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ABSTRACT
Many disease-associated variants affect gene expression levels (expression quantitative trait loci, 
eQTLs) and expression profiling using next generation sequencing (NGS) technology is a powerful way 
to detect these eQTLs.

We analyzed 94 total blood samples from healthy volunteers with DeepSAGE to gain specific 
insight into how genetic variants affect the expression of genes and lengths of 3’-untranslated regions 
(3’-UTRs). We detected previously unknown cis-eQTL effects for GWAS hits in disease- and physiology-
associated traits. Apart from cis-eQTLs that are typically easily identifiable using microarrays or 
RNA-sequencing, DeepSAGE also revealed many cis-eQTLs for antisense and other non-coding 
transcripts, often in genomic regions containing retrotransposon-derived elements. We also identified 
and confirmed SNPs that affect the usage of alternative polyadenylation sites, thereby potentially 
influencing the stability of messenger RNAs (mRNA). We then combined the power of RNA-sequencing 
with DeepSAGE by performing a meta-analysis of three datasets, leading to the identification of many 
more cis-eQTLs.

Our results indicate that DeepSAGE data is useful for eQTL mapping of known and unknown 
transcripts, and for identifying SNPs that affect alternative polyadenylation. Because of the inherent 
differences between DeepSAGE and RNA-sequencing, our complementary, integrative approach leads 
to greater insight into the molecular consequences of many disease-associated variants.
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INTRODuCTION
Genome-wide association studies (GWAS) have associated genetic variants, such as single nucleotide 
polymorphisms (SNPs) and copy number variants (CNVs), with numerous diseases and complex traits. 
However, the mechanisms through which genetic variants affect disease phenotypes or physical traits 
often remain unclear. To gain insight into these mechanisms, we have combined genotype data with 
gene expression data by conducting expression quantitative trait locus (eQTL) mapping. Previously, 
the level of gene expression was primarily assessed using oligonucleotide microarrays, which was a 
powerful method to profile the transcriptome [1–6]. But recently, high-throughput next generation 
sequencing (NGS) has become available, which allows quantification of expression levels by counting 
mRNA fragments (RNA-seq) or sequence tags (including serial analysis of gene expression (SAGE), cap 
analysis of gene expression (CAGE), and massively parallel signature sequencing (MPSS)) [7]. 

To date, two NGS eQTL studies have been published [8,9], both of which used RNA-seq. Although 
RNA-seq is a versatile technique, the coverage in the ultimate 3’-end is usually lower due to the 
fragmentation and random hexamer priming steps involved in the sample preparation [10] (Figure 
1B). DeepSAGE technology [11,12], however, concentrates on capturing information on the 3’ end of 
transcripts. In DeepSAGE, enzymatic cDNA digestions generate one specific tag of 17 nucleotides at 
the most 3’-CATG sequence of each transcript (Figure 1A). The majority of these 21-mer tags (‘CATG’ 
+ 17 nucleotides) can be uniquely mapped to the genome to identify the genes expressed.

There are several features of NGS-based expression quantification methods that are especially 
important for eQTL mapping. While oligonucleotide arrays target a predefined set of transcripts or 
exons, both RNA-seq and DeepSAGE are capable of detecting novel and unannotated transcripts. 
If such a novel gene later turns out to be cis-regulated by trait- or disease-associated SNPs, it can 
represent an interesting causal candidate gene for the trait or disease under investigation. RNA-seq is 
extremely versatile, as it can quantify the expression of alternative transcripts, which makes it possible 
to detect SNPs regulating the choice between alternative transcripts. DeepSAGE, however, is generally 
not suited to detecting alternative splicing because of the 3’ bias of the tag locations [13]. Because 
only sequence data is generated for these short tags, the read depth per tag is generally much greater 
than with RNA-seq, permitting accurate quantification of these tags [11,14]. Thus, this 3’ emphasis 
makes DeepSAGE suitable for transcript variants that differ in 3’-UTRs and also for detecting alternative 
polyadenylation events, a widespread phenomenon that generates variation in 3’-UTR length [15,16]. 
Shortening or lengthening of the 3’-UTR may result in the loss or gain of regulatory elements, such as 
miRNA binding sites or binding sites for proteins that can stabilize or destabilize the transcript [17,18]. 
Several SNPs that influence the choice for alternative polyadenylation sites have been detected by 
RNA-seq on a small number of individuals [19]. Here, we analyzed this phenomenon in more depth by 
performing cis-eQTL mapping on DeepSAGE data from total blood samples of 94 individuals.
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RESuLTS
DeepSAGE dataset
For cis-eQTL mapping, we used DeepSAGE sequencing of 21 bp tags (16 ± 7 million tags) from total 
blood samples from 94 healthy, unrelated individuals from the Netherlands Twin Register (NTR) and 
the Netherlands Study of Depression and Anxiety (NESDA) [20]. Sequence reads were mapped to the 
reference genome hg19 using Bowtie [21] and assigned to transcripts. We mapped 85 ± 5% of tags to 
the genome and found that 77 ± 9% of these mapped to exonic regions. Although 66 ± 18% of these 
reads mapped to hemoglobin-alpha or –beta (HBA1, HBA2, HBB) genes, we were left with sufficient 
sequencing depth to detect a total of 9,562 genes at a threshold of at least two tags per million. 

Cis-eQTL mapping
Once reads had been mapped, we quantified the expression levels of sequenced tags and performed 
cis-eQTL mapping, evaluating only those combinations of SNPs and tags that were located within a 
genomic distance of 250 kb, while using a Spearman rank correlation test (tag-level false discovery 
rate (FDR) controlled at 0.05). We identified 540 unique cis-regulated tags. To subsequently increase 
the statistical power of eQTL detection, we used principal component analysis (PCA) to correct for 
technical and known and unknown biological confounders. The first principal components (PC) 
generally capture a high percentage of the expression variation, and these PCs mostly reflect technical, 
physiological and environmental variability. Removing this variation allows for the detection of more 
eQTLs [6,22,23]. In our data the first principal component significantly correlated with sample GC 
content, and principal components 7 and 11 correlated with various blood cell count parameters (for 
details see Text S1, Figures S1 and S2). When using the PC corrected data, we observed an almost two-
fold increase in the number of significant cis-eQTLs (1,011 unique cis-regulated tags, corresponding to 
896 unique cis-regulated genes at tag-level FDR < 0.05). The list of detected eQTLs is given in Table S1.

