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1. Osteoarthritis

1.1 Introduction and epidemiology
Osteoarthritis (OA) is a musculoskeletal disorder of the joint (1). OA of the hand, knee, 
and hip can be classified according to the clinical criteria developed by the American 
College of Rheumatology (ACR)(2;3). The incidence of OA increases with age and is more 
common in women than in men (4;5). OA affects mainly the knee, hand, and hip (knee is 
240/100 000, hand 100/100 000 and the hip 88/100 000 person-years (6)) and is usually 
progressive, although symptoms might remain stable for long periods of time (4;7).

1.2 Clinical features and risk factors
Disease onset of OA is multifactorial and risk factors for the occurrence of OA differ on 
the basis of the joints involved (Table 1). Clinically, OA presents with a heterogeneous 
phenotype, pain being the most predominant feature. It is mostly intermittent and 
increased during and after weight bearing activities (4;8). In addition, various other 
symptoms can be present as: joint stiffness, restriction of joint movement, sensation 
of instability or buckling of the joint. Crepitus, joint enlargement and deformities can 
be present by physical examination. All in all, these features can considerably affect the 
quality of life of patients (9).

Table 1. Risk factors for the occurrence and progression of osteoarthritis in knees and hands.

  Knee Hand

Occurrence Age, gender, physical activity, Body Mass Index, Age, grip strength,

intense sport activities, quadriceps strength, bone density activities, genetics

previous injury, vitamin D, smoking ( protective or deleterious), occupation,

hormone replacement therapy (protective), malalignment intense sport

(including varus and valgus), genetics

Progression Age, Body Mass Index, vitamin D, hormone replacement Unknown

therapy (protective), malalignment (including varus and valgus),

chronic joint effusion, synovitis, intense sport activities,

  subchondral bone edema on MRI, genetics BMLs, meniscal lesions  

(adopted from Bijlsma et al. the Lancet, 2011)

1.3 Pathophysiology
One of the main features of OA is hyaline articular cartilage loss. Articular cartilage 
is composed of a specialized matrix of collagens, proteoglycans, and non-collagen 
proteins, in which chondrocytes constitute the unique cellular component (10). Al-
though articular chondrocytes do not normally divide, they are assumed to maintain 
the extracellular matrix (ECM) by low-turnover replacement of certain matrix proteins 
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(10;11), which can be influenced by proteinases and ADAM-Ts (12). However, in OA this 
equilibrium appear disrupted and the rate of loss of collagens and proteoglycans from 
the matrix may exceed the rate of deposition of newly synthesized molecules, finally 
resulting in inappropriate articular cartilage and destruction of the joint (13).

As traditionally OA has been considered to be a non-inflammatory arthropathy, cartilage 
has long been the focus of attention in the pathophysiology of OA (5). However, carti-
lage is avascular and relies on adjacent tissues for nutrients and removal of products of 
chondrocytic metabolism. Furthermore, cartilage itself is aneural and longitudinal stud-
ies have suggested that cartilage loss and pain relief associate poorly, if at all (14;15). 
Although mechanopathology inevitably contributes to disease onset and progression, 
more recent evidence indicates additional roles for subchondral bone, ligaments, me-
nisci, peri-articular muscle, capsule and synovium, contributing to the concept that in 
OA the whole synovial joint is affected (16-19).

An important structure related to OA is the synovial membrane. Cellular elements of 
the synovial membrane are a major source of components of synovial fluid. To help 
maintain the integrity of articular cartilage surfaces in joints, synovial lining cells in ad-
dition to chondrocytes, produce lubricin and hyaluronic acid (20). In patients with OA, 
concentrations and composition of these factors in synovial fluid are altered, adversely 
affecting the integrity of the cartilage (21;22). In addition, the synovium in patients with 
OA is also a source of matrix degrading enzymes, such as collagenases and aggrecana-
ses, which could contribute to articular matrix degradation (23;24).

