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Abstract

Arginase1 (Arg1) is an enzyme that plays a role in several pathways important for 
the development of atherosclerosis. Arg1 uses the substrate L-arginine to create 
L-ornithine, a precursor molecule required for collagen formation and vascular 
smooth muscle cell differentiation. By reducing L-arginine availability, Arg1 limits 
the production of Nitric Oxide (NO), a strong anti-atherogenic factor in endothelial 
cells. In macrophages, however, NO is pro-atherogenic. Furthermore, Arginase 
1 is expressed by anti-inflammatory alternatively activated macrophages, and is 
required for cutaneous wound healing. 
In order to specifically investigate the effect of Arg1 deletion in macrophages 
on atherosclerosis susceptibility, LDL receptor knockout (LDLr KO) mice were 
transplanted with bone marrow (BM) from Arg1flox/flox Tie2-Cre (Arg1 KO) donors, 
lacking Arg1 function in bone marrow-derived cells, or BM from wildtype controls. 
Blood leukocyte counts were decreased by 25% (p<0.001), and spleen leukocytes 
were decreased by 35% (p<0.05) in the Arg1 KO BM recipients after 10 weeks 
Western-type diet feeding. However, peritoneal foam cells of the Arg1 KO recipients 
were increased 3-fold (p<0.001). No change in blood cholesterol was found. 
Despite changes in leukocyte counts and macrophage foam cell formation, we 
did not observe differences in atherosclerotic plaque size or plaque macrophage 
content in the tricuspid area of the heart. Surprisingly, there was also no difference 
in plaque collagen content, indicating that absence of macrophage Arg1 function 
does not reduce plaque stability. 
In conclusion, deletion of Arg1 in bone marrow-derived cells adversely affects 
blood leukocyte counts and increases foam cell formation. However, no effects 
on atherosclerosis development could be found, indicating that myeloid cell Arg1 
function is not a decisive factor in atherosclerotic plaque formation. 
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Introduction

Arginase 1 (Arg1) has been identified as an important enzyme in a number of 
processes implicated in the pathogenesis of atherosclerosis. Arg1 is a cytosolic 
metalloenzyme which is highly expressed in liver and kidney, where it plays an 
essential role in the last step of the urea cycle and the breakdown of nitrogen and 
ammonia to urea.1 However, Arg1 is also expressed in endothelial cells, vascular 
smooth muscle cells (VSMCs) and macrophages, which are important components 
of the atherosclerotic plaque.2

Arg1 uses L-arginine to produce urea and L-ornithine, which is further broken 
down to L-proline by the enzyme Ornithine AminoTransferase (OAT).3 L-arginine 
is also used as a substrate by the enzymes inducible- and endothelial Nitric Oxide 
Synthase (iNOS and eNOS) for the production of the atheroprotective signalling 
molecule nitric oxide (NO).4, 5 By competition for the common substrate L-arginine, 
Arg1 can thus indirectly regulate the synthesis of NO. Since arginase activity is 
increased in animal models of atherosclerosis and augmented activity is expected 
to lead to NO depletion, inhibition of arginase activity is considered a promising 
novel therapeutic strategy for the treatment of cardiovascular disease.2 
Depending on the cell type it is expressed in, Arg1 function is expected to exert 
different effects on atherosclerotic plaque formation. Endothelial Arg1 contributes 
to endothelial activation and vascular stiffness by reducing the L-arginine pool, 
leading to eNOS uncoupling and reduced NO production.4-6 This results in 
endothelial activation and increased recruitment of immune cells to the plaque.4, 

