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The transcriptome can be described as the complete collection of RNA molecules expressed in a 
specific cell type or tissue at a given time. It includes coding RNAs (messenger RNA) and a multitude 
of non-coding RNAs (of which ribosomal RNA, transfer RNA, small nuclear RNA, small nucleolar RNA, 
microRNA, Piwi-interacting RNA, and long non-coding RNA are best characterized). RNA plays a central 
role in cell biology, where it not only serves as template for protein synthesis but also acts as a structural 
scaffold and as a regulatory molecule during post-transcriptional control of gene expression (David, 
2012;Kung et al., 2013). The diversification of cellular and organismal functions observed in higher 
eukaryotes cannot be explained by the sheer number of genes, but is mostly due to the expression of 
different transcripts and proteins from the same genes. The human transcriptome comprises >80,000 
protein-coding transcripts and the estimated number of proteins synthesized from these transcripts is 
in the range of 250,000 to 1 million. These transcripts and proteins are encoded by less than 20,000 
genes, suggesting extensive regulation at the transcriptional, post-transcriptional, and translational 
level.

The first section of this chapter will elaborate on how high-throughput RNA sequencing technologies 
have increased our understanding of the mechanisms that give rise to alternative transcripts and 
their alternative translation, and it will highlight four different regulatory processes: alternative 
transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation 
initiation. It will focus on their transcriptome-wide distribution, their impact on protein expression, 
their biological relevance, and the possible molecular mechanisms leading to their alternative 
regulation. Finally, it will address how the interdependence between transcription, RNA processing, 
and translation restricts the number of combinations of possible alternative transcripts and proteins. 
The second section of this chapter will focus on the major genome-wide RNA sequencing methods 
used to investigate specific aspects of gene expression and its regulation. Tag-based methods (for 
studying transcription, alternative initiation and polyadenylation events), shotgun methods (for 
detection of alternative splicing), full-length RNA sequencing (for the determination of complete 
transcript structures), and targeted methods (for studying the process of transcription and translation) 
will be presented.
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1. Alternative mRNA transcription, processing and translation
The biogenesis of a messenger RNA (mRNA) is characterized by four major steps (Figure 1): 
transcription of long heterogeneous nuclear RNAs (hnRNAs, also known as nascent RNA or pre-mRNAs 
(Scherrer et al., 1963;Soeiro et al., 1968)), capping of its 5’ end (Shatkin, 1976), splicing (consisting in 
the removal of noncoding intervening sequences [introns] and joining of expressed sequences [exons] 
(Gilbert, 1978)), and polyadenylation of the 3’ end, which involves cleavage of the pre-mRNA and 
synthesis of a poly(A) tail (Manley et al., 1982). Once an mRNA is processed, it is transported to 
the cytoplasm where it serves as a template for protein synthesis during the process of translation, 
and lastly it is degraded. Capping, splicing and polyadenylation represent the most common 
co- and post-transcriptional mRNA processing events. Each of these processes influences the 
metabolism and therefore the future of the mRNA molecule.

The cap-structure consists of a 7-methylguanosine, which is linked to the first nucleotide of the mRNA 
and bound to cap-binding proteins. In the cytoplasm, the cap-structure is important for the initiation 
of translation, since the eukaryotic translation initiation factor eIF4A binds directly to the cap-structure 
(Sonenberg and Gingras, 1998).
Constitutive splicing occurs co- or post-transcriptionally, and is catalyzed by the spliceosome, a large 
RNA-protein complex. Whereas constitutive splicing is important to maintain a correct reading frame 
and therefore the coding potential of an mRNA, alternative splicing regulates whether a specific 
protein isoform is made, and its expression level. Furthermore, splicing has evolutionary implications, 
especially through recombination of exons which coincide with protein domains (Patthy, 1999).
Polyadenylation is a process required for nuclear export, stability of mature mRNA, and for its efficient 
translation, as mRNAs with short tails are generally subjected to degradation or stored to postpone 
their translation (Gorgoni and Gray, 2004).

Variation in the expression of coding genes is controlled at multiple levels, from transcription 
to RNA processing and translation. Alternative transcripts and proteins may arise from alternative 
transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation 
initiation. These co- and post-transcriptional regulatory mechanisms expand the genome’s coding 
capacity modifying protein function, stability, localization, and expression levels.

I.

Poly(A) site

Exon 1 Exon 2

Transcription
start site

Exon nIntron1/2 Intron2/n

Transcription
end site

DNA

II. Exon 1 Exon 2 Exon nIntron1/2 Intron2/n pre-mRNA

Poly(A) site5’ cap

mRNAIII-IV. Exon 1 Exon 2 Exon n

Poly(A) site

AAAAA(An)

Nucleus Cytoplasm

Figure 1. Biogenesis of an mRNA. Schematic representation of capping, splicing and polyadenylation.
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1.1 Initiation of transcription: alternative promoters
During the biogenesis of mRNAs, regulation of transcription initiation represents the first layer in the 
control of gene expression (Djebali et al., 2012;Neph et al., 2012;Sanyal et al., 2012;The FANTOM 
Consortium and the RIKEN PMI and CLST (DGT), 2014). Alternative transcription initiation leads to the 
formation of transcripts differing in their first exon or in the length of the 5′ untranslated region (5′-
UTR). The use of alternative first exons leads to transcripts with different open reading frames (ORFs) 
and diversifies the repertoire of encoded proteins giving rise to protein isoforms with alternative 
N-termini (Goossens et al., 2007) (Figure 2a). Alternatively, transcripts sharing the same coding region 
but a different 5′-UTR can be subject to differential translational regulation (Figure 2b) (Barbosa et al., 
2013) through short upstream ORFs (uORFs) involved in translational control (Calvo et al., 2009;Fritsch 
et al., 2012;Yamashita et al., 2003) or in the production of biologically relevant peptides (Jorgensen 
and Dorantes-Acosta, 2012;Magny et al., 2013;Slavoff et al., 2013).

The use of alternative promoters and transcription start sites (TSSs) in protein coding transcripts 
was established before the development of transcriptome-wide approaches, through studies based 
on a method called cap analysis of gene expression (CAGE) (Shiraki et al., 2003). CAGE still represents 
the basic technology for the detection of TSSs. Recently, several high-throughput CAGE methods, 
such as DeepCAGE, have been developed (section 2.1.2, this Chapter). These transcriptome-wide 
studies suggest that TSS use is highly tissue specific (de Hoon and Hayashizaki, 2008;Hestand et al., 
2010;Suzuki et al., 2009;The FANTOM Consortium and the RIKEN PMI and CLST (DGT), 2014;Valen 
et al., 2009) and that the number of alternative TSSs differs by tissue type, with the hippocampus 
accounting for a larger number of TSSs than any other tissue (Gustincich et al., 2006;Valen et al., 
2009). To what extent alternative TSSs lead to alternative 5′ non-coding regions or translate into novel 
protein isoforms is virtually impossible to determine from DeepCAGE reads, which consist of 25 or 
26 nucleotides. To assess the potential for novel ORFs arising from the use of alternative TSSs, it is 
essential to integrate DeepCAGE data with RNA-seq, ribosome profiling, and proteomics.

The FANTOM Consortium is leading most of the research in the field of promoters and TSSs. In their 
most recent TSS survey (The FANTOM Consortium and the RIKEN PMI and CLST (DGT), 2014), which 
includes approximately 200 human primary cell types, 150 human tissues, and 250 human cancer cell 
lines, it was shown that on average there are four TSSs per gene, but the number of TSSs reported 
strictly relies on the filtering method used. An estimate of the transcriptome-wide distribution of 
alternative TSSs can indeed be complicated by the presence of CAGE peaks marking enhancer regions, 
3′-UTRs (Andersson et al., 2014;Kapranov et al., 2007), coding regions (a phenomenon called exon 
painting (Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project, 2009;Hestand et 
al., 2010;Otsuka et al., 2009), and promoter-associated short RNAs (PASRs) (Kapranov et al., 2007). 
Whereas exon painting may arise as a consequence of recapping of degradation products, many other 
CAGE peaks represent short capped transcripts whose functions remain largely unknown. A striking 
recent finding from this large TSS survey (The FANTOM Consortium and the RIKEN PMI and CLST 
(DGT), 2014) is that most genes are regulated in a tissue-specific manner and only a small percentage 
can be considered to be truly housekeeping. The use of alternative tissue-specific TSSs seems to be 
regulated by the presence of enhancer regions more than by alternative core promoters. Half of all 
detected CpG island promoters and more than 90% of all promoters lacking both CpG islands and a 
TATA box exhibit cell type-restricted expression due to the presence of proximal enhancers.

The molecular mechanisms responsible for the choice of alternative promoters and TSSs can 
be divided into two categories: alteration of the chromatin state and regulation mediated by cell- 
and tissue-specific transcription factors (Figure 2c). Understanding the biological importance of 
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alternative and tissue-specific TSSs requires learning how the choice of a specific TSS is made and 
which transcription factor and regulatory networks are involved. This can be achieved by making 
inferences on transcriptional networks. In a DeepCAGE time-course study on the differentiation of 
human monocytic leukemia cells (Suzuki et al., 2009), the authors predicted transcription factor 
binding sites around the TSSs identified in each condition and subsequently built a network model of 
gene expression using motif activity response analysis. This provided important insights into the key 
regulators active in transcriptional control in distinct phases of differentiation. Similarly, another study 
(Vitezic et al., 2010) inferred transcriptional regulatory networks after the perturbation of specific 
transcription factors (PU.1, IRF8, MYB and SP1) in the same cells. This led to the discovery of target 
genes for each transcription factor and led to the identification of de novo binding site motifs.

Many studies focusing on single genes have shown that the choice of a specific TSS is critical for 
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Figure 2. Alternative transcription initiation. (a) Data from a DeepCAGE experiment showing alternative 
transcription start sites (TSS) used during muscle differentiation in proliferating myoblasts and differentiated 
myotubes [65]. In the Tpm3 gene different promoters lead to the formation of transcripts with different first exons. 
One alternative TSS (TSS3) is specifically used in differentiated cells. (b) In the Cryab gene, proliferating cells make 
use of an alternative TSS to extend their 5’-UTR. The sequence of the 5’-UTR is shown below the reference track. 
The extension on the 5’-UTR leads to the transcription of a potential upstream open reading frame (uORF), starting 
at a canonical AUG codon and ending before the start codon of the primary open reading frame (pORF). (c) An 
illustrative example of cell- and tissue-specific alternative TSSs regulated by binding of transcription factors (TF) to 
promoters and enhancer regions. While TF1 and TF2 bind to promoters (P1, P2) surrounding the TSS, TF3 binds to 
a distal upstream sequence corresponding to an enhancer region (E), which enhances transcription from a third 
TSS (TSS3). Some TFs are present in multiple tissues (TF1) whereas others are tissue-specific (TF2, TF3), and their 
transcription can also be regulated during cell differentiation (TF1 regulates transcription in undifferentiated cells, 
and TF2 in differentiated cells). (d) Long-range transcriptional control mediated by enhancers. The transcriptional 
regulation of the Shh gene is tightly controlled during development by enhancer regions located up to 850 kb 
away from the gene. Whereas some enhancers are located within the coding region of Shh, others are located 
in intergenic regions or within intronic regions of the Lmbr1 and Rnf32 genes. Genes are depicted as gray boxes. 
Known enhancer regions in mouse are marked in different colors, according to their tissue-specificity.
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(embryonic) development (Davis, Jr. and Schultz, 2000;Levanon and Groner, 2004;Steinthorsdottir 
et al., 2004) and cell differentiation (Pozner et al., 2007) and aberrations in alternative promoter 
and TSS use lead to various diseases including cancer (Agarwal et al., 1996;Pedersen et al., 2002), 
neuropsychiatric disorders (Tan et al., 2007), and developmental disorders (Hill and Lettice, 2013). 
Whereas some disorders are caused by epigenetic changes or genetic aberrations in the promoter 
region, others are caused by genetic changes in distal elements affecting long-range transcriptional 
regulation. The ENCODE project has shown the presence of more than 1000 long-range interactions 
between TSSs and distal elements within a range of 120 kb (Sanyal et al., 2012). An example of such a 
long-range interaction is Shh (Hill and Lettice, 2013), a gene that is spatially and temporally regulated 
during development. To date, ten Shh enhancers have been identified, located within a region of 1 Mb 
in humans and 850 kb in mice (Figure 2d). These enhancers play a key role during development, as 
indicated by mutations in the limb-specific enhancer that lead to various skeletal limb abnormalities.

1.2 Splicing: alternative exons
During and after transcription, almost all mRNAs are spliced. Alternatively spliced transcripts result 
from the differential inclusion of subsets of exons (Figure 3a). RNA-seq has the potential to elucidate 
the number, structure, and abundance of alternative transcripts and the molecular mechanisms 
responsible for their formation. 

Of the regulatory mechanisms discussed in this chapter, alternative splicing is the most prevalent 
event, affecting approximately 95% of mammalian genes (Pan et al., 2008). Five major alternative 
splicing events are distinguished: exon skipping (also called cassette exon), use of alternative acceptor 
and/or donor sites, intron retention, and mutually exclusive exons. Exon skipping appears to be 
the most common, occurring in ~38% of mouse and human genes, whereas intron retention is less 
common (~3%) (Sugnet et al., 2004).

How the spliceosome recognizes alternative exons and decides which exons to include remains 
not fully understood. Before the advent of RNA-seq, studies revealed some general characteristics in 
conserved alternative cassette exons: they tend to be smaller in size compared to constitutive exons 
(Sorek et al., 2004b) and their length is divisible by three, thus maintaining the same reading frame 
when the alternative exon is skipped or included (Resch et al., 2004). Non-conserved cassette exons 
do not show these characteristics. In addition, alternative exons seem to contain weaker splice sites 
(the exon–intron junctions at the 5′ and 3′ ends of introns; i.e., donor and acceptor sites), although the 
other primary cis-acting elements used to define the intron (the branch site and the polypyrimidine 
tract located upstream of the acceptor site) are generally similar to those found in constitutive exons 
(Sorek et al., 2004a).

From analysis of the transcriptomes of 15 different human cell lines (Djebali et al., 2012), it appears 
that up to 25 different transcripts can be produced from a single gene and that up to 12 alternative 
transcripts may be expressed in a particular cell. Alternative transcripts are not expressed at the same 
level, but one transcript is usually dominant (Gonzalez-Porta et al., 2013). According to the latest 
GENCODE release [version 20 (http://www.gencodegenes.org/stats.html)], there are almost 80,000 
transcripts encoded by about 20,000 protein-coding genes in humans – an average of four transcripts 
per gene. A previous GENCODE release (version 7) reported an average of six transcripts per gene, 
while RefSeq, the University of California, Santa Cruz (UCSC), and the Collaborative Consensus Coding 
Sequence (CCDS) project (Harrow et al., 2012) report a much lower average. These discordances 
suggest that variations in the number of transcripts per gene reported are due to the different 
methods used to annotate RNA sequences, highlighting the current limitations in fully characterizing 
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transcriptomes.
It remains challenging to predict which transcripts are present in a specific cell type. Splice site 

selection depends on multiple parameters including the presence of splicing regulators, the strength 
of splice sites, the structure of exon–intron junctions, and the process of transcription. So far, various 
molecular mechanisms have been shown to regulate alternative splicing.

Next to conserved cis elements such as the splice donor and acceptor sites, branch sites, and 
polypyrimidine tracts, a range of other sequence motifs are recognized by various auxiliary splicing 
factors. These auxiliary RNA-binding proteins (RBPs) are not part of the spliceosomal machinery but 
can enhance or suppress alternative splicing by interfering with it (Lebedeva et al., 2011;Licatalosi 
et al., 2008;Ule et al., 2003;Wang et al., 2012). Various crosslinking and RNA immunoprecipitation 

Figure 3. Alternative splicing. (a) Data from an RNAseq 
experiment showing tissue-specific alternative splicing 
[129]. The SLC25A3 gene is differentially spliced in 
brain and muscle tissues through exon skipping. (b) 
Alternative splicing regulated by silencer sequences. 
In (I) the U1 snRNP splicing factor recognizes both 
strong and weak 5’ splice sites (5’ss) but splicing 
occurs only at the strong 5’ss. In (II) a splicing silencer 
sequence (sss) is located downstream the strong 
5’ss. U1 binds both the weak and the strong 5’ss, but 
the conformation in which it binds the strong 5’ss is 
suboptimal for splicing, therefore only the weak 5’ss is 
used for splicing. In (III) the sss is located downstream 
both weak and strong 5’ss. U1 binds both with 
suboptimal conformation, but only the strong 5’ss is 
used for splicing. (c) Alternative splicing regulated by 
RNA secondary structures. Example of short- (I) and 
long-range (II) RNA secondary structures. (I) The short-
range RNA secondary structure masks a strong 5’ss, 
leading to the recognition of a weaker 5’ss located 
upstream. (II) The long-range RNA secondary structure 
brings together a strong 5’ss and a weak 3’ss, causing 
the loss of a complete exon (in green) and a region of 
the last exon (in purple).
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techniques, followed by next-generation sequencing, have been developed to map RNA–protein 
interactions in vivo (section 2.4, this Chapter). An early goal of these studies was the identification of 
RNA-binding sites. Many of these studies have shown that RBPs recognize short (~3–7 nt) degenerate 
motifs, have multiple RNA-binding domains, and display variable efficiency when multiple motifs 
cluster together (Fu and Ares, Jr., 2014;Zhang et al., 2013). Moreover, many RBPs regulate the 
expression of other auxiliary factors. The differing cellular and temporal localization of RBPs (Ameur 
et al., 2011;Hao and Baltimore, 2013) may explain the different dynamics regulating alternative 
and constitutive splicing: whereas constitutive splicing mainly occurs cotranscriptionally, alternative 
splicing mainly occurs post-transcriptionally (Tilgner et al., 2012). For recent mechanistic models of 
splicing regulation through RBPs, see (Witten and Ule, 2011).

Alternative splicing can also be regulated in a manner totally independent of auxiliary splicing 
factors (Yu et al., 2008). Splicing silencer sequences regulate alternative splicing when competing 
5′ splice sites are present in the same RNA molecule (Figure 3b). The competing 5′ splice sites are 
equally well recognized by the U1 small nuclear ribonucleoprotein (snRNP), but silencer sequences 
alter the configuration in which U1 binds to the 5′ splice sites, leading to silencing of the 5′ splice site. 
This can change the efficiency of a splice site: weak 5′ splice sites can be recognized and used instead 
of stronger 5′ splice sites. RNA-seq datasets can be used to computationally identify common and 
tissue-specific splicing regulatory sequences. These studies have shown that the same sequence can 
act as an enhancer or a silencer in different tissues, but experimental validations of these predicted 
regulatory sequences are needed to confirm these observations (Wen et al., 2010).

Alternative splicing can also be regulated by RNA secondary structures (Figure 3c). Short-range 
RNA secondary structures can mask primary cis elements such as the acceptor and donor sites or the 
polypyrimidine tract (Pervouchine et al., 2012;Shepard and Hertel, 2008). This has been associated 
with alternative splicing at alternative 5′ splice sites. For example, the RBP MBNL1 forms a secondary 
structure upstream of exon 5 of human TNNT2 and upstream of the fetal exon of mouse Tnnt3, 
blocking U2AF65 binding to the polypyrimidine tract (Warf et al., 2009;Yuan et al., 2007). Long-range 
secondary structures bring distant splice sites into closer proximity, facilitating alternative splicing, and 
are associated with weak alternative 3′ splice sites (Pervouchine et al., 2012). Computational studies 
based on RNA-seq datasets suggest that the splicing of thousands of mammalian genes is dependent 
on RNA structures, both short and long range (Pervouchine et al., 2012). Recently developed high-
throughput techniques combine nuclease digestion (Kertesz et al., 2010) or chemical probing 
(Lucks et al., 2011) with next-generation sequencing to provide transcriptome-wide RNA structural 
information. Two studies have recently shown a transcriptome-wide relationship between secondary 
structures and alternative splicing (Ding et al., 2014;Wan et al., 2014), by reporting the presence of 
strong secondary structures at 5′ splice sites that correlate with unspliced introns. The question that 
remains unsolved by RNA-seq studies is whether the plethora of transcript variants produced affect 
protein expression. This question has been recently addressed by studies using ribosome profiling, 
discussed further below. A general observation from transcriptome-wide studies is that alternative 
splicing is essential for development (Giudice et al., 2014;Kim et al., 2013) and cell, tissue (Pimentel 
et al., 2014), and species specificity (Gracheva et al., 2011). A plausible explanation of how alternative 
exons can confer such specificity is the inclusion or exclusion of binding motifs and post-translational 
modification sites, as shown in a study where the authors investigated the structural and functional 
properties of alternative exons (Buljan et al., 2012).

Due to the widespread role of alternative splicing, it is unsurprising that errors in this process lead 
to various diseases, from neurodegenerative disorders to muscle dystrophies and cancer (Costa et al., 
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2013;Pistoni et al., 2010).

1.3 3’ End maturation: alternative polyadenylation
Another step in mRNA processing is the process of polyadenylation (Danckwardt et al., 2008). The use 
of alternative polyadenylation (APA) sites represents an extra regulatory layer during gene expression 
that results in the formation of transcripts differing in their 3′ ends. Transcripts arising from APA 
may differ in their coding region (if APA sites are located in a different exon or intron) (Figure 4a) 
or in the length of their 3′-UTRs [tandem polyadenylation sites (PASs)] (Figure 4b). The impact of 
APA on the regulation of gene expression can be extended through effects on transcript localization 
(Andreassi and Riccio, 2009), stability, and translation efficiency (Fabian et al., 2010) and on the nature 
of the encoded protein. Numerous RNA-seq methods have contributed to our understanding of APA, 
ranging from RNA-seq studies able to detect overall changes in polyadenylation, to serial analysis of 
gene expression (SAGE)-based methods able to specifically quantify and characterize the 3′ ends of 
transcripts, to a series of dedicated protocols for the accurate detection and quantification of PASs 
(section 2.2.1, this Chapter). These transcriptome-wide studies have deepened our understanding 
of APA, providing information on newly discovered PASs, elucidating the impact of APA on gene 
expression, and discovering new APA regulatory mechanisms.

Although the number of alternative PASs detected differs greatly between studies (Derti et al., 
2012;Ozsolak et al., 2010;Shepard et al., 2011), these studies contribute to the notion of the ubiquity 
of APA events, which involve approximately 70% of human genes. According to a study conducted on 
15 human cell lines, there are on average two PASs per gene (Djebali et al., 2012). APA within the same 
last exon (tandem 3′-UTRs) is the most abundant type of APA (Shepard et al., 2011). Intronic APA events 
are reported less frequently and thousands of intronic PASs are usually suppressed (Yao et al., 2012). 
APA is generally linked to changes in gene expression levels and, ultimately, to protein abundance. 
Studies have shown an inverse correlation between 3′-UTR length and protein expression levels (Ji et 
al., 2011) (Chapter 2). Some human tissues (such as brain, testis, lung, and breast) are enriched for 
highly abundant transcripts with short 3′-UTRs, whereas others (such as heart and skeletal muscle) 
contain many low-abundance transcripts with long 3′-UTRs (Ni et al., 2013). Increased expression of 
transcripts with shortened 3′-UTRs can be explained by loss of miRNA target sequences, loss of UPF1-
binding sites, which leads to RNA decay (Hogg and Goff, 2010), or loss of AU-rich elements (AREs), 
which leads to ARE-directed mRNA degradation (Ji et al., 2011). However, there are many exceptions 
to the general rule, as proteins that bind to the 3′-UTR can also stabilize mRNAs (Gupta et al., 2014;Ray 
et al., 2013;Spies et al., 2013).

Transcriptome-wide studies have been undertaken to elucidate the dynamics of APA regulation. 
In general, disruption of the polyadenylation machinery leads to loss of fidelity in the choice of PAS 
and shortening of the 3′-UTRs. There are numerous 3′ processing factors involved in polyadenylation; 
nevertheless, changes in the expression levels of a single specific factor are sufficient to influence 
the choice of PAS. For example, decreased levels of cleavage factor I (CFIm) (Shepard et al., 2011) 
or poly(A)-binding protein nuclear 1 (PABPN1) lead to transcriptome-wide shortening of 3′-UTRs, 
corresponding to an increased preference for non-canonical polyadenylation signals (Figure 4c) 
(Chapter 2) (Jenal et al., 2012;Martin et al., 2012).

Many recent transcriptome-wide studies have confirmed that distal PASs generally have a strong 
canonical signal motif [A(A/U)UAAA], whereas proximal PASs diverge from the canonical sequence 
(Shepard et al., 2011;Smibert et al., 2012;Ulitsky et al., 2012). Interestingly, tissue-specific regulated 
PASs can be depleted of the canonical motif. For example, APA in brain seems to be regulated by an 
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A-rich motif starting just downstream of the PAS (Hafez et al., 2013). A-rich sequences have also been 
reported upstream of cleavage sites for transcripts lacking canonical motifs (Nunes et al., 2010).

Numerous studies based on expressed sequence tags and microarrays have 
previously shown the biological relevance of APA (Tian et al., 2005;Yan and Marr, 2005). 
A study based on expressed sequence tags comprising 42 human tissues (Zhang et al., 2005) showed 
that certain tissues preferentially produce mRNAs of a certain length. Brain, pancreatic islet, ear, 
bone marrow, and uterus showed a preference for distal PASs, leading to longer 3′-UTRs. Retina, 
placenta, ovary, and blood showed a preference for proximal PASs. This classification might change 
when considering the levels at which these mRNAs are expressed. Although most of the transcripts 
detected in the brain contain distal PASs, the transcripts that are highly abundant generally show a 
preference for proximal PASs and have short 3′-UTRs (Ni et al., 2013). Other studies showed that the 
choice between a distal and a proximal PAS was modulated during differentiation and development. 
Progressive lengthening of 3′-UTRs was shown for most of the transcripts during cell differentiation 
and during embryonic development (Ji et al., 2009). By contrast, shortening was observed during 
proliferation (Sandberg et al., 2008) and during reprogramming of somatic cells (Ji and Tian, 2009). 
APA profiles are tissue specific and appear to be tightly regulated during development and cell 
differentiation. Most of the findings achieved by recent transcriptome-wide approaches confirm at a 
larger scale what was previously observed. The tissue specificity of APA and the correlation between 
tissue and 3′-UTR length seem to be highly conserved between different species and APA profiles from 
different species are similar for the same tissues (Miura et al., 2013;Smibert et al., 2012;Ulitsky et al., 
2012). Modulation of APA has also been widely observed during proliferation, differentiation, and 
development (Hoque et al., 2013;Li et al., 2012;Mangone et al., 2010;Shepard et al., 2011).

Widespread alteration of APA profiles has been observed in several diseases. Many studies have 
reported shortening of 3′-UTRs in cancer (Fu et al., 2011;Lin et al., 2012;Mayr and Bartel, 2009), 
linked to extensive upregulation and activation of oncogenes. More recently, altered APA profiles have 
been linked to muscle disorders such as myotonic dystrophy (Batra et al., 2014) and oculopharyngeal 
muscular dystrophy (Chapter 2).

1.4 From mRNA to protein: alternative translation initiation
In addition to the regulation of transcription and processing, the translation of transcripts is also tightly 
regulated. Regulation of translation defines not only the abundance of a protein but also its amino 
acid composition through the use of different start codons (Kochetov, 2008), as translation may start 
at uORFs or at alternative ORFs (aORFs) (Figure 5a, 5b). uORFs are located in the 5′-UTR of a transcript. 
Depending on the presence or absence of stop codons and their coding frame, a uORF can overlap 
with the pORF or not. Overlapping and in-frame uORFs lead to N-terminal extended protein isoforms 
(Fritsch et al., 2012), whereas non-overlapping uORFs affect the translation of pORFs in various ways 
(Wethmar, 2014): they can block the translation of the pORFs, reducing protein production; they can 
promote reinitiation of translation at downstream start codons; or they can enhance translation of the 
main pORFs. aORFs are located downstream of the annotated start codon. In-frame aORFs give rise to 
N-terminal truncated isoforms (Vanderperre et al., 2013). uORFs and aORFs can also be out of frame 
with respect to the pORFs and lead to the production of different peptides. The sequences translated 
in more than one reading frame are called dual coding regions [(Michel et al., 2012).

In the past, changes in protein synthesis were measured exclusively based on proteomic 
approaches or estimated based on total mRNA levels. More recently, they have been assessed via 
ribosome profiling (Ingolia et al., 2012). Deep sequencing of RNA fragments protected by ribosomes 
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Figure 4. Alternative polyadenylation. (a) Data from a Poly(A)-seq experiment  [this thesis, Chapter 2] showing 
alternative polyadenylation (APA) in the intron of Luc7l2 gene, leading to an intronic proximal PAS located in a 
different terminal exon, giving rise to transcript variants with different ORFs. (b) Two examples of tandem APA 
in muscle tissue from a mouse model for Oculopharyngeal muscle dystrophy (OPMD) [this thesis, Chapter 2]. 
In the Arih2 gene (I) both the distal and the proximal PASs can be used in the disease state. The recognition of a 
proximal PAS leads to shortening of the 3’-UTR and loss of a miRNA binding site, causing an increase in transcript 
levels. In the Ccnd1 gene (II) the shortening of the 3’-UTR leads to the loss of many recognition sites for RNA 
binding proteins (RBPs) that stabilize the transcript. Loss of stability leads to a decrease in transcript level. (c) 
Model mechanisms regulating tandem APA [this thesis, Chapter 2]. Common sequences in the 3’-UTR that regulate 
polyadenylation are the upstream sequence element (USE), the UGUU sequence recognized by the Cleavage Factor 
1 (CFIm), the polyadenylation signal (PA) recognized by the Cleavage and Polyadenylation Specifity Factor (CPSF) 
and the downstream sequence element (DSE) recognized by the Cleavage Stimulation Factor (CstF). CPSF and 
CstF are brought to the RNA by the RNA polymerase II (Pol II), together with the Poly(A) Binding Protein Nuclear 
1 (PABPN1), through its C-terminal domain (CTD). Generally, CPSF recognizes the canonical PA signal and cut at a 
distal polyadenylation site (PAS), at a CA dinucleotide (I). If PABPN1 or CFIm are present at a lower concentration, 
the CPSF recognizes non-canonical (weaker) PA signals (II) and cuts at proximal PASs, leading to the formation of 
transcripts with truncated 3’-UTRs.
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determines the position of the ribosomes on the RNA molecule at nucleotide resolution, allowing 
exact characterization of the translation initiation site (TIS) and quantification of levels of translation. 
Ribosome profiling studies in combination with RNA-seq have assessed the extent of alternative 
translation initiation, provided insights into the regulatory mechanisms of this process, and shed light 
on how it impacts gene expression.

A common finding of many recent ribosome profiling studies is the widespread use of alternative 
TISs. Initiation of translation at alternative TISs may be caused by various forms of stress but is also 
observed under normal physiological conditions. Between 50% and 65% of transcripts contains more 
than one TIS (Calvo et al., 2009;Ingolia et al., 2011;Lee et al., 2012). Most of the detected TISs are 
located upstream of the annotated start codons (50–60%), leading to potential uORFs. A minority 
are located downstream of the annotated start codons (~20%) and lead to N-terminally truncated 
proteins or out-of-frame ORFs. However, some ribosome profiling peaks detected as alternative TISs 
may represent cases of ribosomal stalling. To distinguish these from genuine TISs, proteomic data 
are essential. These are often difficult to obtain because the peptides are usually short and unstable. 
Moreover, the study of the proteome in a high-throughput fashion presents certain technical 
limitations, especially for low-abundance proteins, which are difficult to detect among a diverse pool 
of proteins (Wasinger et al., 2013).

Insights into the mechanisms regulating the choice of an uORF or aORF over a primary ORF are 
starting to emerge. Initiation of translation at near-cognate codons and non-AUG codons, previously 
reported for a small number of mRNAs, appears to be common, as approximately 50% of translation 
is initiated at noncanonical codons (Ingolia et al., 2011;Lee et al., 2012). These non-canonical start 
codons are enriched in uORFs. By contrast, TISs located downstream of annotated TISs comprise 
mainly AUG codons. The use of near-cognate and non-AUG start codons has been confirmed by 
mass spectrometry (Menschaert et al., 2013). Interestingly, these codons are recoded to regular 
methionines, as all of the produced proteins seem to contain an N-terminal methionine.

Recent studies support the leaky scanning theory (Kozak, 2005), according to which the choice 
of a downstream TIS depends on the strength of the Kozak consensus sequence. It was shown on a 
transcriptome-wide scale that initiation at downstream TISs usually occurs when the Kozak sequence 
in the annotated start codon is suboptimal. A similar mechanism applies for initiation at uORFs. uORFs 
are translated in parallel to their downstream primary ORFs (pORFs) if the start codon used in the 
uORF is a non-AUG, but translation of pORFs is usually repressed if the uORFs contain an AUG start 
codon and a strong Kozak sequence (Lee et al., 2012).

Both aORFs and uORFs can give rise to ORFs with reading frames different from the pORFs, a 
phenomenon known as dual coding (Michel et al., 2012). The triplet periodicity observed in ribosome 
profiling data enables the detection of dually decoded regions. Although the extent of dual coding 
observed in the human genome in ribosome profiling studies is only approximately 1%, it has been 
suggested that this might be an underestimate due to technical and analytical limitations (low coverage 
and the assumption that the two frames must be translated at the same rate) (Michel et al., 2012).

The extent to which mRNA levels explain differences in protein abundance is still debated. Although 
some studies have reported a poor correlation (Maier et al., 2009) – in the range of approximately 40% 
of protein levels explained by mRNA levels (Lundberg et al., 2010;Schwanhausser et al., 2011;Tian et 
al., 2004;Vogel et al., 2010) or even less than 20% (Ingolia et al., 2009) – others claim a much higher 
correlation of up to approximately 80% (Li et al., 2014). Ribosome-associated RNA levels seem to be a 
good proxy for protein levels, as the correlations between mRNA and protein observed are between 
60% and 90% (Ingolia et al., 2009;Wang et al., 2013b). Nevertheless, a study that compared changes 
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at mRNA levels and ribosome-bound mRNAs showed profound uncoupling between transcription and 
translation in several different experiments after treatments with extracellular stimuli or during cell 
and tissue differentiation (Tebaldi et al., 2012). Therefore, it remains unclear whether regulation at 
the translational level has a major influence on global protein abundance or whether it is restricted 
to a subset of genes.

Figure 5. Alternative translation initiation. 
Alternative translation initiation sites (TISs) 
detected by ribosome profiling [this thesis, 
Chapter 4]. (a) Examples of alternative TISs 
leading to alternative open reading frames 
(aORFs) in frame (I) or out-of-frame (II) with 
the primary ORF. In the Rps20 gene (I) a switch 
in TIS usage occurs during cell differentiation. 
Proliferating cells use two TISs, one corresponding 
to the annotated start codon and the other 
corresponding to an alternative open reading 
frame, the latter of which leads to a truncated 
protein isoform. The alternative TIS is shown in 
the highlighted box. The top part (gray) shows the 
three possible frames, and the blue bar shows the 
frame of the pORF. Because ribosome profiling 
peaks are usually displayed using only the 5’ end 
of each mapped read, the black line indicates 
the actual TIS location of the aORF, located 12 
bp downstream of the mapped peak. In the 
Crip1 gene (II) only one transcription start site 
(TSS) is present (top track, deepCAGE) but two 
different TISs are used (bottom track, ribosome 
profiling), one corresponding to the annotated 
start codon and one located downstream of the 
annotated start codon, leading to an aORF. The 
alternative TIS is shown in the highlighted box. 
The alternative TIS corresponds to an AUG start 
codon that is out-of-frame compared to the pORF, 
indicating the presence of a dual coding region. 
(b) Examples of alternative TIS leading to an 
upstream open reading frame (uORF) in the Cryab 
gene. Proliferating cells use two TISs, one located 
in the 5’-UTR and one corresponding to the 
annotated start codon. The sequence of the 5’-
UTR incorporated by the alternative TIS is shown 
below the reference track. The extension of the 
5’-UTR leads to the translation of an upstream 
open reading frame (uORF), with a canonical AUG 
codon and ending before the start codon of the 
primary open reading frame (pORF), negatively 
regulating translation.
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1.5 Transcription, RNA processing, and translation: 
interdependent processes
The molecular machineries involved in transcription and RNA processing are spatiotemporally coupled. 
Co-transcriptional regulation of capping, splicing, and polyadenylation has been extensively described 
(Auboeuf et al., 2005;Bentley, 2014). RNA polymerase II (Pol II) is an important player in the regulation 
of this coupling, as its C-terminus recruits proteins involved in capping, splicing, and polyadenylation 
(Hsin and Manley, 2012). There is ample support of the coupling between transcription and splicing. 
Splicing predominantly occurs during transcription (Djebali et al., 2012;Tilgner et al., 2012), as indicated 
by the following three observations: many introns are already spliced in chromatin-associated RNAs; 
there is enrichment of spliceosomal small nuclear RNAs in chromatin-associated RNAs; and exons that 
are spliced are enriched for epigenetic chromatin marks (Brown et al., 2012). Nevertheless, splicing 
events at the 3′ end of a transcript might occur post-transcriptionally, giving a general 5′–3′ trend in 
splicing completion.
Transcription and splicing are coupled not simply in space and time but are also jointly responsible 
for the formation of alternative transcripts. The interdependence of different RNA-processing events 
restricts the number of combinations of alternative TSSs, exons, and PASs. Splicing and polyadenylation 
may be influenced not only by the transcription elongation rate but also by transcription initiation: a 
lower elongation rate is linked to slower splicing and polyadenylation and therefore to an increased 
chance of recognizing alternative exons (Dujardin et al., 2013) or proximal PASs (Hazelbaker et al., 
2013;Pinto et al., 2011) and the choice of TSS is linked to a specific splicing pattern (Benson et al., 
2012;Huang et al., 2009) or to the use of specific PASs (Huang et al., 2012;Ji et al., 2011;Nagaike et 
al., 2011).

In addition to links between transcription and mRNA processing, alternative splicing and APA also 
appear to be interdependent. Twenty years ago, it was shown that splicing of the last intron requires 
definition of the last exon (at least in mammals (Martinson, 2011)) and that this occurs through the 
cooperation of splicing and polyadenylation factors that interact across the last exon, leading to mutual 
enhancement of both splicing and polyadenylation (Berget, 1995). The snRNPs U1 and U2 and the U2 
auxiliary factor 65 kDa subunit (U2AF65), all spliceosome components, are also part of the human 
pre-mRNA 3′ processing complex (Shi et al., 2009). These spliceosome components directly interact 
with cleavage and polyadenylation specific factor (CPSF) and with CFIm. Splicing factors can also play 
a role in premature cleavage and polyadenylation, as shown by the spliceosomal factor TRAP150 (Lee 
and Tarn, 2014).