Although not as pronounced as in RA, it has become clear that inflammation is present 
in OA synovium (25). The most common histological findings are synovial lining and 
villous hyperplasia (16). Synovial infiltrates in OA can be characterized by infiltration of 
macrophages and lymphocytes either diffusely, or in peri-vascular aggregates (26;27). 
Initially, synovitis was assumed to occur primarily in association with fragments of 
cartilage and bone (detritus), but this was later shown to be an independent feature 
(28;29). Moreover, synovitis occurs both in early and late disease, but the presence of 
infiltrates appears to increase with advancing disease stage (16;30).

Several pathways and mediators appear to be involved in the development of synovitis 
(23). Matrix components and products released during cellular stress can activate danger-
associated molecular pattern molecules (DAMPs) or the complement cascade, although 
their role in establishing OA is not fully understood (31-33). Upon these initial stimuli, 
activated innate immune cells produce proinflammatory cytokines and chemokines, IL-1 
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and TNFα being the most well studied, which could promote/maintain synovitis, carti-
lage degradation and contribute to infiltration of immune cells into the synovium (10).

Interestingly, synovitis associates with progression of cartilage erosion, although conflicting 
reports exist (30;34;35). Along these lines, joint pain and swelling have been shown to as-
sociate with synovial inflammation, implicating an important role of synovial inflammation 
in the pathophysiology of OA (23;26;36-38). The exact factors involved, or the sequence 
of events in the pathophysiology of OA are still not completely known, as structural joint 
damage in OA is a constant feature, but the clinical syndrome of OA is quite variable.

1.4 Disease progression
Radiographs of affected joints are used to monitor disease. Several grading systems exist, 
such as the Kellgren and Lawrence classification (39). This scoring system gives a composite 
score, which focuses on a sequence of osteophyte formation, joint space narrowing, and 
bone sclerosis and provides simple and practical ordinal scores for each joint (4). Similar to 
onset, disease progression is also multifactorial, as the progression rate varies per patient.

Structural disease progression is usually defined as increase in loss of joint space nar-
rowing (radiography) or loss of cartilage (MRI) (Known risk factors for progression are 
shown in table 1) (40;41). Progression by radiography is determined by an increase in 
joint space narrowing above the smallest detectable change (42) and generally clinically 
significant changes in radiographic scores take at least 2 years (43;44). Although MRI is 
not the standardized method to assess progression, it provides an objective and a more 
sensitive assessment of morphology and integrity of articular cartilage and is a well 
established imaging method for identifying bone marrow and meniscal lesions (45;46).

2. Rheumatoid arthritis

2.1 Introduction and epidemiology
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease and can be clas-
sified by the 1987 ACR criteria, and now more recently, by the revised 2010 classification 
criteria developed by the ACR and the European League Against Rheumatism (EULAR) 
(47;48). It is the most common inflammatory arthritis affecting approximately 0.5-1% of 
the adult population in Europe and Northern-America (49). The disease is more frequent 
in women than in men and the prevalence of onset increases with age (50).
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2.2 Clinical features and risk factors
Classically RA is a poly-articular disease of the small joints of the hand and feet. The 
onset is gradual and can have intermittent or migratory joint involvement. Clinically 
predominant features are pain, stiffness and swelling of the joints (51). In addition, 
extra-articular manifestations have been described, such as: nodules, vasculitis, pericar-
ditis, uveitis, rheumatoid lung, anemia, cardiovascular disease, fatigue and depression 
(50;52). Important diagnostic and prognostic markers for disease are the presence of 
autoantibodies, such as rheumatoid factor (RF) and anti-citrullinated protein antibodies 
(ACPA) (53-55).

