoni eggs and their soluble antigens to promote 

potent Th2 responses has been well documented, the specific components responsible 

for this activity are only beginning to be characterized. In this respect, glycans on 

proteins from S. mansoni eggs have been shown to contribute to the Th2 polarizing 

properties of SEA [11;12]. In addition, IPSE/alpha-1 and peroxiredoxin, both 

glycoproteins secreted by the eggs, have recently been shown to trigger basophils to 

produce IL-4 [13;14] and to induce the development of alternatively activated 

macrophages [15], respectively, both of which can contribute to Th2 polarization 

following exposure to egg antigens. However, the specific molecules responsible for 

the initiation of Th2 differentiation have remained elusive. 

Here we show that omega-1, a glycoprotein present in both SEA [16] as well 

as excretory/secretory products (ESP) from live eggs [17], potently instructs human 

DCs to prime highly Th2-polarized responses from naïve human CD4+ T cells in vitro. In 

addition, we demonstrate that injection of omega-1 alone into IL-4 dual reporter mice 

is sufficient to prime Th2 responses in vivo, even in the absence of the IL-4Rα chain. 

Together, these findings demonstrate that omega-1 is a potent initiator rather than 

amplifier of Th2 responses. 
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Results and Discussion 

Excretory/secretory products from S. mansoni eggs condition human DCs for Th2 

priming 

DCs are known to play a pivotal role in the initiation and polarization of T cell 

responses and S. mansoni egg preparations have been shown to prime Th2 cells via the 

functional modulation of DCs [9;10]. To study and identify the components from S. 

mansoni egg preparations that instruct Th2 development, we used a well-established 

co-culture system of human monocyte-derived DC and naïve CD4+ T cells, which is 

generally thought to mimic in vivo DC-mediated T helper cell polarization [6]. It stands 

to reason that excretory/secretory products (ESP) from live eggs [17] are the first egg-

derived molecules to interact with cells of the innate immune system, including DCs. 

Therefore, we initially tested ESP for their capacity to condition DCs to prime Th2 

development from naïve CD4+ T cells. Similar to SEA, exposure of DCs to ESP resulted in 

a robust Th2 skewing irrespective of the presence or absence of LPS as a neutral 

maturation factor (Fig 1A). In a recent report Williams and colleagues [17] identified 

omega-1 and IPSE/alpha-1 as the most abundant proteins within ESP from S. mansoni 

eggs. Separation of ESP preparations by SDS-PAGE (Fig 1B) followed by Western 

blotting with specific monoclonal antibodies revealed prominent bands representing 

IPSE/alpha-1 and omega-1 (Fig 1C), which was confirmed by mass spectrometry (data 

not shown). Both, omega-1 and IPSE/alpha-1, are glycoproteins which are specifically 

expressed in and secreted from S. mansoni eggs. Omega-1 has been demonstrated to 

display RNase activity and hepatotoxic effects [16;18] whereas IPSE/alpha-1 has 

previously been shown to trigger IL-4 production by human and murine basophils 

[13;14]. 

 

Natural omega-1 modulates human DC maturation and cytokine production in vitro 

The observation that ESP can instruct human DCs to drive highly polarized Th2 

responses prompted the question whether omega-1 and IPSE/alpha-1 as prominent 

ESP components are responsible for this activity. While some immunological 

properties of IPSE/alpha-1 have been described [13;14], the effects of omega-1 and 

IPSE/alpha-1 on DC-driven T helper cell polarization have not been investigated. To this 

end, natural omega-1 and IPSE/alpha-1 were purified from SEA (Fig 2) and used for the 

conditioning of human DCs in comparison with whole SEA. The concentrations of 

omega-1 and IPSE/alpha-1 used in these assays were equivalent to those in the 

unfractionated SEA preparations. As described before [8;19], stimulation with SEA did 

not lead to classical maturation of DCs, based on surface marker expression (Suppl Fig 

1). Likewise, omega-1 and IPSE/alpha-1 did not induce the expression of these markers 

on DCs (Suppl Fig 1). Apart from the failure to induce the maturation of DCs, SEA is also  
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known to interfere with TLR-mediated DC activation [8;19]. Indeed, when DCs were 

matured with the TLR4 ligand LPS, a non-polarizing maturation factor for human DCs, 

the presence of SEA significantly impaired the LPS-induced up-regulation of CD83 and 

CD86 surface expression (Fig 3A). Strikingly, omega-1 alone was sufficient to suppress 

the induction of these molecules on LPS-stimulated DCs to a similar extent, whereas 

IPSE/alpha-1 had no effect (Fig 3A).  