6 However, Arg1 expression in macrophages and VSMCs has an anti-inflammatory 
effect. By producing L-ornithine Arg1 contributes to the synthesis of L-proline, 
which is a precursor for collagen biosynthesis. Ornithine can also be metabolised 
to polyamines, which leads to increased smooth muscle cell differentiation and 
decreased inflammation.7-9 In line, lentiviral-mediated upregulation of Arg1 in a 
balloon-injury rabbit model inhibited plaque inflammation and augmented VSMC 
proliferation.10 Plaque size was, however, not affected.10 
Alternatively activated M2 macrophages express Arg1, suggesting an anti-
inflammatory and wound healing role for macrophage Arg1.11 In line, 
downregulation of Arg1 expression and inhibition of Arg1 activity in Raw264.7 
macrophages augmented LPS-induced TNFalpha and IL-6 secretion.10 On the 
other hand, Arg1 deficiency in macrophages increased the production of anti-
inflammatory cytokines by CD4+ T cells and led to a reduced suppression of 
T-cell proliferation.12 Differential gene expression analysis in macrophages of 
atherosclerosis-susceptible and -resistant rabbits suggested that high macrophage 
Arg1 expression was associated with low atherosclerosis susceptibility.13 However, 
the functional role of Arg1 in atherosclerotic plaque development is unknown. 
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The current study specifically assessed the contribution of leukocyte Arg1 to the 
development of atherosclerosis by transplanting Arg1flox/flox;Tie2Cre bone marrow 
into atherosclerosis-susceptible LDL receptor knockout  (LDLr KO) mice. We 
hypothesize that deficiency of leukocyte Arg1 results in decreased plaque stability, 
as well as increased inflammation and T-cell responses. 

Material and Methods

Animals
LDL receptor knockout (LDLr KO) mice were obtained from the Jackson Laboratory and 
bred at the Gorlaeus Laboratories in Leiden, the Netherlands. Arg1flox/flox;Tie2Cre mice14 were 
bred at the Faculty of Life Sciences, University of Manchester. All animal studies in the 
Netherlands were approved by the regulatory authority of Leiden University and carried out 
in compliance with the Dutch government guidelines. All animal work in the United Kingdom 
was performed in accordance with Home Office regulations.

Bone Marrow-Derived Macrophages
Bone marrow from 12 week old male Arg1flox/flox;Tie2Cre mice and wildtype C57Bl/6 controls 
was isolated. Arg1flox/flox;Tie2Cre (Arg1 KO) mice do not express Arg1 in the hematopoietic 
lineage.14 Therefore, all bone marrow-derived cells from these animals lack Arg1 function. 
Arg1 KO bone marrow cells and wild type (WT) bone marrow cells were plated in DMEM/20% 
FCS/1% penicillin/1% streptomycin and differentiated into macrophages by addition of 30% 
L929 cell-conditioned media (as a source of M-CSF) for 7 days, as described previously.15 
Macrophages were incubated for 24h in the absence or presence of 100 ng/mL acetylated LDL 
(acLDL, prepared as described previously16) and subsequently lysed for mRNA extraction.

mRNA Expression Analysis by Real Time PCR
Total RNA from indicated samples was isolated using the guanidinium thiocyanate (GTC) 
method17 and reverse transcribed using a RevertAid M-MuLV enzyme (Fermentas, Burlington, 
Canada). The mRNA expression levels were assessed by real time PCR (ABI PRISM 7500; 
Applied Biosystems, Foster City, CA) using SYBR Green technology (Applied Biosystems). 
The average of GAPDH and 36B4 expression was used as a housekeeping (HK) control.

Bone Marrow Transplantation
Bone marrow from male Arg1flox/flox;Tie2Cre (Arg1 KO) mice and wildtype C57Bl/6 controls 
(age 12 weeks) was prepared for bone marrow transplantation (BMT) to 12 weeks old 
female LDLr KO recipient mice. In short, 5x106 bone marrow cells were injected into the 
tail vein of lethally irradiated recipients.15 The mice were allowed a recovery period of 8 
weeks on chow diet (RM3; Special Diet Services), after which they were fed a high-fat, high-
cholesterol Western-Type Diet (WTD), containing 15% cacao butter and 0.25% cholesterol 
(WTD; Special Diet Services) for 10 weeks. At 18 weeks after transplantation, the mice were 
anaesthetized using a mix of rompun, ketamine and atropine at a lethal dose. Mice were 
then exsanguinated and perfused with PBS, after which organs were isolated. 
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Genotyping reaction
Bone marrow samples were taken from BMT recipients at 18 weeks after transplantation 
and used to isolate DNA. DNA samples were genotyped for the presence of Tie2 
Cre (CGCATAACCAGTGAAACAGCATTGC - CCCTGTGCTCAGACAGAAATGAGA) and the 
successful deletion of exons 7 and 8 of the Arg1 gene (CCCCCAAAGGAAATGTAAGAA - 
CACTGTCTAAGCCCGAGAGTA) as published previously.14

Flow Cytometry Analysis and Sysmex
Blood samples, anti-coagulated with EDTA, as well as single cell suspensions of spleen, 
obtained using a 70µm cell strainer (734-0003, VWR), were used for FACS analysis. 
Erythrocyte lysis buffer (0.15 M NH4Cl, 10 mM NaHCO3, 0.1 mM EDTA, pH=7.3) was used 
to lyse red blood cells in the blood samples and splenocyte preparations. Consecutively, 
the cells were analyzed on a FACS Canto II (BD Biosciences, Mountain View, CA) using the 
relevant FACS antibodies (all obtained from eBioscience). 
An automated Sysmex XT-2000iV Veterinary Haematology analyzer (Sysmex Corporation) 
was used to analyse leukocyte counts in spleen and blood samples and peritoneal leukocyte 
suspensions.

