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CHAPTER 1

Introduction

1.1 Classical scattering in optical systems

Light scattering is a very broad topic which has a scientific history of over a century [1].

Generally speaking, light is scattered whenever it propagates in a material medium, because

of its interaction with the molecules constituting the medium, which act as scattering centers.

As a consequence, most of the light that we observe in daily life is scattered light. However,

the arrangement of these molecules strongly determines the effectiveness of the scattering

for a given input wave. For instance, in a perfect crystal the molecular scattering centra are

so orderly arranged that the scattered output waves interfere destructively in such a way that

only the propagation velocity of the incident wave is changed. Conversely, in a gas or a

fluid, the statistical fluctuations of the molecular arrangement can cause significant scatter-

ing. Depending on the nature of the interaction processes, light can be scattered elastically or

inelastically [2]. In elastic (Rayleigh) scattering, the frequency of the scattered light is equiv-

alent to that of the incident light. On the other hand, inelastic (Raman) scattering results in

scattered light of different frequency than the incident. In this Thesis we will concentrate on

elastic scattering processes where the frequency of the incident light is conserved. Addition-

ally, we will restrict our analysis to linear scattering processes, where this linearity refers to

the amplitude of the light field. A scattering process can be consider linear when, for a sum

of incident input waves, the scattered output wave is a linear superposition of the incident

ones. Such linear processes can be described by a scattering matrix, which maps input and

output waves. In this context, we take a broad definition of an elastic light scattering process;

namely, any optical process that changes the direction of the wave-vector of the light. Thus

a scattering process can range from Rayleigh scattering by a point particle to refraction by a

lens.

Formally, light can be described by an electromagnetic field satisfying Maxwell’s equa-
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1. Introduction

tions. The interaction of such a field with the molecules in a material medium can modify

its spatial distribution, frequency or polarization. The exact way in which these degrees of

freedom are modified depend on the specific properties of the scattering medium, which can

be described at different length scales. For example in Ref. [3], three levels of description

are identified based upon three length scales. These levels are classified as macroscopic: on

scales much larger than the mean free path l, mesoscopic: on scales of the order of the mean

free path l and microscopic: on scales comparable to the wavelength of the light λ . How-

ever, in this Thesis we are exclusively interested in the changes produced by the scattering

process on the electromagnetic field, thus regarding the scattering medium as a black box.

Within such approach, the medium can be described by a phenomenological set of parame-

ters, usually arranged to form a matrix. The size and properties of such matrix depend on

the particular degrees of freedom of the field one is interested in. For example, when dealing

with polarization degrees of freedom, the scattering process can be represented by a 4× 4

real-valued matrix, the so called Mueller matrix [4]. On the other hand, when dealing with

propagation of rays of light through an astigmatic paraxial optical device, the information

about the medium is contained in a 2×2 real-valued symplectic matrix, the so called ABCD
matrix [5]. In the following subsections we give explicit expressions for the Mueller matrix

and the ABCD matrix of a generic optical system, which are used in the context of polariza-

tion scattering and ray scattering, respectively.

1.1.1 Polarization scattering
The basic elements of a classical light scattering experiment are an incident field which il-

luminates a scattering medium and a detector which measures the intensity of the scattered

field (see Fig. 1.1). For a single spatial mode of the incident field (kin), here represented by

a plane-wave propagating in a given direction k̂in, the effect of a single scattering event is

to change the direction of propagation of the field, so that the scattered field is in the output

plane-wave mode (kout) characterized by the direction k̂out. Here |kin| = |kout|, since we are

considering elastic scattering processes. The electric field, which determines the polarization,

Scattered

field

Detector

k

�

k

�

E

E

E
E

Figure 1.1: Geometry for describing a single mode scattering process. The incident
and scattered fields are described by plane-waves, which are characterized by their di-
rections of propagation k̂in and k̂out. After the scattering event takes place, the scattered
field intensity is measured at the detector.
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1.1 Classical scattering in optical systems

is here represented by the complex vector E ∈ C
2 : E = E11̂+E22̂, on a plane orthogonal to

the direction of propagation k̂. Note that the three real-valued unit vectors {1̂, 2̂, k̂} define

an orthogonal Cartesian frame. Since the polarization E is a transverse degree of freedom,

a transformation on the spatial properties of the light beam (by scattering) is always ac-

companied by an intrinsic transformation on the polarization of the light beam. Any linear

transformation of the polarization properties of the beam by scattering can be represented in

the Mueller-Stokes formalism. Within this formalism, the electric field is fully specified by

the real-valued 4-dimensional Stokes vector S ∈ R
2 : S = (S0,S1,S2,S3); namely:

S0 ≡ |E1|2 + |E2|2 ∝ I

S1 ≡ |E2|2 −|E1|2 ∝ I0◦ − I90◦

S2 ≡ E1E∗
2 +E2E∗

1 ∝ I45◦ − I−45◦

S3 ≡ i(E1E∗
2 −E2E∗

1 ) ∝ IRHC − ILHC.

(1.1)

If we identify the directions 1̂ and 2̂ with vertical (90◦) and horizontal (0◦) polarizations

respectively, then S0 is proportional to the total intensity of the beam, S1 is proportional to the

difference in intensities between horizontal and vertical linearly polarized components, S2 is

proportional to the difference in intensities between linearly polarized components oriented

at 45◦ and −45◦ and S3 is proportional to the difference in intensities between right hand

RHC and left hand LHC circularly polarized components. It should be stressed that the real

valued 4-dimensional Stokes vector contains the same information as the complex valued 2×
2 coherency matrix J [6]. The advantage of the Mueller-Stokes formalism is that it is directly

related with measurable quantities, i.e., intensities. The only restriction for a Stokes vector

to represent a physical polarization state is that ∑i(Si)2 ≤ (S0)2 (i = 1,2,3). Additionally,

any optical system, which transforms an input Stokes vector Sin into an output Stokes vector

Sout, can be characterized by a 4× 4 Mueller matrix (M), whose 16 real elements map the

polarization state of the input and output beams by:

Sout = MSin. (1.2)

In this Thesis we considered only passive or non-amplifying optical media such that the

output intensity is not larger than the input intensity, in other words for all our scattering

media S0,out ≤ S0,in. However, it should be noted that an active medium, i.e., a medium with

gain, can in principle also be represented by a Mueller matrix. This is because classically,

a medium with gain, is formally equivalent to a medium with absorption, up to a sign, and

scattering media with polarization dependent absorption, i.e., dichroic scattering media, are

fully described in the Mueller-Stokes formalism.

The Mueller-Stokes formalism is suitable for a single spatial mode description of the

field, i.e., for paraxial angles of propagation of the field. In this context, depolarization mainly

occurs due to coupling of polarization degrees of freedom with temporal domain, for instance

by propagation through dynamic media. However, it is possible to extend this formalism to

the multi-spatial-mode case, this is explained in detail in Chapter 4. When the scattering

process involves many modes (either spectral or spatial) of the field and the polarization

3



1. Introduction

properties of the outgoing beam are measured with a mode-insensitive device, the scattered

field might appear partially depolarized. The degree of polarization (PF ) of a light beam is

defined by

PF =

√
(S1)2 +(S2)2 +(S3)2

S0
, (1.3)

where 0 ≤ PF ≤ 1. Fully polarized light has PF = 1 while unpolarized light has PF = 0, the

intermediate values for PF correspond to partially polarized light. The main mechanism of

depolarization that we analyze in this Thesis is given by the coupling of polarization and

spatial degrees of freedom. A typical example of this is the case of a beam of light initially

prepared in a single plane-wave mode (kin) that is incident on an inhomogeneous medium.

Due to the spatial inhomogeneities in the medium, the beam suffers multiple scattering and, as

a result, it emerges as a (partially) incoherent superposition of many plane-waves (kout). Even

when each of the output modes is fully polarized, the output beam appears to be (partially)

depolarized when its spatial information is averaged out in a multi-mode detection set-up.

1.1.2 Ray scattering

ABCD

Matrix

in
q

� �
out

q

R R

Figure 1.2: The input canonical variables (qin,θin), specifying a ray on a refer-
ence plane R1, are mapped by the ABCD matrix into the output canonical variables
(qout,θout) of a ray on a reference plane R2.

In the short wavelength limit, a ray-like beam is fully described by two canonical vari-

ables; namely, its position q (on a given reference plane) and its slope θ (see Fig. 1.2). Ad-

ditionally, the change in q and θ of an optical ray upon propagation through a wide variety

of optical scattering devices can be written, in the paraxial limit and for a single transverse

dimension, in terms of the 2×2 ABCD or ray matrix [5] by:

(
qout

θout

)
=

(
A B
C D

)(
qin

θin

)
. (1.4)

It should be stressed that the only condition for an ABCD matrix to represent a physical

transformation upon a ray is that its determinant should be equal to one (i.e., a symplectic

transformation). Therefore, within this limit, an optical transformation can range from de-

flection of light by a particle to refraction of light by a lens. In Chapter 2 and Chapter 3 we

analyzed the dynamical properties of an optical cavity with a stochastic beam splitter. The

4



1.2 Quantum scattering in optical systems

round trip of a ray inside such a cavity can be represented, in the paraxial approximation, by

an ABCD matrix and can thus be interpreted as a linear optical ray scattering process.

1.2 Quantum scattering in optical systems
The quantum aspects of scattering in optical systems that are highlighted in our work refer to

the quantum nature of the light that is incident on different scattering media. At the single-

photon level, the quantum nature of light is revealed by the quantum field fluctuations, which

can be seen as a consequence of the Heisenberg uncertainty relations between the electric and

magnetic fields [7]. In this regard, the effect of multiple scattering on single-photon spatial

correlations has been recently investigated in Ref. [8]. For photon pairs the quantum nature of

light can also manifest itself by the mutual entanglement between the two photons belonging

to the pair; this topic is addressed in this Thesis.

1.2.1 Entangled photons

A pair of photons is considered ‘entangled’ when a measurement on one of the two photons

belonging to the pair completely determines the outcome of measurements on the other one,

regardless of the distance between the photons. These non-local correlations, referred to

as quantum entanglement, can not be explained in terms of any local classical theory and

have puzzled many physicist starting by Einstein, Podolosky and Rosen [9], in 1935. In our

scattering experiments with quantum light, we have concentrated on entangled photon pairs,

where the incident state of light is entangled in the polarization degrees of freedom. A typical

example is the polarization-singlet Bell state:

|ψ−〉 =
|H1V2〉− |V1H2〉√

2
, (1.5)

where 1 and 2 label the two photons belonging to the pair, and (H,V ) label horizontal and

vertical polarizations, respectively. In fact, this state contains maximal information about the

correlations of the two photons but minimal information about the polarization state of each

individual photon. Thus if we measure the polarization of photon 1, and we find that it is

vertical V , then we automatically know that the outcome of a similar measurement on photon

2 would yield H. Note that the anti-correlation between the polarization state of each photon

belonging to the singlet is valid in any polarization basis.

1.2.2 Light scattering with entangled photons

Quantum theory predicts that the quantum correlations between entangled photons should be

maintained over arbitrary distances. This prediction was verified on free-space propagation

over distances of up to 144 km [10, 11], with polarization entangled photons. Moreover, the

robustness of polarization entanglement has also been proven upon some particular scatter-

ing processes [12]. Generally speaking, scattering processes should not affect polarization

entanglement as long as they are linear (thus describable by a scattering matrix) and as long

5



1. Introduction

as the photons are detected in a single spatial mode [13, 14]. Therefore, it appears to be rele-

vant to characterize entanglement decay upon linear scattering processes in combination with

multi-mode detection, and that is indeed the central topic of this Thesis.

The main concept behind light scattering with polarization entangled photons is that a

scattering process can couple polarization and spatial degrees of freedom of light. The details

of this coupling depend on the specific scattering medium. If the scattered photons are then

detected in a momentum insensitive way (multi-mode detection), all the spatial information

of the scattering process encoded in the photons is averaged or traced over, leaving each

photon in a mixed polarization state. As one might expect, this transition from pure to mixed

state reduces the degree of entanglement; this has been theoretically explored in recent papers

[13, 14].

The output polarization state of the scattered photons can be calculated once we know the

phenomenological polarization matrix (i.e., the Mueller matrix M) characterizing the scatter-

ing medium. For an input state given by a pair of photons, initially prepared in the polarization

singlet state

ρin = |ψ−〉〈ψ−|, (1.6)

and for a local scattering medium, i.e., a medium acting on a single photon of the entangled

pair, the scattered photon-pair, which is in the mixed polarization state ρout, can be written in

a reshuffled basis, here denoted by the superscript (R), as [15]:

ρR
out = M ρR

in, (1.7)

where the matrix M maps the input and output polarization states of the photon pairs. M is

linearly related to the classical Mueller matrix M of the scattering medium, this is explained

in detail in Chapter 8.

Eq.(1.7) suggests that the study of a local scattering process acting on a pair of photons

is an alternative (and rather sophisticated) way of studying a depolarizing process. In other

words, it is a non-standard way of measuring the Mueller matrix M (or M ) of a depolarizing

medium. We stress that the fact that a scattering experiment with two-photon light reveals the

same amount of information on the scattering medium as a similar experiment with a classical

beam of light is only true as long as we analyze, as we do in this Thesis, local scattering

media. That is, scattering media located on the path of a single photon of the entangled pair.

Nevertheless, although we only experimented with local media, our mathematical formalism

still applies to bi-local scattering media, which can be written as the (outer) product of two

Mueller matrices acting on each photon of the pair, and to non-local scattering media, which

can be written as an inseparable (two-photon) Mueller matrix [15].

Finally, it is important to stress that one of the main goals in our scattering experiments with

entangled photons was to engineer (mixed) quantum states of light in a controllable way (see

Chapter 7 and Chapter 8). As a consequence, in most of our experiments with quantum light,

our target is the two-photon scattered state ρout rather than the classical Mueller matrix M .

This is what we consider novel in our approach.

6



1.3 Thesis overview

1.3 Thesis overview
In this Thesis we analyzed the effect of a large variety of linear scattering processes both

on classical light (Chapter 4-5) and on two-photon quantum light (Chapter 6-9). The main

part of this analysis refers to the polarization degrees of freedom of scattered light where

the medium parameters are phenomenologically described within the Mueller matrix formal-

ism. The main tool used for this characterization is multi-spatial-mode optical polarization

tomography, both in its classical and quantum versions.

Additionally, in fact as a starter for this Thesis, we have numerically investigated dynam-

ical properties of ray scattering in optical cavities by using Hamiltonian optics (Chapter 2-3).

The paraxial description of light rays in such optical cavities is described within the ABCD
matrix formalism.

We describe the contents of the Chapters in more detail below:

• In Chapter 2 we report a numerical investigation of the paraxial ray dynamics of light

scattered by an optical cavity with a stochastic ray-splitting mechanism. We show the

results obtained for the paraxial map of the system, applying standard tools from non-

linear dynamics. A discussion on the mixing properties of the system and their relation

with the Kolmogorov-Sinai (KS) entropy is included.

• In Chapter 3 we presents the exact ray dynamics in an optical cavity with a ray splitting

mechanism, similar to the one introduced in Chapter 2. By using exact Hamiltonian

optics, we show that such a simple scattering device presents a surprisingly rich chaotic

ray dynamics.

• In Chapter 4 we describe the theoretical background related to our experiments on

classical light depolarization due to multi-mode scattering. The key theoretical concept

we introduce is the effective Mueller matrix, which describes our spatial multi-mode

detection set-up.

• In Chapter 5 we show experimental results on classical light depolarization due to

multi-mode scattering. By means of polarization tomography, we characterize the de-

polarizing power and the polarization entropy of a broad class of optically scattering

media.

• In Chapter 6 we report experimental results on a controllable source of spatial deco-

herence for polarization entangled photons, based upon commercially available wedge

depolarizers. A full characterization of the scattered states, by means of quantum to-

mography, shows that such a scattering device can be used for synthesizing Werner-like

states on demand.

• In Chapter 7 we present experimental results on the effect of different scattering process

on polarization entangled photons. The scattering media are grouped in isotropic, bire-

fringent and dichroic scattering. We compare the experimental results with a phenom-

enological model based upon the description of a scattering process as a quantum map.

• In Chapter 8 we present a full theoretical framework for the description of a scattering

process as a quantum map. Within this framework, we show how scattering processes

7



1. Introduction

can be used for entangled-mixed state engineering. We report an experimental scheme

suitable for maximally entangled mixed states engineering and the corresponding ex-

perimental results.

• In Chapter 9 we review some of our experimental results on multi-mode scattering of

entangled photon pairs and their description in terms of trace-preserving and non-trace-

preserving quantum maps. We show that non-trace-preserving quantum maps can lead

to apparent violations of causality, when the two-photon states are post-selected by

coincidence measurements. A brief discussion on relativistic causality is included.

With the exceptions of Chapters 1 and 4, all the Chapters contained in this Thesis are

based on independent publications and can be read separately. As a consequence there is

some overlap between them. Although within a Chapter each physical quantity has a unique

symbol, some symbols are used for different physical quantities in different Chapters.
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CHAPTER 2

Paraxial ray dynamics in an optical cavity with a
beam-splitter.

In this Chapter 1 we present a numerical investigation of the ray dynamics in an optical
cavity when a ray splitting mechanism is present; we focus mainly on the paraxial limit.
The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved
by inserting an optical beam splitter perpendicular to the cavity axis. We show the results
obtained for the paraxial map of the system [16], applying standard tools from non-linear
dynamics, such as Poincaré Surface of Section (SOS), exit basin diagrams, escape rate
and Lyapunov exponents. Furthermore, a discussion about the mixing properties of the
system and their relation with the Kolmogorov-Sinai (KS) entropy is included. In the
paraxial limit the ray dynamics is irregular and both the Lyapunov exponent and the KS
entropy are positive; however, chaos does not occur.

1Based on G. Puentes, A. Aiello and J. P. Woerdman, Phys. Rev. E 69, 036209 (2004).
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

2.1 Introduction
A beam splitter (BS) is an ubiquitous optical device in wave optics experiments, used e.g.,

for optical interference, homodyning, etc. In the context of geometrical optics, the action of

a BS is to split a light ray into a transmitted or a reflected ray. Ray splitting provides a useful

mechanism to generate chaotic dynamics in pseudointegrable [17] and soft-chaotic [18–21]

closed systems. In this Chapter we exploit the ray splitting properties of a BS in order to

build an open paraxial cavity which shows irregular ray dynamics as opposed to the regular

dynamics displayed by a paraxial cavity when the BS is absent.

�
M M

L L

R R

BS

Figure 2.1: Schematic diagram of the cavity model. Two subcavities of length L1 and
L2 are coupled by a BS. The total cavity is globally stable for L = L1 + L2 < 2R. Δ =
L1 −L/2 represents the displacement of the BS with respect to the center of the cavity.

Optical cavities can be classified as stable or unstable depending on the focussing prop-

erties of the elements that compose it [5]. An optical cavity formed by 2 concave mirrors of

radii R separated by a distance L is stable when L < 2R and unstable otherwise. If a light ray

is injected inside the cavity through one of the mirrors it will remain confined indefinitely

inside the cavity when the configuration is stable but it will escape after a finite number of

bounces when the cavity is unstable (this number depends on the degree of instability of the

system). Both stable and unstable cavities have been extensively investigated since they form

the basis of laser physics [5]. Our interest is in a composite cavity which has both aspects of

stability and instability. The cavity is made by two identical concave mirrors of radii R sepa-

rated by a distance L, where L < 2R so that the cavity is globally stable. We then introduce

a beam splitter (BS) inside the cavity, oriented perpendicular to the optical axis (Fig. 2.1).

In this way the BS defines two subcavities. The main idea is that depending on the position

of the BS the left (right) subcavity becomes unstable for the reflected rays when L1 (L2) is

bigger than R, whereas the cavity as a whole remains always stable (L1 +L2 < 2R) (Fig. 2.2).

Our motivation to address this system originates in the nontrivial question whether there

will be a balance between trapped rays and escaping rays. The trapped rays are those which

bounce infinitely long in the stable part of the cavity, while the escaping ones are those which

stay for a finite time, due to the presence of the unstable subcavity. If such balance exists it

could eventually lead to transient chaos since it is known in literature that instability (positive

10



2.1 Introduction

RR

L1
L2

BS

L =L <R1 2

( a)

BS

R R

L >R>L1 2

( b)

BS

R R

L >R>L2 1

( c)

y

y

y

L1 L2

L2L1

Figure 2.2: The different positions of the beam splitter determine the nature of the
subcavities. In (a) the BS is in the middle, so the 2 subcavities are stable, in (b) the left
cavity is unstable and the right one is stable, and (c) the unstable (stable) cavity is on
the right (left) (b).

Lyapunov exponents) and mixing (confinement inside the system) form the skeleton of chaos

[22].

The BS is modelled as a stochastic ray splitting element [18] by assuming the reflection

and transmission coefficients as random variables. Within the context of wave optics this

model corresponds to the neglect of all interference phenomena inside the cavity; this would

occur, for instance when one injects inside the cavity a wave packet (or cw broad band light)

whose longitudinal coherence length is very much shorter than the smallest characteristic

length of the cavity. The stochasticity is implemented by using a Monte Carlo method to

determine whether the ray is transmitted or reflected by the BS [18]. When a ray is incident

on the ray splitting surface of the BS, it is either transmitted through it with probability p or

reflected with probability 1− p, where we will assume p = 1/2, i.e., we considered a 50/50

beam splitter (Fig. 2.3). We then follow a ray and at each reflection we use a random number

generator with a uniform distribution to randomly decide whether to reflect or transmit the

incident ray.

11



2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

BS

L1 L2

�q

Z

z=const

Figure 2.3: A ray on a reference plane (z = const) perpendicular to the optical axis
(Z) is specified by two parameters: the height q above the optical axis and the angle θ
between the direction of propagation and the same axis. When a ray hits the surface of
the BS, which we choose to coincide with the reference plane, it can be either reflected
or transmitted with equal probability (p). For a 50/50 beam splitter p = 1/2.