Figure 1. Immunological and biochemical characterization of excretory/secretory products (ESP) from S. 

mansoni eggs. (A) Monocyte-derived DCs pulsed for 48 h with the different antigen preparations in the 

absence (upper panel) or presence (lower panel) of LPS (100 ng/ml) as a maturation factor were co-cultured 

with allogeneic naive CD4+ T cells for 12 days in the presence of staphylococcal enterotoxin B and IL-2. 

Intracellular cytokine production was assayed by FACS 6 h after the stimulation of primed T cells with phorbol 

12-myristate 13-acetate (PMA) and ionomycin. The frequencies of each population are indicated as 

percentages in the plot. One representative result from 3 independent experiments is shown. (B) ESP (5 

µg/cm) were separated under non-reducing conditions by SDS-PAGE and silver stained. The presence of 

omega-1 and IPSE/alpha-1 was confirmed on Western blots (C) by staining with specific anti-IPSE/alpha-1 and 

anti-omega-1 monoclonal antibodies. 
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DCs exposed to parasitic helminth-derived antigens, including SEA, are 

distinguished by their low production of IL-12, which is thought to be a prerequisite for 

their Th2-inducing capacity [20]. We analyzed the cytokine production of conditioned 

DCs following re-stimulation with a CD40-L expressing cell line mimicking the 

interaction with T cells. DCs stimulated with LPS in the presence of SEA displayed a 

potent reduction in the production of IL-12p70 (Fig 3B). Importantly, omega-1 alone 

was sufficient to inhibit the release of IL-12 (Fig 3B). Of note, the impact of 500 ng/ml 

omega-1 on IL-12 production was equal to that of 25 µg/ml SEA (Fig 3B). In contrast, 

IPSE/alpha-1 did not significantly affect IL-12 production (Fig 3B). Taken together, 

these data demonstrate that omega-1, but not IPSE/alpha-1, down-modulates DC 

maturation and cytokine production to a similar extent as SEA. 

 

Figure 2. SDS-PAGE of SEA, natural omega-1 and natural IPSE/alpha-1 as well as of recombinant omega-1 

(silver staining and Western blotting). (A-C) SEA (5 µg/cm), omega-1 and IPSE/alpha-1 (each 0.3 µg/cm) 

purified from SEA, were separated by SDS-PAGE and silver stained or blotted onto nitrocellulose membrane. 

Silver staining (A) revealed a weak banding intensity of both natural and recombinant omega-1 compared to 

IPSE/alpha-1, although the purified proteins were applied to the gel at the same amounts (0.3 µg/cm). The 

two bands stained by anti-IPSE/alpha-1 represent posttranslational variants of the same protein [13]. On 

Western blots alkaline phosphatase-labelled Aleuria aurantia agglutinin (B) or a mixture of specific anti-

IPSE/alpha-1 and anti-omega-1 monoclonal antibodies followed by alkaline phosphatase-labelled anti-mouse 

IgG second antibody (C) were used for detection. (B) While Aleuria aurantia agglutinin clearly binds to 

omega-1 and IPSE/alpha-1 as well as to a variety of other fucosylated components present in SEA, it does 

not bind to recombinant omega-1 whose glycans are lacking fucose residues. (C) On the other hand, all 

purified proteins but no irrelevant SEA components are detected by the mixture of specific monoclonal 

antibodies. 
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Natural omega-1 primes human DCs to induce a Th2 response in vitro 