Serum cholesterol
Serum concentrations of free cholesterol were determined by enzymatic colorimetric assays 
with 0.048 U/mL cholesterol oxidase (228250, Calbiochem) and 0.065 U/mL peroxidase 
(P8375, Sigma) in reaction buffer (1.0 KPi buffer, pH=7.7 containing 0.01 M phenol, 1 
mM 4-amino-antipyrine, 1% polyoxyethylene-9-laurylether, and 7.5% methanol). For the 
determination of total cholesterol, 0.03 U/mL cholesteryl esterase (228180, Calbiochem) 
was added to the reaction solution. Absorbance was read at 490 nm. 

Histological Analysis of the Aortic Root
Serial sections (7 μm) of the aortic root were cut using a Leica CM3050S cryostat. The 
atherosclerotic plaque areas in oil red-O stained cryostat sections of the aortic root were 
quantified using the Leica image analysis system, consisting of a Leica DMRE microscope 
coupled to a video camera and Leica Qwin Imaging software (Leica Ltd, Cambridge, UK). 
Mean plaque area (in μm2) was calculated from 10 consecutive oil red-O stained sections, 
starting at the appearance of the tricuspid valves. For the assessment of macrophage content 
sections were immunolabeled with MOMA-2 (Research Diagnostics Inc; dilution 1:50). The 
MOMA-2-positive plaque area was subsequently quantified using the Leica image analysis 
system and expressed as a fraction of total plaque area.
To visualize plaque collagen content a Masson Trichrome kit was used (HT15-1,4, Sigma 
Aldrich) consisting of Biebrich Scarlet Acid Fuchsin, Phosphotungstic Acid, Phosphomolybdic 
Acid and Aniline Blue. The tissue was stained according to manufacturer’s instructions 
(Procedure HT15). As a secondary method to visualise plaque collagen, sections were stained 
with Picrosirius red (Direct Red 80, Sigma Aldrich), according to manufacturer’s instructions. 

Quantification of oxidative stress in the spleen
To quantify the presence of peroxidised lipids, a sign of oxidative stress, an MDA analysis 
was performed as described previously.18 Briefly, liver and spleen samples of approximately 
100mg each were homogenised and suspended in 0.2ml 1.1% phosphoric acid. Then 
0.2ml of 1% thiobarbituric acid (TBA, T5500, Sigma-Aldrich) solution with 1mM butylated 
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hydroxytoluene (B1378, Sigma-Aldrich) was added and the solution was incubated at 100°C 
for 1 hour, after which butanol was added. The samples were spun down and the supernatant 
was measured on a plate reader at 530nm and 590nm. The 590nm readout was subtracted 
from the 530nm readout and the result was normalised to nmol/gram of organ weight.

Statistical Analysis
Statistically significant differences among the means of the different populations were tested 
using the unpaired Student’s T-test (Graphpad Prism software). A Welch correction was 
applied to the T-test in the case of unequal variances in the dataset. The probability level 
(alpha) for statistical significance was set at 0.05. Results are expressed as an average ± 
SEM.

 