Our system bears a close connection with the stability of a periodic guide of paraxial

lenses as studied by Longhi [30]. While in his case a continuous stochastic variable εn repre-

sents a perturbation of the periodic sequence along which rays are propagated, in our case we

have a discrete stochastic parameter pn which represents the response of the BS to an inci-

dent ray. As will be shown in section 2.2, this stochastic parameter can take only two values,

either +1 for transmitted rays or -1 for reflected rays; in this sense, our system (displayed

as a paraxial lens guide in Fig. 2.4) allows a surprisingly simple realization of a bimodal

stochastic dynamics.

2.2 Ray dynamics and the paraxial map
The time evolution of a laser beam inside a cavity can be approximated classically by using

the ray optics limit, where the wave nature of light is neglected. Generally, in this limit

the propagation of light in a uniform medium is described by rays which travel in straight

lines, and which are either sharply reflected or refracted when they hit a medium with a

different refractive index. To fully characterize the trajectory of a ray in a strip resonator or

in a resonator with rotational symmetry around the optical axis, we choose a reference plane

z = constant (perpendicular to the optical axis ẑ), so that a ray is specified by two parameters:

the height q above the optical axis and the angle θ between the trajectory and the same axis.

Therefore we can associate a ray of light with a two dimensional vector �r = (q,θ). This

is illustrated in the two mirror cavity show in Fig. 2.3, where the reference plane has been

chosen to coincide with the beam splitter (BS). Given such a reference plane z, which is also

called Poincaré Surface of Section (SOS) [23], a round trip (evolution between two successive

reference planes) of the ray inside the cavity can be calculated by the monodromy matrix

Mn, in other words �rn+1 = Mn�rn, where the index n determines the number of round trips.

The monodromy matrix Mn describes the linearized evolution of a ray that deviates from a

12



2.2 Ray dynamics and the paraxial map

reference periodic orbit. A periodic orbit is said to be stable if |TrMn|< 2. In this case nearby

rays oscillate back and forth around the stable periodic orbit with bounded displacements both

in q and θ . On the other hand when |TrMn| ≥ 2 the orbit is said to be unstable and rays that

are initially near this reference orbit become more and more displaced from it.

For paraxial trajectories, where the angle of propagation relative to the axis is taken to

be very small (i.e., sin(θ) ∼= tan(θ) ∼= θ ), the reference periodic trajectory coincides with

the optical axis and the monodromy matrix is identical to the ABCD matrix of the system.

The ABCD matrix or paraxial map of an optical system is the simplest model one can use

to describe the discrete time evolution of a ray in the optical system [5]. Perhaps the most

interesting and important application of ray matrices comes in the analysis of periodic fo-

cusing (PF) systems in which the same sequence of elements is periodically repeated many

times down in cascade. An optical cavity provides a simple way of recreating a PF system,

since we can think of a cavity as a periodic series of lenses (see Fig. 2.4). In the framework

of geometric ray optics, PF systems are classified, as are optical cavities, as either stable or

unstable.

Z Z Z

2L

Z

r r

Z

Figure 2.4: A ray bouncing inside an optical cavity can be represented by a sequence
of lenses of focus f = 2/R, followed by a free propagation over a distances Ln. Due to
the presence of the BS, the distance Ln varies stochastically between L1 or L2.

Without essential loss of generality we restrict ourselves to the case of a symmetric cavity

(i.e., two identical spherical mirrors of radius of curvature R). We take the SOS coincident

with the surface of the BS. After intersecting a given reference plane zi, a transmitted (re-

flected) ray will undergo a free propagation over a distance L2 (L1), followed by a reflection

on the curved mirror M2 (M1), and continue propagating over the distance L2 (L1), to hit the

surface of the beam splitter again at zi+1. In Fig. 2.4 the sequence of zi represents the succes-

sive reference planes after a round trip. In the paraxial approximation each round trip (time

evolution between two successive intersections of a ray with the beam splitter) is represented

by:

qn+1 = Anqn +Bnθn,
θn+1 = Cqn +Dnθn,

(2.1)

where

An = 1−2Ln/R, Bn = 2Ln(1−Ln/R),

C = −2/R, Dn = 1−2Ln/R

13



2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

and

Ln =
L+ pna

2
.

We have defined L = L1 + L2 and a = L2 − L1; the stochastic parameter pn is distributed

equally among −1 and +1 for our 50/50 BS, and determines whether the ray is transmitted

(pn = 1) or is reflected (pn = −1).

The elements of the ABCD matrix depend on the index n because of the stochastic re-

sponse of the BS, which determines the propagation for the ray in subcavities of different

length (either L1 or L2). In this way a random sequence of reflections (pn = 1) and trans-

missions (pn = −1) represents a particular geometrical realization of a focusing system. If

we want to study the evolution of a set of rays injected in the cavity with different initial

conditions (q0,θ0), we have two possibilities, either use the same random sequence of re-

flections and transmissions for all rays in the set or use a different random sequence for each

ray. In the latter case, we are basically doing an ensemble average over different geometrical

configurations of focusing systems. As we shall see later it is convenient, for computational

reasons, to adopt the second method.

The paraxial map of Eq. (2.1) describes an unbounded system. That is, a system for which

rays are allowed to go infinitely far from the cavity axis. In order to describe a physical parax-

ial cavity we have to keep the phase space bounded, i.e., it is necessary to artificially introduce

boundaries for the position and the angle of the ray [31]. The phase space boundaries that

we have adopted to decide whether a ray has escaped after a number of bounces or not are

the beam waist (w0) and the diffraction half-angle (Θ0) [5] of a gaussian beam confined in

a globally stable two-mirror cavity. Measured at the center of the cavity, the waist and the

corresponding diffraction half-angle result in:

w2
0 =

Lλlight

π

√
2R−L

4L
(2.2)

Θ0 = arctan(
λlight

πw0
) (2.3)

Where we refer to the optical wavelength as λlight in order to avoid confusion with the Lya-

punov exponent λ . For our cavity configuration we assume R = 0.15 m, L = 0.2 m and

λlight = 500 nm, from which follows that w0 = 5.3× 10−5 m and Θ0 = 0.15× 10−3 rad.

One should keep in mind that this choice is somewhat arbitrary and other choices are cer-

tainly possible. The effect of this arbitrariness on our results will be discussed in detail in

subsection 2.3.4.

In the next section we report several dynamical quantities that we have numerically calcu-

lated for paraxial rays in this system, using the map described above (Eq. 2.1). The behavior

of these quantities; namely, the SOSs, the exit basins, the Lyapunov exponent and the escape

rate, is analyzed as a function of the displacement (Δ) of the BS with respect to the center of

the cavity (see Fig. 2.1).
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2.3 Numerical results

2.3 Numerical results

2.3.1 Poincaré surface of section (SOS)
We have first calculated the SOS for different positions of the BS. In order to get a qualitative

idea of the type of motion, we have chosen as transverse phase space variables y = q and vy =
sin(θ) ≈ θ . The successive intersections of a trajectory with initial transverse coordinates

q0 = 1×10−5 m, θ0 = 0 are represented by the different black points in the surface of section.

The different SOSs are shown in Fig. 2.5. In Fig. 2.5 (a) we show the SOS for Δ = 0, while in

(b) Δ = 1×10−3 m and in (c) Δ = 2×10−2 m. In (a) it is clear that the motion is completely

regular (non-hyperbolic); the on-axis trajectory represents an elliptic fixed point for the map.

In (b), where the BS is slightly displaced from the center (Δ = 1×10−3 m) we can see that this

same trajectory becomes unstable because of the presence of the BS, and spreads over a finite

region of the phase space to escape after a large number of bounces (n = 5×104). In this case

we may qualify the motion as azimuthally ergodic. The fact that the ray-splitting mechanism

introduced by the BS produces ergodicity is a well known result [18] for a closed billard. We

find here an analogue phenomenon, with the difference that in our case the trajectory does

not explore uniformly (but only azimuthally) the available phase space, because the system

is open. Finally, in (c) we see that the fixed point in the origin becomes hyperbolic, and the

initial orbit escapes after relatively few bounces (n = 165).

(a)

�
(r

ad
)

-x

q (m)

(b)

q (m)

(c )

q (m)

Figure 2.5: SOS for (a) Δ = 0 where the ray does not escape, (b) Δ = 0.001 m, where
the ray escapes after n = 5× 104 bounces and (c) Δ = 0.02 m, where the ray escapes
after n = 165 bounces.

2.3.2 Exit basin diagrams
It is well known that chaotic Hamiltonian systems with more than one exit channel exhibit

irregular escape dynamics which can be displayed, e.g., by plotting the exit basin [24]. For

our open system we have calculated the exit basin diagrams for three different positions of

the BS (Fig. 2.6). These diagrams can be constructed by defining a fine grid (2200× 2200)

of initial conditions (q0,θ0). We then follow each ray for a sufficient number of bounces so

that it escapes from the cavity. When it escapes from above (θn > 0) we plot a black dot in
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

the corresponding initial condition, whereas when it escapes from below (θn < 0) we plot a

white dot.

In Fig. 2.6 (a) we show the exit basins for Δ = 0.025 m, the uniformly black or white

regions of the plot correspond to rays which display a regular dynamics before escaping,

and the dusty region represents the portion of phase space where there is sensitivity to initial

conditions. In Fig. 2.6 (b), we show the same plot for Δ = 0.05 m, and in (c) for Δ = 0.075

m.

The exit basin plots in Fig. 2.6 illustrate how the scattering becomes more irregular as the

BS is displaced from the center. In particular, we see how regions of regular and irregular

dynamics become more and more interwoven as Δ increases. As a reverse trend, for small

values of Δ as in Fig. 2.6 (a), there is a single dusty region with a uniform distribution of

white and black dots in which no islands of regularity are present.
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Figure 2.6: Exit basins for (a) Δ = 0.025 m, (b) Δ = 0.05 m and (c) Δ = 0.075 m.

2.3.3 Escape rate and Lyapunov exponent
The dynamical quantities that we have calculated next are the escape rate γ and the Lyapunov

exponent λ . The escape rate is a quantity that can be used to measure the degree of openness

of a system [31]. For hard chaotic systems (hyperbolic), the number Nn of orbits still con-

tained in the phase space after a long time (measured in number of bounces n) decreases as

N0 exp(−γn) [32]. The Lyapunov exponent is the rate of exponential divergence of nearby

trajectories.

Since both λ and γ are asymptotic quantities they should be calculated for very long

times. In our system long living trajectories are rare. In order to pick them among the grid

of initial conditions (N0) one has to increase N0 beyond our computational capability. To

overcome this difficulty we choose a different random sequence for each initial condition. In

this way we greatly increase the probability of picking long living orbits given by particularly

stable random sequences. These long living orbits in turn make possible the calculation of

asymptotic quantities such as λ or γ .

The escape rate γ was determined by measuring Nn, as the slope of a lg(Nn/N0) versus n
plot; the total number of initial conditions N0 being chosen as 2200×2200.
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2.3 Numerical results

We have calculated the dependence of γ on the displacement of the BS (Δ) from the center

of the cavity, where 0 ≤ Δ ≤ L/2. Since for Δ > R−L/2 the left subcavity becomes unstable,

it would seem natural to expect that this position of the BS would correspond to a critical

point. However, we have found by explicit calculation of both the Lyapunov exponent and

the escape rate, that such a critical point does not manifest itself in a sharp way, rather we

have observed a finite transition region (as opposed to a single point) in which the functional

dependence of λ and γ changes in a smooth way. In Fig. 2.7 (a) we show the typical be-

havior of Nn/N0 vs n in semi-logarithmic plot for three different positions of the BS. The

displacements of the BS are Δ = 0.0875 m, 0.05 m and 0.03125 m, and the corresponding

slopes (escape rate γ measured in units of the inverse number of bounces n) of the linear fit

are γ = 0.17693 n−1, 0.05371 n−1 and 0.01206 n−1 respectively. We have found that the

decay is exponential only up to a certain time (approximately 70−1000 bounces depending

on the geometry of the cavity) due the discrete nature of the grid of initial conditions.

In Fig. 2.7 (b) we see that γ increases with Δ, revealing that for more unstable config-

urations there is a higher escape rate, as expected. It is also interesting to notice that the

exponential decay fits better when the beam splitter is further from the center position, since

this leads to smaller stability of the periodic orbits of the system. However, the dependence

of the escape rate with the position of the BS is smooth and reveals that the only critical

displacement, where the escape rate becomes positive, is Δ = 0.

As a next step, we have calculated the Lyapunov exponent λ for the paraxial map; λ is

a quantity that measures the degree of stability of the reference periodic orbit. For a two-

dimensional hamiltonian map there are two Lyapunov exponents (λ1, λ2) such that λ1 +
λ2 = 0. In the rest of the Chapter we shall indicate with λ the positive Lyapunov exponent

which quantifies the exponential sensitivity to the initial conditions. We have calculated λ
for the periodic orbit on axis, using the standard techniques [33], and we have found that the

Lyapunov exponent grows from zero with the distance of the BS from the center (Fig. 2.7

(c)). Therefore, the only critical point revealed by the ray dynamics is again the center of the

cavity (Δ = 0), where the magnitudes change from zero to a positive value.

The fact that the Lyapunov exponent of our paraxial system does become positive (for Δ �=
0) is rather surprising on its own right. Apparently, the presence of the BS with its stochastic

nature introduces exponential sensitivity to initial conditions in the system for every Δ �= 0,

even when both subcavities are stable. This surprise can be explained by taking into account

the probabilistic theorem by Furstenberg on the asymptotic limit of the rate of growth of a

random product of matrices (RPM) [34]. From this theorem we expect that the asymptotic

behavior of the product of a uniform random sequence Mn of D×D matrices, and for any

nonzero vector�y ∈ ℜD:

lim
n→∞

1

n
〈ln |Mn�y|〉Ω = λ1 > 0, (2.4)

where λ1 is the maximum Lyapunov exponent of the system, and the angular brackets indicate

the average over the ensemble Ω of all possible sequences. This means that for RPM the

Lyapunov exponent is a non-random positive quantity. In general, it can be said that there

is a subspace Ω∗ of random sequences which has a full measure (probability 1) over the

whole space of sequences Ω for which nearby trajectories deviate exponentially at a rate λ1.

Although there exist very improbable sequences in Ω which lead to a different asymptotic
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.
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Figure 2.7: (a) Linear fits used to calculate the escape rate for three different geomet-
rical configurations of the cavity given by Δ = 0.03125 m, Δ = 0.05 m and Δ = 0.0875

m. The time is measured in number of bounces (n). The slope γ is in units of the inverse
of time (n−1). Fig. (b) shows the escape rate γ (n−1) as a function of Δ. Fig. (c) corre-
sponds to different Lyapunov exponents λ (n−1) as the BS moves from the center Δ = 0

to the leftmost side of the cavity Δ = 0.10 m. Fig. (d) shows the difference between λ −γ
(n−1), which is a positive bounded function.

limit, they do not change the logarithmic average (Eq. 2.4) [35]. We have verified this result,

calculating the value of λ for different random sequences ωi, in the asymptotic limit n =
100000 bounces, and we obtained in all cases the same Lyapunov exponent.

2.3.4 Mixing properties
Dynamical randomness is characterized by a positive Kolmogorov-Sinai (KS) entropy per

unit time hKS [36]. In closed systems, it is known that dynamical randomness is a direct

consequence of the exponential sensitivity to initial conditions given by a positive Lyapunov

exponent. On the other hand, in open dynamical systems with a single Lyapunov exponent λ ,

the exponential sensitivity to initial conditions can be related to hKS through the escape rate

γ , by the relation [27]:

λ = hKS + γ. (2.5)

This formula reveals the fact that in an open dynamical system the exponential sensitivity to

initial conditions induces two effects: one is the escape of trajectories out of the neighbor-
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2.4 Summary

hood of the unstable reference periodic orbit at an exponential rate γ , and the other one is a

dynamical randomness because of transient chaotic motion near this unstable orbit [27]. This

dynamical randomness is a measure of the degree of mixing of the system and as mentioned

before is quantified by hKS. Therefore, for a given λ , the larger the mixing is, the smaller the

escape rate, and viceversa. From Figs. 2.7 (b,c) it is evident that the Lyapunov exponent and

the escape rate have the same smooth dependence on the BS displacement Δ and that γ ≤ λ .

We have calculated the difference λ −γ > 0 for our system and the result is shown in Fig. 2.7

(d).

The actual value of γ(Δ) depends, for a fixed value of Δ, on the size of the phase space

accessible to the system [31], that is, it depends on w0 and θ0. We verified this behavior

by successively decreasing w0 and θ0 by factors of 10 (see Table 2.1), and calculating γ for

each of these phase space boundaries. It is clear from these results that γ increases when

the size of phase space decreases; in fact for w0,θ0 ≈ 0, one should get λ → γ and the

cavity mixing property should disappear. It should be noted that the increase of γ when

decreasing the size of the accessible phase space (ω0,θ0) is a general tendency, independent

of the chosen boundaries. It is important to stress that, although the randomness introduced

(w0,θ0) ×100 ×10−1 ×10−2 ×10−3

γ 0.17639 0.17596 0.19559 0.25259

Table 2.1: Escape rate for different phase space boundaries. As the boundary shrinks
γ(Δ) tends to the corresponding value of λ (Δ) = 0.29178n−1. In these calculations the
displacement of the BS was Δ = 0.0875m.

by the stochastic BS is obviously independent from the cavity characteristics, λ and γ show

a clear dependence on the BS position. When the BS is located at the center of the cavity

it is evident for geometrical reasons that the ray splitting mechanism becomes ineffective:

λ = 0 = γ . These results confirm what we have already shown in the SOS (Fig. 2.5).

2.4 Summary

In this Chapter we have characterized the ray dynamics of our paraxial optical cavity with ray

splitting by using standard techniques in non-linear dynamics. In particular we have found,

both through the SOS and the exit basin diagrams, that the stochastic ray splitting mechanism

destroys the regular motion of rays in the globally stable cavity. The irregular dynamics

introduced by the beam splitter was quantified by calculating the Lyapunov exponent λ ; it

grows from zero as the beam splitter is displaced from the center of the cavity. Therefore, the

center of the cavity constitutes the only point where the dynamics of the rays is not affected

by the stochasticity of the BS. The escape rate γ has been calculated and it has revealed a

similar dependence with the position of the beam splitter to that of λ . Furthermore, we have

verified that the absolute value of the escape rate tends to that of the Lyapunov exponent

as the size of the available phase space goes to zero. This result confirms the fact that the

escape rate and therefore the mixing properties of a map depend sensitively on the choice of

the boundary [31]. Because of this dependence we cannot claim that our system is chaotic,
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

despite the positiveness of λ . However, as mentioned before, in the next Chapter we shall

demonstrate that ray chaos can be achieved for the same class of optical cavities when non-

paraxial ray dynamics is allowed [37].
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CHAPTER 3

Chaotic ray dynamics in an optical cavity with a beam-splitter

In this Chapter we investigate the exact ray dynamics in an optical cavity when a ray
splitting mechanism is present 1. The cavity is a conventional two-mirror stable resonator
and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the
cavity axis. Using exact Hamiltonian optics, we show that such a simple device presents
a surprisingly rich chaotic ray dynamics.

1Based on G. Puentes, A. Aiello and J. P. Woerdman, Opt. Lett. 29, 929 (2004).
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3. Chaotic ray dynamics in an optical cavity with a beam-splitter

3.1 Introduction

In this Chapter we present a very simple optical cavity whose ray dynamics is nevertheless

fully chaotic. Our starting point is the fact that a two-mirror optical cavity can be stable or

unstable depending on its geometrical configuration [5]. If a light ray is injected inside the

cavity it will remain confined indefinitely when the configuration is stable but it will escape

after a finite number of bounces when the cavity is unstable. Our interest is in a cavity

which has both aspects of stability and instability (Fig. 3.1). The cavity is modelled as a strip

resonator [5] made of two identical concave mirrors of radius of curvature R separated by

a distance L, where L < 2R so that the cavity is globally stable. We then introduce a beam

splitter (BS) inside the cavity, oriented perpendicular to the optical axis. In this way the BS

defines two planar-concave subcavities: one on the left and one on the right with respect to

the BS, with length L1 and L2, respectively. The main idea is that depending on the position

of the BS the left (right) subcavity becomes unstable for the reflected rays when L1 (L2) is

bigger than R, while the cavity as a whole remains always stable (L1 +L2 < 2R).

Consideration of this system raises the nontrivial question whether there will be an ”equi-

librium” between the number of trapped rays and escaping rays. The trapped rays are those

which bounce for infinitely long times due to the global stability of the cavity and the es-

caping ones are those which stay only for a finite time. If such equilibrium exists it could

eventually lead to transient chaos since it is known in literature that instability (positive Lya-

punov exponents) and mixing (confinement inside the system) form the skeleton of chaotic

dynamics [22]. In this Chapter we show that under certain conditions such equilibrium can

be achieved in our cavity and that chaotic ray dynamics is displayed.

3.2 Our model

In our system the BS plays a crucial role. It is modelled as a stochastic ray splitting element

by assuming the reflection and transmission coefficients as random variables [18]. Within

the context of wave optics this model corresponds to the neglect of all interference phenom-

ena inside the cavity, as required by the ray (zero-wavelength) limit. The stochasticity is

implemented by using a Monte Carlo method to determine whether the ray is transmitted or

reflected [18]. When a ray is incident on the ray splitting surface of the BS, it is either trans-

mitted through it, with probability p, or reflected with probability 1− p, where we assume

p = 1/2 for a 50/50 beam splitter as shown in Fig. 3.1. We then dynamically evolve a ray and

at each reflection we use a random number generator with a uniform distribution to randomly

decide whether to reflect or transmit the incident ray.