Comparison with microarray results
We then compared the DeepSAGE cis-eQTLs with cis-eQTLs that we had identified using the Affymetrix 
HG-U219 expression microarrays on the same 94 samples. In that analysis we detected cis-eQTLs for 
only 274 genes (FDR < 0.05), only a third of what we identified using DeepSAGE. We observed that 
this substantial difference could mostly be explained by the fact that the cis-eQTLs detected using 
Affymetrix microarrays nearly always reflected genes that are highly expressed in blood, whereas for 
DeepSAGE the detected cis-eQTL genes had expression levels that could be much lower (Figure 2). 
Although we only concentrated on tags that were expressed, there was no clear relationship between 
the mean tag level expression and the probability of showing a significant cis-eQTL. As such, DeepSAGE 
is much more capable of identifying cis-eQTLs for genes showing low expression than conventional 
microarrays.  It was therefore not a surprise that only 39% of the identified DeepSAGE cis-eQTLs could 
also be significantly detected in the microarray-based dataset (with identical allelic direction) (Figure 
S3). Indeed, the cis-eQTLs that were not replicated in the microarray-based dataset generally had a 
much lower expression than the replicating cis-eQTLs (Wilcoxon Mann Whitney P < 2 ×10-3). And 
vice versa, we could significantly replicate 75% of the detected Affymetrix cis-eQTLs with the same 
allelic direction in the DeepSAGE data (Figure S3), indicating that DeepSAGE shows overlapping results 
with array-based data. At the same time, this provides insight into the regulation of gene expression 
by SNPs at many more loci. We estimated the reduction that could be made in the sample size of 
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the sequencing-based dataset to get the same number of cis-regulated genes as in microarray-based 
data. We observed that the DeepSAGE sample size could be reduced by almost half (to 55 samples) to 
get the same number of significant cis-regulated genes as identified in the microarray analysis of the 

Figure 1. Comparison of typical DeepSAGE 
and RNA-seq data generation steps.                   
A) DeepSAGE data preparation consists of the 
following basic steps: after RNA extraction the 
polyadenylated mRNA fraction is captured 
with oligo-dT beads. While RNA is still bound 
to the beads, double-stranded cDNA synthesis 
is performed. Next, cDNA is digested by NlaIII 
restriction enzyme (an anchoring enzyme), 
which cuts the DNA at CATG recognition 
sequences, leaving only the fragment with 
the most distal (3’) CATG site associated with 
the beads. Subsequently, a GEX adapter is 
attached to the 5’ end. This adapter contains a 
recognition sequence for the MmeI restriction 
enzyme that cuts the sequence 17 bp 
downstream of CATG site. After ligation of a 
second GEX adapter, fragments containing 21 
bp tags (17 unknown nucleotides + CATG) are 
ready for sequencing. B) A typical protocol for 
RNA-seq data preparation has the following 
steps: after RNA extraction the polyadenylated 
mRNA fraction is captured with oligo-dT 
beads. Captured RNA is fragmented and for 
each fragment cDNA synthesis is performed 
using random hexamer primers. Sequencing 
adapters are then ligated to each fragment. 
This is followed by size selection of the DNA 
fragments and PCR amplification. Then one 
end of the fragment is sequenced (single-
end sequencing) or both ends (paired-end 
sequencing).

DeepSAGE Affymetrix 
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Figure 2. Fraction of cis-regulated genes in bins by mean gene expression levels for DeepSAGE and Affymetrix 
data. For each dataset, all genes were sorted by their mean gene expression levels, and divided into ten equal bins. 
The X-axis reflects these bins, which are sorted by increasing mean gene expression levels. The Y-axis reflects the 
fraction of cis-regulated genes that fall into each bin. 
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94 samples. As such, these results clearly indicate that DeepSAGE has higher statistical power than 
microarrays.

Cis-eQTL effects on non-coding genes
While most microarray platforms interrogate mainly the protein-coding part of the transcriptome, 
NGS-based expression profiling will detect the majority of all expressed transcripts. Indeed, we 
detected eQTLs for known, but non-protein coding, genes: 8 antisense genes and 31 lincRNAs (Figure 
3). We also expected to find a number of cis-eQTL effects on previously unknown transcripts. Of the 
1,011 tags with a significant cis-eQTL effect, 230 did not map to known transcripts. Many of these tags 
map to retrotransposon-derived elements in the genome, which are known to be a source of novel 
exons [24]: 73 DeepSAGE tags with significant cis-eQTLs that did not map to annotated genes mapped 
to 72 unique LINE, SINE and LTR elements in the genome (Table 1). 

New regulatory roles for disease- and trait-associated SNPs
We checked how many of our cis-acting SNPs were associated with complex traits or complex diseases 
(‘trait-associated SNPs’), as published in the Catalog of Published Genome-Wide Association Studies. 
104 of the 6,446 unique trait-associated SNPs were significant cis-eQTLs in our data (Table S2). We 
were interested to determine whether the DeepSAGE data had revealed cis-eQTL effects for trait-
associated SNPs that had been missed when using conventional arrays on much larger cohorts. We 
therefore compared our results to a re-analysis of a large-scale, array-based cis-eQTL mapping that 
we had conducted in whole peripheral blood samples when using a much larger sample size of 1,469 
(using Illumina oligonucleotide arrays [6]). We identified 13 trait-associated SNPs that did show a 
significant cis-eQTL effect in DeepSAGE eQTL mapping, but which did not show a cis-eQTL effect in 
the large, array-based, blood dataset (Table 2). This indicates that many trait-associated SNPs have 
regulatory effects that will, so far, likely have been missed using microarrays. While some of the tags 
map in the exons of annotated transcripts, we also found three cis-regulated tags in introns (sense 
direction), two tags antisense to the known transcripts, and two tags outside the annotated transcripts. 
These results indicate that several trait-associated SNPs affect the expression of previously unknown 
transcripts, adding functional relevance to SNPs and transcripts that are so far without annotation. 
Some newly discovered eQTLs provide novel insights into genome-wide association hits for diseases 
or physiological traits, e.g. SNP rs216345, which has been associated with bipolar disorder. While it is 
located just downstream of PRSS3, we now saw that it also affects the expression of UBE2R2. There 
are many links between the ubiquitin system and bipolar disorder reported in the literature (e.g. 
[25,26]), making UBE2R2 a more plausible candidate gene for bipolar disorder than PRSS3.