Both genetic- and non-genetic risk factors have been described. The genetic contri-
bution to RA is 50-60% and the strongest associating risk factors are the HLA-DRB1 
“shared epitope” (HLA SE) alleles (56;57). These were shown to associate only with 
ACPA+ disease (58). Thereby, the HLA SE alleles have been shown to bind and present 
citrullinated peptides (59;60). One of the strongest associating environmental factors 
described is smoking (61). Moreover smoking was shown to associate with citrullinated 
antigens in the bronchiolar alveolar fluid of the lungs and to interact with HLA SE genes 
in the predisposition to ACPA+ RA (62;63). Together, these observations provide a pos-
sible link between gene-environment interactions in the pathogenesis of RA.

2.3 Pathophysiology
The exact cause of the disease and the reason for the joint specific localization in RA 
remains unknown. The combination of smoking and HLA SE positivity may trigger im-
munity to citrulline modified proteins (63). However, ACPAs can be detected in serum 
many years before onset of disease, implicating the involvement of other factors in the 
pathophysiology of RA (64;65). A secondary event could lead to a local innate immune 
response in the joint, resulting in neo-epitope formation. Activated CD4+ T memory cells 
(directed against citrullinated proteins) accumulate in the synovium, and activate other 
cells such as monocytes, macrophages, and synoviocytes to secrete various soluble fac-
tors, such as: cytokines, chemokines and matrix metalloproteinases. In addition, these 
T cells can provide help to autoreactive B cells, which by autoantibody production could 
enhance and propagate the inflammatory processes. Progression of disease is charac-
terized by synovial neovascularization and chronic hyperplasia, eventually leading to 
destruction of cartilage and bone (50).

2.4 Disease progression
Another important outcome measurement, in addition to other assessments of physi-
cal function and disease activity, is radiographic progression. As progression rates are 
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influenced by current therapies, radiographic progression reflects cumulative disease 
activity and is related to overall disability (66;67).

Disease progression on radiographs can be assessed amongst others, using the Sharp 
van der Heijde method. This method consists of a measure for cartilage degradation, 
the joint space narrowing and a component reflecting the amount of bone degradation, 
the erosion score (68;69). The presence of ACPA and/or RF are important determinants 
for a more severe disease progression, although various other (predisposing) genetic 
and environmental factors can also contribute (70-72).

3. Obesity

3.1 Prevalence
The prevalence of obesity has increased dramatically in the Netherlands over the last 
decade. In 2009/2010, the prevalence of obesity was around 14% in the adult popula-
tion, a twofold increase since the 1970s (Figure 1). Worldwide obesity has more than 
doubled since 1980 according to the world health organization (WHO). The prevalence 
of obesity differs per country, with the highest European prevalence in Greece, Ireland 
and the UK of around 26%. Worldwide the prevalence of obesity can go up to 36% (USA) 
(73;74). It is estimated by the International Association for the study of Obesity and 
the International Obesity Task Force (IASO/IOTF in 2010) that approximately 1.0 billion 
adults are currently overweight and a further 475 million adults are obese.
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Figure 1. Percentage of overweight and obese adults in the Dutch population.
Percentage of Dutch population ( adults ≥ 20years of age) who are overweight or obese in between 
1983 and 2011, standardized for age and gender; source RIVM, CBS statline
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The most widespread used method to assess excess body weight is by calculation of the 
Body Mass Index (BMI). The BMI is a very robust index for bodyweight in comparison 
to height; defined by the formula: weight (kg)/ height (m)2. A normal bodyweight is 
usually defined as a BMI between 18-25 kg/m2; overweight is defined as a BMI between 
25-30 kg/m2; and obesity is defined as a BMI> 30kg/m2. Obesity is strongly associated 
with a number of diseases, including insulin resistance, type 2 diabetes, atherosclerosis 
and ischemic heart disease, which influence life expectancy and have large economic 
and societal consequences (75). Intriguingly, obesity does not necessarily translate into 
increased risk for these co-morbidities, as up to 30% of obese individuals seem to be 
protected from obesity-related metabolic diseases and have been characterized to be 
‘metabolically healthy’ (76-78).