Recent transcriptome-wide studies further support the links between splicing and polyadenylation. 
Alteration of the splicing factor hnRNP H has been shown to have widespread effects on tandem APA, 
with increased 3′-UTR shortening in the presence of hnRNP H and lengthening in its absence (Figure 
6a, top). Changes in APA were accompanied by changes in alternative splicing. A direct link between 
hnRNP H and the choice of a specific PAS was shown by crosslinking immunoprecipitation sequencing 
(CLIP-seq) analysis, by the presence of a higher CLIP tag density next to the proximal PAS (Katz et al., 
2010). An increase in proximal PAS use was also observed after alteration of Nova, a RBP involved in 
alternative splicing (Licatalosi et al., 2008).

High CLIP tag density surrounding proximal PASs has also been observed for the RBPs MBNL1 and 
MBNL2 (Figure 6a, bottom), which are known to regulate splicing (Wang et al., 2012), and a direct link 
between MBNL proteins and APA was recently explained by the competition of MBNL with CFIm68, a 
component of the polyadenylation machinery (Batra et al., 2014).



GENE ExPRESSION

23

Whether alternative splicing is also coupled to non-tandem APA remains unclear. A few studies 
have specifically investigated the interdependency between intronic polyadenylation and splicing. 
Cryptic intronic PASs are mainly located in large introns with weak 5′ splice sites. This suggests that 
intronic polyadenylation can be inhibited if there are splicing enhancers that recognize the 5′ splice 
site, as shown for U1 (Kaida et al., 2010), or enhanced in the case of suboptimal splicing (Tian et 
al., 2007). The coupling observed in this case represents kinetic competition between splicing and 
polyadenylation (Luo et al., 2013).

Coupling is not restricted to processes connected in space and time. Interdependency has also 
been shown between processes occurring in different subcellular compartments; for example, 
between APA and translation. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1), which 
shuttles between the nucleus and the cytoplasm, has been shown to play a dual role in APA and 
translation (Bava et al., 2013) (Figure 6b). Interestingly, CPEB1 can also regulate alternative splicing. 
CPEB1 prevents recruitment of the splicing factor U2AF65 to the 3′ splice site, but simultaneously 
recruits the polyadenylation machinery. The RBP CPEB1 is an example of a master regulator that 
affects three layers of gene expression: splicing, polyadenylation, and translation.
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Figure 6. Coupled regulatory mechanisms. (a) Tandem alternative polyadenylation (APA) regulated by splicing 
factors. The RNA binding proteins hnRNP H and MBNL regulate APA in opposing ways. In the presence of hnRNP 
H (I), the Cleavage and Polyadenylation Specifity Factor (CPSF) binds weaker non-canonical polyadenylation (PA) 
signals  and cuts at proximal poly(A) sites (PAS 1), leading to shortening of the 3’-UTR, while in its absence (II) only 
the canonical PA signal is recognized, and cleavage occurs in the distal PAS (PAS 2). (III) MBNL masks the region 
upstream of weak non-canonical PA signals, blocking the binding of the Cleavage Factor 1 (CFIm). This leads to 
binding of CFIm to a more distal UGUU sequence, followed by binding of CPSF to the distal canonical PA signal 
and usage of distal PAS (PAS 2). In the absence of MBNL (IV) CFIm can bind proximal UGUU regions and bring the 
CPSF to weaker PA signals, causing cleavage at proximal PAS (PAS 1) and shortening of the 3’-UTR. (b) Coupling of 
APA and translation. In the nucleus, in the absence of the Cytoplasmic Polyadenylation Element Binding protein 
1 (CPEB1) (I), CPSF binds the canonical PA signal and cleaves the RNA at a distal PAS (PAS 2). In the presence of 
CPEB1 (II), CPEB1 binds the cytoplasmic polyadenylation element (CPE) located upstream of weak non-canonical 
PA signals. CPEB1 directly interacts with CPSF, bringing it to regions proximal to the weak PA signal. This leads to 
their recognition by CPSF and cleavage at proximal PAS (PAS 1). When CBEP1 shuttles to the cytoplasm, it again 
binds to the CPE, but this time to promote lengthening of the poly(A) tail by Poly(A) polymerase (PAP), which 
results in increased translation efficiency. Lengthening of poly(A) tails of transcripts bearing proximal PASs (PAS1) 
(II) is enhanced by the fact that the CPE, PAP and the polyadenylation site are in close proximity, whereas this 
enhancement is disrupted when the distance is longer due to the 3’-UTR lengthening in transcript bearing distal 
PAS (PAS 2).
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2. RNA sequencing: from Tag-based profiling methods to 
resolving complete transcript structure
Numerous next-generation sequencing (NGS)-based RNA profiling methods are nowadays available 
to specifically investigate different levels of regulation. Whereas some RNA sequencing methods 
focus on a particular region of the transcript and are zooming in on specific RNA processing events, 
others provide a more comprehensive picture of the transcript, simultaneously characterizing 
different processing events (Figure 7). In this perspective, we can classify RNA sequencing methods 
into two categories: (1) tag-based methods, where only a short fragment (tag) at a defined position 
in each RNA molecule is sequenced, and (2) shotgun methods, where the molecule is divided and 
sequenced in multiple fragments and reconstruction of the original transcript is attempted through 
computational and statistical approaches (Figure 8). A completely different categorization is needed 
for RNA sequencing methods based on the PacBio sequencing platform. PacBio long-read sequencing 
provides full-length transcript sequencing, allowing an exact characterization of the structure of the 
transcript (Koren et al., 2013;Sharon et al., 2013). In this way, different RNA processing events can be 
simultaneously detected and specifically assigned to a certain transcript, without the ambiguity faced 
in all other shotgun methods developed for short-read sequencing platforms.

It is important to note that each of these methods capture RNA molecules in different ways, some 
rely on the presence of the 5′-cap or the poly(A) tail, others allow a full sampling of the transcriptome 
by capturing also non-capped and non-polyadenylated molecules. The transcripts detected by 
different techniques are therefore only partially overlapping. Another issue to consider is the 
transcript’s orientation. While all tag-based methods are strand specific, meaning that they preserve 
information about the transcript’s orientation, shotgun methods may be strand specific or not strand 
specific. Strand specificity is important to determine the exact gene expression levels in the presence 
of antisense transcription.

These advanced RNA sequencing methods and platforms generate a huge amount of data, giving 
us the possibility to understand the complexity of the transcriptome and its fine regulation. RNA 
sequencing methods have been adapted for the most common DNA sequencing platforms [HiSeq 
systems (Illumina), 454 Genome Sequencer FLX System [Roche], Applied Biosystems SOLiD (Life 
Technologies), IonTorrent (Life Technologies)]. These platforms require initial reverse transcription of 
RNA into cDNA. Conversely, the single molecule sequencer HeliScope (Helicos BioSciences) is able to 
use RNA as a template for sequencing (Ozsolak et al., 2009;Ozsolak et al., 2010) and a few studies 
have shown its potential (Geisberg et al., 2014;Graber et al., 2013;Moqtaderi et al., 2013;Sherstnev 
et al., 2012). A proof of principle for direct RNA sequencing on the PacBio RS platform has also been 
demonstrated (Pacific Bioscience). However, direct RNA sequencing technologies are currently not 
available to regular customers.

The sequencing platforms differ also in the number of reads generated, leading to a difference in 
sensitivity. While common short-read platforms can generate millions of reads (http:// res. illumina. 
com/ documents/ products/ appnotes/ appnote_ hiseq2500. pdf), allowing an accurate quantitative 
analysis of high and low abundant transcripts, PacBio currently yields ~50,000 long reads (http:// 
files. pacb. com/ pdf/ PacBio_ RS_ II_ Brochure. pdf), restricting the number of transcripts that can be 
detected, unless multiple runs are performed (Au et al., 2013;Sharon et al., 2013;Steijger et al., 2013).

To correctly interpret sequencing data and reach a full understanding of the hidden biological 
meaning in it, a parallel development of statistical and computational approaches is fundamental. 
Numerous algorithms have been developed to detect differentially expressed genes and spliced 
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variants. For an extensive comparison of some of the most commonly used methods, and for a 
general overview of the computational challenges, we refer to (Garber et al., 2011;Soneson and 
Delorenzi, 2013;Steijger et al., 2013). Moreover, dedicated algorithms to identify switches between 
polyadenylation (Chapter 2) (Katz et al., 2010) or transcription start sites (Chapter 4) (Balwierz et al., 
2009;Frith et al., 2008) have been developed.

2.1 Tag-based methods
In tag-based methods, each transcript is represented by a unique tag. Initially, tag-based approaches 
were developed as a sequence-based method to measure transcript abundance and identify 
differentially expressed genes, assuming that the number of tags (counts) directly corresponds to the 
abundance of the mRNA molecules. The reduced complexity of the sample, obtained by sequencing 
a defined region, was essential to make the Sanger-based methods affordable. When NGS technology 
became available, the high number of reads that could be generated facilitated differential gene 
expression analysis. A transcript length bias in the quantification of gene expression levels, such as 
observed for shotgun methods (Gao et al., 2011;Zheng et al., 2011), is not encountered in tag-based 
methods. This makes tag-based method a potentially less biased approach when studying gene 
expression. Moreover, all tag-based methods are by definition strand specific.
Recently, an increased interest in the determination of transcripts’ structure led to the development 
of numerous directed tag-based strategies which aim to precisely define 3′ and 5′ transcript ends. We 
will refer to them as 3′ end sequencing and 5′ end sequencing methods.

2.1.1 3′-End sequencing
3′ end sequencing methods specifically focus on the end of the transcript, allowing the detection of 
transcripts which differ in the 3′-terminal exon used or in the length of their 3′ untranslated region 
(3′-UTR). Different 3′ ends arise from alternative polyadenylation of pre-mRNAs (Danckwardt et al., 
2008;Legendre and Gautheret, 2003;Shi et al., 2009).

A variety of 3′ end sequencing methods have been developed in the last years, from serial analysis 
of gene expression (SAGE)-like methods to more dedicated protocols, where the detection of the 
actual polyadenylation site used is even more precise. Here some of these methods are described, 
focusing the level of precision in which polyadenylation sites are determined.

DeepSAGE (Nielsen et al., 2006) represents the first high-throughput tag-based method developed 
to generate tags at the most 3′ end of a transcript. DGE (‘t Hoen et al., 2008), Tag-Seq (Morrissy et al., 
2009) and HT-SuperSAGE (Matsumura et al., 2010) are improved versions which have been adapted 
to different sequencing platforms. All these approaches are based on the SAGE method described 
by Velculescu et al. (Velculescu et al., 1995). Minor differences characterize these techniques, such 
as the length of the tag (21 or 25–26 nt), the restriction enzymes used to release the 3′ end of a 
transcript and generate a unique tag (NlaIII/MmeI or NlaIII/EcoP15I), and the sequencing platform 
used. Except for these minor differences, the steps necessary to generate a sequencing library are 
similar (Figure 9a).The first steps consist in capturing all polyadenylated transcripts and converting the 
RNA molecules into double-stranded cDNA molecules. The cDNA molecules are then cut at the most 
3′ CATG by enzymatic digestion and ligated to a 5′ adapter, which introduces a recognition site for 
a specific restriction enzyme (MmeI/EcoP15I). A second digestion, downstream of the incorporated 
restriction site, produces a short fragment (tag of 21 or 25–26 nt) which is then ligated to a 3′ adapter. 
Both adapters make the cDNA tag suitable for amplification and high-throughput sequencing.
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Figure 7. A screenshot from UCSC Genome Browser (http://genome.ucsc.edu) displaying the different regions 
sequenced by tag-based and shot-gun methods in Acta1 gene. The y-axis represents the coverage, corresponding 
to the number of reads mapping at each location. Six independent traces are shown. The top two traces (in red) 
show a peak at the most 3’ CATG site and at the exact polyadenylation site (PAS, indicated by an arrow) detected 
by DeepSAGE and Poly(A)-seq, respectively. The third trace (in blue) shows a peak at the transcription start site 
(TSS, indicated by an arrow) detected by DeepCAGE. The fourth trace (in green) shows a peak at the translation 
start site (TIS, indicated by an arrow) detected by ribosome profiling based on harringtonine treatment. The fifth 
trace (also in green) shows a major peak at the detected translation start site (TIS, indicated by arrow) and a lower 
coverage at each translated exons, detected by ribosome profiling based on cycloheximide treatment. The last 
trace (in purple) shows a typical RNA-seq profile, where all exons and untranslated regions are detected. On top 
of the coverage tracks, the RefSeq gene track shows two transcript variants for Acta1, with exons shown as thick 
boxes, untranslated regions as thin boxes and introns as consecutive arrows.
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Different studies have shown that SAGE-like methods are suitable to detect alternative 
polyadenylation events (Chapter 3) (‘t Hoen et al., 2008;Hestand et al., 2010;Ji et al., 2009;Nordlund 
et al., 2012). Nonetheless, the possibility to distinguish transcripts with different 3′ end relies on the 
presence of a restriction site in the sequence between the two alternative polyadenylation sites. All 
transcripts with alternative 3′ ends lacking restriction sites in between the polyadenylation sites are, 
therefore, missed. The same applies for transcripts which do not contain that specific restriction site. 
According to RefSeq human transcript database, ~1% of the transcripts lack an NlaIII recognition site, 
meaning that almost 1000 transcripts are not accessible to SAGE-like approaches (Unneberg et al., 
2003). Another limitation of these methods is that they do not give information regarding the position 
of the polyadenylation site.

To overcome the limitations observed in all SAGE-like methods, several dedicated protocols 
have been developed to specifically characterize polyadenylation sites and quantify their relative 
usage genome wide (Chapter 2) (Beck et al., 2010;Derti et al., 2012;Fox-Walsh et al., 2011;Fu et al., 
2011;Hoque et al., 2013;Jan et al., 2011;Jenal et al., 2012;Lin et al., 2012;Martin et al., 2012;Ozsolak et 
al., 2009;Ozsolak et al., 2010;Pelechano et al., 2012;Shepard et al., 2011;Wang et al., 2013a;Wilkening 
et al., 2013;Yoon et al., 2012) (Figure 9b, 9c). These methods do not rely on the presence of a specific 
restriction enzyme site and therefore detect all polyadenylation sites.

Limitations in the detection of the exact polyadenylation site location and biased quantifications 

Figure 8. Schematic representation of 
sequencing reads generated by tag-based 
(i-iv), shot-gun (v-vii) or full-length (viii) 
sequencing. Thick black arrows indicate 
the sequenced reads. Paired-end reads are 
displayed by two opposite black arrows. Red 
circles indicate the 5’ cap structure. Ribosomes 
are displayed in green. The complete gene 
model is displayed on top, with exons shown as 
thick boxes, untranslated regions as thin boxes 
and introns as consecutive thin arrows. 
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may arise due to various steps involved in the preparation of the sequencing library. Oligo(dT) priming, 
DNA or RNA ligase-mediated adapter ligation, reverse transcription and amplification represent the 
main sources of bias.

The available poly(A) site sequencing protocols may differ in the level of precision in which the 
polyadenylation site is determined, in the number of possible biasing steps introduced and in the 
number of false polyadenylation sites detected, mainly arising from internal priming events.

The main technical differences between the reviewed methods are summarized in Table 1. Internal 
priming events remain one of the limitations of all methods based on oligo(dT) priming (Derti et 
al., 2012;Elkon et al., 2012;Fox-Walsh et al., 2011;Fu et al., 2011;Martin et al., 2012;Shepard et 
al., 2011;Wilkening et al., 2013). Internal priming can occur due to priming of oligo(dT) on internal 
A-rich regions of the transcript, yielding artifacts which are difficult to distinguish from authentic 
polyadenylation sites.

Different approaches have been taken to minimize internal priming artifacts. In 3P-Seq (Elkon et 
al., 2012), ligation of a biotinylated double-stranded oligo (containing an overhanging stretch of Ts) to 
the end of the poly(A) tail is used to eliminate the chance of priming in internal poly(A) stretches. In 
another method, 3′READS (Hoque et al., 2013), discrimination of 3′ poly(A) tails from internal A-rich 
sequences is achieved by capturing fragmented RNA onto beads coated with a chimeric oligonucleotide 
consisting of thymidines (Ts) at the 5′ and uridines (Us) at the 3′ end (CU5T45). Subsequently, RNaseH 
digestion is used to release the molecules from the beads and to remove most of the As of the poly(A) 
tail. This method enriches for RNAs with longer A stretches. Wang et al. (Wang et al., 2013a) used a 
computational analysis to distinguish authentic polyadenylation sites from potential internal priming 
events based on the distinct pattern of nucleotide composition of the 3′ end region. This method is 
compatible with any 3′ end sequencing technology.

Next to differences in dealing with the internal priming issue, protocols display different degrees of 
resolution in the identification of the exact polyadenylation sites. If sequencing starts from the 5′ end 
of the library construct (Beck et al., 2010;Elkon et al., 2012;Fox-Walsh et al., 2011;Jenal et al., 2012), 
there is a chance that a fraction of reads will not reach the polyadenylation site. If sequencing starts at 
the very 3′ end of the library construct (Fu et al., 2011), including the stretch of As, other issues may 
arise, such as polymerase slippage or mispriming of the sequencing oligo, due to the presence of the 
homopolymeric stretch. The 3P-Seq approach described above (Jan et al., 2011) overcomes this last 
issue by digesting the poly(A) tail before incorporating the adapters necessary for amplification and 
sequencing. The PAS-Seq [46] approach avoids sequencing the poly(A) tail using a sequencing primer 
with an oligo(dT) extension at the 3′ end. Another method which avoids sequencing through the 
poly(A) tail is described by Wilkening et al. (Wilkening et al., 2013). In this method, named 3′T-fill, the 
poly(A) stretch is filled in with dTTPs before the sequencing reaction starts.

A more direct approach is described in Chapter 2. This method, based on the HeliScope single 
molecule sequencer technology, allows to start sequencing directly after the 5′ end of the poly(A) tail, 
thus at the exact polyadenylation site. Molecules are directly hybridized, through their poly(A) tail, to 
a flow cell containing oligo(dT) probes. The poly(A) stretch downstream of each polyadenylation site 
makes the second-strand cDNA molecules directly amenable for sequencing, with the advantage that 
the first nucleotide on the 5′ end of each sequenced molecule represents the poly(A) addition site. 
An even less biased approach is described by Ozsolak et al. (Ozsolak et al., 2009;Ozsolak et al., 2010), 
and is based on direct RNA sequencing (DRS). All poly(A)-containing RNAs are sequenced starting 
from the polyadenylation site, without reverse transcription, right after one single enzymatic reaction 
consisting in the addition of dideoxy terminators at the end of the poly(A) tail. This is done to prevent 
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extension at the 3′ end of mRNAs which are not perfectly hybridized to the poly(T) stretch of the flow 
cell surface. Accurate detection of polyadenylation sites can also be achieved on the PacBio-RS single 
molecule sequencing platform. Here, transcripts are converted into a circular double-stranded DNA 
template capped by hairpin loops at both 3′ and 5′ ends (Travers et al., 2010). Since the full-length 
cDNA molecule is incorporated in a circular template, the poly(A) tail will be present, allowing the 
detection of the exact position of the polyadenylation site and the length on the poly(A) tail.

Methods relying on enzymatic ligation of adapter sequences to RNA molecules (such as A-Seq 
(Martin et al., 2012), 3P-Seq (Jan et al., 2011) and 3′READS (Hoque et al., 2013)), are known to be non-
random, compromising quantification (Hafner et al., 2011;Zhuang et al., 2012). Ligation steps may be 
avoided using the template switch reverse transcription approach. Methods such as PAS-Seq (Shepard 
et al., 2011), SAPAS (Fu et al., 2011) and PolyA-seq (Derti et al., 2012), use this approach to incorporate 
known sequences at both ends of cDNA molecules during first-strand synthesis. Despite this, other 
artifacts may be introduced, e.g., through a process called strand invasion (Tang et al., 2013).

2.1.2 5′ End sequencing
5′ end sequencing methods can be considered as a mirror approach of the 3′ end sequencing methods, 
as they generate tags at the 5′ end of a transcript. 5′ end sequencing methods have been developed 
to specifically identify transcription start sites (TSS) and (proximal) promoters. The knowledge of the 
exact position of a transcription start site can also be used to investigate promoter usage and to 
identify transcription factor binding sites in these promoters (Vitezic et al., 2010).

The detection of the exact transcription start sites is highly important since alternative transcription 
start sites can lead to the formation of protein isoforms with totally different biological functions. 
Alternatively, shorter or longer 5′-UTRs may influence the efficiency of protein translation (Barbosa et 
al., 2013;Morris and Geballe, 2000).

The number of 5′ end sequencing methods available is restricted compared to the number of 
3′ end sequencing approaches. A possible reason might be that the first method published, named 
DeepCAGE (de Hoon and Hayashizaki, 2008;Suzuki et al., 2009;Valen et al., 2009), already efficiently 
detected 5′ ends of transcripts, with a high level of precision. Whereas SAGE-like methods are 
restricted to the use of restriction enzymes and therefore to the presence and location of restriction 
sites, CAGE-like methods are based on the 5′ cap structure of a transcript, and can theoretically detect 
all capped 5′ ends of mRNA molecules. On the other hand, these methods are not suitable for non-
capped transcripts.

DeepCAGE represents an improved NGS version of the previously published CAGE protocols 
(Kodzius et al., 2006;Shiraki et al., 2003). This technique makes use of the cap trapper method 
(Carninci et al., 1996) to capture the 5′-cap structure of RNA molecules. Trapped RNAs are converted 
to cDNAs, and an adapter is ligated to the 3′ end of the cDNAs. The adapter is used to introduce a 
recognition site for a specific restriction enzyme (Mme1 or EcoP15I), which is able to cut 21 or 25–27 
nt downstream, generating the tag desired. After synthesis of the second cDNA strand, the double-
stranded cDNA fragment is ligated to a second adapter, necessary for amplification before sequencing. 
DeepCAGE libraries have been analyzed on common DNA-based sequencing platforms (Illumina, 454) 
but also on the Helicos single molecule sequencer (Kanamori-Katayama et al., 2011;The FANTOM 
Consortium and the RIKEN PMI and CLST (DGT), 2014). The Helicos-based DeepCAGE method (called 
Heliscope-CAGE) is a simplified method which consists of only three main steps: first-strand cDNA 
synthesis, 5′-cap trapping and poly(A) tailing of the 3′ ends. Heliscope-CAGE has the advantage to 
avoid second-strand synthesis, amplification, ligation, and digestion, reducing possible quantification 
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bias that might arise from each of these steps. Molecules can be hybridized to the flow cell and 
sequencing can start directly after filling up the poly(A) tail.

Both DeepCAGE and HeliscopeCAGE are based on the cap-trapper method. A different approach 
is described by Salimullah et al. (Salimullah et al., 2011) in their protocol named NanoCAGE, initially 
developed by Plessy et al. (Plessy et al., 2010). NanoCAGE uses the template-switching method for 
reverse transcription. Compared to cap-trapper-based methods, an advantage of this approach is the 
low amount of starting material (~50 ng instead of ~5 µg) required and the possibility to sequence 
not only a single tag at the transcription start site, but also a second tag in a downstream exon. The 
position of the second tag is random, since it depends on the position of the random primer used 
during second-strand synthesis. Paired-end sequencing of NanoCAGE libraries will therefore provide 
extra information on the structure of the transcript compared to DeepCAGE methods. The same 
approach is used in the method called CAGEscan (Plessy et al., 2010). The limitation of NanoCAGE and 
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CAGEscan lies in the possible artifacts introduced by template switching (Tang et al., 2013).
All CAGE-like methods discussed so far are limited in their ability to correctly detect alternative 

transcription start sites, due to a phenomenon called ‘exon painting’ (Affymetrix/Cold Spring Harbor 
Laboratory ENCODE Transcriptome Project, 2009;Hestand et al., 2010;Kanamori-Katayama et al., 
2011). The term ‘exon painting’ is used to indicate the presence of multiple CAGE peaks in exonic 
regions, next to the expected CAGE peak at the 5′ end of the transcript. This phenomenon is not caused 
by a technical artifact, but more likely arises from recapping of processed transcripts (Affymetrix/
Cold Spring Harbor Laboratory ENCODE Transcriptome Project, 2009). To limit the number of false 
alternative transcription start sites detected, only TSS in intergenic regions are considered (Hestand 
et al., 2010).

2.1.3 5′ and 3’ End sequencing
The detection of alternative transcription start sites and alternative polyadenylation sites by tag-
based methods, which focus on the 5′ and 3′ end of a transcript, respectively, is a proven method 
to characterize transcript structure. Nevertheless, the full information about transcript structure is 
missing. To overcome this limitation, tag-based methods able to detect the co-occurrence of a specific 
transcription start site and a polyadenylation site has been developed.

Methods able to determine both ends are called RNA-PET (Ruan and Ruan, 2012) and TIF-Seq 
(Pelechano et al., 2013). RNA-PET is a paired-end tag approach, where detection of both 3′ and 5′ 
ends occurs through paired-end sequencing. The initial step consists of capturing the 5′-cap structure 
by cap-trapper and synthesizing full-length cDNA. The double-stranded cDNA molecules are ligated 
to specific adapters which allow the formation of a circular template and the introduction of two 
restriction sites for EcoP15I. The restriction sites are inversely oriented, allowing the double cleavage 
of the PET construct, yielding a fragment of 27 nt from both the 3′ and the 5′ ends.

In TIF-Seq full mRNAs are first ligated to a single-strand oligo by oligo-capping. Then mRNAs are 
converted to cDNAs by reverse transcription and amplified using biotinylated primers. The double-
stranded cDNA molecules are circularized through an intramolecular ligation, and fragmented by 
sonication. Fragments containing both 3′ and 5′ ends are captured by streptavidin-coated beads and 
ligated to adapters for amplification and paired-end sequencing.

An advantage of both paired-end tag approaches is the ability to detect fusion transcripts. On the 
other hand, generation of full-length cDNAs from long transcripts still represents a technical limitation 
for any 5′3’-sequencing method.

2.2 Shotgun methods
The advantage of a shotgun, sequence-it-all method, over a tag-based method, is the ability to quantify 
the expression level of each exon within a transcript, estimate their percent inclusion level and detect 
(differential) alternative splicing events. However, it is difficult to identify the exact 3′ and 5′ ends of 
transcripts due to various technical biases (such as random hexamer priming or oligo dT priming) 
leading to underrepresentation of sequences near 5′ and 3′ ends (Hansen et al., 2010;Roberts et al., 
2011).

The term RNA-seq is used to indicate any RNA sequencing method based on a shotgun approach. 
Numerous protocols have been published so far, which have many steps in common: fragmentation 
(which can occur at RNA level or cDNA level, where RNA fragmentation appears to introduce less bias 
(Mortazavi et al., 2008)), conversion of the RNA into cDNA (performed by oligo dT or random primers), 
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second-strand synthesis, ligation of adapter sequences at the 3′ and 5′ ends (at RNA or DNA level) and 
final amplification. RNA-seq can focus only on polyadenylated RNA molecules (mainly mRNAs but also 
some lncRNAs, snoRNAs, pseudogenes and histones (Kari et al., 2013;Lemay et al., 2010;Zheng et al., 
2007)) if poly(A)+ RNAs are selected prior to fragmentation, or may also include non-polyadenylated 
RNAs if no selection is performed. In the latter case, ribosomal RNA (more than 80% of the total RNA 
pool (Lodish H et al., 2000)) needs to be depleted prior to fragmentation. It is, therefore, clear that 
differences in capturing of the mRNA part of the transcriptome lead to a partial overlap in the type of 
detected transcripts. Moreover, different protocols may affect the abundance and the distribution of 
the sequenced reads (Griebel et al., 2012). This makes it difficult to compare results from experiments 
with different library preparation protocols.

Whereas all tag-based methods are by definition strand specific, the first RNA-seq methods 
were not strand specific (Mortazavi et al., 2008), as the orientation of the molecule was lost during 
random-primed cDNA synthesis. In the last years, numerous strand-specific RNA-seq protocols have 
been developed (Table 2) (Armour et al., 2009;He et al., 2008;Lister et al., 2008;Parkhomchuk et 
al., 2009;Schaefer et al., 2009). Maintaining strand information is important given the widespread 
occurrence of antisense transcripts with a, likely regulatory, biological function.

Strand-specific methods can be classified into two categories: (1) RNA-seq methods based on 
ligation of two different adaptors in a known orientation relative to the 5′ and 3′ ends, and (2) RNA-
seq methods based on chemical modification of the RNA, either by bisulfite treatment or by the 
incorporation of dUTPs during the second-strand cDNA synthesis. In both cases, the non-modified 
strand is degraded enzymatically. According to a comparative study published by Levin et al. (Levin 
et al., 2010), where 13 different protocols have been analyzed based on their strand specificity, 
the coverage along all exons and the accuracy in quantification, the dUTP approach was the best 
performing protocol. Nevertheless, in all strand-specific RNA-seq protocols a fraction of antisense 
reads will be generated, for example when RNA molecules fold back on themselves. Depending on 
the protocol, the percentage of antisense reads from sense transcripts amounts to 1–12% (Levin et 
al., 2010). Therefore, additional analytical approaches are required to discriminate naturally occurring 
antisense transcripts from artifacts.

Shotgun sequencing methods have the potential to identify alternative splicing events. Algorithms 
deriving transcript structure from short reads mostly use a combination of coverage patterns and 
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RNA fragmentation ▲ ▲
cDNA fragmentation ▲ ▲
RNA ligase-mediated adapter ligation ▲
Random hexamers priming ▲ ▲ ▲
Oligo(dT) priming ▲
Adapter priming ▲
Bisulfite treatment ▲
Deoxy-UTP incorporation in dsDNA ▲
Strand-specific ▲ ▲ ▲

Table 2. RNA-seq protocols
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exon–exon spanning reads, and read pair information. To be able to detect alternative spliced variants, 
a certain coverage is necessary. Therefore, low expressed genes will give less information than highly 
expressed genes, unless a large number of reads are generated. A discussion of these algorithms falls 
outside the scope of this thesis, but the reader can refer to (Alamancos et al., 2014;Steijger et al., 
2013).

2.3 Full-length sequencing
One of the main limitations of all short-read shotgun methods is the inability to directly characterize 
the structure of a transcript and/or to discriminate different alleles. Additional computational and 
statistical approaches are required to reconstruct the transcript, and the short fragment sizes limit the 
reconstruction to local regions of the transcripts.

The PacBio system is the only available platform potentially able to produce reads with a length 
up to ~30 kb. However, the limitation faced at the moment is the production of full-length double-
stranded cDNAs (Sharon et al., 2013).

Different approaches are used to create full-length cDNAs suitable for full-length transcript 
sequencing. One of the possible approaches is based on template switching, consisting in the addition 
of a non-templated poly-cytosine tail to the 3′ end of the first-strand cDNA molecule through the 
terminal transferase activity of the MMLV reverse transcriptase. The addition of a poly-(C) tail allows 
the hybridization of an adapter with a poly(G) tail if the first-strand cDNA synthesis has reached the 
5′ end of the transcript. A disadvantage of this approach is that degraded mRNAs containing a poly(A) 
tail will also be converted into cDNAs, simply due to the fact that cDNA synthesis starts at the poly(A) 
tail. Distinction between full-length transcripts and partially degraded transcripts will therefore be 
impossible.

A different approach based on the isolation of properly 5′-capped RNA molecules is also extensively 
used. It is based on first-strand cDNA synthesis starting at the poly(A) tail, followed by digestion of 
unconverted RNAs and capture of the 5′-cap. Only molecules where the cDNA synthesis has reached 
the 5′ cap will be used for second-strand synthesis.

Minor improvements in cDNA length have been observed in recent template switch-based 
methods like Smart-seq2 (Picelli et al., 2013), where the majority of the cDNA molecules reach a read 
length of 2 kb.

Independently from which approach is used to generate full-length cDNAs, for PacBio sequencing 
these are converted into a SMRTbell library (Travers et al., 2010), consisting of double-stranded cDNA 
molecules capped by two harpin adapters on both side. The hairpin adapters are used to convert the 
linear double-stranded cDNAs into circular cDNA molecules, which due to this structure and long-read 
lengths will be sequenced multiple times by the same polymerase. Fragmentation and amplification 
steps are not performed, with the advantage that any possible technical artifact commonly faced in 
most of the current methods is avoided.

Taking into account the actual limitations observed in full-length cDNA preparation, full-length 
sequencing on PacBio still represents a unique approach to interrogate full transcript structure 
on a single molecule level (Chapter 5). Unfortunately, the number of reads offered by the PacBio 
technology is limited, and full characterization of a transcriptome requires performing of many runs 
(Au et al., 2013;Sharon et al., 2013) and is costly.
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2.4 Immunoprecipitation-based methods
Whereas previous methods usually reflect steady-state RNA levels, there are also dedicated methods 
available to monitor active transcription. A first approach is the immunoprecipitation of genomic DNA 
bound by RNA Polymerase II (Sun et al., 2011). Depending on the antibody used, only transcription 
initiation complexes are immunoprecipitated or also actively transcribed DNA. Alternatively, nascent 
RNA molecules can be sequenced by NET-seq (Churchman and Weissman, 2011) (native elongating 
transcript sequencing). In this approach, the ternary complex formed by the RNA pol II, DNA and RNA 
is immunoprecipitated. Crosslinking can be avoided due to the stable ternary complex.

RNA immunoprecipitation-based methods are also used to understand how protein–RNA 
complexes interactions regulate gene expression at transcriptional and post-transcriptional level. 
Various targeted approaches have been developed to investigate the interaction between RNA-
binding proteins and their target RNA molecules (Table 3).

HITS-CLIP (Licatalosi et al., 2008) and CLIP-seq (Yeo et al., 2009) represent the first high-throughput 
methods developed to generate genome-wide RNA–protein interaction maps. Both methods are 
based on the crosslinking-immunopurification (CLIP) strategy (Jensen and Darnell, 2008;Ule et al., 
2003), which relies on the principle that ultraviolet light causes the formation of a covalent bound 
between RNAs and proteins in direct contact. Cells or tissues can be irradiated in vivo, and after cell 
lysis the crosslinked RNA–protein complexes can be purified by immunoprecipitation using specific 
antibodies. To be able to map each binding site, RNA is digested up to a length of ~50 nt, reverse 
transcribed after RNA adapter ligation, and amplified prior sequencing. In the traditional CLIP method 
the resolution is low, since the mapped binding sites correspond to the total length of the fragmented 
co-purified RNAs. Another limitation is represented by the low efficiency of crosslinking using UV light 
at a wavelength of 254 nm. Different approaches, such as PAR-CLIP (Hafner et al., 2010b;Hafner et al., 
2010a) and iCLIP (Konig et al., 2010), have been developed to more precisely map the exact binding 
sites at nucleotide resolution and to increase the efficiency of the crosslinking.

PAR-CLIP (Hafner et al., 2010b;Hafner et al., 2010a) (photoactivatable-ribonucleoside-enhanced 
crosslinking and immunoprecipitation) is based on the incorporation of photoreactive ribonucleoside 
analogs (4-thiouridine or 6-thioguanosine) into newly synthesized RNAs. The use of ribonucleoside 
analogs leads to two advantages: they allow crosslinking with UV light at 365 nm (more efficient than 
the crosslinking at 254 nm), and they lead to a base transition during reverse transcription (thymidine 
to cytidine or guanosine to adenosine when using 4-thiouridine or 6-thioguanosine, respectively) 
which can be used to exactly define the crosslink site at nucleotide resolution.

HITS-CLIP, CLIP-seq and PAR-CLIP face the problem of truncated cDNAs generated during reverse 
transcription. Reverse transcription can stop due to the presence of undigested peptides which are 
still crosslinked to the RNA molecules. Truncated cDNAs are usually lost because they cannot be 
amplified, due to the missing 5′ adapter primer.

iCLIP (Konig et al., 2010) makes use of partial peptide digestion to appositely create truncated 
cDNA molecules, which can be converted into circular cDNA molecules. The crosslink position can be 
exactly defined since it corresponds to one nucleotide upstream of the truncation site.

Any of the CLIP methods mentioned above require numerous enzymatic steps which can bias 
the detection of true binding sites (from RNA and protein digestion, to RNA ligase-mediated adapter 
ligation, reverse transcription and amplification). Moreover, even though a crosslinking at 365 nm is 
generally considered more efficient, the efficiency of a crosslink might differ from protein to protein 
(Kishore et al., 2011). Most of the CLIP-based studies performed so far focus on splicing factors (Konig 
et al., 2010;Licatalosi et al., 2008;Yeo et al., 2009).
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2.5 Ribosome profiling
All methods discussed so far focus on measuring the abundance and characterizing the structure of a 
transcript, or defining its interaction with RNA-binding proteins. The information derived is therefore 
restricted to the composition of the transcriptome. However, transcript levels are not necessarily 
a good approximation of protein levels because the process of translation is also highly controlled, 
probably to the same extent as transcription or splicing (Plotkin, 2010). Ribosome-associated mRNA 
levels are a better proxy for protein levels than total mRNA levels (Ingolia et al., 2009).

Ribosome profiling (also called Ribo-seq) (Ingolia et al., 2009;Ingolia, 2010;Ingolia et al., 2012) 
has been developed to study the process of translation and its efficiency. This method is also 
often combined with RNA-seq to define untranslated RNAs (e.g., lncRNAs), whether all alternative 
transcripts are actively translated and to study the extent of regulation at the level of transcription 
and translation (Chapter 4).

Ribosome profiling is a shotgun method based on deep sequencing of ribosome-protected mRNA 
fragments, which allow to determine which transcript is actively translated at a specific moment 
in the cell, the rate of translation, the reading frame used and thereby the exact protein product. 
The technique is based on the observation that ribosomes bound to mRNA molecules protect ~28 
nt fragments from nuclease digestion (ribosome footprints). After halting translation, ribosome-
bound mRNAs are digested and the ribosome:mRNA complexes (monosomes) are recovered by 
ultracentrifugation on sucrose gradients or by size-exclusion chromatography. The short protected 
fragments are released from the monosomes, and converted into a cDNA library, which can be 
amplified and sequenced. Different variants of the original protocol have been developed to study 
translational control at different levels. Using drugs arresting ribosome initiation complexes, such as 
harringtonine or lactimidomycin, it is possible to detect alternative translation start sites or regulatory 
upstream open reading frames. By inhibiting ribosome translocation with cycloheximide or by thermal 
freezing, it is possible to quantify the level of translation, to identify the translational reading frame, 
potential reading frame switches, and to investigate ribosome pausing.