Genes with multiple SAGE tags and opposite allelic direction
In DeepSAGE, 21-bp-long cDNA fragments begin at the ‘CATG’ closest to the polyadenylation site 
(Figure 1). These individual ‘tags’ represent transcripts sharing the same polyadenylation site. If a 
SNP increases the abundance of one tag of a gene and decreases the abundance of another tag of 
the same gene, this indicates that the SNP is acting like a switch between transcripts with different 
3’-UTRs or between alternative polyadenylation sites [19] (Figure 4). Twelve genes with highly 
significant cis-eQTLs (p-value < 10-7) contained tags that were regulated in opposite directions (Table 
3). Most of the tags regulated in opposite direction could be explained by switches in alternative 
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polyadenylation sites, as the tags were observed in the same last exon. The effect on alternative 
polyadenylation in IRF5 has been found before [19,27] and was also validated in our cohort by RT-
qPCR with primers in the proximal and distal parts of the 3’-UTR (Figure 5). As a further confirmation 
of the observed switches in using polyadenylation sites, we tested genotype-dependent alternative 
polyadenylation in two other RNA-seq datasets [8,9]. In these datasets, we confirmed the effect of 
two cis-regulating SNPs on THEM4 and F11R. However, we could not confirm the effect of other 
SNPs on targets validated experimentally, including IRF5. This shows the limitation of RNA-seq data 
in  detecting alternative polyadenylation events, likely due to limited and unequal coverage of the 
3’-UTR. For only two genes, OAS1 (also reported earlier [28]) and RP11-493L12.2, the observed 
opposite allelic effect originated from transcripts with different last exons, likely due to alternative 
splicing. As we hasve identified several SNPs that affect alternative polyadenylation, we subsequently 
used a more permissive strategy, which required that, for a given SNP, only one eQTL tag should 
pass the FDR < 0.05 significance threshold while the other tag could be less significant. However, for 
such SNP-tag pairs, we then tested whether the allelic directions were opposite and if the difference 
between correlation coefficients was significant. With a differential correlation significance p-value 
threshold of 10-7, we detected 41 unique genes showing regulation in opposite directions (Table 
S3). Of these, 23 (56%) showed opposite regulation of two tags in the same annotated 3’-UTR and 
a further 7 genes (17%) showed opposite regulation of tags in the same exons, both indicative of 
a switch in polyadenylation sites. Of these we picked HPS1, and validated a genotype-determined 
switch in preferred polyadenylation site usage by RT-qPCR analysis (Figure 5), indicating that the 
more permissive list also holds genuine changes in polyadenylation sites. The remaining 11 genes 
showed significant genotype-determined switches in expression of alternative transcripts not sharing 
the final exon. Thus, switches between shorter and longer 3’-UTRs occur more frequently than 
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Figure 3. Mapping regions of cis-
regulated tags. The gene biotypes 
and exon/intron locations of unique 
cis-regulated tags, according to 
Ensembl v.69 annotation, are shown. 
The numbers indicate the number 
of tags mapping in the genes of the 
corresponding type.

Figure 4. The number of cis-regulated 
tags per gene. The percentages of 
cis-regulated tags mapping into the 
same gene are indicated (781 genes 
overall). For nearly half of the genes 
(48%) only one tag shows an eQTL 
effect. If multiple tags map within the 
same gene, only one eQTL tag should 
pass the FDR < 0.05 significance 
threshold while the other tag could 
be less significant. For these eQTLs the 
allelic direction is shown: same allelic 
direction (multiple tags within the same 
gene are cis-regulated by a SNP in the 

same direction), significantly opposite allelic direction (multiple 
tags within the same gene are cis-regulated by a SNP but with 
opposite directions and the difference between the correlation 
coefficients is significant), or opposite allelic direction but not 
significant (if the difference between correlation coefficients is 
not significant).
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switches between transcripts with different 3’-UTRs.  To check whether such results appeared by 
chance, we took an equal number of top hits from a permuted eQTL run (shuffling the phenotype 
labels of the expression data, thus breaking the relationship between genotype and expression, but 
retaining linkage disequilibrium (LD) structure and structure in the expression data) and performed 
the same analysis as above (assessing an equal number of top eQTLs from the permuted analysis 
as we had investigated in the real analysis). Using the differential correlation significance threshold 
of 10-7 and conducting this permutation analysis ten times, we did not find any SNP that affected 
two tags in the same gene in a significantly different way, indicating this method is robust. Since 
the eQTL SNPs are usually in strong LD with multiple SNPs, it is difficult to conclude whether a SNP 
is causal or which SNP is the likely causal variant. To identify the likely causal variant, we assessed 
whether any of these SNPs caused changes in polyadenylation site usage. A direct effect on alternative 
polyadenylation can be explained by a change in the polyadenylation site (corresponding to the 
cleavage site) or in the polyadenylation signal (a six-nucleotide motif located between 10–30 bases 
upstream of the cleavage site). We searched for likely causative SNPs in linkage disequilibrium with 
the polyA-QTL SNP (R2 ≥ 0.8). We did not find any strong evidence for SNPs influencing the cleavage 
site and focused on cis-regulating SNPs located within polyadenylation signals. Considering the length 
and the motif of canonical and non-canonical polyadenylation signals [15], we performed a motif 
analysis in the sequence surrounding each cis-regulating SNP. We identified five SNPs that likely affect 
polyadenylation because there was a change in the polyadenylation signal (Table 4). As previously 
shown, rs10954213 causes the formation of a stronger polyadenylation signal in IRF5. Similar changes 
from non-canonical to stronger, canonical polyadenylation signals were observed for rs1062827 in 
F11R and rs6598 in GIMAP5. Moreover, rs12934747 creates a new canonical AATAAA polyadenylation 
signal in LPCAT2. The presence of this alternative polyadenylation signal at the beginning of the 3’-
UTR leads to a decrease in transcripts containing the full length 3’-UTR, as observed by DeepSAGE 
(Figure 6). An opposite effect is observed for rs7063 in the ultimate 3’-end of the ERAP1 gene, 
where the SNP causes the disruption of the strong canonical motif, and results in the use of a more 
proximal polyadenylation signal. Unfortunately we were not able to identify likely causative SNPs for 
each of these eQTLs. This could have several reasons: we imposed strict thresholds (R2 ≥ 0.8) on 
the LD between the detected cis-eQTLs and the putative causative SNPs; by imputing to the 1000 
genomes dataset we may have missed causative SNPs unique to the Dutch population; and the list of 
experimentally validated polyadenylation sites is not exhaustive, because their detection depends on 
the expression level and cell type analyzed.  Seven of the SNPs affecting polyadenylation are reported 
in the GWAS catalog as associated with diseases (Table S3), including rs2188962 and rs12521868, 
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which are associated with Crohn’s disease. We found that these SNPs were associated with a switch 
in the polyadenlyation site of IRF1. This may reinforce previous evidence that IRF1 is the gene in the 
IBD5 locus responsible for its association with Crohn’s disease [29]. IRF1 is a family member of the 
IRF5 gene. Thus, in the family of interferon regulatory factors, we found two members with genetic 
regulation of alternative polyadenylation sites, likely explaining susceptibility for Crohn’s disease and 
systemic lupus erythematosus, respectively. Another example is rs3194051, located in the IL7R gene. 
This SNP was not found in the analysis described above since it affects the expression of a tag on 
the same strand, downstream of IL7R in a LINE element (Table 2). However, this tag may represent 
an alternative 3’-UTR for IL7R. The SNP is associated with ulcerative colitis and IL7R may be another 
example of a gene in the inflammatory response pathway demonstrating alternative polyadenylation.