Results

Lipid laden Arg1 KO BMDMs have altered expression of differentiation 
markers, ApoE and SREBP-1 and are more likely to differentiate to foam 
cells 
Gene expression in Arg1 KO and WT BMDMs was analysed before and after acLDL-
induced lipid loading. Lipid loading led to a modest (0.85-fold, p<0.05) decrease 
in the expression of the M1 macrophage marker iNOS in WT BMDM, while the 
expression of the M2 marker FIZZ1 was not affected. Interestingly, a much 
stronger 3-fold (p<0.01, figure 1-A) decrease in iNOS expression was found upon 
incubation of BMDMs lacking Arg1 with acLDL, whereas there was a strong, 20-
fold upregulation of the M2 marker FIZZ1 (P<0.01 figure 1-B). ABCA1 expression 
was increased 6-fold after lipid loading, but no effects of Arg1 deletion were 
observed (P<0.05, figure 1-C). ApoE was upregulated 1.5-fold in Arg1 KO BMDMs 
both before and after lipid loading (P<0.05, figure 1-D). Additionally, expression 
of SREBP-1 in WT BMDMs was decreased 2.5-fold after lipid loading, but remained 
unchanged in Arg1 KO BMDMs (P<0.05, figure 1-E). However, expression of SR-BI 
and LDL receptor remained unchanged (figure 1-F,G). 
AcLDL-induced lipid loading resulted in increased foam cell formation in both WT 
BMDMs and Arg1 KO BMDMs. Interestingly, both before and after lipid loading 
Arg1 KO BMDMs displayed a 50% increase in foam cell differentiation compared 
to WT BMDMs (P<0.05, figure 1-H).

Generation of an atherosclerosis-prone mouse model lacking Arg1 in 
leukocytes
In Arg1flox/flox;Tie2Cre mice Arg1 has been deleted in cells of the hematopoietic 
lineages and in endothelial cells.  To generate a mouse model that specifically lacks 
Arg1 in bone marrow-derived cells, bone marrow (BM) from Arg1flox/flox;Tie2Cre 
(Arg1 KO) mice and WT controls was transplanted into LDLr KO recipients. In 
cells of hematopoietic origin, Arg1 is expressed primarily in alternatively activated 
macrophages, however it can also be detected in neutrophils and innate lymphoid 
cells II.14, 19-21 At 18 weeks after transplantation and after 10 weeks of WTD feeding 
the recipient animals were sacrificed for analysis. 
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Genomic DNA was isolated from the bone marrow of the recipients and subjected 
to PCR analysis, which confirmed the presence of the Tie2-Cre transgene in the 
bone marrow of mice transplanted with Arg1 KO BM (figure 2-A). The presence 
of the Arg1Δ construct, i.e. the successful Cre-mediated excision of exons 7 and 
8 from the Arg1 gene, was also detected, indicating the successful disruption of 
Arg1 functionality in the bone marrow of the recipient mice (figure 2-B). A faint 
band indicating the presence of WT DNA can still be seen, this is in accordance with 
previous studies where a transplantation efficiency of 95% was demonstrated.15 

