
Mining semi-structured data, theoretical and experimental aspects of
pattern evaluation
Graaf, E.H. de

Citation
Graaf, E. H. de. (2008, October 29). Mining semi-structured data, theoretical and
experimental aspects of pattern evaluation. Leiden Institute of Advanced Computer Science,
Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/13207

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13207

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13207

Mining Semi-Structured Data

Theoretical and Experimental Aspects of Pattern Evaluation

E.H. de Graaf

Mining Semi-Structured Data

Theoretical and Experimental Aspects of Pattern
Evaluation

proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 29 oktober 2008
klokke 13:45

door

Edgar Hubert de Graaf
geboren te Schagen

in 1979

Promotiecommissie

Promotor: Prof. Dr. J.N. Kok
Co-promotor: Dr. W.A. Kosters
Referent: Dr. J.M. Peña (Universidad Politécnica de Madrid)
Overige leden: Prof. Dr. T.H.W. Bäck

Prof. Dr. F.S. de Boer
Prof. Dr. G. Rozenberg

This research was financed by the Netherlands Organisation for Scientific
Research (NWO) in the framework of project MISTA, grant no. 612.066.304.

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming Research and Algorithmics).

Contents

1 Introduction 1

1.1 Data Mining . 1

1.2 Structured and Unstructured Data 5

1.3 Semi-Structured Data . 5

1.3.1 Itemsets and Sequences 6

1.3.2 Trees and Graphs . 7

1.4 Overview of this Thesis . 8

1.5 Overview of Publications . 10

2 Mining with Consecutiveness 13

2.1 Introduction . 13

2.2 Consecutive Support . 15

2.3 Pruning Methods . 19

2.3.1 Parent Support Recalculation 19

2.3.2 Introducing α . 21

2.3.3 Exact Depth . 21

2.3.4 Hyperclique Patterns and h-confidence 22

2.4 Results and Performance . 23

2.4.1 Consecutive Support 25

2.4.2 Selection of ρ and σ 30

2.4.3 Combination with h-confidence 32

2.5 Conclusions . 35

3 Patterns with a Fixed Interval In Between 37

3.1 Introduction . 37

3.2 Stable Patterns . 38

3.3 Definition . 39

3.4 Algorithm . 41

3.5 Results and Performance . 43

3.6 Conclusions . 46

i

ii CONTENTS

4 Mining Balanced Patterns 47

4.1 Introduction . 47

4.2 Definition . 48

4.3 Algorithm . 50

4.4 Results and Performance . 52

4.5 Conclusions . 57

5 The Most Discriminating Patterns and Domain Knowledge 59

5.1 Introduction . 59

5.2 The Maximal Discriminating Patterns 61

5.3 Algorithm without Domain Knowledge 64

5.4 Domain Specific Improvements 65

5.5 Experimental Results . 69

5.6 Conclusions . 72

6 Visualization of Graph Patterns 73

6.1 Introduction . 73

6.2 Distance Measure . 76

6.3 Optimization: Only Frequent Subgraphs and Grouping 77

6.4 Visualization . 79

6.5 Performance . 79

6.6 Conclusions and Future Work 85

7 Improved Exploration of Graph Mining Results 87

7.1 Introduction . 87

7.2 Exploring the Lattice . 90

7.3 Distance Measure . 91

7.4 Grouping Fragments . 92

7.5 Experimental Results . 94

7.6 Conclusions . 95

8 Displaying Graph Pattern Co-Occurrence in Streams 97

8.1 Introduction . 97

8.2 Related Work . 98

8.3 Model Realization . 99

8.3.1 Support . 100

8.3.2 Distance . 101

8.3.3 Merge and Split . 102

8.3.4 The Algorithm . 104

8.4 Experiments and Discussion 105

CONTENTS iii

8.5 Conclusions and Future Work 109

9 Mining Web Access Data and the Interpretation of Patterns113
9.1 The Itemset View . 114
9.2 Mining with Sequences . 118

9.2.1 Sequential Patterns . 119
9.3 Co-Occurring Subgraph . 121
9.4 Conclusions . 126

Conclusions 126

A A measure of “surprisingness” 131
A.1 Root Mean Square Deviation 131
A.2 Pruning with RMSD . 134

Bibliography 135

Nederlandse Samenvatting 145

Acknowledgements 147

Curriculum Vitae 149

1 Introduction

With the arrival of the internet and the rise of bioinformatics the analysis
of data is more and more faced with data that is loosely structured. Ex-
amples of such loosely structured data are molecule data or XML based
web pages. When data has a less rigid structure it becomes more difficult
to discover interesting patterns. There are more potential patterns (candi-
dates) since there are many ways of combining the parts. For example, in
bio-chemistry one analyses molecules for interesting patterns (e.g., many
molecules have three carbon molecules connected with a single bond). How-
ever, one molecule can potentially have many different atoms and a number
of connection types between several of these atoms.

In this chapter a general introduction is provided about principles that
are needed to better understand this thesis. First data mining will be ex-
plained. Data mining can be done on data with different level of structure;
this thesis will treat the data mining of semi-structured data. We discuss
different kinds of semi-structured data. Finally, we give an overview of the
thesis together with a list of publications on which the thesis is based.

1.1 Data Mining

Data mining can be seen as the analysis of large quantities of data in an
attempt to discover new patterns and relations in an automated fashion.
There are many books written about data mining, e.g., [32, 64, 71]. Each of
them gives a definition of data mining:

• In [64] Tan, Steinbach and Kumar define it as: “Data mining is a
technology that blends traditional data analysis methods with sophis-

1

2 Data Mining

ticated algorithms for processing large volumes of data . . . ”.

• In [71] Witten and Frank define data mining as: “The process of dis-
covering patterns in data. The process must be automatic or (more
usually) semi-automatic. The patterns discovered must be meaningful
in that they lead to some advantage, usually an economic advantage.
The data is invariably present in substantial quantities . . . ”.

• In [32] Hand, Mannila and Smyth give the following definition: “Data
mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner . . . ”.

We prefer the third definition. In [32] they continue: “The relationships
and summaries derived through a data mining exercise are often referred
to as models or patterns. Examples include linear equations, rules, clusters,
graphs, tree structures, and recurrent patterns in time series . . . ”. In this
thesis the patterns resulting from data mining are sets, sequences and graphs
and the models are rules and clusters.

The data to be mined can have different levels of structure. Some data
does not really have any defined structure, like text or video (unstructured
data), while other sources of data are completely and rigidly defined (struc-
tured data). In this thesis we will focus on data that is between these ex-
tremes. Data will have a defined structure, however each record may have a
different size or might not contain the same parts as the other records.

There is a broad range of techniques used in data mining. The most
important data mining tasks used in the thesis are frequent pattern mining,
competitive neural networks and clustering. We next discuss these three
data mining tasks.

In frequent pattern mining we discover certain re-occurring substructures
that occur at least minsupp times, where minsupp is the minimal frequency
threshold (minimal support). The search space is potentially huge and fre-
quent pattern mining is usually involved in pruning the search space. Com-
monly this is done by using anti-monotonicity, i.e., the occurrence count of
a pattern is never more than the occurrence of sub-pattern (= all elements
are also in the pattern, but all elements of the pattern are not necessarily
in the sub-pattern).

The competitive neural network used in this thesis is a dimensional re-
duction method. Dimensions in this context basically mean the number of

Chapter 1 3

values of one record. More than three dimensions are hard to visualize, since
a human can only effectively understand a picture of up to three dimensions.
For these reason we use a number of techniques that Tan, Steinbach and Ku-
mar in [64] define as: “find a projection of the data to a lower-dimensional
space that perserves pairwise distances as well as possible, as measured by
an objective function . . . ”. A technique is called a dimensional reduction
method if it approaches the distances between instances as good as possi-
ble with (far) less dimensions. In this way the visualized data can be made
understandable to the analyst with one picture.

The neurons or centroids in a competitive neural network compete for
being selected, given an input vector. E.g., assume that we have a data set
where each record has 100 values (= 100 dimensions) with a number ranging
from 0 to 10 indicating a grade one person gave to 100 different movies. It
is very hard for a human to quickly see groups of people that like the same
movie. However, if we reduce the number of dimensions to two, two numerical
values, then we can easily make a picture and the user can see groups and
their approximate distance in one view. One of the most commonly used
algorithms was proposed by Kohonen in [38]; this algorithm is called the
self-organizing map. In this thesis we will use an other algorithm: the “push
and pull”-algorithm as proposed in [39].

The “push and pull”-algorithm places instances in a two-dimensional
or three-dimensional space adhering to the given distance between them.
Basically each instance is represented by a neuron. In the case of a Koho-
nen network, neurons are initialized with a random weight vector equal in
length to the input vector. At each iteration the neuron with the smallest
Euclidean distance to the input vector is selected and they are place a little
bit closer to this input. This enables us to make different kinds of visual-
izations, a common visualization is displayed in Figure 1.1. Each hexagon
is one neuron and each side of a hexagon is colored dark if the weight vec-
tors of neighbouring neurons are relatively distant from each other and light
otherwise. Each hexagon is colored dark if the average relative distance is
large and light if it is low.

The difference between the self-organizing maps, like those from the Ko-
honen algorithm, and the “push and pull”-algorithm is that in the former
each instance is prelinked to a neuron which is moved to an optimal position
using the pair-wise relative distance. For the “push and pull”-algorithm we
do not need to know the input vectors.

Self-organizing maps, on the other hand, have neurons with a weight
vector. These weight vectors have equal dimensions for the input vectors.
For each input vector provided to the self-organizing map the best-matching

4 Data Mining

Figure 1.1: A common way of visualizing Kohonen networks.

unit (neuron) and its neighbours are pulled closer to this input. In the case
of the “push and pull”-algorithm we link each neuron with an instance in the
dataset. Two neurons are selected and their two-dimensional co-ordinates are
slightly adjusted towards their target distance. The main difference between
self-organizing maps and the “push and pull”-algorithm is this different way
of using the neurons.

The advantage in comparison to SOM (and other more traditional meth-
ods) is that we can stop the iterations of the “push and pull”-algorithm at
any time and immediately get a valid approximated two-dimensional (or
three-dimensional) picture of the distances between all neurons when we
only know the pair-wise relative distance for the instances.

Neurons that have a low Euclidean distance are put close together in the
two-dimensional space and neurons with a big distance are placed far apart.
Furthermore, because each instance (or multiple instances) is prelinked with
a neuron you can quickly view the relative distances. In the case of self-
organizing maps you will first need to locate the neuron closest to each
instance and then calculate the distance between these neurons or interpret
the color image. Further processing of the neurons is needed to get a two-
dimensional picture of the relative distances.

The disadvantage of the “push and pull”-algorithm is that many in-
stances will give many neurons and this either slows the algorithm down or
makes the approximation less accurate. A solution would be to have some
way to quickly prelink multiple instances to one neuron.

Clustering is discussed in many sources, e.g., Hopgood in [34] defines
clustering as a form of unsupervised learning, i.e., the training examples
consist of input vectors without the desired output. As successive input vec-
tors are presented, they are clustered into N groups, where the integer N
may be prespecified or may be allowed to grow according to the diversity of

Chapter 1 5

the data. The competitive neural networks used in this thesis are primarily
used as a dimension reduction and visualization method. However, as points
are pulled closer, they form clusters. The difference with traditional cluster-
ing methods is that the user sees the picture and indicates the clusters. The
traditional methods automatically make the clusters.

1.2 Structured and Unstructured Data

Some data sources impose a rigid structure on the data they contain and
others impose no structure at all. First these extremes need to be explained
before discussing semi-structured data. Structured data has the following
properties:

• Data is organized into transactions.

• Similar transactions are grouped together, e.g., in tables.

• These groups all have the same attributes.

• The value of an attribute is always of a certain type and length.

Unstructured data is the opposite of structured, making mining of un-
structured data difficult. Often it also difficult to explain mining results
when mining unstructured data. Examples of unstructured data are plain
text, video, sound and images and they share the following properties:

• Data can be of any type.

• There are no transactions, we have no information about the meaning
of attributes; there is no specific format.

• The structure doesn’t follow any rules, e.g., for a video there will be
no rule disallowing certain colors in certain places.

• The value of an attribute have no specific type or length.

1.3 Semi-Structured Data

Semi-structured data arises when the source or the environment does not
impose a rigid structure on the data and when data is combined from sev-
eral heterogeneous sources [59]. E.g., bibliographic data where some books
are written by one author and others by two or more. For some of these

6 Semi-Structured Data

authors only their name is known and for others their age or their specialty.
Also for describing a specific paper different fields are needed than for a
novel. Another example of semi-structured data is website browsing data,
where the browsing behaviour of a user is one record in a dataset of graphs.
Each hyperlink click a user makes is represented by one node in this graph.
Some nodes might have extra attributes giving extra information about the
webpage. The connections between the nodes indicate the hyperlinks a user
chooses and towards which page (node) that link pointed. So also in this
data there is structure, but it is not completely rigid. Semi-structured data
has the following properties:

• Records do not necessarily have the same number of fields and fields
can be different.

• Records or parts of a record describing a similar principle, e.g., a
molecule or an atom, can be grouped together.

• Fields do not have to be in a specific order.

This thesis will discuss the evaluation of pattern occurrence in semi-
structured data in the form of itemsets, sequences, trees and graphs.

1.3.1 Itemsets and Sequences

The simplest form of semi-structured data we will treat in this thesis are
item sets. In the case of item sets one has a data set where each transaction
is a set of items. The most common way of mining this data is frequent
subset mining where we search for groups or sets of items that can be found
in at least a user-defined number of transactions:

Definition 1.3.1 (Frequent Subsets) Assume we have a data set D of
sets where each transaction is a finite set I of items. A set S is a frequent
subset for D if for minsupp transactions I it holds that S ⊆ I. The minimal
support threshold minsupp is a pre-defined threshold. Note that D itself is
considered as a sequence of transactions.

Sequences are a similar type of semi-structured data, but they differ in
that the order of items is important. Ten times an item A is different than
one and a sequence of first an item A and then B is different from first an
item B and then A. In this thesis we will discuss sequences in the context of
frequent sequence mining, where sequences are frequent if they occur in at
least minsupp sequences:

Chapter 1 7

Definition 1.3.2 (Frequent Subsequences) A sequence d = (d1, d2, . . . ,
dm) is called a super-sequence of a sequence s = (s1, s2, . . . , sk) if k ≤ m
and for each si (1 ≤ i ≤ k) there is a dji

(1 ≤ ji ≤ m) with si = dji
and

ji−1 < ji (i > 1). We denote this with s ≺ d. The sequence s is called a
sub-sequence of d.

The sequence s is called frequent if it is a subsequence of at least minsupp
sequences in the dataset D of sequences.

1.3.2 Trees and Graphs

Both graphs and trees consist of vertices where some are connected with
edges. When edges of a graph have a direction they are called directed, and
undirected otherwise. We call a graph connected if all vertices can be reached
from all other vertices by following the edges. All graphs in this thesis are
undirected connected. Furthermore a graph is called fully connected if be-
tween all vertices their is an edge connecting them.

A tree is basically a graph without cycles. This means that edges are
such that when we start following edges from a vertex, we can not end up
at the same vertex. Also trees usually have a root and leaves. The root is
the designated vertex where we can start and follow the edges until we end
up at one of the last vertices, a leaf.

A typical example of a graph is a molecule that consists of atoms and
these atoms are connected with bonds. Frequent subgraphs (see Definition
1.3.3) are harder to find in comparison with frequent subtrees because of
possible cycles. This can be explained with Figure 1.2. Say one wants to see
if subgraph 1 is a subgraph of the molecule Ribose (where no character
means the vertex is Carbon, C). We need to match all atoms and edges from
the subgraph with the atoms and edges of the Ribose and this can require
many attemps depending on the atom and edge that you match first.

Definition 1.3.3 (Frequent Subgraph) Let G = (V, E) and G ′ = (V ′,E ′)
be connected graphs, where V and V ′ are finite, non-empty sets of vertices
and E and E ′ are non-empty sets of edges (links between pairs of vertices).
The graph G ′ is a subgraph of G if V ′ ⊂ V and E ′ ⊂ E.

If G ′ is a subgraph of at least minsupp graphs G in a dataset D of graphs
then we call G ′ a frequent subgraph.

8 Overview of this Thesis

Figure 1.2: An example molecule and two subgraphs

1.4 Overview of this Thesis

In this thesis we investigate ways of mining (different types of) semi-structured
data. We look how the occurrence of patterns in the data can be evaluated
in different ways in order to find interesting patterns.

Representing results to the user is also important and the visualization of
results from mining semi-structured data enable the user to see the patterns
that are of interest to him or her.

The need for mining semi-structured data comes from the growing num-
ber of sources of semi-structured data; due to the growth of internet and
advances in bio-informatics. E.g., in the case of internet we want to know
how users make use of a website and how we can improve usability. Bio-
logical structures are often complex and many can be described using semi-
structured data, e.g., sequences to describe protein sequences or graphs de-
scribing molecules.

Next we give an overview of the rest of the thesis.

Chapter 2 will discuss the discovery of consecutive occurring patterns.
The chapter will start by defining consecutive support. Consecutiveness in
this thesis is defined as the number of occurrences of patterns where we take
into account the distance between transactions where the pattern occurred.
With distance is meant the number of in-between transactions (each taking
equal time and there are no time gaps between them) that did not contain
the pattern or the amount of time between timestamps. Of course, this only
makes sense if the transactions are given in some logical order.

Chapter 2 proceeds to discuss how we can prune the search space such
that we can have a lower minimal consecutiveness and still get results rea-
sonably quickly. Discovering consecutive occurring patterns can be combined

Chapter 1 9

with principles used before in combination with traditional support to find
interesting patterns. We show how we can combine these principles with
consecutiveness to discover new patterns. We apply consecutive support on
biological dataset containing anonymous patients and their deviation from
normal for several spots, clones, within the chromosomes. For all these pa-
tients, with the same illness, we search the most common sets of deviating
clones. Out of this we construct a picture showing which areas are most
commonly deviating from normal.

Related is Chapter 3: in this chapter the data about occurrences is used
to discover stable and balanced patterns occurring many times and with sim-
ilar time between intervals. The basic approach for stable patterns is to take
all pairs of occurrences and see if another occurrence (approximately) occurs
half-way. If this happens many times, the pattern has often similar time be-
tween intervals. The approach for balanced patterns prunes the search space
for patterns by deciding the number of occurrences of all distances (up to a
certain maximal distance) between all pairs and prune them if this is lower
than a user-defined threshold.

The pruning threshold for balanced patterns is more intuitive to the
data analysist. The advantage of balanced patterns is that its parameters
are easier to estimate. However its disadvantage, in comparison to stable
patterns, is that there has to be a maximal distance for which we keep a
count. One pattern discovered, during the experiments, was that one user
of portalexecutivo.com visited the research and training part every seven
days during one month.

Chapter 4 is about faster discovery of patterns when we know approx-
imately where patterns are located within a sequence. This domain knowl-
edge can be used when we search for the most discriminating patterns, pat-
terns occuring many times in one set of sequences and not in another. The
main application area for this technique is in the area of protein sequence
analysis. Two different groups of protein sequences are assumed to be most
different in the helix areas. The proposed speed-up of Chapter 4 was found
to depend mainly on how exact one can estimate the position (probable time
window) of the patterns within the (transaction) sequences. Furthermore it
became clear that the speed up also depends on the discriminative power
of the patterns, e.g., if we search for the ten best patterns and these pat-
terns are very discriminative then we can skip the counting of many other
patterns. This is because we can calculate their occurrence to be such that
they will never be more discriminative.

In Chapter 5, Chapter 6 and Chapter 7 the visualization of patterns for
different data is discussed.

10 Overview of Publications

In Chapter 5 a model is built that visualizes co-occurring patterns. In
this way the user can quickly see which patterns often occur in the same
transactions and which almost only occur in different ones. The grouping of
patterns, as done in this chapter, improves the runtime and the readability
of the co-occurrence model.

In Chapter 6 an application is presented where the user can browse
the results of a frequent subgraph mining algorithm in different ways. First
of all one can start with one graph and extend it or shrink it to another
depending on it being frequent or not. E.g., the biologist can start with
one interesting pattern. They add or remove parts and make the pattern
biologically more relevant (and only a little bit less occurrence). For the
second way of browsing the algorithm first constructs groups of patterns
that are structural related and co-occur a lot. Then one can browse from
one group to the other quickly view the more interesting co-occurring groups
of structural unrelated patterns.

Finally in Chapter 7 a method of visual modelling co-occuring patterns in
streams is presented. Streams are potentially infinite, making an approach
that first mines for frequent patterns impossible. Our approach builds a
model of patterns in a stream by shrinking and growing patterns based on
their frequency and approximated co-occurrence (distance).

In Chapter 8 we apply our techniques on real data in scenarios based
(weblogs). It becomes clear that not all techniques are equaly effective in
the weblog scenario. E.g., discriminating pattern mining techniques give a
large number of interesting patterns. We also use a measure such that we
can discover patterns that are proportionally different. This allows us to find
patterns that are perhaps relatively small in their occurrence, but suprising
in their occurrence within the different groups (i.e., the pattern occurs much
more in one group). Finally we discuss how one can prune the search space
when this measure is used.

Co-occurrence modelling is less effective in this setting because most
sequences (of users going from page to page) are too short. For most of
these short sequences there are not many co-occurrening patterns.

1.5 Overview of Publications

Parts of this thesis are published in the form of papers. Next we give an
overview of the papers on which the different chapters are based.

Chapter 2: Mining with Consecutiveness

Chapter 1 11

A large part of this chapter is based on a paper in the Proceedings of the
ECML/PKDD Workshop on Data and Text Mining for Integrative Biology
(BIOWS’06) [29].

Chapter 3: Patterns with a Fixed Interval In Between
The content of this chapter is based on the paper published in the Proceed-
ings of the 18th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC’06) [25].

Chapter 4: Mining Balanced Patterns
The issues in this chapter were published in the Proceedings of the Interna-
tional Conference on Artificial Intelligence and Applications (AIA’08) [30].

Chapter 5: The Most Discriminating Patterns and Domain Knowl-
edge
Parts of this chapter are published in the Proceeding of the 17th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC’05) [28] and in
the Proceedings of 3rd International ECML/PKDD Workshop on Mining
Graphs, Trees and Sequences (MGTS’05) [27].

Chapter 6: Visualization of Graph Patterns
The content of this chapter is based on the paper published in the Proceed-
ings of the 27th SGAI International Conference on Artificial Intelligence
(AI’07) [24].

Chapter 7: Improved Exploration of Graph Mining Results
This chapter is largely based on the work as published in the Proceeding of
the 4th IFIP Conference on Artificial Intelligence Applications & Innovations
(AIAI’07) [23].

Chapter 8: Displaying Graph Pattern Co-Occurrence in Streams
The work in this chapter was published in the Proceedings of the 19th
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC’07) [26].

2 Mining with Consecutiveness

We propose a new measure of support (the number of occurrences of a pat-
tern) in which instances are more important if they occur with a certain
frequency and close after each other in the stream of transactions. We will
explain this so-called consecutive support and discuss how patterns can be
found faster by pruning the search space, for instance by using “parent sup-
port recalculation”. Both consecutiveness and the notion of hypercliques are
incorporated simultaneously into the Eclat algorithm. This combination
results into new patterns.

Examples using artificial datasets show how interesting phenomena can
be discovered. The new measure of support can be applied in many areas,
ranging from bio-informatics to trade, retail, and even law enforcement. E.g.,
in bio-informatics it is important to find patterns contained in many individ-
uals, where patterns close together in one chromosome are more significant.

2.1 Introduction

In earlier research de Graaf et al. explored the use of frequent itemsets to
visualize deviations in chromosome data concerning people with a certain ill-
ness, genomic profiling [31]. During this exploration of the problem it became
apparent that patterns are more important when the areas (transactions)
in which they occur are close together. The consecutiveness of transactions
containing the pattern plays an important role in certain applications. Here
patterns are frequent sets of items where frequent means that their support,
that can be defined in different ways, is larger than the minsup threshold.
In a biological problem setting the items can be individuals and the trans-

13

14 Introduction

actions can be “clones”, pieces of the chromosome that might occur more
or less often than in a healthy individual. Patterns in close transactions are
better because they are close together in the chromosome and are biologi-
cally more significant than patterns that are far apart and are in different
chromosomes.

Consecutive support informally is the support or the number of occur-
rences of patterns where we take into account the distance between trans-
actions where the pattern occurred. With distance is meant the number of
in-between transactions that did not contain the pattern. Of course, this
only makes sense if the transactions are given in some logical order. This
type of support can be applicable in a number of domains:

• Retail. E.g., big supermarkets receive large quantities of goods every
day. Knowing which goods will be sold in large quantities close in time
helps the supermarket decide when to refill these goods.

• Trading. E.g., a combination of stocks being sold once may lead to
waves of these stocks being sold close after each other while other
combinations might not.

• Law enforcement. E.g., when police officers investigate telephone
calls, subjects that are discussed during a longer period might be more
interesting than subjects (word combinations) that are mentioned of-
ten at separate moments.

This type of support still needs to be defined and its usefulness needs to
be shown. To this end, this chapter makes the following contributions:

• We define different variations of consecutive support, having
two parameters. We will define this support with a reward factor ρ
and a punishment factor σ; and we will show how this can be imple-
mented.

• We will show how to speed up the search by pruning the
search space. Some methods of pruning will not give all patterns,
but we can find most of the important patterns faster. Other pruning
methods (i.e., “parent support recalculation”) will not influence the
outcome, but they require more calculation and the speed up is less.

Chapter 2 15

• We will show the usefulness of consecutive support using a
motivating example. With our experimental results we show how
consecutive support, compared to the results in [31], gives new and
interesting patterns when applied in a biological setting of finding pat-
terns in chromosomes.

Our research is related to work done on the (re)definition of support, gap
constraint and weighted association rule mining. The notion of support was
first introduced by Agrawal et al. in [3] in 1993. Much later Steinbach et al.
in [63] generalized the notion of support providing a framework for different
definitions of support in the future. Our notion of consecutive support is
not easily fitted in the eval-function provided there. (Next to the framework
Steinbach also provides a couple of example functions.) Our work also has
some relation with research done in [65] concerning weighted association rule
mining where different items have different weights. Consecutive support can
be seen as weighted patterns based on distances between transactions that
contain them.

If we take a market basket database as an example, we will have a
database where the customers (or transactions) are itemsets of products they
bought. We could invert this database such that transactions correspond to
the products, and are itemsets of customers that bought the product. Now
we can search for patterns and with techniques like the time window con-
straint as defined in [43] or the gap constraint as defined in [5], we can search
for customers who bought products close in time. However the combination
of products that were bought will be lost. Furthermore in our case we want
to know which products occur often in combinations. Work in this chapter
is related to [31] where it was stated that the biological problem could profit
from incorporating consecutiveness into frequent itemset mining.

Finally this work is related to some of our earlier work. In [27] we men-
tioned that support is just another measure of saying how good a pattern
fits with the data. There we defined different variations of this measure, and
consecutive support can been seen as such a variation.

2.2 Consecutive Support

The definition of association rules relies on the notion of support: the number
of transactions that contain a given itemset. In this chapter we propose a
more general definition, that takes the consecutiveness of the transactions
into account.

16 Consecutive Support

Suppose items are from the set I = {1, 2, . . . , n}, where n ≥ 1 is a
fixed integer constant. A transaction is an itemset, which is a subset of I.
A database is an ordered series of m transactions, where m ≥ 1 is a fixed
integer constant. If an itemset is an element of a database, it is usually
referred to as a transaction.

The traditional support of an itemset I with respect to a database D, de-
noted by TradSupp(I,D), is the number of transactions from D that contain
I. Clearly, 0 ≤ TradSupp(I,D) ≤ m.

We now propose a more general definition. Fix two real parameters ρ ≥ 0
and 0 ≤ σ ≤ 1. Suppose we have an itemset I and let Oj ∈ {0, 1} (j =
1, 2, . . . , m) denote whether or not the jth transaction in the database D
contains I (Oj is 1 if it does contain I, and 0 otherwise; the Oj ’s are referred
to as the O-series). The following algorithm computes a real value t in
one linear sweep through the database and the resulting t is defined as the
consecutive support of I with respect to D (denoted by Supp(I,D, ρ, σ)):

t := 0; j := 1; reward := 0;
while (j ≤ m) do

if (Oj = 1) then
t := t + 1 + reward ; reward := reward + ρ;

else
reward := reward · σ;

fi
j := j + 1;

od

The consecutive support t can become very large, and one could for example
use
√

t instead. In our examples we will not use
√

t, and just employ t.

