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Abstract 
 

Lignocellulosic biomass is the future feedstock for the production of biofuel and bio-based 

chemicals. The pretreatment-hydrolysis product of biomass, so-called hydrolysate, contains 

not only fermentable sugars, but also compounds that inhibit its fermentability by microbes. 

To reduce the toxicity of hydrolysates as fermentation media, knowledge of the identity of 

inhibitors and their dynamics in hydrolysates need to be obtained. In the past decade, 

various studies have applied targeted metabolomics approaches to examine the composition 

of biomass hydrolysates. In these studies, analytical methods like HPLC, RP-HPLC, CE, 

GC-MS and LC-MS/MS were used to detect and quantify small carboxylic acids, furans and 

phenols. Through applying targeted metabolomics approaches, inhibitors were identified in 

hydrolysates and their dynamics in fermentation processes were monitored. However, to 

reveal the overall composition of different hydrolysates and to investigate its influence on 

hydrolysate fermentation performance, a non-targeted metabolomics study needs to be 

conducted. In this review, a non-targeted and generic metabolomics approach is introduced 

to explore inhibitor identification in biomass hydrolysates, and other similar metabolomics 

questions. 
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Introduction 
 

In the last decade, more and more attention has been paid to using lignocellulosic biomass 

as feedstock for bulk chemical production with biotechnology processes [1,2]. This biomass, 

including for example wheat straw, corn stover and bagasse, consists mainly of agricultural 

residues, which is renewable and not competitive with world food supply [3,4]. If 

microorganisms could use such biomass efficiently as fermentation feedstock, production 

processes would be less expensive and more environmentally friendly. 

 

Lignocellulosic biomass is mainly composed of cellulose, hemicellulose and lignin (Figure 1). 

Cellulose is a polysaccharide consisting of D-glucose, and it forms the backbone structure of 

lignocellulose; hemicellulose is composed of a matrix of different polysaccharides, such as 

xylan, arabinoxylan and xyloglucan; in addition, lignin is a complex aromatic polymer, 

functioning as the supportive structure of lignocellulose [5,6]. Due to the rigid structure of 

lignocellulosic biomass, very few microorganisms can use the biomass directly for growth 

and production. Therefore, prior to feeding the biomass into fermentors, a pretreatment-

hydrolysis step is carried out to break down the structure of lignocellulosic biomass and 

hydrolyze the exposed polysaccharides into monomers [7,8]. The conditions under which 

feedstock is pretreated are quite harsh, involving high temperature, high pressure and an 

acidic/alkaline environment [9-11]. Pretreatment not only results in the disruption of the 

lignocellulose structure but also in the formation and release of compounds, which could 

negatively influence the fermentation processes. Therefore, when biomass hydrolysates 

(hydrolysis products of lignocellulosic biomass) are used as fermentation media, their 

fermentability is reduced compared to synthetic media with pure sugar monomers as carbon 

source (Figure 1) [12,13]. 

 

To identify and ultimately reduce the effects of inhibitory compounds on the fermentation 

processes, insight into biomass hydrolysate composition and its relationship with 

fermentation performance is required. One way to obtain this insight is through a so-called 

metabolomics approach. That is, by studying the relationship between (the change of) 

metabolite levels and performance of the biological system [14,15]. 

 

Metabolomics is a functional genomics approach aimed at studying the diversity of biological 

systems by analyzing intra- and extra-cellular metabolites. Compared to genomics, 

transcriptomics and proteomics, metabolomics reflects most directly the physiological status 

of a biological system, as metabolites links most closely to the phenotype of an organism 
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[15,16]. In the last two decades, a diverse range of techniques that can detect and quantify 

metabolites with various properties have been developed. Metabolomics has been applied in 

the areas of pharmacy, food and nutrition, plant research and biotechnology [17,18]. 

Metabolomics studies include detecting metabolite level change caused by genetic 

modification and/or altered environmental conditions [19,20], finding bio-makers that improve 

the performance of a biological system [21], and sample classification [22]. 

 

Metabolites are small organic compounds participating as intermediates or products in 

metabolic pathways. Metabolites that are secreted into fermentation media are defined as 

exo-metabolites together constituting the so-called exo-metabolome. As the chemical 

properties of different metabolites are diverse, usually several different analytical techniques 

are required to conduct a metabolomics study [16,23,24]. 

 

Different metabolomics approaches may be adopted, such as metabolite target analysis, 

metabolite profiling, metabolomics and metabolic fingerprinting [14]. With metabolite target 

analysis and metabolite profiling, a selection of metabolites is made based on previous 

research and expert knowledge, and for the most part a single analytical technique is chosen 

for measuring this group of compounds. These approaches allow a simple sample analysis 

process and avoid dealing with complex data-sets. However, though widely applied, these 

approaches are often biased, neglecting the metabolites that are not in the selection. This 

can artificially amplify effects of selected compounds on the performance of the biological 

system, losing information like synergetic effect with compounds not selected for analysis 

[25]. When it is not known which metabolites are of importance in the research question, a 

non-targeted metabolomics approach becomes essential, since the approach does not 

involve compound pre-selection. 

 

Metabolomics approaches, mostly targeted, have been used to study the composition of 

lignocellulosic biomass hydrolysates, in relation to their performance as fermentation media. 