Transplantation of Arg1 KO bone marrow into LDLr KO recipients results 
in reduced splenocyte and blood leukocyte counts
Flow cytometry was used to assess whether loss of macrophage Arg1 functionality 
in the transplanted LDLr KO mice resulted in altered leukocyte numbers in the 
circulation or the spleen. On chow diet, no difference in total blood leukocyte 
numbers was detected (data not shown). 
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Figure 1 Effect of Arg1 
deletion in bone marrow-
derived macrophages 
(BMDMs) on gene expression 
and macrophage foam cell 
formation. A) Expression 
of M1 marker iNOS relative 
to housekeeping (HK) is 
decreased in Arg1 KO BMDMs 
(black bars) compared to WT 
BMDMs (white bars) after 
lipid loading with 100ng/ml 
acLDL (N=5; * P<0.05, ** 
P<0.01). B) Expression of M2 
marker FIZZ-1 is increased in 
Arg1 KO  BMDMS after lipid 
loading. (N=5; ** P<0.01, 
*** P<0.001). C) Expression 
of ABCA1 is increased in both 
groups after lipid loading. 
(N=5; * P<0.05) D) ApoE 
is upregulated in Arg1 KO  
BMDMs irrespective of lipid 
loading. (N=5; ** P<0.01) 
E) SREBP-1 expression is 
decreased in WT BMDMs 
but not in Arg1 KO  BMDMs 
after lipid loading (N=5; 
P<0.05). F) No difference in 
expression of SR-BI could be 
found between Arg1 KO and 
WT BMDMs. G) Similarly, no 
differences in expression of 
LDLr were found between 
Arg1 KO and WT BMDMs. 
H) In increased foam cell 
formation in Arg1 KO BMDMs 
(N=8; * P<0.05). Results 
are expressed as mean 
±SEM, significance was 
assessed by two way ANOVA 
with Bonferroni post-tests.
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However, a reduction was found in total leukocyte counts in the blood from 15672 
±689 cells/µl in WT BM recipients to 11573 ±491 cells/µl in Arg1 KO BM recipients 
after 10 weeks of WTD feeding (P<0.001, figure 3-A). The amount of CD11b+/
Ly6Chi inflammatory monocytes was quantified by flow cytometric analysis, as 
well as the amount of CD4+ T helper cells, CD25+/CD4+ activated T helper cells 
and CD8+ cytotoxic T-cells. However, no difference in absolute amounts of these 
cell types in circulation was found (figure 3-B,C,D). Unexpectedly, the decrease 
in total blood leukocytes appeared to be driven by a 2-fold decrease in circulating 
CD19+ B cells (** P<0.01, figure 3-E).
At the time of sacrifice spleens were taken and weighed. Organ weight was 
normalized for total body weight. A small, but significant 10% decrease in spleen 
weight was found (P<0.05, figure 4-A), while there were no differences in total 
body weight (data not shown). Correspondingly, spleens from the Arg1 KO BM 
recipients were found to contain 35% less splenocytes (P=0.052, figure 4-B). 
Next, splenocyte composition was assessed by flow cytometry. The absolute 
numbers of CD11b+/Ly6Chi, CD4+, CD8+ and CD19+ splenocytes showed a trend 
towards a decrease, suggesting that the decrease in splenocyte number was not 
attributable to one specific cell type. Fractional analysis also showed no difference 
in the fraction of CD11b+/Ly6Chi cells, in CD8+ T cells and interestingly, CD19+ B 
cell numbers was found (figure 4-C-E). However, a small 23% increase in CD4+ 
and CD25+/CD4+ T cells was detected (* P<0.05; $ P<0.05, respectively. Figure 
4-F). 
Deficiency in macrophage Arg1 can result in increased production of NO, which 
in high levels can interact with reactive oxygen species (ROS) to cause oxidative 
stress.22 Therefore, a TBARS assay was performed to quantify oxidative stress in 
the spleen, a macrophage-rich organ, by quantifying malondialdehyde (MDA), a 
by-product of oxidative stress. However, no difference in MDA concentration was 
found between the groups (figure 4-G).
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Figure 2 Bone 
Marrow (BM) isolated 
from the bone 
marrow recipients 
was genotyped for 
expression of Tie2 
cre and the correct 
excision of exons 7 
and 8 from the Arg1 
gene. A) Genotyping 
by PCR shows 
presence of Tie2 Cre 
in representative mice 
having received the  
Arg1flox/flox;Tie2Cre BM. 
(N=3) B) Genotyping 
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bands for the Arg1Δ 
product in Arg1flox/flox 
Tie2 Cre transplanted 
mice, indicating 
successful deletion of 
exons 7 and 8. (N=3)
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No differences in serum total cholesterol levels, but increased foam cell 
accumulation in the peritoneum. 
A cholesterol essay was performed on serum from bone marrow recipients 
after 10 weeks of WTD feeding. No difference in serum free cholesterol (data 
not shown) or total cholesterol was found (figure 5-A). However, analysis of 
peritoneal leukocytes revealed a three-fold increase in the fraction foam cells 
in the peritoneum (*** P<0.001, figure 5-B). This increase did not coincide 
with augmented total peritoneal leukocytes (data not shown) or macrophages 
(figure 5-C), indicating that an increased fraction of peritoneal macrophages had 
differentiated into foam cells. 

Macrophage Arg1 deficiency affects neither atherosclerotic plaque size 
nor plaque composition.
At 10 weeks of WTD feeding and 18 weeks after transplantation, the tricuspid area 
of the aortic root was sectioned and stained with oil red-O to analyze atherosclerotic 
lesion development. No difference in plaque size was found between the two 
experimental groups (647437 ±28984 µm2 for wildtype BM recipients vs. 633683 
±26487 µm2 for Arg1 KO BM recipients, figure 6-A). Plaque macrophages were 
visualized by MoMa2 staining, and the MoMa2 positive area was corrected for 
total plaque size. No difference in plaque macrophage content as a fraction of 
total plaque size was observed (0.171 ±0.011 wildtype BM vs. 0.169 ±0.016 Arg1 
KO BM, figure 6-B). Subsequently, plaque collagen was stained using a Masson 
Trichrome method and Picosirius Red staining, and corrected for total plaque size. 
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Figure 3 Increased 
leukocytes and lymphocytes 
in the blood of LDLr KO mice 
transplanted with Arg1 KO 
BM. Blood was isolated at 
10 weeks feeding a high-fat, 
high-cholesterol Western-
type diet and 18 weeks after 
transplantation. A) When 
analysed by haematology 
analyzer, Arg1 KO BM 
recipients had markedly 
decreased amounts of 
leukocytes in their circulation 
(*** P<0.001, N=15). B-D) 
Circulating leukocytes were 
analysed by flow cytometry 
for expression of several 
immune cell markers. No 
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±SEM, significance was 
assessed by student T-test.
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A trend towards reduced plaque collagen as a fraction of total plaque size in the 
Arg1 KO BM recipients was found in Masson Trichrome-stained sections (0.102 
±0.009 wildtype BM vs. 0.084 ±0.004 Arg1 KO BM, P=0.06, figure 6-C). However, 
analysis of Picosirius Red staining did not indicate any difference between the 
groups (0.124 ±0.013 wildtype BM vs. 0.105 ±0.012 Arg1 KO BM, figure 6-D).