Meta-analysis with RNA-seq data
To increase the statistical power to detect associations of SNPs with gene expression, we performed 
a first-of-its-kind eQTL mapping meta-analysis, combining DeepSAGE data with two published RNA-
seq datasets. We used paired-end sequencing of mRNA derived from lymphoblastoid cell lines from 
HapMap individuals of European origin [8] and 35 and 46 bp single-end sequencing of mRNA derived 
from lymphoblastoid cell lines from HapMap individuals of Yoruba origin [9]. Sequence reads were 
mapped to the reference genome hg19 using Tophat [30] and assigned to transcripts. A consistently 
high percentage of reads (86-87% of aligned reads) mapped to exonic regions (Table 5). We first 
performed eQTL mapping separately in all three datasets (Table 6), summarizing expression on the 
transcript level to permit comparisons between the datasets. The numbers of cis-regulated genes 
detected in transcript-wise analysis was lower than in tag-wise analysis, possibly because we missed 
resolution on alternative splicing- and alternative polyadenylation events. Again, PC correction greatly 
improved the number of cis-eQTLs detected (Table 6). We applied PC correction to the individual 
datasets. As for the DeepSAGE analysis, the first PC correlated strongly with the mean GC-percentage 
in the two RNA-seq datasets (Figure S1). We then assessed the robustness of the identified cis-eQTLs: 
we checked whether those in one dataset could be significantly replicated in the other two datasets. 
We observed that in each of the RNA-seq datasets approximately one-third of cis-eQTLs could be 
replicated in the other dataset (Table S4). The overlap between RNA-seq and DeepSAGE was smaller, 
reflecting differences in the two technologies, in cell types and in populations. In each comparison, 
we observed a very high concordance in the allelic direction of cis-eQTLs that could be replicated in 
another dataset. We also looked at the replication of RNA-seq eQTLs in corresponding micro-array-
based datasets. 80-88% of such eQTLs could be replicated in microarray data (Table S5). As we could 
cross-replicate many cis-eQTLs, we decided to conduct a meta-analysis to increase the statistical 
power. We calculated joint p-values using a weighted Z-score method. The number of cis-regulated 
genes then increased to 1,207 unique genes (Table 6) (a list of detected eQTLs is given in Table S6), 
indicating that a meta-analysis of different types of sequencing-based eQTL datasets reveals many 
more cis-regulated genes than the individual analyses. For our meta-analysis results we determined 
the number of disease- and trait-associated SNPs using the Catalog of Published Genome-Wide 
Association Studies in the same way as for the DeepSAGE dataset. 107 of the 6,446 unique trait-
associated SNPs showed a significant cis-eQTL effect in the meta-analysis. The overlap with 104 trait-
associated SNPs detected in tag-wise DeepSAGE eQTL mapping was 37, indicating that the DeepSAGE  
revealed other trait-associated cis-eQTLs than a meta-analysis on the level of whole transcripts. 21 of 
the 107 SNPs showed a significant cis-eQTL effect in the sequencing-based meta-analysis, but did not 
show a cis-eQTL effect in the large array-based blood dataset (Table 7).
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DISCuSSION
We have described the results from cis-eQTL mapping on DeepSAGE sequencing, a technique that is 
different from RNA-seq since it mainly targets the 3’-end of transcripts. We identified 1,011 unique 
cis-regulated tags (significant at tag-level FDR < 0.05). We performed eQTL mapping on the microarray 
expression data of the same samples and the number of detected cis-eQTLs was much smaller than 
in the DeepSAGE data, indicating the higher power of DeepSAGE in eQTL mapping. Moreover, for 
220 of the cis-eQTLs SNPs detected by DeepSAGE we did not detect a significant cis-eQTL in a much 
larger microarray-based study in 1,469 whole peripheral blood samples [6]. 13 of these SNPs were 
reported as disease- or trait-associated in the GWAS catalog. We observed that the number of cis-
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Figure 6. rs12934747*T creates a poly(A) signal in LPCAT2 and leads to alternative polyadenylation site usage. 
The y-axis represents the number of counts for the deepSAGE tags. Two samples with different genotypes for SNP 
rs12934747, CC (reference allele) and TT (alternative allele), are shown as different traces. Below the coverage 
tracks, the position of rs12934747 is shown, together with the position of all reported polyadenylation sites from 
polyA_DB. An enlargement of the region containing the SNP is shown below. rs12934747 is located at the beginning 
of the 3’-untranslated region (3’-UTR) of LPCAT2, 27 nucleotides upstream a reported and experimentally validated 
polyadenylation site. This SNP changes the sequence, creating a polyadenylation signal that leads to the usage of 
the reported polyadenylation site. The square block indicates the sequence of the polyadenylation signal created by 
rs12934747. The creation of this signal shortens the 3’-UTR, as indicated by the higher abundance of the proximal 
DeepSAGE just upstream of the polyadenylation signal, and the nearly absent distal DeepSAGE, in the sample with 
the TT genotype (both tags indicated by arrows). Tag 2 was filtered out because it was expressed in less than 90% 
of individuals. There is an additional tag 3 in-between the proximal and distal tags, which is not cis-regulated.
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eQTLs detected in microarray data was higher in highly expressed genes, whereas for DeepSAGE the 
detected cis-eQTL genes had expression levels that could be much lower (Figure 2). This means that 
DeepSAGE is much better at identifying cis-eQTLs for genes showing low expression than conventional 
microarrays. This is because gene expression quantification using microarrays is more difficult as there 
is always a background signal present that needs to be accounted for. This is not the case for next-
generation sequencing: although stochastic variation plays a major role in determining what RNA 
molecules will eventually be sequenced (especially for transcripts of low abundance), detection of 
such an RNA molecule is direct proof that it is being expressed.  Clearly, DeepSAGE can capture events 
that are likely to be missed by RNA-seq and conventional microarrays. It is not surprising, due to the 
different emphasis of DeepSAGE, that we could only replicate 39% of the DeepSAGE cis-eQTLs in the 
microarray data with a consistent allelic direction (Figure S3). The limited overlap between DeepSAGE- 
and microarray-based eQTL studies may be partly explained by the fixed thresholds applied, the 
interrogation of different transcript variants, and by the smaller dynamic range of microarrays. In 
addition, we found that more highly expressed genes were more often replicated than lower expressed 
ones. Moreover, DeepSAGE allows for the detection of non-coding and novel transcripts not present 
on the microarrays. We showed that genetic variation affects the expression of a substantial number 
of lincRNAs and antisense genes, some of which have been linked to clinical traits. This suggests that 
clinical traits may be modified by expression of antisense transcripts or alternative 3’-UTR selection, 
which are not separately quantified in the microarray-based studies or in most RNA-seq, where 
standard protocols are still not strand-specific. We also noticed a relatively high proportion of eQTLs 
with DeepSAGE tags mapping in SINE, LINE and LTR elements. These transposable elements contribute 
to the evolution and inter-individual variation of the human genome and to the diversification of the 
transcriptome, the latter facilitated by their inherent potential to be transcribed and the presence of 
cryptic splice acceptor and donor sites [24,31,32]. Some of the DeepSAGE tags we identified may be 
located in entirely new transcripts, but the majority is likely to represent alternative exons or 3’-UTRs 
of known transcripts, in accordance with the observed preferential location in introns or near genes. 
Associations with transcripts and transcript variants not yet annotated may help to discover a function 
for these transcripts, as they are likely to play a role in the physiological and clinical traits associated 
with the SNP. Moreover, this will complement our knowledge of the pathways associated with these 
physiological and clinical traits.