In the context of Hamiltonian optics, to characterize the trajectory of a ray we first choose

a reference plane perpendicular to the optical axis Ẑ, coinciding with the surface of the BS.

The intersection of a ray with this plane is specified by two parameters: the height y above

the optical axis and the angle θ between the trajectory and the same axis. We consider the

rays as point particles, as in standard billiard theory where the propagation of rays correspond

to the trajectories of unit mass point particles moving freely inside the billiard and reflecting

elastically at the boundary. In particular, we study the evolution of the transversal component

of the momentum of the ray, i.e. vy = |�v|sin(θ) so that we associate a ray of light with the
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Figure 3.1: Schematic diagram of the cavity model; R indicates the radius of curvature
of the mirrors. Two subcavities of length L1 and L2 are coupled by a BS. The total cavity
is globally stable for L = L1 +L2 < 2R. Δ = L1−L/2 represents the displacement of the
BS with respect to the center of the cavity. When a ray hits the surface of the BS, which
we choose to coincide with the reference plane, it can be either reflected or transmitted
with equal probability (p); for a 50/50 beam splitter p = 1/2.

two-dimensional vector�r = (y,vy). It is important to stress that we use exact 2D-Hamiltonian

optics, i.e. we do not use the paraxial approximation.

The evolution of a set of rays injected in the cavity with different initial conditions

(y0,vy0
), is obtained by using a ray tracing algorithm. For each initial condition, the ac-

tual ray trajectory is determined by a random sequence {...rrttrrrrt..} which specifies if the

ray is reflected (r) or transmitted (t) by the BS. When one evolves the whole set of initial

conditions, one can choose between two possibilities, either use the same random sequence

for all rays in the set of initial conditions or use a different random sequence for each ray. In

this Chapter we use the same random sequence for all injected rays in order to uncover the

dynamical randomness of the cavity.

3.3 Numerical Results

3.3.1 Poincaré Surface of Section (SOS)
The three quantities that we have calculated to demonstrate the chaotic ray dynamics inside

the cavity are the Poincaré Surface of Section (SOS), the exit basin diagrams and the escape

time function [23]. In all calculations we have assumed L1 + L2 = 0.16 m and the radius of

curvature of the mirrors R = 0.15 m; the diameter d of the two mirrors was d = 0.05 m. In

addition, the displacement Δ of the BS with respect to the center of the cavity was chosen as

0.02 m (unless specified otherwise), and the time was measured in number of bounces n.

In Fig. 3.2, the successive intersections of a ray with initial transverse coordinates y0 =
1× 10−5 m, vy0

= 0 are represented by the black points in the SOSs. For Δ = 0 the cavity
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3. Chaotic ray dynamics in an optical cavity with a beam-splitter

configuration is symmetric and the dynamics is completely regular (Fig. 3.2 (a)); the on-axis

trajectory represents an elliptic fixed point and nearby stable trajectories lie on continuous

tori in phase space. In Fig. 3.2 (b), the BS is slightly displaced from the center (Δ = 0.02

m), the same initial trajectory becomes unstable and spreads over a finite region of the phase

space before escaping after a large number of bounces (n = 75328). In view of the ring

structure of Fig. 3.2 (b) we may qualify the motion as azimuthally ergodic. The fact that the

ray-splitting mechanism introduced by the BS produces ergodicity is a well known result for

a closed billard [18]. We find here an analogue phenomenon, with the difference that in our

case the trajectory does not explore uniformly but only azimuthally the available phase space,

as an apparent consequence of the openness of the system.
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Figure 3.2: SOS for (a) Δ = 0: the ray dynamics is stable and thus confined on a torus
in phase space. (b) Δ = 0.002 m, the dynamics becomes unstable and the ray escapes
after n = 75328 bounces. Note the ring structure in this plot.

3.3.2 Exit basin diagrams

It is well known that chaotic hamiltonian systems with more than one exit channel exhibit

irregular escape dynamics which can be displayed, e.g., by plotting the exit basin diagram

[24]. In our system, this diagram was constructed by defining a fine grid (2200 × 2200)

of initial conditions (y0,vy0
). Each ray is followed until it escapes from the cavity. When

it escapes from above (vy > 0) we plot a black dot in the corresponding initial condition,

whereas when it escapes from below (vy < 0) we plot a white dot. This is shown in Fig. 3.3,

the uniform regions in the exit basin diagram correspond to rays which display a regular

dynamics, whereas the dusty regions correspond to portions of phase space where there is

sensitivity to initial conditions, since two initially nearby points can escape from opposite

exits. Moreover, in Fig. 3.3 one can see how the boundary between black and white regions

becomes less and less smooth as one approaches the center of these diagrams. It is known that

this boundary is actually a fractal set [25] whose convoluted appearance is a typical feature
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of chaotic scattering systems [26].
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Figure 3.3: Exit basin for Δ = 0.02 m. The fractal boundaries are a typical feature of
chaotic scattering systems.

3.3.3 Escape time function
Besides sensitivity to initial conditions, another fundamental ingredient of chaotic dynamics

is the presence of infinitely long living orbits which are responsible for the mixing properties

of the system. This set of orbits is usually called repeller [27], and is fundamental to gener-

ate a truly chaotic scattering system. To verify the existence of this set we have calculated

the escape time or time delay function [28] for a one-dimensional set of initial conditions

specified by the initial position y0 (impact parameter) taken on the mirror M1 and the initial

velocity vy0
= 0. The escape time was calculated in the standard way, as the time (in number

of bounces n) it takes a ray to escape from the cavity.

Fig. 3.4 (a) shows the escape time function. The singularities of this function are a clear

signature of the existence of long living orbits and the presence of peaks followed by flat

regions are a signature of the exponential sensitivity to initial conditions. In order to verify

the presence of an infinite set of long living orbits, we have zoomed in on the set of impact

parameters y0 in three different intervals (Fig. 3.4 (b), (c) and (d)). Each zoom reveals the
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Figure 3.4: (a) Escape time as a function of the initial condition y0. (b) Blow up of
a small interval along the horizontal axis in (a). (c) and (d) Blow ups of consecutive
intervals along the set of impact parameters y0 shown in (b).

existence of new infinitely long living orbits. Infinite delay times correspond to orbits that

are asymptotically close to an unstable periodic orbit. If we would continue to increase the

resolution we would find more and more infinitely trapped orbits. The repeated existence

of singular points is a signature of the mixing mechanism of the system due to the global

stability of the cavity.

3.4 Summary

In conclusion, in this Chapter we have demonstrated that our simple optical system displays

chaotic ray dynamics. It is important to stress that a key component for the development of

chaos is the inclusion of non-paraxial rays which add the mixing properties to the system [29].

In fact, it has been previously shown that paraxial ray dynamics can be unstable but not

chaotic, in systems with stochastic perturbations [16, 30]. In our case, it is the stochastic

ray splitting mechanism induced by the BS that destroys the regular motion of rays in the

globally stable (but non-paraxial) cavity, as shown by the SOSs. Moreover, by calculating

the exit basin diagrams we have found that they show fractal boundaries, which is a typical

feature of chaotic ray dynamics [24]. Finally, through the singularities in the escape time

function, we have verified the presence of infinitely long living orbits, which in turn revealed

the mixing mechanism of our optical cavity. An experimental confirmation of the fractal

properties of the exit basin can be performed, e.g., in the way suggested in [26], by injecting

a narrow laser beam into the cavity either in a regular or in a dusty region of phase space. In
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3.4 Summary

the former case one expects the beam to leave the cavity either from above or below, while in

the latter case both exits should appear illuminated. This proposed experiment is fully within

the context of geometrical optics (interference plays no role) so that our stochastic model of

the BS is adequate.
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CHAPTER 4

Universality in the polarization entropy and depolarizing
power of light scattering media: Theory

In this Chapter we present the theoretical background related to our experiments on light
depolarization due to multi-mode scattering [44]. The key theoretical concept we intro-
duce is the effective Mueller matrix, which describes our spatial multi-mode detection
set-up.
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4. Universality in the polarization entropy and depolarizing power of light scattering media: Theory

4.1 Introduction

In classical optics, a light beam is said to be polarized when its polarization direction de-

scribes a stationary curve during the measurement time, and depolarized when its polariza-

tion direction varies rapidly with respect to other degrees of freedom that are not resolved

during the experiment, such as wavelength, time or position of the beam [4]. Moreover, de-

polarization also occurs when a single-mode input beam is coupled to a multi-mode (either

spectral or spatial) optical system and the polarization properties of the outgoing beam are

measured with a mode-insensitive device. The main mechanism of depolarization that we

analyze in this Chapter is given by the coupling of polarization with spatial degrees of free-

dom. A typical example of this is the case of a beam of light initially prepared in a single

spatial-mode (kin) that is incident on an optically passive inhomogeneous medium. Due to the

spatial inhomogeneities in the medium, the beam suffers multiple scattering and, as a result,

it emerges as a (partially) incoherent superposition of spatial modes (kout). Even when each

of the output modes is fully polarized, the output beam appears to be (partially) depolarized

when its spatial information is averaged out in a multi-mode detection set-up.

There exist several formalisms that enable to represent the polarization state of light.

Among them, the Mueller-Stokes formalism is particularly well suited for the description

of partially polarized light. Within this formalism, the polarization state of the light field

is completely characterized by the 4 dimensional Stokes vector S = (S0,S1,S2,S3), where

S0 is to the total intensity of the beam, and Si=1,2,3 are the relative intensities in the V/H,

45◦/− 45◦, and RHC/LHC bases. The only restriction for a Stokes vector to represent a

physical polarization state is that ∑i S2
i ≤ S2

0. Additionally, any passive optical system can be

characterized by a 4× 4 Mueller matrix, whose 16 real elements map the polarization state

of the input and output beams. At this point, it might be good to stress that there exists a

considerable ambiguity in the terminology used to characterize different scattering systems;

this ambiguity arises from to the overlap of scientific communities working in the polarimetric

properties of light. We specify that in this contribution we will use the standard notation in

optics introduced by L. Mandel and E. Wolf [45]. This means, we shall consider as scattering

system, any passive optical system that can be characterized by a Mueller matrix (or scattering

matrix). In other words, any medium that transforms an input Stokes vector Sin into an output

Stokes vector Sout, provided that the transformation is linear. Thus, the ensemble of scattering

media may comprise a single element, such as a lens, a polarizer, a retarder, a spatial light

modulator, or an optical fiber, as well as a cascade of optical elements or a solution of micro-

particles. These different media may be grouped in two broad classes: deterministic and

non-deterministic [45]. To the first class belong all media that do not depolarize the input

light, in this particular case, the Mueller matrix representing the medium is a Mueller-Jones

matrix [46]. To the second class belong all media that do indeed depolarize the input light

and whose Mueller matrix has to be written as a sum of (at most) four Mueller-Jones matrices

[46].

For a given depolarizing mechanism, the amount of depolarization can be quantified by

calculating either the entropy (EF ) or the degree of polarization (PF ) of the scattered field [4].

It is possible to show that the field quantities EF and PF are related by a monotonous single-

valued function. For example, polarized light (PF = 1) has EF = 0 while partially polarized

light (0 ≤ PF < 1) has 1 ≥ EF > 0. In this sense low (high) polarization entropy implies the
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4.2 Mueller-Stokes formalism

existence of a strongly (weakly) polarized structure in the light field [47]. When the incident

beam is purely polarized and the output beam is partially polarized, the medium is said to be

depolarizing. Depolarization is called isotropic when the degree of polarization 0 ≤ P′
F < 1

of the scattered field is the same for any input pure state PF = 1 [48]. In this particular

case, the medium can be characterized by a single parameter, related to the magnitude of

its depolarizing power. However, most media depolarize in different amounts different input

states of polarization. When this is the case, they are termed anisotropic depolarizers and a

single parameter can not fully characterize them. An average measure of the depolarizing

power of a medium is given by the so called index of depolarization DM [49], where the

average refers to different pure input states. Non-depolarizing media are characterized by

DM = 1, while depolarizing media have 0 ≤ DM < 1.

A depolarizing scattering process is always accompanied by an increase of the entropy

of the light, the increase being due to the interaction of the field with the medium, which

couples the polarization degrees of freedom of the field with the multi-dimensional degrees of

freedom of the scatterer (either spatial or temporal). These extra degrees of freedom are traced

over during the polarization measurement, and leave the polarization degrees of freedom of

the scattered field in a (partially) mixed state. In general, for an anisotropic depolarizer the

entropy added to the light field by the medium will depend on the input state. An average

measure of the entropy that a given random medium can add to the entropy of the incident

light beam, is given by the polarization entropy EM [48], where the average again refers to

different pure polarization input states. Non-depolarizing media are characterized by EM = 0,

while depolarizing media satisfy 0 < EM ≤ 1. As the field quantities EF and PF are related to

each other, so are the medium quantities EM and DM , with the main difference that they are

related through a multi-valued function, the reason being that the corresponding relation for

the field parameters is non-linear.

In Ref. [50] it was shown that there exists a universal relation EM(DM) between the po-

larization entropy EM and the index of depolarization DM valid for any scattering medium.

More specifically, EM is related to DM by a multi-valued function which covers the full range

from zero to total depolarization. This universal relation provides a simple characterization

of the polarization properties of any medium. We emphasize that the results found in [50]

apply both to classical and quantum (single photon) scattering processes, and might therefore

become relevant for quantum communication optical applications, where depolarization is

associated with the loss of quantum coherence [51].

In the next section we review the Mueller-Stokes formalism, suitable for a single spatial

mode description of the light field. In particular we formally introduce the concepts of deter-

ministic and non-deterministic Mueller matrices, which correspond to non-depolarizing and

depolarizing media respectively.

4.2 Mueller-Stokes formalism

Consider a quasi-monochromatic beam of light of mean angular frequency ω [52]. Let us de-

note with x,y,z the axes of a Cartesian coordinate system, with the z-axis along the direction

of propagation of the beam whose angular spread around z is assumed to be small enough to
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4. Universality in the polarization entropy and depolarizing power of light scattering media: Theory

satisfy the paraxial approximation. Let

Ex(x,y,z0, t0) ≡ E0(x,y)e−iω(t0−z0/c), Ey(x,y,z0, t0) ≡ E1(x,y)e−iω(t0−z0/c), (4.1)

be the components of the complex paraxial electric field vector in the x- and y-direction

respectively, at the point (x,y) located in the transverse plane z = z0 at time t0. If the field is

uniform on the transverse plane, then Ex and Ey are independent of x and y, and a complete

description of the field can be achieved in terms of a doublet E of complex variables (with

possibly stochastic temporal fluctuations):

E =
(

E0

E1

)
, (4.2)

where E0 and E1 are now complex-valued functions of z0 and t0 only (the subscripts 0 and 1

correspond to the cartesian directions x and y respectively). A complete study of the propaga-

tion of E along z can be found in [45]. However, the main result we need is that propagation

through non-depolarizing media can be described by a deterministic Mueller (or Mueller-

Jones) matrix MJ , while to describe the propagation of a light beam through a depolarizing

medium it is necessary to use a non-deterministic Mueller matrix M.

4.2.1 Deterministic Mueller matrix MJ: non-depolarizing media
In a broad sense, a deterministic linear scatterer as, e.g., a quarter-wave plate, a rotator or a

polarizer, is an optical system which can be described by a 2×2 complex Jones [4] matrix

T =
(

T00 T01

T10 T11

)
. (4.3)

By this we mean that if E and E′ describe the polarization state of the field immediately

before and immediately after the scatterer respectively, then they are linearly related by the

Jones matrix T :

E′ = T E. (4.4)

Therefore a deterministic scattering process, where there are no fluctuations of E with

respect to other degrees of freedom (either spatial or temporal), can be described by a Jones

matrix. To account for the possible fluctuations of the field, we can introduce the coherency

matrix of the field J defined as [6]

Ji j = 〈EiE∗
j 〉, (i, j = 0,1), (4.5)

where the angular brackets denote the statistical average over different realizations of the

fluctuations of the field. The coherency matrix is Hermitian and positive semi-definite by

construction. By imposing as normalization condition Tr{J} = 1, J can be interpreted as a

quantum density matrix [53]; which evidences the analogy between the classical description

of a partially polarized beam with the quantum description of a single photon in a mixed

state [50]. Given the coherency or covariance matrix J one can calculate the entropy of the

field EF through [4]

EF = −Tr{J log2(J)}, (4.6)
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where the symbol Tr{·} denotes the trace operation, and 0 ≤ EF ≤ 1 by definition. From

Eq. (4.6) we see that EF is equivalent to the von Neumann definition of entropy of a single-

photon state [54].

An alternative description can be given in terms of the Stokes parameters of the beam.

The four Stokes parameters Sμ (μ = 0, . . . ,3) of the beam are defined as

Sμ = Tr{Jσμ}, (μ = 0, . . . ,3), (4.7)

where the {σμ} are the normalized Pauli matrices:

σ0 = 1√
2

(
1 0

0 1

)
, σ1 = 1√

2

(
0 1

1 0

)
,

σ2 = 1√
2

(
0 −i
i 0

)
, σ3 = 1√

2

(
1 0

0 −1

)
.

(4.8)

Now, if with Sμ and S′μ we denote the Stokes parameters of the beam before and after the

scatterer respectively, it is easy to show that they are linearly related by the real-valued 4×4

Mueller-Jones matrix MJ as

S′μ = MJ
μν Sν , (4.9)

where summation on repeated indices is understood and

MJ = Λ†(T ⊗T ∗)Λ, (4.10)

where the symbol “⊗” denotes the outer matrix product and the unitary matrix Λ is defined

as

Λ =
1√
2

⎛
⎜⎜⎝

1 0 0 1

0 1 −i 0

0 1 i 0

1 0 0 −1

⎞
⎟⎟⎠ . (4.11)

The columns of Λ are given by the elements of the Pauli matrices. From the structure of

MJ it follows that a deterministic medium does not depolarize, that is PF(S) = PF(S′) where

the degree of polarization PF of the field is defined as

PF(S) =

√
S2

1 +S2
2 +S2

3

S0
. (4.12)

By writing the coherency matrix J in terms of the Stokes parameters, and imposing the

normalization condition Tr{J}= 1, it is possible to show that the degree of polarization PF is

related to the entropy of the field EF by (see Fig. 4.1):

EF = −1+PF

2
log2(

1+PF

2
)− 1−PF

2
log2(

1−PF

2
). (4.13)

Let us conclude by noticing that for deterministic media the two descriptions in terms of

T or MJ are completely equivalent in the sense that the 16 real elements of MJ do not contain

more information than the 4 complex elements of T .
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Figure 4.1: Entropy (EF ) vs degree of polarization (PF ) for the light field.

4.2.2 Non-deterministic Mueller matrix M: depolarizing media
A non-deterministic scatterer is, in a broad sense, an optical system which cannot be de-

scribed by a Mueller-Jones matrix. In this class fall any depolarizing optical systems, such

as multi-mode optical fibers, particles in suspension, etc. It has been shown [61, 62] that it is

possible to describe a non-deterministic optical system as an ensemble of deterministic sys-

tems, in such a way that each realization E in the ensemble is characterized by a well-defined

Jones matrix T (E ) occurring with probability pE ≥ 0. This ensemble representation, in turn,

reflects some uncertainty in the description of the medium which can be explained in terms

of unobserved degrees of freedom of the probe beam. Then, the Mueller matrix M of the

system can be written as

M = Λ†(T ⊗T ∗)Λ, (4.14)

where the bar symbol denotes the average with respect to the ensemble representing the

medium:

T ⊗T ∗ = ∑
E

pE T (E )⊗T ∗(E ). (4.15)

At this point it is useful to introduce the auxiliary 4× 4 Hermitian matrix H defined as

the system dynamical matrix [47]:

H =
1

2

0,3

∑
μ,ν

Mμν(σμ ⊗σ∗
ν ), (4.16)
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where TrH = 1, Mμν are the elements of the Mueller matrix and σi (i = 0,1,2,3) the nor-

malized Pauli matrices (see Eq. 4.8). H is by definition, positive semi-definite, that is, all

its eigenvalues {λ0,λ1,λ2,λ3} are non-negative. It is possible to demonstrate [46] that any

Mueller matrix can be decomposed as a sum of at most four Mueller-Jones matrices:

M =
3

∑
i=0

λiMJ
i , (4.17)

where λi are the eigenvalues of H (Eq. 4.16). This positive decomposition allows us to

give a probabilistic interpretation to λi by considering each of them as the probability of

occurrence of the Mueller-Jones matrix MJ
i . Further, it is through (Eq. 4.17) that the statistical

nature of a depolarizing process is revealed, and it becomes clear that two different media

can be described by two different ensembles of Mueller-Jones matrices with exactly the same

coefficients λi. These eigenvalues can, in turn, be combined to form a single scalar quantity

that is a measure of the polarimetric disorder added to the field by the system, i.e., the entropy

of the medium EM:

EM = −
3

∑
ν=0

λν log4(λν). (4.18)

Moreover, it is possible to show that the index of depolarization (or depolarizing power)

DM of the medium can be written as:

DM =

[
1

3

(
4

3

∑
ν=0

λ 2
ν −1

)]1/2

. (4.19)

For a non-depolarizing system, EM = 0, DM = 1, and H has a single eigenvalue equal

to one, and the rest equal to zero. This means that its corresponding Mueller matrix is a

Mueller-Jones matrix, as expected. Conversely, for a totally depolarizing medium EM = 1,

DM = 0 and H has four eigenvalues equal to 1/4.

In Ref. [50], a universal relation between EM and DM was found. This universal character

can be explained by noticing that both EM and DM only depend on the four eigenvalues (λi) of

H. By using the normalization condition Tr{H}= 1, we see there are only three independent

parameters. We choose then to write EM(DM,λ1,λ2), where 0≤ λ1,2 ≤ 1 are two independent

eigenvalues of H. By varying λ1,2 it is possible to obtain a whole domain en the EM −DM
plane (see Fig. 4.2). The analytical curves that determine this domain are detailed in Ref. [50].