CD11b+/Ly6Chi

WT BM Arg1 KO BM
0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
pl

en
oc

yt
es

Spleen Weight

WT BM Arg1 KO BM
0.0

0.1

0.2

0.3

0.4

0.5 *
%

 o
f b

od
y 

w
ei

gh
t

CD4+

WT BM ARG1 KO BM
0

5

10

15

20

25 *$

CD4+

CD4+/CD25+

%
 o

f s
pl

en
oc

yt
es

CD8+

WT BM Arg1 KO BM
0

1

2

3

4

5

%
 o

f s
pl

en
oc

yt
es

CD19+

WT BM Arg1 KO BM
0

10

20

30

40

50

%
 o

f s
pl

en
oc

yt
es

Splenocytes

WT BM Arg1 KO BM
0.0

2.0×1008

4.0×1008

6.0×1008

P=0.0502

# 
To

ta
l S

pl
en

oc
yt

es

MDA in spleen

WT BM ARG1 KO BM
0

250

500

750

1000

1250

1500

(c
on

ce
nt

ra
tio

n
M

D
A

 n
m

ol
/g

)
A B

C D

E F

G

Figure 4 Decreased spleen 
weight in LDLr KO mice 
transplanted with Arg1 
KO BM. Spleens were 
isolated at 18 weeks 
after transplantation and 
8 weeks after feeding a 
high-fat, high-cholesterol 
Western-type diet. A) A 
reduction in relative spleen 
weight was measured in 
the Arg1 KO BM recipients. 
The readout was corrected 
for total body weight of the 
mice. (* P<0.05, N=12) 
B) This was accompanied 
by a reduction in total 
amount of splenocytes in 
these mice (* P<0.05). 
C) As determined by flow 
cytometry, the fraction of 
CD11b+/Ly6Chi cells in the 
spleen was not different 
between the groups. D-E) 
No difference was found 
in the relative amount 
of CD8+ and CD19+ 
splenocytes. F) However, 
the fraction of CD4+ and 
CD4+CD25+ cells in the 
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(respectively, *P<0.05; 
$P<0.05) G) An MDA assay 
revealed no difference 
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spleen (N=11). Results are 
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significance was assessed 
by student T-test.
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Discussion

In the current study for the first time the effects of Arg1 deletion in macrophages 
on macrophage function and atherosclerosis susceptibility was determined. Arg1 
is highly expressed in anti-inflammatory alternatively activated macrophages. 
Furthermore, by depleting L-arginine, Arg1 facilitates a reduction in NO production 
and T-cell activation as those processes are L-arginine dependent.12, 23 Although 
these processes have been described in detail, not much is known about the 
effect of Arg1 on other macrophage processes, such as cholesterol metabolism 
and foam cell formation. Bone marrow from Arg1flox/flox;Tie2Cre (Arg1 KO) mice 
was used to generate Arg1 deficient BMDMs, which were subsequently loaded 
with acLDL. Interestingly, Arg1 KO BMDMs showed increased foam cell formation 
both under control conditions and after acLDL-induced lipid-loading compared to 
the WT BMDMs. Expression of SR-BI was investigated, as SR-BI is a receptor for 
modified LDL particles and might mediate uptake of acLDL in our model.24 However, 
there were no differences in SR-BI expression between Arg1 KO BMDMs and WT 
BMDMs. Similarly, no differences were observed in LDLr expression between the 2 
genotypes. Foam cell formation is determined by the balance between cholesterol 
uptake and synthesis on the one hand and cholesterol efflux on the other hand. 
Although the expression of ABCA1, the primary cholesterol efflux transporter, was 
increased in the BMDMs loaded with acLDL, no difference in ABCA1 expression 
between the Arg1 KO and the WT BMDMs could be found. Notably, in response to 
acLDL loading Arg1 deficient macrophages did not down regulate expression of 
SREBP-1 like WT macrophages. Although gene expression analysis did not indicate 
a reduction in cholesterol efflux or increased uptake, augmented expression of 
SREBP-1 could result in increased cellular production of cholesterol and free fatty 
acids.25 To this end, expression of HMG-CoA reductase, the rate limiting enzyme 
for cholesterol production, was measured.26 However, no differences in expression 
were found. 
ApoE was notably upregulated in Arg1 KO BMDMs both under control conditions 
and after lipid loading. Macrophage apoE contributes to only ±10% of circulating 
apoE levels, but local production of apoE by tissue macrophages plays an important 
role in atherosclerosis development.27-30 