In our study, we have demonstrated that genotype-dependent switches in the preference of 
alternative polyadenylation sites are common. One of these events has been well characterized: 
SNP rs10954213 creates an alternative polyadenylation site in IRF5, shortens the 3’-UTR, stabilizes 
the mRNA, and increases IRF5 expression, explaining its genetic association with systemic lupus 
erythematosus [19,27]. We have now discovered more examples where SNPs create or disrupt 
polyadenylation motifs. Amongst others, we identified a new, similar, genotype-dependent switch 
in preferred polyadenylation site for family member IRF1, with a probable link to Crohn’s disease. 
Alternative polyadenylation associated with shortening of 3’-UTRs is a prominent event in the 
activation of immune cells [18]. Thus, genetically determined use of a proximal polyadenylation 
sites may predispose to inflammatory disorders such as Crohn’s disease. The opposite correlations 
that we observed for most genes were slightly less pronounced than for IRF5. This indicates that 
mechanisms other than the creation or disruption of canonical polyadenylation motifs may also play 
a role. For example, SNPs in miRNA or protein-binding sites may specifically affect the stability of the 
transcript variant with the long 3’-UTR.  We subsequently conducted a cis-eQTL meta-analysis on 
the heterogeneous types of data using methods extended from those we developed for microarray-
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based eQTL meta-analysis [6]. We identified 1,207 unique cis-regulated genes. This number is 
substantially higher than in each of the datasets separately and indicates that different protocols 
for digital gene expression generally deliver consistent results. Nevertheless, the overlap at a fixed 
FDR of 0.05 is rather small, in particular between DeepSAGE and RNA-seq data. While this is partly 
attributable to using a strong threshold, there are other important reasons: firstly, the RNA-seq and 
DeepSAGE technologies frequently interrogate different transcript variants. Secondly, the RNA-seq 
studies were done on lymphoblastoid cell lines (LCLs) while the DeepSAGE study was on total blood, 
and some cis-eQTLs may be tissue-specific [33,34]. Finally, the DeepSAGE technology is strand-
specific but the RNA-seq technologies evaluated here are not: where DeepSAGE will evaluate the 
expression of sense and antisense transcripts separately, RNA-seq will sum them. These reasons could 

Table 3. Cis-regulating SNPs significantly* affecting multiple tags of the same gene in opposite directions.

Table 4. SNPs that likely affect polyadenylation due to a change in the polyadenylation signal.
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explain why the percentage of RNA-seq-derived eQTLs that can be replicated by DeepSAGE is higher 
than the percentage of DeepSAGE-derived eQTLs that can be replicated by RNA-seq. We conclude 
that DeepSAGE technology is useful to determine cis-eQTLs, as it is able to quantify the expression of 
novel transcripts, and to detect alternative polyadenylation effects and alternative 3’-UTR selection. 
It is complementary to other sequencing-based approaches, as they each reveal slightly different 
regulatory effects of genetic variants. Different sequencing-based eQTL analyses generally deliver 
consistent results, allowing for meta-analyses across different technologies. Future eQTL mapping 
studies based on DeepSAGE and other next generation sequencing strategies, using larger cohorts 
and different techniques, will likely reveal a more comprehensive picture of how far genetic variation 
affects the expression of protein-coding genes and non-coding RNAs.

 

MATERIALS AND METHODS
Ethics statement
The medical ethical committee of the VUMC, Amsterdam, the Netherlands, approved the collection 
and analysis of material blood, DNA and RNA from the 94 participants from the Netherlands Twin 
Registry (NTR) and the Netherlands Study of Depression and Anxiety (NESDA).

NTR-NESDA dataset

Table 7. Trait-associated SNPs detected in the sequencing-based transcript-wise meta-analysis, but not 
detected in array-based eQTL dataset of 1,469 peripheral blood samples.
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We analyzed 21 bp DeepSAGE data from total blood RNA of 94 unrelated individuals who participated 
in NTR or NESDA. RNA was isolated using PaxGene tubes [20,35,36]. DeepSAGE sample preparation 
protocols, and alignment approaches were described in [37]. One sample was run on one lane of the 
Illumina GAII instrument. Data are available in ArrayExpress under accession number E-MTAB-1181. 
The NTR-NESDA data was imputed using Beagle v3.1.0, with HapMap2 release 24 as a reference.

Tag mapping and expression estimation
Tags from DeepSAGE sequencing were aligned to the NCBI build 37 reference genome using Bowtie 
v. 0.12.7 allowing for a maximum of 1 mismatch and a maximum of 2 possible alignments (-n 1 -k 
1 -m 2 --best --strata options). The expression values were both quantified on an individual tag and 
transcript level. For the tag-wise analysis, the total number of occurrences of each unique tag in each 
sample was counted. We only included tags that were present in >90% of samples. Tags with SNPs 
in the CATG recognition sequence (according to dbSNPv135) and the transcripts containing those 
tags were removed before eQTL analysis, since these SNPs can affect the position of the SAGE tag 
in the transcript. For the transcript-wise analysis, the tag counts for tags overlapping the exons of a 
transcript by at least half of the tag length were summed.  Coordinates of LINE, SINE, LTR elements 
were derived from UCSC’s RepeatMasker track (update: 2009-04-24).

GC content bias estimation
To calculate the GC content per individual for DeepSAGE data, GC frequencies for all mapped tags 
were summed after excluding the twenty most abundant tags, since their high abundance would give 
biased estimates. 