3.2 Adipose tissue
Classically, adipose tissue has long been regarded as a long-term fuel reserve and pro-
vider for thermal insulation. During food deprivation, fuel reserves can be mobilized 
with the release of fatty acids for oxidation in other organs. In addition to fuel storage, 
adipose tissue also stores cholesterol and is involved in the metabolism of steroid hor-
mones (79). In 1993, the first evidence for a functional link between obesity and inflam-
mation was provided by increased adipose tissue expression of TNFα in murine models 
of diabetes and obesity (80). With the identification of the ob-gene and its protein 

Adipokines 
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Figure 2. adipokine secretion by adipose tissue.
adapted from N. Ouchi et al. Nat. Rev. Immunol. 2011feb;11(21:85-97)
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product leptin, shortly thereafter, it became increasingly evident that adipose tissue 
can function as an endocrine organ and is able to secrete many cytokines, collectively 
called adipokines, influencing whole body metabolism (Figure 2)(81;82). Up to date, 
many adipokines have been described. Among these, some of them, such as leptin, 
are considered to be proinflammatory, whereas others, such as adiponectin, have been 
described to have anti-inflammatory as well as proinflammatory properties depending 
on their molecular form (83).

3.3 Adipose tissue in obesity
Following the onset of obesity, the secretory status of an adipose tissue depot can be 
modified by changes in the cellular composition of the tissue, including alterations in 
the number, phenotype and localization of immune, vascular and strucural cells (84). 
Indeed, several studies in mice and men have shown that the immune cell composition 
differs per adipose tissue depot and varies with BMI (85-90). In addition, adipokine 
profiles differ per adipose tissue depot throughout the body (84;91;92). Although 
the functional importance of many of these individual adipose tissue depots remains 
unknown, recent evidence suggests that diet-induced changes in their adipokine secre-
tion can influence the function of the associated tissue (84;93). Moreover, metabolic 
dysfunction of the adipose tissue in obesity may partly result from an imbalance in the 
expression of pro-and anti-inflammatory adipokines and could have a crucial role in the 
pathogenesis of obesity-related complications.

3.4 Adipose tissue immune cells
Besides adipocytes, adipose tissue is composed of various stromal cells, including: 
fibroblasts, progenitor cells, nerve cells, endothelial cells and immune cells (94;95). 
Macrophages and T cells are the most abundant immune cells in adipose tissue, but 
other cells, such as mast cells, NK cells and B cells have also been described (95). While 
the precise role of the immune cells in adipose tissue is largely unknown, there is 
increasing evidence of crosstalk between immune cells and adipocytes with both cell 
types able to influence each other (95). Indeed, studies in murine obesity have shown 
that macrophages not only infiltrate the adipose tissue in obesity, but also switch their 
phenotype from an anti-inflammatory towards a proinflammatory phenotype (96-98). 
Intriguingly, this phenotype switch has recently been attributed to an increase in mac-
rophage lipid content (99). In humans, however, little is known about the influence of 
adipocytes on immune cells.

3.5 Obesity in OA
Obesity is a major risk factor for the development of knee OA, which has often been 
attributed to increased or altered mechanical load (100;101). However, mechanical 
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factors alone do not appear to be sufficient to explain the relationship between the 
incidence of OA and obesity, as obesity has also been shown to associate with OA of 
non-weight bearing joints (102;103). This is further supported by evidence obtained 
from murine studies linking obesity to increased/accelerated cartilage degeneration 
independently of body weight (104-106). Moreover, it has been shown in mice that the 
loss of body fat is more beneficial for symptomatic relief in knee OA than the loss of 
body weight (107). These studies imply a role for adipose tissue secreted factors, such 
as adipokines, in the pathophysiology of OA.