It has been shown that some of the methods commonly used to halt translation may lead to 
artifacts. Cycloheximide is known to cause a profound accumulation of ribosomes at the translation 
initiation codon, due do the fact that translation can still initiate while elongation is already blocked 
(Ingolia et al., 2009). Harringtonine, on the contrary, might fail in halting the ribosomes at the start 
codon (Lee et al., 2012). No disadvantages have been observed so far when halting translation using 
lactimidomycin, which currently seems to be the method of choice (Lee et al., 2012).

Table 3. Immunoprecipitation-based protocols

NET-se
q

HITS-C
LIP

CLIP-se
q

PAR-C
LIP

iC
LIP

Cross-link UV 254 nm ▲ ▲ ▲
Cross-link UV 365 nm ▲
RNA ligase-mediated adapter ligation ▲ ▲ ▲ ▲ ▲
Reverse transcription ▲ ▲ ▲ ▲ ▲
Photoreactive ribonucleoside analogs ▲
Identification of precise cross-linked site ▲ ▲

Table 3. Immunoprecipitation-based methods
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2.6 From bulk transcriptome to single cell
Large required amounts of input material represent an obstacle when studying rare and heterogeneous 
cell populations, micro-dissected tissues, subcellular fractions or simply when there is a limited 
accessible quantity of RNA from patients. Therefore, some RNA profiling methods are limited to bulk 
transcriptome analysis of large numbers of cells or pieces of tissues.

The targeted approaches, such as the immunoprecipitation-based methods and the ribosome 
profiling method, require the highest amount of input material, in the range of millions of cells. The 
suggested amount of RNA for a PAR-CliP experiment ranges between 100 and 400 million cells (Hafner 
et al., 2010a), but iCLIP experiments can be performed in <10 million cells (Konig et al., 2010), and the 
same applies for ribosome profiling experiments (Ingolia et al., 2012). None of these approaches has 
been so far optimized to analyze transcriptome from single cells or from a small population of cells.

PacBio long-read sequencing also requires a high amount of input RNA, in the range of hundreds 
of thousands of cells. Successful full-length libraries have been generated starting from ~10 µg of total 
RNA (Sharon et al., 2013) or ~1 µg of poly(A)+ RNA (Au et al., 2013).

Tag-based and shotgun methods have been extensively improved with regards to the amount 
of starting material. While the older DeepCAGE approach required ~50 µg of total RNA (Valen et 
al., 2009), the single molecule HeliScopeCAGE method requires only ~5 µg of total RNA (Kanamori-
Katayama et al., 2011) and the nanoCAGE approach has been optimized to be used with an amount of 
total RNA ranging from 10 ng to 1 µg (even though the most reliable results are obtained when using 
at least 50 ng of total RNA) (Plessy et al., 2010). This allows investigating 5′ ends of transcripts from a 
small population of cells.

The 3′ end sequencing methods generally require low amounts of input RNA. Even though some 
poly(A) sequencing methods requires between 10 and 50 µg of total RNA (Fu et al., 2011;Jan et al., 
2011;Martin et al., 2012) or between 0.5 and 1 µg of poly(A)+ RNA (Jenal et al., 2012;Shepard et al., 
2011), others, such as 3Seq (Wang et al., 2013a), the Helicos-based poly(A) seq (Chapter 2), PolyA-
seq (Derti et al., 2012) and MAPS (Fox-Walsh et al., 2011), require only between 0.5 and 3 µg of total 
RNA. The fact that there are no single-cell studies based on poly(A) sequencing does not imply their 
unfeasibility, given the fact that the sample preparation for some of these methods partially resemble 
the one for RNA-seq libraries.

RNA-seq remains at the moment the only method which has been used for whole-transcriptome 
single-cell sequencing.

One of the main challenges in single-cell RNA-seq is the ability to distinguish between biological 
variation and technical variation, which suffers from biases introduced during cDNA synthesis and 
amplification. Next to the ambiguity in the quantification, when the starting amount is lowered 
to single-cell level, it also becomes difficult to detect lowly expressed transcripts (Ramskold et al., 
2012). Recently, numerous RNA-seq methods specific for single-cell transcriptome sequencing have 
been developed to decrease technical variation (Islam et al., 2014;Ramskold et al., 2012), together 
with statistical methods to distinguish the true biological variability (Brennecke et al., 2013). A 
comparison of commercially available kits showed that single-cell RNA sequencing can detect the 
same transcriptome complexity observed with standard RNA-seq on millions of cells (Wu et al., 
2014). The advantage of single-cell RNA sequencing over standard RNA-seq on a bulk of cells relies 
in the possibility to detect expression differences which could be overlooked when looking at a 
heterogeneous population of cells, such as allele-specific expression (Deng et al., 2014). Even though 
studies have shown the possibility to detect splicing events (Ramskold et al., 2012), alternative 3′ or 
5′ ends (Islam et al., 2011;Tang et al., 2009;Tang et al., 2010), SNPs and mutations (Ramskold et al., 
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2012), in single-cell analysis further improvements are still needed to decrease the technical variation 
introduced during sample preparation, and to be able to obtain high-coverage transcriptomes. For 
bioinformatics tools specific for single-cell analysis (out of the scope of this thesis), the reader can 
refer to (Ning et al., 2014).

3. Outline and scope of this thesis
The main objective of the research in this thesis was to investigate regulatory mechanisms of gene 
expression, based on a diverse set of high-throughput RNA sequencing technologies. The first part 
of this thesis (Chapter 1) elaborated on how high-throughput RNA sequencing technologies have 
increased our understanding of the mechanisms that give rise to alternative transcripts and their 
alternative translation, and described the major RNA sequencing methods used to investigate specific 
aspects of gene expression.

In Chapter 2 and Chapter 3, the process of alternative polyadenylation is investigated. Chapter 
2 describes the role of alternative polyadenylation in the context of oculopharyngeal muscular 
dystrophy (OPMD), by demonstrating transcriptome-wide shortening of 3’ ends of mRNAs in OPMD. 
This study led to the proposition of a new role for the Poly(A) binding protein nuclear 1 (PABPN1) in 
polyadenylation site selection. Chapter 3 shows the application of cis-eQTL (expression quantitative 
trait loci) analysis based on DeepSAGE data to identify single nucleotide polymorphisms affecting the 
usage of alternative polyadenylation sites, by disrupting or forming polyadenylation signal sequences. 

In Chapter 4 mechanisms controlling protein translation are investigated in the context of skeletal 
muscles. This chapter shows the application of the ribosome footprint profiling method to investigate 
the regulation of mRNA translation in skeletal muscle cells during myogenic differentiation.

Chapter 5 shows the application of full length mRNA sequencing to investigate interdependences 
between alternative regulatory events in gene expression, such as the coupling between alternative 
transcription, alternative splicing and alternative polyadenylation. 

Finally, a general discussion in Chapter 6 present limitations in the current high-throughput RNA 
sequencing technologies and outlines other regulatory mechanisms which have not been addressed 
in Chapter 1. The chapter ends with an overview of promising RNA-based diagnostic and theraupetic 
approaches 
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ABSTRACT
The choice for a polyadenylation site determines the length of the 3′-untranslated region (3′-UTRs) 
of an mRNA. Inclusion or exclusion of regulatory sequences in the 3′-UTR may ultimately affect gene 
expression levels. Poly(A) binding protein nuclear 1 (PABPN1) is involved in polyadenylation of pre-
mRNAs. An alanine repeat expansion in PABPN1 (exp-PABPN1) causes oculopharyngeal muscular 
dystrophy (OPMD).

We hypothesized that previously observed disturbed gene expression patterns in OPMD muscles 
may have been the result of an effect of PABPN1 on alternative polyadenylation, influencing mRNA 
stability, localization and translation. A single molecule polyadenylation site sequencing method was 
developed to explore polyadenylation site usage on a genome-wide level in mice overexpressing exp-
PABPN1. We identified 2012 transcripts with altered polyadenylation site usage. In the far majority, 
more proximal alternative polyadenylation sites were used, resulting in shorter 3′-UTRs. 3′-UTR 
shortening was generally associated with increased expression. Similar changes in polyadenylation 
site usage were observed after knockdown or overexpression of expanded but not wild-type PABPN1 
in cultured myogenic cells. 

Our data indicate that PABPN1 is important for polyadenylation site selection and that reduced 
availability of functional PABPN1 in OPMD muscles results in use of alternative polyadenylation sites, 
leading to large-scale deregulation of gene expression.
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INTRODuCTION
Poly(A) binding protein nuclear 1 (PABPN1) is a ubiquitous protein involved in polyadenylation of pre-
mRNAs (1–4). An expansion mutation in the polyalanine repeat in the N-terminus of PABPN1 causes 
oculopharyngeal muscular dystrophy (OPMD) (5). OPMD is an autosomal dominant, late-onset and 
progressive muscle disorder. The expanded PABPN1 (exp-PABPN1) accumulates in insoluble nuclear 
inclusions in affected muscles of OPMD patients (6). We have previously shown that the muscle mRNA 
expression profiles of OPMD patients and animal models are widely different from controls (7,8). 
However, it is not clear if this is directly related to the function of PABPN1 in polyadenylation.

Polyadenylation of mRNAs requires a range of multi-subunit protein complexes. The cleavage and 
polyadenylation specificity factor (CPSF), the cleavage stimulation factor (CstF)n and other proteins are 
involved in the endonucleolytic cleavage at the poly(A) cleavage site (polyadenylation site) preceding 
the addition of the poly(A) tail (9). Poly(A) polymerase (PAP), PABPN1 and CPSF are involved in the 
addition of the poly(A) tail itself (10,11). The assembly of the 3′-end processing machinery is directed 
by specific RNA sequences: the polyadenylation signal (consensus sequence AAUAAA, recognized by 
CPSF), the downstream sequence element (recognized by CstF (12,13)) and the upstream sequence 
element (14–16). So far, two major roles for PABPN1 in polyadenylation have been established. 
PABPN1 increases the processivity of PAP during the elongation of the tail (10,17), and it controls 
the length of the poly(A) tail to ~250 nucleotides (1–3). Polyadenylation at different positions in the 
mRNA increases the variety of transcripts (18). Polyadenylation sites within different exons or introns 
give rise to alternative 3′-terminal exons and transcripts coding for different protein isoforms (19). 
Polyadenylation sites located at different positions in the same 3′-untranslated region (3′-UTR) give 
rise to transcript variants that differ in the length of the 3′-UTR. Shortening or lengthening of the 3′-
UTR may result in the loss or gain of regulatory elements, such as miRNA binding sites or binding sites 
for proteins that can stabilize or destabilize the transcript (20,21). This may affect mRNA stability and 
overall gene expression. Alternative polyadenylation is a common regulatory mechanism in various 
developmental and physiological processes such as the immune response (21–24), and it may also 
contribute to carcinogenesis (25).

To investigate the role of PABPN1 in alternative polyadenylation, we developed a single molecule 
sequencing approach for genome-wide detection of polyadenylation sites and studied alternative 
polyadenylation in A17.1 mice, which overexpress exp-PABPN1 in muscle (26). We further investigated 
the effects of mutation and modulation of PABPN1 expression levels on polyadenylation site selection 
in a myogenic cell model. We found that manipulation of PABPN1 expression levels lead to changes 
in polyadenylation site usage and that reduced PABPN1 levels lead to a general shortening of 3′-
UTRs. We suggest an involvement of PABPN1 in polyadenylation site selection and a novel molecular 
mechanism for OPMD, where sequestering of exp-PABPN1 in insoluble inclusions interferes with 
normal polyadenylation and disrupts gene expression patterns.
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MATERIALS AND METHODS
RNA isolation
Total RNA was extracted from quadriceps muscles of mice overexpressing the exp-PABPN1 (A17.1 
mouse model) (26) and FBV mice using RNA Bee solution (Tel-Test, Bio-Connect) after homogenization 
of the tissue with glass beads (diameter: 1.0 mm) on the BeadBeater (BioSpec) according to the 
manufacturer’s instructions. Quadriceps have been isolated from A17.1 and FVB mice aged 6 and 26 
weeks (N = 3 per group). RNA quality and concentration was determined on the Bioanalyzer (Agilent) 
with RNA 6000 Nano kit (RIN > 8).

Sample preparation and polyadenylation site single molecule sequencing 
method
Poly(A)+ RNAs were isolated from 2 μg of total RNA using oligo(dT)25 magnetic beads (Invitrogen) 
according to the manufacturer’s instructions. First strand cDNA synthesis (SuperScript III, Invitrogen) 
was performed on the beads primed by oligo(dT)25 following manufacturer’s protocol. RNase H 
(Invitrogen) treatment and second strand synthesis were carried out at 16°C for 2.5 h. dsDNA was 
digested with NlaIII (New England Biolabs (NEB)) for 1 h at 37°C. During Poly(A)+ RNAs capture, first 
and second strand cDNA synthesis, and dsDNA digestion, RNA and DNA molecules were washed as 
described in the Tag Profiling Sample Prep Kit (Illumina), using respectively GEX binding and washing 
buffers, GEX cleaning solution and GEX buffer C and D. dsDNA was heat denatured at 95°C for 
2 min in 100 μl of elution buffer (10 mM Tris–Cl, pH 8.5), and the eluted second strand cDNA was 
precipitated with 0.1 volumes of sodium acetate (3 M, ph 4.8–5.2), 1 μl of co-precipitant Pellet-Paint 
(EMD4Biosciences) and 2.5 volumes of ethanol 100% overnight at -20°C. Poly(A) tailing reaction and 
blocking reaction were performed using Terminal Transferase kit (NEB) with the following modifications. 
Poly(A) tailing reaction was carried out for 30 min at 42°C using 5 units of Terminal Transferase enzyme 
and 4 μl of 50 μM dATPs (Helicos PolyA tailing dATP) in presence of 2 μl of 2.5 mM CoCl2 and 0.2 μl of 
BSA (NEB). Blocking reaction was performed with 0.5 μl of 200 μM biotinylated ddATP (PerkinElmer) at 
37°C for 1 h, followed by 20 min at 70°C. Biotinylated ddATPs are used to measure the concentration 
of the samples by biotin–streptavidin approach (OptyHyb assay, Helicos). Seventy-five microliters of 
each sample at a concentration of 200 pM was directly hybridized to the flow cell and ssDNA was 
sequenced on the HeliScope platform according to the manufacturer’s instructions. A total of 12 
samples were sequenced in individual lanes.

Data analysis
Microarray analysis
Differential expression analysis of A17.1 and wild-type mice was described previously (8). The 
expression profiles were generated on the Illumina Mouse Sentrix-6 v2 Beadchip platform. This 
platform generally contains one probe per transcript and for genes with multiple transcript variants, 
multiple probes may be present. Only genes with at least two probes were included. The number of 
genes with at least one significantly upregulated and at least one significantly downregulated probe 
was counted (false discovery rate (FDR) < 0.05). We evaluated two control mouse datasets profiled 
on the exact same Beadchip platform using the same analysis procedure (normalization, differential 
expression and probe annotation) (27,28).



LINKING PABPN1 TO APA in OPMD

55

Sequencing analysis
During the sequencing process on the HeliScope platform some nucleotides can remain unlabelled 
and appear as deletions. Therefore, standard alignment software is not suitable for Helicos data. 
Preprocessing of raw reads, including filtering and alignment to the mouse genome (mm9), was 
performed using the basic pipeline (version 1.1.498.63) from the Helicos, described at http://open.
helicosbio.com/helisphere_user_guide/ch04s07.html. We ran the alignment with a maximum of 100 
possible mapping locations per read. A second filtering step after alignment was performed, filtering 
for the best location of each read and setting as threshold a minimum score of 4 and a minimum 
sequence length of 25 nucleotides. Downstream analysis was carried out using Custom Perl scripts to 
report the estimated number of tags in each region.

Polyadenylation site assignment and annotation
After alignment, we used the 5′-end of the reads to identify the position of the polyadenylation site 
and generated wiggle files using a Custom Perl script. Polyadenylation sites within a distance of 10 nt 
were clustered together and assembled into regions. Clustering of regions containing polyadenylation 
sites (Poly(A) clusters) was carried out in repeating cycles until every region was separate by a gap 
of at least 10 nucleotides. Regions were annotated based on the ENSEMBL GENE 63 (Sanger, UK) 
database, NCBI mouse genome build 37. Further statistical analysis focused only on reads mapping to 
the expanded 3′-UTR, up to 2 kb downstream of the annotated 3′-UTR. To this end, we used a Custom 
R script to filter out reads that were not mapping within the expanded 3′-UTR.

Differential expression analysis and functional annotation
The statistical programming language R (version R 2.12.0) was used for analysis of differential 
expression between A17.1 and control mice. The analysis was performed using the R Bioconductor 
package edgeR (29) (version 2.0.4). A negative binomial model was fitted and a common dispersion 
was estimated for all the tags prior testing procedures. Exact P-values were computed using the exact 
test and adjusted for multiple testing according to Benjamini and Hochberg method (30). Only reads 
mapping in the expanded 3′-UTR of a transcript were used for expression analysis. Poly(A) clusters 
containing just one read were filtered out prior any statistical analysis to reduce noise. KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway analysis was performed using DAVID Functional 
Annotation Tool (31).

Statistical model to identify transcripts with usage of alternative 
polyadenylation sites
We fitted a logistic generalized linear mixed model to the counts for each polyadenylation site in a 
particular 3′-UTR using the R Bioconductor package lme4 (http://cran.r-project.org/web/packages/
lme4/index.html). The counts nij for polyadenylation site j of mouse i were modeled as binomial with 
parameters Ni and pij. Here, Graphic, where k is the number of polyadenylation sites for a particular 
3′-UTR, and Ni is the total number of reads for all polyadenylation sites for that 3′-UTR in mouse i. 
The log odds of the parameter pij was modeled using fixed effects for polyadenylation site and OPMD 
status, with their interaction, combined with a random intercept and polyadenylation site effect within 
a mouse. We tested for the presence of an OPMD effect with a chi-squared likelihood ratio test, using 
as the null hypothesis the same model, but with the OPMD effect and the OPMD-polyadenylation site 
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interaction set to zero. Modeling the fraction for each polyadenylation site within the total counts of 
all polyadenylation sites of the same transcript allows assessment of changes in relative, rather than 
absolute frequency of the polyadenylation site.

Sequence motif analysis
We used DREME (32) to identify enriched sequence motifs. From the list of transcripts showing 
changes in polyadenylation site usage, we expanded the sequence of every polyadenylation site up 
to 50 nucleotides upstream (accounting for the genomic strand on which the polyadenylation site 
was located), and grouped the sequences into two categories, one containing only the most distal 
(3′) polyadenylation site and the other containing all the other more proximal (5′) polyadenylation 
sites. All sequences were masked for repeats. We first ran DREME limiting the search to a maximum 
width of six bases for each motif, according to the length of known polyadenylation signals sequences 
with the full 3′-UTR sequences as background (18). Subsequently, a discriminative motif search was 
performed using the sequences upstream the distal polyadenylation site as negative background for 
the proximal polyadenylation site and vice versa.

Cell culture
Mouse myoblasts C2C12 were grown on collagen-coated plates in Dulbecco’s modified Eagle medium 
(DMEM) supplemented with 10% fetal bovine serum, 1% glucose and 2% glutamax (Invitrogen). 
Differentiation was induced by serum deprivation for 7 days, by culturing in DMEM supplemented 
with 2% fetal bovine serum, 1% glucose and 2% glutamax. Cells were grown under 10% CO2.

Lentiviral transduction
Overexpression of the human wild-type PABPN1 and the exp-PABPN1 in C2C12 cells was achieved 
by transduction of lentiviruses expressing CFP-Ala10-PABPN1 and YFP-Ala16-PABPN1, which 
were generated from expression vectors previously described (33). For the downregulation of the 
endogenous Pabpn1, C2C12 were transduced with Short Hairpin (shRNA)-expressing lentiviruses. The 
shRNA lentiviral plasmids (pLKO.1-puro) were obtained from Sigma-Aldrich (TRCN0000102536 and 
TRCN0000000121). Lentiviral particles were produced as previously reported (34). C2C12 myoblasts 
were plated in either a 6-well (100 000 cells/well, overexpression) or 12-well (35 000 cells/well, knock-
down) plate, and transduction was carried out in the presence of polybrene (8 μg/ml) after an initial 
wash with EDTA (0.54 mM EDTA in PBS). The titers of the lentiviruses were determined by the p24 elisa 
kit (Retro-Tek, ZeptoMetrix Corp.). A virus titer in the range of 35 ng p24 per 105 cells was used for YFP-
Ala16-PABPN1, a range of 35–70 ng p24 per 105 cells for CFP-Ala10-PABPN1, and a titer of 80 ng p24 
per 105 cells was used for shRNA-TRCN0000102536 and shRNA-TRCN0000000121. Culture medium 
was replaced after 48 h by differentiation medium and RNA was extracted after 7 days from C2C12 
myotubes transduced with CFP-Ala10-PABPN1 and YFP-Ala16-PABPN1. CMV-GFP vector was used as 
negative control. The levels of CFP and YFP mRNA in transduced cells were checked by quantitative 
reverse transcriptase–polymerase chain reaction (qRT–PCR). C2C12 transduced with shRNA were 
treated with puromycin (40 ng/ml) in fresh proliferating medium after 48 h of transduction, and RNA 
was extracted after 24 h from myoblasts. Experiments were performed in three independent wells and 
repeated on different days.
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RNA isolation, reverse-transcription, qRT–PCR
RNA was extracted from C2C12 cells using the NucleoSpin RNA II kit (Macherey-Nagel) according 
to the manufacturer’s instructions. cDNA was synthesized from 1 μg of RNA using BioScript MMLV 
Reverse Transcriptase (Bioline) with 40 ng of random hexamer and oligo(dT)18 primers following 
manufacturer’s instructions. qRT–PCR was performed on the LightCycler 480 (Roche) using 2X 
SensiMix reagent (Bioline). Each measurement was performed in duplicates or triplicates. mRNA 
expression levels and PCR efficiency were determined using the LinRegPCR program (35) v.11.1 
according to the described method (36). Relative expression levels of Pabpn1 were normalized to the 
geometric mean of two housekeeping genes, Gapdh and Hprt. Ratios between short and long variants 
were then calculated. Primers for qRT–PCR were designed using Primer3Plus program. Primers for 
poly(A) site switches validation in qRT–PCR were designed in the sequences proximal to the detected 
polyadenylation site of six candidate genes (Arih1, Atp1b1, Psmd14, Psme3, Tmod1 and Vldlr). Primers 
for Pabpn1 were designed to detect both the human exogenous and mouse endogenous mRNA. 
Primer sequences are listed in Supplementary Table S1.

RNA immunoprecipitation
RNA immunoprecipitation (RIP) was performed using C2C12 myoblasts extracts. Experiments were 
performed in 6-well plates 90% confluent. Cells were trypsinized (0.05% Trypsin–EDTA (Invitrogen)) 
and cell pellets were recovered by centrifugation (10 min at 290 rcf). One-sixth of the cell pellet was 
used for total RNA extraction (input RNA) using NucleoSpin RNA II kit (Macherey-Nagel) according 
to the manufacturer’s instructions. Five-sixth of the cell pellet were resuspended in 1 ml lysis buffer 
(100 mM KCl, 5 mM MgCl2, 10 mM HEPES (pH 7.0), 0.5% NP40, 1 mM DTT, 80 U RNAse Inhibitor 
(Roche), Protease Inhibitor Cocktail (Roche)). The lysate was passed five times through a 29 G needle 
and incubated for 10 min on ice. The lysates was then clarified by centrifugation at 16 000 rcf for 
5 min at 4°C and supernatant was recovered. Protein concentration was determined using Bradford 
assay. Immunoprecipitation of PABPN1 was conducted with 700 μg of protein extract using the VHH-
3F5 antibody (37) (overnight incubation at 4°C) and immunocomplexes were isolated with Protein A 
Sepharose beads (GE Healthcare) pre-coated with sperm-DNA. Following extensive washing with lysis 
buffer, RNA was isolated from the immunocomplexes using the NucleoSpin RNA II kit according to the 
manufacturer’s instructions. To validate the RIP, a parallel immunoprecipitation was conducted with 
150 μg of protein extract for western blot analysis. The immunocomplexes were heat denatured (95°C 
for 5 min) and resolved by sodium dodecyl sulphate–polyacrylamide gel electrophoresis on a 10% 
polyacrylamide gel followed by western blot. PABPN1 was detected with rabbit anti-PABPN1 (LSBio, 
1:10 000) using goat anti-rabbit as secondary antibody (IRDye800CW, Licor,1:10 000) and Tubulin was 
used as loading control and negative control for immunoprecipitation (tubulin was detected with 
mouse monoclonal anti-tubulin, Sigma Aldrich, 1:2000, and goat anti-mouse IRDye680CW, Licor, 
1:8000). Signals were visualized with the Odyssey Infrared Imaging System (LI-Cor Biosciences).
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RESuLTS
Microarray analysis show alternative polyadenylation events in A17.1 mice
In a previous microarray expression profile study comparing A17.1 mice with FVB parental mice (8), 
we noticed that probes in the same gene frequently detect discordant changes in expression. We 
determined that for ~8% of the genes which are represented by at least two probes on the microarray, 
opposite changes in expression levels were detected (Table 1). In contrast, two disease models and 
age-matched mouse datasets, where RNA was profiled on the same microarray platform, showed 
10–20-fold fewer genes with probes showing opposite changes in expression direction (Table 1). This 
gave a first indication for frequent alternative polyadenylation events in A17.1 mice.

Polyadenylation site single molecule sequencing
The Illumina microarray platform contains only a limited number of genes where alternative 
transcripts from the same gene are interrogated by different probes and is therefore not suited for 
comprehensive analysis of alternative polyadenylation. To identify polyadenylation sites on a genome 
wide level in a largely unbiased way, we developed a polyadenylation site sequencing method based 
on the amplification-free HeliScope single molecule sequencer technology (Figure 1). To retain only 
the 3′-ends of the mRNAs and reduce internal priming events, poly(A)+ RNAs were captured on 
oligo(dT) beads, followed by first and second strand cDNA synthesis on the beads and a restriction 
enzyme digestion. Double stranded molecules were denatured, and the poly(A) stretch downstream 
of the polyadenylation site made the cDNA molecules directly amenable for sequencing on the 
HeliScope flow cell. Sequencing started directly after the poly(A) tail, and thus at the polyadenylation 
site. This method enables strand-specific mapping of alternative polyadenylation sites at single 
nucleotide resolution. In contrast to other recently developed methods for genome-wide assessment 
of alternative polyadenylation events (24,38), our method is amplification- and ligation-free, resulting 
in lower quantification bias.

Alternative polyadenylation sites in mouse transcripts
We used the single molecule sequencing method to investigate polyadenylation site usage in mouse 
muscles. Sequencing was performed on RNA isolated from quadriceps muscles of six individual A17.1 
mice and six control mice (FVB). Mice of two different age groups were combined since there were no 

Mouse model A17.1 PABPN1 
overexpression

A17.1 PABPN1 
overexpression

TNX (27) 

knockout
TBX3b (28) 

overexpression
Age (weeks) 6 26 32 8
Total number of deregulated genes 6012 4010 1111 1758

Number of deregulated genes with multiple probes 2819 1890 488 908

Number of deregulated genes with probes showing 
opposite direction in expression level 239 118 3 3

Percentage of deregulated genes with probes 
showing opposite direction in expression level 8.5 6.2 0.6 0.3

Table 1. Frequency of alternative polyadenylation events identified on microarrays
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significant differences in polyadenylation site usage between young (6 weeks) and adult (26 weeks) 
mice. On average, we obtained 24 million reads per sample. An average of ~4.8 million aligned reads 
per sample remained after filtering for low quality reads inherent to single molecule sequencing, and 
after applying a stringent threshold on the confidence with which the reads could be aligned to a 
position in the genome. Approximately 60% of those mapped to annotated 3′-UTRs or sequences up 
to 2 kb downstream of annotated 3′-UTRs (expanded 3′-UTR) and included many not yet annotated 
transcript ends. A summary of the sequencing results is shown in Supplementary Table S2. To assign 
the location of every polyadenylation site, we considered the biological heterogeneity of the cleavage 
site (18,39). Therefore, we clustered together polyadenylation sites located within a window of 10 nt 
and continued with multiple rounds of clustering until all poly(A) clusters were separated by a gap of 
at least 10 nucleotides. The median width of the clusters of polyadenylation sites was 12 nucleotides, 
suggesting considerable variation in the exact position of the polyA site (Figure 2A). The width of 
the clusters is larger in case of mitochondrial RNAs, which may be polyadenylated at nearly any 
position in the transcript (Supplementary Figure S1) probably due to the polyadenylation-dependent 
degradation mechanism of mitochondrial RNAs (24,40). After removing noise by requiring a coverage 

Figure 1. Single molecule polyadenylation site sequencing method. The procedure of the method is detailed in 
the results and material and methods sections. Red and grey boxes represent magnetic stands used to capture the 
oligo(dT) magnetic beads. Green anchors represent biotin labels, and red anchors represent fluorescent labels for 
nucleotide analogues.
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of minimum two reads per polyadenylation site, we detected a total of 32 820 polyadenylation sites. 
28 853 polyadenylation sites (88%) located in the expanded 3′-UTR of 11 529 different transcripts. Our 
analysis showed that 56% of the detected transcripts have multiple polyadenylation sites (Figure 2B).

Widespread changes in polyadenylation site usage in A17.1 mice
A17.1 mice showed large differences in the relative polyadenylation site usage compared with 
control mice. An illustrative example of a transcript showing a change in polyadenylation site usage 
is given in Figure 3A. We detected two major polyadenylation sites in the 3′-UTR of Psmd14, a distal 
site at the annotated 3′-end of the transcript and a more proximal site. The distal and the proximal 
polyadenylation sites, giving rise to variants with long or short 3′-UTRs, can be observed in both FVB 
and A17.1 mice, but at different levels. In FVB mice, the majority of the reads mapped to the distal 
polyadenylation site, while in A17.1 mice, the majority mapped to the proximal polyadenylation site. 
To analyse how widespread this type of switches in preferred polyadenylation site usage in A17.1 
mice were, we evaluated the statistical significance of differences in the relative polyadenylation site 
usage using a generalized linear mixed model on the binomial distribution of the counts for each 
polyadenylation site in a transcript. From 11 529 transcripts detected with our polyadenylation site 
sequencing method, 6506 transcripts contained at least two polyadenylation sites. Out of those, 31% 
showed significant differences (FDR < 0.05) in polyadenylation site usage between A17.1 and FVB 
mice (Supplementary Table S3). We observed a strong preference for the proximal polyadenylation 
site in A17.1 mice, because transcripts variants with proximal polyadenylation site were mainly 
upregulated and transcript variants with distal polyadenylation site were mainly downregulated 
in A17.1 mice (Figure 3B). To validate the changes in relative polyadenylation site usage observed 
by sequencing analysis, qRT–PCR was performed using primer pairs designed just upstream of the 
detected polyadenylation site. We tested a panel of six genes (Arih1, Atp1b1, Psmd14, Psme3, Tmod1 
and Vldlr), identified from the transcriptome study in the mouse model (8) and from the cross-species 
study for OPMD (7). The ratio between the proximal PCR product (representing the shorter and longer 
isoforms) and the distal PCR product (representing only the level of the longer isoforms) was elevated 
for all six genes (Figure 3C and D), confirming the shortening of 3′-UTRs in A17.1 mice observed by 
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Figure 2. (A) Width of polyadenylation site clusters. The x-axis represents the width of the cluster on a logarithmic 
scale, the y-axis represents the number of polyadenylation site-clusters. (B) Bar graph showing the number of 
polyadenylation sites detected per transcript. Only polyadenylation sites mapping to the expanded 3’-UTR, and 
covered by at least two reads are shown. Pie chart shows the percentage of transcripts containing at least two 
polyadenylation sites. 
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polyadenylation site sequencing.
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Figure 3. Altered polyadenylation site usage in A17.1 mice. (A) A screenshot of USCS Genome Browser 
displaying polyadenylation sites in Psdm14 gene. The y-axis represents the coverage of the peaks, corresponding 
to the number of reads mapping at each polyadenylation site. A control (FVB) and an A17.1 mouse are shown in 
independent traces. Below the coverage tracks, the four annotated transcripts are shown. The longest transcript 
(ENSMUST00000028278) contains a 3’-UTR of 297 nucleotides. There are two major polyadenylation sites in this 
region (indicated by arrows), a distal one (peak location chr2:61,638,431-61,638,432) at the annotated 3’-end of 
the transcript and a proximal one located 276 nucleotides upstream and just 23 nucleotides downstream of the 
stop codon (peak location chr2:61,638,155-61,638,156). (B) Volcano plots showing transcripts variants containing 
the distal polyadenylation site (left panel) or more proximal polyadenylation sites (right panel). The y-axis 
represents the -10log of the multiple testing adjusted p-values, while the x-axis represents the ratio of expression 
in A17.1 over wild-type mice on a logarithmic scale (base 2). The blue line represents a p-value threshold of 0.05. 
The outliers present in the graphs represent data points were the total counts in one of the two groups is zero. (C) 
Pabpn1 expression level in quadriceps muscles of A17.1 mice and FVB mice, as measured by qRT-PCR with primers 
measuring both endogenous and exogenous Pabpn1. (D) The ratio of proximal PCR over distal PCR products in 
A17.1 mice (black bars) and FVB mice (white bars), as measured by qRT-PCR. Values are means + standard deviation 
for n=6 mice per group (*P<0.05, **P<0.01).
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Alteration of the length of the 3′-UTR results in disturbed gene expression 
patterns
A largely deregulated gene expression pattern in A17.1 mice has already been shown using microarray 
technology (8). Our polyadenylation site sequencing method can be used to identify differentially 
expressed transcripts, because every read uniquely identifies a transcript. To investigate the impact 
of changes in relative polyadenylation site usage on transcript levels, we performed a differential 
expression analysis using the R Bioconductor package edgeR (29) on the sum of all reads mapping to 
the expanded 3′-UTR of a transcript. With this procedure, we analysed the combined expression levels 
of short and long transcripts. From a total of 11 529 transcripts included in the analysis, 3441 were 
significantly deregulated (FDR < 0.05) (Supplementary Table S4). Approximately 60% of the deregulated 
transcripts were upregulated. The proteasome and ubiquitin-mediated proteolysis pathways were the 
most significantly deregulated KEGG pathways (Supplementary Table S4), confirming our previous 
microarray-based results (7,8,41). To assess whether changes in polyadenylation site usage resulted 
in differences in transcript expression levels, we determined the overlap between deregulated 
transcripts in A17.1 mice and transcripts showing changes in relative polyadenylation site usage. Out 
of the 6506 transcripts with two or more polyadenylation sites, 2263 transcripts were differentially 
expressed between A17.1 and FVB mice (Supplementary Table S6), of which 1249 (55%) were 
upregulated. The overlap between transcripts with differential polyadenylation site usage and those 
which were upregulated is highly significant (Figure 4A and B). This suggests that shortening of 3′-
UTRs generally results in the loss of negative regulatory elements, such as miRNA binding sites, and 
higher transcript stability.

Alternative polyadenylation sites used in A17.1 mice contain primarily 
non-canonical polyadenylation signals
To obtain further insight into the mechanism leading to a preferential use of proximal polyadenylation 
sites in the A17.1 mice, we performed a sequence motif analysis to examine the sequences 50 
nucleotides upstream of the distal and proximal polyadenylation sites. Most sequences with distal 
polyadenylation site contained one of the two canonical polyadenylation signals. The frequency of 
canonical polyadenylation signals in proximal sequences was lower (Table 2, 43% vs. 83%). We then 
performed a discriminative motif analysis using DREME (32), contrasting the motifs in sequences 
located upstream of the distal or the proximal polyadenylation site directly. The use of a discriminative 
approach enables the identification of motifs, which are enriched in only one of the two subsets of 
sequences. Distal polyadenylation site were enriched for the two canonical polyadenylation signals 
(Table 3). Proximal polyadenylation sites showed very moderate enrichment for nine hexamers, 
mainly GC-rich. These results indicate that the proximal polyadenylation sites preferentially used 
in A17.1 mice are predominantly non-canonical and do not contain a strong consensus sequence. 
We also performed a motif analysis on the sequences 50 nucleotides downstream of the detected 
polyadenylation site, but did not find enriched motifs there.

