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Introduction and outline of the thesis

Incidence of obesity and type 2 diabetes mellitus (T2DM)

Global increases in overweight and obesity are attributable to a number of factors including 

a shift in diet towards increased intake of energy-dense food and a trend towards decreased 

physical activity due to the increasingly sedentary nature of many forms of work, chang-

ing modes of transportation and less physical exercise. Once, the obesity epidemic was 

considered to be a problem in high-income countries only, however, overweight and obesity 

are now dramatically on the rise in low- and middle-income countries, particularly in urban 

settings.

The World Health Organization (WHO) defines “overweight” as a body mass index (BMI) 

(calculated as the bodyweight in kilograms divided by the square of the height in meters (kg/

m2)) equal to or more than 25 kg/m2, and “obesity” as a BMI equal to or more than 30 kg/m2. 

The WHO estimates that in 2005 worldwide approximately 1.6 billion adults had overweight 

and at least 400 million adults were obese. They further calculated that by 2015 approxi-

mately 2.3 billion adults will have overweight and more than 700 million will be obese (http://

www.who.int; obesity and overweight fact sheet).

Obesity presents a risk to health and this risk increases progressively as BMI increases. 

Obesity per se is associated with an increased mortality rate (Table 1). Furthermore, obesity 

is tightly associated with insulin resistance, hyperlipidemia and hypertension, and thus with 

diseases such as type 2 diabetes mellitus (T2DM), stroke and ischemic heart disease. But also 

other diseases have a higher incidence in overweight or obese people, such as gallstones, 

disruption of the menstrual cycle, infertility and arthrosis (Table 1) (1-4).

It is therefore not surprising that the prevalence of T2DM is rising steadily along with the 

obesity epidemic. The WHO estimates that there will be at least 366 million people worldwide 

suffering from T2DM in 2030, which is more than 5% of the adult population (5). Diagnostic 

Table 1. The estimated relative 10-year risk for mortality and disease in overweight (BMI 25-30 kg/m2) and obese (BMI ≥ 30 kg/m2) men and 
women.

Overweight Obesity

Men Women Men Women

Mortality rate 1.1 1.1 1.3 - 2.2 1.4 - 1.6

Type 2 Diabetes Mellitus 3.5 4.6 11.2 - 23.4 10.0 - 17.0

Cardiovascular disease 1.5 1.4 2.0 - 2.2 1.5 - 1.6

Stroke 1.2 1.2 2.0 - 2.3 1.0 - 1.1

Hypertension 1.7 1.7 2.7 - 3.0 2.1 - 2.3

Gallstones 1.4 1.9 2.3 - 2.9 2.5 - 3.0

Colon carcinoma 1.2 1.2 1.7 - 1.8 1.3 - 1.8

The relative risks for the women are derived from the follow-up study of the Nurses’ Health Study and for the man from the Health Professionals 
Study (2). There is a range since relative range varies within age and the amount of obesity.



Chapter 1

14

criteria for T2DM set by the WHO and the American Diabetes Association (ADA) are HbA1c 

≥ 6.5% OR fasting (defined as no caloric intake for at least 8 hours) plasma glucose (FPG) 

≥ 7.0 mmol/L OR 2-hour glucose ≥ 11.1 mmol/L during a 75 grams oral glucose tolerance 

test (OGTT), confirmed by repeat testing on a different day in the absence of unequivocal 

hyperglycemia OR when classical symptoms of hyperglycemia are present a random plasma 

glucose level ≥ 11.1 mmol/L (6).

The cut-off points of overweight and obesity (25 and 30 kg/m2) provide a benchmark for 

individual assessment, but there is evidence that the risk of chronic disease in the popula-

tion increases progressively above a BMI of 21 kg/m2 (7). The BMI provides the most useful 

measure of overweight and obesity at the population level as it is the same for both sexes 

and for all ages. However, the BMI should be interpreted with caution at the individual level, 

because it does not predict body composition let alone regional body fat distribution. Indi-

viduals, especially the groups of elderly (8), children (9) and people from a different ethnicity 

(10), with equal BMI can be highly variable in terms of body fat mass and regional body fat 

distributions (visceral and subcutaneous fat mass) (11,12). This is of note since visceral fat 

accumulation is associated with a greater risk to develop T2DM and cardiovascular disease. 

Waist circumference is a valid index for visceral fat mass and can therefore be used as an 

indicator of health risk associated with excessive visceral fat mass (13).

Pathophysiology T2DM

T2DM is a multifactorial, chronic disease characterized by hyperglycemia (Figure 1). The 

complex nature of T2DM is reflected in the multifaceted genetic background and the varied 

environmental interaction. There is cross-sectional evidence which suggests a strong genetic 

component of the disease. Positive family history confers a 2.4 fold increased risk for T2DM. 