Example 2.2.1 Assume that the O-series of a certain pattern I equals
101101, ρ = 1 and σ = 0.1. The consecutive support t will then be 5.41:

O 1 0 1 1 0 1
reward 0 1 0.1 1.1 2.1 0.21

t 1 1 2.1 4.2 4.2 5.41

Note that during the loop the value of reward , which “rewards” the oc-
currence of a 1, is always at least 0. If reward would never be adapted, i.e., it
would remain 0 all the time, this algorithm would compute TradSupp(I,D).
We easily see that 0 ≤ Supp(I,D, ρ, σ) ≤ m + m(m − 1)ρ/2. The max-
imum value is obtained if and only if all transactions from the database

Chapter 2 17

D contain I, i.e., an O-series entirely consisting of 1s. Only the all 0s se-
ries gives the minimum value 0. Furthermore we have for any 0 ≤ σ ≤
1: Supp(I,D, 0, σ) = TradSupp(I,D). For all ρ ≥ 0 and 0 ≤ σ ≤ 1,
Supp(I,D, ρ, σ) ≥ TradSupp(I,D) holds. Finally, note that the so-called
Apriori property [3] or anti-monotonicity constraint is satisfied: for all
ρ ≥ 0 and 0 ≤ σ ≤ 1, Supp(I,D, ρ, σ) ≥ Supp(I ′,D, ρ, σ) if the item-
set I ′ contains the itemset I. This follows from the observation that the
reward -values in the I ′-case are never larger than those in the I-case.

It is not hard to show that for the O-series 1a10b11a20b2 . . . 0bn−11an (a
series of a1 1s, b1 0s, a2 1s, b2 0s, . . . , bn−1 0s, an 1s) consecutive support
equals

n
∑

i=1

ai + ρ
n

∑

i=1

ai(ai − 1)/2 + ρ
∑

1≤i<j≤n

aiajσ
bi+bi+1+···+bj−1 =

(1− ρ/2)S + ρS2/2− ρ
∑

1≤i<j≤n

aiaj(1− σbi+bi+1+···+bj−1),

where S =
∑n

i=1 ai; here 00 must be interpreted as 1 (an exponent 0 can be
avoided by demanding all bi’s to be non-zero; if we also demand all ai’s to
be > 0 both the number n and the numbers ai and bi are unique, given an
O-series). The formula follows from the fact that if reward equals ε, then the
series 1k0` changes this into (ε + kρ) · σ`, meanwhile giving a contribution
of k + kε+ k(k− 1)ρ/2 to the consecutive support. An extra series 0` at the
beginning or end has no influence on the consecutive support.

The second term of the equation, ρ
∑n

i=1 ai(ai − 1)/2, consists of the
ρ’s added for a subset of consecutive 1s in the O-serie. The last term of
the equation is the addition of the rewards from the previous consecu-
tive 1s decreased with σ because of the number of 0s between the groups
of consecutive 1s. Also note that when we choose ρ = 2 we get S2 − ρ
∑

1≤i<j≤n aiaj(1−σbi+bi+1+···+bj−1). This shows that consecutive support is

at most S2 if ρ = 2.

Example 2.2.2 Take ρ = 2. Then the O-series 150`14 has consecutive sup-
port 81− 40(1−σ`). As `→∞ this value approaches 41 = 52 +42, whereas
for small ` and σ ≈ 1 it is near 81 = (5 + 4)2.

It can be observed that the consecutive support as defined above only
depends on the lengths of the “runs” and the lengths of the intermediate
“non-runs”: the ai’s and bi’s above. Here a run is defined as a maximal
consecutive series of 1s in a 0/1 sequence. Indeed, the sum

∑j−1
k=i bk equals the

18 Consecutive Support

number of 0s between run i and run j. This also implies that the definition
is symmetric, in the sense that the support is unchanged if the order of the
O-series is reversed — a property that is certainly required. (In fact, this is
due to the fact that ρ is added, while we multiply by σ.)

Instead of this way of calculating consecutive support it is also possible
to augment the O-series with time stamps. Then one is able to use the
real time between two transactions in calculating the consecutive support.
In the previous definition each transaction was assumed to take the same
amount of time and there are no time gaps between transactions. Another
improvement might be to reinitialize reward to 0 at suitable moments, for
instance at chromosome boundaries or at “closing hours”.

We now consider algorithms that find all frequent itemsets, given a
database. A frequent itemset is an itemset with support at least equal to
some pre-given threshold, the so-called minsup. Thanks to the Apriori

property many efficient algorithms exist. However, the really fast ones rely
upon the concept of FP-tree or analogues, which does not keep track of
consecutivity. This makes these algorithms hard to adapt for consecutive
support.

One fast algorithm that does not make use of FP-trees is called Eclat

[77]. Eclat grows patterns recursively while remembering which transac-
tions contained the pattern, making it suitable for consecutive support. In
the next recursive step only these transactions are considered when counting
the occurrence of a pattern. All counting is done using a matrix and patterns
are extended with new items (using the order in the matrix). This can easily
be adapted to incorporate consecutiveness. The Eclat algorithm works as
follows:

1. Construct a matrix where rows are transactions and columns are the
items.

2. For each 1-item itemset count their support and store in which trans-
actions they occur.

3. Make an ordering for these items.

4. Extend a k-item itemset (parent pattern) to a (k + 1)-item itemset
(child pattern) by adding one item that comes later in the order.

Chapter 2 19

5. Count the support for the (k + 1)-item itemset and update the sets of
transaction in which the pattern occurs.

6. Recursively continue until the minsup is reached.

2.3 Pruning Methods

The consecutive support of patterns can be much higher than the traditional
support. As a consequence more patterns will be frequent or the minimal
support threshold should be set much higher. Pruning is important, since a
high minimal support might result in the skipping of interesting patterns.
The lower we can set our minimal support, and still find a solution fast, the
more flexibility the algorithm allows the user. In this chapter we propose
several pruning methods. These are implemented in our version of Eclat,
which counts consecutive support. Our version of Eclat will be called from
here on ConseClat.

We will propose different pruning methods (to be discussed in detail in
the next subsections):

• “Parent Support Recalculation”, given the support of the parent pat-
tern and the collected child pattern support, we can calculate (while
counting) if minsup can still be reached for the child.

• “Introducing α”, with α we let the user estimate the probability of a
child pattern occurring. In this way the calculated maximal achievable
support becomes an estimate.

• “Exact Depth”, here we prune those patterns that will never reach an
user-defined minimal length.

Some of the used pruning methods influence the completeness: one will not
get all patterns, because we will stop counting based on probabilities.

2.3.1 Parent Support Recalculation

The first pruning method we discuss does not affect completeness. Basi-
cally this parent support recalculation method does the following for each
transaction r:

20 Pruning Methods

• Calculate the consecutive support the parent had collected before con-
sidering transaction r, where the child is the current itemset, being the
parent itemset generated in the previous recursive step extended with
one item.

• Subtract this support from the total support of the parent.

• Add to this the support the child pattern has collected up until now.
The child can still maximally achieve this consecutive support, from
here on called maximal achievable support.

• Return a support of 0 if this is less than the minimal support.

In re-calculating the support of the parent pattern at a certain transaction
we make use of the fact that we store which transactions contained the parent
pattern. In ConseClat we use a list of transaction numbers that contain the
pattern. With these numbers we can (re)calculate the consecutive support
of the parent in the same loop through the database:

reward parent := reward parent · σdiff

partial support parent := partial support parent + 1 + reward parent
reward parent := reward parent + ρ

where diff is the number of transactions that did not contain the parent
pattern:

diff := current transaction number − last transaction number − 1

Here last transaction number is the transaction number of the last trans-
action (before current transaction number , the current one) that contained
the parent pattern. Now the maximal achievable support for the child is as
follows:

possible := parent total − partial support parent + support

The variable parent total is the support the parent pattern was able to
achieve and support is the consecutive support that the child-pattern was
able to “collect” until the current transaction.

Now the algorithm will stop counting support when it is no more possible
to still achieve a support that is higher than the minimal support. The child
pattern can at most get the maximal achievable support, because it can
never score better than its parent on the remaining transactions.

Chapter 2 21

Example 2.3.1 Assume the following “child”-pattern that is an extension
of the “parent”-pattern:

Oparent 1 1 1 0 0 1

Ochild 0 0 0 0 0 1

Furthermore assume minsup = 5, σ = 0.1 and ρ = 1.0; then we can stop
counting support when we encounter the second zero. At that point we
know that at most we can get a consecutive support of 4.03 (the consecutive
support of the parent was 7.03 and a consecutive support of 3 was lost in
the child).

2.3.2 Introducing α

In the parent support recalculation method we assumed that the remaining
transactions will all contain the child. This is an optimistic estimate neces-
sary for guaranteeing completeness. We could assume that the child pattern
will be contained in less than all of the remaining transactions α, 0 ≤ α ≤ 1.
We then introduce this α in the calculation of maximal achievable support:

possible := α · (parent total − partial support parent) + support

This will speed up the mining process, but we lose completeness.

2.3.3 Exact Depth

In the case of our motivating example biologists expressed the desire to
visualize only long patterns, because the small patterns are so numerous
that affected areas are less recognizable. This wish to only get patterns of
a certain minimal length can be used for pruning. Hence we allow the user
to set the minimal length η that patterns should have, and we can prune if
the following holds:

last frequent item − item < η − depth

where the items are represented as numbers lexicographically ordered in
the matrix used by ConseClat, last frequent item is the last item in that
matrix that is still frequent and item is the current item that we are consid-
ering. The depth is the recursive depth, which is equal to the length of the
pattern. If the inequality statement holds then the pattern will never reach
the required length η and it can be pruned.

22 Pruning Methods

Example 2.3.2 Assume given the following database:

item numbers: 1 2 3 4

transaction 1 1 0 1 1

transaction 2 1 0 0 1

transaction 3 0 1 1 1

Assume that η = 4, the parent item set is {1} and we are considering to
extend this with {3} to the child {1, 3}. However 4− 3 < 4− 2 and so {1, 3}
and all its children are pruned.

2.3.4 Hyperclique Patterns and h-confidence

Many principles applicable to traditional support can still be used when one
considers consecutive support. In the case of our working example we wanted
to consider patterns with a minimal consecutive support of 25. Unfortunately
there are many patterns with this support. In order to speed up the search
and to filter out uninteresting patterns we can search for hyperclique patterns
as described in [73].

Definition 2.3.1 (Hyperclique pattern) Assume we have a minimal con-
fidence threshold hc. An itemset p is called a hyperclique pattern in the case
that when each item of p occurs that the other items also occur in “most
cases”. The latter is decided by calculating confidence and using hc.

We explain hyperclique patterns using by means of an example:

Example 2.3.3 First a minimal confidence threshold hc is defined, say hc =
0.6 and then we want to know if {A, B, C} is a hyperclique pattern. We
calculate the confidence of {A} → {B, C}, {B} → {A, C} and {C} →
{A, B}. The lowest of these confidences is the h-confidence, which must be
higher than hc. Assume that conf (A→ B, C) = Supp({A, B, C},D, ρ, σ) /
Supp({A},D, ρ, σ) = 0.58. Then {A, B, C} is no hyperclique pattern.

When we combine the concept of consecutive support with hyperclique
patterns we get patterns that occur frequent, but in the flow of transactions
close after each other, and there is a strong affinity between items: the
presence of x ∈ P , where P is an item set, in a transaction strongly implies
the presence of the other items in P .

Hyperclique patterns possess the cross-support property. This means that
we will not get cross-support patterns (patterns containing items of substan-
tially different support levels).

Chapter 2 23

We can easily see that hyperclique patterns possess the cross-support
property. If one item has a high support and another item has a low support
then the h-confidence will be low if the denominator is the item with the
high support.

Example 2.3.4 Say A is an item with a consecutive support of 200 and B
has a consecutive support 50. The support of {A, B, C} will at most be 50
because of the Apriori property (the support of the superset is always the
same as or less than the support of its subsets). So the confidence conf (A→
B, C) can at most be 50/200 = 0.25. As a consequence the h-confidence of
{A, B, C} will also be at most 0.25. And if hc = 0.6 then {A, B, C} and all
the patterns that are grown from it can be pruned.

The combination of hyperclique patterns and consecutive support al-
lows us to find patterns that occur in transactions that follow each other
close, yet minimal support can be relatively low. This property is especially
handy for our motivating example, because a minimal consecutive support
of 25 will generate many cross-support patterns, which are pruned if we
search only for hyperclique patterns. Hyperclique patterns also possess the
anti-monotone property, because as patterns grow the numerator of the con-
fidence calculation stays the same or declines. The denominator stays fixed
and so h-confidence will decrease or stay the same:

Example 2.3.5 Assume conf (A→ B, C) = 0.58. The superset {A, B, C, D}
will at most have the same consecutive support as {A, B, C}. Also the de-
nominator Supp({A},D, ρ, σ) stays the same, so the h-confidence of the set
{A, B, C, D} can at most be 0.58.

2.4 Results and Performance

In this section we test the implementation by a number of experiments. The
experiments were done for three main reasons. First of all we want to show
that consecutive support can enable one to find new patterns that one does
not find with the traditional support. Secondly we want to show how using
the principle of h-confidence one can filter the data. Finally we want to give
an indication how the reward factor ρ and punishment factor σ should be
chosen.

We do not see a correlation between traditional and consecutive support
other than the fact that patterns with a high support are expected to be
more consecutive. Here we will not further study this correlation. However

24 Results and Performance

it could be interesting to further investigate this effect since some patterns
have a lower support than others but they occur more consecutive. It must
be noted however that a measure incorporating this effect have not been
found to be anti-monotone and as such makes pruning difficult.

All experiments were done on a Pentium 4 2.8 GHz with 512MB RAM.
For our experiments we used two real datasets and four synthetic datasets.
One real biological dataset, referred to as the Nakao dataset, was also used
in [31]. This data set originates from Nakao et al. who used the dataset in
[53]. This publicly available dataset contains normalized log2-ratios for 2,124
clones, located on chromosomes 1–22 and the X-chromosome. Each clone is
a transaction with 2 to 1,020 real numbers corresponding to patients. We
can look at gains and/or losses. If we consider gains, a patient is present
in a transaction (clone) if his value is at least 0.225 higher than that of a
healthy person (for losses at least 0.225 lower).

The second real dataset we call the one-user dataset and it contains the
webpages accessed by one heavy user of the former portalexecutivo.com

website on a single day. Some days there is no access and hence some of the
1,603 transactions are empty. Webpages are categorised resulting in a total
of 185 possible items for every transaction.

Two datasets are synthetic databases, but structured like the dataset
of clones. One of these datasets, the noisy dataset, contains more noise
than the other, the ideal dataset. The precise structure of these datasets is
described in [31]: both the noisy and the ideal dataset consist out of 3,200
clones with 150 real numbers as the items (the patients). The ideal datasets
has 115 items with sufficient gains and 70 with sufficient losses. Depending
on if you analyse losses or gains, “sufficient” means we have 115 frequent
1-itemsets or 70 frequent 1-itemsets. The noisy datasets all 1-itemsets are
frequent (gains and losses).

The remaining datasets are synthetic datasets made to show how consec-
utive support can be used to find patterns that could not be found before.
The third synthetic data set, referred to as the food+drink dataset, de-
scribes a cafe-restaurant where in the middle of a day a lot of people buy
bread and orange juice; it has 1,000 transactions (customers) and 100 items
(products). The fourth synthetic data is called the coffee+cookie dataset,
where in the cafe-restaurant small bursts of people buy coffee and a cookie
(during the day in the coffee breaks). This dataset also has 1,000 transac-
tions (customers) and 100 items (products). The synthetic datasets are all
available from the MISTA website mista.liacs.nl.

Chapter 2 25

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.5 1 1.5 2 2.5 3 3.5

#p
at

te
rn

s

Rho

Figure 2.1: Number of patterns from the Nakao dataset as ρ increases (gains,
minsup = 625, σ = 0.5)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

#p
at

te
rn

s

Sigma

Figure 2.2: Number of patterns from the Nakao dataset as σ increases (gains,
minsup = 625, ρ = 2.0)

2.4.1 Consecutive Support

Figure 2.1 and Figure 2.2 show how the number of patterns increases with
ρ and σ. Each setting therefore requires another minsup. The height of the
consecutive support depends on how high we choose ρ and σ. A higher re-
ward and a weak punishment will lead to a higher consecutive support. A
higher minsup threshold will give as an outcome more occurring patterns

26 Results and Performance

that are more consecutive. Usually a user wants to know those patterns oc-
curring a minimal number of times, but consecutive. When choosing minimal
consecutive support (minsup) one should choose it higher than the minimal
occurrence threshold and lower than the power of the minimal occurrence
threshold. When choosing the latter one would only find either more occur-
ring or extremely consecutive patterns.

In some cases it is best to select the minsup such that one gets a fixed
number of patterns, e.g., 1,000, in order to compare the results.

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000

#p
at

te
rn

s

Transaction

Figure 2.3: Occurrence graph of food+drink using traditional support
(minsup = 257)

In the experiments of Figure 2.3, 2.4, 2.5 and 2.6 we tried to find approx-
imately 1,000 patterns with the highest traditional or consecutive support.
After this we count for each transaction how many patterns it contains,
allowing us to see how active areas are. For the Nakao dataset more active
means that many clones (gains) in the same area are present in many groups
of patients.

Figure 2.3 and Figure 2.4 show where patterns occur when we use tra-
ditional support, giving results similar to those in [31]. For each transaction
the number of patterns that it occurs in is plotted in a so-called occurrence
graph. In each of these graphs we will indicate chromosome borders when
the Nakao dataset is visualized. In the food+drink dataset it is very clear
that consecutive support enables us to see new patterns. Figure 3.3 shows
that in certain areas patterns are more consecutive. Figure 2.6 shows that
certain areas are less active if we use consecutive support instead of tradi-

Chapter 2 27

0

200

400

600

800

1000

0 500 1000 1500 2000 2500

#p
at

te
rn

s

Clone

Figure 2.4: Occurrence graph of Nakao using traditional support (gains,
minsup = 129)

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000

#p
at

te
rn

s

Transaction

Figure 2.5: Occurrence graph of food+drink using consecutive support
(minsup = 467, ρ = 1.0 and σ = 0.5)

tional support (chromosomes 7 and 8, near clones 600 and 800) and some
areas contain more patterns (chromosome 9, near clone 1000), hence pro-
viding patterns that occur together in one part of the chromosome instead
of far apart.

In order to evaluate the effect of noise on consecutive support we used
the ideal and noisy dataset. These datasets are generated with properties

28 Results and Performance

0

200

400

600

800

1000

0 500 1000 1500 2000 2500
#p

at
te

rn
s

Clone

Figure 2.6: Occurrence graph of Nakao using consecutive support (gains,
minsup = 827, ρ = 1.0 and σ = 0.5)

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500

#p
at

te
rn

s

Clone

Figure 2.7: Occurrence graph of the ideal dataset using traditional support
(gains, minsup = 479)

similar to the Nakao dataset. The results for the ideal dataset are plotted
in Figure 2.7 and 2.8.

Figure 2.7 shows that some interesting areas are less clear when using
traditional support. However they become more apparent when we apply
consecutive support.

The results for the noisy dataset are displayed in Figure 2.9 and 2.10,

Chapter 2 29

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500

#p
at

te
rn

s

Clone

Figure 2.8: Occurrence graph of the ideal dataset using consecutive support
(gains, minsup = 6, 180, ρ = 2.0 and σ = 0.7)

because of the noise the middle peak becomes less clear. However overall the
results seem hardly to be affected by noise.

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500

#p
at

te
rn

s

Clone

Figure 2.9: Occurrence graph of the noisy dataset using traditional support
(gains, minsup = 617)

30 Results and Performance

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500
#p

at
te

rn
s

Clone

Figure 2.10: Occurrence graph of the noisy dataset using consecutive sup-
port (gains, minsup = 6, 039, ρ = 2.0, σ = 0.7)

2.4.2 Selection of ρ and σ

The goal of the experiments in this subsection is to give some guidance in the
selection of the reward factor ρ and the punishment factor σ. Each pattern
has its corresponding O-series that indicates in which transactions it occurs.
The right parameters should result in many patterns of which the O-series
has large groups of consecutive 1s.

Figure 2.11 plots the average number of consecutive groups of 1s and 0s
for all patterns. Here the value for minsup is heuristically chosen by linearly
deriving it from minsup as it was empirically decided for ρ = 2.

The plot gives an indication of consecutiveness of patterns found using
different settings of ρ and σ (less groups indicate more consecutiveness). The
plot seems to stabilize around ρ = 2. Figure 2.12 and 2.13 show that only if
we choose σ very close to 1.0 we get results more like those for traditional
support. However, Figure 2.13 still shows some influence of ρ. For the Nakao
dataset it seems that if ρ ≈ 2, then the influence of σ is minimalized as
long as σ is not too close to 1.0. Also similar experiments showed significant
changes in the occurrence graph only if ρ was chosen very small.

In Figure 2.14 we see the number of groups of 1s and 0s drop in a similar
fashion for the one-user dataset. However we also see a sharp drop if σ is
exactly 1.0, i.e., no punishment for gaps. This is probably caused by the fact
that the one-user dataset contains many very consecutive patterns with
only some very large gaps between their occurrence. The users often went

Chapter 2 31

Groups of 0s and 1s

 60
 50
 40
 30

1
1.5

2
2.5

3
Rho 0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Sigma

20
25
30
35
40
45
50
55
60
65

Groups of 0s and 1s

Figure 2.11: Effect of ρ and σ on the O-series for the Nakao dataset (gains,
minsup = 625 · (ρ/2), heuristically chosen to guarantee a reasonable amount
of patterns)

0

200

400

600

800

1000

0 500 1000 1500 2000 2500

#p
at

te
rn

s

Clone

Figure 2.12: Occurrence graph of Nakao using consecutive support (gains,
minsup = 2, 498, ρ = 2.0 and σ = 0.8)

online for a couple of days and then stayed offline for a long period. It is
also likely that the user did one type of task during one week and another
type of task the next week (requiring different pages) and the other type
again after a while. In this way one gets many patterns with large groups of
0s (non-occurrences) between groups of 1s (occurrences).

32 Results and Performance

0

200

400

600

800

1000

0 500 1000 1500 2000 2500
#p

at
te

rn
s

Clone

Figure 2.13: Occurrence graph of Nakao using consecutive support (gains,
minsup = 6, 157, ρ = 2.0 and σ = 0.99)

Groups of 0s and 1s

 32
 30
 28
 26
 24

0
0.5

1
1.5

2
2.5

3
Rho 0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Sigma

22

24

26

28

30

32

34

Groups of 0s and 1s

Figure 2.14: Effect of ρ and σ on the O-series for the one-user dataset
(gains, minsup = 25)

2.4.3 Combination with h-confidence

In the following experiments the goal was to show that combining hy-
perclique patterns, see Example 2.3.5 with consecutive support enables us
to see patterns occurring in bursts. In order to show this we used the
coffee+cookie dataset, where in the cafe-restaurant small bursts of people
buy coffee and a cookie (during the day in the coffee breaks). This dataset

Chapter 2 33

has 1000 transactions (customers) and 100 items (products).

100

150

200

250

300

350

400

450

500

550

600

0 100 200 300 400 500 600 700 800 900 1000

#p
at

te
rn

s

Transaction

Figure 2.15: Occurrence graph of coffee+ cookie using only h-confidence
(minsup = 64, hc = 0.5)

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

#p
at

te
rn

s

Transaction

Figure 2.16: Occurrence graph of coffee+cookie using only consecutive
support (minsup = 225, ρ = 1.0, σ = 0.5, hc = 0)

Figure 2.15 does not show the small groups buying the same products:
just hyperclique patterns do not reveal the bursts. Figure 2.16 shows that
with only consecutive support we are also unable to discover these patterns.
Figure 2.17 shows people buying the products in bursts. Consecutive support

34 Results and Performance

stresses patterns that are consecutive and the principle of h-confidence filters
out the noise caused by cross-support patterns.

When we apply these techniques to the Nakao dataset (losses), in Figure
2.19, we can see, e.g., on chromosomes 14 and 15 (near clone 1,600) that
certain areas become more active compared to not using h-confidence in
Figure 2.18.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

#p
at

te
rn

s

Transaction

Figure 2.17: Occurrence graph of coffee+cookie using both consecutive
support and h-confidence (minsup = 64, ρ = 1.0, σ = 0.5, hc = 0.31)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 500 1000 1500 2000 2500

#p
at

te
rn

s

Clone

Figure 2.18: Occurrence graph of Nakao: consecutive support (losses,
minsup = 400, ρ = 1.0, σ = 0.9, hc = 0)

Chapter 2 35

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500

#p
at

te
rn

s

Transaction

Figure 2.19: Occurrence graph of Nakao: consecutive support and h-
confidence (losses, minsup = 25, ρ = 1.0, σ = 0.9, hc = 0.15)

2.5 Conclusions

From our experimental results it follows that consecutive support enables us
to find new and useful patterns compared to traditional methods. Principles
applicable to traditional support can still be used with consecutive support:
for instance the combination of consecutive support and the h-confidence
threshold enables us to find small bursts of patterns. In this case h-confidence
filters out noise and consecutive support amplifies the bursts.

Consecutive support might result in many more patterns. Because of this,
pruning the search space is important. In this chapter we proposed a number
of methods for pruning, where some methods do not give all patterns.

Using the distance between transactions (like it was done in this chap-
ter) is an interesting area of research. In the future we want to examine
if consecutive support enables us to visualize even more types of behavior.
Also we want to see if we can speed up the search for consecutive patterns
even more. Finally we want to extend consecutive support by using distance
between transactions in different ways, which hopefully will give us new and
interesting patterns.

3 Patterns with a Fixed Interval

In Between

In this chapter we propose a new measure of support: we count the number of
times a pattern occurs (nearly) in the middle between two other occurrences.
We will define this measure formally and show how it can be added to
the Eclat algorithm for finding frequent patterns. We will show that if
patterns occur often in the middle transaction, then the interval between
their occurrences is stable.

We will use the deviation of the number of in-between non-occurrences to
pick patterns with a fixed occurrence interval; we will call these “balanced”.
Because the anti-monotone property does not hold, we will also introduce a
new way of pruning the search space.

3.1 Introduction

This research is related to work done on the (re)definition of support, us-
ing time with patterns and the incorporation of distance measured by the
number of transactions between pattern occurrences. The notion of support
was first introduced by Agrawal et al. in [3] in 1993. Since then many new
and faster algorithms where proposed. We make use of Eclat, developed by
Zaki et al. in [77]. Steinbach et al. in [63] generalized the notion of support
providing a framework for different definitions of support in the future. Our
work is also related to work described in [50] where association rules are
mined that only occur within a certain time interval. Furthermore there is
some minor relation with mining data streams as described in [11, 20, 66],
in the sense that they use time to say something about the importance of a

37

38 Stable Patterns

pattern.

Finally this issue is related to some of our earlier work. Results from [31]
indicated that the biological problem could profit from incorporating consec-
utiveness into frequent itemset mining, which was elaborated in Chapter 2.
In the case of stable patterns we also make use of the transactions and the
distance between them. Secondly in Chapter 5 it was mentioned that sup-
port is just another measure of saying how good a pattern fits with the data.
There we defined different variations of this measure, and stability can been
seen as one such variation.

3.2 Stable Patterns

Mining frequent patterns is an important area of data mining where we
discover substructures that occur often in (semi-)structured data. In this
chapter we will further investigate one of the simplest structures: itemsets.
Much research has been done in the area of frequent itemset mining. We will
propose an algorithm that discovers patterns that occur at regular moments,
or rather in regular intervals. This will enable us to mine for events that
occur, e.g., every Friday. The technique can be extended to more complicated
structures like sequences.

Stable patterns are patterns that occur frequent and with certain in-
tervals. The interval is the number of transactions without the pattern in
between two transactions (events) with the pattern. Instead of discovering
stable patterns one could consider to add an extra item, for example the day
of the week. However by discovering stable patterns we hope to find more
unexpected intervals, e.g., every three hours a pattern occurs.

We will define this type of support and show its usefulness. To this end,
this chapter makes the following contributions, with emphasis on the first
and second:
— We will define stable patterns and show that they possess the
Apriori property. This means that if pattern p′ is contained in pattern
p, then the stability value of p is at most equal to that of p′. The property
makes an efficient implementation possible.
— Furthermore we will propose an algorithm for the discovery of stable
patterns and discuss its efficiency.
— Finally we will show that this enables us to find new and interesting
patterns via explorative experiments on real and synthetic datasets.