PABPN1 levels affect 3′-end processing
To confirm that expression of the exp-PABPN1 alters polyadenylation site usage in muscle cells, we 
expressed the expanded human PABPN1 in C2C12 myoblasts by transduction of lentiviral particles 
containing YFP-Ala16-PABPN1. Myoblasts were then fused into myotubes. The overexpression level 
was assessed by measuring total (endogenous and exogenous) Pabpn1 mRNA levels by qRT–PCR. 
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Pabpn1 was ~4-fold overexpressed 
(Figure 5A), much lower than 
in the A17.1 mice (Figure 3C). 
Overexpression at this level did not 
affect cell differentiation or fusion, as 
assessed by the expression levels of 
the myogenic markers Myog, Tnnc1, 
Myh7 and Myf5 (Supplementary 
Figure S2). We analysed proximal and 
distal polyadenylation site usage in 
the muscle cells with the same qRT–
PCR assay as used for the A17.1 mice. 
The ratio between shorter and longer 
transcripts was significantly increased 
for five out of six tested genes (Figure 
5B). Our in vitro data therefore 
confirm the effect of overexpression 
of exp-PABPN1on polyadenylation 
site usage observed in the A17.1 
mouse model. The differences, 
however, were smaller than those 
found in the A17.1 mice, likely due to 
lower overexpression levels. We next 
addressed whether overexpression 
of wild-type PABPN1 would also 
affect alternative polyadenylation. 
C2C12 myoblasts were transduced 
with lentiviral particles expressing 
the CFP-Ala10-PABPN1 construct. 
We did not succeed in obtaining 
4-fold overexpression level of wild-
type PAPBN1. To be able to compare 
the effects of exp-PABPN1 and wild-
type PABPN1, we overexpressed 
both forms 1.5-fold (Figure 5C). At 
this low level, overexpression of exp-
PABPN1 caused significant changes 
in the length of 2 out of the 6 tested 
3′-UTRs, whereas no significant 
increases were observed when 
transducing with wild-type PABPN1 
(Figure 5D and Supplementary 
Figure S3A and B). Following 
these findings, we asked whether 
reduction of Pabpn1 expression 
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would also affect polyadenylation site usage. PABPN1 knockdown by siRNAs is known to decrease 
myoblast differentiation in vitro (1). Thus, we downregulated endogenous Pabpn1 in C2C12 myoblasts 
by lentiviral transduction with shRNAs. We used two different constructs which downregulated the 
expression of Pabpn1 to 70% and 40% of control levels (Figure 5E). Interestingly, 40% downregulation 
of Pabpn1 did not result in consistent alterations in polyadenylation site usage, whereas 70% 
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Figure 5. Modulation of PABPN1 expression levels induces changes in polyadenylation site usage in C2C12 
cells. (A) Total (endogenous and exogenous) Pabpn1 mRNA levels in C2C12 myotubes transduced with CMV-GFP 
(white) and YFP-Ala16-PABPN1 (black). (B) Ratio of proximal:distal PCR products, representing a combination of 
short and long 3’-UTRs respectively, in CMV-GFP (white) and YFP-Ala16-PABPN1 (black) transduced myotubes. 
(C) Total Pabpn1 mRNA levels in C2C12 myotubes transduced with CMV-GFP (white), YFP-Ala16-PABPN1 (black) 
and CFP-Ala10-PABPN1 (grey). (D) Relative proximal:distal ratio between YFP-Ala16-PABPN1:CMV-GFP (black) and 
CFP-Ala10-PABPN1: CMV-GFP (grey), compared to the control CMV-GFP (white). (E) Pabpn1 mRNA levels in C2C12 
myoblasts transduced with TRCN0000102536 (grey) and TRCN0000000121 (black) shRNAs targeting Pabpn1 and 
cells transduced with the control shRNA H1-Ctl (white). (F) Proximal:distal ratio for C2C12 myoblasts transduced 
with the two different sh-RNAs against Pabpn1 (grey, black) and the control shRNA H1-Ctl (white). Values are 
means + standard deviation for 3 different wells. All experiments were repeated multiple times with similar results.
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downregulation resulted in shortening of the 3′-UTRs of 4 out of 6 genes tested (Figure 5F). These 
results suggest that polyadenylation site usage is affected by PABPN1 expression levels. To support the 
notion that PABPN1 enhances the use of distal polyadenylation sites, we performed RIP experiments 
to investigate the binding abundance of transcripts with short and long 3′-UTRs to PABPN1. We 
investigated the same panel of genes previously used in Figure 5 and calculated the ratio between 
shorter and longer transcripts, comparing total RNA extracts and PABPN1 immunoprecipitates. 
Experiments were performed on C2C12 myoblasts. The proximal:distal ratio was significantly lower 
in PABPN1 immunoprecipitated-RNA compared with input RNA for five out of six genes (Figure 6A 
and B). This suggests that PABPN1 preferentially binds to transcripts with distal polyadenylation sites.

 

DISCuSSION
Alternative polyadenylation is important to fine-tune gene expression levels, but it is currently unclear 
how the choice for alternative polyadenylation sites is regulated. The choice of polyadenylation site 
may depend on the proper orchestration of cleavage and polyadenylation factors (9,22,23,42–44), 
splicing (45–47) and general transcription factors (22). In this study, we provide evidence that PABPN1 
regulates alternative polyadenylation in addition to its role in regulating poly(A) tail length (1–4). To 
study alternative polyadenylation events on a genome wide level, we developed the polyadenylation 
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site single molecule sequencing method. Our method is different from the recent SAPAS and PAS-Seq 
methods (24,38) because it is amplification and ligation free, allowing a more direct and therefore 
likely less biased, quantitative analysis of polyadenylation site usage. The noise in our data is low and 
internal priming events are rare as evident from the large majority of reads mapping to the 3′-UTR and 
having a canonical polyadenylation signal within a distance of 50 nucleotides. Moreover, our method 
has more power to detect alternative polyadenylation events than general RNA-seq technology (45), 
which usually comes with low coverage at the 3′-ends. A direct RNA sequencing method would also 
avoid a possible reverse transcription bias (48), but is not yet available for customers. This study 
detected many not yet annotated polyadenylation sites and provides an extensive catalogue of 
alternative polyadenylation events in mouse skeletal muscle. Our results showed more widespread 
alternative polyadenylation in the mouse transcriptome compared to previous studies (18,24). This 
indicates that the number of alternative polyadenylation events identified depends very much on the 
technology used and suggests that alternative polyadenylation frequencies are high in most eukaryotes 
(49). We investigated alternative polyadenylation events in A17.1 mice overexpressing exp-PABPN1. 
Our analysis showed a widespread change in relative polyadenylation site usage, with an increased 
use of proximal polyadenylation sites and thus a shortening of 3′-UTRs. Interestingly, we found that 
45% of the transcripts showing changes in polyadenylation site usage were also deregulated. We 
found an increase in expression level of transcripts with shorter 3′-UTRs, which could be a result of 
increased stability of transcripts lacking certain miRNA binding sites or other destabilizing elements. 
Combined with a reduced potential for fine tuning of gene expression due to 3′-UTR shortening, this 
may contribute to the disturbed gene expression patterns observed in OPMD animal models and 
patient muscles (7,8). Recently, Jenal et al. (50) published similar findings using the amplification-
dependent Illumina sequencing technology. We both show an increase in proximal polyadenylation 
site usage after overexpression of Exp-PABPN1 or knock down of endogenous Pabpn1. In addition 
to the results presented by Jenal et al., we directly compared the overexpression of wild-type and 
expPABPN1 in muscles cells. We demonstrated similar effects of the knockdown of endogenous Pabpn1 
and the overexpression of the expanded but not with wild-type PABPN1 in muscle cells. These results 
are in line with a reduction in the availability of functional PAPBN1 in exp-PABPN1 expressing cells 
and OPMD muscle as a consequence of the higher aggregation potential of exp-PABPN1 compared 
with its wild-type counterpart, which will drain the nucleus from soluble PABPN1 (41). Importantly, 
OPMD muscles show myogenic defects (51) which are similar to knockdown of PABPN1 in mouse cells 
(1). The exact molecular mechanism by which alteration in PABPN1 expression affects site selection 
is still not fully elucidated. Jena et al. excluded an effect of PABPN1 on the stability of long versus 
short transcripts and suggested that PABPN1 binds proximal polyadenylation signals, masking those 
sites and protecting them from cleavage. However, Jenal et al. only considered binding of PABPN1 
to proximal polyadenylation sites. Our RNA-immunoprecipitation experiments provide evidences 
for a preferential or stronger binding of PABPN1 to transcripts with distal polyadenylation sites. This 
suggests that PABPN1 enhances the 3′-end processing at the stronger, canonical sites but future 
studies with targeted mutagenesis should formally prove this. Moreover, Wahle (2) demonstrates a 
role for PABPN1 in conferring specificity to CPSF for canonical polyadenylation sites. Based on this, the 
observations in our paper, and the proven physical interaction between PABPN1 and RNA polymerase 
II (52), it may be postulated that PABPN1 and CPSF comigrate with the RNA polymerase II complex. 
PABPN1 may then subsequently restrict the site in the RNA where CPSF dissociates from the RNA 
polymerase II complex to distal, canonical polyadenylation sites. Reduced soluble PABPN1 levels 
may alter the stoichiometry of the RNA polymerase II/CPSF/PABPN1 complex, leading to premature 
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dissociation of CPSF at proximal, non-canonical poly(A) sites, resulting in general shortening of the 3′-
UTRs of transcripts. An alternative mechanism that might be considered is that lower levels of PABPN1 
directly or indirectly reduce the RNA Pol II-mediated transcriptional elongation rate, which has been 
shown to result in the preferred use of proximal poly(A) sites (53). In any case, these alternative 
polyadenylation events resulting from reduced PABPN1 levels may affect mRNA stability and partly 
explain the observed aberrant muscle gene expression patterns and muscle weakness in OPMD 
animal models and patients (7).
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ABSTRACT
Many disease-associated variants affect gene expression levels (expression quantitative trait loci, 
eQTLs) and expression profiling using next generation sequencing (NGS) technology is a powerful way 
to detect these eQTLs.

We analyzed 94 total blood samples from healthy volunteers with DeepSAGE to gain specific 
insight into how genetic variants affect the expression of genes and lengths of 3’-untranslated regions 
(3’-UTRs). We detected previously unknown cis-eQTL effects for GWAS hits in disease- and physiology-
associated traits. Apart from cis-eQTLs that are typically easily identifiable using microarrays or 
RNA-sequencing, DeepSAGE also revealed many cis-eQTLs for antisense and other non-coding 
transcripts, often in genomic regions containing retrotransposon-derived elements. We also identified 
and confirmed SNPs that affect the usage of alternative polyadenylation sites, thereby potentially 
influencing the stability of messenger RNAs (mRNA). We then combined the power of RNA-sequencing 
with DeepSAGE by performing a meta-analysis of three datasets, leading to the identification of many 
more cis-eQTLs.

Our results indicate that DeepSAGE data is useful for eQTL mapping of known and unknown 
transcripts, and for identifying SNPs that affect alternative polyadenylation. Because of the inherent 
differences between DeepSAGE and RNA-sequencing, our complementary, integrative approach leads 
to greater insight into the molecular consequences of many disease-associated variants.
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INTRODuCTION
Genome-wide association studies (GWAS) have associated genetic variants, such as single nucleotide 
polymorphisms (SNPs) and copy number variants (CNVs), with numerous diseases and complex traits. 
However, the mechanisms through which genetic variants affect disease phenotypes or physical traits 
often remain unclear. To gain insight into these mechanisms, we have combined genotype data with 
gene expression data by conducting expression quantitative trait locus (eQTL) mapping. Previously, 
the level of gene expression was primarily assessed using oligonucleotide microarrays, which was a 
powerful method to profile the transcriptome [1–6]. But recently, high-throughput next generation 
sequencing (NGS) has become available, which allows quantification of expression levels by counting 
mRNA fragments (RNA-seq) or sequence tags (including serial analysis of gene expression (SAGE), cap 
analysis of gene expression (CAGE), and massively parallel signature sequencing (MPSS)) [7]. 

To date, two NGS eQTL studies have been published [8,9], both of which used RNA-seq. Although 
RNA-seq is a versatile technique, the coverage in the ultimate 3’-end is usually lower due to the 
fragmentation and random hexamer priming steps involved in the sample preparation [10] (Figure 
1B). DeepSAGE technology [11,12], however, concentrates on capturing information on the 3’ end of 
transcripts. In DeepSAGE, enzymatic cDNA digestions generate one specific tag of 17 nucleotides at 
the most 3’-CATG sequence of each transcript (Figure 1A). The majority of these 21-mer tags (‘CATG’ 
+ 17 nucleotides) can be uniquely mapped to the genome to identify the genes expressed.

There are several features of NGS-based expression quantification methods that are especially 
important for eQTL mapping. While oligonucleotide arrays target a predefined set of transcripts or 
exons, both RNA-seq and DeepSAGE are capable of detecting novel and unannotated transcripts. 
If such a novel gene later turns out to be cis-regulated by trait- or disease-associated SNPs, it can 
represent an interesting causal candidate gene for the trait or disease under investigation. RNA-seq is 
extremely versatile, as it can quantify the expression of alternative transcripts, which makes it possible 
to detect SNPs regulating the choice between alternative transcripts. DeepSAGE, however, is generally 
not suited to detecting alternative splicing because of the 3’ bias of the tag locations [13]. Because 
only sequence data is generated for these short tags, the read depth per tag is generally much greater 
than with RNA-seq, permitting accurate quantification of these tags [11,14]. Thus, this 3’ emphasis 
makes DeepSAGE suitable for transcript variants that differ in 3’-UTRs and also for detecting alternative 
polyadenylation events, a widespread phenomenon that generates variation in 3’-UTR length [15,16]. 
Shortening or lengthening of the 3’-UTR may result in the loss or gain of regulatory elements, such as 
miRNA binding sites or binding sites for proteins that can stabilize or destabilize the transcript [17,18]. 
Several SNPs that influence the choice for alternative polyadenylation sites have been detected by 
RNA-seq on a small number of individuals [19]. Here, we analyzed this phenomenon in more depth by 
performing cis-eQTL mapping on DeepSAGE data from total blood samples of 94 individuals.
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RESuLTS
DeepSAGE dataset
For cis-eQTL mapping, we used DeepSAGE sequencing of 21 bp tags (16 ± 7 million tags) from total 
blood samples from 94 healthy, unrelated individuals from the Netherlands Twin Register (NTR) and 
the Netherlands Study of Depression and Anxiety (NESDA) [20]. Sequence reads were mapped to the 
reference genome hg19 using Bowtie [21] and assigned to transcripts. We mapped 85 ± 5% of tags to 
the genome and found that 77 ± 9% of these mapped to exonic regions. Although 66 ± 18% of these 
reads mapped to hemoglobin-alpha or –beta (HBA1, HBA2, HBB) genes, we were left with sufficient 
sequencing depth to detect a total of 9,562 genes at a threshold of at least two tags per million. 

Cis-eQTL mapping
Once reads had been mapped, we quantified the expression levels of sequenced tags and performed 
cis-eQTL mapping, evaluating only those combinations of SNPs and tags that were located within a 
genomic distance of 250 kb, while using a Spearman rank correlation test (tag-level false discovery 
rate (FDR) controlled at 0.05). We identified 540 unique cis-regulated tags. To subsequently increase 
the statistical power of eQTL detection, we used principal component analysis (PCA) to correct for 
technical and known and unknown biological confounders. The first principal components (PC) 
generally capture a high percentage of the expression variation, and these PCs mostly reflect technical, 
physiological and environmental variability. Removing this variation allows for the detection of more 
eQTLs [6,22,23]. In our data the first principal component significantly correlated with sample GC 
content, and principal components 7 and 11 correlated with various blood cell count parameters (for 
details see Text S1, Figures S1 and S2). When using the PC corrected data, we observed an almost two-
fold increase in the number of significant cis-eQTLs (1,011 unique cis-regulated tags, corresponding to 
896 unique cis-regulated genes at tag-level FDR < 0.05). The list of detected eQTLs is given in Table S1.

Comparison with microarray results
We then compared the DeepSAGE cis-eQTLs with cis-eQTLs that we had identified using the Affymetrix 
HG-U219 expression microarrays on the same 94 samples. In that analysis we detected cis-eQTLs for 
only 274 genes (FDR < 0.05), only a third of what we identified using DeepSAGE. We observed that 
this substantial difference could mostly be explained by the fact that the cis-eQTLs detected using 
Affymetrix microarrays nearly always reflected genes that are highly expressed in blood, whereas for 
DeepSAGE the detected cis-eQTL genes had expression levels that could be much lower (Figure 2). 
Although we only concentrated on tags that were expressed, there was no clear relationship between 
the mean tag level expression and the probability of showing a significant cis-eQTL. As such, DeepSAGE 
is much more capable of identifying cis-eQTLs for genes showing low expression than conventional 
microarrays.  It was therefore not a surprise that only 39% of the identified DeepSAGE cis-eQTLs could 
also be significantly detected in the microarray-based dataset (with identical allelic direction) (Figure 
S3). Indeed, the cis-eQTLs that were not replicated in the microarray-based dataset generally had a 
much lower expression than the replicating cis-eQTLs (Wilcoxon Mann Whitney P < 2 ×10-3). And 
vice versa, we could significantly replicate 75% of the detected Affymetrix cis-eQTLs with the same 
allelic direction in the DeepSAGE data (Figure S3), indicating that DeepSAGE shows overlapping results 
with array-based data. At the same time, this provides insight into the regulation of gene expression 
by SNPs at many more loci. We estimated the reduction that could be made in the sample size of 
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the sequencing-based dataset to get the same number of cis-regulated genes as in microarray-based 
data. We observed that the DeepSAGE sample size could be reduced by almost half (to 55 samples) to 
get the same number of significant cis-regulated genes as identified in the microarray analysis of the 

Figure 1. Comparison of typical DeepSAGE 
and RNA-seq data generation steps.                   
A) DeepSAGE data preparation consists of the 
following basic steps: after RNA extraction the 
polyadenylated mRNA fraction is captured 
with oligo-dT beads. While RNA is still bound 
to the beads, double-stranded cDNA synthesis 
is performed. Next, cDNA is digested by NlaIII 
restriction enzyme (an anchoring enzyme), 
which cuts the DNA at CATG recognition 
sequences, leaving only the fragment with 
the most distal (3’) CATG site associated with 
the beads. Subsequently, a GEX adapter is 
attached to the 5’ end. This adapter contains a 
recognition sequence for the MmeI restriction 
enzyme that cuts the sequence 17 bp 
downstream of CATG site. After ligation of a 
second GEX adapter, fragments containing 21 
bp tags (17 unknown nucleotides + CATG) are 
ready for sequencing. B) A typical protocol for 
RNA-seq data preparation has the following 
steps: after RNA extraction the polyadenylated 
mRNA fraction is captured with oligo-dT 
beads. Captured RNA is fragmented and for 
each fragment cDNA synthesis is performed 
using random hexamer primers. Sequencing 
adapters are then ligated to each fragment. 
This is followed by size selection of the DNA 
fragments and PCR amplification. Then one 
end of the fragment is sequenced (single-
end sequencing) or both ends (paired-end 
sequencing).
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94 samples. As such, these results clearly indicate that DeepSAGE has higher statistical power than 
microarrays.

Cis-eQTL effects on non-coding genes
While most microarray platforms interrogate mainly the protein-coding part of the transcriptome, 
NGS-based expression profiling will detect the majority of all expressed transcripts. Indeed, we 
detected eQTLs for known, but non-protein coding, genes: 8 antisense genes and 31 lincRNAs (Figure 
3). We also expected to find a number of cis-eQTL effects on previously unknown transcripts. Of the 
1,011 tags with a significant cis-eQTL effect, 230 did not map to known transcripts. Many of these tags 
map to retrotransposon-derived elements in the genome, which are known to be a source of novel 
exons [24]: 73 DeepSAGE tags with significant cis-eQTLs that did not map to annotated genes mapped 
to 72 unique LINE, SINE and LTR elements in the genome (Table 1). 

New regulatory roles for disease- and trait-associated SNPs
We checked how many of our cis-acting SNPs were associated with complex traits or complex diseases 
(‘trait-associated SNPs’), as published in the Catalog of Published Genome-Wide Association Studies. 
104 of the 6,446 unique trait-associated SNPs were significant cis-eQTLs in our data (Table S2). We 
were interested to determine whether the DeepSAGE data had revealed cis-eQTL effects for trait-
associated SNPs that had been missed when using conventional arrays on much larger cohorts. We 
therefore compared our results to a re-analysis of a large-scale, array-based cis-eQTL mapping that 
we had conducted in whole peripheral blood samples when using a much larger sample size of 1,469 
(using Illumina oligonucleotide arrays [6]). We identified 13 trait-associated SNPs that did show a 
significant cis-eQTL effect in DeepSAGE eQTL mapping, but which did not show a cis-eQTL effect in 
the large, array-based, blood dataset (Table 2). This indicates that many trait-associated SNPs have 
regulatory effects that will, so far, likely have been missed using microarrays. While some of the tags 
map in the exons of annotated transcripts, we also found three cis-regulated tags in introns (sense 
direction), two tags antisense to the known transcripts, and two tags outside the annotated transcripts. 
These results indicate that several trait-associated SNPs affect the expression of previously unknown 
transcripts, adding functional relevance to SNPs and transcripts that are so far without annotation. 
Some newly discovered eQTLs provide novel insights into genome-wide association hits for diseases 
or physiological traits, e.g. SNP rs216345, which has been associated with bipolar disorder. While it is 
located just downstream of PRSS3, we now saw that it also affects the expression of UBE2R2. There 
are many links between the ubiquitin system and bipolar disorder reported in the literature (e.g. 
[25,26]), making UBE2R2 a more plausible candidate gene for bipolar disorder than PRSS3.

Genes with multiple SAGE tags and opposite allelic direction
In DeepSAGE, 21-bp-long cDNA fragments begin at the ‘CATG’ closest to the polyadenylation site 
(Figure 1). These individual ‘tags’ represent transcripts sharing the same polyadenylation site. If a 
SNP increases the abundance of one tag of a gene and decreases the abundance of another tag of 
the same gene, this indicates that the SNP is acting like a switch between transcripts with different 
3’-UTRs or between alternative polyadenylation sites [19] (Figure 4). Twelve genes with highly 
significant cis-eQTLs (p-value < 10-7) contained tags that were regulated in opposite directions (Table 
3). Most of the tags regulated in opposite direction could be explained by switches in alternative 
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polyadenylation sites, as the tags were observed in the same last exon. The effect on alternative 
polyadenylation in IRF5 has been found before [19,27] and was also validated in our cohort by RT-
qPCR with primers in the proximal and distal parts of the 3’-UTR (Figure 5). As a further confirmation 
of the observed switches in using polyadenylation sites, we tested genotype-dependent alternative 
polyadenylation in two other RNA-seq datasets [8,9]. In these datasets, we confirmed the effect of 
two cis-regulating SNPs on THEM4 and F11R. However, we could not confirm the effect of other 
SNPs on targets validated experimentally, including IRF5. This shows the limitation of RNA-seq data 
in  detecting alternative polyadenylation events, likely due to limited and unequal coverage of the 
3’-UTR. For only two genes, OAS1 (also reported earlier [28]) and RP11-493L12.2, the observed 
opposite allelic effect originated from transcripts with different last exons, likely due to alternative 
splicing. As we hasve identified several SNPs that affect alternative polyadenylation, we subsequently 
used a more permissive strategy, which required that, for a given SNP, only one eQTL tag should 
pass the FDR < 0.05 significance threshold while the other tag could be less significant. However, for 
such SNP-tag pairs, we then tested whether the allelic directions were opposite and if the difference 
between correlation coefficients was significant. With a differential correlation significance p-value 
threshold of 10-7, we detected 41 unique genes showing regulation in opposite directions (Table 
S3). Of these, 23 (56%) showed opposite regulation of two tags in the same annotated 3’-UTR and 
a further 7 genes (17%) showed opposite regulation of tags in the same exons, both indicative of 
a switch in polyadenylation sites. Of these we picked HPS1, and validated a genotype-determined 
switch in preferred polyadenylation site usage by RT-qPCR analysis (Figure 5), indicating that the 
more permissive list also holds genuine changes in polyadenylation sites. The remaining 11 genes 
showed significant genotype-determined switches in expression of alternative transcripts not sharing 
the final exon. Thus, switches between shorter and longer 3’-UTRs occur more frequently than 
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Figure 4. The number of cis-regulated 
tags per gene. The percentages of 
cis-regulated tags mapping into the 
same gene are indicated (781 genes 
overall). For nearly half of the genes 
(48%) only one tag shows an eQTL 
effect. If multiple tags map within the 
same gene, only one eQTL tag should 
pass the FDR < 0.05 significance 
threshold while the other tag could 
be less significant. For these eQTLs the 
allelic direction is shown: same allelic 
direction (multiple tags within the same 
gene are cis-regulated by a SNP in the 

same direction), significantly opposite allelic direction (multiple 
tags within the same gene are cis-regulated by a SNP but with 
opposite directions and the difference between the correlation 
coefficients is significant), or opposite allelic direction but not 
significant (if the difference between correlation coefficients is 
not significant).
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switches between transcripts with different 3’-UTRs.  To check whether such results appeared by 
chance, we took an equal number of top hits from a permuted eQTL run (shuffling the phenotype 
labels of the expression data, thus breaking the relationship between genotype and expression, but 
retaining linkage disequilibrium (LD) structure and structure in the expression data) and performed 
the same analysis as above (assessing an equal number of top eQTLs from the permuted analysis 
as we had investigated in the real analysis). Using the differential correlation significance threshold 
of 10-7 and conducting this permutation analysis ten times, we did not find any SNP that affected 
two tags in the same gene in a significantly different way, indicating this method is robust. Since 
the eQTL SNPs are usually in strong LD with multiple SNPs, it is difficult to conclude whether a SNP 
is causal or which SNP is the likely causal variant. To identify the likely causal variant, we assessed 
whether any of these SNPs caused changes in polyadenylation site usage. A direct effect on alternative 
polyadenylation can be explained by a change in the polyadenylation site (corresponding to the 
cleavage site) or in the polyadenylation signal (a six-nucleotide motif located between 10–30 bases 
upstream of the cleavage site). We searched for likely causative SNPs in linkage disequilibrium with 
the polyA-QTL SNP (R2 ≥ 0.8). We did not find any strong evidence for SNPs influencing the cleavage 
site and focused on cis-regulating SNPs located within polyadenylation signals. Considering the length 
and the motif of canonical and non-canonical polyadenylation signals [15], we performed a motif 
analysis in the sequence surrounding each cis-regulating SNP. We identified five SNPs that likely affect 
polyadenylation because there was a change in the polyadenylation signal (Table 4). As previously 
shown, rs10954213 causes the formation of a stronger polyadenylation signal in IRF5. Similar changes 
from non-canonical to stronger, canonical polyadenylation signals were observed for rs1062827 in 
F11R and rs6598 in GIMAP5. Moreover, rs12934747 creates a new canonical AATAAA polyadenylation 
signal in LPCAT2. The presence of this alternative polyadenylation signal at the beginning of the 3’-
UTR leads to a decrease in transcripts containing the full length 3’-UTR, as observed by DeepSAGE 
(Figure 6). An opposite effect is observed for rs7063 in the ultimate 3’-end of the ERAP1 gene, 
where the SNP causes the disruption of the strong canonical motif, and results in the use of a more 
proximal polyadenylation signal. Unfortunately we were not able to identify likely causative SNPs for 
each of these eQTLs. This could have several reasons: we imposed strict thresholds (R2 ≥ 0.8) on 
the LD between the detected cis-eQTLs and the putative causative SNPs; by imputing to the 1000 
genomes dataset we may have missed causative SNPs unique to the Dutch population; and the list of 
experimentally validated polyadenylation sites is not exhaustive, because their detection depends on 
the expression level and cell type analyzed.  Seven of the SNPs affecting polyadenylation are reported 
in the GWAS catalog as associated with diseases (Table S3), including rs2188962 and rs12521868, 
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which are associated with Crohn’s disease. We found that these SNPs were associated with a switch 
in the polyadenlyation site of IRF1. This may reinforce previous evidence that IRF1 is the gene in the 
IBD5 locus responsible for its association with Crohn’s disease [29]. IRF1 is a family member of the 
IRF5 gene. Thus, in the family of interferon regulatory factors, we found two members with genetic 
regulation of alternative polyadenylation sites, likely explaining susceptibility for Crohn’s disease and 
systemic lupus erythematosus, respectively. Another example is rs3194051, located in the IL7R gene. 
This SNP was not found in the analysis described above since it affects the expression of a tag on 
the same strand, downstream of IL7R in a LINE element (Table 2). However, this tag may represent 
an alternative 3’-UTR for IL7R. The SNP is associated with ulcerative colitis and IL7R may be another 
example of a gene in the inflammatory response pathway demonstrating alternative polyadenylation.

Meta-analysis with RNA-seq data
To increase the statistical power to detect associations of SNPs with gene expression, we performed 
a first-of-its-kind eQTL mapping meta-analysis, combining DeepSAGE data with two published RNA-
seq datasets. We used paired-end sequencing of mRNA derived from lymphoblastoid cell lines from 
HapMap individuals of European origin [8] and 35 and 46 bp single-end sequencing of mRNA derived 
from lymphoblastoid cell lines from HapMap individuals of Yoruba origin [9]. Sequence reads were 
mapped to the reference genome hg19 using Tophat [30] and assigned to transcripts. A consistently 
high percentage of reads (86-87% of aligned reads) mapped to exonic regions (Table 5). We first 
performed eQTL mapping separately in all three datasets (Table 6), summarizing expression on the 
transcript level to permit comparisons between the datasets. The numbers of cis-regulated genes 
detected in transcript-wise analysis was lower than in tag-wise analysis, possibly because we missed 
resolution on alternative splicing- and alternative polyadenylation events. Again, PC correction greatly 
improved the number of cis-eQTLs detected (Table 6). We applied PC correction to the individual 
datasets. As for the DeepSAGE analysis, the first PC correlated strongly with the mean GC-percentage 
in the two RNA-seq datasets (Figure S1). We then assessed the robustness of the identified cis-eQTLs: 
we checked whether those in one dataset could be significantly replicated in the other two datasets. 
We observed that in each of the RNA-seq datasets approximately one-third of cis-eQTLs could be 
replicated in the other dataset (Table S4). The overlap between RNA-seq and DeepSAGE was smaller, 
reflecting differences in the two technologies, in cell types and in populations. In each comparison, 
we observed a very high concordance in the allelic direction of cis-eQTLs that could be replicated in 
another dataset. We also looked at the replication of RNA-seq eQTLs in corresponding micro-array-
based datasets. 80-88% of such eQTLs could be replicated in microarray data (Table S5). As we could 
cross-replicate many cis-eQTLs, we decided to conduct a meta-analysis to increase the statistical 
power. We calculated joint p-values using a weighted Z-score method. The number of cis-regulated 
genes then increased to 1,207 unique genes (Table 6) (a list of detected eQTLs is given in Table S6), 
indicating that a meta-analysis of different types of sequencing-based eQTL datasets reveals many 
more cis-regulated genes than the individual analyses. For our meta-analysis results we determined 
the number of disease- and trait-associated SNPs using the Catalog of Published Genome-Wide 
Association Studies in the same way as for the DeepSAGE dataset. 107 of the 6,446 unique trait-
associated SNPs showed a significant cis-eQTL effect in the meta-analysis. The overlap with 104 trait-
associated SNPs detected in tag-wise DeepSAGE eQTL mapping was 37, indicating that the DeepSAGE  
revealed other trait-associated cis-eQTLs than a meta-analysis on the level of whole transcripts. 21 of 
the 107 SNPs showed a significant cis-eQTL effect in the sequencing-based meta-analysis, but did not 
show a cis-eQTL effect in the large array-based blood dataset (Table 7).
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DISCuSSION
We have described the results from cis-eQTL mapping on DeepSAGE sequencing, a technique that is 
different from RNA-seq since it mainly targets the 3’-end of transcripts. We identified 1,011 unique 
cis-regulated tags (significant at tag-level FDR < 0.05). We performed eQTL mapping on the microarray 
expression data of the same samples and the number of detected cis-eQTLs was much smaller than 
in the DeepSAGE data, indicating the higher power of DeepSAGE in eQTL mapping. Moreover, for 
220 of the cis-eQTLs SNPs detected by DeepSAGE we did not detect a significant cis-eQTL in a much 
larger microarray-based study in 1,469 whole peripheral blood samples [6]. 13 of these SNPs were 
reported as disease- or trait-associated in the GWAS catalog. We observed that the number of cis-
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eQTLs detected in microarray data was higher in highly expressed genes, whereas for DeepSAGE the 
detected cis-eQTL genes had expression levels that could be much lower (Figure 2). This means that 
DeepSAGE is much better at identifying cis-eQTLs for genes showing low expression than conventional 
microarrays. This is because gene expression quantification using microarrays is more difficult as there 
is always a background signal present that needs to be accounted for. This is not the case for next-
generation sequencing: although stochastic variation plays a major role in determining what RNA 
molecules will eventually be sequenced (especially for transcripts of low abundance), detection of 
such an RNA molecule is direct proof that it is being expressed.  Clearly, DeepSAGE can capture events 
that are likely to be missed by RNA-seq and conventional microarrays. It is not surprising, due to the 
different emphasis of DeepSAGE, that we could only replicate 39% of the DeepSAGE cis-eQTLs in the 
microarray data with a consistent allelic direction (Figure S3). The limited overlap between DeepSAGE- 
and microarray-based eQTL studies may be partly explained by the fixed thresholds applied, the 
interrogation of different transcript variants, and by the smaller dynamic range of microarrays. In 
addition, we found that more highly expressed genes were more often replicated than lower expressed 
ones. Moreover, DeepSAGE allows for the detection of non-coding and novel transcripts not present 
on the microarrays. We showed that genetic variation affects the expression of a substantial number 
of lincRNAs and antisense genes, some of which have been linked to clinical traits. This suggests that 
clinical traits may be modified by expression of antisense transcripts or alternative 3’-UTR selection, 
which are not separately quantified in the microarray-based studies or in most RNA-seq, where 
standard protocols are still not strand-specific. We also noticed a relatively high proportion of eQTLs 
with DeepSAGE tags mapping in SINE, LINE and LTR elements. These transposable elements contribute 
to the evolution and inter-individual variation of the human genome and to the diversification of the 
transcriptome, the latter facilitated by their inherent potential to be transcribed and the presence of 
cryptic splice acceptor and donor sites [24,31,32]. Some of the DeepSAGE tags we identified may be 
located in entirely new transcripts, but the majority is likely to represent alternative exons or 3’-UTRs 
of known transcripts, in accordance with the observed preferential location in introns or near genes. 
Associations with transcripts and transcript variants not yet annotated may help to discover a function 
for these transcripts, as they are likely to play a role in the physiological and clinical traits associated 
with the SNP. Moreover, this will complement our knowledge of the pathways associated with these 
physiological and clinical traits.

In our study, we have demonstrated that genotype-dependent switches in the preference of 
alternative polyadenylation sites are common. One of these events has been well characterized: 
SNP rs10954213 creates an alternative polyadenylation site in IRF5, shortens the 3’-UTR, stabilizes 
the mRNA, and increases IRF5 expression, explaining its genetic association with systemic lupus 
erythematosus [19,27]. We have now discovered more examples where SNPs create or disrupt 
polyadenylation motifs. Amongst others, we identified a new, similar, genotype-dependent switch 
in preferred polyadenylation site for family member IRF1, with a probable link to Crohn’s disease. 
Alternative polyadenylation associated with shortening of 3’-UTRs is a prominent event in the 
activation of immune cells [18]. Thus, genetically determined use of a proximal polyadenylation 
sites may predispose to inflammatory disorders such as Crohn’s disease. The opposite correlations 
that we observed for most genes were slightly less pronounced than for IRF5. This indicates that 
mechanisms other than the creation or disruption of canonical polyadenylation motifs may also play 
a role. For example, SNPs in miRNA or protein-binding sites may specifically affect the stability of the 
transcript variant with the long 3’-UTR.  We subsequently conducted a cis-eQTL meta-analysis on 
the heterogeneous types of data using methods extended from those we developed for microarray-
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based eQTL meta-analysis [6]. We identified 1,207 unique cis-regulated genes. This number is 
substantially higher than in each of the datasets separately and indicates that different protocols 
for digital gene expression generally deliver consistent results. Nevertheless, the overlap at a fixed 
FDR of 0.05 is rather small, in particular between DeepSAGE and RNA-seq data. While this is partly 
attributable to using a strong threshold, there are other important reasons: firstly, the RNA-seq and 
DeepSAGE technologies frequently interrogate different transcript variants. Secondly, the RNA-seq 
studies were done on lymphoblastoid cell lines (LCLs) while the DeepSAGE study was on total blood, 
and some cis-eQTLs may be tissue-specific [33,34]. Finally, the DeepSAGE technology is strand-
specific but the RNA-seq technologies evaluated here are not: where DeepSAGE will evaluate the 
expression of sense and antisense transcripts separately, RNA-seq will sum them. These reasons could 

Table 3. Cis-regulating SNPs significantly* affecting multiple tags of the same gene in opposite directions.

Table 4. SNPs that likely affect polyadenylation due to a change in the polyadenylation signal.
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explain why the percentage of RNA-seq-derived eQTLs that can be replicated by DeepSAGE is higher 
than the percentage of DeepSAGE-derived eQTLs that can be replicated by RNA-seq. We conclude 
that DeepSAGE technology is useful to determine cis-eQTLs, as it is able to quantify the expression of 
novel transcripts, and to detect alternative polyadenylation effects and alternative 3’-UTR selection. 
It is complementary to other sequencing-based approaches, as they each reveal slightly different 
regulatory effects of genetic variants. Different sequencing-based eQTL analyses generally deliver 
consistent results, allowing for meta-analyses across different technologies. Future eQTL mapping 
studies based on DeepSAGE and other next generation sequencing strategies, using larger cohorts 
and different techniques, will likely reveal a more comprehensive picture of how far genetic variation 
affects the expression of protein-coding genes and non-coding RNAs.

 

MATERIALS AND METHODS
Ethics statement
The medical ethical committee of the VUMC, Amsterdam, the Netherlands, approved the collection 
and analysis of material blood, DNA and RNA from the 94 participants from the Netherlands Twin 
Registry (NTR) and the Netherlands Study of Depression and Anxiety (NESDA).

NTR-NESDA dataset

Table 7. Trait-associated SNPs detected in the sequencing-based transcript-wise meta-analysis, but not 
detected in array-based eQTL dataset of 1,469 peripheral blood samples.
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We analyzed 21 bp DeepSAGE data from total blood RNA of 94 unrelated individuals who participated 
in NTR or NESDA. RNA was isolated using PaxGene tubes [20,35,36]. DeepSAGE sample preparation 
protocols, and alignment approaches were described in [37]. One sample was run on one lane of the 
Illumina GAII instrument. Data are available in ArrayExpress under accession number E-MTAB-1181. 
The NTR-NESDA data was imputed using Beagle v3.1.0, with HapMap2 release 24 as a reference.

Tag mapping and expression estimation
Tags from DeepSAGE sequencing were aligned to the NCBI build 37 reference genome using Bowtie 
v. 0.12.7 allowing for a maximum of 1 mismatch and a maximum of 2 possible alignments (-n 1 -k 
1 -m 2 --best --strata options). The expression values were both quantified on an individual tag and 
transcript level. For the tag-wise analysis, the total number of occurrences of each unique tag in each 
sample was counted. We only included tags that were present in >90% of samples. Tags with SNPs 
in the CATG recognition sequence (according to dbSNPv135) and the transcripts containing those 
tags were removed before eQTL analysis, since these SNPs can affect the position of the SAGE tag 
in the transcript. For the transcript-wise analysis, the tag counts for tags overlapping the exons of a 
transcript by at least half of the tag length were summed.  Coordinates of LINE, SINE, LTR elements 
were derived from UCSC’s RepeatMasker track (update: 2009-04-24).