The “exo-metabolites” in such metabolic footprinting studies are components of biomass 

hydrolysates [26]. These exometabolomics studies help to identify compounds that inhibit 

the growth of fermenting microbes, reveal the dynamics of some inhibitory compounds in 

detoxification and fermentation processes, and provide evidence to optimize pretreatment 

conditions. To further investigate the overall composition of different types of biomass 

hydrolysates, and study potential inhibitors in these hydrolysates unbiased, a non-targeted 

exometabolomics approach should also be adopted. 
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Figure 1 Schematic workflow for the preparation of lignocellulosic biomass hydrolysates and their use 
in microbial fermentation. 
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In this review, we present several targeted exometabolomics approaches with which the 

composition of lignocellulosic biomass hydrolysates was studied. The analytical methods 

used for analyzing the non-sugar compounds in biomass hydrolysates are summarized. The 

use of targeted approaches in improving pretreatment conditions and fermentation 

performance of hydrolysates is illustrated. Furthermore, a non-targeted and generic 

exometabolomics approach is introduced. The approach is applied to identify inhibitors in 

different types of biomass hydrolysates unbiased and to study their dynamics in fermentation 

processes. 
 

 

General approach of metabolomics studies 
 

In general, the goal of a metabolomics study is to address biological questions by measuring 

relevant metabolites in a biological system. The measured metabolites are used to reveal 

their relationship with the performance of the biological system through statistical means. A 

flowchart illustrating the general metabolomics approach is shown in Figure 2A.  

 

The first step is to define a research question that clearly describes the aim of the study. The 

question should be informative and specific, pointing out both the analytical targets and the 

biological system of the study [27]. When the research question is clear and specific, it can 

be translated into a statistical question, based on which experimental design is carried out 

and tentative statistical methods are chosen. 

 

Based on the defined research question, an estimation of the amount of metabolites to be 

measured can be made. The number of metabolites to be measured relates not only to the 

property of the biological system, but also to the coverage of the analytical methods used. 

For instance, when both GC-MS and LC-MS were used to analyze the metabolome of 

Escherichia coli, the detection of between 250 and 500 metabolites was estimated [16]. 

Based on the number of metabolites to be analyzed, the number of different experiments 

can also be determined. The larger the number of metabolites, the more experiments should 

be carried out to acquire a reliable answer to the research question [28–30]. 

 

Knowing the required number of different experiments to be conducted, experimental design 

can be performed. The requirements of the designed experiments are that they (1) closely 

relate to the research question, (2) reflect real-life situations, and (3) result in a range of well-

spread measurable phenotypes [31,32]. To ensure the success of the experimental design, 

information about the operability and repeatability of the experiments needs to be obtained 
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beforehand. Preferably, more experiments than desired are initially conducted, so that, when 

certain experiments do not meet the requirements mentioned above, they can be discarded 

from the design. 

 

 

 

 
 

 

Figure 2A: Overview  of   
a general metabolomics 
workflow. 
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Figure 2B: Non-targeted metabolomics workflow used for studying the use of lignocellulosic biomass 
hydrolysate as fermentation medium, in particular by identifying inhibitory compounds. 
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Another key point in experimental design is defining the phenotype(s) to characterize the 

performance of the different experiments. Depending on the selected phenotype, 

experimental set-up and sampling strategies will be determined. Phenotypes are parameters 

defined to describe the research question in a quantitative manner. There is no universal 

phenotype definition, since the focus of each study is different, and often more than one 

phenotype is needed to fully represent the research question. The importance of defining 

proper phenotypes and its influence in answering the research question are illustrated by 

Braaksma et al. [19]. In her study on enzyme production by the filamentous fungus 

Aspergillus niger, six different phenotypes were defined to be able to fully address the 

research question. In addition, different metabolite target groups were found to be correlating 

to different phenotypes. Therefore, defining a series of phenotypes that address different 

aspects of the research question is strongly recommended. 

 

As soon as phenotypes are defined, experimental process and sampling can be set up to 

obtain parameters needed to calculate the phenotypes. For practical reasons, it is preferred 

to set up as simple an experimental process and sampling method as possible, given that all 

necessary parameters can be acquired. One should bear in mind that the sampling method 

is also determined by the biological system and the sample analysis techniques of the study. 

The sample work-up of extracellular metabolomics (exometabolomics) is much simpler than 

intracellular metabolomics, which needs sample quenching, metabolites extraction and 

biomass correction [25,26]. When GC-MS is used to analyze samples, extra sample 

preparation steps, like derivatization, are often required, which is generally not required for 

LC-MS and NMR analysis [23]. 

 

In targeted metabolomics, analytical methods are chosen based on the properties of the pre-

selected compounds. In non-targeted metabolomics, analytical techniques also need to be 

chosen, as it is not possible to use all available methods for sample analysis. Besides, it is 

more informative to focus on metabolite classes that are relevant to the aim of the study. 

Therefore, analytical methods in non-targeted metabolomics should still be selected based 

on the research question and known properties of the biological system. For instance, when 

it is known that volatile compounds may be important to the research question, methods 

allowing the analysis of these compounds, such as solid phase microextraction (SPME), 

should be used [33,34]; and as the focus of the study is on carbohydrates, methods like 

high-performance anion-exchange chromatography with pulsed amperometric detection 

(HPAEC-PAD) or LC-MS should be selected [35,36]. 
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In non-targeted metabolomics, sample analysis results in a list of detected compounds, both 

known and unknown, and their relative quantities, presented as peak areas in 

chromatograms. The analysis results of all samples in the experimental design form a data-

set, which will be studied statistically. Before the data-set is analyzed statistically, it needs to 

be preprocessed. Generally, data preprocessing involves the following aspects, (1) peak 

area correction with internal standards, (2) data-set normalization, and (3) data-set 

transformation. Peak area correction is conducted to minimize the influence of sample matrix, 

an effect caused by the overall composition of the sample; normalization is carried out to 

reduce the redundancy of the data-set; and transformation is performed to increase the 

useful information content the data-set carries. There are multiple ways to preprocess a 

data-set, and the methods chosen are specific to the analytical technique used and the 

statistical model selected. Detailed discussions on data preprocessing are given by 

Roessner et al. [37] and van den Berg et al. [38]. 