The lifetime risk of T2DM is 7% in a general population, 38% in offspring of one parent with 

T2DM and about 70% if both parents have T2DM (14,15). Furthermore, it is well established 

that about 80% of T2DM is associated with obesity especially visceral fat accumulation and 

sedentary life styles (16). The pathophysiology of T2DM also comprises a combination of 

insulin resistance of target tissues (liver, adipose tissue, skeletal muscle) and impaired insulin 

secretion in the pancreatic β-cell. This leads to a combination of defects in insulin-mediated 

glucose uptake (predominantly muscle tissue), dysregulation of the adipocyte as a storage 

and secretory organ, dysregulation of the endogenous glucose production (predominantly 

in the liver), and a progressive decline in beta-cell function and mass in the pancreas leading 

to impaired insulin secretion, as will be discussed in detail in the following sections.
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Skeletal muscle

Muscle glucose uptake accounts for 75-80% of insulin stimulated glucose uptake by the 

body (17). Therefore in T2DM patients the largest part of the impairment in insulin-mediated 

glucose uptake is explained by the defect in skeletal muscle. This involves both impaired 

glucose uptake as well as impaired glucose disposal. The major pathway for overall glucose 

metabolism is glycogen synthesis or non-oxidative glucose disposal (NOGD). In patients with 

T2DM glycogen synthesis is only 60% of that of healthy lean control subjects.

The cellular events through which insulin initiates its stimulatory effect on glucose uptake 

start with the binding of insulin to the α-subunit of the insulin receptor (IR) leading to a con-

formational change that induces a process of autophosphorylation; the intracellular kinase 

domain of one half of the receptor phosphorylates the tyrosine residues of the other half of 

the receptor (18). The phosphorylated tyrosines on the IR can now serve as docking sites for 

other proteins such as the insulin receptor substrate 1 (IRS1) (19). Phosphorylated IRS1 binds 

to phosphatidylinositol 3-kinase (PI3K) (20), which is recruited to the plasma membrane 

and converts phosphatidylinositols-4,5-bisphophate (PIP2) to phosphatidylinositols-3,4,5-

trisphophate (PIP3). PIP3 subsequently attracts phosphatidylinositol-dependent protein 

kinase (PDK) and protein kinase B (PKB)/Akt to the plasma membrane where Akt is activated 

by PDK-mediated phosphorylation (21,22). Activated Akt thereupon dissociates from the 

cellular membrane to affect several metabolic processes, such as glycogen synthesis and glu-

cose transport into the cell (23). Activated Akt inactivates glycogen synthase kinase 3 (GSK3), 

hereby abrogating the inhibitory action of GSK3 on glycogen synthase, and thus stimulating 

glycogen synthesis (24). Activated Akt also leads to phosphorylation of Akt substrate 160 

(AS160) that allows glucose transporter 4 (GLUT4) storage vesicles to move to, dock, and 

Figure 1. Type 2 Diabetes Mellitus (T2DM) is a multifactorial disease.
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fuse with the plasma membrane. GLUT4 translocation consists of 4 stages: vectorial transfer: 

GLUT4 vesicles are transported to the cell periphery; tethering: GLUT4 vesicles are retained 

near the cell periphery; docking: GLUT4 vesicles bind to plasma membrane; fusion: irrevers-

ible incorporation of GLUT4 vesicles in the plasma membrane (25-27). Activated Akt also 

phosphorylates the nuclear protein Proline-rich Akt Substrate of 40 kDa (PRAS40). The exact 

function of PRAS40 is still under debate. Possibly phosphorylation of PRAS40 disrupts the in-

teraction between mammalian target of rapamycin complex 1 (mTORC1) and PRAS40, which 

may relieve an inhibitory constraint on mTORC1 activity. The mTORC1 signaling pathway 

abrogates insulin-mediated activation of the PI3K-PKB/Akt pathway by inducing inhibitory 

serine phosphorylation on the insulin receptor and IRS1/2 (28) (Figure 2).

In T2DM patients a number of defects in the insulin signaling cascade have been described 

as compared to lean insulin sensitive control subjects, however it has been difficult to replicate 

the results in different studies both in vitro and in vivo. The complexity of the insulin signaling 

pathway grows, new studies lead to the discovery of new proteins, protein isoforms and new 

regulatory sites and defects in insulin resistant subjects or T2DM patients. In Table 2 a sum-

mary of the defects in the insulin signaling cascade in T2DM patients are shown compared 

to findings in lean healthy controls (29-40). One of the mechanisms by which insulin signal 

transduction is disturbed is excessive ectopic triglyceride storage in the skeletal muscle cell 

(as will be discussed in the following sections).

Figure 2. Insulin signaling cascade in the skeletal muscle cell.
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IR: Insulin receptor; IRS: insulin receptor substrate; PI3K: phosphatidylinositol 3-kinase; PIP2: phosphatidylinositols-4,5-bisphophate; PIP3: 
phosphatidylinositols-3,4,5-trisphophate; PDK: phosphatidylinositol dependent protein kinase; PKB/AKT: Protein kinase B/AKT; AS160: Akt 
substrate 160; GLUT4: glucose transporter protein 4; PRAS40: Proline rich Akt substrate 40 kDa; mTORC1: mammalian target of rapamycin 
complex 1.
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Adipose tissue

In lean healthy subjects approximately 10% of insulin-stimulated glucose uptake occurs in 

adipose tissue. This suggests a minor role of adipose tissue in the pathophysiology of insulin 

resistance. However, in the adipose tissue of patients with T2DM the expression of GLUT4 

is down-regulated, hereby leading to a diminished uptake of glucose in this organ. Also, 

adipocyte-selective GLUT4 knockout mice show a systemic insulin resistance (41), suggest-

ing that adipocytes secrete proteins that are responsible for cross-organ communication. 