Cuspid points in Fig. 4.2 separate different types polarization dependent scattering processes.

In subsection 4.2.1, Eq. (4.6), we pointed out the analogy between the definition of polar-
ization entropy and the von Neumann entropy of a quantum system. In the case of bipartite

systems, the von Neumann entropy quantifies the degree of entanglement of the subsystems

for pure states, and it is a measure of the degree of mixture for non-pure states. It is worth

noticing that it is possible as well to relate the degree of polarization of a system of dimension

N, with its linear entropy, which is an alternative measure of the degree of mixedness of a

system (and is generally easier to calculate than the Von Neumann entropy) [55,56]. Namely,

given the density matrix of the system ρ , one can define the degree of polarization PN by:

PN =

√
NTr{ρ2}−1

N −1
. (4.20)
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Figure 4.2: Numerically determined domain for the entropy (EM) vs index of depo-
larization (DM) corresponding to any scattering process. The solid lines are given by
analytical curves [50]. The four cuspid points are given by A = (0,1), B = (1/3, log43),
C = (1/

√
3,1/2), and D = (1,0).

Recalling that the linear entropy is defined as [55]:

SN =
N

N −1
[1−Tr{ρ2}], (4.21)

and combining Eq. (4.20), and Eq. (4.21) it is simple to show that:

SN = 1−P2
N . (4.22)

The mathematical space where medium parameters EM and DM are defined is equivalent

to that of a quantum system with a Hilbert space of dimension N = 4, i.e., the polarization

state space of two photons. Within this analogy, EM can be interpreted as the von Neumann

entropy of a four dimensional (N = 4) quantum system. Additionally, for N = 4 we have

DM = P4, and S4 = 1−D2
M . Equations (4.21) and (4.22) are also valid in the case of a single

photon taking N = 2.

In the next section we formally introduce the concept of effective Mueller matrix which

serves as a theoretical tool to describe our depolarization experiments.
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Figure 4.3: An input beam with Nin spatial modes label by j0 impinge on a scattering
medium. The scattering process spans the outgoing beam in Nout spatial modes labelled
by j. Eventually D (D < Nout) modes are detected.

4.3 The effective Mueller matrix

The Mueller-Stokes formalism described in the previous section is suitable for a single spa-

tial mode description of the field, where depolarization occurs due to coupling of polarization

degrees of freedom with temporal domain, for instance by propagation on dynamic media.

However, it is possible to extend this formalism to the multi-spatial-mode case. To this end,

let us consider the case of a scattering process in which a coupling between polarization

and spatial modes of the field occurs and a multi-mode detection scheme is employed. This

idea is schematized in Fig. 4.3, where Nin spatial modes of the field impinge on a scatterer,

Nout leave from it and D modes are eventually detected. We make the assumption that dif-

ferent spatial modes of the field are uncorrelated, that is, we will consider for simplicity

that the source is spatially incoherent. Moreover, without loss of generality, we assume

Nin = Nout = N. Let S( j) ≡ {S0( j),S1( j),S2( j),S3( j)} be a generic 4-Dim Stokes vector

defined with respect to the mode j, where j ∈ {1, . . . ,N}. For a N-mode field we have a col-

lection (N) of 4-Dim Stokes vectors that can be arranged in a single 4N-Dim “super” Stokes

vector S = {S(1), . . . ,S(N)}. Generally speaking, when the N-mode light beam undergoes a

polarization-sensitive scattering process, the Stokes vectors {Sin( j0)} of the input beam are

related to the set of vectors {Sout( j)} of the output beam by:

Sout( j) =
N

∑
j0=1

MJ( j, j0)Sin( j0), ( j = 1, . . . ,N), (4.23)
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4. Universality in the polarization entropy and depolarizing power of light scattering media: Theory

where MJ( j, j0) is the 4×4 Mueller-Jones matrix that describes the scattering from the input

mode j0 to the output mode j. If we introduce a “super” 4N ×4N Mueller matrix defined as

M ≡

⎛
⎜⎝

MJ(1,1) . . . MJ(1,N)
...

. . .
...

MJ(N,1) . . . MJ(N,N)

⎞
⎟⎠ , (4.24)

where each block MJ( j1, j2) is a 4×4 Mueller-Jones matrix, then we can rewrite Eq. (4.23)

in a compact form as

Sout = M ·Sin. (4.25)

After the scattering process took place, we have to detect its products. In Ref. [13], it

was shown that when D modes of the field are detected out of N scattered modes (D < N), a

mode-insensitive polarization analyzer put in front of a bucket-detector can be described by

a 4N ×4N block-diagonal matrix A:

A ≡

⎛
⎜⎜⎜⎝

A(1)
. . .

A(D)
0

⎞
⎟⎟⎟⎠ , (4.26)

where A( j), ( j = 1, . . . ,D) are the 4×4 transmission Mueller-Jones matrices, of the polariza-

tion analyzer, whose elements depend on the different geometrical projections of the imping-

ing mode-directions j [13]. The 4×4 real-valued positive semi-definite transmission matrices

are in fact projectors, and 0 is a null (N−D)×(N−D) matrix. In the paraxial limit (D << N)

each A( j) reduces to the 4×4 identity matrix, and the polarization state of the scattered beam

after the analyzer, is described by the super-Stokes-4D vector SD ≡ {SD(1), ...,SD(D)} given

by

SD = A ·M ·Sin. (4.27)

Finally, because of the mode-insensitive detection, the sum over all the detected modes D
reduces the number of degrees of freedom of the field from 4D to 4, producing the detected
4-Dim Stokes vector SD:

SD =
D

∑
j=1

SD( j) ≡ MeffSin(1), (4.28)

where we have assumed that the input light beam is prepared in the single mode j0 = 1, so

that Sin( j0) = δ j01Sin(1) and with Meff we have denoted an effective 4× 4 Mueller matrix

defined as

Meff =
D

∑
j=1

A( j)MJ( j,1), (4.29)

which is written as a sum of D Mueller-Jones matrices. It is important to notice that while

the product of Mueller-Jones matrices is still a Mueller-Jones matrix (in physical terms: a

cascade of non-depolarizing optical elements is still a non-depolarizing optical system), a

sum, in general, is not. This causes depolarization. Moreover, since the “matrix coefficients”
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A( j) are non-negative, the matrix Meff in Eq. (4.29) is an explicit version of the Mueller

matrix written in Eq. (4.14). Thus we have shown, by an explicit derivation, how to build

the statistical ensemble representing the depolarizing medium, for this particular case. It is

worth noticing, that because of the dependence of the effective Mueller matrix on the number

of detected modes D, it is possible to obtain different Mueller matrices for a given system, by

increasing (or decreasing) the number of detected modes.

4.4 Summary
In this Chapter we have presented the Mueller-Stokes formalism and its extension to the

multi-mode case via the formal definition of the the effective Mueller matrix. This theoretical

framework provides a suitable description of the depolarization experiments that shall be

discussed in the next Chapter.
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CHAPTER 5

Universality in the polarization entropy and depolarizing
power of light scattering media: Experiment

In this Chapter we report experimental results on light depolarization due to multi-mode
scattering 1. By means of polarization tomography, we characterize the depolarizing
power and the polarization entropy of a broad class of optically scattering media and
confirm the recently predicted universal behavior of these two quantities (A. Aiello and J.
P. Woerdman, Phys. Rev. Lett. 94, 090406 (2005)).

1Based on G. Puentes, D. Voigt, A. Aiello, and J. P. Woerdman, Opt. Lett. 30, 3216 (2005).

41



5. Universality in the polarization entropy and depolarizing power of light scattering media: Experiment

5.1 Introduction
Polarization aspects of light scattering are important in molecular spectroscopy, optical com-

munication, industrial and medical applications; we focus here in particular on the phenom-

enon of depolarization. The depolarizing properties of a scattering medium can be character-

ized by two parameters; i.e. the entropy of the medium (EM), which is an average measure of

the entropy added to the field by the medium, and the index of depolarization of the medium

(DM), which is an average measure of its depolarizing power [48,50]. In both cases the aver-

age refers to different pure polarization input states. Recently, it was theoretically predicted,

on the basis of an exact derivation, that the relation between EM and DM is a multi-valued

function. Moreover, this multi-valued relation possesses a universal character since it is valid

for any optical depolarizing process [50]. In this Chapter we report an experimental study

of the depolarizing properties of a large set of scattering media, ranging from milk to multi-

mode optical fibers. The results confirm the theoretical predictions for the bounds of the

multi-valued function EM[DM].

5.2 The effective Mueller matrix
Within the Mueller-Stokes formalism [4], explicit expressions for DM and EM can be derived

by using the Hermitian operator H defined as [48]:

H =
1

2

0,3

∑
μ,ν

Mμν(σμ ⊗σ∗
ν ), (5.1)

where TrH = 1, Mμν are the elements of the Mueller matrix and σi (i = 0,1,2,3) the nor-

malized Pauli matrices. It can be shown that any physically realizable system is character-

ized by a positive-semidefinite matrix H, such that its four eigenvalues satisfy 0 ≤ λν ≤ 1

(ν = 0,1,2,3). It is then possible to express the polarization entropy EM and the index of

depolarization DM as [50]:

EM = −
3

∑
ν=0

λν log4(λν), DM =

[
1

3

(
4

3

∑
ν=0

λ 2
ν −1

)]1/2

. (5.2)

Introduction of an effective Mueller matrix allows to describe depolarization due to cou-

pling between polarization and spatial modes of the field (see Chapter 4, this Thesis). In this

way we extend the standard Mueller-Stokes formalism, which is suitable for a single spatial-

mode description of the field, to the case in which Nin spatial modes of the field impinge

on the scatterer, Nout modes leave from it and D < Nout modes are eventually detected. For

Nin = 1, and within the paraxial approximation D << Nout, the effective Mueller matrix can

be written as:

Meff =
D

∑
j=1

A( j)MJ( j,1), (5.3)

where j = 1, ..,D labels the set of detected modes D, MJ( j,1) is the Mueller-Jones matrix

connecting the single input mode ”1” with the output mode j, and A( j) is a projection matrix
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whose form is determined by the actual measurement scheme. Meff is then written as a sum

of D Mueller-Jones matrices.

5.3 Experimental scheme

In order to measure the effective Mueller matrix Meff and thus the index of depolarization

DM and the entropy EM of a scattering medium, it is straightforward to follow a tomographic

procedure: the light source is successively prepared in four pure polarization basis states of

linear (V,H,+45◦) and circular (RHC) polarization, which are represented by four indepen-

dent input Stokes vectors Sin. For each of these input fields the corresponding Stokes vector

Sout, that represents the polarization state of the output field, is obtained by measuring the

intensities of the scattered light in the same four polarization basis states. This procedure

provides the 4×4 independent parameters required to determine the 16 elements Mμν of the

Mueller matrix in Eq. (5.1). Note that we actually employ two additional polarization basis

states (−45◦, LHC) in our experiments and therefore perform 6× 6 measurements, which

allows us to reduce experimental errors by averaging within the over-complete data set.

PD

L
D

S
out

P1 P2Q2

AU

S
in

H1 Q1

PU

Figure 5.1: Schematic of the polarization tomography set-up. A polarizer unit (PU),
consisting of a fixed polarizer (P1), a half-wave plate (H1), and a quarter-wave plate
(Q1) prepares the polarization input state. A microscope objective (MO) couples the
light into the sample. The scattered light is collimated by a photographic objective
(PO). An adjustable diaphragm (D) defines the amount of transverse spatial average to
be performed at the detector. The analyzer unit (AU) consists of a quarter-wave plate
(Q2) and a polarizer (P2). Lens (L) focuses the light coming from P2 into a photodiode
(PD).

The experimental scheme is illustrated in Fig. 5.1. The light source is a power-stabilized

He-Ne laser at 632.8 nm wavelength. The input field is prepared by the polarizer unit (PU),

consisting of a fixed polarizer (P1), a half-wave plate (H1), and a quarter-wave plate (Q1).

A microscope objective (MO, × 50 magnification, N.A. = 0.55) couples the light into the

sample. The scattered light is collimated by a standard photographic objective (PO, f =
50 mm, f � = 1.9), followed by an adjustable diaphragm or pinhole (D) which fixes the number

of detected spatial modes and thus defines the amount of transverse spatial averaging to be

performed at the detector. The analyzer unit (AU) consists of a quarter-wave plate (Q2)

and a polarizer (P2). Together with a focusing lens (L) and a photodiode (PD), it probes

the polarization state of the scattered output field. As an estimate of the systematic error of

the set-up, we measured the Mueller matrix of air (i.e. the identity matrix) and of well-known
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5. Universality in the polarization entropy and depolarizing power of light scattering media: Experiment

deterministic optical elements such as wave plates. In all these cases, we found the deviations

from the theoretically predicted matrix elements to be limited to |ΔMμν | ≤ 0.02. We ascribe

this mainly to angle-calibration errors as well as imperfections in the used wave plates. This

experimental error can in turn be mapped to the corresponding error in the eigenvalues λi of

H; in all cases we found |Δλi| ≤ 0.04.

5.4 Scattering samples
The first category (a) of scattering samples that we used are dynamic scatterers where, e.g.,

Brownian motion induces temporal fluctuations within the detection integration time. Ex-

amples are milk, polystyrene micro-spheres suspended in water, optically active scattering

media such as polymer-dispersed liquid crystals [57] and watery sugar solutions with sus-

pended polystyrene micro-spheres (the micro-spheres were added to provide Mie scattering).

The second category (b) consisted of static scatterers without temporal fluctuations: standard

Lyot and wedge depolarizers [4], glass and polymer multimode optical fibers as well as op-

tical polymer and holographic diffusers. Surface (holographic) diffusers produce a spread in

the direction of propagation of the incident beam which is, on its own, hardly depolarizing.

Therefore, in order to obtain considerable depolarization we combined them with birefringent

wave plates of different thickness. See the caption of Fig. 5.2 for more details on the scat-

tering samples. Several scatterer-specific tuning parameters, such as adjustable fiber bending

radius, or dilution in the case of liquid samples, allowed us to realize a wide range of depolar-

izing media and to reveal details of their depolarizing properties. Additionally, by choosing

different diaphragm diameters between 2 mm and 13 mm (far field full angular spread 2.3◦
and 14.6◦ respectively), we realized scattering systems which were described by different

Meff. By choosing a lower limit of 2 mm in the diaphragm diameter, special care was taken

to select a sufficiently large number of speckles in the scattered output field (considering

that step-index glass fiber with 50 μm core diameter showed the largest speckles of all our

samples with a far field angular spread of ≈ 0.6◦).

5.5 Experimental results
Fig. 5.2 shows the measured polarization entropy (EM) vs. the corresponding index of depo-

larization (DM), for a large collection of scattering samples. The relatively small grey region

corresponds to all physically realizable scattering processes [50]. This region is bounded and

interdivided by solid curves, whose analytical expression were derived in Ref. [50]. The out-

ermost curve connecting the cusp points A and D is special since it sets an upper bound for

the entropy Emax
M for a given depolarizing power DM , and it can be shown that it is associated

with isotropic depolarizers [50]. As is apparent from the experimental data, our choice of

samples allowed us to largely fill in the range of values (EM,DM), in good agreement with

the predictions from Ref. [50]. Note, however, that we were not able to fill in the region

below the inner curve connecting the points A and C in the (EM,DM)-plane with any data so

far.

Some interesting structures are revealed by Fig. 5.2; the isotropy curve Emax
M [DM] is

mainly covered by the dynamic scatterers (a) that we probed, as well as by polymer fibers,
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Figure 5.2: Measured polarization entropy (EM) vs. index of depolarization (DM)
for all samples. The theoretically possible parameter range in the (EM ,DM)-plane
is indicated by the grey-shaded area. Solid curves correspond to analytical bound-
aries predicted by theory. Cusp points are given by A = (0,1), B = (1/3, log4 3),
C = (1/

√
3,1/2), and D = (1,0) [50]. Details of samples (a) Dynamic: polystyrene

micro-spheres suspended in water (2 μm diameter, Duke Scientific Co., USA); milk
diluted in water (fat particles ≈ 2− 3 μm [58]); sugar in watery micro-spheres sus-
pension; polymer-dispersed liquid crystal (column thickness 2 mm, 0.1 mm and 10 μm,
nematic liquid crystal E7 [57], chiral dope CB15, Merck, Germany); (b) Static: poly-
mer sheet diffusers (100 μm thickness, ZenithTM, SphereOptics Hoffman GmbH, Ger-
many); holographic light shaping diffusers (diffusing full angle α = 0.5◦, 1◦, 5◦, and
10◦, Physical Optics Co., USA); Quartz-wedge/Lyot depolarizers [4] (Halbo Optics,
UK); step-index polymer optical fiber [59, 60] (N.A. = 0.55, core diameters 250 μm,
500 μm, 750 μm ESKA CK type, Mitsubishi Rayon, Japan); step-index glass optical
fiber, (N.A. = 0.48, core diameters 200 μm, 400 μm, 600 μm FT-x-URT type, distrib-
uted by Thorlabs, Inc., USA); step-index glass optical fiber (N.A. = 0.22, core diame-
ters 50 μm ASF50 type, distributed by Thorlabs, Inc., USA); step-index glass optical
fiber (N.A. = 0.27, core diameters 62.5 μm GIF625 type, distributed by Thorlabs, Inc.,
USA).

where a considerable amount of Rayleigh scattering at density fluctuations is present [59,60].

On the other hand, the inner parts of the allowed (EM,DM) region, which are associated with

anisotropic depolarizers, were covered by static samples (b), where the main depolarizing

mechanism is given by the coupling between spatial and polarization degrees of freedom

produced by the combination of multi-mode scattering with birefringence; an example of this

is bending-induced birefringence in the glass optical fibers. The data obtained for samples

longer than 50 cm (500 cm) in the case of polymer (glass) fibers, are close to the cusp point
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5. Universality in the polarization entropy and depolarizing power of light scattering media: Experiment

A (λi=0,1,2,3 = 1/4), which corresponds to total depolarization, while the data obtained for

fibers shorter than 2 cm are close to cusp point D (λ0 = 1,λi=1,2,3 = 0), which corresponds to

deterministic or non-depolarizing systems.

The wedge depolarizers resulted in a non-zero index of depolarization since they are

designed to depolarize only a well defined linear input polarization [4], whereas our tomo-

graphic measurement procedure represents an average over all independent input polariza-

tions. Additionally, we measured the depolarizing power of two identical wedges in cascade

as a function of the relative angle α between their optical axis. In particular, complete de-

polarization was obtained for α = 45◦ and no depolarization occurred for α = 0◦ when the

two wedges were compensated. Not surprisingly, the Lyot depolarizer was, within the exper-

imental error, non-depolarizing since it is designed to depolarize a broadband light source, by

coupling polarization with frequency degrees of freedom, while we operated with a mono-

chromatic laser source.

5.6 Summary
In conclusion, the experimental data for our scatterers covered the theoretically allowed

(EM,DM) domain almost completely and give thus evidence of the predicted depolariza-

tion universality in light scattering [50]. The quantities DM and EM provide insights into the

particular depolarization mechanisms of the various media, and may provide a useful clas-

sification of optical scatterers for quantum applications, where depolarization is linked to

decoherence [51].
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CHAPTER 6

Tunable spatial decoherers for polarization-entangled
photons

In this Chapter 1 we report a novel controllable source of spatial decoherence for twin-
photons, based upon commercially available wedge depolarizers. This allows us to con-
vert the polarization-entangled singlet state into a tunable mixed state. A full character-
ization of this mixed state, by means of quantum tomography, shows that such a spatial
decoherer can be used for synthesizing Werner-like states on demand.

1Based on G. Puentes, D. Voigt, A. Aiello, and J. P. Woerdman, Opt. Lett. 31, 2057 (2006).
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6.1 Introduction

In the previous Chapters we analyzed polarization aspects of light scattering, in a classical

context. This means, by using a classical source of light. Alternatively, in the remaining

Chapters of this Thesis, we will analyze light scattering processes in a non-classical context.

Again, this refers to the quantum nature of the light source. Specifically, for the experiments

described in Chapters 6-9, we used polarization entangled photons as a light source.

Entanglement, the non-classical correlation between separate quantum systems, is con-

sidered a basic resource for quantum information applications including quantum teleporta-

tion [72], quantum cryptography [73], and quantum computation [74]. Most of these ap-

plications work best with quantum systems prepared in a pure maximally entangled state

(i.e., a Bell state). However, practically available quantum systems are generally in mixed

(non-pure) and non-maximally entangled states due to their unavoidable interaction with un-

observed degrees of freedom which act as the environment. This interaction, in turn, induces

decoherence and dissipation. Therefore, in recent years, much effort has been devoted to

the characterization of mixed entangled states [75, 76] and to the formulation of appropriate

separability criteria [77, 78].

From the experimental point of view, a consistent and systematic study of these aspects re-

quires a reliable source of tunable decoherence, in order to engineer mixed entangled states in

a controllable and reproducible way. In this context, creation and characterization of Werner

states [79] and maximally entangled mixed states (MEMS) [80] based upon twin-photon

generation by spontaneous parametric down conversion (SPDC) has been reported [81–85].

While Peters et al. [84] create these well-known families of mixed states by coupling polar-

ization and frequency degrees of freedom (temporal decoherence), Barbieri et al. [85] make

use of the peculiar spatial properties of their source of entangled photons to produce the

desired states. In this Chapter we introduce commercially available quartz wedge depolariz-

ers [4] as a novel source of tunable spatial decoherence for polarization-entangled photons.

The twin-photon states are produced in a standard type-II configuration by SPDC [86] and

characterized by means of quantum tomography [87]. This characterization shows that our

spatial decoherer can be used to engineer Werner-like states in a reproducible manner. Our

results provide evidence against the belief that spatially based decoherence is not suitable for

exploring the twin-photon Hilbert space as it completely destroys entanglement [82].