GC content bias estimation
To calculate the GC content per individual for DeepSAGE data, GC frequencies for all mapped tags 
were summed after excluding the twenty most abundant tags, since their high abundance would give 
biased estimates. 

Cis-eQTL mapping and correction for confounding effects through principal 
component analysis
Before eQTL mapping, transcript and tag expression values were quantile normalized. To perform cis-
eQTL mapping, association of SNPs with the expression levels of tags or transcripts within a distance 
of 250 kb (as this is the average size of linkage regions) of the midpoint of the transcript or tag were 
tested with a non-parametric Spearman’s rank correlation. Multiple testing correction was performed, 
controlling the false discovery rate (FDR) at 0.05. To determine the FDR, we created a null distribution 
by repeating the cis-eQTL analysis after permuting the sample labels 10 times [38]. We argue that 
gene expression levels from NGS-based datasets are, like micro-array based data, derived from 
genetic, technical and environmental effects. As such, compensating for these non-genetic effects 
would increase the power to detect cis-eQTL effects. To mitigate the effects of non-genetic sources 
of variability, we first log2 transformed the data and centered and scaled each tag, and subsequently 
applied PCA on the sample correlation matrix. We then used the first PCs as covariates, and re-did the 
non-parametric cis-eQTL mapping on the residual expression data (using the procedure described by 
[6]).

Validation of genotype-dependent alternative polyadenylation in RNA-seq 
datasets
The genomic coordinates of the 3’-UTR, obtained from Refseq Genes, were split into two separate 
regions (distal and proximal 3’-UTRs) according to the position of the DeepSAGE tags with opposite 
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directions, the position of LongSAGE tags from CGAP, and the position of reported and predicted 
polyadenylation sites from polyA_DB database. To calculate the coverage in proximal and distal 
regions in RNA-seq datasets, we created a coverage histogram from each .bam alignment file using 
coverageBed tool from BEDTools package (version 2.17.0) [39]. Subsequently, a custom Python script 
was used to convert the histogram in number of nucleotides mapped per region, normalized by the 
length of the region. The ratio between the number of counts in the proximal region and the distal 
region was then calculated. 

qPCR validation of alternative polyadenylation
Expression of short and long variants of HPS1 and IRF5 was quantified by qRT-PCR, which was performed 
on a subset of RNA samples used for the DeepSAGE sequencing. cDNA was synthesized from 400 ng 
of total RNA using BioScript MMLV Reverse Transcriptase (Bioline) with 40 ng of random hexamer 
and oligo(dT)18 primers following manufacturer’s instructions (for the list of primer sequences 
see Table S7). Primers specific to short or long variants of HPS1 were designed using Primer3Plus 
program, primers for IRF5 were designed as previously described [40]. qRT-PCR was performed on 
the LightCycler 480 (Roche) using 2X SensiMix reagent (Bioline). 45 cycles of two-step PCR were 
performed for HPS1, and 55 cycles of three-step PCR (95°C for 15 s, 48°C for 15 s, and 60°C for 40 s) 
for IRF5. Each measurement was performed in duplicates. PCR efficiency was determined using the 
LinRegPCR program [41] v.11.1 according to the described method [42]. Ratios between distal and 
proximal PCR products were then calculated and significance was tested performing a T-test.

Identifying causal SNPs affecting polyadenylation
We obtained all the proxy SNPs for all SNPs identified as cis-regulating the choice of polyadenylation 
site. To do this we used bi-allelic SNPs that pass QC from the 1000G European panel (v3.20101123) 
and took all SNPs that were in linkage disequilibrium with the query SNPs (R2 ≥ 0.8, distance between 
SNPs within 250 kb). From this list of cis-regulating SNPs in linkage disequilibrium, we kept only 
SNPs, which were located in the cis-regulated genes. The filtering was performed by intersecting 
.bed files containing SNPs coordinates and coordinates of cis-regulated genes from RefSeq database, 
using table browser tool in UCSC genome browser and the overlap intervals tool in Galaxy (version 
1.0.0). Intersection of SNPs with validated and predicted polyadenylation sites was performed using 
annotation in the PolyA-DB database (PolyA_DB 1 and PolyA_SVM) on UCSC (table browser tool). 
Detection of SNPs within polyadenylation signals was performed by extracting the strand specific 
sequence five nucleotide upstream and downstream each SNP (using table browser tool in UCSC) 
and performing a motif search using custom Perl script. Canonical and non-canonical polyA motifs 
searched were AATAAA, ATTAAA, TATAAA, AGTAAA, AAGAAA, AATATA, AATACA, CATAAA, GATAA, 
AATGAA, TTTAAA, ACTAAA, and AATAGA. For every SNP located in a putative polyadenylation signal 
motif, the distance to validated and predicted polyadenylation sites from PolyA-DB was calculated. 
Only motifs within a distance of 30 nucleotides from a polyadenylation site were considered true 
polyadenylation signals. Newly formed polyadenylation signals were detected by changing the 
reference allele of the SNP with the alternative allele, followed by the same polyadenylation signal 
motif search using custom Perl scripts. For the cis-regulated genes where the SNP is located within a 
true polyadenylation signal, we retrieved the coverage of every SAGE tag upstream and downstream 
the putative affected polyadenylation site and calculated the ratio between proximal and distal tags 
for the different genotypes to confirm the expected effects of polyadenylation site formation or 
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disruption. 

RNA-seq datasets
For the meta-analysis we combined DeepSAGE data with two published RNA-seq datasets. The first 
dataset was 37bp paired-end RNA-sequencing data from HapMap individuals ([8], [ArrayExpress:E-
MTAB-197]): RNA from lymphoblastoid cell lines of 60 HapMap CEPH individuals was sequenced on 
the Illumina GAII sequencer, while genotype data had already been generated within the HapMap 
project. The second dataset was single-end RNA-sequencing data from HapMap individuals [9, 
43] [GEO:GSE19480 and at http://eqtl.uchicago.edu/RNA_Seq_data/]: RNA was sequenced from 
lymphoblastoid cell lines of 72 HapMap Yoruba individuals from Nigeria on the Illumina GAII platform 
in two sequencing centers: Yale (using 35bp reads) and Argonne (using 46bp reads). Since the 
Montgomery et al. paper used genotype data for some individuals that were not in the HapMap3 
panel (NA0851, NA12004, NA12414 and NA12717), we imputed these individuals using Beagle v3.1.0, 
with HapMap2 release 24 as a reference.

RNA-seq read mapping
Reads from single- and paired-end RNA-sequencing were mapped to the human genome NCBI build 
37 (reference annotation from Ensembl GRCh37.65) using Tophat v. 1.3.3 [30] – a splice-aware aligner 
that maps RNA-seq reads to the reference genome using Bowtie [21]. We used default settings 
(maximum 2 mismatches, 20 possible alignments per read) with a segment length value of 17bp. 
Reads that corresponded to the flag 1796 in the .bam alignment file (read unmapped, not primary 
alignment, read fail quality check, read is PCR or optical duplicate) were filtered out. The numbers of 
raw and mapped reads for each dataset are given in Table 5.

Read quantification
To estimate expression levels in RNA-seq data, reads that overlapped with exons from known 
transcripts (GRCh37.65) were quantified using the coverageBed method from BEDTools suite [39]. For 
transcript level quantification the read count tr

sC  for sample s for transcript tr was calculated as a sum 
of expression values over all exons contained in this transcript:            
where:

{Etr} set of all exons of transcript tr,
ne  number of reads overlapping exon e by not less than half of read’s length,
Be  breadth of coverage for exon e (% of exon length covered by the reads mapping to that exon).

In case a read mapped to multiple transcripts, the read was counted for all transcripts, since the 
short reads are difficult to assign to a specific transcript. Multiplication by breadth of coverage was 
performed to help in distinguishing between different isoforms by assigning higher weight to exons 
fully covered by reads in contrast to alternative exons covered only partly. Because different methods 
have different capacity to identify alternative splicing events, we subsequently summarized our eQTL 
results to unique genes. 
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Meta-analysis
Meta-analysis was conducted by using a weighted Z-method, weighing each of the datasets by the 
square root of the number of samples per dataset [6].

Microarray datasets
We compared the results to corresponding microarray dataset eQTL mapping results. For each of 
the 94 individuals from NTR-NESDA study, Affymetrix HG-U219 expression data were generated at 
the Rutgers University Cell and DNA Repository (RUCDR, http://www.rucdr.org). NTR and NESDA 
samples were randomly assigned to plates with seven plates containing subjects from both studies 
to better inform array QC and study comparability. Gene expression data were required to pass 
standard Affymetrix QC metrics (Affymetrix expression console) before further analysis. Probe 
sets were removed when their mapping location was ambiguous or if their location intersected a 
polymorphic SNP (dropped if the probe oligonucleotide sequence did not map uniquely to hg19 or 
if the probe contained a polymorphic SNP based on HapMap3 [44] and 1000 Genomes [45] project 
data). Expression values were obtained using RMA normalization implemented in Affymetrix Power 
Tools (APT, v 1.12.0).  MixupMapper revealed no sample mix-ups [46]. For RNA-seq data we used 
corresponding microarray datasets that were available for most of the individuals present in RNA-
seq datasets. We used Illumina expression data provided by Stranger et al. [3] of the 72 HapMap YRI 
individuals (56 of which were also present in RNA-seq dataset from Pickrell et al.) and 60 HapMap CEU 
individuals provided by Montgomery et al. (58 of which were also present in RNA-seq dataset from 
Montgomery et al.). The same normalization procedure was performed as for the sequencing-based 
datasets: quantile normalization, and subsequent probe set centering to zero, z-score transformation, 
and scaling to a standard deviation of one.

Data access
The newly generated DeepSAGE data for NTR-NESDA dataset is available in ArrayExpress under 
accession number E-MTAB-1181 (ENA: ERP001544).
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SuPPORTING INFORMATION
Supplementary Tables 1-7 are available at PLoS Genetics Online

Table S1. List of detected eQTLs in tag-wise eQTL mapping.
Table S2. Trait-associated SNPs affecting the expression of DeepSAGE tags of 94 peripheral blood 
samples.
Table S3. List of candidate genes with alternative polyadenylation event detected using a permissive 
strategy.
Table S4. Replications between RNA-seq and DeepSAGE eQTLs. 
Table S5. Replication of RNA-seq eQTLs in microarray-based datasets.
Table S6. List of detected eQTLs in the meta-analysis.
Table S7. Primer sequences for qPCR validation.
Text S1. Additional details on principal component analysis of DeepSAGE expression data.

Supplementary text

Additional details on principal component analysis of DeepSAGE expression data
To increase the statistical power of eQTL detection, we used principal component analysis (PCA) to 
correct for technical and biological confounders. We determined that using 15 PCs as covariates 
yielded the highest number of significant cis-eQTLs, reflecting an almost two-fold increase.

Although correction for the first principal components substantially increased the number of 
detectable cis-eQTLs, it remains somewhat elusive why this correction procedure is so effective. 
We therefore investigated which phenomena these components represent and investigated the 
correlation with various sample characteristics. The first principal component was highly significantly 
correlated with the percentage of GC in the reads of a sample (r2 = 0.76) (Figure S1). GC content 
is one of the most important sources of bias in RNA-seq data and strongly affects gene expression 
measurements [1,2]. Although various dedicated strategies have been proposed to overcome this 
bias (for a review see [3]) and more sophisticated algorithms to correct for technical and biological 
confounders exist such as PEER and PANAMA [4–6], this straightforward PCA-based method also 
efficiently corrects for GC content differences across samples. 

Principal components seven and eleven correlated significantly with various blood cell count 
parameters, indicating that these PCs reflect differences in cell type compositions between samples 
(Figure S2). To further substantiate this latter point, we associated the top 100 genes that had the 
most extreme (highest and lowest) factor loadings on PC7 and PC11 with cell types reported in the 
literature, using the Anni software for text concept association [7] and observed that:

- Genes with highly positive factor loadings on PC7 are strongly associated with (and 
therefore likely expressed in) lymphocytes. This is in agreement with the positive correlation of PC7 
with lymphocyte counts (Figure S2). Genes with the most negative factor loadings on PC7 are strongly 
associated with macrophages and neutrophils. This is in agreement with the negative correlation of 
PC7 with neutrophil counts (Figure S2).
- Genes with highly positive factor loadings on PC11 are strongly associated with different 
types of leukocytes, while genes with the most negative factor loadings on PC11 are strongly associated 
with erythrocytes.



GENETIC VARIANTS AFFECTING APA

95

References:

1. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying 
human gene expression variation with RNA sequencing. Nature 464: 768–772. 

2. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from 
high-throughput DNA sequencing. Nucleic Acids Res 36: e105. 

3. Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-Content Normalization for RNA-Seq Data. BMC 
Bioinformatics 12: 480. 

4. Fusi N, Stegle O, Lawrence ND (2012) Joint modelling of confounding factors and prominent genetic 
regulators provides increased accuracy in genetical genomics studies. PLoS Comput Biol 8: e1002330. 

5. Parts L, Stegle O, Winn J, Durbin R (2011) Joint genetic analysis of gene expression data with inferred cellular 
phenotypes. PLoS Genet 7: e1001276.

6. Stegle O, Parts L, Piipari M, Winn J, Durbin R (2012) Using probabilistic estimation of expression residuals 
(PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 7: 500–507. 

7. Jelier R, Schuemie MJ, Veldhoven A, Dorssers LCJ, Jenster G, et al. (2008) Anni 2.0: a multipurpose text-
mining tool for the life sciences. Genome Biol 9: R96.



CHAPTER 3

96

48 52 56

0.
8

1.
0

1.
2

Pickrell et al. (Yale) dataset

GC percentage

PC
1 

ei
ge

nv
ec

to
r c

oe
ffi

ci
en

ts

60 65 70 75

−0
.1

0.
0

0.
1

0.
2

Pickrell et al. (Argonne) dataset

GC percentage

52 56 60 64

0.
8

1.
0

1.
2

Montgomery et al. dataset

GC percentage

40 45 50

0.
85

0.
95

1.
05

1.
15

NTR−NESDA dataset

GC percentage

PC
1 

ei
ge

nv
ec

to
r c

oe
ffi

ci
en

ts

PC
1 

ei
ge

nv
ec

to
r c

oe
ffi

ci
en

ts
PC

1 
ei

ge
nv

ec
to

r c
oe

ffi
ci

en
ts

Supplementary Figure 1.  Correlation 
of GC content with principal component 
1 (PC1) eigenvector coefficients for all 
the three datasets. Pearson correlation 
coefficient and corresponding p-value 
are shown in the plot.
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Supplementary Figure 2. Blood cell counts in DeepSAGE data captured by the eigenvector coefficients on 
principal components PC7 (left) and PC11 (right). Experimentally determined blood cell counts at the time of RNA 
isolation were available for 36/94 samples. Blood cell counts are expressed as (number of cells)×109/L. Pearson 
correlation coefficients and corresponding p-values are shown in the plot.
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ABSTRACT
The formation of skeletal muscles is associated with drastic changes in protein requirements known 
to be safeguarded by tight control of gene transcription and mRNA processing. The contribution of 
regulation of mRNA translation during myogenesis has not been studied so far.

We monitored translation during myogenic differentiation of C2C12 myoblasts, using a simplified 
protocol for ribosome footprint profiling. Comparison of ribosome footprints to total RNA showed 
that gene expression is mostly regulated at the transcriptional level. However, a subset of transcripts, 
enriched for mRNAs encoding for ribosomal proteins, was regulated at the level of translation. 
Enrichment was also found for specific pathways known to regulate muscle biology. We developed 
a dedicated pipeline to identify translation initiation sites (TISs) and discovered 5333 unannotated 
TISs, providing a catalog of upstream and alternative open reading frames used during myogenesis. 
We identified 298 transcripts with a significant switch in TIS usage during myogenesis, which was 
not explained by alternative promoter usage, as profiled by DeepCAGE. Also these transcripts were 
enriched for ribosomal protein genes. This study demonstrates that differential mRNA translation 
controls protein expression of specific subsets of genes during myogenesis.

Experimental protocols, analytical workflows, tools and data are available through public 
repositories (http://lumc.github.io/ribosomeprofiling- analysis-framework/).
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INTRODuCTION
Myogenesis, the formation and maintenance of skeletal muscles, occurs during embryogenesis and 
muscle regeneration. During embryonic development, muscle progenitor cells are committed to the 
myogenic program and becomemyoblasts. Myoblasts fuse to formmultinucleatedmyotubes, which 
will give rise to muscle fibers. During muscle regeneration, the process is similar. Satellite cells are 
differentiated into myoblasts, which can fuse with existing myotubes to repair the adult muscle tissue 
(1).

The molecular mechanisms controlling myogenesis at the transcriptional level are well 
characterized. Several myogenic transcription factors, including MYF5, MYOD1, MYOG, MEF2 and 
MYF6, are expressed at different stages of myogenesis to tightly control the transcription of numerous 
muscle-specific genes encoding contractile proteins and to reorganize cell metabolism (2,3).

Less is known about the control of myogenesis at the level of mRNA translation. Several mechanisms 
enhance or repress translation through RNA binding proteins or miRNAs (4,5). The presence of 
translational enhancers able to interact with translation initiation complexes and increase protein 
synthesis have been reported also in the context of skeletalmuscle differentiation, where they target 
crucial differentiation factors (6). However, a genome wide overview of translational regulation, as it 
exists for transcription (7), is missing. Therefore we set out to investigate control of mRNA translation 
during myogenesis, with a focus on translation initiation.

Regulation at the translational level defines not only the abundance of a protein, but also the identity 
through the use of alternative translation initiation sites (TISs). Translation can initiate upstream or 
downstream of the primary open reading frame (pORF). TISs located in the 5’ untranslated region (5’-
UTR) of a transcript may give rise to upstream open reading frames (uORFs) or protein isoforms with 
extended N-termini (8). Translation of the uORF may have various consequences for the translation 
of the pORF: uORFs may repress translation, induce translation of protein isoforms truncated at their 
N-termini or even enhance translation of the pORF (9–19). TISs located in the coding region of the 
pORF may give rise to N-terminal truncated isoforms, with possibly different biological functions (20).

The complexity of the translatome is further increased by the presence of dual coding regions, 
nucleotide sequences that can be translated in more than one reading frame (21).

Recent studies based on ribosome footprint profiling have reported extensive regulation of protein 
expression at the translational level, in particular as a part of stress responses, but also under normal 
physiological conditions (8,22,23). Translational regulation is mostly exerted at the level of translation 
initiation, whereas translational elongation rates are more constant across conditions (22,24–27).

In mammals, between 50 and 65% of transcripts have been reported to contain at least two TISs 
(8,24,26), more than 50% of which are located upstream of the pORF. Nonetheless, to what extent 
gene expression is regulated at translational level is still being debated. A major role for translational 
regulation was hinted by studies that found a poor correlation between total mRNA and protein levels 
(20% (28) or no more than 40% (29–33)). However, other studies reported a much higher correlation 
(up to 80% (34)) and suggested that previously observed discrepancies between mRNA and protein 
levels were mainly of technical nature. Nevertheless, there is a role for translational regulation, at 
least for subsets of (functionally linked) proteins (35).

To explore how and to what extent myogenesis is regulated at translational level in mammalian 
skeletal muscles, we monitored translation at nucleotide resolution in a genome-wide high-
throughput manner, using ribosome profiling on the murine C2C12 cell line, a model for skeletal 
muscle differentiation.

Ribosome profiling (25) is a method based on deep-sequencing of ribosome-protected mRNA 
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fragments that are recovered from mRNAs engaged by ribosomes, after digestion of non-protected 
regions of the mRNAs. Even though the ribosome profiling technique has been standardized and used 
in several studies (24,26,36,37), the isolation and sequencing of the ribosome footprints is laborious 
and the analysis represents a challenge due to short read length and noise surrounding genuine TISs.

We simplified the existing protocol and developed a data analysis pipeline to characterize 
translation initiation during differentiation of myoblasts into myotubes, to detect switches in the use 
of alternative TISs, as well as to quantify translation.

We further investigated the extent of translational control over transcriptional control by comparing 
ribosome profiling data with RNAseq, miRNA-seq and DeepCAGE data. miRNA-seq data was used to 
investigate the contribution of miRNAs in the regulation of gene expression at translational level. 
DeepCAGE data was used to identify transcription start sites (TSSs) and detect switches in the use of 
alternative promoters; this allowed us to discriminate between switches in TISs usage due to changes 
in the transcriptome and switches purely controlled during translation.

MATERIALS AND METHODS
Cell culture
Mouse myoblasts C2C12 were grown on collagen-coated plates in Dulbecco’s modified Eagle medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% glucose and 2% glutamax (Invitrogen). 
Differentiation was induced by serum deprivation for 7 days, by culturing in DMEM supplemented 
with 2% FBS, 1% glucose and 2% glutamax.Cells were grown under 10% CO2.

Ribosome footprint profiling, DeepCAGE, RNAseq and miRNAseq 
sequencing libraries
Ribosome footprints libraries were prepared starting from 5 million C2C12 cells, seeded in 10 cm 
dishes. After 24 h in proliferation phase, myoblasts were treated with 100 g/ml cycloheximide (C7698-
1G, Sigma) for 10 min or with 2 μg/ml harringtonin (sc-204771A, Santa Cruz Biotechnology) for 5 min 
followed by 10 min of cycloheximide treatment. Same treatment was performed in myotubes, after 7 
days of serum deprivation.

After drug treatment at 37◦C, dishes were transferred on ice and cells were washed with ice-cold 
phosphate buffered saline supplemented with 100 μg/ml cycloheximide. Cells lysis was performed 
using 1 ml ice-cold lysis buffer (1× salt buffer [10× solution contained 100 mM Tris, 120 mM MgCl2, 
1.4MNaCl, pH 7.4], 0.5% IGEPAL) supplemented with RnaseOUT (500 U/ml, Invitrogen), dithiothreitol 
(DDT) (1.5 mM), cOmplete Protease Inhibitor Cocktail (40 μl of 25× stock,Roche) and cycloheximide 
(100 μg/ml). Nuclei were removed by centrifugation at 13 000 rpm in a FA-45-30-11 rotor (18 000 g) for 
10 min. Supernatant was digested with RnaseI (1500U/ml, Ambion) for 30 min at room temperature. 
Digestion was blocked with SuperaseIN (600U/ml, Ambion) and lysate was layered on frozen sucrose 
gradients (7–46% sucrose) and separated by ultracentrifugation at 35 000 rpm in a SW 41 Ti rotor (210 
000 g) for 3 h at 4◦C.

Twelve fractions (750 μl each) were collected from the top and digested with proteinase K (0.15 
mg/750 μl) for 30 min at 42 ◦C in the presence of 1% sodium dodecyl sulphate.

RNA was extracted by acid phenol (Ambion) purification followed by ethanol precipitation. For 
each sucrose gradient separation, an undigested lysate was used to monitor the polysome profile, 
determined on the Bioanalyzer (Agilent) with the RNA 6000 Nano kit. Fractions containing monosomes 
(corresponding to fractions nine and ten) were combined. Cytoplasmic rRNAs and mitochondrial 
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rRNAs were removed using Ribo-Zero Magnetic Gold Kit (Epicentre) according to manufacturer’s 
instructions, with the following modifications: removal solution was incubated for 4 min at 68◦C prior 
RNA addition, then mixed with RNA and kept at 37◦C for 15 min; RNA hybridized to removal solution 
was incubated with magnetic beads at room temperature for 5 min, followed by 1 min at 50◦C and 
4 min at 37◦C. Size selection of footprints with length 28–32 nt was performed on 15% TBE-urea gel 
(Invitrogen).

Footprints were dephosphorylated with T4 polynucleotide kinase (10U, NEB) and ligated 
to double stranded RNA adapters at both ends (SOLID Total RNASeq Kit, Ambion). RNA was 
reverse transcribed and amplified using indexed custom primers adapted for Illumina Hiseq 2000 
(5’-AATGATACGGCGACCACCGATGGGCAGTCGGTGAT-3’, 5’-GCGGAACCGGCATGTCGTC|index|AGCATAC
GGCAGAAGACGAA-3’). Sequencing libraries were size selected for amplicons of 120 bps on 4–12% 
polyacrylamide gel electrophoresis gel (Novex TBE, Life Technologies).Atotal of twelve strand specific 
libraries were pooled and sequenced in one lane. Single end sequencing was performed on the 
Illumina Hiseq2000 for 50 cycles.
The complete protocol is available in the extended experimental procedures.
DeepCAGE libraries were prepared as described previously (38).
Strand specific RNAseq libraries were generated using the method described by Parkhomchuk et al. 
(39) with minor modifications. In short, mRNA was isolated from 500 ng total RNA using oligo-dT 
Dynabeads (Life Technologies) and fragmented to 150–200 nt in first strand buffer for 3 min at 94◦C. 
First strand cDNA was generated using random primers. Second strand was generated using dUTP 
instead of dTTP to tag the second strand. Subsequent steps to generate the sequencing libraries 
were performed with the NebNext kit for Illumina sequencing with the following modifications: after 
adapter ligation to the dsDNA fragments, libraries were treated with USER enzyme (NEB M5505L) in 
order to digest the second strand derived fragments. Amplified libraries were pooled and sequenced 
in one single lane. Paired-end (2 × 100 bps) sequencing was performed on the Illumina HiSeq2000. 
miRNAseq libraries were prepared starting from purified small RNAs isolated with mirVana miRNA 
Isolation kit (Ambion) according to manufacturer’s instructions. Sequencing libraries were prepared 
according to the method previously described (40) and single-end sequencing was performed on the 
Illumina Genome Analyzer II.

Protein isolation and western blot analysis
Protein isolation was performed starting from cell pellet recovered from 75 cm2 flasks. Cell 
pellet was resuspended in 500 μl of protein lysis buffer (50 mM HEPES, 50CmM NaCl, 10 mM 
ethylenediaminetetraacetic acid, 10 mM dithiothreitol (DTT), 0.1% 3-((3-Cholamidopropyl)
dimethylammonium)-1- propanesulfonate (CHAPS), Complete Mini Protease inhibitor cocktail tablet 
(Roche)). Cell lysate was sonicated with ultrasound (5 s at amplitude 60 for three times) and incubated 
for 1 h at 4◦C while rotating. Supernatant was recovered after centrifugation at 14 000 rpm in a FA-
45–30–11 rotor (20 800 g) for 15 min at 4◦C. Protein concentration was assessed using BCA Protein 
Assay kit (Pierce) according to manufacturer’s instructions. Protein separation was performed on 18% 
Criterion TGX Gel (Bio-Rad) in 1× XT Tricine running buffer. A total of 30 μg of protein lysate were heat 
denatured in 2× Laemmli sample buffer (95◦C for 5 min) prior loading. Proteins were transferred with 
Trans-Blot turbo transfer system (Bio-Rad) on a nitrocellulosemembrane (0.2 μmTrans blot turbo, Bio-
Rad). The following primary antibodies were used: rabbit anti-RPL7 antibody (Bethyl, 1:2000), rabbit 
anti-RPS15 middle region (Aviva System Biology, 1:1000), rabbit anti-RPL34 (Abcam, 1:1000), anti-
beta Actin (Abcam, 1:5000). RPL7, RPS15 and RPL34 were detected using goat anti-rabbit secondary 



CHAPTER 4

104

antibody (IRDye800CW, Licor,1:5000), b-Actin was detected using goat anti-mouse secondary antibody 
(IRDye680CW, Licor, 1:5000). Signals were visualized with the Odyssey Infrared Imaging Sistem (LI-Cor 
Biosciences).

Data analysis
Mapping of ribosome footprints, DeepCAGE and RNAseq reads.
Ribosome footprints reads were aligned to both transcriptome and genome references using a 
combined approach. Reads were first aligned to a transcriptome reference using Bowtie (41,42), with 
the following parameters: -k 1 -m20 -n 1, –best –strata –norc. An index transcriptome reference was 
built based on RefSeq RNA sequences (ftp:// ftp.ncbi.nlm.nih.gov/refseq/M musculus/mRNA Prot/ 
last modified 2013/05/08). Unmapped reads were then mapped to theGRCm38/mm10 genome 
reference using Bowtie with the following parameters: -k 1 -m 2 -n 1 –best –strata. For each SAM file, 
reads shorter than 25 nt were filtered out. SAM files were converted into a wiggle format, in which 
only the 5’ end of each read was reported. For SAM files obtained from the transcriptome alignment, 
transcriptomic coordinates were converted into genomic coordinates and stored into a wiggle format. 
Wiggle files are available at http://gwips.ucc.ie/.

To retrieve corresponding genomic coordinates, we first mapped RefSeq RNA sequences (the same 
used to build the transcriptome reference) to the GRCm38/mm10 genome assembly using GMAP 
(43), with the following parameters: -f samse -n0. The corresponding genomic coordinateswere used 
to convert the transcriptomic coordinates of the mapped footprint reads. RefSeq RNA sequences 
which mapped to the genome with insertions and/or deletions (introns excluded) were not included 
when building the transcriptome reference.Wiggle files of each alignment containing the 5’ ends of 
reads mapped were then merged.

DeepCAGE reads were trimmed to 27 nt and the first nucleotide at the 5’ end was removed. Trimmed 
reads were aligned to the GRCm38/mm10 genome reference, with the following parameters: -m 10 -k 
10 -n 2 –best –strata. For CAGE tags mapping to multiple genomic locations, we applied a weighting 
strategy, based on the number of CAGE tags within a 200 bp window around each candidate mapping 
location. A weight of 1.0 was assigned for uniquely mapped sequences, for multi-mapped tags weight 
varied from 0.0 to 1.0. Only tags with a weight equal or higher than 0.9 were kept (44).

Paired end RNAseq reads were aligned to RefSeq RNA sequences (ftp://ftp.ncbi.nlm.nih.gov/
refseq/M musculus/ mRNA Prot/) using Bowtie2 (45), with the following parameters: -N 1 –norc.

Triplet periodicity analysis in ribosome footprints.
Using a custom PHP script the merged wiggle files were converted to a format suitable for the Batch 
PositionConverter Interface in Mutalyzer (46) 2.0.beta-32 (https://mutalyzer.nl/ batch-jobs?job 
type=position-converter). These converted files with genomic coordinates were manually loaded 
into Mutalyzer to retrieve positions relative to the annotated TIS. The triplet periodicity pattern was 
analyzed by calculating the number of reads mapping in the first, second and third nucleotide of 
each codon for all detected transcripts. Positions were filtered out if they had coverage lower than 3 
reads, or if they only mapped in intronic or intergenic regions (500 nt upstream or downstream from 
annotated coding regions) or if they only mapped to non-coding transcripts.
Since for samples treated with harringtonin the 5’ end of a footprint was expected to be located −12 
nt far from the TIS, positions located up to −15 nt were counted as positions in coding regions. To 
calculate the triplet periodicity, positions shared by overlapping transcripts were filtered as follows: if 
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a position was shared between a coding and an untranslated region (3’ or 5’-UTR), the position was 
counted only for the coding region; if it was shared between 3’-UTR and 5’-UTR of two overlapping 
transcripts, the position closest to the coding region was reported, but only if the difference in the 
distance of the two positions relative to the coding region was larger than 100 nt, otherwise both 
positions were discarded.

Transcription start site assignment and annotation.
TSSs were assigned by summing the weighted number of CAGE tags at each genomic position. 
Weighted numbers were based on the MuMRescue software (44). Peaks located within a window 
of 20 bp were merged and reported whenever the coverage was at least 10 tags per million (tpm) 
in at least one experimental condition. BAMfiles were converted into BED files and annotated based 
on RefSeq collection, using intersectBed (BEDTools (47)). The RefSeq collection was modified by 
extending the 5’-UTR of each transcript with 500 nt. Peaks located more than 850 nt downstream 
the annotated TSS were not considered for further analysis. BAM files were converted into a wiggle 
format using custom scripts.

Translation initiation site assignment and annotation.
A dynamic local peak calling algorithm was developed to identify TISs in the ribosome footprint 
data from harringtonin treated cells. To discriminate between genuine initiation sites and noise, 
we evaluated the signal in the region surrounding each peak. Peaks were first filtered following the 
same procedures used for the triplet periodicity analysis, except for positions shared by overlapping 
transcripts, which were filtered as follows: if a position was shared between the 3’-UTR and a coding 
or 5’-UTR, the position was counted only for the coding region or the 5’-UTR. Peak calling was then 
performed after combining footprints from three independent biological replicates. Each position 
with a coverage of at least 20 reads was analysed and called if the following conditions were met: the 
peak had higher coverage compared to any peak located 3, 6, 9, 12 or 15 bases upstream; the peak 
showed a triplet periodicity pattern (the two nucleotides following the peak had a summed coverage 
40% or lower than the total coverage of that codon); the five codons downstream should not contain 
a base with a coverage higher than that of the peak analysed; the five downstream codons, when 
having a coverage of at least 10% of the peak analysed, should show a triplet periodicity pattern.

Once a peak was called, the analysis continued at the next nucleotide, allowing the detection of 
TISs in different frames. For each gene, the TIS with the highest coverage was kept as reference, and 
any other TISs which had a coverage lower than 10% of the reference TIS was discarded for further 
analysis. For each called TIS, the coverage of that peak in each individual sample was reported. TISs 
were then classified into six categories: annotated TIS, 5’-UTR (or unannotated 5’-UTR) TIS, coding 
TIS, 3’-UTR TIS and multiple TIS. TISs mapping in position −12, −11 and −10 nt relative to the start 
codon were reported as annotated TISs. TISs mapping upstream of position −12 were annotated as 
5’-UTR TISs (or unannotated 5’-UTR TISs if the TIS was not located in the 5’-UTR sequence present 
in the transcript’s reference sequence), TISs located between position− 10 and the stop codonwere 
annotated as coding TISs, TISs located after the stop codonwere annotated as 3’-UTR TISs, TISs which 
fell in more than one category were annotated asmultiple (unless one of the categorieswas annotated 
TIS, which was then the only one reported). Peaks located 5 kb downstream of the annotated start 
codon (counted as transcript positions, not genome) were not considered for downstream analysis. 
The background noise in these regions was higher, likely because the ribosomes were not allowed 
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sufficient time to finish the translation of transcripts on which they had already engaged in the 
elongation phase at the start of the harringtonin treatment.
Wiggle files showing all the mapped footprints are available and visualized at http://gwips.ucc.ie/.

Differential expression analysis and functional annotation.
For RNAseq, CAGE and ribosome profiling data, custom scripts were used to quantify the number of 
mapped reads.

For miRNAseq data, the E-miR software package was used to map trimmed sequencing reads and 
quantify the number of mapped reads (40).

The statistical programming language R (version 2.15.1) was used for analysis of differential 
expression between myoblasts and myotubes. The analysis was performed using the R Bioconductor 
package edgeR (48) (version 3.0.8). A negative binomial model was fitted and GLM Tag-wise dispersion 
was estimated prior testing procedures. Exact P-values were computed using the exact test and 
adjusted for multiple testing according to Benjamini–Hochberg method (49). Differential expression 
analysis was performed at gene level after summing reads mapped to Refseq sequences (ftp://ftp.ncbi.
nlm.nih. gov/refseq/M musculus/mRNA Prot/). KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway analysis was performed using DAVID Functional Annotation Tool (50).

Statistical model to identify genes with alternative TIS or TSS usage.
We fitted the previously published logistic generalized linear mixed model (51) to the counts for each 
TIS (or TSS) using fixed effects for location, myotube, and their interaction, and a random intercept 
and location effect within cell culture. The model was fitted using R Bioconductor package lme4.0 (R 
version 2.15.1, http://cran.r-project.org/web/packages/lme4/index. html. Chi-squared likelihood ratio 
tests were used for testing the presence of location-myotube interactions, i.e. switches in TIS (or TSS) 
usage. Both a global chi-squared likelihood ratio test for the presence of any interaction and t-tests for 
individual effects per TIS were calculated.

Codon usage, uORFs and out-of-frame analysis.
For each TIS, the nucleotide sequence of the codon was reported based on RefSeq. For 5’-UTR TISs, 
sequences were reported up to the annotated TIS and translated into the corresponding amino 
acid sequence until the first stop codon or the annotated TIS. For TISs in unannotated 5’-UTR, the 
genomic sequences were retrieved from GRCm38/mm10 genome assembly using the genomic Refseq 
reference sequences). For any TIS located in the 5’-UTR and leading to a stop codon (upstream or 
downstream of the annotated start codon), the length of the amino acid sequence was calculated.The 
frame of coding TISs was defined by dividing the mRNA position (adjusted for the distance of the 5’ 
end of the read relative to the actual TIS position) by 3.

IRES and 5’ TOP analysis.
The 5’-UTR sequences of transcripts containing TISs in their 5’-UTR and transcripts containing TISs 
only in the annotated TIS and/or the coding region were retrieved from Refseq using UCSC Table 
Browser. Fasta files were uploaded into UTRScan (52) (http://itbtools.ba.itb.cnr.it/utrscan/help) 
and analysed for IRES and 5’ TOP motifs. Enrichment was calculated by comparing the number of 
transcripts containing IRES and TIS in the 5’-UTR versus those containing IRES but no TISs in the 5’-
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UTR. Transcripts containing IRES were then overlapped with transcripts containing uORFs.

In silico screening of alternative TISs.
Raw MS/MS proteomic datasets were retrieved from PRoteomics IDEntifications (PRIDE) database 
(accession numbers: PXD000328, PXD000022, PXD000065). Amino acid sequences for 24665 Mus 
Musculus proteins were retrieved from UniProt (http://www.uniprot.org/uniprot/?query=organ
ism%3A%22mus+musculus%22+AND+reviewed%3Ayes+AND+keyword%3A1185&sort=score) in 
fasta format and used as background reference. A fasta file containing amino acid sequences of a 
set of candidate alternative and uORFs was created and merged with the UniProt reference file. For 
candidate ORFs containing non-canonical start codons, an alternative peptide sequence was included, 
where the first amino-acid was replaced with methionine.

The MS/MS analysis was performed using the Trans-Proteomic Pipeline v 4.6.3 (53). The raw MS/
MS data were converted to mzXML and peptides identified by X!Tandem. The output files were then 
processed with PeptideProphet for spectrum-level validation and only spectra with probability greater 
than 0.90 were reported for manual inspection.

Accession codes and hyperlinks to public repositories.
Raw deep sequencing data from the C2C12 RNAseq, miRNAseq and ribosome footprint profiling are 
available for download at European Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession 
number PRJEB7207.

Wiggle files of ribosome profiling data from cycloheximide and harringtonin experiments are 
available at http://gwips.ucc.ie/ and can be visualized as ‘Elongating Ribosomes’ and ‘Initiating 
Ribosomes’ tracks, respectively.