To evaluate the capacity of DCs exposed to these schistosome egg-derived antigens to 

direct T helper polarization, human DCs were pulsed for 40 h with the different egg 

antigens in the presence of LPS as a neutral maturation factor and then co-cultured 

with naïve CD4+ T cells. Two weeks later cytokine production by the CD4+ T cells was 

determined by intracellular cytokine staining. In contrast to IFN-γ-stimulated DCs that 

were used as a Th1-polarizing control, SEA-stimulated DCs potently skewed the 

response towards a Th2 cytokine profile (Fig 3C + D). Omega-1 alone displayed the 

same Th2-inducing potency as SEA, even at a 50-fold lower protein concentration (500 

ng/ml versus 25 µg/ml) (Fig 3C + D). Moreover, the robust Th2 priming by omega-1-

conditioned DCs was also observed in the absence of LPS as a neutral maturation 

factor (Suppl Fig 2). IPSE/alpha-1-treated DCs, on the other hand, did not drive 

significant Th2 polarization, which is in keeping with its inability to suppress the 

production of IL-12 by these DCs (Fig 2B-D). 

 

Recombinant omega-1, like natural omega-1, conditions human DCs for Th2 

polarization in vitro 

To further establish that omega-1 alone is sufficient to prime Th2 polarization through 

the functional modulation of DCs, we tested recombinant omega-1 expressed by 

human embryonic kidney (HEK) cells (Fig 2). As described for natural omega-1 [18], 

recombinant omega-1 displayed RNase activity (Fig 4A), proving its biological activity 

(Fig 4A). In contrast to natural omega-1, the recombinant protein was not bound by 

the fucose-specific lectin Aleuria aurantia agglutinin revealing differences in the 

glycosylation pattern (Fig 2B). Importantly, recombinant omega-1 significantly reduced 

IL-12 production by DCs (Fig 4B) and conditioned DCs to prime Th2 responses (Fig 4C), 

albeit with reduced potency compared to natural omega-1 (Fig 3B + C). 

These data presented so far demonstrate that omega-1 alone, in contrast to 

IPSE/alpha-1, can initiate Th2 polarization via the modulation of human DCs with 

similar characteristics as unfractionated SEA. 

 

Omega-1 primes a Th2 response in vivo 

To investigate whether omega-1 has the capacity to prime Th2 responses in vivo, we 

administered omega-1 to 4get/KN2 IL-4 dual-reporter mice [21]. In these mice IL-4-

competent cells are GFP+ and IL-4-producing cells additionally express huCD2, allowing 

the direct visualization of Th2 differentiation and IL-4 production. Following the s.c. 

injection of SEA, omega-1 or IPSE/alpha-1 into the footpad, the draining popliteal 

lymph nodes were harvested on day 7 and CD4+CD44high effector T cells were analyzed 

for the expression of GFP and huCD2 directly ex vivo. Injection of SEA resulted in a
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Figure 3. Omega-1 modulates human DC maturation, cytokine production and T cell-polarizing capacity 

with similar characteristics as SEA. (A) DCs were pulsed for 48 h with SEA (25 µg/ml), omega-1 (500 ng/ml) 

or IPSE/alpha-1 (500 ng/ml) in combination with LPS (100 ng/ml) as a maturation factor and surface 

expression of maturation markers was determined by FACS analysis. The expression levels, based on 

geometric mean fluorescence, of different maturation markers are shown relative to the DCs stimulated 

with LPS alone, which is set to 100% for each marker (dashed line). (B) DCs were co-cultured for 24 h with a 

CD40-L expressing cell line, to mimic the interaction with T cells. IL-12p70 cytokine expression levels are 

shown relative to the DCs stimulated with LPS alone, which is set to 1 (dashed line). (C and D) T cell-

polarizing capacity of the conditioned DCs was evaluated as described in legend of Fig. 1. (C) Representative 

plots out of at least 4 independent experiments are shown. (D) Based on intracellular cytokine staining, the 

ratio of T cells single-positive for either IL-4 or IFN-γ was calculated relative to the control condition. (A, B, D) 

Bars represent mean ± SD of at least 4 independent experiments. * p < 0.05, ** p<0.01, *** p<0.001 for 

values significantly different from the LPS control, based on paired analysis (one-sided paired t-test). ω-1, 

omega-1; α-1, IPSE/alpha-1. 
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significant increase of GFP+ and huCD2+ cells, a result reflecting the induction of Th2 

differentiation and acute IL-4 production in vivo (Fig 5A). Importantly, omega-1 alone 

also induced a marked Th2 response and the production of IL-4, whereas IPSE/alpha-1 

did not (Fig 5A). The Th2-inducing capacity of omega-1 was further substantiated by 

the observation that immunization with recombinant omega-1 led to the induction of a 

Th2 response and the production of IL-4 in these mice, although to a lesser degree 

than natural omega-1 (Fig 5B).  