6.2 Experimental scheme

The experimental set-up is shown in Fig. 6.1. A Krypton-ion laser at 413.1 nm pumps a 1-mm

thick BBO crystal, where polarization-entangled photons are created by SPDC in a degener-

ate type II phase matching configuration at 826.2 nm. Single-mode fibers (SMF) are used as

spatial filters to assure that the initial state is in a single transverse mode. Polarization con-

trollers (PC) align the axes of the spurious birefringence along the SMFs in the SPDC crystal

basis. The total retardation introduced by the SMFs and walk-off effects at the BBO crystal

are compensated by additional BBO crystals (0.5 mm thick) in both signal and idler paths,

together with a half-wave plate (HWP) [86]. The polarization analyzer used for quantum

tomography consists of a quarter-wave plate (QWP) followed by a polarizer (P) in both arms.
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Figure 6.1: Experimental scheme: a krypton-ion laser pumps a type-II BBO crystal.
Walk-off effects are compensated by a half wave-plate (HWP) and two compensating
crystals (CC). The down-converted photons are spatially filtered by single mode fibers
(SMF). Additionally, interference filters (IF) are placed in both arms for bandwidth
selection. A pair of wedge depolarizers in cascade (spatial decoherer) are placed in
the idler path. The amount of decoherence can be controlled by varying the azimuthal
angle (α) between the optical axes (OA1 and OA2) of the two wedges. The decohered
twin-photon state is then analyzed by a quantum tomographic procedure by means of
polarization analyzers (QWP and P) and ”bucket”detectors (BD). Bottom box depicts
three different settings for α .

Additionally, Δλ = 5 nm interference filters (IF) are used for bandwidth selection. Finally, the

photon pairs are detected in a multi-transverse mode fashion by using momentum-insensitive

or ”bucket”detectors (BD). Specifically, our photon counters (SPCM-AQR-1X, PerkinElmer

TM) consisted of a silicon avalanche photodiode with a circular effective area of d = 150 μm

diameter. The twin-photon state that is incident on the spatial decoherer is prepared in the

singlet Bell state (see Fig. 6.2 (a)). The quality of this initial state (before the decoherer) has

to be optimal, i.e., the state has to be maximally entangled and pure, in order to explore the

full dynamic range with the tunable spatial decoherer.

Our tunable spatial decoherer consisted of two identical cascaded quartz-wedge depolar-

izers [4] (Halbo Optics, UK, model No. WDQ10M) placed at normal incidence to the idler

photon (see Fig. 6.1). The beam was expanded by a magnifying telescope to approximately

1 cm, in order to maximize the depolarizing effect of the wedges. Note however, that within

this beam diameter the wedges were classically not completely depolarizing. A classical
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6. Tunable spatial decoherers for polarization-entangled photons

measurement of the average depolarizing power (DP) [44] of a single wedge probed with a

collimated beam expanded to 1 cm (λ = 811 nm), revealed DP ≈ 0.664 which shows 7%

deviation from the ideal depolarizing power of a perfect wedge DP =
√

1/3 ≈ 0.577. Each

quartz-wedge separately was contacted with a fused-silica counter wedge to minimize refrac-

tion. The azimuthal angle (α) between the optical axes (OA1 and OA2) of the two wedges

was used as tuning parameter allowing us to engineer a broad range of mixed-entangled states,

starting from states close to pure and maximally entangled for α = 0◦ (opposite wedges)

and ending at states close to fully-mixed and non-entangled for α = 45◦ (see bottom box in

Fig. 6.1).

6.3 The tomographically reconstructed polarization density
matrices

The degree of entanglement and mixedness of the photon pairs were quantified by the tan-

gle (T ), i.e., the concurrence squared [88], and the linear entropy (SL) [89]. These were

calculated from the 4 × 4 polarization density matrix ρ of the scattered photons, by us-

ing T (ρ)=(max{0,λ1 −λ2 −λ3 −λ4})2, where λ 2
1 ≥ λ 2

2 ≥ λ 2
3 ≥ λ 2

4 are the eigenvalues of

ρ(σ2 ⊗σ2)ρ∗(σ2 ⊗σ2), with σ2 a Pauli matrix [88] and SL(ρ) = 4
3 [1−Tr(ρ2)]. The den-

sity matrix ρ was in turn reconstructed via a quantum tomographic technique [87] by using

{|H1H2〉, |H1V2〉, |V1H2〉, |V1V2〉} as canonical basis. Here H and V represent the horizontal

and vertical linear polarizations of the two photons, and the subscripts {1,2} label signal and

idler, respectively. For ease of notation, subscripts will be omitted in the rest of this Chap-

ter. Finally, all the measured data were processed by using a standard maximum likelihood

estimation method [87]. In Fig. 6.2, we show the real part of some of our tomographically
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Figure 6.2: Real part of the tomographically reconstructed polarization density matrix
ρ in the {|H〉, |V 〉} basis, as well as calculated tangle T and linear entropy SL for
different relative angles (α) between the optical axes of the wedges: (a) empty set-up
(no decoherers), the initial state is the singlet, (b) α = 0◦ anti-parallel wedges, (c)
α = 15◦ and (d) α = 45◦, the state is a classical statistical mixture.

reconstructed polarization density matrices ρ . Fig. 6.2 (a) shows a typical density matrix

for the empty set-up, which is given by the singlet Bell-state |ψ−〉 = (|HV 〉 − |V H〉)/√2

with tangle T ≈ 95 % and linear entropy SL ≈ 3 %, (b) corresponds to the measured den-
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6.4 Tangle vs linear entropy plane

sity matrix when the wedges are anti-parallel oriented and the relative angle between their

optical axis is α = 0◦. In this configuration the two wedges act as a wave-plate and only

introduce a rotation in the polarization basis; this explains the change in sign of the initially

negative off-diagonal elements of ρ . There is, however, a residual entanglement degradation

for this setting (T ≈ 69 %), which can be explained in terms of residual temporal decoher-

ence by the wedges. Specifically, a chromatic polarization-interferometric analysis (see [90]

for details) performed on a single wedge with a pencil-like beam (≈ 1 mm diameter), re-

vealed a frequency-dependent phase retardation between horizontal and vertical polarizations

of roughly π/4 (estimated at the center of the wedge aperture) within our detection bandwidth

of Δλ = 5 nm. This detection bandwidth was chosen as a compromise between sufficiently

low temporal decoherence and sufficiently large count rates (typical coincidence count rates

were approximately 800/s). It should be noted that this initial entanglement degradation can

in principle be reduced by designing the wedges on a thinner quartz substrate (the substrate

width in our wedges was estimated [90] to be ≈ 300μm).

Proceeding now to Fig. 6.2 (c), we show a typical density matrix for α = 15◦. From

the values of SL and T we see a further entanglement degradation to T ≈ 35 %. Finally, in

Fig. 6.2 (d) which corresponds to α = 45◦, the off-diagonal elements of ρ (i.e., the quantum

correlations) have vanished and the state corresponds to a classical statistical mixture (T = 0).

In Fig. 6.2 (d), we ascribe the deviation of the measured ρ from the identity to insufficient

transverse spatial average at the wedges.

6.4 Tangle vs linear entropy plane
Fig. 6.3 shows measured data in the T -SL plane. The dashed curve that limits the region of

all physical states is given by the maximally entangled mixed states (MEMS) [80], while the

solid curve is produced by Werner states [79]. Werner states ρWerner = r|ψ−〉〈ψ−|+(1− r) I
4

represent an incoherent superposition of the singlet state |ψ−〉 occurring with probability

r (0 ≤ r ≤ 1) and the fully mixed state (i.e., the 4×4 identity I for the polarization degrees of

freedom) occurring with probability 1− r. These states are useful to model depolarization in

an isotropic noisy channel [65]. Experimental points correspond to different relative angles

between the optical axes of the wedges ranging from α = 0◦ to α = 45◦, in incremental steps

of 5◦. It is remarkable that all the data falls on the Werner curve within the experimental

error indicated by error bars in Fig. 6.3 (see Chapter 7 for details); the latter were estimated

from the standard deviation of a numerically generated Gaussian ensemble of photon counts

centered around the measured data.
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Figure 6.3: Experimental data for spatial decoherers on the tangle (T )-linear entropy
(SL) plane. The grey area corresponds to unphysical density matrices. Dashed curve:
Maximally entangled mixed states (MEMS), solid curve: Werner states. As the rela-
tive angle increases from α = 0◦ to α = 45◦, the initial singlet state is progressively
decohered towards a maximally mixed state. Note that Werner states satisfy T = 0 for
SL ≥ 8/9.

6.5 Summary
In conclusion, in this Chapter we have implemented a simple tunable source of spatial deco-

herence with commercially available wedge depolarizers. The isotropically decohered output

states fall on the Werner curve within the experimental error. We expect also pure input states

of different symmetries than the singlet (i.e., the triplet), or different degrees of entanglement,

to be decohered in a controllable manner by our experimental arrangement.

52



CHAPTER 7

Entangled mixed-state generation by twin-photon scattering

In this Chapter 1 we report experimental results on mixed-state generation by multi-
ple scattering of polarization-entangled photon pairs created from parametric down-
conversion. By using a large variety of scattering optical systems we have experimentally
obtained entangled mixed states that lie upon and below the Werner curve in the linear
entropy-tangle plane. We have also introduced a simple phenomenological model built
on the analogy between classical polarization optics and quantum maps. Theoretical
predictions from such model are in full agreement with our experimental findings.

1Based on G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, Phys. Rev. A 75, 032319 (2007).
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7. Entangled mixed-state generation by twin-photon scattering

7.1 Introduction
The study of spatial, temporal and polarization correlations of light scattered by inhomoge-

neous and turbid media has a history of more than a century [1]. Due to the high complexity

of scattering media only single-scattering properties are known at a microscopic level [2].

Conversely, for multiple-scattering processes the emphasis is mainly on macroscopic theo-

retical descriptions of the correlation phenomena [92]. In most examples of the latter [93–96]

the intensity correlations of the interference pattern generated by multiple-scattered light are

explained in terms of classical wave-coherence. On the other hand, the recent availability of

reliable single-photon sources has triggered the interest in quantum correlations of multiple-

scattered light [8]. Generally speaking, quantum correlations of scattered photons depend on

the quantum state of the light illuminating the sample. In Ref. [8], spatial quantum correla-

tions of scattered light were analyzed for Fock, coherent and thermal input states.

In this Chapter we present the first experimental results on quantum polarization cor-

relations of scattered photon pairs. Specifically, we study the entanglement content in re-

lation to the polarization purity of multiple-scattered twin-photons, initially generated in a

polarization-entangled state by spontaneous parametric down-conversion (SPDC). The initial

entanglement of the input photon pairs will in general be degraded by multiple scattering.

This can be understood by noting that the scattering process distributes the initial correla-

tions of the twin-photons over the many spatial modes excited along the propagation in the

medium. In the case of spatially inhomogeneous media the polarization degrees of freedom

are coupled to the spatial degrees of freedom generating polarization dependent speckle pat-

terns. If the spatial correlations of such patterns are averaged out by multi-mode detection,

the polarization state of the scattered photon(s) is reduced to a mixture, and the resulting

polarization-entanglement of the photon pairs is degraded with respect to the initial one. A

related theoretical background was elaborated in [13, 14].

This Chapter is structured as follows: In section 7.2 we report our experiments on light

scattering with entangled photons. First, we present our experimental set-up and briefly de-

scribe the many different optical systems that we used as scatterers. Next, we show our ex-

perimental results. The notions of generalized Werner and sub-Werner states are introduced

to illustrate these results. In section 7.3 we introduce a simple phenomenological model for

photon scattering that fully reproduces our experimental findings. Finally, in section 7.4 we

draw our conclusions.

7.2 Experiments on light scattering with entangled photons

7.2.1 Experimental set-up
Our experimental set-up is shown in Fig. 7.1. A Krypton-ion laser at 413.1 nm pumps a 1 mm

thick β −BaB2O4 (BBO) crystal, where polarization-entangled photon pairs at wavelength

826.2 nm are created by SPDC in degenerate type II phase-matching configuration [86].

Single-mode fibers (SMF) are used as spatial filters to assure that each photon of the ini-

tial SPDC pair travels in a single transverse mode. Spurious birefringence along the fibers

is compensated by suitably oriented polarization controllers (PC). The total retardation in-

troduced by the fibers and walk-off effects at the BBO crystal are compensated by com-
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7.2 Experiments on light scattering with entangled photons

pensating crystals (CC: 0.5 mm thick BBO crystals) and half-wave plates (λ/2), in both

signal and idler paths. In this way the initial two-photon state is prepared in the polariza-

tion singlet state |ψs〉 = (|HV 〉− |V H〉)/√2, where H and V are labels for horizontal and

vertical polarizations of the two photons, respectively. The experimentally prepared ini-
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Figure 7.1: Experimental scheme: After singlet preparation, the idler photon propa-
gates through the scattering system TA. The polarization state of the scattered photon-
pairs is then reconstructed via a quantum tomographic procedure (see text for details).

tial singlet state ρexp
s has a fidelity [91] with the theoretical singlet state ρs = |ψs〉〈ψs| of

F(ρ tar,ρexp) = |Tr

(√√
ρ tarρexp

√
ρ tar

)
|2 ∼ 98%. In the second part of the experimental

set-up the idler photon passes through the scattering device TA before being collimated by

a photographic objective (PO) with focal distance f = 5 cm. The third and last part of the

experimental set-up, consists of two tomographic analyzers (one per photon), each made of

a quarter-wave plate (λ/4) followed by a linear polarizer (P). Such analyzers permit a full

tomographic reconstruction, via a maximum-likelihood technique [87], of the two-photon

state. Additionally, interference filters (IF) put in front of each detector (Δλ = 5 nm) pro-

vide for bandwidth selection. Detectors DA and DB are “bucket” detectors, that is they do

not distinguish which spatial mode a photon comes from, thus each photon is detected in a

mode-insensitive way.

7.2.2 Scattering devices
All the scattering optical systems that we used were located in the path of only one of the

photons of the entangled-pair (the idler one), as shown in Fig. 7.1. For this reason, we refer

to such systems as local scatterers. Such scatterers can be grouped in three general categories

according to the optical properties of the media they are made of [44] :

Type I Purely depolarizing media, or diffusers. Such media do not affect directly the polar-

ization state of the impinging light but change the spatial distribution of the impinging

electromagnetic field.

Type II Birefringent media, or retarders. These media introduce a polarization-dependent

delay between different components of the electromagnetic field.
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7. Entangled mixed-state generation by twin-photon scattering

Type III Dichroic media, or diattenuators. Such media introduce polarization-dependent

losses for the different components of the electromagnetic field.

Type I scattering systems produce an isotropic spread in the momentum of the impinging

photons. Examples of such scattering devices are: spherical-particle suspensions (such as

milk or polymer micro-spheres), polymer and glass multi-mode fibers and surface diffusers.

Type II scattering systems are made of birefringent media, which introduce an optical axis

that breaks polarization-isotropy. Birefringence can be classified as “material birefringence”

when it is an intrinsic property of the bulk medium (for example a birefringent wave-plate),

and as “topological birefringence” when it is induced by a special geometry of the system

that generates polarization-anisotropy, an example of a system with topological birefringence

is an array of cylindrical particles. Finally, type III scattering systems are made of dichroic

media that produce polarization-dependent photon absorbtion. Examples of such devices are

commonly used polarizers. A systematic characterization of all the scattering devices that we

used was given in Ref. [44].

7.2.3 Experimental results
in the tangle versus linear entropy plane

The degree of entanglement and the degree of mixedness of the scattered photon pairs can be

quantified by the tangle (T ), namely, the concurrence squared [88], and the linear entropy (SL)

[89]. These quantities were calculated from the 4×4 polarization two-photon density matrix

ρ , by using T (ρ)=(max{0,
√

λ1−
√

λ2−
√

λ3−
√

λ4})2, where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0 are the

eigenvalues of ρ(σ2 ⊗σ2)ρ∗(σ2 ⊗σ2), where σ2 =
(

0 −i
i 0

)
, and SL(ρ) = 4

3 [1−Tr(ρ2)].

Figures 7.2 (a) and (b) show experimental data reported on the linear entropy-tangle plane.

The position of each experimental point in such plane has been calculated from a tomo-

graphically reconstructed [87] two-photon density matrix ρexp. The uniform grey area cor-

responds to non-physical states [80]. The dashed curve that bounds the physically admis-

sible region from above is generated by the so-called maximally entangled mixed states

(MEMS) [84, 85]. The lower continuous curve is produced by the Werner states [79] of

the form: ρW = pρs + 1−p
4 I4, (0 ≤ p ≤ 1), where I4 is the 4×4 identity matrix. Figure 7.2 (a)

shows experimental data generated by isotropic scatterers (type I). Specifically, our type I

scatterers consisted of the following categories. (i) Suspensions of milk and micro-spheres in

distilled water, where the sample dilution was varied to obtain different points; (ii) Multi-

mode glass and polymer fibers, where the tuning parameter exploited to obtain different

points was the length of the fiber (cut-back method); (iii) Surface diffusers, where the full

width scattering angle was used as tuning parameter. It should be noted that suspensions of

milk and micro-spheres are dynamic media, where Brownian motion of the micro-particles

induces temporal fluctuations within the detection integration time [44].

In Fig. 7.2 (a), the experimental point at the top-left corner (nearby T = 1, SL = 0),

is generated by the un-scattered initial singlet state. The net effect of scattering systems

with increasing thickness is to shift the initial datum toward the bottom-right corner (T = 0,

SL = 1), that corresponds to a fully mixed state.

Figure 7.2 (b) displays experimental data generated by birefringent scattering systems
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Figure 7.2: Experimental data in the linear entropy-tangle (SL-T ) plane. The grey area
corresponds to unphysical density matrices. Dashed upper curve: Maximally entan-
gled mixed states (MEMS), continuous lower curve: Werner states. (a) Polarization-
isotropic scatterers (type I). (b) Birefringent scatterers (type II).

(type II). As an example of a system with “material birefringence” we used a pair of wedge

depolarizers in cascade [4]. Different experimental points where obtained by varying the rel-

ative angle between the optical axis of the two wedges [97] (see Chapter 6, this Thesis). The

systems with “topological birefringence” we considered consisted of two different devices:

(i) The first one was a bundle of parallel optical fibers [98]. Translational invariance along

the fibers axes restricts the direction of the wave-vectors of the scattered photons in a plane

orthogonal to the common axis of the fibers. (ii) The second device was a stack of parallel

microscope slides (with uncontrolled air layers in between). This optical system is depolar-

izing because it amplifies any initial spread in the wave-vector of the impinging photon. This

photon enters via a single-mode-fiber (numerical aperture NA = 0.12), from one side of the

stack and travels in a plane parallel to the slides.

In Fig. 7.3, experimental data generated by dichroic scattering systems (type III) are

shown. We used: (i) Surface diffusers followed by a stacks of microscope slides at the

Brewster angle and (ii) Commercially available polaroid sheets with manually-added sur-
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7. Entangled mixed-state generation by twin-photon scattering

face roughness on its front surface to provide for wave-vector spread. All data thus obtained

fall below the Werner curve, generating what we called sub-Werner states, namely states with

a lower value of tangle (T ) than a Werner state, for a given value of the linear entropy (SL).

Unphysical
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g
le

(T
)

( )

Figure 7.3: Experimental data generated by dichroic scattering systems (type III).

In summary, Figs. 7.2 (a)-(b) show that all data generated by type I and II scattering

systems fall on the Werner curve, within the experimental error; while data generated by

scattering samples type III, which are presented in Fig. 7.3, lay below the Werner curve. In

Section III we shall present a simple theoretical interpretation of such results.

7.2.4 Error estimate

In order to estimate the errors in our measured data, we numerically generated 16 Monte

Carlo sets Ni (i = 1, . . . ,16) of 103 simulated photon counts, corresponding to each of the 16

actual coincidence count measurements {nexp
i } (i = 1, . . . ,16) required by tomographic analy-

sis to reconstruct a single two-photon density matrix. Each set Ni had a Gaussian distribution

centered around the mean value μi = nexp
i , with standard deviation σi =

√
nexp

i . The sets Ni

where created by using the “NormalDistribution” built-in function of the program Mathemat-

ica 5.2. Once we generated the 16 Monte Carlo sets Ni, we reconstructed the corresponding

103 density matrices using a maximum likelihood estimation protocol, to assure that they

could represent physical states. Finally, from this ensemble of matrices we calculated the

average tangle T av and linear entropy Sav
L . The error bars were estimated as the absolute

distance between the mean quantities (av) and the measured ones (exp): σT = |T exp −T av|,
σSL = |Sexp

L − Sav
L |. It should be noted that this procedure produces an overestimation of the

experimental errors. In the cases where part of the overestimated error bars fell into the un-

physical region, the length of such bars was limited to the border of the physically allowed

density matrices.
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7.3 The phenomenological model

7.2.5 Generalized Werner states
Close inspection of the reconstructed density matrices generated by type II scattering systems

revealed that in some cases the measured states represented a generalized form of Werner

states. These are equivalent to the original Werner states ρW with respect to their values of T
and SL, but the form of their density matrices is different. Werner states ρW of two qubits were

originally defined [79] as such states which are U ⊗U invariant: ρW = U ⊗UρWU† ⊗U†.

Here U ⊗U is any symmetric separable unitary transformation acting on the two qubits.

The generalized Werner states ρGW we experimentally generated, can be obtained from ρW
by applying a local unitary operation V acting upon only one of the two qubits: ρGW =

V ⊗ IρWV † ⊗ I, where I =
(

1 0

0 1

)
, and

V (α,β ,γ) =

(
e−

i
2 (α+β ) cosγ/2 −e−

i
2 (α−β ) sinγ/2

e
i
2 (α−β ) sinγ/2 e

i
2 (α+β ) cosγ/2

)
, (7.1)

where α,β ,γ can be identified with the three Euler angles characterizing an ordinary rotation

in R
3 [65]. These generalized Werner states have the same values of T and SL as the original

ρW (since a local unitary transformation does not affect neither the degree of entanglement

nor the degree of purity) but are no longer invariant under unitary transformations of the form

U ⊗U . By using Eq. (7.1), we calculated the average maximal fidelity of the measured states

ρexp
GW with the target generalized Werner states ρ th

GW (p,α,β ,γ). We found F̄(ρexp
GW ,ρ th

GW ) ≈
96%, revealing that our data are well fitted by this four-parameter class of generalized Werner

states.