Our working example is the mining of an access log from the Computer
Science Institute of Leiden University. This access log will first be converted

Chapter 3 39

to sets of properties in, e.g., pages visited every hour. From here on we call
this dataset the website dataset.

The formal definitions concerning stable patterns and an algorithm are
given in Section 3.3. In Section 3.5 we present experimental results.

3.3 Definition

In this section we will define stable patterns. In particular, patterns that
occur at regular intervals (e.g., at equidistant time stamps) will be called
stable. In order to judge this property, we will determine how often events
occur “in the middle” between two other events.

In this chapter a dataset consists of transactions that take zero time.
Each transaction is an itemset, i.e., a subset of {1, 2, 3, . . . ,max} for some
fixed integer max . The transactions can have time stamps; if so, we assume
that the transactions take place at different moments. We choose some no-
tion of distance between transactions; examples include: (1) the distance is
the time between the two transactions and (2) the distance is the number
of transactions (in the original dataset) strictly in between the two trans-
actions. We will define Trans(p) as the series of transactions that contain
pattern (i.e., itemset) p; the support of a pattern p is the number of elements
in this ordered series.

We now define w-stable patterns as itemsets that occur frequent (support
≥ minsup) in the dataset and that have stability value ≥ minstable, where
the values minsup and minstable are user defined thresholds. A w-good triple
(L, M, R) consists of three transactions L, M and R, occurring in this order,
such that |distance(L, M) − distance(M, R)| ≤ 2 · w; here w is a pregiven
small constant, e.g., w = 0. The stability value of a pattern p is the number of
w-good triples in Trans(p), plus the number of transactions in Trans(p) that
occur as left endpoint in a w-good triple, plus the number of transactions
in Trans(p) that occur as right endpoint in a w-good triple.

Note that the stability value of a pattern p′ with p′ ⊆ p is at least equal to
that of p: the so-called Apriori or anti-monotone property. Also note that
the stability value remains the same if we consider the dataset in reverse
order.

We now show that equidistant events are “very” stable (in case w = 0):

Theorem Suppose that Trans(p) has n elements, so p has support n. If
Trans(p) satisfies:

1. n− 2 elements occur as the left endpoint of a 0-good triple,

40 Definition

2. n− 2 elements occur as the right endpoint of a 0-good triple, and

3. the number of 0-good triples equals bn/2c(dn/2e − 1)
i.e., for even n: n/2 (n/2− 1); for odd n: ((n− 1)/2)2

then the transactions in Trans(p) are equidistant. The values in 1, 2 and 3
are maximal, as is their sum.

Proof We proceed from the right (formally by induction). The end of the
sequence Trans(p) = (T1, T2, . . . , Tn) looks like:

· · · L&R L&R L&R L&R L&R R R

· · · Tn−6 Tn−5 Tn−4 Tn−3 Tn−2 Tn−1 Tn

· · · 6 5 4 3 2 1 0

Here L/R denotes: this Ti is a left/right endpoint in a 0-good triple; the
numbers beneath the Ti’s indicate the number of times Ti is the middle of
a 0-good triple.

First observe Tn−2, Tn−1 and Tn, where Tn−2 is a left endpoint of a 0-
good triple; this implies that distance(Tn−2, Tn−1) = distance(Tn−1, Tn) = a
for some a.

Now suppose we have the following situation: Ti = L (with i ≥ bn/2c)
is the left endpoint of a 0-good triple (L, M, R), for some M = Tj with
j > i; furthermore a = distance(T`, T`+1) for all ` > i. Now Tj occurs n− j
times as middle of 0-good triples, whose right endpoints are the consecu-
tive Tj+1,. . . ,Tn. We can conclude that distance(Ti, Ti+1) = a. So we have
distance(T`, T`+1) = a for ` = bn/2c, bn/2c+ 1, . . . , n.

Similarly, using the right endpoints, one can show that distance(T`, T`+1) =
b for some b (` = 1, 2, . . . , dn/2e). Using ` = bn/2c we see that a = b.

Example 1 Assume we have the following itemsets in our dataset:

transaction 1: {A, B, C}
transaction 2: {D, C}
transaction 3: {A, B, E}
transaction 4: {E, F}
transaction 5: {A, B, F}
transaction 6: {E, F}
transaction 7: {A, B, F}
transaction 8: {E, F}
transaction 9: {A, B, C}

Chapter 3 41

As distance we take the number of intermediate transactions. The stability
value (with w = 0) of {A,B} is 4 + 3 + 3 = 10, the maximal value possi-
ble. There are 4 0-good triples; we have 3 transactions that are left (right)
endpoint of a 0-good triple (see picture below, left). If we insert two trans-
actions {E, F} between transaction 1 and 2, and also two between 8 and 9,
we still have 4 0-good triples, but now we only have 2 transactions that are
left (right) endpoint of a good 0-triple (see picture below, right), leading to
stability value 4+2+2 = 8 < 10. This example shows that condition 3 from
the Theorem is in itself not sufficient yet in order to guarantee equidistance.

s s s s s s s s s s

3.4 Algorithm

We now consider algorithms that find all stable patterns, given a dataset.
Thanks to the Apriori property many efficient algorithms exist. However,
the really fast ones rely upon the concept of FP-tree or something similar,
which does not keep the order of transactions. This makes these algorithms
hard to adapt for discovering stable patterns.

Eclat [77] is a fast algorithm that does not make use of FP-trees; it
grows patterns recursively while remembering which transactions contained
the pattern, making it very suitable for our purpose. In a recursive step
only these transactions are considered when counting the occurrence of a
pattern. All counting is done by using a matrix and patterns are extended
with new items using the order in the matrix. This can easily be adapted to
incorporate stability.

Now suppose that Trans(p) = T parent , with n = |T parent|, is the ordered
series of transactions (augmented with their index numbers from the original
dataset) that contain itemset p. The algorithm below (Algorithm 1) will
calculate the stability value when adding a new item to p. The algorithm
will also calculate the support and the new series of transactions T child that
will be considered in the next step of a frequent pattern mining algorithm:
the Eclat algorithm is extended to StableClat. The child is the parent
itemset p extended with the new item. Note that Left and Right are sets.
In line (9) we add the index numbers of the transactions. The function
contains(trans, item) checks if the transaction trans contains the item item,
the function has(T parent , index) verifies that transaction index is in T parent ;
Tindex is the transaction as retrieved from the original dataset. The mindepth
threshold defines from which depth the stability should be calculated —

42 Algorithm

otherwise, for small itemsets with large supports the computation would
become cumbersome. The depth is the recursive depth that is equal to the
size of the child pattern that we are considering.

Algorithm 1 Stability Value

1: support := 0, stable := 0, Left := ∅, Right := ∅, T child := empty series,
i := 1

2: while i ≤ n do
3: if contains(T parent

i , item) then
4: T child := T child with T parent

i appended, support := support + 1
5: if depth ≥ mindepth then
6: j := i + 2
7: while j ≤ n do
8: if contains(T parent

j , item) then

9: middle := (T parent
i + T parent

j) mod 2, index := (T parent
i +

T parent
j) / 2

10: if middle = 0 and has(T parent , index) and
contains(Tindex , item) then

11: stable := stable + 1
12: Left := Left ∪ {T parent

i }, Right := Right ∪ {T parent
j }

13: end if
14: end if
15: j := j + 1
16: end while
17: end if
18: end if
19: i := i + 1
20: end while
21: stable := stable + |Left |+ |Right |

This algorithm will only increase stable if the pattern is exactly in the
center of two transactions containing the pattern (so w = 0); this can be
easily generalized. It is possible that the pattern does not occur in the center
transaction but in a transaction that is very near. This can be recognized
when w > 0, and should give a better score in that case. One possibility
is to also count patterns almost in the center. For which threshold w can
be specified. Suppose Ti is the outer left transaction and Tj is the outer
right transaction, then we consider every T`, where i < (i + j)/2− w ≤ ` ≤
(i + j)/2 + w < j. Now our algorithm needs to check if the pattern occurs

Chapter 3 43

in one of these transactions.

Example 2 Suppose we have the same 9 transactions as in the previous
example.
If w = 1 then the stability value of {A,B} will be 10 + 2 = 12: transactions
1 and 7 (and 3 and 9) are now also endpoints of a 2-good triple.

The maximal stability value depends on the size of the database. This
makes setting the minimal stability threshold minstable somewhat difficult.
To make it easier one only needs to give a number dist , where dist > 0. With
dist we calculate the stable value if the distance between all transactions
containing the pattern is precisely dist . In this calculation we disregard the
count of the left and right endpoints. This dist can now be used to propose
a reasonable value for minstable, where D is the original dataset:

minstable =

(|D|/dist
2

)

Most frequent itemsets or patterns have a high stability value because
it is more likely that a center transaction contains the pattern. However
these patterns will not necessarily make a stable pattern more apparent.
Furthermore it might also be contained in many transactions that do not
form a stable interval. In order to solve this problem we can divide the
stability value by the square of support and let newstable = stable/support2.

However we will loose the anti-monotone property, so this will only be
useful as a post-processing step. We choose to divide by support2 because
stable can maximally become

(

support

2

)

+ 2 · (support − 2) < support2

In such a way we remove the influence of a high support on stability.

3.5 Results and Performance

The experiments were done for three main reasons. First of all by using the
synthetic dataset we show that patterns with a stable interval will be found.
Secondly with the website dataset we show that the algorithm also finds
good stable patterns for real problems. And finally with a synthetic dataset
and with the website dataset we want to examine the efficiency of the algo-
rithm compared to normal Eclat. Of course the normal Eclat algorithm
only finds frequent itemsets and not stable patterns. However the goal is to

44 Results and Performance

show the influence of the search for stable patterns on speed. Our imple-
mentation of Eclat that discovers stable patterns is called StableClat.
All experiments were done on a Pentium 4 2.8 GHz with 512MB RAM.

The synthetic datasets can be seen as a supermarket that sells newspa-
pers and credits for cell phones. The combination of the two is sold every day
in the morning at least x times. The first dataset contains 1,000 transactions
and 110 items. Of these 110 items 10 occur every 4 transactions. Also each
item has a support of 200. From here on we call this dataset news&credit

small. The second dataset contains 5,000 transactions and 110 items. Of
these 110 items 10 occur every 10 transactions. Also each item has a sup-
port of 1000. From here on we call this dataset news&credit large. The
StableClat algorithm was also tested on a real dataset. This dataset is
based on an access log of the website of the Computer Science department of
Leiden University, as said before. It contains all 1,991 items of the webpages
that were visited, grouped in one hour blocks, so each of the 744 transac-
tions contains the pages visited during one hour. This dataset will be called
website dataset.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

#p
at

te
rn

s

Transaction

Figure 3.1: Occurrence graph of news&credit small dataset using tradi-
tional support (minsup = 25)

Figure 3.1 and Figure 3.2 show an occurrence graph. For each transaction
the number of frequent patterns contained by it are counted and plotted.
The use of a minimal stability threshold will give less patterns because it

Chapter 3 45

0

500

1000

1500

2000

0 50 100 150 200

#p
at

te
rn

s

Transaction

Figure 3.2: Occurrence graph of news&credit small dataset using tradi-
tional support and stability (minsup = 25, dist = 20)

filters out non-stable patterns. The items in the news&credit small dataset
all occur 200 times, so their support is 200. Usually transactions are made
up out of 20 randomly selected items. However every 4 transactions we
randomly select 10 items and the remaining 10 items are the items that will
be in the stable pattern. In this way there are several stable patterns, but
also many unstable ones. Figure 3.1 shows that with only support we will
not discover these stable patterns easily. When we use a minimal stability
threshold (with the dist parameter from Section 3.3) we are able to see these
patterns as we show with Figure 3.2. In all experiments we let mindepth = 2.

Figure 3.3 shows the occurrence of one pattern in the first 100 trans-
actions from the website dataset. First we searched the patterns with
minimal stability

(

744/7
2

)

. Then we selected one pattern where the fraction
stable/support2 is maximal. The figure shows a regularity in the occurrence
of the selected pattern.

Table 3.1 gives an indication of the influence of stability calculation on
the speed of the algorithm. The news&credit large dataset shows a large
slowdown because of more frequent patterns. The occurrence of many fre-
quent patterns means that more combinations have to be checked for a
pattern occurring in the center transaction.

46 Conclusions

0 20 40 60 80 100

C
on

ta
in

s
pa

tte
rn

?

Transaction

Figure 3.3: The occurrence of one stable pattern for website dataset
(minsup = 100, dist = 7)

news&credit small news&credit large website

support only 1 36 179

with stability 2 140 251

Table 3.1: Time in seconds needed to mine each of the three datasets
(minsup = 100, dist = 4)

3.6 Conclusions

When we use stability in our search for patterns, we are able find patterns
that occur with some regular interval. The measure we proposed in this
chapter still enables us to prune using anti-monotonicity.

Using the distance between transactions like it is done in this chapter
is an interesting area of research. In the future we want to examine new
measures that would enable us to visualize other types of behavior. Also we
want to see if we can speed up the search for stable patterns, e.g., by using
heuristics or by improving the stability measure. Furthermore, we would like
to compare our approach with post-processing methods.

4 Mining Balanced Patterns

In many applications it will be useful to know those patterns that occur
with a balanced interval, e.g., a certain combination of phone numbers are
called almost every Friday or a group of products are sold a lot on Tuesday
and Thursday.

4.1 Introduction

In the previous chapter we proposed a new measure of support (the number
of occurrences of a pattern in a dataset), where we count the number of times
a pattern occurs (nearly) in the middle between two other occurrences. If
the number of non-occurrences between two occurrences of a pattern stays
almost the same then we call the pattern stable.

It was noticed that some very frequent patterns obviously also occur
with a stable interval, meaning in every transaction. However more inter-
esting patterns might occur, e.g., every three transactions. Here we discuss
a method for finding such patterns using standard deviation and average.
Furthermore we propose a simpler approach for pruning patterns with a
balanced interval, making estimating the pruning threshold more intuitive.

In this chapter we will further investigate one of the simplest structures:
itemsets. However the principles of balanced patterns are easily extended to
sequential pattern mining, tree and graph mining. In Chapter 3 we proposed
an algorithm that discovers stable patterns that occur at regular moments,
or rather in regular intervals, enabling us to mine for events that occur, e.g.,
every Friday. In this chapter we will introduce a new approach to mining for
patterns with a stable interval. Note that the transactions in this chapter

47

48 Definition

have an order. In order to distinguish it from stable patterns we will call
these new patterns balanced patterns. With this new approach we will offer
solutions for problems in our work done in [25]:

• Patterns occurring in every transaction made it hard to discover pat-
terns with a more interesting intermediate interval.

• The threshold for pruning was a certain value that a measure for sta-
bility needed to achieve. Even though a formula was given to estimate
this value, an easily understandable value was lacking.

We will define our approach to mining balanced patterns and show its
usefulness. To this end, this chapter makes the following contributions:
— We will define balanced patterns and show their use. These bal-
anced patterns will enable the user to better filter uninteresting patterns
(Section 4.2).
— Furthermore we will propose an algorithm that will enable us to mine
balanced patterns (Section 4.3).
— Finally we will empirically show that the algorithm can find inter-
esting patterns efficiently (Section 4.4).

Again a typical example is the mining of an access log from the Computer
Science institute of Leiden University. In this chapter website dataset will
have transactions of half-hour blocks as opposed to hour blocks.

4.2 Definition

In this section we will define balanced patterns. We first discuss several
problems and possibilities, and finally give the proper definition. We call the
occurrences balanced if between two successive occurrences there is (almost)
always the same amount of transactions.

The problem with patterns with balanced occurrences is that an itemset
may occur less balanced than a superset of this itemset. Patterns occurring
with a balanced interval do not have the anti-monotone property, where the
subset is either equally good or better than the superset. In the balanced
pattern case: the subset is not always more (or equally) balanced than the
superset.

Example 4.2.1 Say that item A occurs in transactions 1, 4, 7 and 10 and
item B occurs in transaction 4, 7, 10 and 13 then the itemset {A, B} will
occur in transaction 4, 7 and 10. Both A and B have three times two transac-
tions between occurrences (successive and non-successive). However {A, B}

Chapter 4 49

has only two times two transactions between occurrences because an occur-
rence can only become a non-occurrence and not the other way around.

For our definition of balanced patterns we first notice that all balanced
occurrences (successive and non-successive) should have at least one inter-
mediate distance a minimal number of times. Furthermore if you count the
distances between all occurrences then this count is anti-monotone: a super-
set never has more of one particular distance. This is obvious because the
number of occurrences will never increase for a superset and as a consequence
the count of one particular distance will never increase. This property is also
anti-monotone if we limit the distances we count, e.g., we count a distance
only if it is smaller than 10 in-between transactions.

Example 4.2.2 The following table, where we only count upto 4 in-between
transactions, is an example of counting the distances:

In-between Transactions Count
(Distance)

0 0

1 5

2 200

3 30

4 199

The balanced value for the pattern with these counts will be 200, the highest
count in the table.

Still if we only look at the distance count we will not find the balanced
patterns we want, since patterns that occur with very unbalanced intervals
might still have a minimum amount of one particular distance. We filter
those patterns by keeping the distance between occurrences that immedi-
ately succeed each other (instead of taking all distances). If a pattern is
balanced then these distances should approach the average of all these dis-
tances. Their standard deviation will be near 0, since one distance should
occur the most. Note that in calculating the standard deviation we do not
limit the distances we consider. This can be done because the number of
possible distances is far less for successive occurrences.

Now we can find all balanced patterns, however we will still find many
patterns that are occurring every transaction. Their distance is almost al-
ways 0 and although they are well balanced they are often not interesting.

50 Algorithm

These patterns can be filtered if we demand a certain average distance, e.g.,
if the user-defined threshold minavg is set to 1 then all these patterns will
be filtered out, since their average distance approaches 0.

The definition of balanced patterns should be the following: A pattern is
called a balanced pattern if among all occurrence pairs there is a distance
that occurs at least a user-defined number of times (minnumber) and the
distance between successive occurrences have maximally a user-defined stan-
dard deviation (maxstdev) and minimally a user-defined average (minavg).

4.3 Algorithm

We now consider algorithms that find all frequent itemsets, given a database.
A frequent itemset is an itemset with support at least equal to some pre-
given threshold, the so-called minsup. Thanks to the Apriori property many
efficient algorithms exist. However, the really fast ones rely upon the concept
of FP-tree or something similar, which does not keep track of in-between
distances. This makes these algorithms hard to adapt for use in balanced
patterns.

One fast algorithm that does not make use of FP-trees is called Eclat

[77]. Eclat grows patterns recursively while remembering which transac-
tions contained the pattern, making it very suitable for balanced patterns.
In the next recursive step only these transactions are considered when count-
ing the occurrence of a pattern. All counting is done by using a matrix and
patterns are extended with new items using the order in the matrix. This
can easily be adapted to incorporate balance counting.

Our algorithm BalanceClat will use the Eclat algorithm. However
instead of counting support we count the different distances between all oc-
currences, e.g., pattern A has 10 times 3 transactions, without the pattern A,
between occurrences. We will prune on this value instead of pruning on the
minimal support threshold. In this case the user-defined threshold will be
the minimal number of times at least one of `+1 distances {0, 1, 2, . . . , `} is
seen. For balanced patterns we consider this threshold to be the minnumber
threshold. As said before, we can only find balanced patterns if we also
demand a maximal standard deviation for distances between occurrences.
This will be done by introducing the maxstdev threshold. Finally we are not
interested in patterns occurring in every transaction. We introduce a third
user-defined threshold that demands a minimal average distance: minavg .
For maxstdev and minavg we only use distances between successive occur-
rences and for minnumber all distances ≤ `.

Chapter 4 51

We now propose a more general definition. Suppose we have an itemset I
and let Oj ∈ {0, 1} (j = 1, 2, . . . , r) denote whether or not the jth transaction
in some subset S of the database D contains I (Oj is 1 if it does contain
I, and 0 otherwise; the O’s are referred to as the O-series), r = |S|. The
function ϕ : N → N is a translation from the index j for the j-th transaction
in S to the index k giving the position of the same transaction in D.

The main adaptation to Eclat is replacing support with a balance value
denoted with t. Also it calculates the standard deviation (stdev) and average
distance (avgdist) for the successive occurrences:

j := 2, h := −1
succdists := sequence of distance counts between successive
occurrences
alldists := sequence of distance (≤ `) counts between all occurrences
while (j ≤ r) do

if (Oj = 1) then
i := 1
while (i < j) do

if (Oi = 1 and ϕ(j)− ϕ(i)− 1 ≤ `) then
alldistsϕ(j)−ϕ(i)−1 := alldistsϕ(j)−ϕ(i)−1 + 1

fi
i := i + 1

od
if (h 6= −1) then

succdistsϕ(j)−ϕ(h)−1 := succdistsϕ(j)−ϕ(h)−1 + 1

fi
h := j

fi
j := j + 1

od
t := max (alldists), the largest count in the sequence
stdev := standard deviation for succdists
avgdist := average for succdists, also denoted with avg(succdists)

The standard deviation for succdists can simply be calculated in the follow-
ing way:

√

∑

i(avg(succdists)− i)2 · succdistsi /
∑

i succdistsi (4.1)

Eclat can now prune using the balance value t (if t < minnumber) and
patterns are only displayed if their standard deviation and average distance

52 Results and Performance

are sufficient. These are straightforward adaptations that will not be given
in detail.

Standard deviation changes if patterns occur less balanced in a certain
small number of successive transactions, small periods. In some cases it
might be preferable to remove the influence of these periods. One possible
approach is to calculate average distance and the standard deviation for fre-
quent distances (for successive occurrence) only. The value for filtering with
standard deviation for the sequence Q = 〈y|y = succdisti , y ≥ mindistfreq〉
will be:

stdev =

{ √
∑

i(avg(Q)− i)2 · Qi /
∑

iQi if Q is not empty
maxstdev + 1 otherwise

(4.2)

Note that via the threshold mindistfreq the user decides when a distance is
considered frequent.

4.4 Results and Performance

The experiments were done for three main reasons. First of all we want
to show known balanced patterns will be found also in the case of noise.
Secondly we want to show that interesting balanced patterns can be found
in real datasets. Finally we want to show runtime for real data and how the
minnumber threshold influences runtime.

Our implementation of the balanced pattern mining algorithm is called
BalanceClat. All experiments were performed on an Intel Pentium 4 64-
bits 3.2 GHz machine with 3 GB memory. As operating system Debian Linux
64-bits was used with kernel 2.6.8-12-em64t-p4.

The synthetic datasets used in our first experiment below are called
find-noise-x% where x is a noise value ranging from 0 to 30. E.g., if the
noise is 10%, this means there is a 10% chance for each item of the balanced
pattern to not occur when it should and a 50% probability to still occur
because of random chance (like the other items that are not part of the
balanced pattern).

In each of these find-noise-x% datasets one pattern of 5 of the 200
items occur every 4 transactions (so distance = 3) and each dataset has
2,000 transactions. Furthermore the remaining items have a probability
50% to occur. If 5 items always occur balanced like this, we expect to find
∑5

k=1 5!/(5− k)!k! = 31 patterns.
The first real dataset we test our algorithm on is called the website

dataset. This dataset is based on an access log of the website of the Computer

Chapter 4 53

Science department of Leiden University, as said before. It contains all 1,991
items of the web-pages that were visited, grouped in half-hour blocks, so each
of the 1,488 transactions contains the pages visited during one half-hour.

The second real dataset we call the one-user dataset and it stores the
webpages accessed by one heavy user of the portalexecutivo.com website.
Each day is one transaction of pages accessed. Some days there is no access
and some of the 1,603 transactions are empty. Webpages are categorised
resulting in a total of 185 possible items for every transaction.

First the BalanceClat algorithm is executed with maxstdev = 2.5,
minavg = 2.0 and minnumber = 150. Figure 4.1 displays the number of
expected patterns that were found by the algorithm. We see that the algo-
rithm detects most patterns up to a noise level of 15%. Due to the way we
generate noise, long patterns become less likely as the noise level increases.
With a high noise level we only find the patterns of 1 item in length. This
can be improved if we change our settings for maxstdev and minavg , but we
kept them fixed for comparison reasons.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

N
r.

 o
f E

xp
ec

te
d

P
at

te
rn

s

Noise Level (0%-30%)

Figure 4.1: The effect of noise on the algorithm using the find-noise-x%

datasets.

We can use the mindistfreq threshold to decrease the influence of small
noisy periods on the balanced occurrences. Figure 8.3 shows how the effect
of noise becomes less if we set a mindistfreq of 50. Now one also finds more
of the other patterns that happen to occur reasonably balanced, however we
can filter them by lowering maxstdev .

With our next experiment we want to show the effect of dataset size
on the algorithm, scalability. To this end we measured runtime for different

54 Results and Performance

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
N

r.
 o

f E
xp

ec
te

d
P

at
te

rn
s

Noise Level (0%-30%)

Figure 4.2: The effect of noise on the algorithm using the find-noise-x%

datasets with mindistfreq = 50.

size of a dataset where each transaction can contain up to 200 items where 5
items occur every 4 transactions and the remaining items have a probability
50% to occur. In Figure 4.3 first the runtime drops; this is because many
patterns have distances occurring only a few times. E.g., when the dataset
size is 100 then minnumber = 0.1 · 100 = 10. Many patterns have distances
that occur at least 10 times. As this effect becomes less, runtime increases
and eventually it becomes nearly linear.

Figure 4.4 shows how the runtime for the website dataset drops fast
as minnumber increases. Figure 4.5 also shows a drop of runtime for the
one-user dataset.

Many patterns in the one-user dataset occur mostly unstable and only
some occur stable in such a way that the standard deviation of the interval
does not suffer too much (becomes more than minavg). One pattern that
was found was the access of research and training part of the website on the
same day every seven days, see Figure 4.6. Also this pattern lasted for more
than one month.

Table 4.1 shows the count for distances between successive occurrences.
It shows that this particular pattern, consisting of the websites of two pro-
fessors of the same group and the main page, occurs often with a successive
distance of 0, 1 or 2. This pattern probably is caused by students having
courses from both professors and some of these students access both pages
nearly every half an hour.

Finally we also applied the BalanceClat algorithm to the Nakao dataset

Chapter 4 55

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16 18 20

A
vg

. R
un

tim
e

(m
s)

Nr. of Transaction x 100

Figure 4.3: Runtime in ms for different dataset sizes; minnumber is 10% of
the dataset size (maxstdev = 1.0, minavg = 2.0, ` = 10).

0

10000

20000

30000

40000

50000

60000

70000

80000

50 100 150 200 250 300 350 400

R
un

tim
e

(m
s)

The mintimes threshold

Figure 4.4: Runtime in ms for different values of minnumber for the website
dataset (maxstdev = 1.0, minavg = 2.0, ` = 10).

used in [29]. In this dataset each of the 2,124 transactions is a clone located
on the human chromosomes. The items are the numbers of patients with
a higher than normal value for this clone (≥ 0.225). The specifics of the
dataset can be found in [53]. The parameter minavg was set 0.0, because
the interesting patterns are expected to occur very close to each other. Also
mindistfreq = 10 because patterns where expected to have small periods of

56 Results and Performance

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30
A

vg
. R

un
tim

e
(m

s)

The mintimes threshold

Figure 4.5: Runtime in ms for different values of minnumber for the
one-user dataset (maxstdev = 5.0, minavg = 2.0, ` = 10).

0

0.5

1

1.5

2

600 605 610 615 620 625 630

1
=

 tr
an

sa
ct

io
n

co
nt

ai
ns

 p
at

te
rn

, 0
 =

 o
th

er
w

is
e

Transactions

Figure 4.6: The occurrence of one pattern discovered with BalanceClat

in the one-user dataset (minnumber = 20, maxstdev = 3.0, minavg = 1.5,
` = 7).

transactions where they occurred unbalanced. Furthermore maxstdev = 0.2,
` = 10 and minnumber = 100. Results where similar to results found with
consecutive support as presented in [29] where most consecutive patterns
occurred close together in chromosome 9, see Figure 4.7. However consecu-
tive support is different in that it looks at all gap sizes between occurrences

Chapter 4 57

In-between Transactions Count
(Distance)

0 385

1 171

2 78

3 25

4 23

Table 4.1: The distances (with count ≥ 20) between successive occurrences
and their counts for one pattern (two professors & the main page) in the
website dataset (maxstdev = 2.0, minavg = 1.0, ` = 10).

and it does not have to keep a count for all possible distances.

0

5

10

15

20

0 500 1000 1500 2000 2500

P

at
te

rn
s

Clone

Figure 4.7: The occurrence of one pattern discovered with BalanceClat

in the Nakao dataset (minnumber = 20, maxstdev = 0.2, minavg = 0.0,
mindistfreq = 10, ` = 10).