Figure 4. Recombinant omega-1 has RNase and Th2-polarizing activity similar to natural omega-1. (A) 

Recombinant omega-1 is a functional RNase as determined by negative-staining RNase zymography. Samples 

containing the indicated amount of protein, were run under non-denaturing conditions on 11% SDS 

polyacrylamide gels containing 2 mg/ml yeast RNA. Protein bands were detected by Coomassie blue staining 

(lane 2) or SDS was removed and RNase activity was detected by toluidine blue (lanes 3-5). Lane 1 contains 

molecular weight standards. (B) Monocyte-derived DCs were treated as described in the legend of Fig. 2. IL-

12 p70 concentrations were determined by ELISA. Bars represent mean ± SD of 4 independent experiments. 

(C) T cell polarizing capacity of the conditioned DCs was evaluated as described in legend of Fig. 1. One 

representative result from 4 independent experiments is shown. ** p < 0.01 (one-sided paired t-test). ω-1, 

omega-1; α-1, IPSE/alpha-1. 
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Although IL-4 has been shown to play an important role in both the differentiation and 

amplification of Th2 responses, there is clear evidence that initial Th2 priming can 

occur in the absence of IL-4 signaling, as has been shown for SEA [20;22;23]. To 

establish whether omega-1 can induce Th2 polarization in the absence of IL-4R 

signaling, we immunized 4get/KN2 IL-4 dual-reporter mice on the IL-4Rα-/- background 

[24]. Injection of omega-1 as well as SEA resulted in an increased frequency of GFP+ 

and huCD2+ cells in IL-4Rα-/- mice (Fig 5C) albeit with reduced magnitude, as previously 

reported for SEA [22]. The observation that IL-4R signaling is dispensable for the in vivo 

priming of Th2 responses by omega-1 further supports that omega-1 itself can provide 

the initial triggers driving Th2 differentiation, rather than simply amplifying the 

process.  

 

Omega-1 is a major factor in SEA that conditions DCs for Th2 priming but not the only 

Th2-inducing component of SEA 

Given the potency of omega-1 to condition DCs for Th2 priming in vitro and to drive 

Th2 polarization in vivo with similar characteristics as SEA, we depleted omega-1 from 

SEA (Suppl Fig 3) to address the extent to which the Th2-polarizing capacity of SEA can 

be attributed to omega-1. Depletion of omega-1 almost completely abrogated the 

inhibitory effect of SEA on LPS-induced in vitro maturation (Fig 6A) and IL-12 cytokine 

production (Fig 6B) by DCs. Consistent with this observation, the Th2-polarizing 

capacity of omega-1-depleted SEA was also significantly reduced compared to whole 

SEA in the presence (Fig 6C) or absence of LPS (Suppl Fig 4). This suggests that omega-1 

is a principal factor in SEA mediating the conditioning of DCs for Th2 priming in vitro. In 

contrast, omega-1-depleted SEA was not impaired in its capacity to prime Th2 

responses in vivo (Fig 6D). Thus, additional components in SEA are able to compensate 

for omega-1 with respect to Th2 priming in vivo. An interesting candidate could be the 

glycoprotein peroxiredoxin present in SEA, as this molecule has recently been shown 

to induce the development of alternatively activated macrophages [15], which may 

render it capable of initiating a Th2 response [25].    