7.3 The phenomenological model
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Figure 7.4: Numerical simulation for our phenomenological model. (a) Isotropic and
birefringent scattering, (b) dichroic scattering.

In Ref. [15], a theoretical study of the analogies between classical linear optics and quan-

tum maps was given. Within this theoretical framework it is possible to build a simple phe-

nomenological model capable of explaining all our experimental results. To this end let us
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7. Entangled mixed-state generation by twin-photon scattering

consider the experimental set-up represented in Fig. 7.1. The linear optical scattering ele-

ment TA inserted across path A can be classically represented by some Mueller matrix M
which describes its polarization-dependent interaction with a classical beam of light. M is

also known as the Mueller matrix in the Standard matrix basis [71] and it is simply related to

the more commonly used real-valued Mueller matrix M [101] via the change of basis matrix

Λ†

M = Λ†M Λ. (7.2)

However, TA can also be represented by a linear, completely positive, local quantum map

E : ρ → E [ρ ], which describes the interaction of the scattering element with a two-photon

light beam encoding a pair of polarization qubits. These qubits are, in turn, represented by

a 4× 4 density matrix ρ . Since TA interacts with only one of the two photons, the map E
is said to be local and it can be written as E = EA ⊗I , where EA is the single-qubit (or

single-photon) quantum map representing TA, and I is the single-qubit identity map.

It can be shown that the classical Mueller matrix M and the single-qubit quantum map

EA are univocally related. Specifically, if with M we denote the complex-valued Mueller

matrix written in the standard basis, then the following decomposition holds:

M =
3

∑
μ=0

λμ Tμ ⊗T ∗
μ , (7.3)

where {Tμ} is a set of four 2×2 Jones matrices, each representing a non-depolarizing linear

optical element in classical polarization optics, and {λμ} are the four non-negative eigenval-

ues of the “dynamical” matrix H associated to M .

Given Eq. (7.3), it is possible to show that the two-qubit quantum map E can be written

as

ρE = E [ρ ] ∝
3

∑
μ=0

λμ Tμ ⊗ I ρ T †
μ ⊗ I, (7.4)

where the proportionality symbol “∝” on the right hand side of Eq. (7.4) accounts for a

possible renormalization to ensure Tr(ρE ) = 1. Such renormalization becomes necessary

when TA presents polarization-dependent losses (i.e., dichroism). We anticipate that when

such re-normalization is necessary the map is considered non-trace preserving. We shall

discuss this issue in detail in Chapter 9.

With these ingredients, a phenomenological polarization-scattering model can be built

as follows. First we use the polar decomposition [99] to write an arbitrary Mueller matrix

M = MΔMBMD, where MΔ, MB and MD represent a purely depolarizing element, a bire-

fringent (or retarder) element, and a dichroic (or diattenuator) element, respectively. Specific

analytical expressions for MΔ, MB and MD can be found in the literature [4]. Second, we

use Eq. (7.3) to find the quantum maps corresponding to MΔ, MB and MD and, by using

such maps, we calculate the scattered two-photon state ρE . In our experimental realizations

we used isotropic scatterers MIS = MΔ with isotropic depolarization factor 0 ≤ Δ < 1, bire-

fringent scattering media MBS, described in terms of the product of a purely birefringent
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medium MB and an isotropic depolarizer MΔ, i.e. MBS = MBMΔ, and finally, dichroic scat-

tering media MDS = MDMΔ, which are in turn described by a product of a purely dichroic

medium MD and a purely depolarizing medium MΔ. It should be noted that these prod-

uct decompositions are not unique. Other decompositions with different orders are possible

but the elements of each matrix might change, since the matrices MΔ, MB and MD do not

commute.

Filling in the above expressions with random numbers selected from suitably chosen

ranges, we simulated all scattering processes occurring in our experiments. Fig. 7.4 shows a

numerical simulation of the scattered states in the tangle vs. linear entropy plane, obtained

with the singlet two-photon state as input state. Fig. 7.4 (a) corresponds to isotropic and bire-

fringent scatterers, and Fig. 7.4 (b) to dichroic scatterers. The qualitative agreement between

this model and the experimental results shown in Fig. 7.2 and Fig. 7.3 is manifest.

7.4 Summary
In summary, in this Chapter we have presented experimental results on entanglement prop-

erties of scattered photon-pairs for three varieties of optical scattering systems. In this way

we were able to generate two distinct types of two-photon mixed states; namely Werner-

like and sub-Werner-like states. Moreover, we have introduced a simple phenomenological

model based onto the analogy between classical polarization optics and quantum mechanics

of qubits, that fully reproduces our experimental findings. In the case of sub-Werner states,

the phenomenological model represents a non-trace preserving quantum map. Such descrip-

tion might be considered controversial since a non-trace preserving local map can in principle

lead to violation of causality when it describes the evolution of a composite system made of

two spatially separate subsystems [100]. However, we argue that our measured states do not

violate the signaling condition as they are post-selected by the coincidence measurement, a

procedure which involves classical communication between two detectors (see Chapter 9,

this Thesis). Finally, we expect it to be possible to create states above the Werner curve (in

particular MEMS) [84,85], by post-selective detection when acting on a single photon [100].

This will be discussed in the next Chapter.

We gratefully acknowledge M. B. van der Mark for making available the bundle of paral-

lel fibers [98].
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CHAPTER 8

Maximally entangled mixed-state generation via local
operations

In this Chapter 1 we present a general theoretical method to generate maximally entan-
gled mixed states of a pair of photons initially prepared in the singlet polarization state.
This method requires only local operations upon a single photon of the pair and exploits
spatial degrees of freedom to induce decoherence. We report experimental confirmation
of these theoretical results.

1Based on A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, quant-ph/0603182 (submitted to Phys. Rev. A).
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8. Maximally entangled mixed-state generation via local operations

8.1 Introduction

Entanglement is perhaps the most puzzling feature of quantum mechanics and in the last two

decades it became the key resource in quantum information processing [65]. Entangled qubits

prepared in pure, maximally entangled states are required by many quantum-information

processes. However, in a mundane world, a pure maximally entangled state is an idealization

as, e.g., a plane wave in classical optics. In fact, interaction of qubits with the environment

leads to decoherence that may cause a pure entangled state to become less pure (mixed) and

less entangled. Thus, any realistic quantum-communication/computation protocol must cope

with entangled mixed states and it is desirable to attain the maximum amount of entangle-

ment for a given degree of mixedness. States that fulfill this condition are called maximally

entangled mixed states (MEMS) and, recently, they have been the subject of several papers

(see, e.g., [84,85] and references therein). In this Chapter we propose a new method to create

MEMS from a pair of photons initially prepared in the singlet polarization state.

Kwiat and coworkers [84] were the first to achieve MEMS using photon pairs from spon-

taneous parametric down conversion (SPDC). They induced decoherence in SPDC pairs ini-

tially prepared in a pure entangled state by coupling polarization and frequency degrees of

freedom of the photons. At the same time, a somewhat different scheme was used by De Mar-

tini and coworkers [85] who instead used the spatial degrees of freedom of SPDC photons

to induce decoherence. However, both the Kwiat and the De Martini method require opera-

tions on both photons of the SPDC pair. On the contrary, our technique has the advantage to

require only local operations upon one of the two photons.

This Chapter is structured as follows: In the first part we show the relation existing be-

tween a one-qubit quantum map and a classical-optics setup on the laboratory bench. In the

second part, we exploit this knowledge to design a simple linear-optical set-up to generate

MEMS from a pair of photons via local operations and postselection. Finally, in the third

part we provide an experimental demonstration of our method, using entangled photons from

parametric down-conversion.

8.2 Classical linear optics and quantum maps

We begin by giving a brief description of the connection between classical polarization optics

and quantum mechanics of qubits, as recently put forward by several authors [64, 66].

Most textbooks on classical optics introduce the concept of polarized and unpolarized

light with the help of the Jones and Stokes-Mueller calculi, respectively [101]. In these cal-

culi, the description of classical polarization of light is formally identical to the quantum

description of pure and mixed states of two-level systems, respectively [69, 70]. In the Jones

calculus, the electric field of a quasi-monochromatic polarized beam of light which propa-

gates close to the z-direction, is represented by a complex-valued two-dimensional vector,

the so-called Jones vector E ∈ C
2 : E = E0x+E1y, where the three real-valued unit vectors

{x,y,z} define an orthogonal Cartesian frame. The same amount of information about the

state of the field is also contained in the 2×2 matrix J of components Ji j = EiE∗
j , (i, j = 0,1),

which is known as the coherency matrix of the beam [6]. The matrix J is Hermitean and pos-
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8.2 Classical linear optics and quantum maps

itive semidefinite

J† = J, (v,Jv) = |(v,E)|2 ≥ 0, (8.1)

for all v ∈ C
2. Further, J has the projection property J2 = J TrJ, and its trace equals the

total intensity of the beam: TrJ = |E0|2 + |E1|2. If we choose the electric field units in such

a way that TrJ = 1, then J has the same properties of a density matrix representing a two-

level quantum system in a pure state. In classical polarization optics the coherency matrix

description of a light beam has the advantage, with respect to the Jones vector representation,

of generalizing to the concept of partially polarized light. Formally, the coherency matrix

of a partially polarized beam of light is characterized by the properties detailed in Eq. 8.1,

while the projection property is lost. In this case J has the same properties of a density

matrix representing a two-level quantum system in a mixed state. Coherency matrices of

partially polarized beams of light may be obtained by tacking linear combinations ∑N wNJN
of coherency matrices JN of polarized beams, where the index N runs over an ensemble of

field configurations and wN ≥ 0. It should be noted that the off-diagonal elements of the

coherency matrix are complex-valued and, therefore, not directly observables. However, as

any 2×2 matrix, J can be written either in the Pauli basis Xα [102]:

X0 ≡ 1√
2

(
1 0

0 1

)
, X1 ≡ 1√

2

(
0 1

1 0

)
,

X2 ≡ 1√
2

(
0 −i
i 0

)
, X3 ≡ 1√

2

(
1 0

0 −1

)
,

(8.2)

or in the Standard basis Yα :

Y0 ≡
(

1 0

0 0

)
, Y1 ≡

(
0 1

0 0

)
,

Y2 ≡
(

0 0

1 0

)
, Y3 ≡

(
1 0

0 1

)
,

(8.3)

as

J =
3

∑
α=0

xα Xα =
3

∑
β=0

yβYβ , (8.4)

where xα = Tr(Xα J)∈R, yβ = Tr(Y †
β J)∈C and, from now on, all Greek indices α,β ,μ ,ν , . . . ,

take the values 0,1,2,3. The four real coefficients xα , called the Stokes parameters of the

beam, can be actually measured thus relating J with observables of the optical field. Con-

versely, the four complex coefficients yβ are not directly measurable but have the advantage

to furnish a particularly simple representation of the matrix J since y0 = J00, y1 = J01, y2 =
J10, y3 = J11. The two different representations xα and yβ are related via the matrix Λ†

Λ† =
1√
2

⎛
⎜⎜⎝

1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1

⎞
⎟⎟⎠ , (8.5)

such that xα = ∑β Λ†
αβ yβ , where Λ†

αβ = Tr(XαYβ ), and ΛΛ† = I4 = Λ†Λ.
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8. Maximally entangled mixed-state generation via local operations

8.2.1 Polarization-transforming linear optical elements
When a beam of light passes through an optical system its state of polarization may change.

Within the context of polarization optics, a linear optical element is any device that performs

a linear transformation upon the electric field components of an input light beam. Half- and

quarter-wave plates, couplers, phase shifters, beam splitters, polarizers, etc., are all exam-

ples of such devices. The class of linear optical elements comprises both non-depolarizing

and depolarizing devices. Roughly speaking, a non-depolarizing linear optical element trans-

forms a polarized input beam into a polarized output beam. On the contrary, a depolarizing
linear optical element transforms a polarized input beam into a partially polarized output

beam [48]. A non-depolarizing device may be represented by a single 2×2 complex matrix

T , the Jones matrix, such that Jin → Jout = T JinT †. In this Thesis we consider only passive
(namely, non-amplifying) optical devices for which the relation TrJout ≤ TrJin holds. There

exist two fundamental kinds of non-depolarizing optical elements, namely retarders and di-
attenuators; any other non-depolarizing element can be modelled as a retarder followed by a

diattenuator [99]. A retarder (also known as birefringent element) changes the phases of the

two components of the electric-field vector of a beam, and may be represented by a unitary

Jones matrix TU . A diattenuator (also known as dichroic element) instead, changes the am-
plitudes of components of the electric-field vector (polarization-dependent losses), and may

be represented by a Hermitean Jones matrix TH .

Let TND denote a generic non-depolarizing device represented by the Jones matrix T ,

such that Jin → Jout = T JinT †. We can rewrite explicitly this relation in terms of components

as:

(Jout)i j = TikT ∗
jl(Jin)kl , (8.6)

where, from now on, summation over repeated indices is understood and all Latin indices

i, j,k, l,m,n, . . . take the values 0 and 1. Since TikT ∗
jl = (T ⊗T ∗)i j,kl ≡ Mi j,kl we can rewrite

Eq. (8.6) as:

(Jout)i j = Mi j,kl(Jin)kl , (8.7)

where M = T ⊗T ∗ is a 4× 4 complex-valued matrix representing the device TND, and the

symbol ⊗ denotes the ordinary Kronecker matrix product. M is also known as the Mueller

matrix in the Standard matrix basis [71] and it is simply related to the more commonly used

real-valued Mueller matrix M [101] via the change of basis matrix Λ†

M = Λ†M Λ. (8.8)

For the present case of a non-depolarizing device, M is named as Mueller-Jones matrix.

From Eqs. (8.4, 8.7) it readily follows that we can indifferently represent the transformation

operated by TND either in the Standard or in the Pauli basis as:

yout
α =

3

∑
β=0

Mαβ yin
β , or xout

α =
3

∑
β=0

Mαβ xin
β , (8.9)

respectively.

With respect to the Jones matrix T , the Mueller matrices M and M have the advantage of

generalizing to the representation of depolarizing optical elements. Mueller matrices of de-

polarizing devices may be obtained by taking linear combinations of Mueller-Jones matrices
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of non-depolarizing elements as:

M = ∑
A

pAMA = ∑
A

pATA ⊗T ∗
A , (8.10)

where pA ≥ 0. Index A runs over an ensemble of Mueller-Jones matrices MA = TA ⊗ T ∗
A ,

each representing a non-depolarizing device. The real-valued matrix M corresponding to M
can be easily calculated by using Eq. (8.8) [71]. In the current literature M is often written

as [99]:

M =
(

M00 dT

p W

)
, (8.11)

where p ∈ R
3, d ∈ R

3, are known as the polarizance vector and the diattenuation vector
(superscript T indicates transposition), respectively, and W is a 3×3 real-valued matrix. Note

that p is zero for pure depolarizers and pure retarders, while d is nonzero only for dichroic

optical elements [99]. Moreover, W reduces to a three-dimensional orthogonal rotation for

pure retarders. It should be noticed that if we choose M00 = 1 (this can be always done since

it amounts to a trivial polarization-independent renormalization), the Mueller matrix of a

non-dichroic optical element (d = 0), is formally identical to a non-unital, trace-preserving,

one-qubit quantum map (also called channel) [103]. If also p = 0 (pure depolarizers and pure

retarders), then M is identical to a unital, or bistochastic, one-qubit channel [65].

8.2.2 Spectral decompositions

An important theorem in classical polarization optics states that any linear optical element

(either deterministic or stochastic) is equivalent to a composite device made of at most four

non-depolarizing elements in parallel [46]. This theorem follows from the spectral decom-

position of the Hermitean positive semidefinite matrix H [106] associated to M . In this

subsection we shortly review such theorem and illustrate its equivalence with the Kraus de-

composition theorem of one-qubit quantum maps [65].

Given a Mueller matrix M , it is possible to built a 4×4 Hermitean positive semidefinite

matrix H = H(M ) by simply reshuffling [104] the indices of M

Hi j,kl ≡ Mik, jl = ∑
A

pA(TA)i j(T ∗
A )kl , (8.12)

where the last equality follows from Eq. (8.10). Equivalently, after introducing the composite

indices α = 2i + j, β = 2k + l, we can rewrite Eq. (8.12) as Hαβ = ∑A pA(TA)α(T ∗
A )β . In

view of the claimed connection between classical polarization optics and one-qubit quantum

mechanics, it is worth noting that H is formally identical to the dynamical (or Choi) matrix,

describing a one-qubit quantum process [107]. The spectral theorem for Hermitean matrices

provides a canonical (or spectral) decomposition for H of the form

Hαβ =
3

∑
μ=0

λμ(uμ)α(u∗
μ)β , (8.13)
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8. Maximally entangled mixed-state generation via local operations

where λμ ≥ 0, (∑μ λμ = M00), are the non-negative eigenvalues of H, and {uμ}= {u0, u1, u2, u3}
is the orthonormal basis of eigenvectors of H: Huμ = λμ uμ . If we rearrange the four com-

ponents of each eigenvector uμ to form the 2×2 matrices Tμ defined as:

Tμ =
(

(uμ)0 (uμ)1

(uμ)2 (uμ)3

)
, (8.14)

we can rewrite Eq. (8.13) as Hαβ = ∑μ λμ(Tμ)α(T ∗
μ )β . Since Eq. (8.14) can be rewritten

as (Tμ)i j = (uμ)α=2i+ j, we can go back from Greek to Latin indices and write Hi j,kl =
∑μ λμ(Tμ)i j(T ∗

μ )kl = ∑μ λμ(Tμ ⊗T ∗
μ )ik, jl . Finally, from the latter relation and using Eq. (8.12),

we obtain

M =
3

∑
μ=0

λμ Tμ ⊗T ∗
μ . (8.15)

Equation (8.15) represents the content of the decomposition theorem in classical polar-

ization optics. It implies, via Eq. (8.7), that the most general operation that a linear optical

element can perform upon a beam of light can be written as:

Jin → Jout =
3

∑
μ=0

λμ Tμ JinT †
μ , (8.16)

where the four Jones matrices Tμ represent four different non-depolarizing optical elements.

Since λμ ≥ 0, Eq. (8.16) is formally identical to the Kraus form [65] of a completely

positive one-qubit quantum map E . Therefore, if a single photon encoding a polarization

qubit (represented by the 2×2 density matrix ρin), passes through an optical device classically

described by the Mueller matrix M = ∑μ λμ Tμ ⊗T ∗
μ , its state will be transformed according

to

ρin → ρout ∝
3

∑
μ=0

λμ Tμ ρinT †
μ , (8.17)

where the proportionality symbol “∝” accounts for a possible renormalization to ensure

Trρout = 1. Such renormalization is not necessary in the corresponding classical equation (8.16)

since TrJout is equal to the total intensity of the output light beam that does not need to be

conserved.

By writing Eqs. (8.16, 8.17) we have thus completed the review of the analogies between

linear optics and one-qubit quantum maps. In the next section we shall analyze how to use

these analogies to engineer maximally entangled mixed-states (MEMS) by acting upon one
qubit of an entangled pair.

8.3 Engineering maximally entangled mixed-states (MEMS)
Now that we have learned how to associate a quantum map to a set of at most four optical

elements, we can apply this knowledge to design a simple optical scheme suitable for MEMS

production. Suppose to have two qubits (encoded in the polarization degrees of freedom

of two SPDC photons, say A and B), initially prepared in the state ρ : ρ = ρi j,kl |i j〉〈kl| .=
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8.3 Engineering maximally entangled mixed-states (MEMS)

ρR
ik, jl |i〉〈k| ⊗ | j〉〈l|. Superscript R indicates reshuffling [104] of the indices: ρR

ik, jl ≡ ρi j,kl .

Following Ziman and Bužek [105] we assume that ρ is transformed under the action of the

most general local (that is, acting upon a single qubit) linear map E ⊗I into the state

ρE = E ⊗I [ρ] ∝
3

∑
α=0

λα Tα ⊗ I ρ T †
α ⊗ I. (8.18)

By writing explicitly Eq. (8.18) in the two-qubit basis {|i j〉 ≡ |i〉⊗ | j〉}, it is straightfor-

ward to obtain (ρE )i j,kl ∝ ∑α λα ρR
mn, jl(Tα)im(T ∗

α )kn. Then, from the definition of M it easily

follows that (ρE )i j,kl ∝ (M ρR)ik, jl . By reshuffling ρE , this last result can be written in matrix

form as ρR
E ∝ M ρR which displays the very simple relation existing between the classical

Mueller matrix M and the quantum state ρE . Via a direct calculation, it is possible to show

that if ρ represents two qubits in the singlet state ρs = 1
2 (X0 ⊗X0 −X1 ⊗X1 −X2 ⊗X2 −X3 ⊗

X3) [102], then the proportionality symbol in the last equation above can be substituted with

the equality symbol: ρR
E = M ρR

s . If the initial state ρ is different from the singlet one, then

ρE must be simply renormalized by imposing Tr(M ρR) = 1 .

Now, suppose that we have an experimental setup producing pairs of SPDC photons in

the singlet state ρs, and we want to transform ρs into a given target state ρT via a local map

T ⊗I : ρs → ρT = (MT ρR
s )R. All we have to do is first to invert the latter equation to

obtain

MT = ρR
T (ρR

s )−1, (8.19)

and then to decompose MT as MT = ∑α λα Tα ⊗T ∗
α . Thus, we get the (at most four) Jones

matrices Tα representing the optical elements necessary to implement the desired transfor-

mation.