 

To find the relationship between the preprocessed data-set and the defined phenotypes in 

non-targeted metabolomics study, multivariate data analysis (MVDA) tools are applied. The 

most commonly used tools are principal component analysis (PCA), partial least square 

(PLS), and discrimination/classification methods. PCA model points out variables 

(metabolites) that contribute the most to the data-set structure [39]; PLS model seeks 

metabolites that are most responsible for a certain phenotype [40]; 

discrimination/classification methods determine if a sample belongs to a specific group [28]. 

Based on the research question, one or several of the MVDA tools are selected to analyze 

the preprocessed data-set. Two other factors to be considered when conducting MVDA are 

(1) fusing of the data-sets generated by different analytical methods and its influence on the 

model building results, and (2) methods for model validation. Simply using MVDA tools for 

analyzing metabolomics data-sets without checking the validity of the models can produce 

misleading or even wrong results. Rubingh et al. addressed the complexity of the real-life 

metabolomics data. Several model validation methods were provided to attain more reliable 

and comprehensive data analysis results [29]. Compared to non-targeted metabolomics, the 

compound list in a targeted approach is very short. Since the compounds are pre-selected, 

their absolute concentrations can be determined with reference compounds. This simplifies 

or even omits data preprocessing, and makes data analysis straightforward and simple.  

 

The last step in a metabolomics study is to translate the statistical analysis results into the 

biological context to answer the research question. Some analytical results speak for 

themselves, like the ones in discrimination/classification studies [41], while others are 

complex, especially those involving metabolites identification [42]. There are several tools 
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that assist the biological interpretation, which are illustrated by van der Werf et al. [25]. 

Additionally, it should be noted that non-targeted metabolomics analysis might suggest 

compounds that seem to be ‘incorrect’ based on expert knowledge. They are either not 

previously found in any similar biological systems, or known to function in an unrelated 

biological process. Such compounds should also be taken into account for future research, 

since they may play a role in further understanding the biological system studied. 
 

 

Targeted approach: Applying targeted metabolomics approaches to 
study the sugar and lignin degradation products in lignocellulosic 
biomass hydrolysates 
 

Most of the targeted approaches start with analyzing the structure of lignocellulosic biomass, 

which reveals several main degradation products in biomass hydrolysates, the pretreatment-

hydrolysis product of lignocellulose. As shown in Figure 1, cellulose, hemicellulose and lignin 

are the three main components of lignocellulosic biomass. Cellulose is the linear polymer of 

-1,4-linked D-glucose residues, hemicellulose is a heteropolymer mainly containing xylan, 

arabinoxylan and xyloglucan, when hydrolyzed generating xylose, mannose, galactose, 

arabinose and glucose [43]. Lignin is a complex macromolecule composed of phenylpropane 

units, which are the dehydrogenation products of para-coumaryl alcohol, coniferyl alcohol, 

and sinapyl alcohol [13]. The degradation products of the sugar monomers of cellulose and 

hemicellulose, and lignin are generally categorized into small carboxylic acids, furans and 

phenolic (aromatic) compounds [12,44]. Formic, acetic and levulinic acid are the most 

common small carboxylic acids, while furfural and 5-hydroxy-methylfurfural (HMF) are the 

representatives of furans [45]. Comparatively, the diversity of phenolic (aromatic) 

compounds in biomass hydrolysates is much greater [46–49]. In this section, the analytical 

methods used to detect and quantify these three categories of compounds are presented. 

Furthermore, application of targeted metabolomics approaches on identifying inhibitors in 

biomass hydrolysates and improving hydrolysate preparation methods is reviewed. 
 

Analytical methods for studying hydrolysate composition 
 

As many of the targeted studies referred to in this review are focused on specific classes of 

compounds, analytical methods used to detect and quantify these are discussed separately. 

However, general aspects of these analytical tools are often not specific for the compound 

classes. 
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Table 1 Analytical methods used for detecting compounds in lignocellulosic biomass hydrolysates. 
 
analytical 
method 

extraction / 
derivatization detected compounds identification quantification ref 

HPLC no 

formic, acetic acid, levulinic acid, 
lactic acid, glycolic acid, malic acid, 

citric acid, succinic acid, 
oxalic acid no yes 

[49-51, 
55,58-62] 

furfural, HMF 
furfuryl alcohol,  

2,5-bis-hydroxymethylfuran 

[49,55,58, 
60,61,63,64] 

RP-
HPLC 

precipitation-
filtration, 

MTBE / no 

formic acid, lactic acid, acetic acid, 
levulinic acid, furfural, HMF, phenolic 

compounds 
partial 

yes 

[52] 

MTBE / no 
gallic acid, furfural, HMF, 

protocatechuic acid, vanillin, coniferyl 
alcohol, syringaldehyde, sinapic acid 

partial /GC-
MS [51] 

no reference phenolic compounds GC-MS [50] 

CE no 
formic acid, acetic acid, levulinic acid, 

glycolic acid, lactic acid, 
furfural, HMF 

no yes [53,63,65] 

GC-MS 

solvent / no acetic acid, furfural, acetamide no yes [66] 
MTBE / 
silylation 

gallic acid, HMF, vanillin, 
protocatechuic acid, syringaldehyde 

yes/ 
partial 

no [51] 

DCM / EC-
derivatization 

levulinic acid, furfural, furfurylalcohol, 
2-furanmethanol acetate, HMF, 

phenolic compounds yes 

[67] 

SPE / 
silylation 

phenolic compounds 
phenolic compounds [60,61] 

EA / silylation 

furfural, HMF, furfuryl alcohol, 2-furoic 
acid, phenolic compounds yes [55] 

phenolic compounds no [49] 

phenolic compounds 
yes 

[57,59] 

no / silylation lignin derived monomer and dimers [65] 

      

LC-
MS/MS 

precipitation-
filtration, 

MTBE / no 

aliphatic acids, furans, phenolic 
compounds yes yes [54,68] 

 
MTBE: methyl tertiary butyl ether; DCM: dichloromethane; SPE: solid phase extraction; EC: 
ethylchloroformate; EA: ethylacetate. 
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Small carboxylic acids and furans 
Several methods have been extensively used to detect and quantify small carboxylic acids 

and furans in biomass hydrolysates, among which are High-Performance Liquid 

Chromatography (HPLC), and Capillary Electrophoresis (CE) (Table 1). 