4.5 Conclusions

We have presented a new way of mining for patterns occurring with a regular
interval. In comparison with stable patterns we now use a pruning threshold
minnumber that is more intuitive to users. With it the user only indicates
the number of times at least one intermediate distance should occur. Such

58 Conclusions

a distance is the number of transactions between two occurrences of the
pattern (we consider only distances below a maximal distance). This has
advantages for the intuitiveness of the pruning method. However the dis-
advantage compared to the stability measure is that we have to limit the
different intermediate distances we count.

We called patterns with a regular interval balanced and we discussed an
algorithm to find them efficiently. Its runtime performance and scalability
has been evaluated through experimentation.

Finally in the future we plan to use balanced patterns in combination
with new ways of filtering to facilitate the discovery of new patterns further.
Also research will be done on effectively visualizing balanced patterns.

5 The Most Discriminating Pat-

terns and Domain Knowledge

We investigate the discovery of sequential patterns for use in classification.
We will define variations of a fitness function that enables us to tell if one
pattern is “better” than another. Furthermore we will show how domain
knowledge can be used for faster discovery of better sequential patterns in
specific types of databases, in our case a receptor database.

5.1 Introduction

Sequence analysis has many application areas, such as the analysis of pro-
tein sequence and customer behavior. We investigate extraction of features
for protein sequence classification where features are sequential patterns:
ordered lists of items (for proteins the items are amino acids). As a mo-
tivating example, we would like to know if a protein sequence, an ordered
list of amino acids, belongs to the Olfactory family or not, where the Ol-
factory family is a group of proteins than deals with smell. We focus on a
special group of proteins called GPCRs. These G-protein-coupled receptors
(GPCRs) play fundamental roles in regulating the activity of virtually every
body cell [70]. Usually classification is done unsupervised using alignment,
however in the case of GPCRs this turned out to be difficult. Fortunately, we
know for some protein sequences whether they are of the Olfactory family
or not. These sequences can thus be divided into two disjoint classes: Ol-
factory and Non-olfactory, and from these classes we can extract sequential
patterns to be used as attributes in a classification algorithm (as is being
proposed in [45]). Then question we try to answer in this chapter is which

59

60 Introduction

sequential patterns are best used as features/patterns? And how can domain
knowledge be used to improve the search for such patterns?

Classification based on sequential patterns is also applicable in many
other areas. For example, in the case of customer behavior analysis, we
might want to characterize groups of clients based on sequential patterns in
their behavior.

Our algorithms will be based on the pattern growth approach called Pre-

fixSpan proposed in [57]. Classification by means of patterns has been done
before but not so much in the sequence domain. We first mention related
work in the non-sequence domain. Apriori-C [36] constructs classification
rules by extending the Apriori algorithm [3, 4]. Apriori-C discovers a
large number of rules from which a fixed number of rules with the high-
est support are selected. Apriori-SD [37] solves the problem of selecting
the right rules with subgroup discovery. This algorithm selects a subgroup
of rules by calculating their weighted relative accuracy. This means that the
probability of a pattern occurring in a class is compared with the probability
of its occurrence outside the class. This is weighted with the probability of
a class. Most class association rule mining algorithms work with unordered
sets of items frequently occurring together in item sets. Classification with
association rules is presented in [48] and [49]. Furthermore CorClass [78]
describes an algorithm that also works with item sets. It introduces a new
method of pruning. Specialized rules are only added if the upper bound
of its correlation is higher than the minimal correlation of k rules. In our
work we use a similar method of pruning. Much work has been done in the
field of molecular feature mining, e.g., the MolFea algorithm described in
[40]. MolFea employs a level-wise version space algorithm to discover those
molecule fragments often occurring in one dataset and less often in another.
Finally some other researchers try to use domain knowledge to speed up the
search for frequent patterns, e.g., the Carpenter algorithm presented in
[12]. In this work the authors perform row enumeration instead of the stan-
dard column enumeration done in Apriori-like algorithms. This is done
because biological datasets often have many columns/items and only a few
rows.

The “best” sequential patterns are discovered through a function that
judges patterns. In Section 2 we will discuss different instances of this func-
tion and select one for our purposes. Section 3 adapts the PrefixSpan

algorithm of [57] to deal with this function. In addition, a pruning strategy
is introduced in Section 4, increasing efficiency by first searching in a certain
area of the sequence, the probable time window. Section 4 also describes how
preferring small patterns can further increase classification performance. The

Chapter 5 61

effectiveness of these improvements will be shown in Section 5.

5.2 The Maximal Discriminating Patterns

One would like to select the best patterns for use as attributes in a clas-
sification algorithm. But how can we tell if one pattern is better than the
other? In this section we will first explain the notion of support and why
it is less useful for selecting the best pattern. Next we introduce the notion
of confidence which will give more useful patterns, but it also has disadvan-
tages. Finally we will discuss and motivate so-called maximal discriminating
patterns, enabling us to have patterns specific to one class, but without the
disadvantages of confidence.

Assume given a database D with D = D1 ∪D2 ∪ . . .∪Dc, with c classes.
The Di’s (1 ≤ i ≤ c) are mutually disjoint and non empty.

Each record in the database is a non-empty finite sequence (i.e., an or-
dered list) of items from the set Σ = {A,B,C,. . . }, e.g., (C,B,G,A,A,A,C,B). Now
fit0 is defined as support (as used in association rule mining algorithms like
Apriori [4]), because support can be seen as a measure of how well a pat-
tern fits the data. Commonly a sequence d is said to support a pattern s if
the pattern is contained (in the “subset” sense) in the sequence:

supp0(s, d) =

{

1 if for all i (1 ≤ i ≤ k) there is j (1 ≤ j ≤ `) with si = dj ;
0 otherwise,

for s = (s1, s2, . . . , sk) and d = (d1, d2, . . . , d`). This means that s is a subset
of d. We then can define fit0:

fit0(s, Di) =
1

|Di|
∑

d∈Di

supp0(s, d)

For (1 ≤ i ≤ c), where s is a pattern.
We now specialize support to sequences. A sequence d = (d1, d2, . . . , dm)

is called a super-sequence of a sequence s = (s1, s2, . . . , sk) if k ≤ m and
for each si (1 ≤ i ≤ k) there is a dji

(1 ≤ ji ≤ m) with si = dji
and

ji−1 < ji (i > 1). We denote this with s ≺ d. The sequence s is called a
sub-sequence of d. This defines sequential patterns on sequences of items.
(Another definition of sequential patterns was given by Agrawal et al. in [4],
in which they define sequential patterns on sequences of item sets). We now
let

supp1(s, d) =

{

1 if s ≺ d;
0 otherwise,

62 The Maximal Discriminating Patterns

and define fit1 in the same way as fit0 was defined using supp0.

Now fit1 or fit0 by itself is not useful for selection of features for clas-
sification. One of the patterns of size one will always have the highest fit
and these small patterns are probably often present in more than one Di.
Thus the presence of such a pattern will not give a good distinction between
classes.

The next most logical step is to use confidence to select the best patterns.
The patterns xr (1 ≤ r ≤ c), one for each class, are then chosen to maximize
confidence:

confidence =
fit1(xr, Dr)|Dr|
fit1(xr, D)|D| (5.1)

The class t of sequence s is the t (1 ≤ t ≤ c) where xt ≺ s. If more than
one t is possible we select based on the highest confidence. One is selected at
random if more than one class t has a pattern with the highest confidence. If
there is no t where xt ≺ s then the sequence could be said to be “undecided”.

A problem is that we only pick one pattern per class. This is plausible if
a class of a sequence is only decided by one sequence of features. However,
it is often the case that the class of a sequence is determined by multiple
patterns. Moreover there can be constraints on the pattern. This means that
the “class deciding” pattern xt with the constraint is not necessarily equal to
the xt without the constraint. As a consequence it is usually possible to find
a combination of patterns with a better classification performance. Finally
it is possible that a single sequential pattern xt is equal for two or more
classes, and as a consequence a choice between the classes will be done at
random. This problem will occur with a lower probability if we use multiple
patterns for each class.

Another major drawback of the confidence method is that the size of the
Di’s seriously influences the classification. E.g., assume we have databases
D1 and D2. Furthermore assume D1 contains 500 sequences and D2 only
100. The pattern p1 occurs 100 times in D2 and 60 times in D1, thus a
confidence with respect to D2 of 0.625. Another pattern p2 occurs 70 times
in D2 and 10 times in D1, giving a confidence of 0.875. The pattern p2 will be
used for classification if no other pattern has a higher confidence. However
p1 occurs in every sequence of D2 and only in a small percentage of the
sequences in D1. However, one could argue that p1 should be preferred over
p2.

Therefore we define fit2, which we use in the sequel. For a pattern s
and 1 ≤ q, r ≤ c we define δ(s, Dq, Dr) = fit1(s, Dq) − fit1(s, Dr), and we

Chapter 5 63

let fit2 (s,Dr) = min{δ(s, Dr, Dq) | 1 ≤ q ≤ c ∧ q 6= r}. We then choose
patterns xr (1 ≤ r ≤ c) with maximal fit2 (xr ,Dr). We can then use them to
classify sequences as before, without the drawbacks mentioned above. We
will usually find those patterns that are characteristic for one class. With
characteristic we mean that fit1 will have a high value in Dt and a lower
value in the other Di

′s, i 6= t.
In [44] other measures for difference, correlation measures, where dis-

cussed. Nijssen et al. discuss the use of the X 2 measure and it is proven
how pruning is also possible with this measure with two or more classes
(the databases Dr). Furthermore it is shown how pruning is not possible
when we use information gain as a correlation measure. We make use of the
δ(s, Dq, Dr), as defined earlier. The simplicity of δ(s, Dq, Dr) makes expla-
nation of the use of domain knowledge to speed up the search for the most
discriminating patterns (correlated patterns) easier.

Our new fit has some similarities with the concept of emerging patterns
presented in [6] and [14]. In order to discover emerging patterns patterns are
preferred where the ratio fit1(s, D1)/fit1(s, D2) is the highest, where D1 and
D2 are two databases each containing one class of sequences. Bailey et al. [6]
further investigate jumping emerging patterns. These are patterns that have
a support of zero in D2 and a non-zero support in D1. Emerging patterns can
also be defined in a way similar to fit2, but now using fit1 (s,Dq)/fit1 (s,Dr)
instead of δ(s, Dq, Dr). Dong et al. [14] point out that the growth rate mea-
sure used by emerging patterns does not take into account the coverage, a
problem they solve with a score function. However in the case of fit2 cover-
age is less of a problem, a pattern with a low fit1(s, D1) is less likely to have
a high fit2 value. Also the fit2 measure allows us to more easily explain and
implement the pruning rules that will be discussed in the remainder of this
paper.

In general terms, most of the classification algorithms perform better
when dealing with small to moderate size attribute sets. In order to classify
a sequence s we use a finite number of n sequential patterns pt

1, p
t
2, . . . , p

t
n per

class t, where fit2(p
t
1, Dt) ≥ fit2(p

t
2, Dt) ≥ . . . ≥ fit2(p

t
n, Dt) and pt

n has the n-
th highest fit2 for all possible patterns. These patterns, the so-called maximal
discriminating patterns, could be used by any classification algorithm when
we first convert each sequence to a vector indicating for each pattern if it
is contained in the sequence, see [45]. However it is possible that, e.g., pt

1

is supported by all or most of the sequences supporting pt
2. Thus pt

2 might
not improve classification. This problem could be solved by removing all
sequences containing pt

1 from Dt. The algorithm for searching the sequence
with maximal fit is then again applied to this subset of Dt in order to

64 Algorithm without Domain Knowledge

find pt
2. In this paper we do not further focus on the precise classification

performance, but rather on the discovery of the discriminating patterns.
Our algorithm aims at finding the set P = P t of maximal discriminating
patterns.

5.3 Algorithm without Domain Knowledge

Our pattern search algorithm, coined PrefixTWEAC (Time Window Ex-
ploration And Cutting), is based on PrefixSpan. The algorithm does not
generate candidates, but it grows patterns from smaller patterns. This prin-
ciple makes it faster than most Apriori like algorithms [57]. PrefixSpan

is a depth first algorithm, which will be explained in more detail in Sec-
tion 5.4 when we adapt this algorithm to our current needs (see Table 5.1
and Table 5.2). PrefixSpan as described in [57] searches for those patterns
with support larger than or equal to a given support threshold minsupp,
where support is defined as fit1. The algorithm starts with all frequent sub-
sequences of size one. For each sub-sequence a projected database is created.
These frequent sub-sequences are extended to all frequent sub-sequences of
size two by only looking in the projected database. This projected database
is a database of pointers to the first item occurring after the current pat-
tern, also called the prefix. A sequence is only in the projected database if it
contains the prefix. Again for each frequent sub-sequence of size two a cor-
responding projected database is created. This process continues recursively
until no extension is frequent anymore.

PrefixTWEAC (Table 5.1) is different from PrefixSpan in that it
searches for the maximal fit2 instead of the maximal support fit1 . The func-
tion fit2 is by definition not anti-monotone (so fit2(s1, Dt) > fit2(s2, Dt)
might happen, where s1 is a super-sequence of s2). However the anti-monotone
property for fit1 can still be used in two ways, when looking for the one pat-
tern with maximal fit2. First of all in PrefixTWEAC we only examine an
extended pattern p if fit1(p, Dt) ≥ minsupp where minsupp is the support
threshold. Secondly p is not further examined if fit1(p, Dt) < current n-th
maximal fit, where current n-th maximal fit is the current n-th best fit of all
patterns found while searching. The value of fit2(p, Dt) will never become
larger than the current n-th maximal fit, because it can at most become
fit1(p, Dt). Note that CorClass uses similar methods to prune [78].

Chapter 5 65

PrefixTWEACCore(prefix, projected database)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i
3. Count w1 = fit1 in the projected databaset for new prefix
4. Calculate f2 = fit2 for new prefix
5. Create a projected database new projected database with new prefix
6. Get δmin , the lowest fit2 in P
7. Get smin , fit1 corresponding with the lowest fit2 in P
8. if w1 ≥ minsupp and |P | < n then
9. Add new prefix to P
10. Call PrefixTWEACCore(new prefix, new projected database)
11. else if w1 ≥ minsupp and w1 ≥ δmin then
12. if f2 > δmin or
13. (f2 = δmin and w1 > smin) or
14. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
15. Remove pn from P and add new prefix to P
16. Call PrefixTWEACCore(new prefix, new projected database)

Table 5.1: The PrefixTWEAC algorithm

5.4 Domain Specific Improvements

In the previous section we stated that fit2 can be used to “prune”: certain
pattern extensions are not further examined because they can never lead to
the maximal fit2. The faster we get to a large fit2 for the n-th pattern in
P = P t the better, because all extensions with a lower fit1(p, Dt) can be
pruned. The improved version of PrefixTWEAC will be explained in the
sequel.

If we consider protein sequences then pattern discovery might be done
faster and/or classification might improve when using certain knowledge
about the sequences:

• Protein sequences are sequences of amino acids. Certain parts of such
a sequence are shaped like a helix in 3D space. These helices will
probably contain most of the maximal fitting sequences since parts
outside the helix have more variation in size and content. Patterns
(partially) outside the helix are less likely to occur in most members
of the protein family.

66 Domain Specific Improvements

• Small patterns are preferred. Smaller patterns are less specific and
biologists prefer smaller patterns in their analysis.

PrefixTWEACExt(prefix, proj db)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i
3. Count fit1 for new prefix:
4. w1 = fit1 in the proj dbt without the inclusion vector, using supp1

5. w2 = fit1 in the proj dbt with the inclusion vector, using suppPTW
1

6. Calculate f2 = fit2 for new prefix (without the inclusion vector)
7. Create new projected database (without using the inclusion vector)
8. Get δmin , the lowest fit2 in P
9. Get smin , fit1 of the lowest fit2 in P
10. if w1 ≥ minsupp and |P | < n then
11. Add new prefix to P
12. Call PrefixTWEACExt(new prefix, new projected database)
13. else if (w1 ≥ minsupp and w2 < minsupp) or
14. (w2 ≥ minsupp and w1 ≥ δmin and w2 < δmin) then
15. storeState(S,new prefix, new projected database)
16. else if w2 ≥ minsupp and w2 ≥ δmin then
17. if f2 > δmin or
18. (f2 = δmin and w1 > smin) or
19. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
20. Replace pn with new prefix
21. Call PrefixTWEACExt(new prefix, new projected database)

Table 5.2: PrefixTWEAC Extended: extension using the probable time
window

For certain problems we know the approximate area of important fea-
tures, e.g., protein sequences should have most of the discriminating patterns
in the helix. Also in other problems this might be the case, for example — in
the case of customer relations — customers tend to behave differently during
the night. These probable time windows can easily be defined with an inclu-
sion vector. An inclusion vector is a vector v = (v1, v2, . . . , vn), vi ∈ {0, 1}
(1 ≤ i ≤ n). This vector will indicate where to search in the first phase of

Chapter 5 67

the algorithm, see Table 5.2. We then let

suppPTW
1 (s, d) =

{

1 if s ≺ d/v;
0 otherwise,

where (d/v)i = di if vi = 1 and $ otherwise ($ 6∈ Σ), so only positions with
nonzero vi are considered.

First PrefixTWEACExt (Table 5.2) is applied to the databases Dt,
one at a time, each time starting with an empty P = P t. After using
PrefixTWEACExt with the inclusion vector we apply PrefixTWEAC

(Table 5.1) without the vector to the remaining states stored in the state
database S.

Figure 5.1: Extending the single item sequence A

Figure 5.1 shows an example of the extensions made to a sequence A.
The dotted lines are extensions that do not have a high enough fit1 and
fit2 inside and outside the probable time window. These extensions and
their extensions are pruned. The dashed lines indicate extensions that are
currently good enough with regards to the entire sequence only. Finally the
solid lines are already good enough when we only count patterns inside the
probable time window.

If we prefer small patterns, then we can add a new rules, using so-called
smallest maximal discriminating patterns to improve classification:

• fit1(s, Dr) = 0 for all r (1 ≤ r ≤ n, r 6= t). Then fit2 of the extended
patterns will never increase.

68 Domain Specific Improvements

• fit1(s, Dt) ≤ fit2(p, Dt) where both p and s are sequences and s is
created by extending p. Then fit2 of the extended patterns will never
be better than the fit2 of p.

These rules sacrifice some completeness for classification performance; if
extensions do not improve a smaller pattern then they are not always ex-
plored further. These pruning rules will not lower classification performance
because they leave out only non-improving extensions. Rather the classifi-
cation is expected to improve because the set of patterns will contain less
small variations of the same pattern. We will from now on abbreviate the
use of these rules with SP or “small patterns”.

Protein sequences usually are very long, about 300 amino acids. However
these sequences are constructed out of only 20 types of amino acids. We
need to use constraints to make the problem tractable. It was chosen to
use the time window constraint, because the discovered patterns will be
concentrated in one area. One could also mine closed patterns: mine for only
those frequent sub-sequences for which there is no super-sequence with an
equal support. With CloSpan proposed in [76] it is shown that it is possible
to reduce runtime with this principle. This is interesting and it can most
likely be used in combination with the time window constraint. However in
any case the time window constraint is still needed since patterns spread all
over the original sequence (the record or protein sequence) are biologically
less interesting.

The time window constraint means that the distance between the first
and last item of the pattern in the sequence is bounded by some constant.
This is easily implemented in the algorithm used. We also considered to
use the gap constraint [5], that allows some gaps in the matches. However
this constraint would have required more memory, e.g., if we count fit1 of
(A,C,G) and we want to know whether the sequence (A,C,C,C,G) contains it.
Furthermore assume the maximal gap is 1, thus in the sequence one letter
is allowed between two letters of the pattern. If the algorithm only looks at
the first C then the gap constraint will be broken because the gap between
the C and the G is 2. An algorithm has to check two C’s to match (A,C,G).
PrefixSpan will have to add both projections to the projected database
for at least two C’s. Another reason for not using the gap constraint is that
it would allow patterns to be spread all over the sequence as long as it does
not break the gap constraint.

Chapter 5 69

5.5 Experimental Results

The experiments are aimed at showing the effectiveness of the pruning rules
we described. The protein sequences used during our experiments where ex-
tracted from the GPCRDB website [22]. The effectiveness was also tested on
a synthetic dataset: the two classes consist of 1000 sequences of length 130,
having 20 item types. First each item is chosen with a uniform probability
and then we insert one of ten patterns at each starting position within the
time window (position 20 to 60) of class one with 80% probability.

The results are shown in Figure 5.2 and Figure 5.3. All experiments were
done on a Pentium 4 2.8 GHz with 512MB RAM. On the horizontal axis in
the graphs we have the number of used sequences in the dataset. As both
synthetic and protein dataset have two classes, we take one half of these
sequences from the first class and the rest from the second class. In the case
of the GPCRDB
Olfactory dataset the first class contain the Olfactory sequences and the
second class the Non-olfactory sequences. Furthermore the GPCRDB Amine

dataset contains Amine and Peptide sequences. With this data we want to
show that some groups of sequences are harder to distinguish. On all the
vertical axis we have the pruning effectiveness indicated by a real number
between 0 and 1. This effectiveness is calculated by dividing the search time
by the worst search time in the experimental results. During the experiments
we searched for the 100 maximal discriminating patterns in the GPCRDB
and 10 in the synthetic dataset, each with a time window of eight and a
minsupp of zero. Note that time window and probable time window are dif-
ferent concepts. The experiments on the synthetic data are done to indicate
that the probable time window can improve pruning efficiency. Other exper-
iments will show the effectiveness of the method in the case of GPCRDB
data.

Figure 5.2 shows the effectiveness of using probable time windows (PTW)
of Table 5.2 and pruning when using “small patterns” (SP) on the GPCRDB
Olfactory data. The algorithm not using PTW or SP is shown in Table 5.1.
Note that SP lowers pruning effectiveness with regards to the GPCRDB
Olfactory data, because less variations of the same pattern fill up the set of
patterns. Some of the patterns discovered with this dataset were used for
classification: these two protein families (Olfactory and Non-olfactory) could
be correctly distinguished in more than 90% of the cases, depending on the
chosen time window size and the classification algorithm at hand.

In the synthetic dataset we have most of the best patterns in the prob-
able time window. The n-th pattern p will get a large fit2 earlier in the

70 Experimental Results

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800
P

ru
ni

ng
 E

ffe
ct

iv
en

es
s

Number of Sequences

PTW only
Using both

Not using PTW or SP

Figure 5.2: Effectiveness on the GPCRDB Olfactory/Non-olfactory data us-
ing the Olfactory dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

Using both
PTW only

Not using PTW or SP

Figure 5.3: Effectiveness on the synthetic dataset

search, thus more extensions can be ignored. Figure 5.3 shows the effective-
ness as the number of sequences in the synthetic dataset increases when
searching for the 10 maximal discriminating patterns. The “small pattern”
rules (SP) increase the effectiveness even further, because in the synthetic

dataset many patterns are quickly non-improving.

The confusion matrices of Table 5.3 and Table 5.4 were generated us-
ing the C4.5 implementation by Weka [69] with the 10 (Olfactory) and 20

Chapter 5 71

classified as classified as
non-olfactory olfactory

non-olfactory 2015 22

olfactory 16 1909

classified as classified as
non-olfactory olfactory

non-olfactory 2024 13

olfactory 22 1903

Table 5.3: Confusion matrices of Olfactory (GPCRDB) patterns without
(upper) and with (lower) “small patterns” (SP)

classified as classified as
amine peptide

amine 489 16

peptide 3 1091

Table 5.4: Confusion matrices of Amine/Peptide (GPCRDB) patterns

(Amine) best patterns discovered in the GPCRDB data. In Table 5.3 we
get a slightly better classification in 10-fold cross-validation when using SP:
99.12% instead of 99.04%. This is as expected because the set of 10 patterns
used in Table 5.3 will contain less small variations of the same pattern. The
results of Table 5.4 required 20 patterns instead of 10. The Amine/Peptide
problem is more difficult than the Olfactory/Non-olfactory problem and it
requires more patterns. The effect of SP on classification is small, however
to show that the difference in classification performance is significant a two-
tailed unpaired t-test was performed. Ten-fold crossover with 1999 sequences
was done 100 times with two groups of 50 Amine/Peptide patterns, with and
without SP, and a time window of 4. The t-value of 6.420 with a probability
of less than 0.001 of happening by chance shows that the patterns found
with SP classify significantly better when using the C4.5 algorithm with
these patterns as attributes.

Figure 5.4 shows less improvement of the pruning effectiveness. This is
because the patterns in the probable time window of the Amine sequences
are less discriminating compared to the patterns in the probable time win-

72 Conclusions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 550 600 650 700 750 800 850 900 950 1000

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

PTW only
Using both

Not using PTW or SP

Figure 5.4: Effectiveness on the GPCRDB Amine/Peptide data using the
Amine dataset

dow of the Olfactory sequences. We still need to evaluate many patterns if
the δmin stays low, even though we might find the maximal discriminating
patterns quickly.

5.6 Conclusions

In this chapter we introduced and compared two sequential pattern mining
algorithms. We used knowledge from the application area of protein se-
quence analysis. Given domain knowledge, we could improve mining for the
maximal discriminating patterns. The effectiveness depends on the quality
of the assumptions, e.g., how probable a discriminating pattern is within a
certain time window. Our method also depends on the discriminative power
of the patterns. Pruning will be less effective if this is low, even though we
might find the maximal discriminating patterns quickly. It is shown that
using probable time windows in protein sequences can speed up the search.
Protein sequences are long but contain only a few types of items; constraints
are required to make the discovery of patterns in these sequences tractable.

In future research we will further investigate methods for automatically
discovering the probable time window. Furthermore we plan to use maximal
discriminating patterns in other application areas like workflow analysis.

6 Visualization of Graph Patterns

Mining subgraphs is an area of data mining research where, a given set of
graphs, one searches for (connected) subgraphs contained in these graphs
satisfying a number of constraints. In this chapter we focus on the analysis
of molecules. In the analysis of fragments one is interested in the molecules
in which the patterns occur and for this reason we introduce a visualization
technique. The user does not have to browse through all patterns; instead
the user can directly see which subgraphs are of interest.

6.1 Introduction

Mining frequent patterns is an important area of data mining where one
discovers substructures that occur often in (semi-)structured data. In this
chapter we look at the area of frequent subgraph mining. The subgraphs are
connected vertex- and edge-labeled graphs contained in another graph, the
records or molecules. A subgraph is considered to be frequent if it occurs
in at least minsupp transactions, where minsupp is a user-defined threshold
above which patterns are considered to be frequent. A frequent subgraph
mining algorithm will discover all these frequent subgraphs.

Figure 6.1 shows a “molecule” graph and two of its subgraphs. Our work
is motivated by bio-chemists wishing to view co-occurrences of subgraphs in
a dataset of molecules (graphs):

• For a bio-chemist it is interesting to know which fragments occur of-
ten together, for example in so-called active molecules. This is because
frequent co-occurrence might imply that the fragments are needed si-
multaneously for biological activity.

73

74 Introduction

• Pharmaceutical companies provide libraries of molecules. A visualiza-
tion of co-occurrences in molecule libraries gives a bio-chemist insight
how the libraries are constructed.

C C

C C C C1 1 C O1 1

N
1

O
2

CC

1

2

2
@@ 2

��

1
@@1

��
C

O
2

C C C2 1

C
1

Figure 6.1: An example of a graph (the amino acid Phenylalanine) in the
molecule data set and two of its many (connected) subgraphs, also called
patterns or fragments.

A distance between patterns, the amount of co-occurrence, can be mea-
sured by calculating in how many graphs only one of the two patterns occurs:
if this never happens then these patterns are very close to each other and if
this always happens then their distance is very large.

We will define a method of building a co-occurrence model and show its
usefulness. To this end, this chapter makes the following contributions:
— The visualization of co-occurring graph patterns.
— We improve the clarity of the visualization by grouping.
— We will define a measure of calculating distances between patterns and
show how it can be calculated (Section 6.2 and Section 6.3).
— An empirical discussion of model construction for visualizing co-occurrence
(Section 6.5).

The mining techniques for molecules in this chapter make use of a graph
miner called gSpan, introduced in [75] by Yan and Han.

For the visualization a method of pushing and pulling points in accor-
dance with a distance measure is used. The main reason to choose this
particular method was because it enables us to put a limit on the number
iterations and still have a result. Similar techniques were used in [13] to
cluster criminal careers and in [39] for clustering association rules.

This research is related to research on clustering, in particular of molecules.
Also our work is related to frequent subgraph mining and frequent pattern
mining when lattices are discussed. In [77] Zaki et al. discuss different ways
for searching through the lattice.