Cis-eQTL mapping and correction for confounding effects through principal 
component analysis
Before eQTL mapping, transcript and tag expression values were quantile normalized. To perform cis-
eQTL mapping, association of SNPs with the expression levels of tags or transcripts within a distance 
of 250 kb (as this is the average size of linkage regions) of the midpoint of the transcript or tag were 
tested with a non-parametric Spearman’s rank correlation. Multiple testing correction was performed, 
controlling the false discovery rate (FDR) at 0.05. To determine the FDR, we created a null distribution 
by repeating the cis-eQTL analysis after permuting the sample labels 10 times [38]. We argue that 
gene expression levels from NGS-based datasets are, like micro-array based data, derived from 
genetic, technical and environmental effects. As such, compensating for these non-genetic effects 
would increase the power to detect cis-eQTL effects. To mitigate the effects of non-genetic sources 
of variability, we first log2 transformed the data and centered and scaled each tag, and subsequently 
applied PCA on the sample correlation matrix. We then used the first PCs as covariates, and re-did the 
non-parametric cis-eQTL mapping on the residual expression data (using the procedure described by 
[6]).

Validation of genotype-dependent alternative polyadenylation in RNA-seq 
datasets
The genomic coordinates of the 3’-UTR, obtained from Refseq Genes, were split into two separate 
regions (distal and proximal 3’-UTRs) according to the position of the DeepSAGE tags with opposite 
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directions, the position of LongSAGE tags from CGAP, and the position of reported and predicted 
polyadenylation sites from polyA_DB database. To calculate the coverage in proximal and distal 
regions in RNA-seq datasets, we created a coverage histogram from each .bam alignment file using 
coverageBed tool from BEDTools package (version 2.17.0) [39]. Subsequently, a custom Python script 
was used to convert the histogram in number of nucleotides mapped per region, normalized by the 
length of the region. The ratio between the number of counts in the proximal region and the distal 
region was then calculated. 

qPCR validation of alternative polyadenylation
Expression of short and long variants of HPS1 and IRF5 was quantified by qRT-PCR, which was performed 
on a subset of RNA samples used for the DeepSAGE sequencing. cDNA was synthesized from 400 ng 
of total RNA using BioScript MMLV Reverse Transcriptase (Bioline) with 40 ng of random hexamer 
and oligo(dT)18 primers following manufacturer’s instructions (for the list of primer sequences 
see Table S7). Primers specific to short or long variants of HPS1 were designed using Primer3Plus 
program, primers for IRF5 were designed as previously described [40]. qRT-PCR was performed on 
the LightCycler 480 (Roche) using 2X SensiMix reagent (Bioline). 45 cycles of two-step PCR were 
performed for HPS1, and 55 cycles of three-step PCR (95°C for 15 s, 48°C for 15 s, and 60°C for 40 s) 
for IRF5. Each measurement was performed in duplicates. PCR efficiency was determined using the 
LinRegPCR program [41] v.11.1 according to the described method [42]. Ratios between distal and 
proximal PCR products were then calculated and significance was tested performing a T-test.

Identifying causal SNPs affecting polyadenylation
We obtained all the proxy SNPs for all SNPs identified as cis-regulating the choice of polyadenylation 
site. To do this we used bi-allelic SNPs that pass QC from the 1000G European panel (v3.20101123) 
and took all SNPs that were in linkage disequilibrium with the query SNPs (R2 ≥ 0.8, distance between 
SNPs within 250 kb). From this list of cis-regulating SNPs in linkage disequilibrium, we kept only 
SNPs, which were located in the cis-regulated genes. The filtering was performed by intersecting 
.bed files containing SNPs coordinates and coordinates of cis-regulated genes from RefSeq database, 
using table browser tool in UCSC genome browser and the overlap intervals tool in Galaxy (version 
1.0.0). Intersection of SNPs with validated and predicted polyadenylation sites was performed using 
annotation in the PolyA-DB database (PolyA_DB 1 and PolyA_SVM) on UCSC (table browser tool). 
Detection of SNPs within polyadenylation signals was performed by extracting the strand specific 
sequence five nucleotide upstream and downstream each SNP (using table browser tool in UCSC) 
and performing a motif search using custom Perl script. Canonical and non-canonical polyA motifs 
searched were AATAAA, ATTAAA, TATAAA, AGTAAA, AAGAAA, AATATA, AATACA, CATAAA, GATAA, 
AATGAA, TTTAAA, ACTAAA, and AATAGA. For every SNP located in a putative polyadenylation signal 
motif, the distance to validated and predicted polyadenylation sites from PolyA-DB was calculated. 
Only motifs within a distance of 30 nucleotides from a polyadenylation site were considered true 
polyadenylation signals. Newly formed polyadenylation signals were detected by changing the 
reference allele of the SNP with the alternative allele, followed by the same polyadenylation signal 
motif search using custom Perl scripts. For the cis-regulated genes where the SNP is located within a 
true polyadenylation signal, we retrieved the coverage of every SAGE tag upstream and downstream 
the putative affected polyadenylation site and calculated the ratio between proximal and distal tags 
for the different genotypes to confirm the expected effects of polyadenylation site formation or 
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disruption. 

RNA-seq datasets
For the meta-analysis we combined DeepSAGE data with two published RNA-seq datasets. The first 
dataset was 37bp paired-end RNA-sequencing data from HapMap individuals ([8], [ArrayExpress:E-
MTAB-197]): RNA from lymphoblastoid cell lines of 60 HapMap CEPH individuals was sequenced on 
the Illumina GAII sequencer, while genotype data had already been generated within the HapMap 
project. The second dataset was single-end RNA-sequencing data from HapMap individuals [9, 
43] [GEO:GSE19480 and at http://eqtl.uchicago.edu/RNA_Seq_data/]: RNA was sequenced from 
lymphoblastoid cell lines of 72 HapMap Yoruba individuals from Nigeria on the Illumina GAII platform 
in two sequencing centers: Yale (using 35bp reads) and Argonne (using 46bp reads). Since the 
Montgomery et al. paper used genotype data for some individuals that were not in the HapMap3 
panel (NA0851, NA12004, NA12414 and NA12717), we imputed these individuals using Beagle v3.1.0, 
with HapMap2 release 24 as a reference.

RNA-seq read mapping
Reads from single- and paired-end RNA-sequencing were mapped to the human genome NCBI build 
37 (reference annotation from Ensembl GRCh37.65) using Tophat v. 1.3.3 [30] – a splice-aware aligner 
that maps RNA-seq reads to the reference genome using Bowtie [21]. We used default settings 
(maximum 2 mismatches, 20 possible alignments per read) with a segment length value of 17bp. 
Reads that corresponded to the flag 1796 in the .bam alignment file (read unmapped, not primary 
alignment, read fail quality check, read is PCR or optical duplicate) were filtered out. The numbers of 
raw and mapped reads for each dataset are given in Table 5.

Read quantification
To estimate expression levels in RNA-seq data, reads that overlapped with exons from known 
transcripts (GRCh37.65) were quantified using the coverageBed method from BEDTools suite [39]. For 
transcript level quantification the read count tr

sC  for sample s for transcript tr was calculated as a sum 
of expression values over all exons contained in this transcript:            
where:

{Etr} set of all exons of transcript tr,
ne  number of reads overlapping exon e by not less than half of read’s length,
Be  breadth of coverage for exon e (% of exon length covered by the reads mapping to that exon).