 

HPLC is the most standard method for quantifying monomer sugars, simple small carboxylic 

acids, furfural and HMF, though the analytical system and column used may vary. The 

method requires little sample work-up and detects a limited range of target compounds, 

which are quantified by making calibration curves using external standards. RP-HPLC is a 

variation of HPLC that detects a much larger group of compounds with identification 

possibility only when followed up by GC-MS [50,51]. RP-HPLC assigns identity to detected 

compounds mainly by comparing their retention time to and/or spiking samples with 

reference compounds. In the identification process, no compound structural analysis is 

involved and the availability of reference compounds is a necessity. Therefore, the 

identification conducted by RP-HPLC requires prior knowledge [52]. 

 

It can also be seen from Table 1 that an extraction step using methyl tertiary butyl ether 

(MTBE) is often used before analyzing hydrolysate samples with RP-HPLC in combination 

with detection based on refractive index (RI). This is because hydrolysate samples normally 

contain high concentrations of sugars, like glucose. These huge sugar peaks appear in RP-

HPLC chromatograms interfere with the RI detection of target compounds, like furans. 

Therefore, to minimize the disturbance, sugars are removed by extracting hydrolysates with 

organic solvent before conducting analysis. This applies also to GC-MS method, which 

requires an extraction step before the derivatization step in sample preparation (Table 1). 

Besides small carboxylic acids and furans, phenolic (aromatic) compounds can also be 

studied by RP-HPLC. This will be discussed in the next section.  

 

CE is yet another method for analyzing the described compounds in hydrolysates. 

Compared to RP-HPLC, the targets of CE are more specific, mainly small organic acids. Like 

in HPLC, little sample work-up is needed for CE, and the method cannot be used for 

identification of novel compounds. When analyzing hydrolysate samples, it is preferred to 

measure both carboxylic acids and furans with one analytical method. Since HPLC is 

capable of detecting both acids and furans, the method is often chosen above CE. Recently, 

it was shown that CE can also separate saccharides and furans in hydrolysate samples, and 

the quantification results of CE on furfural and HMF are highly comparable to HPLC [53]. 

Therefore, CE has the potential to become a routine analytical method for measuring 

hydrolysate samples. 
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polymer 

OR 

polymer 

OR 

Table 2 Phenolic (aromatic) compounds detected in the studies listed in Table 1. 
 

p-hydroxyphenyl 
residue (H) 

detected in more than one 
study* detected in one study hydrolysate ref 

 

phenol 
4-hydroxybenzaldehyde 
4-hydroxybenzoic acid 
salicylic acid  
    (2-hydroxybenzoic acid) 
3,4-dihydroxybenzaldehyde 
benzoic acid  
catechol  
    (1,2-dihydroxybenzene) 
p-coumaric acid  
    (4-hydroxycinnamic acid) 
piceol 
    (4-hydroxyacetophenone) 

hydroquinone spruce-dilute 
acid [60] 

4-methoxyphenol 
p-coumaryl alcohol 
phloretic acid  

(3-(4-hydroxyphenyl) 
propionic acid) 

wheat straw-
steam 
explosion 

[55] 

o-cresol  
    (2-methylphenol) 
gentisic acid  
    (2,5-dihydroxybenzoic acid) 
protocatechuic acid  
    (3,4-dihydroxybenzoic acid) 

willow-acid 
steam [57] 

caffeic acid  
    (3,4-dihydroxy cinnamic acid) 

corn stover-
dilute acid or 
ammonia fiber 
expansion 

[54] 

Guaiacyl residue (G) 

 

guaiacol 
vanillin 
vanillic acid 
homovanillic acid 
ferulic acid 
    (4-hydroxy-3- 
    methoxycinnamic acid) 
3-hydroxy-4-methoxycinnamic 
acid 
coniferyl aldehyde 
dihydroconiferyl alcohol 
acetovanillone 
    (acetoguaiacone) 
G-CH2COCH3 

G-CHOHCOCH3 
G-COCOCH3 
G-CH2COCH2OH 
G-COCHOHCH3 

spruce-dilute 
acid [60] 

vanillyl alcohol 
G-CH2CH2COOH 
G-CHCHCHO 

wheat straw-
steam 
explosion 

[55] 

trans-isoeugenol willow-acid 
steam [57] 

Syringyl residue (S) 
 

syringaldehyde 
 
syringic acid 

acetosyringone 
wheat straw-
alkaline wet 
oxidation 

[61] 

syringol 
 
S-CHCHCHO 

wheat straw-
steam 
explosion 

[55] 

 

Other structures  

biphenyl-type dimer 
diarylpropane-type dimer 
pinoresinol-type dimer 

Japanese 
beech-hot 
compressed 
water 

[65] 

4-hydroxycoumarin  
o-toluic acid 
p-toluic acid 

corn stover-
dilute acid or 
ammonia fiber 
expansion 

[54] 

 
* The compounds listed in this column appeared in two or more studies listed in the “ref” column and 
the following three references: [49] [52] [67]. The hydrolysates used in these three studies were corn 
stover-dilute acid, yellow poplar organosolv, and bagasse and oak hydrolysates. 
 
 

polymer 

OR 
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Phenolic (aromatic) compounds 
As addressed before, phenolic (aromatic) compounds are mostly the degradation products 

of lignin, and due to the complexity of lignin structure, the chemical structure of this group of 

compounds in biomass hydrolysates is very diverse. The potential phenolic compounds in 

hydrolysates derived from the three basic lignin building blocks, namely para-hydroxyphenyl 

(H), guaiacyl (G), and syringyl (S) residues, are summarized by Klinke et al. [13] (Table 2). It 

was estimated that about 60 different phenolic compounds could be found in various 

hydrolysates, including compounds with unknown structures. 