Clustering is important because of the visualization that it can provide.
In general our work is related to SOMs as developed by Kohonen (see [38]),
in the sense that SOMs are also used to visualize data through a distance

Chapter 6 75

measure and uses a pulling strategy. A Self-Organizing Map (SOM) is a
type of artificial neural network that is trained to produce a low dimensional
representation of the training samples. A SOM is constructed by moving the
best matching point and its neighbours (within a lattice of neurons) towards
the input node. SOMs have been used in a biological context many times,
for example in [33, 52]. In some cases molecules are clustered via numeric
data describing each molecule, in [74] such clustering data is investigated.
Also our work is related to work done on the identification structure activity
relationships (SARs) where one relates biological activity of molecules by
analyzing their chemical structure [18, 35] in the sense that in our work
the structure of a graph can be used to build such a model. In [17, 60, 61]
a statistical analysis was done on the presence of fragment substructures
in active and inactive molecules. However our work is not concerned with
the discovery of SARs, but with co-occurrence of subgraphs occurring in a
collection of graphs. More related is the work done by Lameijer et al. in
[41]. This work is concerned with co-occurring fragments discovered with a
graph splitting. Graph splitting breaks molecules at topologically interesting
points. Also they use a frequency threshold to filter out some fragments
after they were generated, however they do not use frequent pattern mining
techniques. Furthermore they do not build a co-occurrence model or a similar
visualization of co-occurrence. Figure 6.2 shows two co-occurring subgraphs
(fragments) discovered by Lameijer et al. in their dataset of molecules.

In [23] we also use the current setup to cluster data; that paper discusses
an application that enables the user to further explore the results from a
frequent subgraph mining algorithm, by browsing the lattice of frequent
graphs.

Figure 6.2: An example of co-occurring subgraphs from [41] with an example
molecule.

The overview of the rest of the chapter is as follows. In Section 2 our
distance measure is introduced, in Section 3 we discuss our method of group-

76 Distance Measure

ing, in Section 4 we introduce the visualization and finally in Section 5 we
discuss our experimental results.

6.2 Distance Measure

We are interested to know if patterns occur in the same graphs in the dataset
of graphs. Patterns in this work are connected subgraphs.

The distance measure will compute how often subgraphs occur in the
same graphs of the dataset. In the case of our working example it will show
if different patterns (subgraphs) exist in the same molecules in the database.
This distance measure is known as the Jaccard metric and was primarily
chosen for its common use in Bio-informatics (see [72]). It is also easy to
compute, given the appropriate supports; it doesn’t make use of complicated
graph comparisons, that would slow down the process. Formally we will
define the distance measure in the following way (for graphs g1 and g2):

dist(g1, g2) =
support(g1) + support(g2)− 2 · support(g1 ∧ g2)

support(g1 ∨ g2)
(6.1)

Here support(g) is the number of times a (sub)graph g occurs in the set
of graphs; support(g1 ∧ g2) gives the number of graphs (or transactions)
with both subgraphs g1 and g2 and support(g1 ∨ g2) gives the number of
graphs with at least one of these subgraphs. The numerator of the dist
measure computes the number of times the two graphs do not occur together
in one graph of the dataset. We divide by support(g1 ∨ g2) to make the
distance independent from the total occurrence, thereby normalizing it. We
can reformulate dist in the following manner:

dist(g1, g2) =
support(g1) + support(g2)− 2 · support(g1 ∧ g2)

support(g1) + support(g2)− support(g1 ∧ g2)
(6.2)

In this way we do not need to separately compute support(g1∨g2) by count-
ing the number of times subgraphs occur in the graphs in the dataset.

The measure is appropriate for our algorithm because it exactly calcu-
lates the number of transactions in which both patterns do not exist, hence
a small distance means much co-occurrence. This measure also normalizes
the exact co-occurrence, otherwise very frequent patterns can be considered
mutually more distant compared to other points with the same proportional
co-occurrence.

Chapter 6 77

The distance measure satisfies the usual requirements, such as the tri-
angular inequality. Note that 0 ≤ dist(g1, g2) ≤ 1 and dist(g1, g2) = 1 ⇔
support(g1∧g2) = 0, so g1 and g2 have no common transactions in this case.
If dist(g1, g2) = 0, both subgraphs occur in exactly the same transactions,
but they are not necessarily equal.

6.3 Optimization: Only Frequent Subgraphs and

Grouping

In practice it is possible for the user to select a set of patterns for visu-
alization. In this context we consider an optimization to be an automated
selection of patterns such that the algorithm faster provides a model within
reasonable time. The first optimization is to restrict the patterns to frequent
patterns. Patterns (subgraphs) are considered to be frequent if they occur
in at least minsupp graphs in the dataset. If we do not use frequent patterns
we simply have too many patterns and, the frequent patterns give a com-
prehensive overview of the patterns. Efficient algorithms exist for finding
frequent subgraphs, e.g., [75].

The second optimization is grouping: we group subgraphs and we will
treat them as one point in our co-occurrence model. This will reduce the
number of points. Moreover, the visualization will now show more directly
the structural unrelated patterns, since related patterns are grouped. This
will show to a biochemist the structural unrelated patterns that suggest to
be together needed for biological activity.

The formula for the distance between supergraph g2 and subgraph g1

originates from Equation 6.2, where support(g1 ∧ g2) = support(g2):

dist(g1, g2) =
support(g1) + support(g2)− 2 · support(g2)

support(g1) + support(g2)− support(g2)

=
support(g1)− support(g2)

support(g1)

The frequent pattern mining algorithm gives rise to a so-called lattice,
in which the frequent subgraphs are ordered with respect to supergraphs.
All information used to compute these distances can be retrieved from the
lattice information provided by the graph mining algorithm, when we focus
on the subgraph-supergraph pairs. This information is needed by the graph
mining algorithm to discover the frequent subgraphs and so the only extra
calculating is done when dist does a search in this information.

78 Optimization: Only Frequent Subgraphs and Grouping

Of course, many graphs have no parent-child relation and for this reason
we define lattice dist in the following way:

lattice dist(g1, g2) =







dist(g1, g2) if g2 is a supergraph of g1

or g1 is a supergraph of g2

1 otherwise
(6.3)

Note that lattice dist(g1, g2) < 1 if g1 is a subgraph of g2 and has non-zero
support, or the other way around.

We will now organize “close” patterns into groups. The algorithm forms
groups hierarchically, but this can be done fast because only related sub-
graphs are compared and also as a consequence all distances can be com-
puted with the lattice. Now we need a distance between groups of patterns
C1 = {g1, g2, . . . , gn} and C2 = {h1, h2, . . . , hm}:

grdist(C1, C2) =

{

max (PG) if PG 6= ∅
−1 otherwise

(6.4)

PG = {lattice dist(g, h) | g ∈ C1, h ∈ C2, lattice dist(g, h) 6= 1}

Two clusters should not be merged if their graphs do not have a supergraph-
subgraph relation, so we do not consider graphs where lattice dist(g, h) = 1.
The value of grdist is −1 if no maximal distance exists, and clusters will not
be merged in the algorithm.

The parameter maxdist is a user-defined threshold giving the largest
distance allowed for two clusters to be joined. Note that grouping is efficient
due to the fact that we can use the lattice information stemming from the
frequent graph mining algorithm.

The outline of the algorithm is the following:

initialize P with sets of subgraphs of size 1 from the lattice
while P was changed or was initialized

Select C1 and C2 from P with minimal grdist (C1, C2) ≥ 0
if grdist(C1, C2) ≤ maxdist then
P = P ∪ {C1 ∪ C2}
Remove C1 and C2 from P

Grouping

Chapter 6 79

6.4 Visualization

We will visualize co-occurrence by positioning all groups in a 2-dimensional
area. We take the Euclidean distance eucl dist(C1, C2) between the 2D co-
ordinates of the points corresponding with the two groups (of frequent sub-
graphs) C1 and C2.

The graphs in a group occur in almost all the same transactions, hence
the distance between groups is assumed to be the distance between any
of the points of the two groups. We choose to define the distance between
groups as the distance between a smallest graph of each of the two groups
(size gives the number of vertices): for g1 ∈ C1 and g2 ∈ C2 with size(g1) =
min({size(g) | g ∈ C1}) and size(g2) = min({size(g) | g ∈ C2}), we let
group dist(C1, C2) = dist(g1, g2).

The coordinates (xC1
, yC1

) and (xC2
, yC2

) of the points corresponding
with C1 and C2 are adapted by applying the following formulas:

1. xC1
← xC1

− α · (eucl dist(C1, C2)− group dist(C1, C2)) · (xC1
− xC2

)

2. yC1
← yC1

− α · (eucl dist(C1, C2)− group dist(C1, C2)) · (yC1
− yC2

)

3. xC2
← xC2

+ α · (eucl dist(C1, C2)− group dist(C1, C2)) · (xC1
− xC2

)

4. yC2
← yC2

+ α · (eucl dist(C1, C2)− group dist(C1, C2)) · (yC1
− yC2

)

Here α (0 ≤ α ≤ 1) is the user-defined learning rate.
Starting with random coordinates for the groups, we will build a 2D

model of relative positions between groups by randomly choosing two groups
r times and applying the formulas. This is a kind of push and pull algorithm
which yields a visualization in which the distances in 2D correspond to the
distances in the pattern space. Note that we always have a visualization: the
longer we run the algorithm, the better the Euclidean distances correspond
to the distances between groups in the pattern space.

6.5 Performance

The experiments are organized such that we first show that the distances are
approximated correctly. Secondly we will discuss runtime in the case of dif-
ferent minsupp settings for different datasets. Finally through experiments
we analyze the speed-up due to making groups first.

One dataset we use, the 4069.no aro dataset, containing 4,069 molecules;
from this we extracted a lattice containing the 1,229 most frequent sub-
graphs. This dataset was provided by Leiden/Amsterdam Center for Drug

80 Performance

Research (LACDR). Other datasets we use are datasets of the National Can-
cer Institute (NCI), and can be found in [55]. One of these datasets contains
32,557 2D structures (molecules, average size is 26.3 nodes) with cancer
test data as of August 1999; we will call this dataset the NCI.normal.99
dataset. The other NCI dataset contains 250,251 molecules and we will call
this dataset the NCI.large.99 dataset.

All experiments were performed on an Intel Pentium 4 64-bits 3.2 GHz
machine with 3 GB memory. As operating system Debian Linux 64-bits was
used with kernel 2.6.8-12-em64t-p4.

Figure 6.3: Clusters for graphs in the 4069.no aro dataset built in 24.5
seconds, connecting points at distance 0.05 or lower (α = 0.1, maxdist = 0.1,
r = 1, 000, 000).

Figure 6.3 shows how points, that represent subgraphs occurring in the
same graphs (transactions) of the dataset, are close together. We draw lines
between points if their Euclidean distance is ≤ 0.05. The darker these lines
the lower their actual distance and in this way one can see gray clusters of
close groups of subgraphs. Some groups are placed close but their actual

Chapter 6 81

Figure 6.4: Clusters of graphs in the 4069.no aro dataset built in 24.5 sec-
onds, connecting points at distance 0.95 or higher (α = 0.1, maxdist = 0.1,
r = 1, 000, 000).

distance is not close (they are light grey). This is probably caused by the
fact that these groups do not occur together with some specific other groups,
so being far away from these other ones.

In Figure 6.4 we draw lines between points with a Euclidean distance
≥ 0.95. The darker these lines the higher their actual distance. The figure
shows their actual distance to be big also (the lines are black). Also Figure
6.4 shows bundles of lines going to one place. This probably is again caused
by groups not occurring together with the same other groups.

The error for the cluster model for the 4069.no aro dataset decreases
quickly, see Figure 8.5. After pushing or pulling 10,000 group pairs it be-
comes already hard to reduce the error further making a reduction of model
building time possible.

In one experiment we assumed that the distances could not be stored in
memory. In this experiment we first clustered 1,229 patterns without group-

82 Performance

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 2 4 6 8 10

S
qu

ar
ed

 R
oo

te
d

E
rr

or

Pairs x 10000

Figure 6.5: Root squared error for distance given by the cluster model for
the 4069.no aro dataset (α = 0.1).

ing, taking 81 seconds. However, grouping reduced the number of requests
to the compressed occurrence data and because of this with grouping model
construction was done in 48 seconds (α = 0.1, r = 1, 000, 000, maxdist = 0.1,
dataset is 4069.no aro).

Table 6.1 shows the runtime where minsupp varies. Obviously for a lower
minsupp it takes longer to build the model, but for 12,734 subgraphs a model
is still built within an acceptable time frame.

Table 6.2 and 6.3 show the runtime where minsupp varies, it is set to a
percentage of the total dataset size. Results show that the algorithm is able

minsupp average runtime (sec) number of
± stdev subgraphs

200 2204.60 ± 6.36 12,734

300 335.10 ± 2.00 4,571

400 45.75 ± 0.17 2,149

500 17.95 ± 0.23 1,229

Table 6.1: Runtime performance in seconds for different minsupp settings
for the 4069.no aro dataset (α = 0.1, r = 10, 000, maxdist = 0.2).

Chapter 6 83

minsupp average runtime (sec) number of
± stdev subgraphs

5% 1495.57 ± 5.41 5,663

10% 160.82 ± 0.42 1,447

20% 17.09 ± 0.13 361

30% 4.64 ± 0.01 158

Table 6.2: Runtime performance in seconds for different minsupp settings
for the NCI.normal.99 dataset (α = 0.1, r = 10, 000, maxdist = 0.2).

minsupp average runtime (sec) number of
± stdev subgraphs

5% 2080.12 ± 9.40 2,391

7% 840.49 ± 11.67 1,313

10% 301.58 ± 3.57 648

15% 91.35 ± 0.59 332

Table 6.3: Runtime performance in seconds for different minsupp settings
for the NCI.large.99 dataset (α = 0.1, r = 10, 000, maxdist = 0.2).

to handle the NCI.normal.99 dataset of 32,557 molecules and NCI.large.99
dataset of 250,251 molecules, even with a low minsupp, within a reasonable
time frame.

Our final experiments were done to show how the runtime is influenced
by the maxdist threshold and how much the preprocessing step influences
runtime. Here we assume that the distances can be stored in memory. In
Figure 6.6 the influence on runtime is shown and to each line a Bézier curve
is fitted (the degree is the number of datapoints). The figure displays pre-
processing to proceed more or less stable.

In Figure 6.7 results show the runtime for the NCI.normal.99 dataset with
approximately an equal number of patterns. The performance for grouping
is nearly the same as for the 4069.no aro dataset. This performance depends
more on the number of patterns that are grouped. The results indicate that
the total runtime depends on the size of the dataset, but that runtime can
be improved strongly by better selecting the maxdist threshold.

The first analysis of results shows promising patterns, see Figure 6.8.
The results show two frequent subgraphs (a) and (b) occurring together.
This suggests that patterns (c) and (d) might also occur together, requiring

84 Performance

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

tim
e

in
 m

s

Maxdist Threshold

Total Runtime
Runtime Grouping

Figure 6.6: Average runtime for the 4069.no aro dataset with varying
maxdist (α = 0.1, nr. of patterns = 1,229, r = 1, 000, 000).

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

tim
e

in
 m

s

Maxdist Threshold

Total Runtime
Runtime Grouping

Figure 6.7: Average runtime for the NCI.normal.99 dataset with varying
maxdist (α = 0.1, nr. of patterns = 1,447, r = 1, 000, 000).

further research.

Also biochemists in Leiden are actively researching the development of

Chapter 6 85

Figure 6.8: Two co-occurring frequent patterns (a) and (b), and two poten-
tially interesting ones (c) and (d).

simple biologically active molecules consisting of fragments (subgraphs) not
co-occurring frequently [42]. Modeling co-occurrence will hopefully help im-
prove their analysis.

6.6 Conclusions and Future Work

Presenting data mining results to the user in an efficient way is important.
In this chapter we proposed a visualization of a co-occurrence model for
subgraphs that enables quicker exploration of occurrence data.

The forming of groups improves the visualization. The visualization en-
ables the user to quickly select the interesting subgraphs for which the user
wants to investigate the graphs in which the subgraphs occur. Additionally
the model can be built faster because of the grouping of the subgraphs.

In the future we want to take a closer look at grouping where the types
of vertices and edges and their corresponding weight also decide their group.
Furthermore, we want to investigate how we can compress occurrence more
efficiently and access it faster.

7 Improved Exploration of Graph

Mining Results

Mining frequent subgraphs is an area of research where we have a given set
of graphs, and where we search for (connected) subgraphs contained in many
of these graphs. Each graph can be seen as a transaction, or as a molecule —
as the techniques applied in this chapter are used in (bio)chemical analysis.

In this chapter we will discuss an application that enables the user to
further explore the results from a frequent subgraph mining algorithm. Such
an algorithm gives the frequent subgraphs, also referred to as fragments, in
the graphs in the dataset. Next to frequent subgraphs the algorithm also
provides a lattice that models sub- and supergraph relations among the
fragments, which can be explored with our application. The lattice can also
be used to group fragments by means of clustering algorithms, and the user
can easily browse from group to group. Our application can display only
a selection of groups that occur in almost the same set of molecules, or, if
desired, in different molecules. This allows one to see which patterns cover
similar c.q. different parts of the dataset.

7.1 Introduction

Mining frequent patterns is an important area of data mining where we dis-
cover substructures that occur often in (semi-)structured data. The research
in this work will be in the area of frequent subgraph mining. These frequent
subgraphs are connected vertex- and edge-labeled graphs that are subgraphs
of a given set of graphs, traditionally also referred to as transactions, at least
minsupp (a user-defined threshold) times. If a subgraph occurs at different

87

88 Introduction

positions in a graph, it is counted only once. The example of Figure 7.1
shows a graph and two of its subgraphs.

In this chapter we will use results from frequent subgraph mining and we
will present methods for improved exploration by means of clustering, where
co-occurrences in the same transactions are used in the distance measure.
Grouping patterns with clustering makes it possible to browse from one pat-
tern and its corresponding group to another group close by. Or, depending
on the preference of the user, to groups occurring in a separate part of the
dataset.

Before explaining what is meant by lattice information we first need to
discuss child-parent relations in frequent subgraphs, also known as patterns.
Patterns are generated by extending smaller patterns with one extra edge.
The smaller pattern can be called a parent of the bigger pattern that it
is extended to. If we would draw all these relations, the drawing would be
shaped like a lattice, hence we call this data lattice information.

We further analyze frequent subgraphs and their corresponding lattice
information with different techniques in our framework Lattice2SAR for
mining and analyzing frequent subgraph data. One of the techniques in
this framework is the analysis of graphs in which frequent subgraphs occur,
via competitive neural networks as presented in [24]. Another important
functionality is the browsing of lattice information from parent to child and
from one group of fragments to another as presented here.

C C

C C C C1 1 C O1 1

N
1

O
2

CC

1

2

2
@@ 2

��

1
@@1

��
C

O
2

C C C2 1

C
1

Figure 7.1: An example of a possible graph (the amino acid Phenylalanine)
in the molecule dataset and two of its many (connected) subgraphs, also
called patterns or fragments.

Our application area is the analysis of fragments (patterns) in molecule
data. The framework was originally made to handle (bio)chemical data.
Obviously molecules are stored in the form of graphs, the molecules can
be viewed as transactions (see Figure 7.1 for an example). However, the
techniques presented here are not particular to molecule data (we will also
not discuss any chemical or biological issues). For example one can extract
user behavior from access logs of a website. This behavior can be stored
in the form of graphs and can as such be analyzed with the techniques

Chapter 7 89

presented here.
The distance between patterns can be measured by calculating in how

many graphs (or molecules) only one of the two patterns occurs. If this never
happens then these patterns are very close to each other. If this is always
the case, their distance is very large. In both cases the user is interested to
know the reason. In our application the chemist might want to know which
different patterns seem to occur in the same subgroup of effective medicines
or on the other hand which patterns occur in different subgroups of effective
medicines. In this chapter we will present an approach to solve this problem
that uses clustering. Furthermore all occurrences for the frequent subgraphs
will be discovered by a graph mining algorithm and this occurrence infor-
mation will be highly compressed before storage. Because of this, requesting
these occurrences will be costly.

We will define our techniques for browsing the lattice of fragments. To
this end, this chapter makes the following contributions:
— An application will be introduced that integrates techniques that
facilitate browsing of the lattice as provided by the frequent subgraph
miner (Section 7.2).
— We will use a distance measure based on the co-occurrence of
fragments to browse from one fragment group to another (Section 8.3.2
and Section 7.4).
— We will give an algorithm for grouping very similar subgraphs using
hierarchical cluster methods and lattice information (Section 7.4).
— Finally through experiments we will take a closer look at runtime
performance of the grouping algorithm and discuss it (Section 7.5).

The algorithm for grouping was also used in previous chapters, both
chapters discuss a component of the same framework. However in this chap-
ter groups are used differently, for fragment suggestion during browsing.

This research is related to research on clustering, in particular of molecules.
Also our work is related to frequent subgraph mining and frequent pattern
mining when lattices are discussed. In [77] Zaki et al. discuss different ways
for searching through the lattice and they propose the Eclat algorithm.

Clustering in the area of biology is important because of the improved
overview it provides the user with. E.g., [62] Samsonova et al. discuss the
use of Self-Organizing Maps (SOMs) for clustering protein data. SOMs have
been used in a biological context many times, for example in [33, 52]. There
is also a relation with work done on hierarchical clustering in the biological
context, e.g., as presented in [67]. In some cases molecules are clustered
via numeric data describing each molecule; in [74] clustering such data is
investigated.

90 Exploring the Lattice

Our package of mining techniques for molecules makes use of a graph
miner called gSpan, introduced in [75] by Yan and Han. This implementa-
tion generates the patterns organized as a lattice and a separate compressed
file of occurrences of the patterns in the graph set (molecules).

7.2 Exploring the Lattice

Figure 7.2: The process of exploring the fragment lattice.

We propose a fragment exploration tool to explore fragments in a dataset
of molecules, the whole process is visualized in Figure 7.2. The application
requires both fragment and lattice information from the frequent subgraph
miner. This information is already extracted from the dataset when the ap-
plication starts. All this data is first read and an in-memory lattice structure
is built, where each node is a fragment. Occurrences are kept in a compressed
format since the user wants to view this data when required. Also this data is
needed by our distance measure which will be explained in Section 8.3.2; to
make a distance matrix for all fragments will probably cost too much mem-
ory. First we make groups using information from the lattice only. Then we
fill a matrix storing the distances between groups, which is possible if we

Chapter 7 91

assume to have far less groups of similar fragments.

Figure 7.3: Fragment exploration with the possible ways of shrinking and
extending.

After this process it is possible for the user to browse from fragment to
fragment by adding or removing possible edges, where an edge is possible if it
leads to a child or parent fragment. Figure 7.3 shows the current fragment in
the center window. The user must select a molecule to which an edge should
be added. After an edge is selected one can select a possible extension,
leading to a child, from the right window. It is also possible to shrink the
current fragment towards a parent fragment, the possibilities are always
shown in the left window.

The user can also jump to a fragment in a group that occurs either often
in the same molecules or almost never, so fragments in close by or distant
groups. Each molecule has a group and in Figure 7.4 it shows its group, and
the other fragments in that group, first. Then it lists all close by groups and
their corresponding fragments (here close by is defined as group dist ≤ 0.3,
see also Section 7.4). For every group it shows the distance, indicated with
“dist”, to the group of the current fragment.

7.3 Distance Measure

The distance measure will compute how often frequent subgraphs occur in
the same graphs of the dataset. In the case of our working example it will
show if different fragments (frequent subgraphs) exist in the same molecules.
Formally we will define the distance measure in the following way (for graphs

92 Grouping Fragments

Figure 7.4: Co-occurrence view for groups, showing all groups close by
(group dist ≤ 0.3).

g1 and g2):

dist(g1, g2) =

sup(g1) + sup(g2)− 2 · sup(g1 ∧ g2)

sup(g1 ∨ g2)
=

sup(g1) + sup(g2)− 2 · sup(g1 ∧ g2)

sup(g1) + sup(g2)− sup(g1 ∧ g2)

Here sup(g) is the number of times a (sub)graph g occurs in the set of
graphs; sup(g1 ∧ g2) gives the number of graphs (or transactions) with both
subgraphs and sup(g1 ∨ g2) gives the number of graphs with at least one of
these subgraphs. The numerator of the dist measure computes the number
of times the two graphs do not occur together in one graph of the dataset.
We divide by sup(g1 ∨ g2) to make the distance independent from the total
occurrence, thereby normalizing it. By reformulating we remove sup(g1∨g2),
saving us access time for the compressed dataset.

The distance measure satisfies the usual requirements, such as the tri-
angular inequality and symmetry. Note that 0 ≤ dist(g1, g2) ≤ 1 and also
dist(g1, g2) = 1 ⇔ sup(g1 ∧ g2) = 0, so g1 and g2 have no common trans-
actions in this case. If dist(g1, g2) = 0, both subgraphs occur in the same
transactions, but are not necessarily equal.

While computing the support for the graphs not all frequent subgraphs
are known and not all distances can be computed while running gSpan.

7.4 Grouping Fragments

We will have to store the distance for all frequent subgraph combinations in
order to decide fragments at an interesting distance. If we have n frequent
subgraphs then storing the support for all n(n − 1)/2 combinations might
be too much. However many frequent subgraphs often are very similar in
both structure and support and often there exists a parent-child relation.

Chapter 7 93

Now we will propose a step where we group close subgraphs to reduce
both the number of distances to store and the exploration time by grouping
redundant graphs. We first define a distance grdist (C1, C2) between groups
(clusters) C1 and C2 as the maximal dist between parent and child graphs
in the two groups. This can be calculated fast by traversing the lattice.

This distance has a special value −1 if there is no pair (g1, g2) with
g1 ∈ C1 and g2 ∈ C2, such that they have a parent-child relation, otherwise
the maximum dist between such elements is used.

All information used to compute these distances can be retrieved from
the lattice information provided by the graph mining algorithm, when we
focus on the subgraph-supergraph pairs. This information is already there
to discover the frequent subgraphs, the only extra calculation is done when
searching for dist in this information.

Now we propose the GroupFragments algorithm that will organize
close subgraphs/supergraphs into groups. The groups will be organized in a
set P. The outline of our algorithm based on hierarchical clustering is the
following:

initialize P with sets of subgraphs of size 1 from the lattice
while P was changed or was initialized

Select C1 and C2 from P with minimal grdist (C1, C2) ≥ 0
if grdist(C1, C2) ≤ maxdist then
P = P ∪ {C1 ∪ C2}
Remove C1 and C2 from P

GroupFragments

The parameter maxdist is a user-defined threshold giving the largest distance
allowed for two clusters to be joined.

Once the clusering has been done, we redefine the distance between
groups as the distance between a smallest graph of each of the two groups,
representing the most essential substructure of the group (size gives the
number of vertices): for g1 ∈ C1 and g2 ∈ C2 with size(g1) = min({size(g) | g
∈ C1}) and size(g2) = min({size(g) | g ∈ C2}), we let group dist(C1, C2) =
dist(g1, g2). So even if grdist (C1, C2) would give the special value −1,
group dist(C1, C2) will provide a reasonable distance.

Now we allow the user to define which groups are interesting. These are
mostly extremes: close by or far away groups. So the set P ′ of interesting
groups with a relation to group Cw will be: P ′ = {Cv|group dist(Cw, Cv) ≤

94 Experimental Results

interest min ∨ group dist(Cw, Cv) ≥ interest max}, where interest max de-
fines the largest distance of interest and interest min the smallest. The user
can now browse fragments in these interesting groups.

7.5 Experimental Results

The experiments were done for three main reasons. First of all we want to
show the development of runtime performance as maxdist decreases. Sec-
ondly we want to show the effect of fragment size on the grouping algorithm
with the distance measure. Finally the effect of using a distance matrix for
storing distances between groups will be measured.

We make use of a molecule dataset, containing 4,069 molecules; from
this we extracted a lattice with the 1,229 most frequent subgraphs. All ex-
periments were performed on an Intel Pentium 4 64-bits 3.2 GHz machine
with 3 GB memory. As operating system Debian Linux 64-bits was used
with kernel 2.6.8-12-em64t-p4.

0

5000

10000

15000

20000

25000

30000

35000

0 0.1 0.2 0.3 0.4 0.5 0.6

A
vg

. R
un

tim
e

in
 m

s

Maxdist Threshold

Grouping Only
With Dist. Matrix Construction

Figure 7.5: Runtime in ms for different maxdist settings and the influence
of distance matrix construction.