In case a read mapped to multiple transcripts, the read was counted for all transcripts, since the 
short reads are difficult to assign to a specific transcript. Multiplication by breadth of coverage was 
performed to help in distinguishing between different isoforms by assigning higher weight to exons 
fully covered by reads in contrast to alternative exons covered only partly. Because different methods 
have different capacity to identify alternative splicing events, we subsequently summarized our eQTL 
results to unique genes. 
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Meta-analysis
Meta-analysis was conducted by using a weighted Z-method, weighing each of the datasets by the 
square root of the number of samples per dataset [6].

Microarray datasets
We compared the results to corresponding microarray dataset eQTL mapping results. For each of 
the 94 individuals from NTR-NESDA study, Affymetrix HG-U219 expression data were generated at 
the Rutgers University Cell and DNA Repository (RUCDR, http://www.rucdr.org). NTR and NESDA 
samples were randomly assigned to plates with seven plates containing subjects from both studies 
to better inform array QC and study comparability. Gene expression data were required to pass 
standard Affymetrix QC metrics (Affymetrix expression console) before further analysis. Probe 
sets were removed when their mapping location was ambiguous or if their location intersected a 
polymorphic SNP (dropped if the probe oligonucleotide sequence did not map uniquely to hg19 or 
if the probe contained a polymorphic SNP based on HapMap3 [44] and 1000 Genomes [45] project 
data). Expression values were obtained using RMA normalization implemented in Affymetrix Power 
Tools (APT, v 1.12.0).  MixupMapper revealed no sample mix-ups [46]. For RNA-seq data we used 
corresponding microarray datasets that were available for most of the individuals present in RNA-
seq datasets. We used Illumina expression data provided by Stranger et al. [3] of the 72 HapMap YRI 
individuals (56 of which were also present in RNA-seq dataset from Pickrell et al.) and 60 HapMap CEU 
individuals provided by Montgomery et al. (58 of which were also present in RNA-seq dataset from 
Montgomery et al.). The same normalization procedure was performed as for the sequencing-based 
datasets: quantile normalization, and subsequent probe set centering to zero, z-score transformation, 
and scaling to a standard deviation of one.

Data access
The newly generated DeepSAGE data for NTR-NESDA dataset is available in ArrayExpress under 
accession number E-MTAB-1181 (ENA: ERP001544).

AuTHOR CONTRIBuTIONS
Conceived and designed the experiments: PACtH LF GJBvO JTdD. Performed the experiments: PACtH 
YA AM. Analyzed the data: DVZ EdK PACtH HJW SA. Contributed reagents/materials/analysis tools: 

PACtH HJW RJ BWP JJH EJdG BIB JHV LHvdB CW. Wrote the paper: DVZ EdK PACtH LF.

 

REFERENCES 

1. Schadt EE, Monks SA, Drake TA, Lusisk AJ, Chek N, et al. (2003) Genetics of gene expression surveyed in 
maize, mouse and man. Nature 422: 297–302. 

2. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, et al. (2005) Mapping determinants of human 
gene expression by regional and genome-wide association. Nature 437: 1365–1369.

3. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. (2007) Relative impact of nucleotide and 
copy number variation on gene expression phenotypes. Science 315: 848–853. 



CHAPTER 3

92

4. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, et al. (2008) Genetics of gene expression and its 
effect on disease. Nature 452: 423–428.

5. Dubois PCA, Trynka G, Franke L, Hunt KA, Romanos J, et al. (2010) Multiple common variants for celiac 
disease influencing immune gene expression. Nature Genetics 42: 295–302.

6. Fehrmann RSN, Jansen RC, Veldink JH, Westra H-J, Arends D, et al. (2011) Trans-eQTLs reveal that 
independent genetic variants associated with a complex phenotype converge on intermediate genes, with 
a major role for the HLA. PLoS Genet 7: e1002197.

7. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 
87–98.

8. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, et al. (2010) Transcriptome genetics 
using second generation sequencing in a Caucasian population. Nature 464: 773–777.

9. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying 
human gene expression variation with RNA sequencing. Nature 464: 768–772.

10. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 
57–63.

11. ’t Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, et al. (2008) Deep sequencing-based 
expression analysis shows major advances in robustness, resolution and inter-lab portability over five 
microarray platforms. Nucleic Acids Res 36: e141.

12. Nielsen KL, Høgh AL, Emmersen J (2006) DeepSAGE-digital transcriptomics with high sensitivity, simple 
experimental protocol and multiplexing of samples. Nucleic Acids Res 34: e133.

13. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, et al. (2002) Using the transcriptome to annotate the 
genome. Nat Biotechnol 20: 508–512.

14. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, et al. (2009) 3’ tag digital gene expression profiling 
of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 10: 531.

15. Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse 
genes. Nucleic Acids Res 33: 201–212.

16. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, et al. (2012) A quantitative atlas of 
polyadenylation in five mammals. Genome Res 22: 1173–1183.

17. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying 
principles? Nucleic Acids Res 33: 7138–7150.

18. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with 
shortened 3’ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647.

19. Yoon OK, Hsu TY, Im JH, Brem RB (2012) Genetics and regulatory impact of alternative polyadenylation in 
human B-lymphoblastoid cells. PLoS Genet 8: e1002882.

20. Maugeri N, Powell JE, ’t Hoen PAC, de Geus EJC, Willemsen G, et al. (2011) LPAR1 and ITGA4 regulate 
peripheral blood monocyte counts. Hum Mutat 32: 873–876.

21. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA 
sequences to the human genome. Genome Biol 10(3): R25. 

22. Biswas S, Storey JD, Akey JM (2008) Mapping gene expression quantitative trait loci by singular value 
decomposition and independent component analysis. BMC Bioinformatics 9: 244.

23. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. 
PLoS Genet 3: 1724–1735.

24. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 
10: 691–703.

25. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, et al. (2006) Gene expression analysis 
of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol 
Psychiatry 11: 965–978.

26. 26.  Bousman CA, Chana G, Glatt SJ, Chandler SD, Lucero GR, et al. (2010) Preliminary evidence of ubiquitin 
proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis 
findings from two independent samples. Am J Med Genetics Part B, Neuropsychiatric genetics 153B: 494–



GENETIC VARIANTS AFFECTING APA

93

502.

27. Cunninghame Graham DS, Manku H, Wagner S, Reid J, Timms K, et al. (2007) Association of IRF5 in UK SLE 
families identifies a variant involved in polyadenylation. Hum Mol Gen 16: 579–591.

28. Heap GA, Trynka G, Jansen RC, Bruinenberg M, Swertz MA, et al. (2009) Complex nature of SNP genotype 
effects on gene expression in primary human leucocytes. BMC Med Genomics 2: 1.