 

To detect, identify and quantify these phenolic compounds in hydrolysates, several different 

methods have been applied, including RP-HPLC, Gas Chromatography–Mass Spectrometry 

(GC-MS) and Liquid Chromatography–Mass Spectrometry2 (LC-MS/MS), see Table 1. A 

common characteristics of the three techniques is that they all possess the possibility of 

(partial) identification, which is essential for studying a diverse group of lignin degradation 

products with many ‘unknowns’. 

 

Compound identification with RP-HPLC and LC-MS/MS is mainly done by first constructing 

chromatograms with a relative large group of reference compounds. The generated 

chromatograms are then compared with the peaks in the sample chromatogram [52,54]. By 

comparing the retention time in LC and/or extract mass information provided by MS, 

identities can be assigned to peaks in hydrolysatesamples. Since for each identified 

compound, its reference is already available, quantification can be directly carried out by 

generating calibration curves. 

 

In contrast to LC methods, GC-MS appears to be more open, as reference compounds are 

only involved in a later stage of the analysis. The initial identification with GC-MS is often 

conducted by comparing compound fragment profiles with a mass spectral library [48,55,56]. 

In some cases, reference compounds are used to confirm the identity of characterized peaks 

[48]. Even when identity is not assigned, an indication of the category the compound belongs 

to can be given [57]. Therefore, GC-MS seems to be a preferred method for studying 

phenolic (aromatic) compounds in biomass hydrolysates. The method has been adopted in 

multiple studies, resulting in the identification and quantification of a variety of phenolic 

(aromatic) compounds, see Table 2. It can be seen that most identified phenolic compounds 

fell into the categories of the three lignin building blocks, primarily aldehyde and acid forms. 

More derivatives of para-hydroxyphenyl residues (H) were found than guaiacyl derivatives 

(G) than syringyl derivatives (S). Phenolics dimers and non-phenolic aromatic compound, 

namely toluic acid, were also detected. These analysis results confirmed that there is a 
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diverse group of phenolic compounds in biomass hydrolysate, indicating that the phenolic 

compound composition in different hydrolysates vary. 

 
Application of targeted approaches in studying biomass hydrolysates 
 

The detection and quantification of the degradation products of sugars and lignin in 

lignocellulosic biomass hydrolysates not only revealed the presence and level of such 

compounds, but also provided information to (1) test the toxicity of these compounds 

towards microbes, (2) study the formation conditions of these compounds, (3) trace their 

dynamics in a detoxification treatment or during a fermentation process. The applications of 

targeted metabolomics approaches on studying these aspects of biomass hydrolysates are 

discussed below. 

 

Inhibitor identification 
Biomass hydrolysates generated from different pretreatment methods exhibit inhibitory 

effects when used as fermentation media. Some elongate lag-phase, some reduce growth 

rate, some lower product yield, while others abolish growth completely [12,44]. The inhibitory 

effects are the results of compounds present in hydrolysates, which are formed or released 

during the pretreatment process. These inhibitory compounds are mostly sugar and lignin 

degradation products, which can be different in each hydrolysate. To improve the 

fermentability of biomass hydrolysates, identifying these compounds is crucial. The 

identification has been carried out by using targeted metabolomics approach. 

 

Most studies start with selecting a group of compounds that are potentially inhibitory in 

biomass hydrolysates. The selection was made based on expert knowledge as well as 

previous research results. For instance, in the study of Chen et al. [52], aliphatic acids, 

phenols, aromatic acids and aromatic aldehydes were selected as they were reported as 

major degradation products in biomass hydrolysates [13]. According to the chemical 

properties of the selected compounds, analytical methods were established to measure and, 

in some cases, quantify these compounds. Both RP-HPLC and GC-MS have been used in 

such studies, and pure reference compounds were used for both identification and 

quantification purposes [50,52,59]. In some studies, the presence of the selected 

compounds in the actual hydrolysate was checked [52,58], while in other studies, their 

inhibitory effects towards one or several microbes were tested by spiking with various 

concentrations [50,69].  
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In some other studies, the pre-selection of potential inhibitors was not conducted, 

hydrolysates were typically analyzed with GC-MS, and the mass spectra of the resulting 

peaks were used for compound characterization [49]. The characterization was either done 

by comparing the mass spectra of the detected peaks to a mass spectral library [48,55,56], 

or comparing them to a series of reference compounds [51,59]. When a mass spectral 

library is used, a large group of compounds can be characterized [55]. However, instead of 

exploring the inhibitory effect of each detected compound, the authors decided to focus on 

vanillin and furfural based on previous research results. This makes such a study targeted 

from this point on. Compared to approaches using reference compounds, the benefit of 

directly analyzing hydrolysates with GC-MS is that as soon as the compound is 

characterized, its presence in the hydrolysate is also confirmed. The concentration of the 

characterized compound can be determined with its reference compound, and its toxicity can 

be tested according to its concentration present in the hydrolysate [51,67]. 

 

Pretreatment condition optimization 
It is known that the inhibitory compounds in biomass hydrolysates are mainly formed during 

pretreatment process, which is in most cases operated under harsh conditions (Figure 1) [9–

11]. The fermentability of a specific hydrolysate is, to a great extent, determined by its 

pretreatment [11]. Thus, studying the relationship between biomass pretreatment and its 

resulting hydrolysate composition provides valuable information for selecting appropriate 

pretreatment conditions. 