In the present study we identify omega-1, a glycoprotein secreted by S. 

mansoni eggs, as a strong inducer of Th2 responses in vitro and in vivo. Although 

omega-1 was known to be secreted by live S. mansoni eggs and to be one of the most 

abundant molecules present in SEA [16;26], its immunological properties have 

remained elusive. This study shows that omega-1 alone is sufficient to drive Th2 

responses both in vitro and in vivo. Using a well-established in vitro model to study the 

T helper polarization of naïve human T cell by DCs, we demonstrate that omega-1 can 

elicit Th2 responses via the conditioning of DCs. Nonetheless, our observations do not 

exclude the possibility, that in vivo omega-1-driven Th2 responses are also supported  
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Figure 5. Omega-1 is sufficient to drive Th2 polarization in vivo, independently of IL-4R signaling. (A) 

4get/KN2 IL-4 dual reporter mice were injected s.c. with SEA (20 μg), omega-1 (2 μg) or IPSE (2 μg) into the 

footpad. After 7 days the frequency of GFP+ and huCD2+ within the CD4+CD44high effector T cell population 

was determined by flow cytometry in the draining popliteal lymph nodes. Depicted are representative plots 

with percentages indicated and the combined data of three individual mice per group. (B) 4get/KN2 mice 

were injected with recombinant proteins and analyzed as in (A). (C) IL-4Rα-/- 4get/KN2 mice were treated and 

analyzed as in (A). The frequencies of each population are indicated as percentages in the plots. One of 2 

independent experiments with n=5 is shown. Bars represent mean ± SD. * p < 0.05, ** p<0.01, *** p<0.001 

for values significantly different from the PBS control (two-sided paired t-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by cell types other than DCs, like for instance basophils [5]. However, our in vivo 

studies with IL-4Rα-/- mice demonstrated that IL-4R signaling is dispensable for the in 

vivo priming of Th2 responses by omega-1. Given that DCs have the unique capacity to 

initiate Th2 responses independently of IL-4 signaling in vivo [27], these data support a 

role for DCs in omega-1-driven Th2 priming. Our findings are corroborated by an 

independent study by Jankovic and coworkers [28] showing that omega-1-conditioned 

bone marrow-derived mouse DCs prime Th2 responses in vitro and upon transfer into 

naive mice also in vivo. Collectively these studies support a role for omega-1 in driving 

Th2 responses via the functional modulation of DCs.  

The molecular basis underlying the immunomodulatory property of omega-1 

still remains to be determined. Carbohydrates present in SEA have been found to 

contribute to the Th2-polarizing properties of this antigen preparation [11;12]. Since 
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omega-1 is a glycosylated protein, the glycosylation pattern of omega-1 might play a 

role in its Th2 priming activity. Furthermore, its RNase activity could provide an 

alternative or additional mechanism through which omega-1 drives Th2 polarization, 

since several RNases have been implicated in Th2 responses [29;30]. Whether the 

reduced Th2-inducing activity of recombinant compared to natural omega-1 in vitro 

(Fig 4C versus Fig 3C) and in vivo (Fig 5B versus Fig 5A) is due to differences in the 

glycosylation pattern or reduced RNase activity, remains to be determined. The 

specific modification of the glycosylation and/or the RNase activity of omega-1 will 

define their respective roles and will help to identify the molecular pathways through 

which omega-1 conditions DCs to initiate Th2 polarization. 

Figure 6. Omega-1 is a major factor in SEA that conditions DCs for Th2 priming but not the only Th2-

inducing component present in SEA. (A and B) Monocyte-derived DCs were pulsed for 48 h with SEA (25 

µg/ml) or omega-1-depleted SEA (25 µg/ml) in combination with LPS (100 ng/ml) and analysed for surface 

expression of maturation markers and IL-12 production as described in legend of Fig. 2. Bars represent mean 

± SD of 4 independent experiments. (C) T cell polarizing capacity of the conditioned DCs was evaluated as 

described in legend of Fig. 1. Depicted are representative plots with percentages indicated. Based on 

intracellular cytokine staining, the ratio of T cells single-positive for either IL-4 or IFN-γ was calculated 

relative to the control condition. Bars represent mean ± SD of 5 independent experiments. (D) 4get/KN2 

mice were injected with recombinant proteins and analyzed as in Fig. 4. Depicted are representative plots 

with percentages indicated and the combined data of three individual mice per group. *,# p < 0.05, **,## 

p<0.01, ***,### p<0.001 for values significantly different from the controls (*) or SEA (#)  based on paired 

analysis (one-sided paired t-test). ω-1, omega-1. 
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While the immunological processes resulting in Th1 polarization have been extensively 

characterized, it is still poorly understood how exactly Th2 responses are initiated. SEA 

has often been used as a model antigen mixture to study the immunological 

mechanisms underlying the induction of Th2 responses [3;20;31]. Now, two groups 

using different but complementary models have independently identified omega-1 as 

a single glycoprotein in SEA with potent Th2-polarizing properties. These findings will 

pave the way for the use of a defined molecule, omega-1, to further delineate the 

cellular mechanisms and molecular signals that drive Th2 differentiation.   