All analysis scripts together with a README file containing instructions for users are publicly 
available at GitHub: http://lumc.github.io/ribosome-profiling-analysis-framework/.
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RESuLTS
A simplified ribosome profiling protocol
The standard protocol for ribosome profiling (25) involves numerous steps, including the isolation of 
the protected ribosome footprints from the monosomes, obtained by RNAse digestion of cytosolic 
extracts and the conversion of the small single stranded RNA footprints into a double stranded DNA 
sequencing library. The conversion is usually accomplished by ligation of single stranded adapters to 
the 3’ ends of the RNA footprints, followed by reverse transcription and circularization. The circular 
template is then used for polymerase chain reaction amplification (Figure 1A). Each of these stepsmay 
be subject to certain biases.
We simplified the existing method by converting the ribosome footprints into sequencing libraries 
with a standard small RNA sample preparation protocol, which avoids the multistep circularization 
procedure. Double stranded RNA adapters were ligated to the small RNA footprints, reverse 
transcribed and directly amplified for sequencing. This resulted in high quality ribosome footprints, 
as evidenced from the analyses described below. The complete protocol is available in the extended 
experimental procedures.

Analysis pipeline
High quality ribosome footprints are characterized by a distinct triplet periodicity pattern originating 
from the translocation of a ribosome from one codon to the next during translation elongation. In 
case of initiating ribosomes, the first nucleotide of each read is usually 12 nt upstream of the start of 
the codon that is being translated (25,54). These characteristics are commonly used as metrics for the 
quality of ribosome profiling data.

We developed a custom script to analyze the triplet periodicity pattern by converting the first 
position of the aligned reads to transcript coordinates and relating those coordinates to annotated 
TISs and the reading frame downstream of the annotated TIS. The script reports the number of reads 
mapping to the first, second and third nucleotide of each codon for all detected coding transcripts and 
the number of reads in each position relative to the annotated TIS.

The results of this procedure clearly show in our data that ~80% of reads mapped to the first 
nucleotide of each codon, as expected from previous studies (28,54,55) (Figure 1B top, 1C, 
Supplementary Table S1). For all samples, a major peak was observed at −12 nt from the annotated 
TIS, which is in accordance with previously reported data on the size and the position of the 
fragment protected by the ribosome (25,54). A higher percentage of 5’ end reads mapping −12 nt 
from the annotated TIS was also observed for footprints generated by halting initiation of translation 
(harringtonin treated cells) compared to footprints generated by halting translation elongation 
(cycloheximide treated cells), as expected (Figure 1D).

The alignment of short (28–29 nt (Supplementary Figure S1)) ribosome footprints represents a 
challenge because footprints often span splice junctions, with short overhangs on either side of the 
junction. We calculated that 5421 murine transcripts (Supplementary Table S2) contain a TIS that is 
not mappable by standard genome alignment, because the TIS is located within a splice junction or it 
is located <15 nt upstream or downstream an exon–exon junction.

Common procedures to avoid loss of reads crossing exon–exon junctions use splicing-aware 
short-read alignment programs such as TopHat v1 (25,56). Alternatively, reads were mapped to the 
genome reference using a standard short read aligner, followed by the mapping of unaligned reads to 
known splice junctions using TopHat v1 (57). Both analyses are potentially flawed by the suboptimal 
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Figure 1. Generation and quality control of the ribosome profiling data sets. (A) An outline of our experimental 
procedures. The initial steps include the halting of ribosomes on the mRNA by harringtonin or cycloheximide, the 
treatment of cytosolic extracts with RNAse and the isolation of monosomes on sucrose gradients. These steps 
are identical to the original protocol developed by Ingolia et al. (23). The original protocol further includes the 
steps indicated in the left panel: single stranded adapters are ligated to the 3’ends of the RNA footprints (1), 
reverse transcribed (2, 3) and circularized (4) prior to amplification (5). The right panel shows our simplified sample 
preparation protocol. Double stranded RNA adaptors, with an overhang of six degenerated nucleotides, are ligated 
to the RNA footprints (1). Footprints are reverse transcribed (2, 3) and amplified for sequencing (4). (B) Percentage 
of reads mapped to the first, second and third position of each codon in all detected translated transcripts (top) 
and number of reads (bottom) mapped to the genome reference (light bars) or to combined transcriptome and 
genome reference (dark bars). (C) A screenshot of UCSC Genome browser displaying the triplet periodicity of 
the 5’ ends of footprints mapped to Acta1 gene. Harringtonin and cycloheximide treated myoblasts are shown 
as independent traces. The y-axis represents the coverage of the highest peak. On top of the coverage tracks, 
the first, second and third nucleotide positions are shown for each codon for the first 27 nucleotides of the first 
exon. Arrows display the distance of the highest peak relative to the annotated start codon. (D) Number of reads 
mapped to the first 2 codons and up to 21 nucleotides upstream the start codon for harringtonin (dark yellow) and 
cycloheximide (light yellow) treated myoblasts. 
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performance of TopHat v1 on reads that are as short as 30 nt. Even though the upgraded TopHat2 
performs better in the alignment of exon–exon junction reads that extend 10 nt or less into one of 
the exons (58), its performance has been optimized for long paired-end reads. Another problem in 
the genomic mapping of short RNA-derived reads is the presence of pseudogenes. The alternative of 
mapping exclusively to the transcriptome is also not ideal because it may miss hits in unannotated 
transcripts or in unannotated parts of transcripts, such as alternative first exons (59).

To overcome these limitations, we performed a combination of transcriptome and genome 
alignment. Footprint reads were aligned to a transcriptome reference, and only reads that did not 
map to the transcriptome were aligned to the genome (Supplementary Table S3). Mapping first to the 
transcriptome and then to the genome slightly reduced the number of reads mapping to pseudogenes 
(Supplementary Tables S4 and S5). The coordinates from the reads mapping to the transcriptomewere 
converted to genomic coordinates and then combined with the mappings from the genome alignment. 
The improvements obtained by the combined alignment can be appreciated by the recovery of ~30% 
of otherwise unmappable reads. These reads are likely genuine ribosome footprints as they show a 
triplet periodicity identical to the reads that do not span exon–exon junctions (Figure 1B, bottom).

A dynamic local peak calling algorithm was then developed to identify TISs in the ribosome 
footprint data from harringtonin treated cells. The developed algorithm evaluates the signal in the 
region surrounding each peak, takes into account the triplet periodicity in the nearby codons and is 
able to report start codons in different frames.Acomplete description is available in ‘Materials and 
Methods’ section.
Scripts used for the combined alignment, triplet periodicity analysis and peak calling are publicly 
available at http://lumc.github.io/ribosome-profiling-analysis-framework/.

Experimental setup
We performed ribosome profiling on undifferentiated myoblasts and differentiatedmyotubes 
fromthemurine C2C12 cell line, a well-characterized model for skeletal muscle differentiation (60). 
Ribosome footprints were recovered from initiating ribosomes and elongating ribosomes after halting 
translation with harringtonin or cycloheximide, respectively, analyzing three independent cultures for 
each condition.

Ribosome footprints derived from coding and non-coding genes
Footprints recovered after halting translation with harringtonin or cycloheximide mainly mapped 
to protein coding genes (Figure 2A, Supplementary Tables S4 and S5). Reads mapping to repetitive 
sequences, including contamination from ribosomal and transfer RNAs, are shown separately in 
Supplementary Table S3.

In addition, a relative high proportion of reads mapped to long intergenic non-coding RNAs 
(lincRNAs) (between 5 and 10% in average) and small RNAs (between 10 and 20% in average). To 
address the coding potential of lincRNAs in our dataset, we compared the read length distribution 
of footprints mapping to coding genes, non-coding genes (all genes with accession prefix ‘NR ’ in 
the RefSeq collection, including also lincRNAs) or only lincRNAs (Figure 2B). Footprints mapping 
to protein-coding genes were preferentially 29 nt long, whereas footprints from non-coding genes 
did not show this preference in length. The read-length distribution of footprints mapping only to 
lincRNAs was similar to the one of footprints mapping to any other noncoding genes. Nevertheless, in 
both cases a portion of reads was 27–30 nt long.
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Figure 2. (A) Percentage of reads mapped to coding and non-coding genes in myoblasts and myotubes treated 
with harringtoning (Har) or cycloheximide (Chx). (B) Read-length distribution of footprints mapping to protein-
coding genes (top), non-coding genes (including small and long non-coding genes) or only to lincRNAs (bottom). 
(C) Read-length distribution of footprints mapping to Malat1, Snhg1, Rnu11 and H19. (D-G) Coverage patterns for 
Malat1, Snhg1, Rnu11 and H19 in harringtonin (top traces) and cycloheximide (bottom traces) treated myoblasts. 
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We identified highly covered lincRNAs with protected fragments of 27–36 nt (e.g. Malat1) or with a 
preference for reads 27–30 nt long (e.g. Snhg1, Rnu11, H19) (Figure 2C). Malat1 reads mapped along 
the full body of the transcript, it did not show a preferential peak at AUG codons nor other common 
non-AUG start codons and it lacked of a drop of coverage at any corresponding stop codon (Figure 
2D). Snhg1 showed coverage in intronic regions transcribing for snoRNAs, as previously reported in 
the Gas5 transcript (Figure 2E) (61). The coverage in Rnu11 (Figure 2F) and H19 (Figure 2G) was 
restricted to one or two regions, and no difference was shown between the cycloheximide and 
harringtonin treatment.

Based on these observations, we suggest that the majority of footprints deriving from lincRNAs in 
our dataset do not have a coding potential.

Subsets of mRNAs primarily regulated at translational level during 
myoblasts differentiation
To investigate the impact of translational regulation inmyogenesis, ribosome profiling data were 
compared to regular RNAseq data on total poly(A)+ RNA. The numbers of genes detected by 
ribosome profiling and RNAseq were similar (Supplementary Figure S2). Switches in the abundance 
of known markers of myogenesis were observed in both the RNAseq and the ribosome profiling 
data, as exemplified by the upregulation of the myogenic markers Myog, Tnnc1 and Myh7, and the 
downregulation of Myf5 (Supplementary Table S6).

Differential expression between myoblasts and myotubes was analysed at the gene level and the 
calculated log fold changes were compared between ribosome-bound RNAs (Supplementary Tables S7 
and S8) and total RNA (Supplementary Table S9). Overall we observed a positive correlation between 
total and ribosome-bound RNAs (r = 0.71 and 0.65 for cycloheximide and harringtonin footprints, 
respectively, Pearson correlation) (Figure 3). However, the fold change observed in ribosome-bound 
RNA is generally lower than the fold change in total RNA, as demonstrated by the slope of the 
regression line (0.46 for cycloheximide footprints [95% confidence interval: 0.457–0.474] and 0.42 
for harringtonin footprints [95% confidence interval: 0.413–0.431]). This is indicative for a general 
dampening effect of translational regulation.
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Figure 3. Changes in transcription and translation during myogenesis. Scatterplot showing differences in total 
RNA (x-axis) and ribosome-associated RNA (y-axis) from harringtonin (A) or cycloheximide (B) treated myoblasts 
and myotubes. Each data point represents the log-transformed fold change between myotubes and myoblasts. The 
red line indicates the slope, whereas the black line indicates the diagonal.
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A subset of genes showed discrepant total and ribosome-bound RNA levels. In harringtonin-treated 
C2C12 (Figure 3A), 5680 genes showed significant changes between myoblasts and myotubes 
(P-value < 0.05) in total RNA but not in ribosome boundRNAlevels, indicative of a dampening effect 
of translation on transcription-induced changes.Atotal of 431 genes were regulated exclusively at 
translational level but not at the transcriptional level. Finally, 544 genes were regulated in opposite 
direction, meaning that they were upregulated at transcriptional level but showed lower translational 
efficiencies or vice versa. In cycloheximide-treated cells (Figure 3B), a similar trend was observed, 

-0.5           0                     0.5   1.0

LogFC RNA-seq

Lo
gF

C 
RF

P 
(H

ar
)

-1.5

-1.0

-0.5

0.0

0.5

A

Rpl7

Mouse Dec. 2011 (GRCm38/mm10)   chr1:16,101,296-16,104,433 (3,138 bp)
1 kbmm10

16,102,00016,102,50016,103,00016,103,50016,104,000

- 125

_ 0
- 80

_ 0

- 5998

 1
- 2413

 1

Harringtonin
myoblasts

Harringtonin
myotubes

CAGE
myoblasts

CAGE
myotubes

C

TIS 1
pORF

TIS 2
aORF

TIS 1
pORF

TIS 2
aORF

TSS 

TSS 

0.5

1.0

-0.5

0.0

Lo
gF

C 
RF

P 
(C

hx
)

-0.5           0                     0.5   1.0

LogFC RNA-seq

B

Figure 4. Translational regulation of ribosomal protein genes. Scatterplots show differences in levels of 
transcribed and translated ribosomal protein genes. Total RNA (x-axis) and ribosome-associated RNA (y-axis) from 
harringtonin (A) or cycloheximide (B) treated myoblasts and myotubes are shown for 145 genes belonging to the 
ribosome KEGG pathway. (C) A screenshot of UCSC Genome browser displaying alternative translation start sites 
(TISs, first and second traces) and transcription start sites (TSSs, third and fourth traces) in myoblasts and myotubes 
of the ribosomal protein gene Rpl7. TSSs and TISs leading to the translation of the primary open reading frame 
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even though the number of genes that reached a statistical significance (P-value < 0.05) was lower 
(6902 genes were regulated during transcription but dampened at translational level, 66 genes were 
regulated only at translational level and 73 showed antidirectional changes).

We next addressed the contribution of miRNAs on the regulation of gene expression at the level 
of translation.We found 105 miRNAs differentially expressed between myoblasts and myotubes 
(Supplementary Table S10) in our miRNAseq data, of which 66 were upregulated. We then focused on 
the effect of nine well-characterized myomiRs (mir-206, mir-1a, mir-22, mir-27b, mir-133a, mir-155, 
mir- 29c, mir-675 and mir-181a-5p) and compared the calculated log fold changes of experimentally 
validated targets between ribosome-bound RNAs (cycloheximide treatment) and totalRNA.

For 8 out of 9 analyzed myomiRrs, the correlation in fold change of their targets was not significantly 
different from the general correlation (Supplementary Table S11, Figure S3). These data suggest that 
miRNA regulation does not contribute strongly to the observed translational regulation (Figure 3).

We continued our comparison of transcriptome and translatome by performing a pathway 
enrichment analysis (Supplementary Table S12) on the subsets of genes showing discordant regulation.

mRNAs coding for ribosomal proteins displayed the highest enrichment in the subset of genes 
showing opposite regulation between transcription and translation (these genes were downregulated 
at translational level but upregulated at transcriptional level, Pvalue 2.2 × 10−7), and in the subset 
of genes downregulated only at translational level (P-value 3.7 × 10−13). mRNAs involved in the 
proteasome pathway showed a moderate enrichment in the subset of oppositely regulated genes 
(P-value 3.5 × 10−5), followed by mRNAs involved in focal adhesion (P-value 3.3 × 10−4), regulation of 
actin cytoskeleton (P-value 7.7 × 10−4) and calcium signaling (Pvalue 2 × 10−2).

To determine whether the discordant regulation was affecting the full pathway or only a subset, we 
compared log fold changes of all genes belonging to each enriched pathway.

The correlation observed between RNAseq data and ribosome profiling data for all genes that 
are part of the calcium signaling pathway was high (r = 0.84 for both cycloheximide and harringtonin 
footprints, Pearson correlation), suggesting that only a subset of calcium signaling genes is differentially 
translated. Similar high correlations were observed for all the other pathways, except for ribosomal 
protein genes. A poor correlation was found between RNAseq data and ribosome profiling data for 
ribosomal genes, when comparing RNAseq and harringtonin footprints (r = 0.27, Pearson correlation, 
P-value = 0.0018) (Figure 4A). The comparison between RNAseq and cycloheximide footprints, 
however, showed a positive correlation (r = 0.79, Pearson correlation, P-value < 2.2e-16) (Figure 
4B). The discrepancy between ribosome footprints of initiating and elongating ribosomes suggested 
that not all initiating ribisomes were leading to translation of the ORF and/or that ribosome stalling 
was affecting the counts for elongating ribosomes. We therefore focused on the characterization of 
translation initiation.

Characterization of translation initiation in myogenesis
Data from harringtonin-treated cells were used to identify TISs used in myoblasts and myotubes. 
After mapping and filtering procedures, and combining the reads from the triplicate experiments, 
3,052,146 and 976,468 reads were used to assign TISs in myoblasts and myotubes, respectively. The 
above described dynamic local peak calling algorithm was used to discriminate between noise and 
genuine initiation sites in the surrounding region of each peak.

We detected a total of 6,823 TISs in myoblasts (Supplementary Table S13) and 2,371 TISs in 
myotubes (Supplementary Table S14), corresponding to 4,106 and 1,561 coding genes, respectively. 
Our analysis showed that ~45% of the detected genes in myoblasts had two or more TISs, whereas in 
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myotubes the percentage was slightly lower (~30%) (Figures 5A and 5B). The number of genes with 
more than six TISs was only ~0.5 and 0.6% in myoblasts and myotubes, respectively.

Approximately 50% of the footprints coincided with annotated start codons (Figure 5C), whereas 

~20% mapped in the 5’-UTRs (of which 6.5% in unannotated 5’-UTRs, <500 nt upstream of the 
annotated start codon). A considerable amount of footprints (~30%) were found within coding 
regions, ~5% of which led to in-frame ORFs, hinting at alternative start codons for protein isoforms 
with truncated N-termini for 107 genes in myoblasts and 50 genes in myotubes. No general shift in the 
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localization of TISs was observed during myogenic differentiation (Figure 5C).
Around 55% of the footprints in the detected TISs contained the canonical AUG codon (Figure 5D). 

Notably, footprints of TISs located in the 5’-UTRs were enriched for alternative codons, primarily CUG 
and GUG, in accordance with the notion that uORFs frequently use weaker, non-canonical start codons 
(Figure 5E) (24,26,28,60). Footprints of TISs located in the unannotated 5’-UTRs were also mainly 
mapping to the non-canonical codons CUG and GUG (Supplementary Tables S15 and S16), except in 
myoblasts where the percentage of footprints with a canonical AUG codon was higher (32 against 16% 
in myotubes). This discrepancy mainly originated from footprints mapping to two TISs, corresponding 
to the highly expressed splicing factor Sf3b6 and mitochondrial gene Prelid1 (Supplementary Figure 
S4). These two detected TISs were followed by a stop codon upstream of the pORFs, according to the 
genomic sequence, but no TISs were detected at the annotated start codons, which may be due to the 
sort distance between uORF and annotated TIS. Since the unannotated 5’-UTR sequence may contain 
intronic sequences, it is impossible to determine whether these TISs represent uORFs or genuine start 
codons from wrongly annotated genes.

To distinguish between uORFs and alternative extended N-termini, we focused on TISs located in 
the annotated 5’-UTRs, and we classified them based on their reading frame in relation to the pORF 
and the presence of stop codons.

60% of the detected TISs located in the 5’-UTRs were leading to stop codons prior the start of the 
pORFs (corresponding to 1,274 TISs and 380 TISs in myoblasts andmyotubes, respectively) (Figure 
6A). The length of these uORFs ranged from1 to more 100 amino acids (Figure 6C), but the majority 
(~85%) were between 1–30 amino acids (50% was shorter than 10 amino acids). The remaining 
40% of the TISs located in 5’-UTRs were not leading to stop codons prior the start of the pORF, but 

~72% of these uORFs was in a different reading frame than the pORFs, leading to overlapping uORFs, 
whereas the remaining 28% was in-frame with the pORF, suggesting the presence of isoforms with 
extended N-termini (Figure 6B). The length of the overlapping uORFs was longer than the one of the 
nonoverlapping uORFs, reaching up to 400 amino acids and with only ~40% being shorter than 30 
amino acids (Figure 6D). We then investigated whether the usage of TISs in the 5’-UTRs sequences 
was associated with the presence of known regulatory elements, such as Internal Ribosome Entry 
Sites (IRESs) and Terminal Oligopyrimidine Tracts (5’ TOP).

A significant enrichment of predicted IRES was found in transcripts with TISs in the 5’-UTRs, 
compared to transcripts forwhichwe detected TISs only in the annotated start codon and in the coding 
region. 36% of the transcripts containing TISs in the 5’-UTR had IRESs (Supplementary Table S17), 
whereas the percentage dropped to 24 for transcript without TISs in their 5’-UTRs in myoblasts (27 
against 20% in myotubes, respectively).

No significant enrichment was found for predicted 5’ TOPs (Supplementary Table S18), and overall 
the percentage of transcripts with a TIS in the5’ UTR and the presence of a predicted 5’ TOP was 
lower compared to the percentage of transcripts containing predicted IRES (~4% for both myoblasts 
and myotubes). These results suggest that for these genes uORFs do not play an important role in the 
regulation of mRNAs starting with a 5’ TOP in myogenesis, whereas they may favor the use of IRESs in 
a subset of genes.

Alternative translation initiation independent of alternative promoter 
usage
Differences in TIS usage during skeletal muscle differentiation could derive from regulation at the 
transcriptional level, due to alternative promoter usage. Alternatively, a switch in TIS usage may occur 
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in the same transcript and arise from regulation at the translational level, because of differential 
recognition of upstream or alternative ORFs due to altered activity of translation initiation factors 
or RNA binding proteins. Regulation at the translational level can also occur through different 
efficiency in the translation of transcript variants. An example of a gene with a combination of both 
scenarios is Tpm3, a cytoskeletal protein involved in the calcium dependent regulation of muscle 
contraction. Two different TISs were detected in Tpm3: one TIS arising from a shorter transcript was 
predominantly used in myoblasts, another TIS arising from a longer transcript with alternative first 
exons was predominantly used in myotubes (Figure 7A). This results in the formation of proteins with 
two distinct N-termini, a longer isoform of 285 aa (UniProt P21107–1, also known as skeletal muscle 
isoform) and a shorter isoform of 248 aa (P21107-2, also known as cytoskeletal isoform). In addition 
to the nature of the transcribed protein, the efficiency of translation seems to be tightly controlled. 
As a measure for translational efficiency and to assess the effects of changes in TSSs, we analysed 
DeepCAGE data to detect 5’-ends of transcripts.

DeepCAGE data for the same gene in the same cells showed three different TSSs. The most distal 
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(3’) TSS does not appear to code for a protein. The other two code for the short (cytoplasmic) and 
long (skeletal muscle) transcript variants and were transcribed at similar levels in myotubes (Figure 
7B). However, the short variant was not translated in myotubes, but only in myoblasts (Figure 7A). 
Interestingly, tropomyosin proteins have already been shown to be regulated at translational level in 
slow-twitch and fast-twitch muscles (62).

To investigate the extent of translational regulation during myogenesis, we assessed the statistical 
significance of TIS switches for all genes with more than one TIS. From 4219 genes for which we could 
identify TISs, 1729 genes contained at least two TISs. Out of those, 312 genes (18%) (Supplementary 
Table S19) showed a significant difference (P-value < 0.05, after multiple testing correction) in 
alternative TIS usage between myoblasts and myotubes. To account for changes derived fromregulation 
at transcriptional level, we performed the same analysis to detect changes in TSS usage as detected 
by DeepCAGE. Out of 6426 detected genes, 635 genes contained two or more TSSs, and 28% (180) 
of those showed a significant change (P-value < 0.05, after multiple testing correction) in TSS usage 
betweenmyoblasts andmyotubes (Supplementary Table S20).

The overlap between genes with both changes in TISs and TSSs usage was small (Figure 8A), 
indicating that the majority of switches in TIS are occurring in transcriptswith the same start site. 
Even transcripts with a switch in both TIS and TSS usage appeared to be at least partly regulated at 
the translational level.

Cryab is an example of such a transcript. Two major TSSs were detected inmyoblasts, whereas in 
myotubes only one of the two TSS was detected (Figure 8B). Ribosome footprints from myoblasts 
showed (i) a TIS in the 5’-UTR, which represents an uORF with an harringtonin peak corresponding 
to an AUG start codon in a Kozak consensus sequence, and cycloheximide footprints on the entire 35 
amino acids uORF, in addition to (ii) a TIS representing the pORF (Figure 8C). In myotubes, however, 
only the TIS corresponding to the annotated start codon was detected. Ribosome profiling footprints 
of cycloheximide treated cells showed a significant upregulation of Cryab in myotubes compared to 
myoblasts (Supplementary Table S8). This indicates a negative effect of the uORF on translation in 
myoblasts. The short distance between the uORF and the pORF, plus the relatively long uORF (35 
amino acids) suggest that translation re-initiation in myoblasts is impaired. In agreement with our 
finding, a previous study has shown upregulation of Cryab at protein level in myotubes (63).

To identify which other genes are likely subjected to translational regulation by expression of uORFs, 
we selected genes with a significant switch between the annotated TIS and a TIS in the5’-UTR region, 
as evident from the interaction P-value of relative TIS usage and differentiation status (Supplementary 
Table S21). This led to the identification of 27 genes containing uORFs regulated during differentiation. 
Many of these genes, including Cryab (63,64), Vim (65), Spp1 (66), Eno3 (67,68), Pgam (69), Agl (70), 
Tmbim6 (71), Asb8 (72) and Cs (73), are known to be involved in the development, regeneration and/or 
homeostasis of skeletal muscles in humans (Table 1). Moreover Eno3 (74,75) and Spp1 (76) have been 
recently reported as biomarkers for Duchenne muscular dystrophy, where their protein expression 
levels changes in Duchenne patients through molecular mechanisms not yet fully understood.

KEGG pathway analysis on the complete set of genes with changes in alternative TIS usage 
showed moderate enrichment of only two pathways, ribosomal proteins genes and genes involved 
in the calcium signaling pathway (Supplementary Table S22), pathways that were also enriched 
in a comparison of transcriptome versus translatome (Supplementary Table S12). None of the 27 
genes with switches involving uORFs was listed in the set of genes belonging to these two pathways, 
indicating that the observed switches identified in ribosomal protein genes and calcium signaling 
genes were mainly occurring between an annotated TIS and a TIS in the coding region, or between 
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different TISs in the coding region. Another plausible explanation is the imperfect annotation of KEGG 
pathway, as seen for Tmbim6, a gene involved in calcium signaling (76) but not listed in the calcium 
signaling pathway (mmu4020).

Switches between alternative TISs which were observed in ribosomal genes were indeed mainly 
occurring between the annotated TISs and alternative TISs located downstream in the coding region. 
These switches were not due to alternative TSS usage as generally only one TSS was found. An example 
of such a ribosomal protein gene is Rpl7 (Figure 4C). The TIS detected in the coding region may lead 
to translation of a shorter novel protein, containing a methionine at its start codon and translated in a 
different frame compared to the pORF. This aORF may therefore represent a dual coding region. Rpl7 
was downregulated at total RNA level, but the downregulation did not reach significanctly in both 
ribosome profiling datasets.

We determined RPL7 protein level by western blot analysis, and detected similar protein expression 
levels between myoblasts and myotubes (Supplementary Figure S5), suggesting that the alternative 
out-of-frame TIS does not affect the translation of the pORF and that the downregulation observed 
at total RNA level is buffered during translation. Western blot was also performed for two other 
ribosomal proteins, RPL34 and RPS15, where the detected alternative TISs in the coding regions were 
in-frame with the pORFs. Rpl34 was shown to be significantly upregulated at total RNA level, whereas 

Figure 7. Alternative transcription 
and translation in Tpm3. On top of 
the coverage tracks, the six annotated 
transcripts are shown. (A) Two 
translation initiation sites (TISs, indicated 
by red arrows) arise from two transcript 
variants and are differentially used in 
myoblasts (first trace, harringtonin) and 
myotubes (third trace, harringtonin). 
Footprints in the complete open reading 
frame are shown for myoblasts (second 
trace, cycloheximide) and myotubes 
(fourth trace, cycloheximide). (B) Two 
transcription start sites (TSSs, indicated 
by red arrows) are used in myoblasts 
(top trace) and three transcription start 
sites are used in myotubes (bottom 
trace).
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it was downregulated in harringtonin footprints (the downregulation did not reach significance in 
cycloheximide footprints). Rps15 was not differentially expressed at total RNA levels but, similarly to 
Rpl34, harringtonin footprints showed a downregulation in myotubes (which did not reach significance 
in cycloheximide footprints). For both RPL34 and RPS15 no significant change was detected at protein 
level with western blot analysis, neither the presence of truncated isoforms (Supplementary Figure 
S5).

We attempted to validate the presence of dually decoded regions, N-terminally truncated or 
extended isoforms and small ORFs derived from uORFs, in a genome wide scale, by screening publicly 
available raw LCMS/MS proteomic datasets, including two C2C12-specific datasets (77,78) and a 
HiRIEF LC-MS/MS deep proteome dataset from N2A mouse cell (79). None of the novel candidate 
peptides passed our stringent spectrum-level validation, consistent with an extremely low abundance 
of these peptides or detection of ribosome stalling (see Discussion section).

DISCuSSION
Gene expression programs control tissue development and regeneration. Whereas regulation of 
gene expression at transcriptional level is extensively studied at genome-wide level, control of mRNA 
translation has mostly been studied on individual genes. Polyribosomal mRNAs profiling has been 
used in the past to obtain a global overview of translation efficiency. However, the novel approach of 
ribosome footprint profiling enables translatome analysis at the same level as transcriptome analysis. 
Nonetheless, the existing protocol for ribosome profiling is laborious and, to date, there are no 
dedicated pipelines for the analysis of the short ribosome footprints.

Here we describe a simplified protocol for ribosome profiling and a novel data analysis pipeline, 
which includes a combined mapping procedure for short reads, the analysis of the triplet periodicity 
and a dynamic peak calling algorithm to detect annotated and/or novel TISs, including aORFs and 
uORFs in frame or out-of-frame compared to the annotated ORF. We used our simplified protocol and 

Gene symbol Biological and/or clinical relevance TIS position (5'-end) Start codon Length (aa) uORF peptide sequence Type of uORF

Cryab AlphaB-crystallin modulates myogenesis by altering MyoD levels.
CRYAB levels increase during differentiation, leading to an
increase of MYOD levels. Loss of CryAB alters the capability of
satellite cells to regenerate skeletal muscle. 

chr9:50753019 AUG 35 MTSHRSAQPCLCFSFLSSVSTGY
VSPCQIPDHKSP

Not overlapping

chr9:50753228 UUG 47 LTSQPTLHSSSHNGHRHPPPLDPA
PLLPLPLPKPPLRPVLRRAPVGV

Overlapping

Spp1 Osteopontin is a target of MyoD and Myf5 and a biomarker for
Duchenne muscular dystrophy.

chr5:104435126 CAU 20 HPCLGLQSSAAGILGGNQPR Not overlapping

chr5:104435168 GGA 6 GGNQPR Not overlapping

Eno3 The beta-subunit of the glycolytic enzyme enolase is upregulated 
at transcriptional level during differentiation of myoblasts.
Mutations in this gene have been associated to muscle beta-
enolase deficiency, w hich leads to glycogen storage disease.
Eno3 is a biomarker for Duchenne muscular Dystrophy.

chr11:70657801 UCU 64 SSSLRDQLSTLAHSHLLWCSHGH
AKNLRPGNPGLQGQPHGGGGPA
HSQGSIPSSCAQWSFHGYL

Overlapping

Pgam Phosphoglycerate mutase is regulated at transcriptional level
during myogenesis and dysfunction of Pgam leads to metabolic
myopathy.

chr19:41911995 UCG 21 SAILSCCCILCPSPWLPTSWC Overlapping

Agl Glycogen debranching enzyme is involved in glycogen storage
disorders (Cori’s and Lafora’s disease).

chr3:116807384 GUU 19 VRILQKPKWNTVSRFEFYY Overlapping

Tmbim6 The BAX inhibitor motif containing 6 gene modulates calcium
homeostasis in the endoplasmatic reticulum.

chr15:99399869 CUG 10 LNRLWSHEYI Overlapping

chr15:99393038 UGU 4 CPVL Not overlapping

Asb8 Ankyrin repeat and SOCS box gene 8 is expressed
predominantly in skeletal muscle (i). A member of the same family 
(Asb15) regulates skeletal muscle grow th by stimulating protein
synthesis and regulating differentiation of muscle cells.

chr15:98145607 UUG 7 LEHVNTL Not overlapping

Cs Citrate synthase is a mitochondrial enzyme regulated during
myogenesis, w hen mitochondrial content rapidly increases.

chr10:128337852 CUG 1 L Not overlapping

Vim Vimentin is expressed during the starting phase of differentiation
and decreases during development progression in C2C12.

chr2:13574376 UUG 45 LQFFQPQQASPPSKPCLPGLCPR
PPTAGCSVAPAHRAGPAPTGAM

Overlapping

Table 1. Candidate uORFs differentially used during myogenesis, in genes with biological and/or clinical relevance 
in muscle biology. 
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custom pipeline to investigate the extent of translational control during the formation of mammalian 
skeletal muscles, based on the analysis of the translatome, promoterome and transcriptome of 
proliferating myoblasts and differentiated myotubes in the murine C2C12 cell model. We integrated 
ribosome profiling data, DeepCAGE data, RNAseq and miRNAseq data to assess the contribution of 
translational regulation to the changes in protein expression during myogenic differentiation.

Detection of TISs
To investigate the impact of alternative translation initiation, we used our custom dynamic peak calling 
algorithm to detect and quantify alternative TIS usage during differentiation in harringtonin treated 
myoblasts and myotubes.

Our algorithm detected 5,333 not yet annotated TISs, providing an extensive catalog of alternative 
TISs leading to uORFs, aORF and potentially dual coding regions, specifically used during myogenesis.

We report only a high confidence set of TISs. Not all peaks called from the harringtonin footprints 
may represent genuine TISs. False positive peaks may arise in the distal part of the coding regions, 
when the harringtonin treatment is too short for elongating ribosomes to finish the translation of the 
C-terminal part of the protein. For this reason we developed a dynamic peak calling algorithm which 
considers not only the triplet periodicity pattern, but also the coverage and the relative position of 
each candidate TIS.

Alternative TISs detected in the 5’-UTRs (corresponding to ~20% of mapped reads) showed a codon 
distribution similar to previously reported studies (24,25,55), with CUG and GUG codons being the 
most abundant non-AUG codons, whereas 50% of the footprints mapped to annotated start codons. 
Overall, these findings give confidence in our data. Likely, many more TIS are used during myogenesis, 
but they were not abundant enough to be detected in our experiments.

We detected a lower number of TISs in myotubes compared to myoblasts, which may relate to 
lower numbers of footprints prior to peak calling. Nevertheless, it does not exclude the possibility 
that the lower percentage of alternative TISs in myotubes reflects a true biological phenomenon, 
considering that differentiated cells become more specialized and therefore require a smaller protein 
repertoire.

We may also have lost alternative TIS due to our stringent thresholds: alternative TIS were only 
called when their abundancewas at least 10% of the full length isoform,where previous reports 
demonstrated that N-terminally truncated protein isoforms present at only 5% of the full length 
isoform can exert biologically significant effects (10,80). However, we preferred to not decrease this 
threshold and avoid false positives.

In our study ~30% of the reads mapped within the coding regions of pORFs. Only ~6% of the TISs 
located in coding regions were in-frame with their pORFs (~4% in case of TISs detected in myotubes), 
representing potential protein isoforms with truncated N-termini. We were not able to confirm the 
presence of alternative truncated protein isoforms for RPL34 and RPS15 at western blot level. An 
explanation could be pausing of ribosomes during the harringtonine treatment, or leaky scanning of 
the pORF TIS that results in recognition of a downstream start codon yielding to an instable alternative 
isoforms. The primary ribosomal proteins are stable and accumulate in the cell, whereas the isoform 
does not accumulate.Regulation of protein stability is another control mechanisms determining 
protein abundance, which cannot be addressed by ribosome profiling.

The remaining TIS located in the coding regions where outof- frame TISs. A portion of it may 
represent potential dual coding regions. Previous studies have detected dual coding regions in genes 
involved in fundamental cellular processes (21), such as translation (Eif4a2), cell cycle (Cdkn2a) and 
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protein degradation (Ube2e2). Many translation initiation factors, including Eif1, Eif4a2, Eif4e2, 
Eif4a1, Eif2s1 and Eif5 showed a switch in TIS usage during myoblasts differentiation.

We did not observe dual coding in Eif4a2 in our data, but we did detect two TISs in Eif1, one 
representing the annotated start codon and the other representing an out-of-frame aORF with an 
AUG start. Nevertheless, for the majority of the alternative out-of-frame TISs, we currently lack further 
evidence. Our attempt to validate dual coding regions, in-frame aORF and small peptides derived 
from uORFs, based on publicly available mass spectrometry data, present several limitations, even 
if the proteomic data used is of high quality and acquired using state-of-the art instrumentation and 
methodology. An untargeted proteomic approach is not ideal due to dynamic range limitations and 
difficulties in detecting and quantifying low-abundant proteins among a diverse pool (81). A recent 
study showed that ribosome profiling data could be used to improve identification of novel N-termini 
isoforms and translated upstream ORF from proteomic data (82). However, only a small number of 
translated uORFs and N-terminal extensions was validated. We therefore conclude that the lack of 
consistency between ribosome profiling data and mass spectrometry data does not invalidate our 
findings, but positive validation of these translated uORFs and aORFs on protein level may require 
enrichment of peptides by anti-peptide antibodies raised against a number of predicted and 
synthesized peptides.

In this study we restricted the detection of TISs in coding transcripts. Nevertheless, a percentage 
of footprints derived from non-coding transcripts. LincRNAs bound to ribosomes have been observed 
in previous ribosome profiling (24) and polysome profiling studies (83). Whether they lead to active 
translation is still debated, with some studies showing no coding potential (84,85) and others 
suggesting that translation occurs in portions of lincRNAs (61). The fragment-size of the protected 
footprint is one of the parameters commonly used to distinguish true ribosome footprints from 
RNA fragments derived from transcripts protected by other complexes that may co-sediment with 
ribosomes or fragments derived from stable RNA secondary structure. Our read-length distribution 
analysis showed that lincRNAs did not always display a preference for one specific read-length, as 
protein coding genes did, and for those which showed a preferential peak surrounding 30 nt, we did 
not observe characteristic signatures of translation, not even restricted to portions of the lincRNAs.