Our technique is very straightforward and we shall demonstrate its feasibility later, by

applying it to design an optical setup devoted to MEMS generation. However, at this moment,

some caveats are in order. To make MT a physically realizable Mueller matrix, its associated

matrix HT should be positive semidefinite. If this is not the case, then the transformation

ρ → ρT cannot be implemented via local operations. For example, it is easy to see that

if the initial state is a Werner state ρW = pρs + 1−p
4 I, (0 ≤ p ≤ 1) and the target state is

the singlet one: ρT = ρs, then such operation (known as concentration [108]) cannot be

physically implemented by a local setup since HT has three degenerate negative eigenvalues.

Another caveat comes from the no-signalling constraint. Since MT describes a local device

operating only upon photon A, a second observer should not be able to distinguish the initial

state ρs from the transformed state ρT by measuring only the state of photon B, that is: ρB =
TrA(ρs) = TrA(ρT ). This condition requires the one-qubit map T to be trace-preserving:

∑α λα T †
α Tα = I. From Eq. (8.11), a straightforward calculation shows that such condition

cannot be fulfilled if d 	= 0, that is, if the device implementing T contains dichroic (or PDL)

elements. This will be discussed in detail in Chapter 9.

With these caveats in mind, we come to the experimental validation of our method. We

choose to generate MEMS I states, represented by the density matrix ρI = p|φ+〉〈φ+|+(1−
p)|01〉〈01|, where |φ+〉 = (|00〉+ |11〉)/√2 and (2/3 ≤ p ≤ 1). By varying the parameter

p, the entanglement and mixedness of the state ρI change. Here, we use the linear entropy

SL [89] and the tangle T , namely, the concurrence squared [88], to quantify the degree of
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Figure 8.1: Layout of the experimental setup. The two-path optical device acts only on
photon A. Detectors DA and DB perform coincidence measurements.

mixedness and of entanglement, respectively. They are defined as SL(ρ) = 4
3 [1−Tr(ρ2)],

and T (ρ) = [max{0,
√

λ0 −
√

λ1 −
√

λ2 −
√

λ3}]2, where λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0 are the

eigenvalues of ρ(σy⊗σy)ρ∗(σy⊗σy). After applying Eq. (8.19) with ρT = ρI, a straightfor-

ward calculation shows that there are only two non-zero terms in the decomposition of MT ,

namely {λ0 = 2(1− p), λ1 = p}, {T0 =
(

1 0

0 0

)
, T1 =

(
0 −1

1 0

)
}. In physical terms, T0 is

a polarizer and T1 is a 90◦ polarization rotator. The two eigenvalues {λ0, λ1} give the relative

intensity in the two arms of the device and are physically realized by intensity attenuators.

8.4 Experimental implementation

Our experimental set-up is shown in Fig. 8.1. Its first part (Singlet state preparation) com-

prises a Krypton-ion laser at 413.1 nm that pumps a 1-mm thick β −BaB2O4 (BBO) crystal,

where polarization-entangled photon pairs at wavelength 826.2 nm are created by SPDC in

degenerate type II phase-matching configuration [86]. Single-mode fibers (SMF) are used as

spatial filters to assure that each photon of the initial SPDC pair travels in a single transverse

mode. Spurious birefringence along the fibers is compensated by suitably oriented polariza-

tion controllers (PC) [97]. In addition, total retardation introduced by the fibers and walk-off

effects at the BBO crystal are compensated by compensating crystals (CC: 0.5-mm thick BBO
crystals) and half-wave plates (λ/2) in both photonic paths. In this way the initial two-photon

state is prepared in the polarization singlet state |ψs〉 = (|HV 〉− |V H〉)/√2, where H and V
are labels for horizontal and vertical polarizations of the two photons, respectively.

In the second part of the experimental set-up (MEMS preparation) the two-term decom-

position of MT is physically realized by a two-path optical device. A photon enters such

a device through a 50/50 beam splitter (BS) and can be either transmitted to path 1 or re-

flected to path 2. The two paths define two independent spatial modes of the field. In path 1

a neutral-density filter (A1) is followed by a linear polarizer (P) oriented horizontally (with

respect to the BBO crystal basis). When the photon goes in this path, the initial singlet is
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reduced to |HV 〉 with probability proportional to the attenuation ratio a1 of A1 (a = Pout/Pin).

In path 2 a second neutral-density filter (A2) is followed by two half wave-plates (λ/2) in

cascade relatively oriented at 45◦: they work as a 90◦ polarization rotator. When the pho-

ton goes in path 2, the singlet undergoes a local rotation with probability proportional to the

attenuation ratio a2 of A2.

The third and last part of the experimental set-up (Tomographic analysis), consists of two

tomographic analyzers (one per photon), each made of a quarter-wave plate (λ/4) followed

by a linear polarizer (P). Such analyzers permit a tomographically complete reconstruction,

via a maximum-likelihood technique [87], of the two-photon state. Additionally, interference

filters (IF) in front of each detector (Δλ = 5 nm) provide for bandwidth selection. It should

be noticed that detector DA does not distinguish which path (either 1 or 2) a photon comes

from, thus photon A is detected in a mode-insensitive way: This is the simple mechanism we

use to induce decoherence.

Figure 8.2: Experimental data and theoretical prediction (continuous line) in the linear
entropy-tangle plane. The gray region represents unphysical states and it is bounded
from below by MEMS (dashed curve). The lower dotted-dashed curve represents
Werner states. The horizontal (dotted) line at T = 4/9 separates MEMS I (above),
from MEMS II (below). Stars denote MEMS I states ρ� that have the same linear en-
tropy as the measured states ρexp

I (i.e., the experimental points above the line T = 4/9).
The agreement between experiment and theory is manifest.

8.5 Experimental results
Experimental results are shown in Fig. 8.2 together with theoretical predictions in the linear

entropy-tangle plane. The experimentally prepared initial singlet state ρexp
s has a fidelity

[91] F(ρs,ρexp
s ) =

∣∣∣Tr(
√√ρsρexp

s
√ρs)

∣∣∣
2

∼ 97% with the theoretical singlet state ρs. The

continuous curve is calculated from the matrix ρc : ρc = MT (p)ρexp
s , and varying p. It

represents our theoretical prediction for the given initially prepared state ρexp
s . If it were

possible to achieve exactly ρexp
s = ρs, then such curve would coincide with the MEMS curve
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above the horizontal (dotted) line T = 4/9. Experimental points with T ≥ 4/9 (ρexp
I ) are

obtained by varying the neutral-density filters A1,A2 in such a way that a2 ≥ a1; while points

with T < 4/9 are achieved for a2 < a1. Note that the latter points do not represent MEMSs,

but different mixed entangled states whose density matrix is still given by ρI but with the

parameter p now varying as 0 ≤ p ≤ 2/3. The average fidelity between the measured states

ρexp
I an the “target” states ρ�, is given by F(ρ�,ρexp

I ) ∼ 80%. We believe that the main

reason for its deviation from � 100%, is due to spurious, uncontrolled birefringence and

dichroism in the BS and the mirrors composing the set-up. In fact, we calculated the fidelity

between the states ρc(p) (obtained by applying the theoretically determined map T ⊗I to

the experimentally prepared initial singlet state ρexp
s ), with the theoretical MEMS ρI(p). We

have found F [ρI(p),ρc(p)] ≥ 97% for all 2/3 ≤ p ≤ 1; thus the value of F ∼ 80% cannot

be ascribed to the imperfect initial singlet preparation. However, Fig. 8.2 shows a very good

agreement between theoretical predictions and experimental data.

8.6 Summary
In conclusion, in this Chapter we have presented a theoretical study of the analogies between

classical linear optics and quantum maps. By using these analogies, we have theoretically

proposed and experimentally tested a new, simple method to create MEMS I states of pho-

tons (it can be easily generalized to generate MEMS II states, as well). In particular, we

have shown that it is possible to create MEMS from an SPDC photon pair, by acting on

just a single photon of the pair. This task could appear, at first sight, impossible since it

was recently demonstrated [105] that even the most general local operation cannot generate

MEMS because this would violate relativistic causality. However, our results do not contra-

dict Ref. [105] since we obtained them via postselection operated by coincidence measure-

ments. This shall be will discussed in detail in Chapter 9.
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CHAPTER 9

Twin-photon light scattering and causality

In this Chapter 1 we discuss some of our results on multi-mode scattering of entangled
photon pairs and we motivate the description of those scattering processes in terms of
trace-preserving and non-trace-preserving quantum maps. We then show that non-trace-
preserving quantum maps can lead to apparent violations of causality, when the two-
photon states are post-selected by coincidence measurements.

1Based on ‘Twin-photon light scattering and causality’, G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman,

to appear in the proceedings of the conference “Beyond the Quantum” held at Lorentz Institute, Leiden University,

The Netherlands, June 2006; to be published by World Scientific (Singapore).
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9.1 Introduction
Quantum non-locality has played a crucial role in the foundations of quantum mechanics ever

since it was theoretically discovered by Einstein, Podolsky, and Rosen (EPR) in 1935 [9].

Bell’s findings (1964) that these quantum non-local correlations, also referred to as entangle-

ment, could not be explained in terms of classical local hidden variable models [109] triggered

a prolific experimental activity, starting by Aspect et al. (1982) [110], who experimentally

verified a violation of Bell’s inequalities for the first time. These successful experiments have

formed, in more recent years, the basis of quantum information science. Within this context

it appears to be important to characterize entanglement and its robustness in different kinds

of conditions.

In this spirit, we discuss some of our recent experimental results on the effects that dif-

ferent types of scattering processes can have on the degree of polarization-entanglement of

twin-photon pairs. First, we briefly present the set-up used in our twin-photon scattering

experiments. Second, we discuss some of the constraints imposed by special relativity (i.e.,

causality condition) on the possibly allowed experiments. Third, we motivate the descrip-

tion of scattering processes as trace-preserving and non-trace-preserving quantum maps [65].

Specifically, we show that non-trace-preserving maps can lead to an apparent violation of

causality and that this can be explained in terms of post-selection during the quantum state

reconstruction procedure. Finally we draw our conclusions.

9.2 Our experiments
In our experiments we want to analyze the effect that a given multi-mode scattering process

can have over the polarization degrees of freedom of entangled photons. The pairs of photons

(A-B) are initially created in the polarization singlet state by degenerate type II spontaneous

parametric down conversion (SPDC) [86,97], where a pump-photon from a Krypton-ion laser

at 413.1 nm is split in two twin-photons of half energy and double wavelength. Then one of

the two photons (A) propagates through a local scattering medium (i.e., a scattering medium

acting on only one photon). The different scattering media we analyzed range from milk to

multi-mode polymer fibers [44]. The polarization density matrix (ρAB) of the scattered two-

photon states are then reconstructed via a standard quantum tomographic procedure [87] (see

Fig. 9.1). From this reconstructed density matrix we extract the entanglement content (i.e.,

the tangle [88]) and the degree of purity (i.e., the linear entropy [89]). The measured data is

then displayed in a tangle vs linear entropy plane [84, 85].

In the next sections we will show what are the restrictions on any experiment aiming at

quantifying entanglement, and we will discuss whether these restrictions can apparently be

violated by using local scattering media and quantum tomographic detection.

9.3 Causality condition
In any kind of Bell-type measurement there are two logical loopholes that have to be closed

in order to demonstrate that entanglement is a truly non-local feature of quantum mechanics,

which can not be explained in terms of local hidden variable models. These are, the detection
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Figure 9.1: Scheme of our experimental set-up. A high-frequency pump photon is split
in two lower-frequency twin-photons (A-B) by SPDC. Photon A undergoes a local scat-
tering process. The polarization density matrix of the scattered photon-pair is then
reconstructed via a quantum tomographic procedure.

loophole and the causality loophole (and it should be noted that they have not been closed

at the same time in any experiment up to date). The first loophole refers to the detection

efficiency and is grounded on the fact that all experiments so far detect only a small subset

of all pairs created [111]. Closure of the second loophole demands that the measurement

processes of the two observers A and B (Alice and Bob) are space-like separated events, so

that they cannot signal each other [112]. There is thus no way to infer from the result of a

local measurement on one wing of the experiment, which measurement has been performed

on the other wing. This causality condition is also referred to as ‘no-signalling condition’.

This idea is schematized in Fig. 9.2. Consider a pair of photons initially created in a polariza-

tion correlated state (for instance by SPDC), which propagate in the forwards direction of the

space-time diagram. Each of these photons is then detected at time tD. Each detection event

is determined by an independent choice of the polarizer setting (θi, i = A,B) symbolized by

a circle. The choices of the polarizers settings have to be space-like separated enough so that

their forward cone of events do not intersect before time tD, which is the time where each

photon is absorbed (a click on a detector). Moreover, each individual detection event has to

be registered on both sides independently and compared only after the whole measurement

procedure is finished. This does not exclude the existence of correlations between A and B,

since they could result from common causes in the overlap region of their backward cone.

The overlap regions, where the two cones intersect, corresponds to systems causally related.

Note that in Fig. 9.1 the arrow of time stops after the detection happens at time tD, since the

photons are irreversibly absorbed during detection. After the irreversible detection process all

that remains is classical information (photon counts). This fact shows dramatically how infor-

mation is always at the boundary between the quantum and the classical world [113]. Once
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Figure 9.2: A pair of twin-photons (A-B) produced by SPDC propagates in the forward
direction of the space-time diagram. The cone of events for each photon is determined
by a choice of each polarizer setting θA,B. In order to satisfy the no-signalling condition
the forward cones of photon A and B should not intersect before the detection time tD.

recorded, this classical information can be cleverly manipulated; for instance only a portion

of the measured counts can be selected in order to display the desired quantum correlations.

Such a selective procedure (named post-selection), involves only classical communication

between Alice and Bob and is present in any type of coincidence measurement procedure. In

particular it is present in standard quantum state reconstruction tomographic procedures.

9.4 Scattering processes as trace-preserving and non-trace-
preserving quantum maps

The mathematical description of a multiple-scattering processes involving a quantum object

(such as a photon) is somewhat cumbersome. The appropriate formulation depends among

other things on a correct specification of the detection mechanism. In its most pedestrian form

the state of a scattered photon can be described as a pure superposition of transverse-spatial

modes with different probability amplitudes (which depend on the scatterer). If the detection

system could resolve each individual transverse-mode, the state would remain pure, and the

whole evolution would be described by a single unitary operator. In a more realistic scenario,

the polarization state of the scattered photon is detected in a multi-transverse-mode fashion,

so that the spatial mode information is averaged (or traced over) upon detection, and the state

of the system is reduced to a statistical mixture represented by a density matrix [13,14]. Thus,

we can effectively describe the system as if it were open, where the role of the environment

is played by the unobserved internal degrees of freedom (i.e., the transverse-spatial modes of

the photons). In this case the evolution of the system cannot be described by a single unitary

operator. It has to be described in terms of a set of unitary operators. This set of unitary
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operators is usually referred to as ”super-operator”or quantum map [65]. A quantum map is

a quantum operation that relates input and output density matrices. As much as the evolution

operator for closed systems is considered physical only if it is unitary, a quantum operation

E is a physical map that transforms the input density operators ρ in into the output density

operators ρout ≡ E (ρ in) if it satisfies [65]:

• 0 ≤ Tr{E (ρ in)} ≤ 1,

• E is a convex-linear map such that:

E (∑
i

piρi) = ∑
i

piE (ρi) (pi ≥ 0),

• E is a completely positive map.

The first condition states that 0 ≤ Tr{ρout} ≤ 1. When no irreversible processes such as

measurements (i.e., projections) or dissipation (i.e., anisotropic losses) are involved the map

satisfies the condition Tr{E (ρ in)}= 1, and it is called a trace-preserving map (also referred to

as a deterministic map). In the context of polarization optics a particular kind of irreversible

process is given by polarization dependent losses. This is in fact the case for dichroic media

such as polarizers, which transmit an arbitrary polarization while absorbing the rest. Such

type of anisotropic losses must be described by a non-trace-preserving map such that 0 ≤
Tr{E (ρ in)} < 1. We will next see that these types of maps give rise to interesting questions.

The second condition requires the map to be linear and to preserve probabilities, and finally

the third one guarantees that ρout is positive semi-definite, so that it represents a legal density

matrix.

9.5 Non-trace-preserving maps and the causality condition
In the context of quantum optics, a common way of proving entanglement between bipartite

systems is by measuring the two-photon density matrix ρAB by means of quantum tomog-

raphy and then extracting from it a given entanglement measure such as the concurrence or

the tangle [88]. One simply infers from the causality condition that if a pair of photons are

space-like separated in an initial state ρ in
AB, they cannot communicate before detection and

thus they cannot affect each other states before detection. This implies that if we act locally

on only one of the two photons, say on photon A via a local map EA, and we measure the state

of photon B after the action on photon A took place, we should not see any change in the state

of subsystem B. This condition is so important that it strongly restricts the possible outcomes

we can measure for the two-photon scattered state ρout
AB . In particular, we have experimentally

demonstrated and numerically verified that a two-photon scattered state generated by a local

scattering process, in the experimental configuration shown in Fig. 9.1, can only have a very

particular shape; namely, it can only belong to a generalized class of Werner states [114] (see

Chapter 7). This statement is quite, but not completely, general. In fact, it is only true when

the scattering system applied on A has no selective losses, in other words when the action

upon subsystem A can be described in terms of a trace-preserving map. On the other hand,
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we have found that when selective losses are allowed, as in the case of dichroic scattering

media, a class of sub-Werner states is obtained for the two-photon scattered state ρout
AB [114]

(see Chapter 7).

What happens then when the scattering system involves selective absorption? So far,

we know that this type of scattering media cannot be described by a trace-preserving map.

But what is the consequence of that? As we will see, by analyzing two practical examples,

non-trace-preserving maps can lead to apparent violations of causality. Consider as a first

example the case of a polarization singlet input state ρ in
AB = |ψ−〉〈ψ−| where |ψ−〉= (|HV 〉−

|V H〉)/√2. This state contains maximal information about the bipartite correlations, but

minimal information about the state of each subsystem. So, if we measure the reduced input

state of B (ρ in
B = TrA{ρ in

AB}) or the reduced input state of A (ρ in
A = TrB{ρ in

AB}) we obtain in

both cases a maximally mixed state (proportional to the 2×2 identity)

ρ in
A = ρ in

B =
(

1/2 0

0 1/2

)
. (9.1)

Let’s imagine now that we place a polarizer (we assume for simplicity that it is oriented

in the H direction) in the path of photon A, this is a typical dichroic system acting locally

on subsystem A. If we then measure the bi-photon output state in a coincidence-count cir-

cuit, we will obtain ρout
AB = |H〉〈H|A ⊗ |V 〉〈V |B, which is a separable pure state. If we now

trace over photon A, we obtain that the output state of B is also fully polarized in the V di-

rection TrA{ρout
AB } = ρout

B = |V 〉〈V |; clearly, the output state of B obtained in this way is not

equivalent to ρ in
B , so we could claim that photon B was affected by only acting on A, thus

violating causality. The reason why the state of B has apparently changed, without acting

on it, is because there has been classical communication between Alice and Bob (of course

the communication was after detection so there is no violation of causality). Such is the

case in a coincidence-count type of measurement. The state of B has changed only after the

tomographic procedure, which only involves local operations and classical communication.

Besides, on a more sophisticated level, non-trace-preserving maps have proved to be use-

ful for maximally-entangled-mixed state (MEMS) engineering [100], in apparent contradic-

tion with Ref [105]. Note that MEMS are of interest for realistic quantum information appli-

cations [84,85]. Consider the local map proposed in Ref. [100] to create maximally entangled

mixed states type I (MEMS I, see Chapter 8). MEMS I can be written as:

ρMEMSI(p) =

⎛
⎜⎜⎝

p/2 0 0 p/2

0 1− p 0 0

0 0 0 0

p/2 0 0 p/2

⎞
⎟⎟⎠ , 2/3 ≤ p ≤ 1. (9.2)

The quantum map that generates MEMS I can be implemented by using a medium with

anisotropic losses (i.e., a dichroic medium). This medium should act locally on one photon

of an entangled pair, initially prepared in the polarization singlet state. Subsequently, after

propagation along the dichroic medium, the twin-photon state should be reconstructed via

quantum tomography. In this way, it can be shown that ρout
AB = ρMEMSI [100].

A medium with anisotropic losses naturally performs a kind of post-selective measure-

ment, since it selectively transmits (or absorbs) a portion of the total number of photons that
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passes through it [66]. These selective losses introduce a non-trivial renormalization to the

measured bipartite output density matrix ρout
AB . This is in contrast to the trivial renormalization

required for isotropic losses, given for instance by isotropic scattering, where only the total

intensity diminishes (in terms of maps, isotropic or random scattering can be described by a

trace-preserving map up to an overall renormalization constant). If we now want to obtain

the state of photon B (after propagation of photon A through the dichroic medium) by tracing

over the state of photon A, in Eq. (9.2), we will find:

ρout
B = TrA{ρout

AB } =
(

p/2 0

0 1− p/2

)
. (9.3)

By comparing Eq. (9.3) with Eq. (9.1), we see that ρ in
B �= ρout

B . We have apparently mod-

ified the state of B by acting only on A, which seems to violate causality. Once again the

explanation is in the way in which we reconstructed the scattered state. The reconstructed

density matrix of the bipartite output state ρout
AB will correctly describe the result of any other

experiment involving coincidence measurements (as, e.g., Bell measurements), but it will fail
when describing the result of any single-photon measurement, as it was obtained by local

operations and post-selection of the coincidence counts via classical communication. Note

that any classical communication between distant observers can be considered as a kind of

long range interaction [113]; in this way it is apparently possible to affect the state of B at a

distance. But this does not violate the no-signalling condition, since the communication or

the ‘interaction’ occurs after detection, by post-selection of the counts.