 

Materials and Methods 

Preparation and purification of S. mansoni egg-derived antigens 

Freshly isolated S. mansoni eggs from trypsinized livers from infected hamsters were 

washed in RPMI medium with 300 U/ml penicillin, 300 μg/ml streptomycin and 500 

μg/ml fungizone. To obtain ESP, 3 x 105 eggs/ml were incubated in the same medium 

for 48 h at 37°C in a humidified incubator. Supernatant containing ESP was harvested 

and centrifuged to remove residual eggs. SEA was prepared as described previously 

[10]. Omega-1 and IPSE/alpha-1 were purified from SEA via cation exchange 

chromatography as described earlier [13;16]. Omega-1 was then separated from 

IPSE/alpha-1 by affinity chromatography using specific anti-IPSE/alpha-1 monoclonal 

antibodies coupled to a NHS-HiTrap Sepharose column according to the 

manufacturer’s instructions (GE Healthcare). Purified components were concentrated 

and dialysed. Omega-1-depleted SEA was prepared by adding back purified IPSE/alpha-

1 to the remaining SEA fraction left from the cation exchange chromatography. The 

purity of the preparations was controlled by SDS-PAGE and silverstaining. In parallel, 

Western Blotting was performed both with specific anti-omega-1 (140-3E11) and anti-

IPSE/alpha-1 (74-1G2) monoclonal antibodies followed by alkaline phosphatase-

labelled anti-mouse IgG (Dianova) detection antibody and with alkaline phosphatase-

labelled Aleuria aurantia agglutinin, which binds specifically to fucose residues. Protein 

concentrations were tested using the Bradford or BCA procedure. 

 

Production of recombinant omega-1 

Recombinant omega-1 was purified from human 293 HEK cells transfected with the 

expression vector pSecTag2-omega-1. The pSecTag2 plasmide was from Invitrogen. 

Secreted recombinant omega-1 was sequentially purified from the culture medium by 

immobilized metal affinity chromatography and size exclusion chromatography. 

 

Zymography  

Ribonuclease activity was determined as described previously [18].  
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Human DC culture, stimulation and analysis  

Monocytes were isolated from venous blood of healthy volunteers using Institutional 

Review Board-approved protocols by density centrifugation on ficoll followed by a 

Percoll gradient as described [10] and were cultured in RPMI medium supplemented 

with 10% FCS, human rGM-CSF (500 units/ml, a gift from Schering-Plough, Uden, The 

Netherlands) and human rIL-4 (250 units/ml) (R&D Systems). On day 3, culture medium 

including the supplements was replaced and on day 6 immature DCs were stimulated 

with the indicated reagents in the presence of ultrapure LPS (100 ng/ml) (E. coli 0111 

B4 strain, InvivoGen). As a Th1 control DCs were also pulsed with IFN-γ (1000 U/ml). 

After 48 h, DCs were harvested for co-culture with naïve T cells. In addition, 1x104 

matured DCs were co-cultured with 1x104 CD40L-expressing J558 cells for 24 h to 

determine cytokine production by the DCs following activation by CD40L. IL-12p70 

concentrations were determined by ELISA using mouse anti-human IL-12, clone 20C2 

as capture antibody and biotinylated mouse-anti-human IL-12, clone C8.6 as detection 

antibody (both Becton Dickinson). The expression of maturation markers on the pulsed 

DCs was determined by FACS (FACScalibur) through staining with CD83-PE 

(Immunotech), HLA-DR-PerCP, CD40-APC, CD80-FITC and CD86-PE (all Becton 

Dickinson). 