 

A targeted metabolomics approach has been used to study the influence of pretreatment 

conditions on fermentable sugars and inhibitors formation of a specific pretreatment method 

[62,63]. The approach started with designing experiments by varying specific pretreatment 

conditions, such as temperature and residence time, both individually and together. All 

different pretreatment conditions were quantitatively represented by a series of combined 

severity factors (CS), and under each CS, a pretreatment experiment was carried out. 

Samples were taken from the resulting hydrolysates of different CS for analysis. The 

fermentable sugars and inhibitors to be analyzed were pre-selected based on expert 

knowledge, which in turn determined the analytical methods. As the inhibitors selected in 

these studies were small carboxylic acids, furfural and HMF, HPLC and CE were used to 

quantify these compounds in the hydrolysate samples (Table 1). Based on the analysis 

results, the authors evaluated the influence of CS on the formation of fermentable sugars, as 

well as on the release of the selected inhibitors, which provided criteria for choosing the 

optimal pretreatment conditions. 
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A similar approach has been applied by Klinke et al. to not only determine the optimal 

pretreatment conditions, but also study the correlation between pretreatment conditions and 

the degradation products [61]. In such a study, a much larger range of potential inhibitory 

compounds were selected, which included not only carboxylic acids and furans, but also 

phenolic compounds. Hydrolysates, prepared at different pretreatment conditions, were 

analyzed with GC-MS for their phenolic contents. The identification of the phenols was 

conducted by comparing their MS spectra with a mass spectral library, and standards were 

used to verify the identity and quantify these compounds in hydrolysates. The correlation 

between pretreatment conditions and the detected degradation products was studied 

statistically, using principal component analysis (PCA), revealing the influence of each single 

pretreatment condition on the formation of degradation products. 

 

Monitoring compound dynamics during detoxification and fermentation 
To reduce the toxicity of biomass hydrolysates as fermentation media, detoxification 

methods have been developed to remove inhibitors in hydrolysates [44,70]. The effects of 

detoxification were improved fermentability and increased product yield [71–73]. To study 

beyond the effect of hydrolysate detoxification, the composition change in terms of (potential) 

inhibitory compounds in hydrolysates needs to be monitored during the detoxification. Such 

studies were conducted using targeted metabolomics approaches. The most straightforward 

way of studying a detoxification process was by using the already identified inhibitors as 

monitoring targets. These inhibitors mainly include small carboxylic acids, furfural and HMF. 

Typically, the concentration of these compounds was determined before and after the 

detoxification process, using HPLC [72,74,75]. The targets of each detoxification method can 

be different, as far as monitored compounds were considered. For instance, it was 

discovered that the chemical detoxification by overliming was specifically effective to furans 

[74,76]. In the study of Martinez et al. [76], besides the selected inhibitors, the authors also 

looked at the unknown peaks in the HPLC chromatogram. Among those unknown peaks, 

three decreased after overliming, indicating that more compounds could be involved in 

resulting the detoxification effect of this specific method. 

 

When the detoxification targets are neither small carboxylic acids nor furans, a different 

targeted metabolomics approach than the one discussed above should be applied. In the 

case of enzymatic detoxification using laccase, phenols were assumed to be the 

detoxification targets, as laccase is a phenol oxidase. This assumption was verified by 

Larsson et al. [60] through quantifying small carboxylic acids, furans and total phenols in 

spruce hydrolysate. To study the detoxification effect of laccase on individual phenolic 

compounds, both HPLC and GC-MS were adopted [56,57,77]. When HPLC was used, a pre-
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selection of phenolic compounds was made based on the reported toxicity of these 

compounds, and their detectability by HPLC [77]. When hydrolysates were analyzed with 

GC-MS, the compound pre-selection was not done. The phenols detected by GC-MS were 

characterized either by comparing to a mass spectral library [56] or using reference 

compounds [57]. The advantage of using GC-MS is that the relative quantity of some 

unidentified compounds can also be determined to check if they were (partially) removed 

from the hydrolysate after detoxification. 

 

Similar to detoxification, it was observed that during a fermentation process, the hydrolysate 

toxicity reduces. This is because the fermenting microbe can transform inhibitors to their less 

toxic form [45,78]. Targeted metabolomics approach also contributed to study the chemical 

conversion of these compounds. In such studies, the identified inhibitors were taken out of 

the context of hydrolysates and added into synthetic medium for growth testing. The 

conversions of these compounds were predicted based on expert knowledge, and analytical 

methods were selected accordingly. The conversion of furfural and HMF were monitored by 

analyzing their alcohol forms during fermentation processes with HPLC [64,79,80]. In 

addition, the conversions of vanillin and coniferyl aldehyde were investigated with RP-HPLC 

and GC-MS [50]. To examine these conversions in hydrolysates, GC and GC-MS were used 

to monitor different forms of furan and phenolic compounds, namely aldehydes, alcohols, 

ketones, and acids [67,81]. Similar trends of conversion from aldehyde to alcohol and acid 

form were observed in hydrolysates, though their quantitative relationships were not as 

straightforward as those in synthetic medium. These results suggested that aldehydes are 

more likely to be the inhibitory forms of furans and phenols in biomass hydrolysates.  

 

By monitoring the dynamics of above mentioned compounds during detoxification and the 

fermentation process, it was shown that all three groups of proposed inhibitors could 

negatively influence hydrolysate fermentability. Especially for phenolic compounds, their 

toxicity was confirmed both in the laccase study and by their conversions during 

fermentation processes. Phenolic compounds have much greater diversity in hydrolysates 

compared to small carboxylic acids and furans. The overall composition of phenolic 

compounds was hardly studied in relation to their toxicity in biomass hydrolysates. It seems 

that besides the identified phenols, more of this kind of compounds are present in 

hydrolysates exhibiting inhibitory effects [57,59,63]. To investigate these unknown inhibitors, 

a non-targeted metabolomics approach needs to be carried out. 
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Non-targeted approach  
Research case: applying metabolomics approach to study inhibitors and their 
dynamics in lignocellulosic biomass hydrolysates as fermentation media 
 

As discussed in the previous section, when used as fermentation media, hydrolysates show 

toxicity towards fermenting microbes, due to the degradation products of (hemi-) cellulose 

and lignin. The toxicity varies with different types of hydrolysates, and is mainly determined 

by the pretreatmenthydrolysis method used, but is also influenced by the biomass type 

[11,78]. 