Total Cholesterol

WT BM Arg1 KO BM
0

5

10

15

20

25

ug
/u

l
Ch

ol
es

te
ro

l

Foam Cells
in Peritoneum

WT BM Arg1 KO BM
0.0

0.5

1.0

1.5 ***

%
 o

f l
eu

ko
cy

te
s

Macrophages
in Peritoneum

WT BM Arg1 KO BM
0

10

20

30

40

50

%
 o

f l
eu

ko
cy

te
s

A B C

Figure 5 Increased peritoneal foam cell formation in LDLr KO mice transplanted with Arg1 KO BM in 
absence of effects on serum cholesterol. Blood and peritoneal leukocytes were collected at 18 weeks 
after BM transplantation and after 8 weeks of high-fat, high-cholesterol Western-type diet feeding. A) A 
cholesterol essay was performed on blood of BM recipients. No difference in total cholesterol content was 
observed between WT BM recipients and Arg1 KO BM recipients. (N=14) B) An increase in the amount of 
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in foam cells did not coincide with an increase in peritoneal macrophage content. (N=11) Results are 
expressed as mean ±SEM, significance was assessed by student T-test.
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Endogenous apoE production by macrophages stimulates cellular cholesterol 
efflux.31 In line, specific deletion of apoE production by bone marrow-derived cells 
leads to enhanced atherosclerosis susceptibility.29, 30 Conversely, increased apoE 
expression is linked to a decrease in macrophage foam cell formation, indicating 
that the changes in apoE expression do not account for the observed increase in 
foam cell formation.32 Enhanced apoE production in the arterial wall could however 
also affect other processes linked to atherosclerosis. Increased expression of apoE 
could result in increased smooth muscle cell proliferation, as well as decreased 
macrophage activation, including decreased production of NO and reduced 
expression of inflammatory factors.33, 34 
In response to acLDL stimulation, iNOS expression was downregulated in Arg1 
KO BMDMs. In addition to the observed reduction in iNOS expression, FIZZ was 
strongly upregulated, indicating a possible skewing towards M2 differentiation of 
the macrophages deficient in Arg1. M2 macrophages exhibit increased cholesterol 
loading by oxLDL compared to M1 macrophages, providing one possible mechanism 
for the increased foam cell formation in our model.35, 36 
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in bone marrow-derived 
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Additionally, increased NO production due to Arg1 deficiency could also lead to 
increased foam cell formation.37-39 In situations of low Arg1 expression, ample 
L-arginine substrate is available for iNOS-mediated NO production.23 The observed 
down regulation of iNOS in the Arg1 deficient macrophages could thus be due to 
negative feedback by NO.4, 23, 40-43  
In line with the observed increase in lipid accumulation in Arg1 KO macrophages in 
vitro, foam cell formation in the peritoneal cavity of LDLr KO mice transplanted with 
Arg1 KO bone marrow was increased. Foam cell formation in the peritoneal cavity 
is a marker for atherosclerotic plaque development.44, 45 However, no differences 
in plaque size or plaque macrophage content were detected between the LDLr KO 
mice transplanted with Arg1 KO or Wildtype bone marrow. In our model Arg1 was 
specifically deleted in bone marrow derived cells, including ILC2 cells, neutrophils 
and in macrophages. Neutrophils produce Arg1, potentially allowing them to 
modulate tissue regeneration or immune modulation.21, 46 Classically, neutrophils 
in atherosclerotic lesion are considered to aggravate atherosclerosis by promoting 
foam cell formation, producing reactive oxygen species and eroding the fibrous 
cap.47 Although the ability of neutrophils to release Arg1 into the environment 
indicates that they can also contribute to plaque stabilisation, the role of neutrophil 
Arg1 in atherosclerosis is unclear. Tie2-cre mediated Arg1 KO mice exhibit impaired 
cutaneous wound healing, amongst others due to impaired collagen deposition.48 
Reduced expression of Arg1 was associated with delayed wound healing, and Tie2-
cre Arg1 KO mice displayed increased expression of iNOS positive macrophages 
in the wound.48 The reduced collagen content in wounds of Tie2-cre Arg1 KO 
mice could be attributed to increased collagen degradation by neutrophils and 
macrophages.48 In the atherosclerotic lesion, M1 macrophages produce Matrix 
Metalloproteinases (MMPs) capable of degrading extracellular matrix and reducing 
lesion stability.49, 50 In contrast, Arg1 expressing M2 macrophages are associated 
with increased collagen production in the lesion.51  
Ultimately, loss of Arg1 functionality did not result in a significant change in 
collagen content. Wang et al recently showed that increased expression of Arg1 
results in increased plaque stability in balloon-injured rabbits as a consequence 
of augmented VSMC proliferation. In atherosclerotic plaques, VSMCs account for 
the majority of collagen production and Arg1 expression on VSMCs was unaffected 
in our model, thereby explaining the lack of effect on collagen content in the 
plaques.52