 

Human T cell culture and determination of T cell polarization 

To determine T cell polarization, 5 x 103 48 h-pulsed DCs were co-cultured with 2 x 104 

naïve T cells that were purified using a human CD4+/CD45RO- column kit (R&D, 

Minneapolis, MN) in the presence of staphylococcal enterotoxin B (100 pg/ml; Sigma) 

in 96-well flat-bottom plates (Costar). On day 5, rhuIL-2 (10 U/ml, Cetus Corp., 

Emeryville, CA) was added and the cultures were expanded for another 7 days. For 

intracellular cytokine production, the primed CD4+ T cells were restimulated with 50 

ng/ml phorbol 12-myristate 13-acetate plus 2 μg/ml ionomycin for 6 h. 10 μg/ml 

brefeldin A was added during the last 2 h (all Sigma). The cells were stained with a 

combination of IL-4-PE and IFN-γ-FITC antibodies (BD).  

 

In vivo experiments 

WT [21] and IL-4Rα-/- [24] 4get/KN2 mice were bred and housed in the animal facility 

of the Trudeau Institute and used at 8-12 weeks of age. All experimental procedures 

were approved by the Institutional Animal Care and Use Committee. Mice were 

immunized s.c. into one hind footpad with SEA (20µg), omega-1 (2µg), or IPSE (2µg) in 

a volume of 30 μl and the draining popliteal lymph nodes were analyzed one week 

later.  
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Statistical analysis 

Data were analyzed for statistical significance using a one-sided paired t-test. All p-

values < 0.05 were considered significant. 
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Supplemental figures

Figure S1. SEA, omega-1 and IPSE/alpha-1 do not induce expression of DC maturation markers. Monocyte-

derived DCs were pulsed for 48 h with LPS, SEA, omega-1 or IPSE/alpha-1 and surface expression of 

maturation markers was determined by FACS analysis. Filled histograms represent unstained cells, while the 

thin black line represents unstimulated DCs. The thick black line represents the DCs pulsed with the different 

antigen preparations. One representative result from at least 3 independent experiments is shown. The 

geometric mean of the fluorescence intensity of the different surface markers is depicted in the upper right 

corner of each plot.  

Figure S2. Omega-1 drives Th2 polarization also in the absence of LPS. 48 h-stimulated dendritic cells were 

co-cultured with allogeneic naive CD4+ T cells for 2 weeks in the presence of staphylococcal enterotoxin B 

and IL-2. Intracellular cytokine production was assayed as described in the legend of Fig. 1. Representative 

plots out 4 of independent experiments are shown. Based on intracellular cytokine staining, the ratio of T 

cells single-positive for either IL-4 or IFN-γ was calculated relative to the control condition. Bars represent 

mean ± SD of 4 independent experiments.  * p < 0.05, ** p<0.01, *** p<0.001 for values significantly 

different from medium control, based on paired analysis (one-sided paired t-test). ω-1, omega-1. 
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Figure S3. SDS-PAGE of SEA and omega-1-depleted SEA (Western blotting). (A and B) SEA (5 µg/cm), 

omega-1 (each 0.3 µg/cm) purified from SEA, and SEA depleted for omega-1 (5 µg/cm) were separated by 

SDS-PAGE and blotted onto nitrocellulose membrane. On Western blots alkaline phosphatase-labelled 

Aleuria aurantia agglutinin (A) or a mixture of specific anti-IPSE/alpha-1 and anti-omega-1 monoclonal 

antibodies followed by alkaline phosphatase-labelled anti-mouse IgG second antibody (B) were used for 

detection. ω-1, omega-1. 

Figure S4. Reduced Th2 polarization via DCs by SEA depleted of omega-1 in the absence of LPS. 48 h-

stimulated dendritic cells were co-cultured with allogeneic naive CD4+ T cells for 2 weeks in the presence of 

staphylococcal enterotoxin B and IL-2. Intracellular cytokine production was assayed as described in the 

legend of Fig. 1. Representative plots out of 3 independent experiments are shown. Based on intracellular 

cytokine staining, the ratio of T cells single-positive for either IL-4 or IFN-γ was calculated relative to the 

control condition. Bars represent mean ± SD of 3 independent experiments. *,# p < 0.05 for values 

significantly different from the controls (*) or SEA (#)  based on paired analysis (one-sided paired t-test). ω-1, 

omega-1. 
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