Figure 7.5 shows how runtime drops if we increase the maxdist threshold.
This is mainly caused by the decrease of groups and so the size of the distance
matrix. However the use of a distance matrix will provide the necessary
speedup during exploration. Furthermore we also see that a low maxdist
gives a large runtime due to a large distance matrix. This seems to show
that making groups enables the application to store a distance matrix in

Chapter 7 95

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

A
vg

. R
un

tim
e

in
 m

s

Nr. of Fragments

Grouping

Figure 7.6: Runtime in ms for different fragment set sizes (maxdist = 0.3),
with quadratic regression

memory and this allows the application to faster find close by groups (so
faster browsing). Note that in practice we should store the distance matrix,
for each dataset, on the disk and construct it only once.

In Figure 7.6 we see the runtime for the grouping algorithm as the num-
ber of fragments to be grouped increases. This runtime depends on the dis-
tance measure and the grouping algorithm, and runtime seems to increase
polynomially.

7.6 Conclusions

The application discussed in this chapter facilitates the exploration of frag-
ments extracted from a data set of molecules. With fragments we mean
frequent subgraphs occurring in a dataset of graphs, the molecules.

We introduced two methods of browsing fragments. Firstly one can
browse between parent and child by adding or removing edges from the frag-
ments (only if it leads to another existing fragment). Our second method
of browsing required us to first group fragments into groups of very similar
fragments. We consider a fragment to be similar to another one if they have
a parent-child relation and they occur in (almost) the same molecules. This
allows the (bio)chemist to quickly jump to fragments that are biologically
more interesting or cover a different subgroup of molecules.

Finally we discussed the runtime performance of our fragment grouping

96 Conclusions

algorithm with different settings. Results showed that the construction of
a distance matrix, needed for fast browsing, takes most of the time. Fur-
thermore results suggested that grouping improves the runtime, since less
(redundant) distances are stored.

In the future we hope to include other innovative ways of browsing and
analyzing the lattice of fragments, and we want to improve scalability where
possible.

8 Displaying Graph Pattern Co-

Occurrence in Streams

One way of getting a better view of a dataset is by considering the frequent
patterns. In this chapter we consider frequent patterns are (sub)sets that
occur a minimal number of times in a stream of item sets. The discovery of
frequent patterns in streams is difficult, because streams are potentially infi-
nite and then it is harder to say if a pattern is frequent or not. Furthermore,
the number of patterns can be huge and a good overview of the structure of
the stream is lost quickly.

Our approach to this problem will use competitive neural network meth-
ods to online model pattern co-occurrence in a stream of itemsets. A model
of the co-occurrence of patterns will give the user an improved view on the
structure of the stream. Some patterns might occur so often together that
they form a “combined” pattern. In this way the patterns in the clustering
will approximate the largest frequent patterns: maximal frequent patterns.
The number of (approximated) maximal frequent patterns is much smaller
and combined with methods of visualization using competitive neural net-
works these patterns provide a good view on the structure of the stream.

8.1 Introduction

Effectively mining streams of data for frequent patterns, i.e., patterns occur-
ring at least a minimal number of times, has always been a hard problem
to tackle. The difficulty lies in the potential endlessness of the stream, fre-
quent patterns can suddenly become infrequent and the standard ways of
pruning the search space are harder to use. In this work patterns are sets of

97

98 Related Work

items occurring in a record (also called transaction or itemset) at a certain
moment in time.

This work is motivated by a wish to view pages accessed together by users
helping website analysts improve the website. To this end we will propose a
method of modeling co-occurring patterns in a stream of itemsets.

Knowing how much patterns co-occur can provide interesting structural
information about the stream in an online way. Note that the model is an
approximation and due to this the frequent subsets are also approximately
maximal.

We will define our method of displaying co-occurring patterns in a stream
of itemsets and show its usefulness. This chapter makes the following con-
tributions:
— We use a dynamic support estimation to determine the support of
those itemsets we need, and do this in an online way (Section 8.3.1).
— It will be explained how the distance between patterns is ap-
proximated by placing patterns closer (pulling) or further away (pushing)
depending on their co-occurrence. If this distance is large, patterns occur al-
most never together, and otherwise they do have many common occurrences
(Section 8.3.2).
— We will define when patterns can be merged and when they should
be split to form smaller patterns and how this should be done (Section
8.3.3).
— Finally through experiments the effectiveness of our method is
shown and efficiency is discussed (Section 8.4).

The rest of this chapter is structured as follows. We first mention re-
lated work, then we discuss the algorithm in full detail. Finally we describe
experiments and discuss these.

8.2 Related Work

This research is related to work done on visualization of patterns in streams
and visualization of website usage using patterns as done in [8]. Also our
work is related to (maximal) frequent pattern mining in streams and large
datasets. Maximal frequent itemsets are sets of items occurring often in the
stream while there is no frequently occurring bigger set of items containing
these same items.

There are many algorithms for mining maximal frequent patterns, in
“normal” datasets, in different ways. We mention GenMax discussed in
[21] and MAFIA presented in [7]. Large datasets are different from streams

Chapter 8 99

in that there is an end to the dataset. One approach to mining large datasets
was proposed in [15], where an extremely large dataset is mined for maxi-
mal frequent patterns by proceeding in parallel. Furthermore clustering on
large datasets was done in [54]. Much work has been performed on mining
frequent patterns in (online) data streams, e.g., in [9]. In [10] frequent pat-
terns are mined by using sliding window methods. However it must be said
that our work is more concerned with co-occurrence and frequent patterns
are approximately maximal. Our work has little overlap with work done on
maximal pattern-based clustering as discussed in [58] and [68] where objects
basically are clustered by linking attribute groups with object groups when
attributes have a minimal similarity. Related research has been done on clus-
tering on streams in [1], where a study on clustering evolving data streams,
(fast) changing data streams, is done. Aggarwal et al. continue their work
in [2] by clustering text and categorical data in streams. Clustering categor-
ical data was also done in [19] where also co-occurrence is used, but only
for attribute values; the authors propose a visualization where the x-axis is
the column position and the y-axis the distance based on co-occurrence of
values. Also in [56] clustering on streams is mentioned, there the authors
propose a new algorithm and compare it with K-Means (see [51]).

In this work a method of pushing and pulling points in accordance with
a distance measure is used. This technique was used before in [13] to clus-
ter criminal careers and in [39] to cluster association rules. This method of
clustering was chosen because it enables us to limit the number of iterations
in order to improve online performance while still having results. Further-
more we only know the distance between two patterns, where a low distance
means frequent co-occurrence.

8.3 Model Realization

Our goal is to produce an algorithm that is capable of accepting a stream
of records, each record being an unordered finite set of items, meanwhile
building a model of patterns and their co-occurrence. We first optimize
this model by restricting the patterns to frequent patterns, simply because
we will have too many otherwise. Our second optimization is to restrict
patterns to maximal frequent patterns. If we do not use maximal frequent
patterns then the model might have too many frequent patterns for a rea-
sonable online performance because all potentially frequent patterns need
to be kept.

The algorithm we propose, called DistanceMergeSplit, starts with

100 Model Realization

randomly positioning n points in a 2-dimensional space, e.g., in the unit
square. Here n is the number of items maximally possible in an itemset.
Each of these n points represents one size 1 itemset, where the size of an
itemset is of course defined as the number of items it contains. These n
points remain present during the whole process, though their coordinates
may change. While the records from the data stream pass by, new points
are created (by merging or splitting) and others disappear (by merging, or
by other reasons). Together these points constitute the evolving model P,
where points correspond with frequent itemsets.

We will first explain how we use the stream of records to update the
supports of the elements of P, next we describe how the coordinates of the
elements change in accordance with the corresponding supports, and finally
mention our method of growing and shrinking the number of sets present in
P: the merge and split part of the algorithm.

8.3.1 Support

The algorithm will receive a possibly infinite stream of itemsets, the records:
r1, r2, r3, . . . Each time an itemset corresponding to a point in the space is
a subset of a record, we observe an occurrence of this itemset. We count
the occurrences in the t records we have seen so far (and that can also be
considered as the last t records), and define support as follows:

support (p, t) =
t

∑

i=1

occurrence (p, ri) (8.1)

occurrence (p, r) =

{

1 if p ⊆ r
0 otherwise

where p is the pattern, the itemset, for which support is computed, and r
is a record. If a new record arrives the support needs to be adapted accord-
ingly. Rather than using the full support for all records, we will make use
of a sliding window of size ` ≥ 1, and we will not keep all data about the
occurrences of the patterns in the transactions of this window. Though this
is not essential for our algorithm, it has a beneficial influence on the runtime,
which is especially interesting for an online algorithm. If we have seen less
than ` transactions (t < `) then we do use the previous formula to calculate
support, in such case a pattern is called “young”. This method will also be
used when we later create new patterns online, and is referred to as “direct
computation”. In the other case (t ≥ `) a pattern is called “old” and we
give an estimate support t(p) for the support during the last ` records in the

Chapter 8 101

following way. When the itemset p is not a subset of the current record rt

we adapt the support as follows:

support t(p) (8.2)

= support t−1(p)/` · (support t−1(p)− 1)

+ (1− support t−1(p)/`) · support t−1(p)

= (1− 1/`) · support t−1(p) ≤ support t−1(p).

Indeed, when the first transaction of the window of size ` contains the pattern
then support should decrease with one. However, if the first record also does
not contain p, then support remains the same. It is important to notice
that the probability of a transaction containing p in a window of size ` is
estimated with support t(p)/`. If the new record does contain the itemset p
then support is adapted as follows:

support t(p) (8.3)

= support t−1(p)/` · support t−1(p)

+ (1− support t−1(p)/`) · (support t−1(p) + 1)

= (1− 1/`) · support t−1(p) + 1 ≥ support t−1(p)

Now when the first transaction of the window of size ` contains the pattern
then support remains unchanged as the window shifts. However, if it does
not contain the pattern p, then support will increase with 1. Both formulas
assume that occurrences are uniformly spread over the window of size `,
but by using these formulas to adapt support we do not have to keep all
occurrences for all patterns in the 2-dimensional space. Notice that 0 ≤
support t(p) ≤ ` always holds.

We have now described how the stream of records influences the supports
of the itemsets that are currently being tracked, i.e., those in P. Note that
the itemsets of size one are always present in the model P of co-occurring
patterns, for reasons mentioned in Section 8.3.4. Larger itemsets may appear
and disappear as the algorithm proceeds. Also observe that the supports are
estimates, due to the application of equations 8.2 and 8.3.

8.3.2 Distance

We now describe how the coordinates of the points change as their sup-
ports vary when the new records from the stream arrive. In our model for
distance (p1, p2) we take the Euclidean distance between the 2-dimensional
coordinates of the points corresponding with the two patterns p1 and p2.

102 Model Realization

These points are pulled closer to each other if they occur in the current
transaction and they are pushed apart if not. Furthermore nothing is done
if both do not occur. In every time step a random selection of the pairs
undergoes this process.

To pull two points together we set the goal distance to 0. To push them
apart the goal distance is

√
2, which is the maximum Euclidean distance

between any two points in the unit square. These distances are then used to
update the coordinates (xp1

, yp1
) and (xp2

, yp2
) of the points corresponding

with the itemsets p1 and p2:

1. xp1
← xp1

− α · (distance (p1, p2)− γ) · (xp1
− xp2

)

2. yp1
← yp1

− α · (distance (p1, p2)− γ) · (yp1
− yp2

)

3. xp2
← xp2

+ α · (distance (p1, p2)− γ) · (xp1
− xp2

)

4. yp2
← yp2

+ α · (distance (p1, p2)− γ) · (yp1
− yp2

)

where α (0 ≤ α ≤ 1) is the user-defined learning rate and γ (0 ≤ γ ≤
√

2)
is the goal distance.

We not only use the distances to place the patterns in the 2D space, but
also to decide when to merge. Points may leave the unit square; however,
when presenting the results of the experiments, such points are projected on
the nearest “wall” of the unit square.

8.3.3 Merge and Split

Now we describe how we merge and split the itemsets of the model as time
goes by. The model P contains points with corresponding itemsets. Two
old patterns (itemsets) are assumed to occur many times together when
their distance is small due to them being pulled together. In some cases one
itemset can be made that represents two of them: the algorithm will try
these combinations. For some combinations it is possible that they turn out
to be not so good, their frequency is smaller than minsupp, where minsupp
is a user-defined threshold. This can happen when their combined frequency
is lower than minsupp or suddenly frequency drops below minsupp. In either
case we need to split the size k itemset into k itemsets of size k−1, all being
subsets of the original itemset. Later we will discuss splitting in more detail,
we now first explain merging.

As transactions come in, some of the initial size one itemsets become
frequent, meaning that the support is higher than minsupp. These sets can
— under certain circumstances, see below — merge to itemsets of size 2,

Chapter 8 103

and so on: we merge two itemsets p1 and p2 if (in the algorithm in Section
8.3.4 the following series of conditions is referred to as “appropriate”):

• The patterns p1 and p2 are old enough: they exist in P for at least `
(the window size) records. (Note that the supports of these sets are
currently updated through equations 8.2 and 8.3 above.)

• The two itemsets p1 and p2 currently are frequent, i.e., it holds that
both support t(p1) ≥ minsupp and support t(p2) ≥ minsupp. (Note that
this condition automatically holds for all (pairs of) itemsets in P that
have size larger than 1.)

• The itemsets are close together in the model, so they are assumed
to occur often together as a subset of transactions in the stream:
distance (p1, p2) ≤ mergedist , where mergedist is a user-defined up-
per bound for the distance for which merging p1 and p2 is allowed.

• The pattern p2 has an item ip which is not in the pattern p1, such that
p2 \ {ip} ⊆ p1. This condition always holds if p2 has size 1.)

First of all we merge the patterns p1 and p2 if they are of equal size, so
we create the set p1 ∪ p2 and add it to Q, the collection of all newly formed
patterns. Both original patterns are removed from the 2-dimensional space
except if their size is 1.

The second time we merge patterns is if pattern p1 contains more items
than p2 and p2 \ {ip} ⊆ p1 for some ip ∈ p2 with ip 6∈ p1, then for each
item e ∈ p1 \ p2 we add an itemset p2 ∪ {e} to Q. This enables patterns to
be merged with patterns that already were merged before and disappeared
from the model. The smaller pattern p2 is removed except if it is of size 1.

Next we split patterns, when they contain more than one item, if they
do not occur often enough and they have been in the model for at least
a certain number of records (they are “old enough”). Split combinations
are generated by removing each item from the original pattern once. The
remaining items form one new itemset, so in this way a size k itemset will
result in k combinations after splitting.

Assume we have the pattern p that is split into patterns q0, q1, . . . , q|p|−1

that are added to Q:

split : p = {i0, i1, . . . , i|p|−1} → q0 = {i1, i2, . . . , i|p|−1},
q1 = {i0, i2, i3, . . . , i|p|−1}, . . . , q|p|−1 = {i0, i1, . . . , i|p|−2}

104 Model Realization

Finally, the newly formed patterns in Q are united with those in P. Of
course, when patterns occur more than once, only one copy — the oldest
one — is maintained. And those patterns from P that are contained in a
larger one in P are removed, unless — as stated above — they have size
one: we focus on the maximal patterns.

8.3.4 The Algorithm

The algorithm works with the set P of patterns that are currently present,
represented by (coordinates of) points in 2-dimensional Euclidean space.
The outline of the algorithm DistanceMergeSplit is as follows:

initialize P with the n itemsets of size 1
for t← 1 to ∞ do
Q ← ∅
for all patterns p ∈ P do

compute support t(p) using the tth record rt,
either through updating (old patterns)
or by direct computation (young ones)

for a random subset of pairs of patterns in P do
update their distance according to their support

for all “appropriate” pattern pairs in P do
merge the pair, creating (new) pattern(s) in Q
mark the smallest of the pair,
or both if their sizes are equal

remove the marked patterns from P
for all patterns p ∈ P do

if p is infrequent and old enough then
split p into (new) patterns in Q
remove p from P

P ← P ∪Q, joining duplicates
remove non-maximal frequent patterns from P

DistanceMergeSplit

Note that itemsets of size one are never removed from P, not even when
they are infrequent. The size one itemsets are always present, and play
a special role: besides the fact that some of them are frequent, they also
serve as building blocks. In many cases they are not maximal. If they were

Chapter 8 105

removed, it could be impossible to re-introduce single items after having
become infrequent.

Patterns that are new in P are called “young”. When computing sup-
ports for these patterns, we use equation 8.1, when updating the “old” ones
we use equations 8.2 and 8.3. So, each pattern present in P also has an age:
patterns that have an age smaller than the window size ` are “young”, the
others are “old”.

On two occasions the algorithm introduces indeterminism: first, when
the support computation is done using the approximating updates for “old”
patterns (saving a lot of time and memory) and second, when pushing and
pulling pairs of points representing a pattern, see Section 8.3.2.

8.4 Experiments and Discussion

The experiments are organized such that we first show the method at work
in a few controlled synthetic cases. Then we will use the algorithm to build
a model for real datasets, showing “real life” results. The first synthetic ex-
periment will be a stream with 10 groups of 5 items. Groups do not occur
together, but all of them occur often. This dataset is called the 10-groups

dataset. The second synthetic experiment will be a stream where certain
groups of items suddenly do not occur; instead another group starts occur-
ring. We call this dataset the suddenchange dataset.

The first real dataset comes from Internet Information Server (IIS) logs
for msnbc.com and news-related portions of msn.com for the entire day of
September, 28, 1999. The original dataset contained sequences of 17 possible
categories viewed by a user within 24 hours and was used before in [8]. For
our purpose we converted the dataset to itemsets. To make the problem
more interesting for our problem, we removed users viewing only one or
two categories. This dataset will be called the MSNBC dataset and contains
174,042 transactions.

The second real dataset is the Large Soybean Database used for soy-
bean disease diagnosis in [47], we call the dataset the soybean dataset. This
dataset contains 683 records with 35 attributes. First we removed all missing
values and we converted each record to a string of n = 84 yes/no values for
each attribute value. In this research we do not deal with missing values,
and each item represents an attribute value, we use this dataset to analyze
the performance of our algorithm with a real dataset with more than 50
items.

All experiments were performed on an Intel Pentium 4 64-bits 3.2 Ghz

106 Experiments and Discussion

machine with 3 GB memory. As operating system Debian Linux 64-bits was
used with kernel 2.6.8-12-em64t-p4.

Figure 8.1: Model after seeing 1,200 transactions of the 10-groups dataset
(n = 50, minsupp = 0.05, ` = window size = 300, mergedist = 0.1, α = 0.1).

Figures 8.1 and 8.2 show how the cluster model changes as more trans-
actions are coming in for the 10- groups dataset. The first group of this
dataset consists of items 0 to 5, the second has 5 to 10, etc. In Figure 8.2
we clearly see these patterns, where minsupp is given as a percentage of the
dataset size. Furthermore notice that both the second and the first group
contain the item 5, so there is a slight overlap. We see these itemsets closer
together because they are both close to the pattern {5}. In order to get a
clear picture we did not display the size 1 itemsets. Itemsets are plotted
using +s, accompanied by the items they contain.

The second synthetic dataset, called the suddenchange dataset, simu-
lates a stream that completely changes after seeing many transactions (i.e.,
30,000). The results are displayed in Figure 8.3, where the labels above each
bar reveal the size of the itemsets. First the records in the stream always
contain items 1 to 5. Then after 30,000 transactions they only contain items
25 to 30. Figure 8.3 shows how the first pattern appears and how it slowly
disappears in the middle. In the end the model contains only patterns with

Chapter 8 107

Figure 8.2: Model after seeing 4,500 transactions of the 10-groups dataset
(n = 50, minsupp = 0.05, ` = window size = 300, mergedist = 0.1, α = 0.1).

items 25 to 30.

Figure 8.4 was made using the formula 1
|P| ·

∑|P|
i=1 abs(|pi| − |rmax (pi)|)/

|rmax (pi)| for each model P, we call this value the average relative difference.
Here rmax gives the itemwise nearest maximal frequent pattern with pi ∈ P
as a subset. These maximal frequent patterns are beforehand decided with a
frequent itemset miner. In short this formula calculates how itemsets in the
model (itemwise) differ from the actual maximal frequent patterns. Figure
8.4 displays how the average relative difference stabilizes around 0.2. We
also plot the number of maximal frequent patterns divided by the actual
number, where 1.0 means they are equal in size. This value approaches 1.0
especially when merging and splitting is temporarily stopped after 50,000
transactions.

Approximating supports well is important in order to know which item-
sets should be split. In Figure 8.5 we show for all patterns in a computed
model the error between their approximated support and their real sup-
port in the time window as the transactions from the MSNBC dataset arrive.
The root mean squared error of the supports for this model eventually ap-
proaches 0.06. The error becomes more stable after temporarily stopping

108 Experiments and Discussion

Figure 8.3: The suddenchange dataset, the stream changes in the middle
(n = 50, minsupp = 0.05, ` = window size = 300, mergedist = 0.1, α = 0.1).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Nr. of Transactions x 250

Avg. Relative Difference
|Max. Freq. in Model|/|Actual Max. Freq|

Figure 8.4: The model compared with the actual situation for the MSNBC

dataset (n = 17, minsupp = 0.05, ` = window size = 1, 000, mergedist =
0.1, α = 0.1).

itemset creation after seeing 10,000 transactions.

The processing time of the algorithm strongly depends on the support
threshold minsupp one chooses. The lower minsupp is chosen the more points

Chapter 8 109

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

S
qu

ar
ed

 R
oo

te
d

E
rr

or

Nr. of Transactions x 250

Figure 8.5: Root squared error between the real support and the ap-
proximated support for the MSNBC dataset (n = 17, minsupp = 0.05,
` = window size = 1, 000, mergedist = 0.1, α = 0.1), with a Bézier curve.

the model will contain eventually and so processing time will get worse.
Figure 8.6 shows that the average processing time for each transaction gets
worse as the model contains more itemset points. However, Figure 8.7 shows
that, for the soybean dataset, the number of points in the model eventually
stabilizes. For each transaction we adapt the distances between points a
number of times. In the case of the soybean dataset we randomly choose
pairs 40,000 times in order to push or pull them, depending on their co-
occurrence. Obviously one way of speeding up processing is to take a smaller
number than 40,000 times or skip adapting distances from time to time.

8.5 Conclusions and Future Work

The algorithm presented in this chapter generates a co-occurrence model
of (approximately) maximal frequent itemsets. This gives the user a quick
overview on the patterns and how they occur in the stream.

The co-occurrence distance of patterns is computed by pushing apart
or pulling together patterns in a two-dimensional space. Pushing was done
when only one of the patterns occurs and pulling if they occur together.
This distance is used to merge sufficiently long existing patterns together,
only if support is larger than a user-defined threshold. This is because we
want only maximal frequent itemsets (itemsets that are often a subset of a

110 Conclusions and Future Work

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000
A

vg
. P

ro
ce

ss
in

g
T

im
e

(m
s)

Avg. Nr. of Cluster Points

Figure 8.6: Transaction processing time in milliseconds for different model
sizes for the real dataset (n = 84, minsupp = 0.2, ` = window size = 300,
mergedist = 0.1, α = 0.1).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000

A
vg

. N
r.

 o
f P

oi
nt

s

Nr. of Transactions

Figure 8.7: Development of model size as transactions of the real dataset are
processed (n = 84, minsupp = 0.2, ` = window size = 300, mergedist = 0.1,
α = 0.1).

transaction but they are never a subset of a bigger frequent itemsets) such
that the model does not grow too big. Finally points are split if they happen
to occur less than expected. Splitting and merging is required because the
model cannot contain all patterns.

Chapter 8 111

In the future we want to focus more on the applications of our algorithm
and how it is best used in the analysis of streams. Furthermore we like to
examine the support estimates in more detail, and see how extra parameters
(e.g., to determine the threshold age for splitting) can be employed.

9 Mining Web Access Data and

the Interpretation of Patterns

A common application of data mining with semi-structured data is the min-
ing of web access data in which the browsing behaviour of users is stored.
For example, one can store the information whether pages of the website are
visited by an user. In this case each user will be represented by an itemset :
the set of pages she or he has visited. However, one can also store the order
of pages visited and in this way the behaviour of each user is stored as a se-
quence: the series of pages he or she has visited. Finally, one can store each
page as a node and make connections between them if the user “travels”
from one page to the other; in this way user behaviour is stored as a graph.
In this chapter we will apply our methods to three “access log” datasets. In
some cases we choose different structures for the records, e.g., a dataset of
sequences is converted to a dataset of itemsets or graphs.

We hope to obtain a better understanding of the methods and the situ-
ations in which they are most useful. To this end we focus in this chapter
on how the resulting patterns can be (further) interpreted. This chapter can
best be seen as a case study where an expert of the website, called the ana-
lyst, uses a tool suite, consisting of all our techniques combined, to analyse
the access log of her website in order to discover interesting user-behaviour.
We will go through a number of patterns and try to assess whether they are
useful.

We will use the following three data sets about visits to web-pages as
input:

• The liacs dataset is based on an access log of the website of LIACS,

113

114 The Itemset View

the Computer Science institute of Leiden University. Each of the 1,488
transactions arrive in order in half-hour blocks.

• The one-visitor data set stores the webpages accessed by one heavy
user of the portalexecutivo.com website. One transaction consists
of a set of pages accessed during a particular day. Some days there is
no access and hence some of the 1,603 transactions are empty. Web-
pages are categorised resulting in a total of 185 possible items for every
transaction.

• The msnbc.com dataset is comprised of Internet Information Server
(IIS) logs for msnbc.com and news-related portions of msn.com for
the entire day of September, 28, 1999. The dataset contains 989,825
sequences of 17 possible categories viewed by a user within 24 hours.
This dataset was also used by Cadez et al. in [8].

In this chapter experiments concerning balanced or consecutive occurring
itemsets will be done on the liacs and one-visitor datasets, because for
these methods the time order must be present. For the msnbc.com dataset
there is no time order given for the transactions, hence it is only used in
experiments concerning sequences and graphs.

The rest of the chapter is structured as follows. In Section 9.1 we discuss
consecutive and balanced patterns. In Section 9.2 we look at the interpreta-
tion of maximal discriminating patterns and in Section 9.3 the co-occurrence
of subgraphs is discussed.

9.1 The Itemset View

We first apply our techniques for mining balanced (fixed interval in occur-
rence, Chapter 3) and consecutive itemset patterns (occurring very close
after each other, Chapter 2) on the liacs dataset.

In the result section of Chapter 3 patterns found in the liacs dataset
were presented. There only a small number of patterns was found, and even
after a more intensive search with different parameters we were unable to find
more patterns. This can be caused by the log not containing more balanced
behaviour or because surprising patterns might be skipped due to the lack
of background knowledge. Mining balanced and consecutive patterns is best
combined in one tool, with an up-to-date log file, used by an expert with

Chapter 9 115

inside knowledge of the website. However in the case of the liacs dataset
many parts are stemming from many different employees.

The liacs dataset was not mined before using consecutive support. Min-
ing was done and some interesting consecutive patterns were discovered. The
following parameters were used:

• The minimal (consecutive) support was set to 400, indicating the
minimal value for considering a pattern to be frequent.

• The ρ value was set to 1,000, rewarding the re-occurrence of a pattern.

• The σ value was set to 500, punishing the gaps between re-occurrences.

The first pattern that was found was a consecutive pattern where the
webpage of a PhD student of the Imaging Group and the main page of the
Imaging Group are accessed. An expert could use this information to see if
the imaging group website is perhaps hard to reach. Possibily most browsing
users access it via the website of the student; on the other hand this pattern
could exist because the PhD student did an interesting discovery and many
people were accessing his findings via the imaging group website. In Figure
9.1 we see this pattern. Figures like this plot the O-series of a pattern (see
Chapter 2). In the displayed period we see consecutive phases and then a
“big” gap. The “big” gaps mostly begin several hours after working hours
and so we can probably conclude the pattern is caused by humans (as op-
posed to softbots) within the timezone of the university. Further knowledge
of the Imaging Group website is needed to analyze this pattern further.

A second pattern is the MATLAB Online Reference Documentation, a
popular mathematical program, that has been accessed consecutively. This
can be caused by students that need to use the complex program for their
assignments: they need to constantly revisit this reference manual. A website
analysist could now investigate if the usability of the MATLAB documen-
tation can be improved.

Finally we look at a third pattern where the website of the Imaging Group
PhD is accessed together with the site of the High Performance Computing
Group. Imaging and High Performance Computing often work together and
one could add easy links to each others pages. Perhaps they could make an
overview of their cooperation.