Sources for these adipokines could be systemic, derived from large adipose tissue 
depots as visceral fat, or more locally, derived from the depots residing in the bone 
marrow or in the knee joint (108-110). Indeed, differences in distribution of adipokines 
between the joint and the circulating compartment suggest that the joint is a unique 
area of activity for adipokines (111). It is therefore conceivable that adipokines secreted 
by local adipose tissue depots can potently influence joint homeostasis. Next to the 
potential effects of bone marrow adipose tissue in proximity of the joints, the body con-
tains a unique joint-associated adipose tissue depot: the infrapatellar fat pad (IFP). The 
IFP is located intracapsularly and extrasynovially, in the vicinity of cartilage, synovium 
and bone. Little is known about its exact function, although it has been described as 
a facilitator of the distribution of synovial fluid and an absorber of forces through the 
knee joint (112). Furthermore the IFP has and been implicated to be a source of adipo-
kines in the knee (108;112). Indeed, scarce information exists indicating the secretion 
of some adipokines, such as adiponectin, and IL-6 by the IFP (108;113;114). However, 
its immunological composition, secretory capacity and thereby its potential role in, or 
contribution to, joint inflammation in knee OA is still unknown.

3.6 Adipokines in OA
Among the adipokines described, several, such as leptin, adiponectin, resistin and 
visfatin have been implicated to have a role in the pathophysiology of OA.

Leptin levels are higher in synovial fluid (SF) compared to serum and leptin SF levels 
have been shown to correlate with BMI in patients with severe knee OA (115). The role 
of leptin however, appears controversial as both anabolic and catabolic functions of this 
adipokine have been described. Intra-articular injection of leptin has been shown to 
stimulate the synthesis of insulin-like growth factor-1 (IGF-1) and transforming growth 
factor-β, on mRNA and protein level, indicating potential anabolic actions on cartilage 
metabolism (115). On the other hand, leptin has also been shown to increase the 
release of several matrix metalloproteinases and cytokines by chondrocytes (115-119) 
and concentrations of leptin in SF have been shown to correlate with the degree of 
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cartilage degeneration (120). Next to its effect on chondrocytes, leptin exerts direct 
modulatory effects on activation, proliferation, maturation, and production of inflam-
matory mediators in several immune cells, including lymphocytes, monocytes and 
macrophages, neutrophils and NK cells (83;121;122).

While plasma levels of adiponectin are increased in patients with OA, its role appears 
twofold. On the one hand, adiponectin might have a role in matrix degradation, by 
induction of proinflammatory mediators as IL-6, MMP-3, MMP-9 and MCP-1, but on the 
other hand might also be protective by up-regulation of tissue inhibitor of metallopro-
teinase-2 (TIMP-2) and inhibition of IL-1β induced MMP-13 expression in chondrocytes 
(123-125). It is noteworthy that this apparent contradiction also appears in vivo as 
SF adiponectin has been shown to correlate with severity of knee OA and aggrecan 
degradation (126;127), whereas high serum levels of adiponectin appear protective 
against progression of cartilage damage in hand OA (128). Therefore the exact role of 
adiponectin in OA remains to be determined.

The effects of visfatin and resistin in OA are less well described. Visfatin levels are in-
creased in OA SF and correlate positively with degradation biomarkers of collagen type 
II and aggrecan, indicating that visfatin is involved in matrix degradation (129). Resistin 
has been shown to have direct proinflammatory effects on monocytes and macrophages 
and could induce arthritis upon intra-articular injection in mice (130;131). For those 
reasons, both adipokines appear to have proinflammatory effects on chondrocytes.

3.7 Obesity in RA
In addition to its association with OA, obesity has also been implicated to influence RA, 
as BMI was shown to negatively associate with radiographic progression in patients with 
early RA (132-134). Whether this is a protective effect of obesity against mechanisms 
involved in joint degradation in obesity or a reflection of joint damage at the time of 
first diagnosis remains unclear, as differences in joint damage between lean and obese 
patients have been observed at baseline (133). While the underlying mechanisms are 
unclear, adipose tissue secreted factors could play a role in the pathophysiological 
processes underlying RA.