To investigate whether leukocyte Arg1 deficiency had any atheroprotective effects 
to counteract the observed increase in foam cell formation, the leukocytes in 
blood and spleen, the major hematopoietic organ and an important reservoir for 
monocytes were analysed in the BM transplanted mice. The CD11b+/Ly6Chi subset of 
monocytes is inflammatory and pro-atherogenic, giving rise to classically activated 
M1 macrophages in the atherosclerotic plaque.53, 54 However, no difference was 
found in the numbers of CD11b+/Ly6Chi monocytes, in blood, spleen or peritoneum 
was found, between the 2 groups of bone marrow recipients. Furthermore, no 
difference in the amount of neutrophils in the blood was found (data not shown).
As L-arginine is required for CD4+ T-cell function and maturation, Arg1-mediated 
depletion of L-arginine by leukocytes results in decreased T cell proliferation.12, 55 
T cell counts and activation status were therefore also investigated. 
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Although there was no difference in the amount of CD4+ cells and CD4+/CD25+ in 
blood, a modest increase in both subtypes was found in the spleen. The relatively 
modest increase in CD4+ splenocytes indicates that despite its potential to deplete 
L-arginine, leukocyte Arg1 is not a strong regulating factor of T-cell proliferation 
in the spleen. Notably, a striking reduction in the amount of CD19+ B cells in the 
circulation was found. It is not clear by what mechanism leukocyte Arg1 deficiency 
results in a reduction in circulating B cells, more so because the number of B 
cells in the spleen was unchanged. L-arginine is an essential amino acid for B cell 
maturation in the bone marrow and arginase-mediated L-arginine depletion leads 
to reduced B cell emigration from the bone marrow and reduced B cell numbers 
in the spleen and lymph nodes.56 If anything, leukocyte Arg1 deletion is thus 
anticipated to enhance B cell emigration from bone marrow, which clearly cannot 
explain the reduced B cell numbers in blood. Furthermore, ILC2 cells, which were 
recently shown to express Arg1, can affect B cell proliferation in the aortic wall.57, 

58 However, the effect of ILC2 cells on B cell proliferation was mediated by IL-5 
production, which is not affected by lack of Arg1 expression, making it unlikely 
that the strong reduction in circulating B cells is due to the lack of Arg1 on ILC2 
cells.20 Whatever the mechanism behind the reduction in B cells, it is tempting 
to speculate that the reduced B cell numbers in the circulation counteract the 
pro-atherogenic effects of enhanced foam cell formation in absence of Arg1. 
However, B cells can be both pathological and protective in atherosclerosis, as 
different methods of B cell depletion have had opposite effects on atherosclerosis 
development.59 
We conclude that despite leading to an increase in foam cell formation and a 
decrease in circulating B cells, deficiency in leukocyte Arg1 functionality does not 
significantly affect atherosclerotic plaque development.
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