Some websites have a system were users login and in such a case one could
focus on a single user. We will consider the one-visitor dataset. It stores

116 The Itemset View

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

O
cc

ur
re

nc
e

Y
es

/N
o

Transaction

Figure 9.1: The consecutive occurrence of the imaging group website and its
PhD Student.

the webpages accessed by one heavy user of the former PortalExecutivo.com
website on a daily basis. One transaction consists of pages accessed during
one day. Some days there is no access and some of the 1,603 transactions
are empty. Webpages are categorised; there are 185 possible items for every
transaction.

In Chapter 3 we already searched balanced patterns in this dataset. A
more detailed look at the dataset revealed new patterns. General articles,
research and education are accessed with a balanced interval, as seen ear-
lier. New is that this interval is even more balanced when we include the
seminaries part of the website. This is shown in Figure 9.2: for one period
this pattern occurs very regular. Perhaps the user was in training in that
period. The website might be able to use this information to offer seminaries
particular to certain articles.

A different pattern is the “Daily News” part where the website of a
particular bank is viewed for stock analysis in a balanced fashion. As an
example a website analyst might suggest to add a summary of the stock
analysis of a business to the “Daily News” when the news concerns this
enterprise. In Figure 9.3 we see the user accessing this pattern in a stable
way for a short period. This pattern has several of these short periods, see
Figure 9.4.

Chapter 9 117

 0

 0.5

 1

 1.5

 2

 400 500 600 700 800 900 1000

O
cc

ur
re

nc
e

Y
es

/N
o

Transaction

Figure 9.2: The stable occurrence of general articles, research, education and
seminaries.

 0

 0.5

 1

 1.5

 2

 850 900 950 1000 1050

O
cc

ur
re

nc
e

Y
es

/N
o

Transaction

Figure 9.3: The stable occurrence of “Daily News” and stock analysis.

When we mine for consecutive patterns (with parameters equal to the
ones used for the liacs dataset), we find some patterns similar to a stable
pattern. E.g., we found the research section and general articles to be ac-

118 Mining with Sequences

 0

 0.5

 1

 1.5

 2

 100 120 140 160 180 200

O
cc

ur
re

nc
e

Y
es

/N
o

Transaction

Figure 9.4: The occurrence of “Daily News” and stock analysis is also con-
secutive.

cessed consecutively (consecutive support: 25). Other patterns were a equal
to a stable pattern, e.g., “Daily News” and the stock analysis were con-
secutively accessed by the user (consecutive support: 24). This is possible
because the minimal standard deviation for the balanced patterns was low.
Figure 9.4 shows how the “Daily News” and stock analysis occurs consecu-
tively.

9.2 Mining with Sequences

In this section we will use the dataset from the Internet Information Server
(IIS) logs for msnbc.com and news-related portions of msn.com for the entire
day of September, 28, 1999. The original dataset contains 989,825 sequences
of 17 possible categories viewed by a user within 24 hours. It was also used
in [8].

The case description for sequence mining is the following: The proprietor
of msnbc.com wants to know if people visiting the frontpage have a different
behaviour in comparison with people that do not view the frontpage. The
proprietor would like to know which parts of the frontpage could be made
more clear. Also she would like to know particular behavioural patterns for
news, tech, health, business and travel users. Finally she is interested in the

Chapter 9 119

behavioural differences between the users of the msn news, news and local
news sections and between the msn sport and sport sections.

9.2.1 Sequential Patterns

In our analysis of users that visit the frontpage we discovered (minsup =
5,000 visitors):

1. They visit more the news, many times for one user.
(relative difference: 7.8%, RMSD : 0.19)

2. More often they first visit news and than business.
(relative difference: 2.7%, RMSD : 0.55)

3. More often they first visit living and continue with news.
(relative difference: 2.6%, RMSD : 0.49)

4. After seeing the news they more often see what is on-air.
(relative difference: 2.6%, RMSD : 0.34)

The improved algorithm used in this subsection also gives the RMSD-
value, indicating the “suprisingness” of the pattern. This measure is dicussed
in more detail in Appendix A. Suffices to say that looking at the size propor-
tions between datasets, it calculates how much the occurrence of a pattern
deviates from this.

The case continues: with our earlier analysis we found that news is im-
portant to frontpage users, frontpage readers more often read the news. The
proprietor now wants to know if news readers use the website in a different
way, e.g., perhaps the user is more interested in business.

In our analysis of users who visit news, we discovered (minsup = 5,000
visitors):

1. News visitors more often go from the frontpage to business.
(relative difference: 5.2%, RMSD : 0.18)

2. News visitors more often access the technology section, often going via
the frontpage.
(relative difference: 5.9%, RMSD : 0.27)

3. Sport if also more often viewed, mostly in combination with the front-
page.
(relative difference: 3.4%, RMSD : 0.13)

120 Mining with Sequences

There are two categories of sport: sport and msn sport. Also three cate-
gories of news: news, local news and MSN news.

In the comparison of sport and MSN sport visitors we discovered (minsup
= 5,000 visitors):

1. Sport visitors visit the frontpage more and more repeatedly than MSN
sport visitors.
(relative difference: 29.4%, RMSD : 0.25)

2. Sport visitors more often read also the news, often going via the front-
page.
(relative difference: 19.6%, RMSD : 0.23)

3. Living is more often visited by sport visitors, also often using the
frontpage.
(relative difference: 7.5%, RMSD : 0.29)

4. MSN sport visitors more often visit MSN news.
(relative difference: 15.2%, RMSD : 0.27)

Based on this data we can improve the website. E.g., we can add a direct
link to the sport section to items on the frontpage.

In the comparison of news and MSN news visitors we discovered (minsup
= 5,000 visitors):

1. News visitors visit the frontpage more and more often than MSN news
visitors.
(relative difference: 3.2%, RMSD : 0.22)

2. News visitors more often visit business via the frontpage.
(relative difference: 9.6%, RMSD : 0.29)

3. Health is also more often visited via the frontpage
(relative difference: 7.8%, RMSD : 0.26)

4. Business, on-air and sport are visited more often.

5. The Technology section is accessed repeatedly.
(relative difference: 3.3%, RMSD : 0.23)

6. MSN news visitors more often visit local news, and do so repeatedly.
(relative difference: 4.3%, RMSD : 0.10)

7. MSN news visitors more often visit on-air once, but news visitors re-
peat their visit to on-air more.

Chapter 9 121

9.3 Co-Occurring Subgraph

The graph mining technique in this thesis (see Chapter 6 and Chapter 8)
focuses on the the co-occurrence of frequent subgraphs. Applying this tech-
nique to our current running example of mining web log data is difficult.
First we have to convert the records of the msnbc.com dataset from se-
quences into graphs. However, for one sequence many different graphs are
possible, e.g, the sequence (as described in Chapter 5) (A, B, C, A). This se-
quence can result in a graph of 4 nodes sequentielly connected to each item
of the sequence. However it could also be described with a graph consisting
of three nodes A, B and C and a connection from C back to A, see Figure 9.5.

Figure 9.5: Graph consisting of three nodes.

We decided to use undirected graphs (were edges have no direction)
and to have each item in the sequence as a node in the graph. Two nodes
are connected if the corresponding items follow each other directly in the
sequence. This way of generating graphs was chosen because we wanted to
show that co-occurrence visualization can work in this “web” setting and we
want to guarantee that no information is lost.

A problem with the msnbc.com dataset is that most sequences are only a
few items (page views) long. These short sequences make co-occurrence rare
and for this reason it was decided to adopt the following case: The owner of
the website wants to know if certain behaviour of “long staying” msn sports
users commonly involves certain other behaviour.

Obviously we are more interested in the co-occurrence of patterns that
do not have a parent-child relation (see also Chapter 8). Furthermore, “long
stay” users are defined as users that visit at least five parts of the website
(which can be five times the same part).

The methods proposed in Chapter 6 are applied to build the model
in Figure 9.6. We see that some patterns are placed more close together,
indicating that they co-occur more than others. However, it is not very

122 Co-Occurring Subgraph

Figure 9.6: The co-occurrence model for the 47 patterns found in the msn-
sports section of the msnbc.com dataset (minsup = 2, 000).

apparant. Other patterns are put more far apart, this indicates they co-
occur less.

In Figure 9.7 we connect those points where the corresponding patterns
have a lower than 0.6 co-occurrence value (the closer this value is to 0 the
more these patterns co-occur).

The different groups of co-occurring patterns are not clearly recognizable
from Figure 9.6. In order to make groups more clear we wanted to transform
the distance measure. We took the square root of the absolute distance
between patterns while keeping the original negativity or positivity of the
distance. This is made more clear with Equation 9.1, where this new distance
dist ′(g1, g2) is defined. In this way close patterns are put more close and far
apart patterns are put more clearly apart.

dist ′(g1, g2) = sgn(dist(g1, g2)) ·
√

|dist(g1, g2)| (9.1)

where dist(g1, g2) is as defined ealier in Equation 6.1:

Chapter 9 123

Figure 9.7: The co-occurrence model for the msnbc.com dataset where we
connect patterns that have a minimal co-occurrence of 0.6 (minsup =
2, 000).

dist(g1, g2) =
support(g1) + support(g2)− 2 · support(g1 ∧ g2)

support(g1 ∨ g2)

Figure 9.8 clearly shows three clusters of patterns co-occurring. That
they really co-occur more is shown in Figure 9.9. The groups have no con-
nections between “members”, the patterns co-occur too little and as a con-
sequence are placed further apart.

In Figure 9.8 one can see three clusters of patterns: one tight cluster in
the top, one cluster in the right bottom and a little bit more loose cluster
on the left.

The cluster in the top contains patterns that of course have the msn-
sport page, but also local-news, weather and miscellaneous. These users can
be seen as the “generally interested” users. Some co-occurring patterns in

124 Co-Occurring Subgraph

Figure 9.8: The co-occurrence model for the 47 patterns found in the
msn-sports section of the msnbc.com dataset, using the distance function
dist ′(g1, g2) (minsup = 2, 000).

this cluster are:

• {local-news, local-news}, with a support of 2,092.

• {msn-sport, weather, weather}, with a support of 2,092.

• Three views of msn-sport and then some users continue with miscel-
laneous subjects, with a support of 2,370.

The cluster in the right-bottom contains patterns where users are viewing
the msn-news section and the general sports section. These users can be seen
as the ’News and sport’ users. Some co-occurring patterns in this cluster are:

Chapter 9 125

Figure 9.9: The co-occurrence model for the msnbc.com dataset where we
connect patterns that have a minimal co-occurrence of 0.6, using the distance
function dist ′(g1, g2) (minsup = 2, 000).

• {msn-news, msn-news}, with a support of 3,300.

• {msn-sport, sport, msn-sport}, with a support of 2,910.

The cluster in the left-bottom mainly contains some combination of gen-
eral sport and msn-sport. These users are seen as the “sport watchers”. Some
co-occurring patterns in this cluster are:

• {sport, sport, msn-sport, msn-sport}, with a support of 5,138.

• {sport, sport, sport, sport}, with a support of 4,343.

So we see in the example case that the building of a co-occurrence model

126 Conclusions

can be used to discover different clusters of user behaviour and in such a
way recognizing different user types.

9.4 Conclusions

The different techniques proposed in this thesis can handle the different
types of semi-structured data. Our technique of mining consecutive and
balanced patterns are made to handle itemsets and difference mining was
optimized for dealing with sequential data. Finally our method of modeling
co-occurring patterns was made to analyze subgraph co-occurrence.

Applying each technique on the same dataset requires us to convert
the records to the specific semi-structured data. For graphs this is difficult,
because their can be many possible graphs representing a sequence.

However, we showed in this chapter that we can use balanced pattern
mining and consecutive pattern mining to find interesting pattern occurrence
intervals in web log data. It is important for the website analyst to keep the
order of the transactions as they arrive. This could not be guaranteed for
the msnbc dataset and we could not apply these techniques on this dataset.

With difference mining we discovered many interesting patterns in the
msnbc dataset this shows how this technique can be applied to sequential
data and what one could hope to find. We proposed a new method of evalu-
ating the surprisingness of pattern occurrence within different datasets and
showed how one can prune using this measure.

Finally we converted the sequences of the msnbc dataset to simple graph
structures and we discovered some interesting co-occurring patterns. The co-
occurrence became especially clear after we transformed the distance func-
tion using root.

Conclusions

In this thesis we started by investigating different ways of counting the oc-
currence of patterns, pattern evaluation. In some case some patterns where
shown to occur many times in transactions occurring almost right after one
another in the dataset, they occurred consecutive. In other cases patterns
where occurring and then not occurring for the same amount of time before
they occurred again, these patterns we call either stable or balanced. We call
patterns balanced if certain time intervals occur a minimum amount of time
and when the standard deviation for the complete interval of occurrences is
below a maximum. In comparison with stable patterns, the pruning thresh-
old for balanced patterns is thought to be more intuitive to users. With it
the user only indicates the number of times at least one intermediate dis-
tance should occur. Such a distance is the number of transactions between
two occurrences of the pattern (we consider only distances below a maximal
distance).

We discussed how principles, used to get extra information with tradi-
tional support, can also be used in combination with the new way of evalu-
ating patterns. For instance the combination of consecutive support and the
h-confidence threshold enables us to find small bursts of patterns. In tra-
ditional ways of support counting one uses h-confidence to find hyperclique
patterns. These types of patterns have a strong affinity between items: the
presence of x ∈ P , where P is an itemset or clone, in a transaction strongly
implies the presence of the other items or patients in P . For consecutive
occurring patterns h-confidence filters out noise and consecutive support
amplifies the bursts of patterns.

Not for all data sets consecutive, stable or balanced patterns are of inter-
est. The transaction in the dataset at least should have an order, they should
be sorted. Furthermore the time between transactions should be known or
all transactions should take equal time.

For consecutive support we applied the technique on a dataset of itemsets
where each transaction is a part of the chromosone. A patient occurs as

127

128 Conclusion

an item in each of these transactions if they deviate from normal for this
part. By using consecutive support we found patterns that occurred many
times and very close together in the chromsone. In the biological problem
the items are individuals and the transactions are “clones”, pieces of the
chromosome that might occur more or less often than in a healthy individual.
Patterns in close transactions are better because they are close together in
the chromosome and are biologically more significant than patterns that are
far apart and in different chromosomes.

For balanced and stable patterns we used the techniques to find patterns
in the use of a website. We found some parts of the website to be used many
times in combination and many times with equal time between occurrences.

In this thesis we also introduced and compared two sequential pattern
mining algorithms by using knowledge from the application area of protein
sequence analysis. Given some assumptions, we can improve mining for the
maximal discriminating patterns. The effectiveness depends on the quality
of the assumptions, e.g., how probable a discriminating pattern is within a
certain time window. Our method also depends on the discriminative power
of the patterns. Pruning will be less effective if this is low, even though we
might find the maximal discriminating patterns quickly. It is shown that
using probable time windows in protein sequences can speed up the search.
Protein sequences are long but contain only a few types of items; constraints,
e.g., a time window constraint, are required to make the discovery of patterns
in these sequences tractable. The time window constraint means that the
distance between the first and last item of the sequence is bounded by some
constant. For example if all sequences in a database are equal to (A,C,G,Q),
and the time window is 2, then (A,Q) is not a frequent pattern because the
distance between the A and Q in the occurrences is more than 2.

Presenting data mining results to the user in an efficient way is impor-
tant. In this work we proposed different ways of visually presenting frequent
subgraphs (patterns). All these methods use co-occurrence of patterns in
some way. Firstly proposed a tool for browsing the lattice by extending or
shrinking frequent subgraphs towards bigger or smaller frequent subgraphs.
This browsing application also used co-occurrence to propose other groups
of graph patterns that either co-occur with the particular pattern or not at
all.

Secondly we proposed a way of constructing a co-occurrence model for
subgraphs that enables quicker exploration of occurrence data. The co-
occurrence distance of patterns is computed by pushing apart or pulling
together patterns in a 2-dimensional space (the model). Pushing was done
when only one of the patterns occurs and pulling if they occur together.

Conclusion 129

Before building a co-occurrence model the algorithm first forms groups of
structural related graph patterns that also co-occur many times. This re-
duces model building time, but more importantly it will quickly show the
biologists structural unrelated groups of patterns that co-occur, which is
more interesting.

Not all dataset have a clear end, in the case of streams (of itemsets)
the dataset is potentially endless. In this work we introduce an algorithm
that generates a co-occurrence model of approximately maximal frequent
itemsets for streams of itemsets. This gives the user a quick view on the
patterns, frequent subsets, in the stream and how they occur in the stream.
The co-occurrence distance is used to merge sufficiently long existing pat-
terns together if support is larger than a user-defined threshold, because we
want only maximal frequent itemsets (itemsets that are often a subset of a
transaction but they are never a subset of a bigger frequent itemsets) such
that the model does not grow too big. Finally points are split if they happen
to occur less than expected. Splitting and merging is required because the
model cannot contain all patterns.

Using the distance between transactions like it is done in this thesis is an
interesting area of research. In the future it should be examined if consecutive
support, stable and balanced patterns enable us to visualize even more types
of behavior. Next to using these existing methods to find new behavior, in the
future we hope to discover new ways of counting occurrence in order to find
interresting patterns. For stable patterns and balanced patterns we would
like to see if we can speed-up the search, e.g., by using heuristics. And we
want to see how it can be combined with principles like h-confidence. For
balanced (and stable) patterns we hope research new ways of visualizing
the results such that interesting patterns become more appearant. Later
research hopefully also looks at the probable time window and how this time
window can automatically be discovered. Finally in the future we would
like to develop innovative ways of browsing the lattice and quickly select
interesting patterns.

A A measure of “surprisingness”

A.1 Root Mean Square Deviation

Before we started our analysis of Chapter 9 we added an extra measure
to the output provided by the difference miner: root mean square deviation
or RMSD . We will first explain this measure for “surprisingness”. It will
allow us to find frequent patterns particular for one or a few groups within a
dataset. The added value of this measure will be the independence from the
strength of the frequency. Related to this work is the study of surprisingness
as done by Freitas in [16].

Say we have m groups for one dataset D = D0∪ D1∪ . . . ∪ Dm−1; and
a pattern p occurs in at least one group. It would be interesting if the
occurrence of this pattern is mainly in one group. We let sup(p,Di) be the
number of occurrences of pattern p in group Di (0 ≤ i < m). We define
the total pattern occurrence as t =

∑m−1
i=0 sup(p,Di). Now we can calculate

the supports we would expect when there is no apparent deviation with the
proportions between Dx and D:

E[sup(p,Dx)] = (|Dx|/n) · t (A.1)

where n = |D0|+ . . . + |Dm−1|.
The RMSD-value is now calculated between expected and real propor-

tions in occurrence, see Equation A.2 and A.3:

RMSD(p) =

√

√

√

√
1
m

m−1
∑

i=0

(E[sup(p,Di)]/t− sup(p,Di)/t)2 (A.2)

131

132 Root Mean Square Deviation

=

√

√

√

√
1
m

m−1
∑

i=0

(|Di|/n− sup(p,Di)/t)2 (A.3)

The RMSD(p)-measure is strongly related to the sum of the individual vari-
ances, but |Di|/n and sup(p,Di)/t are not independent. Furthermore t makes
it a measure of deviation between mean occurrence in D and mean occur-
rence in Di.

If n = |D0|+|D1| then it can easily be proven that (|D0|/n−sup(p,D0)/t)2

= (|D1|/n− sup(p,D1)/t)2 and in that case we could also use Equation A.4:

RMSD(p) =
√

(|D0|/n− sup(p,D0)/t)2 (A.4)

The value for relative difference depends strongly on the value of relative
support for the pattern p in relation to the group sizes of D0 or D1. Less
frequent patterns more often have a low relative difference.

In the next Example A.1.1 we will give an example of a pattern with an
interesting difference in occurrence/support. However, the absolute relative
difference is small because the total support is small. With the RMSD-value
we see that there is an interesting deviation from the support we would
expect. The expected support is computed as if the proportions of support
were equal to the proportions of the groups.

Example A.1.1 Assume that we have pattern p occurring 100 times in
D0 and 8 times in D1 and that |D0| = |D1| = 1000. The absolute relative
difference is (only): |100/1000−8/1000| = 0.09. However, RMSD(p) = 0.60.

A few more occurrences in a small group have a big influence on relative
difference. Example A.1.2 shows how changes in a small group have less
influence on the RMSD-value. This can not really be called an advantage of
the one or the other. In the case of RMSD we normalize on the total support
of pattern p giving smaller groups (potentially) less influence than a bigger
group. For the RMSD-value a change in occurrence is equal, independent
from the group in which it changes. In the case of relative difference all
groups have equal influence and one extra occurrence in a small group has
more weight.

Example A.1.2 Assume that we have pattern p occurring 500 times in D0

and 80 times in D1. Furthermore |D0| = 1000 and |D1| = 100. The absolute
relative difference will be: |500/1000− 80/100| = 0.3.

However, for RMSD(p) we calculate 1000/1100·580≈ 527.27 and 100/1100·
580 ≈ 52.72, and so RMSD(p) ≈ 0.07.

Appendix A 133

If we prefer equal influence, independent from group size, then we can
adapt the RMSD-value:

RMSD ′(p) =

√

√

√

√

√

((E[sup(p,D0)]− sup(p,D0))/max(p,D0))
2

+((E[sup(p,D1)]− sup(p,D1))/max(p,D1))
2

2
,

(A.5)
where max(p,D) = max(E[sup(p,D)], sup(p,D)).

The χ2 measure is a good measure used for correlation mining, e.g., in
the case of CorClass [78]. However, the height of the χ2 value is influenced by
the total size of the datasets and the corresponding support of the pattern
relative to that size. In Example A.1.4 we notice that also with χ2 we do
not see the pattern of Example A.1.2 as interesting. This is because χ2 also
takes the proportions into account.

Example A.1.3 Assume again that we have pattern p occurring 100 times
in D0 and 8 times in D1. Furthermore |D0| = 1000 and |D1| = 100.

We have the following table for frequencies:

In D0 In D1 total

p 100 8 108

¬p 900 92 992

1000 100 1100

The expected frequency will be the following:

In D0 In D1 total

p 98.2 9.8 108

¬p 901.82 90.2 992

1000 100 1100

Hence χ2(p,D0,D1) ≈ 0.40 which indicates that the frequency is close to
expected.

However χ2 is influenced by the total number of occurrences of a pattern
within the data sets:

134 Pruning with RMSD

Example A.1.4 Assume that we have pattern p occurring 200 times in D0

and 16 times in D1 and that |D0| = |D1| = 1000.
Now we have the following table for observed frequencies:

In D0 In D1 total

p 100 8 108

¬p 900 992 1892

1000 1000 2000

The expected frequencies will be as follows:

In D0 In D1 total

p 54 54 108

¬p 900 992 1892

1000 1000 2000

Now χ2(p,D0,D1) ≈ 82.8 which indicates this difference is interesting.

Now let us assume that we have a pattern q occurring twice as much in
both datasets, 200 times in D0 and 16 times in D1. One could say they are
proportional equally interesting, but χ2(q,D0,D1) ≈ 175.7 and RMSD(q) =
RMSD(p) ≈ 0.60.

With the RMSD-value one can see which patterns deviate strongly from
the expected proportions, independent from total occurrence within the
dataset. In this way only one measure (support) is influenced by the size
of the dataset.

With the χ2 measure find proportional different patterns where a larger
number of occurrences is important. And RMSD all proportional surprising
patterns and leaves the minimal size for the minsupp threshold to decide.

A.2 Pruning with RMSD

Assume that we have a pattern q = p � {e}, where p and q are sequences
of items and e is a item, and � denotes that {e} follows p. In this case we
call q an extension of p.

Before we actually go to the database to count its occurrence, we want to
know if it can achieve a certain minimal RMSD-value. Given a user-defined
minsupx threshold for minimal support in group Dx, we can say that the
squared deviation for Dx will maximally be:

Appendix A 135

max (Dx/n−minsupx/t,Dx/n− sup(p,Dx)/t) (A.6)

This maximal RMSD-value can now be used to prune the search space
either via a user defined minimal RMSD-value and/or by searching for a
maximal number of patterns. In Figure A.1 a user defined minimal RMSD-
value of 0.3 improves runtime.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 2000 2500 3000 3500 4000 4500 5000

R
un

tim
e

in
 S

ec
on

ds

Minimal Support Threshold

Pruning
No Pruning

Figure A.1: Using the pruning with RMSD for different minimal support
settings and a minimal RMSD-value of 0.3.

Bibliography

[1] Aggarwal, C.C., Han, J., Wang, J., and P.S. Yu.: A framework for
clustering evolving data streams, In 29th International Conference on
Very Large Data Bases (VLDB’03), 2003, pp. 81–92.

[2] Aggarwal, C.C. and P.S. Yu.: A Framework for Clustering Massive
Text and Categorical Data Streams In SIAM Conference on Data Min-
ing (SDM’06), 2006, pp. 477–481.

[3] Agrawal, R., Imielinski, T., and Srikant, R.: Mining Association Rules
between Sets of Items in Large Databases, in Proceedings of ACM
SIGMOD Conference on Management of Data, 1993, pp. 207–216.

[4] Agrawal, R., Srikant, R.: Mining Sequential Patterns, In Proceedings
International Conference Data Engineering (ICDE 1995), 1995, pp.
3–14.

[5] Antunes, C., and Oliveira, A.L.: Generalization of Pattern-Growth
Methods for Sequential Pattern Mining with Gap Constraints, in Ma-
chine Learning and Data Mining in Pattern Recognition (MLDM
2003), LNCS 2734, Springer, 2003, pp. 239–251.

[6] Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast Algorithms for
Mining Emerging Patterns, in Proceedings 6th European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD 2002),
Lecture Notes in Artificial Intelligence 2431, Springer, 2002, pp. 39–50.

[7] Burdick, D., Calimlim, M., and Gehrke, J.: MAFIA: A Maximal Fre-
quent Itemset Algorithm for Transactional Databases, in 17th Interna-
tional Conference on Data Engineering (ICDE’01), 2001, pp. 443–453.

[8] Cadez, I.V. , Heckerman, D., Meek, C., Smyth, P., and White, S.: Vi-
sualization of Navigation Patterns on a Website Using Model-Based
Clustering, in Knowledge Discovery and Data Mining, (KDD’02),
2000, pp. 280–284.

137

138 BIBLIOGRAPHY

[9] Chang, J.H., and Lee, W.S.: Finding Recent Frequent Itemsets Adap-
tively over Online Data Streams, in 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’03),
2003, pp. 487–492.

[10] Chang, J.H., and Lee, W.S.: estWin: Online Data Stream Mining of
Recent Frequent Itemsets by Sliding Window Methods, in Journal of
Information Science, 31(2), 2005, pp. 76–90.

[11] Chen, Y., Dong G., Han J., Wah, B., and Wang J.: Multidimensional
Regression Analysis of Time-series Data Streams, in Proceedings 28th
Int. Conference on Very Large Data Bases (VLDB 2002), 2002, pp.
323–334.

[12] Cong, G., Pan, F., Yang, J., and Zaki, M.J.: CARPENTER: Find-
ing Closed Patterns in Long Biological Datasets, in Proceedings Con-
ference on Knowledge Discovery in Data (SIGKDD 2003), 2003, pp.
637–642.

[13] Bruin, J.S. de, Cocx, T.K., Kosters, W.A., Laros, J.F.J., and Kok,
J.N.: Data Mining Approaches to Criminal Career Analysis, in Pro-
ceedings 6th IEEE International Conference on Data Mining (ICDM
2006), 2006, pp. 171–177.

[14] Dong, G., Zhang, X., Wong, L., and Li, J.: CAEP: Classification by
Aggregating Emerging Patterns, in Proceedings International Confer-
ence on Discovery Science (DS-1999), 1999, pp. 30–42.

[15] El-Hajj, M., and Zaiane, O.R.: Parallel leap: Large-Scale Maximal Pat-
tern Mining in a Distributed Environment, In 12th International Con-
ference on Parallel and Distributed Systems (ICPADS’06), 2006, pp.
135–142.

[16] Freitas, A.A.: On Objective Measures of Rule Surprisingness, in Pro-
ceedings of the Second European Symposium on Principles of Data
Mining and Knowledge Discovery, LNCS 1510, Springer, 1998, pp. 1–
9.

[17] Gao, H., Williams, C., Labute, P., and Bajorath, J.W.: Binary Quan-
titative Structure-Activity Relationship (QSAR) Analysis of Estrogen,
in Journal of Chemical Information and Computer Sciences, vol. 39,
1999, pp. 164–168.

BIBLIOGRAPHY 139

[18] Gedeck, P., and Willett, P.: Visual and Computational Analysis of
Structure-Activity Relationships in High-Throughput Screening Data,
in Current Opinion in Chemical Biology, vol. 5, 2001, pp. 389–395.