29. Huff CD, Witherspoon DJ, Zhang Y, Gatenbee C, Denson LA, et al. (2012) Crohn’s disease and genetic 
hitchhiking at IBD5. Mol Biol Evol 29: 101–111.

30. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 
25: 1105–1111.

31. Belancio VP, Hedges DJ, Deininger P (2006) LINE-1 RNA splicing and influences on mammalian gene 
expression. Nucleic Acids Res 34: 1512–1521.

32. Kim D-S, Kim T-H, Huh J-W, Kim I-C, Kim S-W, et al. (2006) LINE FUSION GENES: a database of LINE expression 
in human genes. BMC Genomics 7: 139.

33. Fu J, Wolfs MGM, Deelen P, Westra H-J, Fehrmann RSN, et al. (2012) Unraveling the regulatory mechanisms 
underlying tissue-dependent genetic variation of gene expression. PLoS Genet 8: e1002431.

34. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, et al. (2011) The architecture of gene regulatory variation 
across multiple human tissues: the MuTHER study. PLoS Genet 7: e1002003.

35. Willemsen G, De Geus EJC, Bartels M, Van Beijsterveldt CEMT, Brooks AI, et al. (2010) The Netherlands Twin 
Register biobank: a resource for genetic epidemiological studies. Twin Res Hum Genet 13: 231–245.

36. Penninx BWJH, Beekman ATF, Smit JH, Zitman FG, Nolen WA, et al. (2008) The Netherlands Study of 
Depression and Anxiety ( NESDA ): rationale, objectives and methods. Int J Methods Psychiatr 17: 121–140. 
doi:10.1002/mpr.

37. Hestand MS, Klingenhoff A, Scherf M, Ariyurek Y, Ramos Y, et al. (2010) Tissue-specific transcript annotation 
and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res 
38: e165.

38. Breitling R, Li Y, Tesson BM, Fu J, Wu C, et al. (2008) Genetical genomics: spotlight on QTL hotspots. PLoS 
Genet 4: e1000232.

39. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics 26: 841–842.

40. Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, et al. (2007) Three functional variants of IFN 
regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Nat Acad Sci U S A 
104: 6758–6763.

41. Ramakers C, Ruijter JM, Deprez RHL, Moorman AF. (2003) Assumption-free analysis of quantitative real-
time polymerase chain reaction (PCR) data. Neurosci Lett 339: 62–66.

42. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, et al. (2009) Amplification efficiency: linking 
baseline and bias in the analysis of quantitative PCR data. Nucl. Acids Res 37: e45.

43. Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010) Noisy splicing drives mRNA isoform diversity in human cells. 
PLoS Genet 6: e1001236.

44. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, et al. (2010) Integrating common and rare 
genetic variation in diverse human populations. Nature 467: 52–58.

45. Durbin RM, Bentley DR, Chakravarti A, Clark AG, Collins FS, et al. (2010) A map of human genome variation 
from population-scale sequencing. Nature 467: 1061–1073. 

46. Westra H-J, Jansen RC, Fehrmann RSN, Te Meerman GJ, Van Heel D, et al. (2011) MixupMapper: correcting 
sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics 
27: 2104–2111.



CHAPTER 3

94

SuPPORTING INFORMATION
Supplementary Tables 1-7 are available at PLoS Genetics Online

Table S1. List of detected eQTLs in tag-wise eQTL mapping.
Table S2. Trait-associated SNPs affecting the expression of DeepSAGE tags of 94 peripheral blood 
samples.
Table S3. List of candidate genes with alternative polyadenylation event detected using a permissive 
strategy.
Table S4. Replications between RNA-seq and DeepSAGE eQTLs. 
Table S5. Replication of RNA-seq eQTLs in microarray-based datasets.
Table S6. List of detected eQTLs in the meta-analysis.
Table S7. Primer sequences for qPCR validation.
Text S1. Additional details on principal component analysis of DeepSAGE expression data.

Supplementary text

Additional details on principal component analysis of DeepSAGE expression data
To increase the statistical power of eQTL detection, we used principal component analysis (PCA) to 
correct for technical and biological confounders. We determined that using 15 PCs as covariates 
yielded the highest number of significant cis-eQTLs, reflecting an almost two-fold increase.

Although correction for the first principal components substantially increased the number of 
detectable cis-eQTLs, it remains somewhat elusive why this correction procedure is so effective. 
We therefore investigated which phenomena these components represent and investigated the 
correlation with various sample characteristics. The first principal component was highly significantly 
correlated with the percentage of GC in the reads of a sample (r2 = 0.76) (Figure S1). GC content 
is one of the most important sources of bias in RNA-seq data and strongly affects gene expression 
measurements [1,2]. Although various dedicated strategies have been proposed to overcome this 
bias (for a review see [3]) and more sophisticated algorithms to correct for technical and biological 
confounders exist such as PEER and PANAMA [4–6], this straightforward PCA-based method also 
efficiently corrects for GC content differences across samples. 

Principal components seven and eleven correlated significantly with various blood cell count 
parameters, indicating that these PCs reflect differences in cell type compositions between samples 
(Figure S2). To further substantiate this latter point, we associated the top 100 genes that had the 
most extreme (highest and lowest) factor loadings on PC7 and PC11 with cell types reported in the 
literature, using the Anni software for text concept association [7] and observed that:

- Genes with highly positive factor loadings on PC7 are strongly associated with (and 
therefore likely expressed in) lymphocytes. This is in agreement with the positive correlation of PC7 
with lymphocyte counts (Figure S2). Genes with the most negative factor loadings on PC7 are strongly 
associated with macrophages and neutrophils. This is in agreement with the negative correlation of 
PC7 with neutrophil counts (Figure S2).
- Genes with highly positive factor loadings on PC11 are strongly associated with different 
types of leukocytes, while genes with the most negative factor loadings on PC11 are strongly associated 
with erythrocytes.
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Supplementary Figure 1.  Correlation 
of GC content with principal component 
1 (PC1) eigenvector coefficients for all 
the three datasets. Pearson correlation 
coefficient and corresponding p-value 
are shown in the plot.
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Supplementary Figure 2. Blood cell counts in DeepSAGE data captured by the eigenvector coefficients on 
principal components PC7 (left) and PC11 (right). Experimentally determined blood cell counts at the time of RNA 
isolation were available for 36/94 samples. Blood cell counts are expressed as (number of cells)×109/L. Pearson 
correlation coefficients and corresponding p-values are shown in the plot.
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Supplementary Figure 3. Replication of Affymetrix eQTLs in DeepSAGE dataset and DeepSAGE eQTLs in Affymetrix 
data. The numbers of unique cis-regulated genes is given after each filtering step.