3.8 Adipokines in RA
In patients with RA, concentrations of some adipokines, such as resistin and IL-6 have 
recently been shown to be elevated in serum and correlated to inflammatory markers 
as erythrocyte sedimentation rate (ESR), C-Reactive Protein (CRP), and disease activity 
scores (DAS28) (135;136). Other adipokines, such as leptin have shown conflicting re-
sults and correlations between plasma concentrations of leptin and RA disease activity 
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are still debated (137-143). Moreover, certain publications describe serum leptin levels 
to be up-regulated in patients with RA, whereas others could not confirm this obser-
vation (135;137;144). Therefore the exact role and effects of leptin on inflammatory 
processes in the joint in patients with RA still needs further evaluation (145).

Studies regarding adiponectin point toward a proinflammatory role in RA (146;147). 
Locally, adiponectin could contribute to synovitis by up-regulation of proinflammatory 
cytokines and chemokines in RA synovial fibroblasts in vitro (147;148) even though 
key factors driving arthritis such as TNFα and IL-1β were not induced (147). In addi-
tion, plasma adiponectin levels were increased in patients with chronic versus early 
RA (149) and adiponectin levels associated with radiographic damage in longitudinal 
studies (146;150). Interestingly, human adiponectin consists of different isoforms, with 
different and sometimes counteracting functions (145;151;152). However, the role of 
total adiponectin, or the role of different adiponectin isoforms in disease progression 
remains to be determined.

Actions of resistin and visfatin in RA appear proinflammatory. Resistin levels are in-
creased and correlate with markers of inflammation (111;153-155). Visfatin has been 
shown to induce proinflammatory cytokines and metalloproteinases in synovial fibro-
blasts (156;157). Moreover, inhibition of visfatin in CIA mice reduced arthritis (158) and 
associated with radiographic damage (146;150;159-161). However, for these and many 
other adipokines, the relationship with radiographic progression is still unknown.

4. Outline of the thesis

There were three main aims of this thesis:
1.	 To investigate the role of systemic adipose tissue secreted soluble mediators in 

radiographic progression in patients with RA and hand OA.
2.	 To characterize the IFP and to investigate its potential role in the joint in patients 

with knee OA.
3.	 Clinical implications.

This thesis is divided into three parts corresponding to the main aims.

Part one focuses on systemically secreted adipose tissue released soluble mediators 
and its effect on disease progression in patients with RA and hand OA (HOA). Obesity 
has been previously shown to modulate disease progression in patients with RA (132), 
which could imply a role for adipose tissue derived factors. Indeed, a few longitudinal 
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and cross-sectional studies have implicated a potential role for systemic adipokines in 
disease progression (130;146;150;159). However, the predictive value of circulating 
adipokines for disease progression over time is unknown. In chapter 2 we therefore 
studied whether serum adipokine levels at baseline could affect disease progression. 
Adipokines in baseline serum samples from patients with early RA included in the 
Leiden Early Arthritis Cohort (EAC) were measured by luminex and levels were assessed 
for association with radiographic progression (increase in SvDH scores) over a period 
up to 4 years after inclusion. These studies revealed that baseline levels of adiponectin 
could strongly predict radiographic progression independently of the presence of anti-
CCP antibodies. In contrast to these observations in patients with RA, previously, in pa-
tients with HOA, adiponectin has been shown to associate with a reduced radiographic 
progression (102). Adiponectin can exist in circulation in several isoforms with different 
immunomodulatory effects. Of these isoforms, high molecular weight adiponectin 
(hmwAPN) has been described as one of the most biologically active (162). Although 
both pro- and anti-inflammatory effects have been attributed to this isoform, its role in 
disease progression in patients with RA and in HOA remains unknown (151;163;164). 
Therefore in chapter 3 we explored the possibility that the apparent opposing associa-
tions of adiponectin on disease progression in patients with RA and HOA are primarily 
mediated by the high molecular weight isoform. In this chapter baseline hmwAPN levels 
in serum (patients with HOA) or plasma (patients with RA) were determined by ELISA 
and their association with radiographic progression (5.6 years follow up in patients 
with HOA; 4 years follow up in patients with RA) was assessed. The patients with RA 
included in this study were participants in the EAC study and the patients with HOA 
were participants in the Genetic Arthrosis and Progression study (GARP).