 

Targeted metabolomics has been used to study the toxicity of biomass hydrolysates in 

fermentation processes by analyzing the composition of (hemi-) cellulose and lignin 

degradation products. However, it is believed that besides the identified inhibitors, there are 

still other non-sugar compounds and their derivatives present in biomass hydrolysates that 

may show toxicity or influence the toxicity of other compounds by synergistic or antagonistic 

effects. This is because the identified inhibitors alone do not fully explain the toxicity of 

biomass hydrolysates [57,59,63]. To explore the identity of these unknown compounds, the 

composition of biomass hydrolysates needs to be studied in a non-targeted manner, 

alongside the dynamics of these compounds and their effects during fermentation processes. 

The metabolomics approach introduced in section 2 is adopted to carry out such a study 

(Figure 2B). In the following sections, the steps of this study are described in more detail. 
 

Define research question 
 

The aim of the study was to identify compounds that (negatively) influence the hydrolysate 

fermentability through analyzing the composition of different hydrolysates. The 

corresponding research question was to identify inhibitors in biomass hydrolysates relevant 

for ethanolic fermentation of S. cerevisiae. This question can be differentiated into an 

experimental and a statistical research question. The experimental question was to 

determine which non-sugar compounds in hydrolysates are responsible for the hydrolysate 

toxicity towards microbes in a fermentation process. The statistical question was to 

determine which of the variables contribute the most to the fermentation performance 

phenotype(s) (Figure 2B). The variables are the detectable non-sugar compounds in 

hydrolysates, while the phenotypes were defined to quantitatively describe the fermentation 

processes. 
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Experimental design 
 

In the next step, experiments were designed to answer the research question. The statistical 

question was first considered before any wet-lab experiments were designed. The three 

aspects of the statistical question were (1) selecting statistical model(s), (2) estimating the 

number of detectable metabolites, and (3) determining how many experiments to be carried 

out. In our particular case, partial least square (PLS) model was selected, as it provides, as 

described in section 2, those variables that most closely relate to the phenotypes. To 

estimate the number of detectable non-sugar compounds present in hydrolysates, the 

results of previous hydrolysate composition studies were used. As summarized in Tables 1 

and 2, there were in total about 10 small carboxylic acids, 5 furans and 60 phenolic 

compounds identified. We assumed that a similar number of inhibitory compounds in 

hydrolysates were not yet detected, giving 150 compounds in total. This number was used to 

determine the number of experiments to be carried out in the experimental design. The non-

sugar compounds in biomass hydrolysates are mainly (hemi-) cellulose and lignin 

degradation products. The formation of these compounds are interrelated, for instance, 

formic acid is partially formed from HMF, and furfuryl alcohol is the conversion product of 

furfural [45,79]. As lignocellulosic biomass is consisted of a relatively small number of 

building-blocks (Figure 1), it was assumed that the above-mentioned 150 detectable 

compounds present in hydrolysates, represent only 15–20 groups of compounds formed 

completely independently. For regression models like PLS, the number of experiments is 

preferred to be larger than the independent variables in the system. Therefore, 

approximately 20 experiments were to be carried out. 

 

Knowing that about 20 different experiments were to be conducted, the wet-lab experiments 

were designed by resolving the following four aspects: (1) generating different experiments, 

(2) checking the diversity and reproducibility of these experiments, (3) setting up 

experimental and sampling procedures, and (4) defining phenotypes.  

 

Different experiments were acquired by conducting batch fermentation with different biomass 

hydrolysates. These hydrolysates were prepared with various biomass types and different 

pretreatment-hydrolysis methods [82–84]. To obtain about 20 experiments, six biomass 

types and four pretreatment-hydrolysis methods were selected. The six biomass types were 

wheat straw, barley straw, corn stover, bagasse, willow wood and oak wood. They 

represented the most widely used biomass in the category of agriculture residue, sugar 

industry by-product, and wood [51,62,82,85–87]. Straw is the main agriculture residue in 

Europe, while corn stover is mostly produced in North and South America. Of the four 
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pretreatment-hydrolysis methods, three used enzymatic hydrolysis, and their pretreatment 

methods included acid, alkali and oxidative treatment. The fourth method used high 

concentration of sulfuric acid for both pretreatment and hydrolysis [11]. 

 

The hydrolysates were first prepared in small volume, i.e., 50 ml, to check their diversity in 

fermentability by conducting a screen experiment on microtiter plates. This screen 

experiment confirmed that, as far as growth rate was considered, there was significant 

diversity among these hydrolysates [11]. Moreover, two hydrolysates were used to examine 

the reproducibility of batch fermentation. As shown in Figure 3, of both hydrolysates, the 

fermentation process was clearly presented by both duplicates. Through these pre-

experiments, a good basis was formed for the full-scale experiment.  

 

The full-scale experiment was carried out by fermenting all these hydrolysates individually. 

These fermentations had a fixed set-up and the same inoculum, so that the difference in 

fermentation performance was only caused by different hydrolysates [67]. For each 

fermentation, samples were taken during the whole fermentation process. With these 

samples biomass formation, glucose and ethanol concentration were measured. These 

measurements were used to visualize the fermentation process and calculate phenotypes. 