9.6 Summary
In conclusion, in this Chapter we have shown that scattering processes involving twin photons

can be described by quantum maps. In the case of non-trace-preserving maps, as it is the case

for scattering systems with polarization dependent losses, the tomographically reconstructed

bi-photon density matrices can lead to an apparent violation of the no-signalling condition.

This apparent surprise can be overcome when one includes post-selective detection, which is

a procedure that involves classical communication between distant observers.
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[11] M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Linden-

thal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A.

Zeilinger, ‘Long distance free-space distribution of quantum entanglement’, Science

301, 621 (2003).

[12] E. Altewischer, M. P. van Exter, and P. J. Woerdman, ‘Plasmon-assisted transmission

of entangled photons’, Nature 418, 304 (2002).

[13] A. Aiello and J. P. Woerdman, ‘Intrinsic entanglement degradation by multimode de-

tection’, Phys. Rev. A 70, 023808 (2004).

81



Bibliography

[14] J. L. van Velsen and C. W. J. Beenakker, ‘Transition from pure to mixed-state entan-

glement by random scattering’, Phys. Rev. A 70, 032325 (2004).

[15] A. Aiello, G. Puentes, and J. P. Woerdman, ‘Linear optics and quantum maps’, quant-

ph/0611179, submitted to Phys. Rev. A (2006).

[16] G. Puentes, A. Aiello and J. P. Woerdman, ’Ray splitting in paraxial optical cavities’,

Phys. Rev. E 69, 036209 (2004).
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(Pergamon Press, Oxford, 1971), 1st Edition.

[54] A. Peres, Quantum theory: concepts and methods (Kluwer Academic Publihser, 1998).

[55] T. C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete,

‘Maximal entanglement versus entropy for mixed quantum states’, Phys. Rev. A 67,

022110 (2003).
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Summary

In this summary the reader will find a brief introduction to the central subject in the
Thesis, namely, light scattering with entangled photons. The intention of this summary is
to make the topic of the Thesis as accessible to the inexpert reader as possible, so, as a
general rule, priority is given to simplicity.
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Light scattering with entangled photons:
an heuristic approach
When a beam of light propagates in an homogenous material it follows a straight trajectory. If

during its propagation light encounters an inhomogeneity it can be scattered. The main effect

of a scattering event is to change the direction of propagation (or momentum k) of the light

beam (see Fig. 1). An inhomogeneity or scatterer can be an atom or a molecule, a particle

with different refractive index (with respect to the background homogeneous medium) or

a density fluctuation in a liquid or gas. Such a transformation in the momentum of light

by scattering is always accompanied by a transformation in the polarization of light, since

polarization is a transverse degrees of freedom. That is, transverse to the momentum k (as

indicated by the small transverse arrow in Fig. 1). When a scattering process involves many

k
in

k
out

Figure 1: The main effect of a scattering event is to change the direction of propagation
of light. The polarization direction is indicated by the small transverse arrow.

directions of propagation k, the so called multi-mode scattering, there is not a single well

defined transverse plane which characterizes the polarization of the scattered light. When

such is the case the polarization and the momentum of light are said to be coupled, so this

is an example of how a scattering process can affect the polarization degrees of freedom of

light.

Another typical example of the connection between scattering processes and polarization

is Rayleigh scattering of sunlight by small particles at the atmosphere (see Fig. 2). Rayleigh

scattering is not only the reason why the sky looks blue, but it is also the reason why it is

partially polarized. Most of us have experienced the polarized nature of the sky when we use

polaroid sunglasses and we partially block the scattered sunlight. Polarization of skylight is

also used for navigation by insects, such as bees, and there are claims that Vikings already

had a navigation system based on the polarization of light, more that 1000 years ago!

So, it is clear that scattering processes do have an effect on polarization degrees of free-

dom of light. Now we could ask ourselves what would happen if we performed a light

scattering experiment when the quantum nature of light is essential. A prominent example of

‘quantum light’ are entangled photon pairs. So we could ask ourselves the question of what

would happen if we performed a scattering experiment with polarization-entangled photons?.
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Figure 2: Rayleigh scattering by molecules at the atmosphere.

That is indeed the question that we want to answer in this Thesis.

In order to answer this question, lets first see how can we create polarization-entangled

photon pairs. These photon pairs, also called twin-photons, can be created in the laboratory

by the process of spontaneous parametric down-conversion. This is a non-linear process

which happens in a special kind of crystal, called BBO (as an abbreviation to Beta Barium

Borate), in which a pump photon is split into two twin photons of half of the energy (see Fig. 3

(a)). These two photons (labelled 1 and 2) are completely correlated. Actually, because of

H

V

1 2

BBOBBOBBO

1 2PumpPump

( a ) ( b )

Figure 3: (a) Scheme of twin-photons created by spontaneous parametric down-
conversion. (b) Far-field intensity pattern of down-converted photons. The polarization-
entangled photon pairs are selected from the crossings of the two rings.

the way in which they are created (at the crystal) they are completely anti-correlated, so they

should rather be called ‘anti-twin photons’! The anti-correlation is such that when one of the

two photons is polarized in the direction P1, the other photon in the pair must be polarized

in the direction P2 ⊥ P1, and this is true for any value of P1, which is the intrinsically non-
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classical feature of this correlation. This quantum correlation in the polarization degrees

of freedom of photons is called polarization-entanglement. It is important to note that this

quantum correlation exist for any separation between the photons, which is the so called non-

local character of entanglement. The photon pairs created by down-conversion are emitted in

two intersecting cones which are orthogonally polarized (for instance, one cone is vertically

polarized V and the other cone is horizontally polarized H). These cones, when projected on

a fixed plane, look like two intersecting rings. The polarization-entangled photon pairs are

selected from the crossings if these two rings (see Fig. 3 (b)). So that individual photons

coming from the ring-crossings do not have a fix polarization (half of them are V and the

other half are H), but photon pairs coming at the same time from the two crossings must have

relative orthogonal polarization.
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Figure 4: Scheme for the detection of polarization entanglement of twin-photons.

How can we detect this non-local anti-correlation between the polarization-entangled

photon pairs? A way of doing this is by placing a linear polarizer in the path of each one

of the two photons belonging to the pair. In such a way that polarizer P1 is oriented at θ1

and polarizer P2 is oriented at θ2. The idea is to then detect the photons transmitted by each

polarizer in a coincidence count circuit (see Fig. 4). A coincidence count is registered when-

ever the two independent detectors (labelled 1 and 2) detect an incoming photon at the same

time (in reality it is never exactly at the same time but within a very very small, 2 or 3 nano-

seconds, coincidence-time interval). So, taking into account that the relative polarization of

the two photons is anti-parallel, we should expect to see many coincidences when θ2 ⊥ θ1

and almost no coincidences when θ2 ‖ θ1, and this should be the case for any orientation of

P2 (or P1). That is indeed what one sees in the laboratory, and what is shown in Fig. 5. The

different experimental curves (called visibility curves) correspond to fixing polarizer P2 at

θ2 = 0◦ (squares) and at θ2 = 45◦ (circles), while rotating P1. Such strong modulation in the

coincidence counts is a signature of the polarization entanglement between the two-photons.

So, we already know that scattering process affect polarization degrees of freedom of

light, we also know how to create polarization-entangled photons and we even know how

to detect this entanglement. So we are ready to answer the question ‘what happens when
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Figure 5: Coincidence counts measurements fixing polarizer P2 at θ2 = 0◦ (squares)
and at θ2 = 45◦ (circles).

we perform a scattering experiment with polarization-entangled photons’. Let’s imagine that

we create a pair polarization-entangled photons by parametric down-conversion. The two

entangled photons (labelled 1 and 2) are created in such a way that they propagate with well

defined momenta k1 and k2. Then we can place a scattering medium in the path of photon 1

(we could also place a scattering medium in the path of photon 2 but, conceptually, this would

not add anything new to the problem). As the photon propagates in the medium it undergoes

multiple scattering events. Each scattering event transforms the direction of propagation, in

such a way that the momentum of the outgoing scattered photon is in a superposition of many

momenta kout , each one with a different polarization plane attached to it (see Fig. 6). So the

scattering process couples the polarization and the momentum degrees of freedom of the

incoming photon. If we then detect the scattered photon pairs in coincidence counts but with

a momentum insensitive detector, this can be done by using detectors with a large detecting

surface, then all the spatial information (contained in the directions of propagation kout) is

averaged or traced over, and the polarization of the scattered photon is reduced to a mixture.

This happens, of course, because the scattering process has coupled the polarization and the

spatial degrees of freedom of the light, so that upon detection the spatial degrees of freedom

act as a bath. Such transition from pure to mixed polarization state does unavoidably affect

the polarization entanglement of light.

In this Thesis we analyzed the degradation of polarization entanglement by different scat-

tering processes, ranging from Rayleigh scattering in multi-mode polymer optical fibers to

scattering by fat particles suspended in milk. The reason why we wanted to use different

types of scattering media is because each media provides a particular coupling mechanism,

which in principle can induce a particular entanglement decay.

Finally, how can we detect this entanglement decay by scattering. A straightforward

way would be to measure the visibility after the scattering process, and quantify how much
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Figure 6: One photon belonging to a pair of polarization-entangled photons undergoes
a multi-mode scattering process. When the scattered photon is detected in a momentum-
insensitive way, the spatial degrees of freedom kout act as a bath, and leave the scattered
photon in a mixed polarization state.

it has dropped. Now, a complication can arise since some of the scattering media that we

analyzed had polarization anisotropy, for instance birefringence or dichroism. In order to

fully quantify the entanglement degradation in these cases, we would have had to measure

the visibility in many different polarization basis. A systematic way of doing this is by

measuring the 4× 4 polarization density matrix of the two photons, by means of a technic

called quantum tomography; this is the quantum analogue of CT (‘Computed Tomography’)

medical scan. Different entanglement (and mixedness) measures can then be extracted from

the tomographically reconstructed two-photon polarization density matrix. That is indeed the

way in which we analyzed our data.
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Samenvatting

Deze samenvatting bevat een korte inleiding tot het centrale onderwerp van dit proef-
schrift, namelijk het verstrooien van verstrengelde fotonen. Het is de bedoeling dat deze
samenvatting het onderwerp van dit proefschrift zo toegankelijk mogelijk maakt voor de
leek, met als gevolg dat eenvoud in het algemeen een hoge prioriteit heeft gekregen.
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Lichtverstrooiing met verstrengelde fotonen:
een heuristische benadering
Een lichtbundel die propageert in een homogeen medium volgt een recht pad. Als zich een

inhomogeniteit bevindt in dit pad, dan kan het licht daaraan verstrooien. Het belangrijkste

effect dat optreedt tijdens verstrooiing, is dat de propagatierichting (of de impuls k) van de

lichtbundel verandert (zie Fig. 1). Zo’n inhomogeniteit of verstrooier kan een atoom, een

molecuul, een deeltje met een andere brekingsindex (dan van het homogene medium) of een

dichtheidsfluctuatie in een vloeistof of gas zijn. Een impulsverandering van het licht door

de verstrooier gaat altijd samen met een verandering van de polarisatierichting van het licht,

aangezien deze ook een vrijheidsgraad is die loodrecht (transversaal) staat op de impuls k
(zoals aangegeven met de kleine transversale pijl in Fig. 1). Verstrooiing waar meerdere

k
in

k
out

Figuur 1: Het grootste effect van verstrooiing is dat de propagatierichting van het licht
verandert. De polarisatierichting is aangegeven met de kleine transversale pijl.

propagatierichtingen k bij betrokken zijn, noemen we multi-mode verstrooiing. Bij dit proces

is er niet slechts één enkel transversaal vlak waarin het verstrooide licht gepolariseerd is. In

dit geval zegt men dat de impuls en de polarisatie van het licht gekoppeld zijn. Dit is dus een

voorbeeld van hoe een verstrooiingsproces de polarisatie van het licht kan beı̈nvloeden.

Een ander voorbeeld is Rayleigh verstrooiing van zonlicht door kleine deeltjes in de at-

mosfeer (zie Fig. 2). Deze vorm van verstrooiing is niet alleen verantwoordelijk voor de

blauwe kleur van de lucht, maar zorgt er ook voor dat zonlicht gedeeltelijk gepolariseerd is.

De meeste mensen kennen dit verschijnsel wel door het gebruik van een polaroid zonnebril,

die een gedeelte van het verstrooide zonlicht blokkeert. De polarisatie van zonlicht wordt

ook door insecten zoals bijen gebruikt om te navigeren, en er wordt zelfs beweerd dat de

Vikingen duizend jaar geleden al beschikten over een navigatie systeem dat gebruik maakte

van de polarisatie van zonlicht!

Het is nu duidelijk dat verstrooiingsprocessen invloed hebben op de polarisatie vrijheids-

graad van licht. Een voor de hand liggende vraag is wat er zou gebeuren in een verstrooiings-

experiment, wanneer het kwantumkarakter van het licht essentieel is. Een belangrijk voor-

beeld van ‘kwantum licht’ is een verstrengeld fotonpaar. We vragen ons derhalve af wat er

zou gebeuren als we een verstrooiingsexperiment zouden uitvoeren met polarisatieverstren-
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Figuur 2: Rayleigh verstrooiing door moleculen in de atmosfeer.

gelde fotonen. Dit is precies de vraag die we willen beantwoorden in dit proefschrift.

Om deze vraag te beantwoorden, bekijken we eerst hoe zo’n polarisatieverstrengeld fo-

tonpaar gemaakt wordt. Zulke fotonparen, ook tweelingfotonen genoemd, kunnen gecreëerd

worden in het lab met behulp van spontane parametrische splitsing. Dit is een niet-lineair

optisch proces dat plaatsvindt in een speciaal soort kristal, genaamd BBO (van Beta Barium

Boraat), waarbij een pompfoton wordt opgesplitst in twee tweelingfotonen met ieder de helft

van de originele energie (zie Fig. 3 (a)). Deze twee fotonen (1 en 2 gelabeld) zijn volledig

H
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1 2PumpPump

( a ) ( b )

Figuur 3: (a) Schematische voorstelling van het creatieproces van tweelingfotonen
door spontane parametrische splitsing. (b) Verre veld intensiteitspatroon van gesplitste
fotonen. De polarisatieverstrengelde fotonparen worden geselecteerd uit de kruisingen
van de twee ringen.

gecorreleerd. Sterker nog, door de manier waarop zij gecreëerd zijn (in het kristal), zijn ze

compleet antigecorreleerd, en zouden ze eigenlijk ‘anti-tweelingfotonen’ genoemd moeten

worden! De anticorrelatie is zodanig dat als een van de twee fotonen gepolariseerd is in de
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richting P1, het andere foton van het paar gepolariseerd is in de richting P2 ⊥ P1. Dat dit

geldt voor elke waarde van P1, is een intrinsiek niet-klassieke eigenschap van deze correlatie.

Deze kwantumcorrelatie van de polarisatievrijheidsgraden van de fotonen wordt polarisatiev-

erstrengeling genoemd. Merk op dat deze kwantumcorrelatie onafhankelijk is van de afstand

tussen de twee fotonen, hetgeen het niet-lokale karakter van de verstrengeling aantoont. De

fotonparen die ontstaan bij de splitsing worden uitgezonden in twee elkaar doorsnijdende

kegels, die onderling loodrecht gepolariseerd zijn (de ene kegel is bijvoorbeeld verticaal V
gepolariseerd zodat de andere kegel horizontaal H gepolariseerd is). Eenmaal geprojecteerd

op een transversaal vlak zien deze twee kegels eruit als twee elkaar snijdende ringen. De po-

larisatieverstrengelde fotonparen worden geselecteerd uit de kruisingen van deze twee ringen

(zie Fig. 3 (b)). Op deze manier hebben de individuele fotonen die vanuit deze kruisingen

komen geen vaste polarisatie. Echter, het foton uit de ene kruising vormt een paar met het

foton uit de andere kruising en het enige dat vast staat is dat ze in relatie tot elkaar loodrecht

gepolariseerd zijn.
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Figuur 4: Schematische voorstelling van de detectie van polarisatieverstrengeling van
tweelingfotonen.

Hoe kunnen we deze niet-lokale anticorrelatie tussen de polarisatieverstrengelde fotonen

detecteren? Een manier om dit te bewerkstelligen is door in het pad van elk foton een lineaire

polarisator te plaatsen. De ene polarisator P1 wordt georiënteerd onder een hoek θ1 en de

andere polarisator P2 onder een hoek θ2. Vervolgens worden de fotonen die door te polar-

isatoren worden doorgelaten gedetecteerd met behulp van detectoren die aangesloten zijn op

een coı̈ncidentiecircuit (zie Fig. 4). Een coı̈ncidentiedetectie wordt geregistreerd wanneer de

twee onafhankelijke detectoren (1 en 2 gelabeld) beide gelijktijdig een foton detecteren. In

werkelijkheid arriveren de fotonen nooit gelijktijdig bij de corresponderende detector, maar

wel binnen een zeer klein tijdsinterval van 2 of 3 nanoseconden. Er rekening mee houdend dat

de polarisatie van de twee fotonen anti-parallel is, verwachten we dat we veel coı̈ncidenties

detecteren wanneer θ2 ⊥ θ1 en bijna geen detecteren wanneer θ2 ‖ θ1, en dit zou het geval

moeten zijn voor elke willekeurige oriëntatie van P2 (of P1). Dit laatste is inderdaad het

resultaat van een experiment, getoond in Fig. 5. De verscheidene experimentele curves (zo-
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genaamde contrastcurves) corresponderen met een vaste oriëntatie θ2 = 0◦ (vierkanten) en

θ2 = 45◦ (cirkels) van polarisator P2, terwijl de oriëntatie van P1 gevarieerd wordt. De aan-

wezigheid van de sterke modulatie in het aantal coı̈ncidenties in beide curven, is karakter-

istiek voor de polarisatieverstrengeling van de tweelingfotonen.
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Figuur 5: Coı̈ncidentiemetingen voor twee vaste instellingen van polarisator P2,
namelijk θ2 = 0◦ (vierkanten) en θ2 = 45◦ (cirkels).

We weten nu dat verstrooiingsprocessen invloed hebben op de polarisatie van licht, we

weten hoe we polarisatieverstrengelde fotonen moeten maken en hoe we de verstrengeling

moeten detecteren. We zijn nu dus gereed om de vraag te beantwoorden wat we zouden

meten als we een verstrooiingsexperiment zouden uitvoeren met polarisatieverstrengelde fo-

tonen. Stel dat we zo’n verstrengeld fotonpaar creëren. De twee polarisatieverstrengelde

fotonen (1 en 2 genoemd) propageren dan met duidelijk gedefinieerde impulsen k1 en k2.

Vervolgens plaatsen we een verstrooiend medium in het pad van foton 1. We zouden ook een

verstrooier kunnen plaatsen in het pad van foton 2, maar dit heeft geen meerwaarde voor het

beantwoorden van de vraag. Terwijl foton 1 propageert door het medium, zal het meerdere

malen verstrooid worden. Elke verstrooiing verandert de richting van het foton in een su-

perpositie van meerdere impulsen kout , elk met een ander polarisatievlak (zie Fig. 6). Het

verstrooiingsproces heeft dus de polarisatie- en impulsvrijheidsgraden van het inkomende fo-

ton gekoppeld. Vervolgens detecteren we het verstrooide fotonpaar in coı̈ncidentie, met een

detector die ongevoelig is voor de impuls van de fotonen. Hiervoor gebruiken we detectoren

met een groot oppervlak, zodat over alle ruimtelijke informatie (over de richtingen kout ) wordt

gemiddeld (of eigenlijk, zodat het spoor over alle ruimtelijke informatie wordt genomen) en

de polarisatietoestand van het verstrooide foton wordt gereduceerd tot een gemengde toe-

stand. Dit gebeurt uiteraard omdat het verstrooiingsproces de polarisatie en impuls heeft

gekoppeld zodat bij detectie, de ruimtelijke vrijheidsgraden als bad fungeren. Deze over-

gang van een zuivere naar een gemengde polarisatietoestand heeft uiteraard invloed op de

polarisatieverstrengeling van het licht.
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Figuur 6: Een van de fotonen van een polarisatieverstrengeld fotonpaar ondergaat een
multi-mode verstrooiingsproces. Als het verstrooide foton wordt gedetecteerd op een
manier die ongevoelig is voor zijn impuls, dan zullen alle ruimtelijke vrijheidsgraden
kout fungeren als een bad, zodat de polarisatie van het verstrooide foton vervalt in een
gemengde toestand.

In dit proefschrift onderzoeken we de degradatie van polarisatieverstrengeling bij ver-

schillende verstrooiingsprocessen, van Rayleigh verstrooiing in multi-mode polymeren fibers

tot verstrooiing aan vetdeeltjes in melk. Ieder van de gebruikte verstrooiingsmedia heeft een

eigen koppelingsmechanisme, dat in principe een specifieke degradatie van verstrengeling

teweeg kan brengen.

Tot slot bekijken we dus hoe deze verstrengeling degradeert. Een eenvoudige manier om

deze te bestuderen is om na het verstrooiingsproces, het contrast van de coı̈ncidentiecurve te

kwantificeren. Hier treedt mogelijk een complicatie op, aangezien enkele van de verstrooiers

polarisatieanisotropie vertonen, zoals dubbelbrekendheid of dichroisme. Om de degradatie

van verstrengeling in die gevallen volledig te kwantificeren, zouden we het contrast moeten

meten in vele, verschillende polarisatiebases. Een systematische manier om dit te bewerkstel-

ligen is door het meten van de 4× 4 polarisatie dichtheidsmatrix van het fotonpaar, volgens

een techniek die bekend staat als kwantumtomografie; dit is een kwantum analogon van de

medische CT (‘Computed Tomography’) scan. Verschillende maten van verstrengeling (en

gemengdheid) kunnen dan worden bepaald uit deze tomografisch gereconstrueerde dichthei-

dsmatrix. Dit is ook de manier waarop wij onze data hebben geanalyseerd.
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