Part two is dedicated to investigate and immunologically characterize the IFP, a joint-
associated adipose tissue depot, in patients with end stage knee OA. The function 
of the IFP in the knee joint is relatively unknown, although scarce information exists 
indicating the secretion of some inflammatory mediators by the IFP (108;113;114). In 
addition, adipokines have been shown to be present in synovial fluid of in patient with 
OA (111). Because it is conceivable that soluble mediators secreted by the IFP could 
have a role in local inflammatory processes in the joint, we performed an extensive 
characterization of the IFP in chapter 4. IFP tissue samples and paired thigh subcutane-
ous adipose tissue samples (ScAT) were obtained from in patient with OA undergoing 
total knee replacement surgery. First, we studied the adipokines and cytokines secreted 
in fat-conditioned media by luminex and compared these to paired ScAT samples. Next, 
we compared the phenotype of adipocytes (by luminex) and the immune cell infiltrate 
(by flow cytometry) in these adipose tissues to gain more insight into the molecular 
nature of the effects observed.
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Adipose tissue macrophages have been implicated to have a role in adipose tissue 
inflammation in obesity (98). Our studies in chapter 4 revealed macrophages to be the 
most abundant immune cell type in the IFP. In addition, we observed obesity-related 
changes in the phenotype of the IFP. Therefore, IFP-derived macrophages could have a 
role in the observed obesity-induced phenotypic changes of the IFP. For these reasons 
we obtained IFP from OA patients undergoing total knee replacement surgery and ex-
tensively characterized the phenotype of IFP-derived macrophages by flow cytometry 
in chapter 5.

The studies presented in this chapter revealed obesity-related phenotypic changes 
in IFP-derived macrophages. Because it is conceivable that macrophage-adipocyte 
crosstalk could underlie these observations, we explored in chapter 6 the potential 
modulating effects of adipocytes on the phenotype of human macrophages in vitro and 
studied the possible molecular pathways involved. In these studies monocyte derived 
macrophages were cultured from healthy donors and co-incubated with adipocyte 
conditioned media (ACM) obtained from OA patients or patients undergoing elective 
aesthetic surgery. Cytokine release in culture medium was assessed by ELISA and 
phenotypic changes were studied by flow cytometry. To assess whether ACM-derived 
proteins or lipids were responsible for the effects observed, proteins and lipids were 
separated in ACM and their effects on macrophage cytokine release were studied. These 
studies revealed the modulatory effect to predominantly reside in the lipid fraction of 
ACM. Therefore, we identified the lipids in ACM by mass spectrometry and studied their 
effects on macrophage cytokine release after co-culture in an attempt to identify the 
lipids involved in the modulation observed.

Part three provides a pilot study to investigate the source of pain, one of the most pre-
dominant clinical features of knee OA. As the source of pain remains largely unknown, 
it is conceivable that inflammatory processes in synovium or the IFP could contribute 
to pain perception. For this reason we extensively characterized the immune cell 
populations in synovium and IFP by flow cytometry and correlated these populations to 
subjective measurements of pain in a unique cohort of patients with primary knee OA 
included in the GEneration of Models, Mechanism & Markers for Stratification of Osteo-
Arthritis patieNts (GeMstoan) study (Chapter 7). Chapter 8 and 9 provide a summary of 
the results and a discussion of the implications of the studies described in this thesis.
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