 

Phenotypes are the quantitative description of a fermentation process. In this study, four 

phenotypes were defined, which were lag-phase, glucose consumption rate, ethanol 

production rate and ethanol yield (Figure 2B). Lag-phase was a phenotype expressed in 

hours, which was used to describe the time window before growth starts. Glucose 

consumption rate and ethanol production rate expressed how quick the microbe grows and 

how fast the product is produced. Ethanol yield indicated the production efficiency. Each of 

these phenotypes tackled a different aspect of the fermentation, and together described the 

whole fermentation process. It should be noted that more phenotypes could be defined, such 

as growth rate and productivity. However, since the fermentation aspects these phenotypes 

describe directly relate to one of the four phenotypes defined above, there was little value to 

include them. 
 

Sample selection and analysis 
 

To analyze the hydrolysate composition during a fermentation process, samples 

representing the fermentation process were selected. The fermentation process was divided 

into three different phases based on the phenotypes, namely lag phase, growth phase and 

stationary phase, see Figure 3. Based on these phases, samples were selected for analysis: 
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three at the beginning of each phase, one at the mid-point of growth phase, and one at the 

end of stationary phase (Figure 3). In our particular case, these five samples represented the 

whole fermentation process. 

 

 
Figure 3 Duplicate fermentation results of the following two hydrolysates: wheat straw-mild alkaline 
(triangle) and wheat straw-dilute acid (star). Blue: OD, red: glucose percentage, green: ethanol 
percentage. The three fermentation phases and the five selected sample points are illustrated with 
wheat straw-mild alkaline fermentation (triangle).  
 

 

It was decided to analyze the selected samples with two GC-MS methods for their non-sugar 

composition, as GC-MS is capable of detecting a broad range of compounds, including both 

knowns and unknowns. As the compounds of interest in this study are potential inhibitors in 

biomass hydrolysates, it is important to remove sugars from the fermentation samples. This 

is mainly because sugars were present in large quantity in those samples, which severely 

interferes with the detection of non-sugar compounds [49,59]. For this purpose, two sample 

work-up methods were used, namely, ethyl acetate extraction and ethylchloroformate 

derivatization.  

 

Ethyl acetate extraction GC-MS (EA-GC-MS) was adopted from the method described by 

Heer et al. [55]. In this method, the hydrolysate samples were extracted with ethyl acetate 

(EA), compounds that are apolar, e.g. with aromatic rings, dissolved in EA, while polar 

compounds, like sugars, remained in the water phase. In this way, sugars were removed 

from the hydrolysate samples, and the extracted compounds were concentrated. As the 
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solubility of different compounds varies in EA, recovery was a main issue in EA-GC-MS 

method. Therefore, before analyzing hydrolysates, the recovery of EA method was assessed 

with several reference compounds. This allowed the estimation of compound recovery in 

fermentation samples.  

 

Ethylchloroformate derivatization GC-MS (EC-GC-MS) was adapted to the use for the 

analysis of biomass hydrolysate samples [67]. The method converts acids to their ethyl ester 

form through derivatization with ethylchloroformate and extracts the derivatized sample with 

dichloromethane (DCM). This allowed the detection of carboxylic acids, amino acids, 

aromatic compounds and furans. The main issue of EC-GC-MS method was the diverse 

reactivity of different compounds with ethylchloroformate. This may result in detecting 

compounds present at high concentration with low recovery. The compounds detected by 

EC-GC-MS partly overlapped but also complemented the ones measured with EA-GC-MS.  

 

From these analyses, ‘compound lists’ will be generated for each method. The initial peak 

characterization will be done by comparing the mass spectra of these peaks with the mass 

spectral reference libraries available in our lab. 

 

Data analysis and interpretation  
 

The statistical question of our study is, to determine which variables contribute the most to 

the selected phenotypes. To answer this question, the two data-sets generated in the 

previous step will be analyzed by building statistical models. The model to be used is partial 

least square (PLS), which provides compounds that most closely relate to the four defined 

phenotypes. To conduct model building, the following aspects need to be carefully studied (1) 

data preprocessing, (2) model input, and (3) model validation method.  

 

Based on the property of the acquired data-sets, square-root transformation and autoscaling 

will be conducted to preprocess the data. These two methods are to reduce the 

heteroscedasticity and to amplify the variation in the data-sets, respectively [38]. 

 

To model lag-phase, a data-set containing the first two time-point samples (Figure 3) can be 

used as model input. This is because lag-phase ends at the second sampling point, and it is 

assumed that after growth starts, the hydrolysate composition has no influence on lag-phase 

anymore. To model the other three phenotypes, all five time-point samples are to be used, 

since the influence of any of the five sampling points on these phenotypes cannot be 

excluded. 



Chapter 1 
 

 27 

One way to validate the models is to check their ability of predicting the phenotypes of a new 

data-set. A so-called double cross validation method is preferred to validate the PLS models 

in this study, as it evaluates the model quality in a more strict manner [28,88]. The modeling 

results will provide, for each phenotype, a set of compounds that contribute the most to that 

specific phenotype. The next step will then be to evaluate if these compounds are actually 

inhibitory to the fermenting microbe. The experimental evaluation of the toxicity of known 

compounds can be relatively simple. However, to evaluate the toxicity of ‘unknown’ 

compounds, further compound identification is required. 
 

 

Conclusions 
 

This review illustrated the application of exometabolomics approaches, both targeted and 

non-targeted, in studying lignocellulosic biomass hydrolysates as fermentation media. 

Through analyzing the composition of hydrolysates, targeted exometabolomics has been 

applied to identify inhibitory compounds, improve hydrolysate preparation method, and 

monitor compound dynamics during detoxification and fermentation process. To further 

reveal the overall non-sugar composition of various hydrolysates and identify fermentation 

inhibitors in an unbiased manner, a non-targeted approach was introduced. Its application 

was demonstrated in our research to identify inhibitors in biomass hydrolysates relevant for 

ethanolic fermentation of S. cerevisiae, emphasizing the essential role of experimental 

design, phenotype definition, selection of both analytical methods and statistical models in 

the non-targeted metabolomics approach. 
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