Cellular processes controlled by selective mRNA translation in myogenesis
During differentiation of myoblasts into multinucleated myotubes, protein synthesis generally 
correlated with mRNA levels for the majority of the genes. Genes with lower correlations are likely 
regulated at the level of mRNA translation. The latter were strongly enriched for genes encoding for 
ribosomal proteins, whereas a modest enrichment for genes involved in protein degradation, focal 
adhesions, regulation of actin cytoskeleton and calcium signaling was also observed. The ribosomal 
protein genes and the calcium signaling pathway were also enriched in the set of genes showing 
alternative TIS usage, but the enriched genes were different, indicating that these pathways are 
mainly regulated at translational level not only by different translation initiation but also through 
other mechanisms.

A previous study showed that the production of three ribosomal proteins (S16, L18 and L32) is 
regulated both at the level of transcription and translation during myoblast differentiation (86). The 
authors showed a decrease in transcription and a decrease in translation efficiency by measuring 
mRNA bound to polysomes. In line with their study, S16, L18 and L32 showed a significantly lower 
number of harringtonin footprints in myotubes, whereas the decrease in cycloheximide footprints did 
not reach statistical significance.
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A general downregulation was observed for the majority of the ribosomal protein genes both 
at transcriptional and translational level. Despite a positive correlation between RNAseq and 
cycloheximide footprints (r = 0.79, Pearson correlation), we found a poor correlation between RNAseq 
data and harringtonin footprints (r = 0.27, Pearson correlation), much lower than the correlation for 
all genes (r = 0.65). This discrepancy observed may be explained in different ways, one of which could 
be ribosome stalling, a known limitation in ribosome profiling data (87). If elongating ribosomes are 
stalled, this may lead to accumulation of footprints, which might be detected as alternative TISs in 
harringtonin data. The same applies to cycloheximide footprints, where ribosomal pauses might 
interfere with a correct quantification of translation. However, even if the peaks and footprints 
do not always reflect the production of novel short peptides or protein isoforms, we observed 
significant changes in ribosome footprints at those sites during myogenesis. These changes are highly 
reproducible between replicates, they are cell specific and tightly controlled during differentiation 
and therefore they likely represent a regulatory mechanism with relevance for muscle differentiation.

The mechanisms regulating alternative TISs usage in myogenesis remain to be investigated. 
Previous studies have shown that proteins involved in the translation machinery are autoregulated 
(35) and their synthesis is mainly controlled at the level of translation (88). These mRNAs are mainly 
characterized by the presence of structural motifs, such as the 5’ TOP. The mTOR signaling pathway 
is known to regulate translation of TOP mRNAs. Serum removal could represent a downregulating 
stimulus for the mTOR pathway, possibly leading to mTOR-pathway inactivation and mTOR-dependent 
translation repression. The protocol for C2C12 differentiation is based on serum reduction (from 10 to 
2% FBS) but our data does not show evidence of amajor contribution of themTOR signaling pathway 
toward the control of TOP mRNAs translation during myogenic differentiation, as we do not observe 
any enrichment of transcripts bearing a 5’ TOP and affected by a switch in IS usage. Other studies have 
previously shown that the inhibition of mTOR can have different outcomes, from a major effect to little 
or no effect on TOP mRNA translation, depending on the cellular context (88). The ribosomal protein 
genes and translation factors which showed a switch in IS usage did not contain a 5’ TOP, therefore we 
suggest that a different mechanism is used.

Next to genes involved in the translational apparatus, we found that many of the genes showing a 
switch in TIS usage are known to play a role in muscle development, maintenance and regeneration. 
Cryab (63,64), Spp1 (66), Tmbim6 (71) and Cs (73) have been previously shown to be regulated at 
transcriptional level during myogenic differentiation. no3 (67,68), Pgam (69) and Agl (70) have been 
related to metabolic myopathies, whereas Eno3 (74) and Spp1 (75) have been recently reported as 
biomarkers formuscular dystrophies. We showed that these genes are regulated at translational level 
by switches of alternative TIS usage between uORFs and pORFs during differentiation. Due to themany 
regulatory potential of uORFs, a full understanding of the translational control of these genesmay be 
relevant for clinical purposes.

The contribution of mRNA translation in myogenesis
Even though we observed a general positive correlation between transcription and translation, 
suggesting that most of the regulation occurs at transcriptional level, we also observed a dampening 
effect of translational regulation. The causes of this dampening effect remain to be elucidated.

Translation can be regulated by many different mechanisms. Here we specifically focused on the 
alternative use of start codons. Our study showed that 312 genes were subjected to switches in 
alternative TIS usage during differentiation. Although we showed that the presence of a myotube-
specific promoter in Tpm3 resulted in an alternative TIS, we found that the majority of the switches 
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detected at translational level was independent from transcription. Switches in TIS usage mostly 
occurred in genes with a single promoter, thus the transcription of genes from distinct promoters, and 
the translation initiation from distinct start codons, seem to be two complementary mechanisms to 
control gene and protein expression in myogenesis. 

Moreover, we showed that alternative promoters may also lead to recognition of regulatory uORFs 
located in the 5’-UTR, as shown for Cryab. Therefore, alternative TSS can be used to regulate protein 
levels. Nevertheless the detection of alternative TSSs may be challenging when TSSs are characterized 
by a broad peak (59). The DeepCAGE technology and the subsequent clustering procedure may 
not have the resolution to identify SSs which are in close proximity, leading to the incorporation 
of alternative TSSs into one single TSS. Our analysis might therefore underestimate the number of 
alternative TSSs which are in very close proximity and therefore overestimate the number of switches 
in TIS usage exclusively dependent on the translational control. It remains to be investigated to which 
extent this phenomenon may alter our results.

A considerable amount of footprint mapped in the 5’-UTRs. Even though it is difficult to predict the 
effect of an uORF based on the length, many reports suggest that short uORFs are regulatory, whereas 
long uORFs and out-offrame uORFs overlapping the pORF primarily inhibit protein synthesis (89,90). 
We showed that the majority of the non-overlapping uORFs were between 1–30 amino acids long, 
whereas the majority of the overlapping uORFs were longer than 30 amino acids, suggesting a likely 
stronger regulatory potential.

We further investigated the contribution of miRNAs in the regulation of translation, focusing 
onwell-characterized myomiRs. For all experimentally validated targets we did not observe any major 
effect on translation inhibition. The amount of mRNAs targets present at transcriptome level and the 
amount of mRNAs targets translated reflected the general dampening effect observed for all other 
non-target genes, indicating that the myimiRs do not primarily affect the translational control of their 
target mRNAs.

In conclusion, our results demonstrate that translation initiation represent a layer of regulation of 
protein expression in myogenesis for specific subsets of functionally correlated genes.
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SuPPORTING INFORMATION
Supplementary Tables 1-22 and supplementary Text are available at NAR Online

Table S1. Triplet periodicity. Number, percentage and median of reads mapping to the first, second 
and third nucleotide of a codon, and percentage of reads mapping 12 nucleotides upstream of 
annotated translation start sites (TISs).

Table S2. List of mouse Refseq transcripts with TIS located within a splice junction or located less 
than 15 nt upstream or downstream an exon-exon junction. Distance relative to the 3’ and 5’ ends 
are reported.

Table S3. Alignment statistics. Number and percentage of reads mapped to the transcriptome 
reference or to the genome reference after transcriptome alignment. Number and percentage of 
reads mapped to the repeat mask.

Table S4. Number and percentages of ribosome profiling reads from harringtonin-treated C2C12 
mapped to annotated biotypes, after genome alignment or combined alignment.

Table S5. Number and percentages of ribosome profiling reads from cycloheximide-treated C2C12 
mapped to annotated biotypes, after genome alignment or combined alignment.

Table S6. Myogenic markers. Gene expression levels of Myog, Tnnc1, Myh7, Myf5 in RNAseq data 
and ribosome profiling data.

Table S7. Differentially expressed genes in ribosome profiling data (harringtonin, footprints of 
initiating ribosomes).

Table S8. Differentially expressed genes in ribosome profiling data (cycloheximide, footprints of 
elongating ribosomes).

Table S9. Differentially expressed genes in RNAseq data.

Table S10. Differentially expressed miRNAs in  miRNAseq data.

Table S11. MyomiRs analysis. Estimated coefficients and confidence intervals for experimentally 
validated targets of nine myomiRs.  

Table S12. KEGG pathway analysis on subsets of genes differentially regulated during transcription 
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and translation.

Table S13. List of TISs detected in myoblasts.

Table S14. List of TISs detected in myotubes.

Table S15. Codon distribution. Number of TISs and read counts per motif per category detected in 
myoblasts.

Table S16. Codon distribution. Number of TISs and read counts per motif per category detected in 
myotubes.

Table S17. Internal Ribosome Entry Sites. Predicted IRES in transcripts with TISs in their 5’-UTRs, for 
myoblasts (top list) and myotubes (bottom list).

Table S18. Terminal Oligopyrimidine Tract. Predicted 5’TOPs in transcripts with TISs in their 5’-UTRs, 
for myoblasts (top list) and myotubes (bottom list).

Table S19. List of genes with alternative TIS usage during myogenesis

Table S20. List of genes with alternative TSS usage during myogenesis.

Table S21. List of genes with alternative TIS usage between myoblasts and myotubes and interaction 
p value of relative TIS usage.

Table S22. KEGG pathway analysis on genes with changes in alternative TIS usage between myoblasts 
and myotubes.
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ABSTRACT
Deciphering the interdependency between transcriptional and posttranscriptional regulatory 
events acting on the same RNA molecule is key in understanding the regulation of gene expression. 
The analysis of 7.4 million single-molecule long sequencing reads representing full-length mRNA 
molecules in MCF-7 human breast cancer cells provides the first comprehensive view of the degree of 
coordination between alternative transcription initiation, splicing and polyadenylation. In MCF-7 cells, 
an unforeseen amount of genes undergo vigorous and interdependent preferential selection during 
transcription and mRNA processing, which occur across the entire mRNA molecules. In particular, 
alternative polyadenylation sites that are coupled with alternative splicing events are depleted for 
known polyadenylation signals and enriched for MBNL binding motifs, supporting a dual role of MBNL 
proteins in regulating splicing and polyadenylation.

Our findings demonstrates that our understanding of transcriptome complexity is far from complete 
and provides a framework to reveal largely unresolved mechanisms that coordinate transcription and 
mRNA processing.
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INTRODuCTION
The formation of a mature messenger RNA (mRNA) is a multi-step process. In higher eukaryotes, 
variations in each of these steps, e.g. selection of alternative transcription initiation, alternative exons, 
and alternative polyadenylation site, change the nature of the mature transcript. Tight regulation 
and coordination of these processes ensures the production of a set of cell-, tissue- and condition-
specific transcript variants to meet variable cellular protein requirements (1-4). The co-transcriptional 
nature of mRNA processing suggests the presence of yet largely unresolved mechanisms that couple 
transcription with 5’ end capping, splicing, and 3’ end formation (reviewed in 5). Thus, resolving 
full transcript structures and accurate quantification of the abundance of alternative transcripts are 
important steps towards the delineation of these mechanisms. 

RNA sequencing (RNA-Seq) has become a central technology for deciphering the global RNA 
expression patterns. However, reconstruction and expression level estimation of alternative transcripts 
using standard RNA-Seq experiments is limited and prone to error due to relatively short read length 
(typically up to 150 nucleotides) and required amplification steps of second-generation sequencing 
technologies (6, 7). It is apparent that single-molecule long reads that capture the entire RNA molecule 
can offer a better understanding of the rich patterns of alternative transcription and mRNA processing 
events and gene expression in human transcriptome and, hence, the underlying biology. 

Despite a number of studies that have pursued long read sequencing to connect different exons or 
even capture entire transcripts with a rather limited sequencing depth (6, 8-14), the coupling between 
transcription and mRNA processing has not been extensively studied. Here, we investigate the global 
pattern of coupling between transcription, splicing and polyadenylation in MCF-7 human breast 
cancer cell line, which is deeply sequenced using the single-molecule real-time Pacific Biosciences 
RSII sequencing platform.

We show that transcription and mRNA processing are tightly coupled and that such 
interdependencies can be found across the entire RNA molecule and across large intra-molecular 
distances. We demonstrate that transcript identification and understanding of coupling between 
processes that are involved in the formation of these transcripts is far from complete, even in well-
characterized human cell lines such as MCF-7. This study provides an in-depth view of the true 
complexity of the transcriptome and, for the first time, shows the tight and global interdependency 
between alternative transcription, splicing and polyadenylation.

RESuLTS
Detection of transcript variants and the associated interdependencies 
between alternative exons
To investigate the genome-wide coupling of transcription and mRNA processing events, full-length 
mRNAs from MCF-7 human breast cancer cells were sequenced on 119 SMRT cells using Pacific 
Biosciences RSII platform (Supplementary Table 1). Prior to sequencing, parts of the sequencing 
library were size selected to allow for capturing rare and longer transcripts. The sequencing depth of 
our data, consisting of 7.4 million long reads, is equivalent to 70.3 million Illumina paired-end reads. 
Thus, this data enables reliable quantification of transcript abundance in MCF-7 transcriptome.

Transcript structures were defined by applying the isoform-level clustering algorithm (ICE) on 
full-length reads, capturing the entire mRNA molecule (containing both 5’ and 3’ primer sequences). 
Transcript sequences were further polished using both full-length and partial reads (Figure 1A). Our 
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analysis pipeline could precisely determine the position of polyadenylation sites (presence of poly(A) 
tail in the sequence) and intron-exon boundaries, as evident from the presence of the canonical GU 
motif in 94.9% of donor splice sites and the canonical AG motif in 96.6% of acceptor splice sites. 
From the 14,385 genes with detectable expression, 49% produced multiple transcript structures 
(Supplementary Figure 1). A total of 93 candidate fusion genes were identified based on the inter-
chromosomal or distant intra-chromosomal split-alignment of transcripts to the human reference 
genome (Supplementary Table 2). In addition, 42% of identified transcripts in MCF-7 are potentially 
novel in comparison with the GENCODE annotation (Supplementary Table 3). 

To detect and characterize the dependency between transcription and mRNA processing events, 
we designed the following analysis strategy (Figure 1). For each gene, the union of all exonic sequences 
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and detected genes. The sum of the coverage of all transcripts that support the inclusion or exclusion of each 
pair is used in a contingency table to perform a Fisher’s exact test for statistical significance. The odd ratio (OR) 
is used to differentiate between mutually inclusive (positive log-transformed OR) and exclusive (negative log-
transformed OR) coupling events. Next, for all alternative exons that show significant linkage, a motif search is 
performed to assess the enrichment of specific RNA-binding protein motifs. For all alternative exons, the 35bp 
intronic sequences upstream of the acceptor site are defined as R1 domain (depicted in orange), the 32bp exonic 
sequences downstream of the acceptor site and upstream of the donor site are defined as R2 domain (depicted 
in dark grey), and 40bp intronic sequences downstream of the donor site are defined as R3 domain (depicted in 
purple). The 35bp sequence upstream of each PAS (depicted in red) is searched for the presence of canonical and 
non-canonical poly(A) signals.
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was considered as the available sequence and the union of all unique transcription start sites (TSSs), 
exons (defined as having distinct donor and acceptor splice sites), and polyadenylation sites (PASs) 
was used as a set of available features (Figure 1B). Mutual inclusivity or exclusivity of all possible pairs 
of features was assessed based on the number of reads that support the inclusion or exclusion of each 
pair of features. Subsequently, we applied a Fisher’s exact test to evaluate statistical significance of the 
interdependency between a pair of features (Figure 1C; also see Methods). 

General properties of coupling in human MCF-7 transcriptome
The MCF-7 transcriptome data consist of 14,385 genes containing 1,724,400 combinations of features 
(TSSs, exons, and PASs). The majority of combinations represent exon-exon pairs as many loci contain 
only a single TSS or PAS whereas most loci are multi-exonic (Supplementary Figure 2). Since the test 
is only applicable to genes with multiple transcripts, only 7,008 genes and 1,090,077 pairs of features 
(TSSs, exons, and PASs) were included in the statistical evaluation. Twenty percent of all feature 
pairs were significantly coupled (p-value < 4.6e-08, after Bonferroni correction for multiple testing). 
Generally, we observed large effect sizes for coupled features with the majority (65%) to be mutually 
inclusive, meaning that features were predominantly present in the same transcripts (Supplementary 
Figure 3,4). Remarkably, we observed coupling between mRNA features in nearly half of all genes 
that were evaluated (3,426 out of 7,008; Figure 2A; Supplementary Figure 5). We found a substantial 
amount of interdependencies between all types of features (Figure 2B). Of the 3,426 genes with at 
least one coupling event, 1,212 (35%) showed interdependencies between all classes of features: 
alternative TSS linked to alternative exons, alternative exon to alternative exon linkage, alternative 
PAS linked to alternative exons, and alternative TSSs to alternative PASs. Thus, the deep sequencing of 
full-length mRNAs provided a first image of the large degree of coordination in the usage of alternative 
TSSs, exons and PASs, mostly restricting the number of produced transcripts given the substantial 
amount of combinatorial possibilities.

Only 18% of the significantly coupled transcription and mRNA processing features were cataloged 
in the Ensembl Alternative Splicing Events set, version 75 (Figure 2C). These features were almost 
uniformly distributed across the different categories of alternative transcription or mRNA processing 
events. The majority of features (75%) that could not be attributed to any of the known categories 
represented interdependencies between alternatively spliced exons.

The length of individual transcripts was not associated with the likelihood of a significant coupling 
event in that transcript (Supplementary Figure 6). However, significant coupling events were enriched 
in genes with larger exonic sequence lengths (Figure 2D,E), giving rise to a larger repertoire of possible 
transcripts and requiring more extensive regulation of the synthesis for transcripts containing different 
subset of features.
We also examined the effect of the relative position in the gene and the distance between features on 
the observed degree of coupling. As expected, most TSSs were located at the most 5’-end of genes. 
The TSSs coupled or not coupled to alternative mRNA processing events showed a similar distribution 
over the gene (Figure 3A and Supplementary Figure 7). Interdependence between alternative TSSs 
was observed across the entire gene (Figure 3B; Supplementary Figure 8). However, alternative TSSs 
were preferentially coupled to alternative splicing events in relatively close proximity to the TSSs, near 
the 5’-end (Figure 3B). Nevertheless, examples of the coupling of alternative TSS and alternative exon 
usage across large distances, and spanning multiple exons were also frequently observed (Figure 3C; 
ITGB4). More evidence for interactions across the entire length of genes comes from the significant 
coupling between TSS and PAS (Figure 3B,C; NCAPD2).
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Similarly, coupling events linked to alternative PAS usage were found across the entire gene 
(Supplementary Figure 8; Figure 3D). In concordance with published literature (15-17), alternative PAS 
usage was preferentially coupled to nearby alternative exons (Figure 3E). Nevertheless, a substantial 
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Figure 2. Alternative transcription, splicing, and polyadenylation is highly interdependent. A) The bar and 
pie charts illustrate the number and proportion of genes that show significant coupling. B) Venn diagrams show 
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proportion of PASs was coupled to alternative exons in more 5’-regions of genes (see CLCC1, Figure 
3C). The proportion of alternative exons was higher at the 5’-end; however, dependencies between 
multiple alternative splicing events were uniformly observed across the entire gene (Figure 3F, 3G). In 
spite of this uniform distribution of exon-exon coupling events and the presence of distant coupling 
events (Figure 3C, RELA), the majority of independent alternative splicing events was between nearby 
or neighboring exons (Supplementary Figure 9; Figure 3C, CDC37).

We performed pathway enrichment analysis to analyze whether the coupling between alternative 
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Figure 3. The interdependence of transcription and mRNA processing events can range across large distances. 
A) Histogram of the relative positions of transcription start sites (TSS) with (blue) and without (grey) significant 
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transcription and mRNA processing events was associated with the molecular function of the proteins 
encoded by the transcripts. A number of pathways associated with mRNA processing and protein 
degradation such as spliceosome, proteasome, and ubiquitin mediated proteolysis, were enriched in 
transcripts demonstrating significant coupling (Supplementary Table 4). 

Poly(A) signal usage for coupled polyadenylation sites
The majority of the alternative PASs in MCF-7 cells was found in different exons. From 3,719 genes that 
contain alternative PASs, we identified only 200 tandem PASs in the same 3’ UTR. From these, only 
56 loci (28%) included PASs that were significantly coupled with alternative exons. The low number 
of tandem 3’ UTRs, in both coupled and uncoupled PAS-exon pairs (3.2% and 2.8%, respectively), has 
been previously explained by a general shortening of 3’ UTRs in MCF-7 cell line (18). Thus, the majority 
of coupling events between alternative PASs and inclusion or exclusion of alternative exons are due to 
the use of exonic and intronic PASs, leading to the formation of new 3’ UTRs.

To assess whether certain poly(A) signals are preferentially associated with alternative transcription 
and splicing, we searched for canonical (AATAAA and ATTAAA) and eleven known non-canonical poly(A) 
signals in the 35bp sequences upstream of the identified PASs. Canonical poly(A) signals could be 
found in the 35bp sequences upstream of 51.5% of all PASs (Figure 4A; Supplementary Figure 10, 11). 
This percentage is lower than what is generally reported and is most likely due to a global shortening 
of the 3’ UTRs in MCF-7 cell line (18). Interestingly, the proportion of PASs that could be associated 
with canonical poly(A) signals was significantly lower (40.7%) for those that were coupled with TSSs 
or alternative exons. PASs that were linked with TSSs showed an even lower proportion of canonical 
poly(A) signals (34.7%). This decrease was not accompanied by an increase in known non-canonical 
poly(A) signals, but was mainly due to the use of PASs for which no known poly(A) signal could be 
identified (Figure 4B). This suggests that a novel poly(A) signal and alternative mechanisms may be 
involved in transcription- or splicing-coupled polyadenylation in MCF-7 cells. Thus, we screened for 
enriched motifs in the 35bp sequences upstream of PASs that are not associated with known poly(A) 
signals. While we did not observe any enrichment for PASs that were coupled with alternative TSSs, 
the ones that were coupled with alternative splicing were enriched for ASCCTG and GYGACA motifs. 
Interestingly, the ASCCTG motif could be associated with the binding site of muscleblind-like (MBNL) 
protein family, known to play a dual role in the regulation of splicing and polyadenylation (19, 20). 
Each MBNL isoform can bind to slightly different motifs (20) and a few motifs have been associated 
with MBNL proteins (20-22). Although all three MBNL proteins are expressed in MCF-7 cells, the 
enrichment of de novo identified ASCCTG and the recently reported CWGCMWKS motifs that can 
be recognized by MBNL3 protein20 were more prominent. Notably, previously identified binding 
motifs for MBNL1 (CTSCYB21 and RSCWTGSK20) and MBNL2 (TGCYTSYY20) were also enriched in 
sequences upstream of the PASs without a known poly(A) signal (Table 1). However, these motifs 
were not found to be associated with PASs that were coupled with alternative TSSs or alternative 
exons. Together, these results support an important role of MBNL proteins in the coupling between 
alternative polyadenylation and alternative splicing. 

Identification of binding motifs for RNA-binding proteins potentially 
involved in coupling
We investigated the potential involvement of RNA-binding proteins (RBPs) in the coordination of 
alternative transcription and mRNA processing events by enrichment analysis of their binding motifs in 
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coupled versus non-coupled exons. We screened three genomic regions relative to donor and acceptor 
splice-sites of coupled exons for enriched sequence motifs (Figure 1C; also see Methods): the 35bp 
intronic sequences upstream of the acceptor site (R1), the 32bp exonic sequences downstream of the 
acceptor sites and upstream of the donor sites (R2), and the 40bp intronic sequences downstream of 
the donor sites (R3).

For exons linked to alternative TSSs, the sequences from the R1 and R3 domains (upstream of 
the acceptor and downstream of the donor splice-sites, respectively) were both enriched for motifs 
(Table 2) that can be recognized by the splicing modulator RBM14 protein, known to play a dual role in 
regulating transcription and splicing (23, 24). In addition, the R2 sequences were enriched for binding 
sites for PPRC1, RBM8A, and TRA2 proteins. RBM8A has been shown to couple pre- and post-mRNA 
splicing events (25, 26) and TRA2 is also associated with regulating pre-mRNA splicing (27, 28). R3 
regions immediately downstream of exons that are linked to alternative PASs were enriched for an 
A-rich motif, which can be recognized by a number of poly(A) binding proteins (Table 2), suggesting a 
competitive binding to these R3 sequences and genuine poly(A) tails.

0 20 40 60 80 1000 5000 10000 15000 20000 25000

TSS-Coupled PA Motifs

Coupled PA Motifs

All PA Motifs

Canonical PA Motifs Non-canonical PA Motifs Unknown PA Motifs

Counts Percentage

0 2000 4000 6000 8000 10000
Unknown
TTTAAA
TATAAA
GATAAA
CATAAA
AGTAAA
ACTAAA
AATGAA
AATATA
AATAGA
AATACA
AAGAAA
ATTAAA
AATAAA

Counts
0 10 20 30 40 50

Percentage

Canonical
PA Motifs

Others

TSS-Linked Exon-Linked No Linkage

A

B

Figure 4. Alternative transcription start sites 
and exons are significantly associated with 
non-canonical poly(A) signals. A) Bar charts of 
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Motif s Source  Total  Random Set  P-value * Coupled PAS  Not Coupled PAS  P-value § 

ASCCTG  DREME  2232  102 0 710 (26.0%)  1522 (20.5%)  4.6E -09 
CTSCYB  Masuda, 2012 21 970  650 5.8E -17 237 (8.7%)  733 (9.9%)  9.7E -01 
YGCY  Purcell, 2012 22 2499  3485 1.0E -00 611 (22.3%)  1888 (25.5%)  9.9E-01 
RSCWTGSK  Batra, 2014  20 – MBNL1  195  99 9.1E -09 59 (2.2%)  136 ( 1.8% )  1.7E -01 
TGCYTSYY  Batra, 2014  20 – MBNL2  92 51 3.7E -04 16  (0.6%)  76 (1.0%)  9.9E-01 
CWGCMWKS  Batra, 2014  20 – MBNL3  1894  129  0 590 (21.6%)  1304  (17.6%)  3.9E -06 

 Total  PASs  10146  10146  − 2736  7410  − 

∗ The enrichment of binding  motifs in sequences upstream of PASs without a known 
poly(A) signal  were calculated by  Fisher’s exact test  (one-sided). A randomly generated set 
was used as a background for enrichment analysis.  
§ PASs without significant coupling were used as the background set  to identify a binding 
site that is enriched in the coupled PAS s without a known poly(A) signal.  

Table 1. Enrichment of MBNL binding site motifs in sequences upstream of alternative PAS with unknown poly(A) 
signal that are coupled with alternative TSS or alternative exons.
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Discussion
Short-read RNA sequencing has become central in assessing the global RNA expression patterns. 
However, as a result of the complexity of human transcriptome, these approaches disappoint in 
precise reconstruction and reliable expression estimation of transcript variants (6, 7, 29), owing to 
the short length of sequencing reads. In contrast, single-molecule long-read sequencing provides a 
unique opportunity to reveal the true complexity of the transcriptome as it can determine the full 
structure of individual transcripts by single-pass and full-length sequencing.

Here, we have analyzed the deepest and longest transcriptome data so far to better understand the 
extent of interdependencies between transcription and mRNA processing. Notably, full-length mRNA 
sequencing and de novo identification of high-quality sequence of transcript variants uncovered an 
unprecedented amount of potentially novel transcripts. The majority of alternative mRNA processing 
events could not be attributed to those that are cataloged in the latest Ensembl Alternative Splicing 
Events database. Our findings not only unravel a higher level of alternative transcription, splicing 
and polyadenylation in MCF-7 transcriptome than previously appreciated, but also provide valuable 
information on the preferential selection and interdependency between these processes. 

We showed that transcription initiation, splicing and 3’ end formation are tightly coupled in nearly 
50% of genes with multiple transcripts and such interdependencies can be found across the entire 
length of the mRNA molecule. Notably, we report an unforeseen and unprecedented number of genes 
that undergo a vigorous preferential selection during transcription and mRNA processing as the choice 
of transcription initiation subsequently influences both alternative splicing of exons and the usage 
of alternative poly(A) site. These genes were enriched in mRNA processing and protein degradation 
pathway that may be in line with the previously observed auto-regulation of mRNA processing factors 
(30) and feedback loops between protein degradation and mRNA synthesis. 

Ample evidence points at the critical role for RNA Pol II in the coordination between transcription 
and mRNA processing (reviewed in 5, 31-33). It has been shown that RNA Pol II initiation, pausing, and 
elongation rate can influence alternative splicing and polyadenylation of transcripts (34-37). Moreover, 
the C-terminal domain of RNA Pol II likely acts as a scaffold for regulatory factors that are involved in 

TSS -coupled  exons  
Domain  Motif  Length Restriction  E -value  Fold Enrichment  RBP Motif  RBP  
R1  SGCGSGC 7 nt. 4.2E -02 1.44 RNCMPT00113  RBM14  
R2 BCGCG 5 nt. 2.1E -02 1.18 RNCMPT00045  

RNCMPT00056  
PPRC1  
RBM8A  

 GAWGARG  5 nt., 7 nt. 1.8E -02 1.16 RNCMPT00078  TRA2  
R3 CGCSG - 6.7E -09 1.35 RNCMPT00052  RBM14  

Exon -Exon Coupling  

Domain  Motif  Length Restriction  E -value  Fold Enrichment  RBP Motif  RBP  
R1  - - - - - - 
R2  RAAGAAG  7 nt. 1.8E -02 1.15 RNCMPT00078  TRA2  
R3  - - - - - - 

PAS -coupled  exons  

Domain  Motif  Length Restriction  E-value  Fold Enrichment  RBP Motif  RBP  
R1  - - - - - - 
R2  - - - - - - 
R3  AAAARH  - 3.3E -56 1.33 RNCMPT00043  PABPC4  
 AAAAAAVB  7 nt. 3.4E -55 1.64 RNCMPT00043  PABPC4  

 Table 2. The RNA-binding protein motifs associated with alternative exons that are coupled to TSS, other 
alternative exons, or PAS. 



COuPLING TRANSCRIPTION AND mRNA PROCESSING

147

splicing and polyadenylation (reviewed in 33). Concordantly, we found an enrichment of coupling 
events in larger genes that seem to undergo a more extensive regulation during mRNA synthesis. 
However, the exact mechanisms by which the coordination is achieved remain largely unclear.

From previous studies it became clear that polyadenylation couples with splicing machinery 
to influence the removal or inclusion of the last intron (15, 38, 39). We now show that (i) the 
interdependencies between splicing and polyadenylation are not necessarily restricted to the final 
introns, (ii) that they can also involve introns that are far from the poly(A) site and (iii) that the 
coupling between splicing and alternative polyadenylation is not restricted to tandem 3’ UTRs. The 
exact mechanisms by which these coupling events are achieved fall beyond the scope of this study. 
Previously, it has been shown that spliceosome components are also part of the human pre-mRNA 
3’-end processing complex (40). Moreover, it is likely that there are RNA-binding proteins with a 
dual role in alternative splicing and polyadenylation in order to coordinate mRNA processing events. 
hnRNP H17, CstF6439, MBNL1 and ELAV1 (HuR) (19, 41-43) are a few examples of such proteins. We 
found MBNL binding motifs enriched in the sequences upstream of polyadenylation sites coupled 
with alternatively spliced exons. Interestingly, these regions often lacked canonical or non-canonical 
poly(A) signals. This suggests that MBNL proteins mark alternative poly(A) sites and play a dual and 
possibly coordinating role in splicing and polyadenylation. This is in line with previous studies in 
MBNL1-deficient cells where both splicing and polyadenylation were shown to be disrupted (19, 20). 

Based on the reported sequence preference of MBNL proteins (20), MBNL3 is the most likely 
candidate of the MBNL family responsible for the coordination between alternative splicing and 
polyadenylation of transcripts in MCF-7 cells. However, it is not clear to what extent these findings can 
be extrapolated to other cell lines and cell types. In MCF-7 cells, the balance between alternative poly(A) 
site usage is shifted to more proximal poly(A) sites (18, 44). The absence of binding sites for regulatory 
proteins and miRNAs can enhance the tumorigenic activity of MCF-7 cells by allowing transcripts to 
escape from inhibition (18). Our findings mostly relate to the use of alternative polyadenylation by 
utilizing different 3’ UTRs and not tandem polyadenylation sites that are in the same 3’ UTR region. It is 
not clear whether MBNL-mediated polyadenylation, coupled with transcription initiation and splicing, 
is achieved through direct recruitment of RNA processing machinery or via alteration of secondary 
structure and formation of RNA molecules that, in turn, affect the choice for poly(A) site usage. Our 
analysis also identified a few more candidates with dual roles in mRNA processing, notably RBM14 
(23, 24), RBM8A (25, 26, 45) and TRA22 (7, 28), which warrant further investigations by performing 
additional functional assays.

This study demonstrates that our understanding of transcript structures and coordinating 
mechanisms that regulate transcription and mRNA processing is far from complete, even in well-
characterized human cell lines such as MCF-7. Single-molecule full-length RNA sequencing of other 
human tissues and cell-lines can provide a comprehensive view of the true complexity of the human 
transcriptome. Moreover, although it has been shown that single-nucleotide variants can alter the 
inclusion of exons in transcripts (9), it is of interest to identify variants that can affect allele-specific 
coupling between transcription and mRNA processing. Together, these can offer a better understanding 
of the mechanisms that control transcription and mRNA processing. 

Methods
RNA sample preparation, library preparation, and sequencing
The methodologies and experimental settings for RNA preparation, cDNA synthesis, library preparation, 
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and sequencing are described at: http://blog.pacificbiosciences.com/2013/12/data-release-human-
mcf-7-transcriptome.html.

Annotation of transcripts using isoform-level clustering algorithm (ICE)
The identification, polishing, and annotation of transcripts were previously carried out using the ICE 
algorithm and made public by Pacific Biosciences. To find transcript clusters, ICE performs a pairwise 
alignment and reiterative assignment of full-length reads to clusters based on likelihood. This process 
is followed by consensus calling and further polishing of the sequence to reduce the redundancy and 
increase the overall accuracy of sequences for identified transcript variants. For further information 
on the methodology and experimental settings visit: https://github.com/PacificBiosciences/cDNA_
primer/wiki.

Comparison to the GENCODE annotation
We used GENCODE annotated transcripts (version 19) as reference to compare with the identified 
transcripts in the human MCF-7 transcriptome data. The comparison was carried out using 
cuffcompare from the Cufflinks suite (46).

Definition of transcription start site, polyadenylation site, and donor and 
acceptor splice sites
In this study, by processing the GFF file that contains the annotation of all identified transcripts and 
exon/intron boundaries (defined by the genomic position and strand on the hg19 reference sequence), 
a list of all transcription and mRNA processing events is produced. Transcription start sites (TSSs) are 
defined as the first genomic position of each transcript structure. Polyadenylation sites (PASs) are 
defined as the last genomic position of each transcript. The most upstream and downstream genomic 
positions of exons were used to define donor and acceptor splice-sites, respectively. However, for the 
first exon only the donor site is described as the first position is defined as transcription start site. 
Likewise, the last exon does not contain a donor splice site as the position is defined as polyadenylation 
site. If multiple transcripts share the same feature, then only one copy is kept in the unique set of 
features at each locus. Furthermore, the union of all unique exons is defined as the available sequence 
at each locus. This is also illustrated in Figure 1B.

Alignment and quantification of supporting reads for each transcript
The number of reads aligned to each transcript was used as the supporting evidence for each transcript 
structure. To identify the number of supporting reads, the polished sequences of all unique transcripts 
were used as a reference for the unique alignment of raw reads using BLASR47. Other parameters 
were set default and according to the Pacific Biosciences guidelines. 

Statistical analysis
After defining unique features (transcription start sites, exons, and polyadenylation sites) and 
identifying the number of supporting reads for transcripts at each locus, all possible pairwise 
comparisons between features were made. To do this, the sum of all reads that support the presence 
of the two selected features in all observed transcripts is reported in a two-by-two contingency 
table. The table describes the number of times two features are observed in the same transcript 
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or exclusively, as well as the sum of reads that are mapped to transcripts that do not support the 
presence of either features (Figure 1C). A significant linkage between two features is assessed using 
the Fisher’s exact test. The mutual inclusivity or exclusivity of coupled features are defined using 
their log-transformed odd-ratio. All p-values are adjusted using Bonferroni multiple testing correction. 
Many aspects of this analysis were carried out in Python and R.

Pathway analysis
This analysis was performed on a subset of genes that contain at least one coupling event and separated 
based on the type of coupling between features: TSS-exon, TSS-PAS, exon-exon, and exon-PAS. A list 
of all genes that could be detected in this study and subsequently annotated using GENCODE v19 
(10,673 ENSEMBL gene IDs) was used as a background. Prior to the analysis, official gene symbols 
were converted to DAVID IDs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis 
was performed using DAVID Functional Annotation Tool (48).

Annotation of alternative exons
The genomic region of significantly coupled transcription start sites, alternative exons, polyadenylation 
sites are compared to the Ensembl Alternative Splicing Events annotation to characterize regions that 
have already been associated with one of the following ten classes: 

1) Cassette exon
2) Intron retention
3) Mutually exclusive exons
4) Constitutive exon
5) Exon isoform
6) Intron isoform
7) Alternative 3’ site
8) Alternative 5’ site
9) Alternative first exon
10) Alternative last exon

To assess the enrichment of different categories of alternative splicing events in the Ensembl 
annotation, all the transcription start sites, exons, and polyadenylation sites that are present in 
the MCF-7 transcriptome data were also attributed to this annotation to serve as a background 
quantification.

Sequence motif analysis relative to polyadenylation sites
For each detected locus, we reported the last nucleotide as polyadenylation site. Each genomic location 
was converted into a BED format. Strand specific genomic sequences located up to 35 nucleotides 
upstream each unique polyadenylation site were extracted, in a FASTA format, using UCSC Table 
Browser (GRCh37/hg19). FASTA files were parsed using a custom bash script to count the number of 
sequences containing specific 6-mer motifs: one of the two canonical polyadenylation signals AATAAA 
and ATTAAA, or one of the eleven non-canonical polyadenylation signals (AAGAAA, AATACA, AATAGA, 
AATATA, AATGAA, ACTAAA, AGTAAA, CATAAA, GATAAA, TATAAA, TTTAAA). Subsequently, the same 
6-mer motifs were counted for each unique PAS significantly coupled to TSSs or exons and for each 
unique PAS that did not show a significant coupling.