[19] Gibson, D., Kleinberg, J., and Raghavan, P.: Clustering categorical
data: An Approach Based on Dynamical Systems, in 26th International
Conference on Very Large Data Bases(VLDB’00), 2000, pp. 222–236.

[20] Giannella, C., Han, J., Pei J., Yan, X., and Yu, P.: Mining Frequent
Patterns in Data Streams at Multiple Time Granularities, in Proceed-
ings of the NSF Workshop on Next Generation Data Mining (NGDM
2002), 2002, pp.191–210.

[21] Gouda, K., and Zaki, M.J.: Efficiently Mining Maximal Frequent Item-
sets, in Proceedings IEEE International Conference on Data Mining
(ICDM’01), 2001, pp. 163–170.

[22] GPCRDB: Information System for G Protein-Coupled Receptors
(GPCRs), Website http://www.gpcr.org/7tm/.

[23] Graaf, E.H. de, and Kosters, W.A.: Clustering Improves the Explo-
ration of Graph Mining Results, in Proceedings Fourth IFIP Confer-
ence on Artificial Intelligence Applications & Innovations (AIAI’07),
2007.

[24] Graaf, E.H. de, J. Kazius, J.N. Kok, and Kosters, W.A.: Visualiza-
tion and Grouping of Graph Patterns in Molecular Databases, in Pro-
ceedings Twenty-seventh SGAI International Conference on Artificial
Intelligence (AI’07), 2007.

[25] Graaf, E.H. de, and Kosters, W.A.: Mining For Stable Patterns:
Regular Intervals Between Occurrences, in Proceedings Eighteenth
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC06),
2006, pp. 149–155.

[26] Graaf, E.H. de, Kok, J.N., and Kosters, W.A.: Displaying Co-
Occurrence of Patterns in Streams for Website Usage Analysis, in
Proceedings Eighteenth Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC06), 2006, pp. 149–155.

[27] Graaf, E.H. de, and Kosters, W.A.: Using a Probable Time Window
for Efficient Pattern Mining in a Receptor Database, in Proceedings
of 3rd Int. ECML/PKDD Workshop on Mining Graphs, Trees and
Sequences (MGTS’05), 2005, pp. 13–24.

140 BIBLIOGRAPHY

[28] Graaf, E.H. de, and Kosters, W.A.: Efficient Feature Detection for
Sequence Classification in a Receptor Database, in Proceedings Sev-
enteenth Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC05), 2005, pp. 81–88.

[29] Graaf, E.H. de, Graaf, J.M. de, and Kosters, W.A.: Using Consecutive
Support for Genomic Profiling, in Proceedings of the ECML/PKDD
Workshop on Data and Text Mining for Integrative Biology.

[30] Graaf, E.H. de, Kok, J.N., and Kosters, W.A.: Mining Balanced Pat-
terns in Web Access Data, in Proceedings of International Conference
on Artificial Intelligence and Applications (AIA’08), 2006, pp. 149–
155.

[31] Graaf, J.M. de, Menezes, R.X. de, Boer, and J.M., Kosters, W.A.: Fre-
quent Itemsets for Genomic Profiling, in Proceedings 1st International
Symposium on Computational Life Sciences (CompLife 2005), LNCS
3695, Springer, 2005, pp. 104–116.

[32] Hand, D., Mannila, H., and Smyth, P.: Principles of Data Mining,
MIT Press, 2001, ISBN:0-262-08290-x.

[33] Hanke, J., Beckmann, G., Bork, P., and Reich, J.G.: Self-Organizing
Hierarchic Networks for Pattern Recognition in Protein Sequence, Pro-
tein Science Journal 5, 1996, pp. 72–82.

[34] Hopgood, A.A.: Intelligent Systems for Engineers and Scientists, CRC
Press, 2001, ISBN:0-8493-0456-3.

[35] Izrailev, S., and Agrafiotis, D.K.: A Method for Quantifying and Visu-
alizing the Diversity of QSAR Models, in Journal of Molecular Graph-
ics and Modelling, vol. 22, 2004, pp. 275–284

[36] Jovanoski, V., and Lavrac̃, N.: Classification Rule Learning with
APRIORI-C, in Proceedings 10th Portuguese Conference on Artifi-
cial Intelligence (EPIA 2004), 2004, pp. 44–51.

[37] Kavsẽk, B., Lavrac̃, N., and Jovanoski, V.: APRIORI-SD: Adapting
Association Rule Learning to Subgroup Discovery, in Proceedings In-
ternational Symposium on Intelligent Data Analysis (IDA 2003), Lec-
ture Notes in Computer Science 2810, Springer, 2003, pp. 230–241.

[38] Kohonen, T.: Self Organizing Maps, Volume 30 of Springers Series in
Information Science, Springer, second edition, 1997.

BIBLIOGRAPHY 141

[39] Kosters, W.A., and Wezel, M.C. van: Competitive Neural Networks
for Customer Choice Models, in E-Commerce and Intelligent Meth-
ods, volume 105 of Studies in Fuzziness and Soft Computing, Physica-
Verlag, Springer, 2002, pp. 41–60.

[40] Kramer, S., Raedt, L. De, and Helma, C.: Molecular Feature Mining
in HIV Data, in Proceedings Conference on Knowledge Discovery in
Data (SIGKDD 2001), pp. 136–143.

[41] Lameijer, E.W., Kok, J.N., Bäck, and Ijzerman, A.P.: Mining a Chem-
ical Database for Fragment Co-Occurrence: Discovery of “Chemical
Clichés”, in Journal of Chemical Information and Modelling, vol. 46,
2006, pp. 553–562.

[42] Lameijer, E.W., Tromp, R.A., Spanjersberg R.F., Brussee J., and Ijzer-
man, A.P.: Designing Active Template Molecules by Combining Com-
putational De Novo Design and Human Chemists Expertise, in Journal
of Med. Chem., vol. 50, 2007, pp. 1925–1932.

[43] Leleu, M., Rigotti, C., Boulicaut, and J.F., Euvrard, G.: Constraint-
Based Mining of Sequential Patterns over Datasets with Consecutive
Repetitions, in Proceedings 7th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD 2003), LNAI 2838,
Springer, 2003, pp. 303–314.

[44] Nijssen, S., and Kok, J.N.: Multi-class Correlated Pattern Mining, in
Proceedings of the Fourth International Workshop on Knowledge Dis-
covery in Inductive Databases, (KDID’05), pp. 165-187.

[45] Lesh, N., Zaki, M.J., and Ogihara, M.: Mining Features for Sequence
Classification, in Proceedings International Conference Knowledge
Discovery and Data Mining (KDD’99), 1999, pp. 342–346.

[46] Mahony, S., Hendrix, D., Smith, T.J., and Golden, A.: Self-Organizing
Maps of Position Weight Matrices for Motif Discovery in Biological
Sequences, Artificial Intelligence Review Journal 24, 2005, pp. 397–
413.

[47] Michalski, R.S., and Chilausky, R.L.: Learning by Being Told and
Learning from Examples: An Experimental Comparison of the Two
Methods of Knowledge Acquisition in The Context of Developing an
Expert System for Soybean Disease Diagnosis, in International Journal
of Policy Analysis and Information Systems, 4(2), 1980, 125–160.

142 BIBLIOGRAPHY

[48] Liu, B., Hsu, W., and Ma, Y.: Integrating Classification and Associa-
tion Rule Mining, in Proceedings Conference on Knowledge Discovery
in Data (SIGKDD’98), 1998, pp. 80–86.

[49] Li, W., Han, J., and Pei, J.: CMAR: Accurate and Efficient Classifica-
tion Based on Multiple Class-Association Rules, in Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM 2001),
2001, pp. 369–376.

[50] Li, Y., Ning, P., Wang, X.S., and Jajodia, S.: Discovering Calendar-
based Temporal Association Rules, in Proceedings of the 8th Int Sym-
posium on Temporal Representation and Reasoning (TIME 2001),
2001, pp. 111–118.

[51] MacQueen, J.B.: Some Methods for Classification and Analysis of Mul-
tivariate Observations, in Proceedings 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1967, pp. 281–297.

[52] Mahony, S., Hendrix, D., Smith, T.J., and Golden, A.: Self-Organizing
Maps of Position Weight Matrices for Motif Discovery in Biological
Sequences, Artificial Intelligence Review Journal 24, 2005, pp. 397–
413.

[53] Nakao, K., Mehta, K.R., Fridlyand, J., Moore, D.H., Jain, A.N., La-
fuente, A., Wiencke, J.W., Terdiman, J.P., and Waldman, F.M.: High-
Resolution Analysis of DNA Copy Number Alterations in Colorectal
Cancer by Array-Based Comparative Genomic Hybridization, Carcino-
genesis 25, 2004, pp. 1345–1357.

[54] Nanopoulos, A., Theodoridis, Y., and Manolopoulos, Y.: C2P: Clus-
tering Based on Closest Pairs, in 27th International Conference on
Very Large Data Bases (VLDB’01), 2001, pp. 331–340.

[55] National Cancer Institute (NCI), DTP/2D and 3D structural infor-
mation, http : //cactus.nci.nih.gov/ncidb2/download.html.

[56] O’Callaghan, L., Mishra, N., Meyerson, A., and Guha, S: Streaming-
data Algorithm for High-Quality Clustering, in 18th IEEE Interna-
tional Conference on Data Engineering (ICDE’02), 2002, pp. 685–697.

[57] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q.,
Dayal, U., and Hsu, M.: Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach, in IEEE Trans. Knowl. Data Eng.
16(11), 2004, pp. 1424–1440.

BIBLIOGRAPHY 143

[58] Pei, J., Zhang, X., Cho, M., Wang, H., and Yu, P.S.: MaPle: A Fast
Algorithm for Maximal Pattern-Based Clustering, in 3th IEEE Inter-
national Conference on Data Mining (ICDM’03), 2003, pp. 259–266.

[59] Project Proposal for MISTA: Mining in Semi-Structured Data,
http : //www.liacs.nl/ kosters/mista/mista.pdf.

[60] Rhodes, N., Willet, P., Dunbar, J., and Humblet, C.: Bit-String Meth-
ods for Selective Compound Acquisition, in Journal of Chemical Infor-
mation and Computer Sciences, vol. 40, 2000, pp. 210–214.

[61] Roberts, G., Myatt, G.J., Johnson, W.P., Cross, K.P., and Blower, P.E.
Jr: LeadScope: Software for Exploring Large Sets of Screening Data,
in Journal of Chemical Information and Computer Sciences, vol. 40,
2000, pp. 1302–1314.

[62] Samsonova, E.V., Bäck, T., Kok, J.N., and IJzerman, A.P.: Reliable
Hierarchical Clustering with the Self-Organizing Map, in Proceedings
6th International Symposium on Intelligent Data Analysis (IDA’05),
2005, pp. 385–396.

[63] Steinbach, M., Tan, P., Xiong, H., and Kumar, V.: Generalizing the
Notion of Support, in Proceedings 10th Int. Conf. on Knowledge Dis-
covery and Data Mining (KDD’04), 2004, pp. 689–694.

[64] Tan, P., Steinbach, M. and Kumar, V.: Introduction to Data Mining,
Pearson Addison-Wesley, 2006, ISBN: 0-321-32136-7.

[65] Tao, F., Murtagh, F., and Farid, M.: Weighted Association Rule
Mining using Weighted Support and Significance Framework, in Pro-
ceedings 9th Int. Conf. on Knowledge Discovery and Data Mining
(KDD’03), pp. 661–666.

[66] Teng, W., Chen, M., and Yu, P.S.: A Regression-based Temporal Pat-
tern Mining Scheme for Data Streams, in Proceedings 29th Int. Con-
ference on Very Large Data Bases (VLDB 2003), pp. 93–104.

[67] Uchiyama, I.: Hierarchical Clustering Algorithm for Comprehen-
sive Orthologous-Domain Classification in Multiple Genomes, Nucleic
Acids Research Vol. 34, No. 2, 2006, pp. 647–658.

[68] Wang, H., Wang, W., Yang, J., and Yu, P.S.: Clustering by pattern
similarity in large datasets, in Proceedings SIGMOD International
Conference (SIGMOD’02), 2002, pp. 394–405.

144 BIBLIOGRAPHY

[69] Weka 3: Data Mining Software in Java, Website
http://www.cs.waikato.ac.nz/ml/weka/.

[70] Wess, J.: G-Protein-Coupled Receptors: Molecular Mechanisms In-
volved in Receptor Activation and Selectivity of G-Protein Recognition,
FASEB Journal 11 (5), 1997, pp. 346–354.

[71] Witten, I.H., Frank, E.: Data Mining, Morgan Kaufmann Publishers,
2000, ISBN: 1-55860-552-5.

[72] Willet, P., Barnad J.M., and Downs, G.M.J.: Chemical Similarity
Searching, in Journal of Chemical Information and Computer Sciences,
vol. 38, 1999, pp. 983–996.

[73] Xiong, H., Tan, P., and Kumar, V.: Mining Strong Affinity Association
Patterns in Data Sets with Skewed Support Distribution, in Proceed-
ings Int. Conf. on Data Mining (ICDM’03), 2003, pp. 387–394.

[74] Xu, J., Zhang, Q. and Shih, C.-K.: V-Cluster Algorithm: A New Algo-
rithm for Clustering Molecules Based Upon Numeric Data, Molecular
Diversity 10 (2006), pp. 463–478.

[75] Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Min-
ing, in Proceedings 2002 IEEE International Conference on Data Min-
ing (ICDM 2002), pp. 721–724.

[76] Yan, X., Han, J. and Afshar R.: CloSpan: Mining Closed Sequential
Patterns in Large Datasets, in Proceedings 2003 SIAM International
Conference on Data Mining (SDM’03).

[77] Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W.: New Algorithms
for Fast Discovery of Association Rules, in Proceedings 3rd Int. Conf.
on Knowledge Discovery and Data Mining (KDD ’97), pp. 283–296.

[78] Zimmermann, A., and Raedt, L. De: CorClass: Correlated Association
Rule Mining for Classification, in Proceedings International Confer-
ence on Discovery Science (DS-2004), 2004, pp. 60–72.

Nederlandse Samenvatting

Met de opkomst van het internet en de bio-informatica heeft de analyse van
gegevens steeds meer te maken met een hoge maat van structurele vrijheid.
Wanneer gegevens minder rigide gestructureerd zijn dan wordt het moeilijker
interessante patronen te vinden door het grote aantal potentiële patronen
(kandidaten). Er zijn veel mogelijke kandidaten omdat er vele manieren zijn
om de onderdelen te combineren. Neem als een voorbeeld de bio-chemie,
waar men moleculen analyseert in een poging interessante substructuren te
vinden (bijvoorbeeld veel moleculen hebben drie koolstof atomen verbonden
met een enkele verbinding). Echter één molecuul kan vele mogelijke atomen
hebben en verschillende verbindingen tussen de atomen.

Semi-gestructureerde gegevens ontstaan als de bron of de omgeving geen
rigide structuur voor de gegevens eist en wanneer gegevens gecombineerd
worden uit verschillende heterogene bronnen. Bijvoorbeeld een bibliotheek-
database waar sommige boeken geschreven zijn door één auteur en andere
door verschillende. Voor sommige auteurs is alleen hun naam bekend en voor
andere hun specialiteit en hun leeftijd. Ook worden vaak proceedings met
andere velden omschreven dan een roman. Een ander voorbeeld van semi-
gestructureerde gegevens is het bezoek aan een website en de analyse van
patronen in de bezochte onderdelen. Het bezoek aan een website door een
gebruiker wordt opgeslagen in de vorm van een graaf. Hier is elke selectie
een verbinding die wijst naar een volgend onderdeel gerepresenteerd door een
knoop in deze graaf. Sommige knopen bevatten wellicht extra informatie over
het betreffende onderdeel van de website. De verbindingen tussen knopen
geeft aan welke hyperlink geselecteerd is en naar welke pagina deze link
leidde. Zodoende zit er in deze gegevenbron ook een structuur, maar het
is niet helemaal rigide. Semi-gestructureerde gegevens hebben de volgende
eigenschappen:

• Records hebben niet hetzelfde aantal velden en een veld kan ook qua
type inhoud verschillen.

145

146 Nederlandse Samenvatting

• Records of onderdelen daarvan die vergelijkbare principes omschrijven,
bijvoorbeeld een molecuul of een atoom, zijn gegroepeerd.

• Velden hoeven niet een bepaalde volgorde te hebben.

In dit proefschrift worden verschillende manieren onderzocht om semi-
gestructureerde gegevens te analyseren (data mining). Er is gekeken naar
verschillende manieren om de voorkomens van een patroon te tellen om zo
interessante patronen te vinden.

Het juist presenteren van de resultaten aan de gebruiker is ook van be-
lang. Dit proefschrift behandelt de visuele weergave van resultaten van de
analyse (mining) van semi-gestructureerde gegevens, zodat de gebruiker een-
voudiger interessante patronen kan vinden.

De noodzaak om semi-gestructureerde gegevens te analyseren komt voort
uit het groeiende aantal bronnen van semi-gestructureerde gegevens.

Hoofdstuk 2 behandelt het zoeken van opeenvolgend voorkomende pa-
tronen. Het hoofdstuk begint met het defineren van “consecutive support”
(maat opeenvolgendheid). Daarna gaat het verder met een behandeling van
het snijden in de zoekruimte op zo een manier dat men nog steeds redelijk
snel resultaten heeft bij een lagere opeenvolgendheid.

Het ontdekken van opeenvolgende patronen kan men combineren met
technieken die eerder gebruikt zijn bij traditionele manieren van het tellen
van voorkomens. We vervolgen Hoofdstuk 2 door aan te tonen dat deze
technieken in combinatie met opeenvolgendheid nieuwe patronen kunnen
opleveren.

In Hoofdstuk 3 worden de gegevens over het voorkomen van patronen
gebruikt om patronen te ontdekken die vaak voorkomen met vrijwel gelijke
tijd tussen voorkomens. De eerste benadering van Hoofdstuk 3 is om alle
voorkomens te nemen en om dan te kijken of een andere voorkomen ongeveer
halverwege aanwezig is. Als dit vaak voorkomt dan heeft deze reeks van
voorkomens vaak gelijke tijd tussen voorkomens. De tweede benadering in
Hoofdstuk 4 is om delen van de zoekruimte over te slaan als geen onderlinge
afstand tussen alle paren vaak genoeg voorkomt.

In Hoofdstuk 5 wordt het sneller ontdekken van patronen besproken in
het geval dat de gebruiker ongeveer weet in welke delen de meest opval-
lende patronen zitten. Deze domein specifieke kennis wordt gebruikt bij het
zoeken naar zogenaamde ’most discriminating patterns’, patronen die veel
voorkomen in één verzameling van patronen en niet in een andere.

Het makkelijk kunnen overzien van resultaten is belangrijk en in Hoofd-
stuk 6, Hoofdstuk 7 en Hoofdstuk 8 wordt de visualisatie van patronen in

Nederlandse Samenvatting 147

verschillende gegevensbronnen besproken. In Hoofdstuk 6 wordt er een vi-
sueel model gemaakt van het samen voorkomen van patronen. Zo kan de
gebruiker snel zien welke patronen vaak samen voorkomen in dezelfde trans-
actie en welke bijna alleen in verschillende. In Hoofdstuk 7 wordt een appli-
catie besproken waar men start met een graaf en deze vervolgens uitbreidt
(of krimpt) naar een andere graaf wanneer deze ook veel voorkomend is. In
Hoofdstuk 8 wordt een methode geintroduceerd om samen voorkomende pa-
tronen in “streams”, potentieel oneindige stromen van transacties, te vinden.
De potentiële oneindigheid maakt het eerst verkrijgen van veelvoorkomende
patronen onmogelijk. De gekozen benadering bouwt een model van patro-
nen in een “stream” door patronen te groeien en te krimpen afhankelijk van
hun voorkomen en hun afstand (benadering van hoeveel transactie-paren
samenvoorkomen).

Met Hoofdstuk 9 sluiten we het proefschrift af door alle technieken toe
te passen in één setting: gegevens over webpagina gebruik. Op deze manier
tonen we aan hoe alle technieken gecombineerd zouden kunnen worden in
één tool voor het analyseren van het gebruik van websites.

Acknowledgements

First of all, I like to thank my parents, Wilfried and Marianne de Graaf for
their endless belief in me. I also thank Florentia Mourouka, for her support
and insight.

149

Curriculum Vitae

Edgar de Graaf was born in Schagen, North-Holland on the 29th of Novem-
ber of 1979. Living most of his life in Maarssen near Utrecht, he completed
high-school in Maarssen. After high-school Edgar went to achieve a bach-
elor level education in the Hogeschool van Utrecht, with many interesting
internships, e.g., at Philips and Ordina. He continued his education with
a Computer Science master in Agents and Knowledge Technology at the
University of Utrecht. For the last four years he has been a PhD student
at Leiden University under the supervision of Dr. Walter Kosters and Prof.
Dr. Joost Kok.

151

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: the-
oretical and experimental aspects.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn.
Formal Specification and Analysis
of Industrial Systems. Faculty of
Mathematics and Computer Sci-
ence and Faculty of Mechanical En-
gineering, TU/e. 2002-02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Sys-
tems. Faculty of Natural Sciences,
Mathematics and Computer Sci-
ence, UvA. 2002-03

S.P. Luttik. Choice Quantifica-
tion in Process Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and
Complexity. Faculty of Mathemat-
ics and Computer Science, TU/e.
2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-
time and Parametric Systems. Fac-
ulty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in

Model Checking of Timed and Hy-
brid Systems. Faculty of Science,
Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling
and Bin Packing. Faculty of Math-
ematics and Natural Sciences, UL.
2002-09

D. Tauritz. Adaptive Information
Filtering: Concepts and Algorithms.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-
11

J.I. den Hartog. Probabilistic Ex-
tensions of Semantical Models. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software
Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2002-13

J.I. van Hemert. Applying Evolu-
tionary Computation to Constraint
Satisfaction and Data Mining. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2002-14

S. Andova. Probabilistic Process
Algebra. Faculty of Mathematics
and Computer Science, TU/e. 2002-
15

Y.S. Usenko. Linearization in
µCRL. Faculty of Mathematics and
Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for com-
ponent composition and construc-
tion. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traver-
sal over Typed Source Code Repre-
sentations. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras
with Data and Timing. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2003-05

S.V. Nedea. Analysis and Simu-
lations of Catalytic Reactions. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-06

M.E.M. Lijding. Real-time
Scheduling of Tertiary Storage.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia
Process Annotation – CoMPAs.

Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2003-08

D. Distefano. On Modelcheck-
ing the Dynamics of Object-based
Software: a Foundational Approach.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek. Team Automata
– A Formal Approach to the Mod-
eling of Collaboration Between Sys-
tem Components. Faculty of Math-
ematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The λ Abroad –
A Functional Approach to Software
Components. Faculty of Mathemat-
ics and Computer Science, UU.
2003-11

W.P.A.J. Michiels. Performance
Ratios for the Differencing Method.
Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs
and Terms and Their Use in In-
teractive Theorem Proving. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-02

P. Frisco. Theory of Molecular
Computing – Splicing and Mem-
brane systems. Faculty of Mathe-
matics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and
Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization
and Browsing for Home Environ-
ments. Faculty of Mathematics and
Computer Science and Faculty of
Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specifica-
tion Formats. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical For-
malization and Applications. Fac-
ulty of Science, Mathematics and
Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous
Agents in Bargaining Games: An
Evolutionary Investigation of Fun-
damentals, Strategies, and Business
Applications. Faculty of Technology
Management, TU/e. 2004-08

N. Goga. Control and Selection
Techniques for the Automated Test-
ing of Reactive Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-09

M. Niqui. Formalising Exact
Arithmetic: Representations, Algo-
rithms and Proofs. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Com-
puter Science, UU. 2004-11

I.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Naviga-

tion. Faculty of Mathematics and
Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Condition-
ally Guaranteed Budgets. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-13

J. Pang. Formal Verification of
Distributed Systems. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary
Agent-Based Economics. Faculty
of Technology Management, TU/e.
2004-15

E.O. Dijk. Indoor Ultrasonic Po-
sition Estimation Using a Single
Base Station. Faculty of Mathemat-
ics and Computer Science, TU/e.
2004-16

S.M. Orzan. On Distributed Ver-
ification and Verified Distribution.
Faculty of Sciences, Division of
Mathematics and Computer Sci-
ence, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for
Structured Documents. Faculty of
Mathematics and Computer Sci-
ence, UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Qual-
ity Attributes for Component-Based
Software Architectures. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process
Algebra. Faculty of Mathematics
and Computer Science, TU/e. 2004-
20

N.J.M. van den Nieuwelaar.
Supervisory Machine Control by
Predictive-Reactive Scheduling.
Faculty of Mechanical Engineering,
TU/e. 2004-21

E. Ábrahám. An Assertional
Proof System for Multithreaded
Java -Theory and Tool Support- .
Faculty of Mathematics and Natu-
ral Sciences, UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty
of Biomedical Engineering, TU/e.
2005-02

C.N. Chong. Experiments in
Rights Control - Expression and
Enforcement. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Comput-
ing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic
Approach to Developing Future-
Proof System Architectures. Fac-
ulty of Mathematics and Comput-
ing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis
Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects
of Treewidth - Lower Bounds and
Network Reliability. Faculty of Sci-
ence, UU. 2005-09

O. Tveretina. Decision Proce-
dures for Equality Logic with Un-
interpreted Functions. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic En-
vironments. Faculty of Biomedical
Engineering, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classi-
fication and Symbolic Regression.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type
Error Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Ver-
ification of Hybrid Systems using
Simulation Relations. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Fac-

ulty of Mathematics and Computer
Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analy-
sis of Probabilistic Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Pro-
cesses with Replication. Faculty of
Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Con-
straint Solvers. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2005-19

M.Valero Espada. Modal Ab-
straction and Replication of Pro-
cesses with Data. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y.W. Law. Key management and
link-layer security of wireless sen-
sor networks: energy-efficient at-
tack and defense. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Fac-
ulty of Science, UU. 2006-01

R.J. Corin. Analysis Models for
Security Protocols. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-
tems. Faculty of Science, UU. 2006-
03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty of
Mathematics and Computer Sci-
ence and Faculty of Mechanical En-
gineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sci-
ences, UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML
programs. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e.
2006-09

S.G.R. Nijssen. Mining Struc-
tured Data. Faculty of Mathematics
and Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics
and Computer Science, RU. 2006-
12

B. Badban. Verification tech-
niques for Extensions of Equality
Logic. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardiza-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based
Security for Java and JML. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2006-19

C.J.F. Cremers. Scyther - Se-
mantics and Verification of Security
Protocols. Faculty of Mathematics
and Computer Science, TU/e. 2006-
20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composi-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection
of Abnormalities in Locally Au-
tonomous Distributed Systems. Fac-
ulty of Mathematics and Comput-
ing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Al-
gebra. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2007-04

L. Brandán Briones. Theories
for Model-based Testing: Real-time
and Coverage. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2007-06

M.W.A. Streppel. Multifunc-
tional Geometric Data Structures.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transi-
tion Systems and Markov Chains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development
Processes. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System

Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about
the UML. Faculty of Mathematics
and Computer Science, TU/e. 2007-
14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evo-
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Cal-
culi for Reasoning with Binding.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2007-18

M. A. Abam. New Data Struc-
tures and Algorithms for Mobile
Data. Faculty of Mathematics and
Computer Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic
Voting Controversy. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in
Embedded Systems. Faculty of Elec-
trical Engineering, Mathematics,
and Computer Science, TUD. 2008-
03

A.M. Marin. An Integrated Sys-
tem to Manage Crosscutting Con-
cerns in Source Code. Faculty of
Electrical Engineering, Mathemat-
ics, and Computer Science, TUD.
2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Sys-
tems. Faculty of Mechanical Engi-
neering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Ver-
ification of Optimistic Fair Ex-
change Protocols. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Complex Manu-
facturing Machines. Faculty of Me-
chanical Engineering, TU/e. 2008-
08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of
Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-
13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2008-14

P. E. A. Dürr. Resource-based
Verification for Robust Composi-
tion of Aspects. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty
of Mechanical Engineering, TU/e.
2008-16

R.H. Mak. Design and Per-
formance Analysis of Data-
Independent Stream Processing Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2008-18

C.M. Gray. Algorithms for Fat
Objects: Decompositions and Ap-
plications. Faculty of Mathematics
and Computer Science, TU/e. 2008-
19

J.R. Calam. Testing Reactive Sys-

tems with Data - Enumerative
Methods and Constraint Solving.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and
Experimental Aspects of Pattern
Evaluation. Faculty of Mathematics
and Natural Sciences, UL. 2008-22