For PASs that could not be attributed to known poly(A) signals, we ran DREME (49) (v. 4.9.1) to 
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identify enriched motifs. Randomly shuffled set of sequences was generated from the original 
sequences of the examined PASs and used as a background set. In addition, the sequences of known 
recognition motifs for MBNL proteins (20-22) were counted for each set using a custom script. 
Subsequently, the enrichment of each motif was assessed by Fisher’s exact test.

Tandem 3’ UTR analysis
This analysis was performed to identify loci that contain tandem 3’ UTRs (loci that contain more 
multiple PASs located in the same last exon). Custom scripts were used to identify loci that contain at 
least two PASs that share the same coordinates of the last exon start. The number of loci with tandem 
3’ UTRs was calculated for those in which PAS was significantly coupled to alternative exons and for 
those that did not show any significant interdependencies between alternative exons and the PAS 
usage.

Sequence motif analysis relative to acceptor and donor sites
For each detected locus, we reported the first and last nucleotide of each exon as acceptor splice site 
and donor splice site, respectively. Each unique genomic position was converted into a BED format 
and the strand specific sequences of 2 nucleotides length were extracted using UCSC Table Browser 
(GRCh37/hg19) for both acceptor and donor splice sites.  A custom bash script was used to count the 
number of dinucleotide sequences containing 'GT' and/or 'AG'.

RNA binding motif analysis
We used MEME suite tools to identify enriched sequence motifs present in exons significantly coupled 
with TSSs, PASs or other alternative exons. For each unique exon, three regions were considered: R1 
(containing up to 35 nucleotides upstream the acceptor splice site), R2 (containing 32 nucleotides 
downstream the acceptor splice site and 32 nucleotides upstream the donor splice site), and R3 
(containing up to 40 nucleotides downstream the donor splice site). R1, R2 and R3 regions were 
obtained by extracting strand specific FASTA sequences using UCSC Table Browser (GRCh37/hg19). 

We locally ran DREME (49) (v. 4.9.1) for each region separately, and performed a motif search using 
a negative background (R1, R2 and R3 regions from exons that were not significantly coupled). We 
ran DREME in two modes, one without any limitation for the motifs’ width, and one with limiting the 
search to a minimum width of 5 or 7 nucleotides.  In each case, a maximum of 10 motifs with E -values 
< 0.05 was reported. The remaining parameters were kept as default. We then compared each motif 
found by DREME against the human RNA-binding motifs database CISBP-RNA using TOMTOM Motif 
Comparison tool (50). We ran the analysis by setting the Pearson correlation coefficient as comparison 
function and considered only matches with a minimum false discovery rate (q-values) < 0.05. 
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1. Current limitations in the RNA-sequencing field
The expression of coding RNA molecules is a complex process regulated not only at transcriptional and 
post-transcriptional level, but also during and after translation. To fully characterize this process on 
a genome-wide scale and at a nucleotide level, numerous high-throughput RNA profiling sequencing 
methods have been developed (Chapter 1, section 2). The use of a combination of these approaches 
focusing at transcriptional, post-transcriptional and translational level is helping to comprehensively 
characterize gene expression regulation.

RNA-seq technologies are elucidating the mechanisms that expand the genome's coding 
capacity and are quickly redefining the concept of gene expression regulation. Although there is a 
continuing increase in the number of transcripts identified, and in the understanding of the molecular 
mechanisms that coordinate their formation during transcription and mRNA processing, we still face 
technical limitations due to the short read length of next-generation sequencing data and reliance 
on statistical and computational approaches to reconstruct transcript structure. This represents an 
obstacle when trying to link different events occurring in the same RNA molecule.

The determination of the actual structure of a transcript cannot be achieved without capturing 
different processing and regulatory events occurring in the same transcript. Capturing these events 
by combining different complementary methods comes with limitations, due to the uncertainty 
associated with transcript reconstruction. The only way to specifically determine the exact transcript 
structure for each detected RNA molecule is the sequencing of full-length RNAs.

From a technological point of view, it is already possible to sequence full-length cDNA molecules 
on the PacBio RS sequencing platform (Pacific Bioscience). This option is currently becoming more 
feasible (Au et al., 2013;Sharon et al., 2013) and is opening a new era in the field of RNA-seq.

Full-length transcript sequencing helps defining any coupling between the different layers of 
regulation of gene expression (Chapter 5) and leads to a better understanding of the complexity of 
the transcriptome and its expression, even though future improvements in the production of cDNA 
molecules are still required to fully investigate the exact structure of each transcript variant. cDNA 
generation per se may preclude the determination of long transcripts, as only minor improvements in 
cDNA length have been observed in recent cDNA synthesis methods available, and the majority of the 
cDNA molecules produced reach a read length of ~2kb (Chapter 1, section 2.3). Improvements are 
also necessary in the PacBio RS sequencing platform, which current yield does not allow an accurate 
quantitative analysis of high and low abundant transcripts.

Direct use of RNA as a template for sequencing will further reduce biases introduced in the sample 
preparation procedure. Since a proof of principle for direct RNA sequencing on the PacBio RS platform 
has already been demonstrated (Chapter 1, section 2), it is expected that this option will become 
available in the near future.
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2. Additional regulatory mechanism shaping gene and protein 
expression
The final outcome of gene expression cannot be fully characterized without considering the full 
set of regulatory mechanisms. Alternative transcription initiation (Chapter 1, section 1.1; Chapter 
4), alternative splicing (Chapter 1, section 1.2), alternative polyadenylation (Chapter 1, section 
1.3; Chapter 2; Chapter 3), and alternative translation initiation (Chapter 1, section 1.4; Chapter 
4) represent only a portion of the known mechanisms which affect gene and protein expression in 
eukaryotes. Many more processes need to be considered when trying to elucidate the underlying 
regulatory mechanisms which determine protein levels, thus leading to specific phenotypes.

Regulatory mechanisms arising from transcription, RNA processing and translation
Regulation of gene expression starts at DNA level through epigenetic marks, such as DNA methylation 
and histone proteins modifications. Epigenetic marks shape the chromatin structure influencing its 
accessibility, leading to silencing or activation of specific DNA regions. Changes in the epigenome can 
be re-established, after clearance of the existing marks, or inherited. Inheritance can occur during 
mitosis, but also during meiosis, a phenomenon known as transgenerational epigenetic inheritance 
(Daxinger and Whitelaw, 2010). Some epigenetic marks can be influenced by the environment, 
therefore environmental event in one generation can affect the phenotype in subsequent generations. 

Once a gene is transcribed, its structure can be influenced not only during the initiation of 
transcription (Chapter 1, section 1.1), but also during the elongation and termination processes. The 
speed of transcription elongation and termination can affect alternative splicing and polyadenylation 
(Chapter 1, section 1.5), with consequent impact on mRNA stability, localization and function.

Processed mRNAs are then transported to the cytoplasm, prior their translation. The processes 
of mRNA transport and mRNA localization can be tightly regulated to ensure when and where to 
translate an mRNA, a phenomenon called spatially controlled translation. This control is performed 
through the interaction with RNA binding proteins (RBPs), which localize the mRNAs but can also 
repress its translation in a reversible way (Rodriguez et al., 2008).

mRNA molecules are indeed never bared molecules, but molecules packed with RBPs to form 
messenger ribonucleoprotein (mRNP) complexes. Examples of mRNP complexes are the polysomes, 
the RNA particles and RNA granules, the stress granules, and the processing bodies (P-bodies). 
Whereas polysomes, in the majority of the cases, represent sites of active translation (with the 
exception of ribosome stalling events, see further), RNA particles and RNA granules represent two 
transport complexes which are sites of translation repression. mRNAs packed in these transport 
complexes are protected from degradation and temporary translationally repressed, to allow their 
transport in specific cellular regions and their local translation. The only difference between RNA 
particles and RNA granules is the absence or presence of ribosomes, respectively: RNA granules 
contain polysome-associated mRNAs whose translation is temporary repressed, whereas mRNAs 
contained in RNA particles are not yet engaged by the translational apparatus.

Stress granules represent also sites of temporary translation repression, with the exception that 
the mRNAs are not transported in different cellular regions, but are temporary protected from 
degradation during cellular stress. On the contrary, P-bodies are mainly defined as sites of degradation 
for translationally repressed mRNAs, even though some mRNAs can leave the P-bodies and re-
associate with the translational apparatus.

The process of translation itself is controlled at multiple levels. Part of the regulation occurs during 
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the initiation process (Chapter 1, section 1.4; Chapter 4), and part occurs during the elongation, 
even though correlation between gene length and translation efficiency, or between codon usage 
and translation efficiency, remains a controversial subject. According to some studies (Ingolia et al., 
2009;Ingolia et al., 2011), the speed of translation is independent of the length of the transcript, the 
abundance of the transcript and the codon usage, whereas others affirm that shorter genes are more 
efficiently translated (Arava et al., 2003) and that translation elongation speed seem to be affected by 
codons within the ORF, local mRNA folding, and amino acids charges. The latter leads to the theory 
that the speed of translation is not similar between transcripts (Dana and Tuller, 2012), and that codon 
usage is one of the causes leading to poor correlation between protein and mRNA levels (Olivares-
Hernandez et al., 2011). 

Pauses during elongation can also regulate synthesis, folding and localization of a protein (Darnell 
et al., 2011;Mariappan et al., 2010;Zhang et al., 2009). These pauses, known as ribosome stalling 
(Chapter 4), represent a mechanism which can regulate the speed of elongation in order to maintain 
protein homeostasis (Liu et al., 2013), and is a major component of the cellular stress response (Shalgi 
et al., 2013). Ribosome stalling can also lead to a complete block of translation, when ribosomes 
permanently stop moving during the elongation process, and eventually lead to degradation, an event 
which commonly occurs when polysomes associate with the MicroRNA-loaded RISC (miRISC) complex 
(Houseley and Tollervey, 2009).

In addition to the regulation of translation initiation and elongation, the genetic code can be read 
in alternative ways, leading to frameshifting, hopping, stop codon read-through and recoding (Atkins 
JF, 2010).

Frameshifting is caused by insertions or deletions in the coding region of a DNA sequence. When 
the number of nucleotides added or removed is not divisible by three, the reading frame is changed, 
leading to the translation of a complete different protein. This can lead to the premature inclusion of 
stop-codons, which will ultimately bring to degradation through NMD.

Many different human diseases are caused by indel mutations leading to frameshifting (Iannuzzi 
et al., 1991;Chung et al., 2011;Truong et al., 2010;Myerowitz, 1997). Interestingly, these alternative 
ways of translating an mRNA may also be used to restore protein translation. The codon read-
through mechanism has been often used as therapeutic approach in diseases caused by premature 
termination codons, through the use of drugs that induce the ribosome to bypass the premature stop 
codon (Bidou et al., 2012).

The last regulatory control in the life of an mRNA is represented by degradation. mRNA degradation 
allows regulated turnover, and occurs when a mRNA is not needed in the cell anymore. Degradation also 
occurs if an mRNA is defective, such as misprocessed or misfolded. Defective mRNAs are recognized 
through a mechanism known as mRNA surveillance. Different mRNA surveillance pathways (Houseley 
and Tollervey, 2009) are known, as degradation of an mRNA can occur through endonucleases that cut 
the mRNA internally, or through exonucleases that degrade the mRNA from the 5’ end or the 3’ end.

The most observed degradation pathway is the nonsense mediated decay (NMD). The NMD 
is activated after the first round of translation and leads to the degradation of mRNAs containing 
premature stop codons, preventing the formation of truncated proteins (Kervestin and Jacobson, 
2012). This mechanism is usually generated by defective alternative splicing, representing therefore 
a surveillance mechanism.

The coupling between alternative splicing and NMD is also used as an autoregulatory negative 
feedback loop by many splicing factors. Splicing factors can bind their own transcripts and appositely 
program a defective splicing, leading to the inclusion of alternative exons containing premature 
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stop codons. This autoregulatory negative feedback loop has been observed in many SR and hnRNP 
proteins (Lareau et al., 2007;Ni et al., 2007;Saltzman et al., 2008) as common self-limiting mechanism, 
through which splicing factors regulate its own splicing and production of its own protein.

These feedback loops can consist of complex interplays between different regulatory layers. An 
example is the autoregulation of the splicing factor TDP-43 (Avendano-Vazquez et al., 2012), which 
involves interplay between transcription, splicing and polyadenylation. In the presence of high levels 
of TDP-43, an alternative spliced and polyadenylated transcript is formed. The switch in splicing and 
APA pattern is autoregulated by the binding of the TDP-43 on its own 3’-UTR, and lead to the formation 
of a transcript which is retained in the nucleus, thus leading to a decrease of available protein. The 
control of gene and protein expression by negative feedback loops is observed not only for splicing 
factors, but also for translation factors (Betney et al., 2010;Betney et al., 2012). An example of such 
negative feedback is the autoregulatory repression of the eukaryotic translation initiation factor 1 
(eIF1), upon its overexpression (Ivanov et al., 2010).

Regulatory mechanisms arising from changes in the nucleotide sequence of an mRNA
Next to regulatory mechanisms arising from transcription, RNA processing and translation, other 
regulatory mechanisms have been described, which are caused by post-transcriptional changes in 
the nucleotide sequence of the mRNA, which do not reflect changes at DNA level. To date, more than 
hundred different RNA chemical modifications have been reported (Machnicka et al., 2013), but the 
function of most of them remains unknown. Nonetheless, for some of them, fundamental biological 
aspects been discovered.

An example of chemical modification which is known to affect gene expression is RNA editing. 
The most common type of RNA editing involves deamination of adenosine (A) to create inosine 
(I) (Nishikura, 2010). The result is that splicing and translational machineries recognize inosine as 
guanosine. A-to-I RNA editing occurs mainly within Alu repetitive elements, or within introns and 
UTRs, whereas only a small percentage occurs in coding sequences (Park et al., 2012;Daniel et al., 
2014;Levanon et al., 2005). Even though the frequency of an A-to-I editing event is low, the effects 
reported so far are numerous, from alteration of the amino acid sequence and RNA folding, through 
changes in the coding sequence of the translated exons, to alternative splicing (Farajollahi and Maas, 
2010) through creation or disruption of splice sites.

Altered editing has been linked to human disorders, such as amyotrophic lateral sclerosis, epilepsy, 
and brain tumors (Maas et al., 2006;Paz et al., 2007;Kawahara et al., 2004).

The list of chemical modifications that regulate gene expression has been recently enlarged, after 
the discovery that methylation of internal adenosines (m6A) (Jia et al., 2011), the most prevalent 
internal chemical modification of all higher eukaryotes, is a reversible mechanism, which resembles 
DNA methylation.

Similarly to DNA methylation, and unlike A-to-I RNA editing, m6A does not alter the coding capacity 
of a transcript, therefore it does not lead to proteins with different amino acid sequences. Due to 
its reversible nature, m6A might represent a novel fundamental mechanism controlling protein 
expression.

The effects of m6A on biochemical, physiological and developmental processes are still poorly 
understood. mRNAs are methylated at internal adenosines by the methyltransferase complex 
(including METTL3, METTL14 (Liu et al., 2014) and WTAP (Ping et al., 2014)) and they are dynamically 
demethylated by two different enzymes, FTO (Jia et al., 2011) and ALKBH5 (Zheng et al., 2013). m6A is 
the most common internal mRNA modification, affecting more than 7000 human genes (Dominissini 
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et al., 2012;Meyer et al., 2012), and it is conserved amongst eukaryotes, from yeast to humans 
(Rottman et al., 1976;Schwartz et al., 2013). Deletion, over-expression, or mutations in components 
of the methyltransferase complex or the demethylases appear to have dramatic effects in mouse and 
human, ranging from developmental defects, postnatal retardation, malformations to obesity (Boissel 
et al., 2009;Church et al., 2010;Dina et al., 2007;Fischer et al., 2009;Frayling et al., 2007;Rottman et 
al., 1976;Scuteri et al., 2007). However, a direct link of these diseases with RNA methylation still needs 
to be established.

Pioneering studies are suggesting broad biological roles at cellular level, including a possible 
interplay between RNA methylation and splicing (Dominissini et al., 2012), nuclear export (Fustin 
et al., 2013), and mRNA stability (Wang et al., 2014), with an emerging role for m6A as negative 
regulator of gene expression. Whereas methylation at long internal exons seems to be associated 
with alternative splicing, methylation in the 3'-UTRs affects binding of the YTHDF2 and ELAV1 proteins 
(Dominissini et al., 2012), both influencing mRNA stability. YTHDF2 is able to partially re-localize its 
target mRNAs from translating ribosomes to cytoplasmic foci (P-bodies), with possible negative effect 
on gene expression (Wang et al., 2014).

We currently lack knowledge of the molecular mechanisms through which m6A affects gene 
expression, and we do not understand why certain adenosines get methylated and others not.
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3. Connecting fundamental research in the RNA field to clinical 
care
The recent findings in the RNA field and the understanding of alternative modes that regulate gene 
expression at transcriptional, post-transcriptional and translational level, represent a wealth of 
information useful to elucidate disease-related regulatory events and inspire new diagnostic and 
therapeutic approaches.

Currently, RNA-based analysis is being used in diagnostic mainly for gene expression-based patient 
stratification. Breast cancer arrays are an example of such application. An increase or decrease in 
mRNA levels could be caused by the presence of a variant which activates NMD, aberrant splicing, 
aberrant polyadenylation or aberrant translation. The gene expression-based patient stratification 
method currently used might be improved if the effect of a disease-causing variant is predicted, and 
the mechanism leading to disease is more specifically targeted and treated. The increased knowledge 
achieved to date allows more refined applications, both for diagnostic, prognostic and therapeutic 
purposes, which will lead towards personalized medicine.

This final section will discuss some of the applications and approaches currently in development. 
The first part will show an example of how alternative regulatory events could be used for diagnostic 
and prognostic purposes, whereas the second part will highlight how alternative regulatory 
mechanisms  could be used as targets for personalized medicine. 

Signatures from alternative regulatory events can be used as molecular biomarkers for diagnostic 
and prognostic purposes.
Currently, an example of such application is the use of APA profiles as potential molecular biomarker 
for cancer diagnostic. Widespread alteration of APA profile has been observed in many different 
cancer types, where shortening of 3′-UTRs has been linked to extensive upregulation and activation of 
oncogenes (Chapter 1, section 1.3). Lymphoma tumor subtypes with various survival characteristics 
can be distinguished based on their APA profile, even when the tumors are histologically identical 
(Singh et al., 2009). Prostate cancers can be stratified into subtypes with different risk of relapse based 
on APA profile (Li et al., 2014). APA profiles can also be used as molecular biomarker with prognostic 
potential for breast and lung cancer (Lembo et al., 2012) and to monitor progression of colorectal 
cancer (Morris et al., 2012). Shorter 3’-UTRs from specific mRNAs seem to correlate with tumor 
aggressiveness and poor prognosis in breast and lung cancer, therefore APA profile may be used to 
stratify patients in different risk classes (Lembo et al., 2012).  

Nevertheless, the use of APA profile as potential molecular biomarker for cancer diagnostic, 
prognostic, and treatment comes with some limitations: APA profiles observed in cancer cell lines do 
not always overlap with what is observed in cancers from patients, suggesting that cancer cells might 
not be the best environment to study APA changes in cancer (Lembo et al., 2012);  cancer cells do not 
always associated with 3’-UTRs shortening, but lengthening has also been observed, for example in 
MB231 breast cancer cell line (Fu et al., 2011), where APA profile is opposite to what is observed in 
MCF7 breast cancer cell line; 3’-UTR shortening is not a specific cancer signature.

Considering that transcriptome-wide alterations of APA profile have been observed in different 
contexts, both physiological (Chapter 1, section 1.3) and disease-related (Chapter 2, Chapter 3), it is 
essential to exclude possible alternative causes of APA before an APA-based diagnosis is established.
Precautions need to be taken also when comparing APA profiles in the presence of an age-effect. Even 
though there are no studies describing widespread changes in APA during aging in human, and age 
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effect on the length of the 3’-UTRs has been observed in C. elegans, where the length of the 3’UTRs 
inversely correlates with the age of the animal (Mangone et al., 2010). The PABPN1 protein seems 
also to decrease during aging in human skeletal muscles (Anvar et al., 2013). This suggests a possible 
interplay between APA and aging, which need to be considered prior a APA-based diagnosis.

Alternative regulatory mechanisms can be used as targets for personalized medicine. 
Many therapeutic approaches that entered clinical trials aim to control gene expression at the pre-
mRNA level. These methods try to modulate mRNA production to interfere with processes leading to 
diseases.

Recent proof-of-concept studies have shown how artificial modulation of APA events can be used 
as therapeutic approach (Figure 1a). The choice for a specific polyadenylation site can be manipulated 
in order to (i) activate polyadenylation sites which are normally not used or (ii) inhibit correct 
polyadenylation, leading to degradation of the transcript variant.

The first case (a) has been applied to genes potentially coding for transcript variants whose 
localization strictly depends on the activation or suppression of intronic polyadenylation sites. Pre-
mRNAs of different receptor tyrosine kinases and the vascular endothelial growth factor receptor 
2 (VEGFR2) have been recently targeted with a novel antisense-based strategy, consisting in the 
inhibition of U1 small ribonucleoprotein particle, which normally suppresses intronic polyadenylation 
(Vorlova et al., 2011). Antisense oligonucleotides  (AONs) are used to target the 5’ splice site and 
inhibit binding of U1. In absence of splicing, intronic polyadenylation occurs, leading to the formation 
of transcript variants lacking trans-membrane domains. In the absence of these domains, the protein 
becomes anti-tumorigenic. In the second case (b), a method known as U1 small nuclear interference 
(U1i) is used. Different oncogenes have been targeted so far with this approach (pim-1 kinase, 
metabotropic glutamate receptor 1 and B-cell lymphoma 2), resulting in reduced tumor growth 
(Goraczniak et al., 2013;Weirauch et al., 2013). U1i makes use of artificial U1 adapters, consisting of 
oligonucleotides able to bind the terminal exon of a target pre-mRNA, and the U1 snRNA, recruiting 
the snRNP complex. The snRNP complex competes with the polyadenylation machinery, blocking 
correct polyadenylation, and leading to degradation of the pre-mRNA.

In cases where the disease is caused by erroneous activation of alternative polyadenylation sites, 
antisense-based strategies can be used to avoid the recognition of the alternative polyadenylation 
sites and reconstitute correct polyadenylation at the canonical polyadenylation site (Raz et al., 2014). 
This strategy may be used to target genomic variants that regulate gene expression levels by affecting 
the usage of alternative polyadenylation sites (Chapter 3). Variants localized within existing or newly 
created polyadenylation signals might influence the expression levels of single transcript variants 
leading to diseases such as islet autoimmunity in type I diabetes (Shin et al., 2007),  mantle cell 
lymphoma (Wiestner et al., 2007), and systemic lupus erythematosus (Graham et al., 2007). In Chapter 
3, novel causative SNPs affecting alternative polyadenylation by changes in the polyadenylation signal 
have been reported, seven of which have been also are reported in the GWAS catalog as associated 
with diseases. These loci might represent candidate therapeutic targets. In vitro studies on gastric 
cancer metastasis (Lai et al., 2015) have already shown that mRNAs with altered APA could represent 
novel targets for metastasis prevention.

These kind of targeted therapies are difficult to apply when APA changes occur transcriptome-
wide. In Chapter 2 we showed widespread 3'-UTR shortening in skeletal muscles of mice expressing 
a mutant form of the Poly(A) binding protein nuclear 1 (PABPN1), and proposed a novel role for the 
PABPN1 protein in poly(A) site selection. Due to the widespread effects, a therapeutic alternative 
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would be to target the mutated protein to modulate the activity of the polyadenylation machinery 
itself, instead of targeting the affected transcripts. A way to target the mutated protein is by using 
antisense-based strategies to modulate alternative splicing (Spitali and Aartsma-Rus, 2012).

Artificial modulation of alternative splicing through antisense mediated exon skipping (Figure 
1b) represent a promising therapeutic tool through which targeted exon are hidden from the 

(b) Arti�cial modulation of alternative splicing

(c) Arti�cial modulation of alternative translation initiation
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Figure 1. Schematic overview of RNA-based theraupetic approaches currently in development. (a) Modulation 
of APA through the use of an AON (i) which masks the 5’ splice site, inhibiting correct splicing and leading to 
intronic PAS,  or (ii) through the use of an oligonucleotide which binds the terminal exon and U1, recruiting the 
snRNP complex, and causing a block of correct polyadenylation,  leading to degradation of the pre-mRNA, or (iii) 
through the use on an OAN which masks non-canonical polyadenylation signals, to restore polyadenylation at 
canonical sites (or viceversa). (b) Modulation of splicing through the use of (i) an AON targeting an exon in a non-
allele specific approach (the AON will target both alleles) or (ii) through the use of an AON targeting an expansion 
mutation within an exon in an allele-specific approach (the AON will preferentially bind to the exon containing an 
equal amount of repeats). (c) Modulation of translation initiation, through AON-mediated alternative splicing in 
the DMD gene. The skipping of exon 2 leads to a premature stop codon, which pushes the translation machinery 
to recognize an IRES and start translation from exon 6.          
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splicing machinery and not included in the mRNA. This strategy aims to restore protein function in 
monogenetic disorders where a gene is affected by mutations that lead to truncated non-functional 
proteins, such as Duchenne muscular dystrophy (DMD) (Aartsma-Rus et al., 2004). A similar antisense-
based approach has been tested also to modify protein toxicity in polyglutamine disorders, such as 
Spinocerebellar ataxia type 3 (SCA3), where the protein toxicity is reduced by removing the toxic 
polyglutamine repeat from the ataxin-3 protein (Evers et al., 2013).

Since the mutant PABPN1 is caused by an expansion mutation in the polyalanine repeat in the 
N-terminus of the protein, a similar approach could be used to skip the repeat and restore a reading 
frame that would code for a functional truncated protein. The advantage of this method, over a 
common exon skipping approach, is that only the mutated mRNA is targeted, whereas the functional 
allele produces the endogenous protein. This allele specificity is missing in commonly exon skipping 
approach, where both alleles are targeted and affected by the therapy.

Antisense oligonucleotide-based strategies can also be used to artificially modulate translation. 
Antisense oligonucleotides can be used to block the translation initiation complex, and lead to natural 
degradation of the targeted mRNAs. Ideally, uORFs and aORFs used in a physiological (Chapter 4) and/
or disease context could therefore also represent a target for antisense-based strategies, to reduce 
protein production or allow the translation of truncated functional isoforms.

Next to modulating mRNA production, protein expression can also be modulated with similar 
approaches (Figure 1c). Artificial modulation of alternative translation initiation can therefore also 
be used to interfere with disease mechanisms. Wein et al. (Wein et al., 2014) have shown that, by 
inducing an out-of-frame exon skipping, it is possible to generate a premature stop codon which 
leads to the activation of an internal ribosome entry site (IRES) driving the expression of an aORF. 
This therapeutic approach was shown to produce truncated but functional dystrophin and correct 
muscle injury in DMD mice. Interestingly, activation of the IRES can also be achieved by glucocorticoids 
treatment, which represent a standard treatment in DMD patients (Manzur et al., 2008), even though 
the molecular mechanism is not clear.

Even though the approaches discussed here are promising, there are some limitations faced in the use 
of antisense oligonucleotides to interfere with RNA processing machineries and/or the translational 
apparatus. The most important limiting factors include their poor cellular uptake, possible off-target 
effects and toxicity (Kole et al., 2012).

To increase the therapeutic effect of these targeting approaches, a possible option might be to 
combine antisense-based strategies with transcript-therapy.

The term transcript-therapy refers to the use of chemically modified mRNAs (Kormann et al., 
2011) to produce functional proteins that would act as endogenous proteins. The transcript-therapy 
represents an alternative to DNA-based gene-therapy, with some important advantages. The 
introduction of synthetic genes into the genome, through the use of viruses, has been associated with 
increased risk of leukemia, and strong immune responses. Chemically modified mRNAs, such as those 
carrying an anti-reverse cap analog nucleotide and pseudo-uridine or methyl-cytidine substitutions, 
do not show any of these side effects (Warren et al., 2010). These modifications decrease the binding 
of the mRNAs to toll-like receptors, avoiding therefore the activation of the innate immune system. 
Another advantage brought by these chemical modifications is the increased stability of the mRNAs 
(compared to non-modified mRNAs).

Proof-of-concept studies have shown the potential of transcript-therapy in different contexts: 
from restoration of lung function in mice affected by lethal congenital lung defects due to the lack 
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of surfactant protein B (Kormann et al., 2011), to increased cardiomyocyte survival after myocardial 
infarction (Huang et al., 2015).

Despite the current challenges discussed above, the targeting of regulatory processes involved in 
the production of mRNAs as therapeutic approach represents a promising path towards personalized 
medicine.
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SuMMARy
In 1941, geneticists G.W. Beadle and E.L. Tatum formulated the ground-breaking hypothesis “one 
gene, one enzyme”, which led to their Nobel Prize in Physiology or Medicine in 1958. Today’s 
researchers have reformulated Beadle and Tatum’s hypothesis, as the link between DNA and proteins 
has been proven to be much more complex: even though the human genome contains less than 
20,000 genes, these genes encode for more than 80,000 protein-coding messenger RNAs (mRNAs, 
intermediate molecules between DNA and proteins), which have been estimated to give rise to 
hundreds of thousands of proteins. One major remaining challenge in cellular biology is to understand 
the mechanisms regulating the diversity of mRNAs and proteins expressed from a single gene.

The work described in this thesis focuses on the mechanisms that give rise to alternative mRNAs and 
their alternative translation into proteins. Each of the described studies has been based on a specific 
set of high-throughput RNA sequencing technologies. Together these provide a comprehensive view 
of these alternative regulatory mechanisms. An overview of the available RNA sequencing methods, 
together with an introduction to different regulatory layers which define the expression of a gene, are 
presented in Chapter 1. This Chapter describes the processes of alternative transcription, alternative 
mRNA processing and alternative translation, focusing on what we have learnt from RNA sequencing 
studies.

Our work in Chapter 2 and Chapter 3 investigates the process of alternative polyadenylation, which 
is one of the steps during mRNA processing, and results in the inclusion or exclusion of sequences that 
affect the stability of an mRNA or the nature of the protein isoform formed.

Chapter 2 shows the role of alternative polyadenylation in the context of oculopharyngeal muscular 
dystrophy (OPMD), an autosomal dominant and progressive muscle disorder caused by mutation in the 
PABPN1 gene. In this study, we identified and quantified the usage of alternative polyadenylation sites 
in affected skeletal muscles using a novel high-throughput single-molecule poly(A)-site sequencing 
method. We demonstrated transcriptome-wide shortening of mRNAs in OPMD and propose a novel 
role for the PABPN1 protein in poly(A) site selection.

Chapter 3 describes genetic variants associated with alternative polyadenylation. In this study 
we used RNAseq and DeepSAGE to identify genetic variants affecting the usage of alternative 
polyadenylation sites, by disrupting or forming polyadenylation signal sequences. We confirmed 
the known genotype-dependent alternative polyadenylation in the gene IRF5 (explaining its genetic 
association with systemic lupus erythematosus), and we reported novel causative variants affecting 
alternative polyadenylation by changes in the polyadenylation signal, seven of which had been 
reported as associated with diseases.

Chapter 4 focuses on mechanisms controlling protein synthesis (translation) during skeletal 
muscle differentiation, highlighting changes in the use of alternative translation initiation sites. This 
chapter demonstrates that  skeletal muscle differentiation is not only regulated at the level of mRNA 
transcription and processing, but that also mRNA translation is tightly controlled for specific subsets of 
functionally correlated genes and contributes to the diversity of proteins required for skeletal muscle 
function.

In Chapter 5 we investigated the interdependence between alternative regulatory events in gene 
expression. In this study, based on single-molecule full-length RNA sequencing, we demonstrated 
coordination and interdependence between alternative transcription initiation, alternative splicing, 
and alternative polyadenylation in nearly half of the detected genes, and suggested a coordinating 
role for RNA binding proteins from the muscle blind family (MBNL) in the regulation of splicing and 
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polyadenylation.
The alternative regulatory mechanisms described in Chapter 1 and investigated in this thesis 

represent only a portion of all the mechanisms affecting gene and protein expression. Additional 
regulatory mechanisms are shortly discussed in Chapter 6, to give a more comprehensive picture of 
the complexity of the process of gene expression. Finally, Chapter 6 connects fundamental research 
in the RNA field with clinical care, describing new diagnostic and therapeutic approaches that are 
based on the alternative modes regulating gene expression at transcriptional, post-transcriptional 
and translational level.
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SAMENVATTING
In 1941 formuleerden de genetici G.W. Beadle en E.L. Tatum de volgende revolutionaire hypothese: 
“één gen correspondeert met één enzym”. Hiervoor ontvingen zij in 1958 de Nobelprijs voor 
de Fysiologie of Geneeskunde. Hedendaagse onderzoekers herformuleerden de hypothese van 
Beadle en Tatum, omdat het verband tussen DNA en eiwitten een stuk ingewikkelder is gebleken 
dan aanvankelijk werd aangenomen: hoewel het humane genoom minder dan 20.000 genen bevat, 
coderen deze voor meer dan 80.000 boodschapper-RNA’s of messenger-RNA’s (mRNA’s, intermediairs 
tussen DNA en eiwit). Deze mRNA’s worden op hun beurt vertaald in honderdduizenden verschillende 
eiwitten. Een belangrijke nog openstaande uitdaging in de cellulaire biologie is om de mechanismen 
te begrijpen die zorgen dat een grote verscheidenheid aan mRNA’s en eiwitten geproduceerd kan 
worden uit één enkel gen.

Het in dit proefschrift beschreven onderzoek richt zich op de mechanismen die ten grondslag liggen 
aan de vorming van alternatieve mRNAs en hun vertaling in verschillende eiwitten. Elk van de 
uitgevoerde onderzoeken is gebaseerd op een specifieke set van high-throughput RNA sequencing-
technologieën. Gezamenlijk geven deze technieken een gedetailleerd beeld van de diversiteit aan 
geproduceerde mRNA’s en eiwitten. Een overzicht van de beschikbare RNA sequencing-methoden 
en een introductie tot de verschillende niveaus waarop de genexpressie wordt gereguleerd, worden 
gegeven in Hoofdstuk 1. Dit hoofdstuk beschrijft de volgende processen: alternatieve transcriptie, 
alternatieve mRNA-verwerking en alternatieve translatie. De nadruk ligt op wat we hebben geleerd 
uit studies van RNA-sequencing.

In de studies beschreven in Hoofdstuk 2 en Hoofdstuk 3 is het proces van polyadenylering 
onderzocht, een van de stappen in de verwerking van mRNA. Alternatieve polyadenylering leidt tot de 
opname of uitsluiting van bepaalde sequenties in het mRNA die de stabiliteit van het mRNA of de aard 
van het gevormde eiwit beïnvloeden.

Hoofdstuk 2 beschrijft de rol van alternatieve polyadenylering in relatie tot oculopharyngeale 
spierdystrofie (OPMD), een autosomaal dominante en progressieve spierziekte veroorzaakt door 
mutatie van het PABPN1 gen. In deze studie hebben wij de polyadenyleringsplaatsen in kaart gebracht 
en het gebruik van deze plaatsen gekwantificeerd in zieke en gezonde spieren. Hierbij hebben wij 
een nieuwe high-throughput technologie gebruikt die polyadenyleringsplaatsen kan sequencen 
op het niveau van individuele moleculen. We hebben laten zien dat er een transcriptoombrede 
verkorting van mRNA’s plaatsvindt in OPMD. We stellen een nieuwe rol voor PABPN1 in de selectie van 
polyadenyleringsplaatsen voor.

Hoofdstuk 3 beschrijft genetische varianten die geassocieerd zijn met alternatieve polyadenylering. 
In deze studie hebben wij gebruik gemaakt van RNAseq en DeepSAGE technologieën om de genetische 
varianten die het gebruik van alternatieve polyadenyleringsplaatsen beïnvloeden te identificeren. Deze 
genetische varianten verstoren of vormen een signaalsequentie die van belang is voor polyadenylering. 
We hebben een bekend effect in het IRF5 gen, dat genetisch in verband gebracht wordt met de ziekte 
systemic lupus erythematosus, bevestigd en daarnaast zeven vergelijkbare genetische varianten 
geïdentificeerd die eveneens in verband gebracht worden met ziekten.

Hoofdstuk 4 gaat in op de mechanismen die de eiwitsynthese (translatie) gedurende 
skeletspierdifferentiatie reguleren en besteedt speciale aandacht aan het gebruik van alternatieve 
translatie-initiatieplaatsen. In dit hoofdstuk tonen we aan dat skeletspierdifferentiatie niet alleen 
gereguleerd wordt op het niveau van transcriptie en mRNA-verwerking, maar dat hierbij ook de 
mRNA-translatie strak wordt gereguleerd. Dit is het meest duidelijk te zien in specifieke, functioneel 



SAMENVATTING

177

coherente genen die betrokken zijn bij het translatieproces. Regulering op het niveau van translatie 
draagt ook in belangrijke mate bij aan de vorming van de diversiteit aan eiwitten die nodig is voor het 
correct functioneren van de spier.

In hoofdstuk 5 hebben we de afhankelijkheid tussen verschillende regelmechanismen onderzocht. 
In deze studie, gebaseerd op de sequencing van individuele, intacte mRNA-moleculen, hebben we 
aangetoond dat er coördinatie en onderlinge afhankelijkheid is tussen alternatieve transcriptie-
initiatie, alternatieve splicing en alternatieve polyadenylering. Dit treedt op in tenminste de helft 
van alle gedetecteerde genen. De resultaten van deze studie suggereren een rol voor RNA-bindende 
eiwitten uit de muscle blind (MBNL) familie in de coördinatie van splicing en polyadenylering.

De alternatieve regelmechanismen beschreven in Hoofdstuk 1 en bestudeerd in dit proefschrift 
bestrijken slechts een gedeelte van alle mechanismen die de gen- en eiwitexpressie beïnvloeden. De 
overige regelmechanismen worden kort bediscussieerd in Hoofdstuk 6, om zo een completer beeld 
te schetsen van de complexiteit van het proces van genexpressie. Tenslotte verbindt Hoofdstuk 6 
fundamenteel onderzoek in het RNA-veld met klinische zorg en gaat in op nieuwe diagnostische en 
therapeutische toepassingen die gebaseerd zijn op de alternatieve mechanismen die de genexpressie 
reguleren op het niveau van transcriptie, mRNA-verwerking en translatie.
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