Factors secreted by adipocytes that may alter insulin action and hepatic glucose production 

include adipokines (like adiponectin, resistin, leptin) (as reviewed in (42)), pro-inflammatory 

cytokines and free fatty acids (FFAs) (see in section ectopic fat depositions). In obesity, the 

adipose tissue is characterized by adipocyte hypertrophy and increased lipolysis leading to 

elevated production of FFAs. Furthermore, macrophages are present in much higher num-

bers in adipose tissue of obese subjects.

Cross-sectional studies have shown that insulin resistant states such as obesity and T2DM 

are associated with chronic low-grade inflammation (43,44). Macrophages, in the adipose tis-

sue appear to be major sources of inflammatory mediators that are linked to insulin resistance 

such as pro-inflammatory cytokines (interleukin 6 (IL6) and tumor necrosis factor α (TNFα)) 

and elevated levels of highly sensitive C-Reactive Protein (hsCRP) (45,46). These cytokines 

can inhibit insulin signaling downstream of the IR, this might be the primary mechanism 

through which the chronic low-grade inflammatory status causes insulin resistance. TNFα 

and IL6 stimulate phosphorylation of serine residues of the IRS1/2. This phosphorylation 

reduces tyrosine phosphorylation of IRS1/2 in response to insulin which prevents further 

downstream signaling and thus GLUT4 translocation to the cellular membrane (47).

Visceral fat has a higher lipolytic activity and is less responsive to the anti-lipolytic activity 

of insulin as compared to subcutaneous adipose tissue (48,49). In addition, the adipokines, 

FFAs and (pro-inflammatory) cytokines produced by the visceral adipose tissue will be se-

creted directly into the portal vein and will have direct detrimental effects in the liver (50-52). 

However the visceral adipose tissue contributes only 10-15% of the total systemic free fatty 

acid flux, thus the impact of excess visceral adipose tissue on peripheral insulin sensitivity is 

Table 2. Defects in insulin signaling pathway in the skeletal muscle in type 2 diabetes mellitus (T2DM) patients compared to healthy controls.

T2DM vs. healthy controls reference

IR activity or autophosphorylation unchanged 30, 31, 32

IRS1 tyrosine phosphorylation impaired 31, 33, 34, 35

IRS1 association with PI3K impaired 30, 32, 36

PKB/AKT phosphorylation impaired or unchanged 32, 34, 37, 38, 39, 40

GS activity impaired 30-40

Glucose disposal rate impaired 30-40

IR: Insulin receptor; IRS: insulin receptor substrate; PI3K: phosphatidylinositol 3-kinase; PKB/AKT: Protein kinase B/AKT; GS: glycogen synthase.
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questioned. It seems that the combination of excessive subcutaneous adipose tissue with 

excessive visceral adipose tissue is important in insulin resistance.

Liver

The liver has the ability to both consume, store as well as produce glucose and lipids. The 

liver is the major source of endogenous glucose production (EGP) but with prolonged fasting 

the contribution of the kidney increases (to 20% or even higher). EGP comprises 2 pathways: 

glycogenolysis (the conversion of glycogen to glucose) and gluconeogenesis (the generation 

of glucose from non-sugar carbon substrates (such as amino acids, mainly alanine, glycerol 

and lactate)).

In the post-absorptive state, the liver of healthy subject produces glucose at a rate of 2.0 

mg/kg/min. This glucose efflux is essential to meet the need of the brain and other neural 

tissue, since these tissues lack the ability to store glucose (53,54). In the post-absorptive state, 

hepatic insulin resistance of T2DM is manifested by overproduction of glucose despite fasting 

hyperinsulinemia. Indeed the increased rate of EGP by the liver is the primary determinant of 

the elevated FPG concentration in T2DM individuals. In the non-fasting state hepatic insulin 

resistance leads to an impaired suppression of the EGP by the liver which contributes to the 

postprandial hyperglycemia (54).

The first steps of insulin signaling in hepatocytes is quite similar to that in skeletal muscle 

cells; binding of insulin to its receptor leads to phosphorylation of the tyrosine-kinase on the 

IR. This is followed by ligand-receptor interaction. In the liver, as opposed to skeletal muscle, 

the PI3K/Akt pathway is not only controlled by IRS1 but also by IRS2 (55,56). In addition, 

Figure 3. Insulin signaling cascade in the liver cell.
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IR: Insulin receptor; IRS: insulin receptor substrate; PI3K: phosphatidylinositol 3-kinase; PKB/AKT: Protein kinase B/AKT; FOXO: forkhead box 
protein O; G6Pase: glucose-6-phosphatase catalytic subunit; GSK3: glycogen synthase kinase 3; GLUT2: glucose transporter protein 2.
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Akt in the liver regulates the expression of numerous genes important in controlling lipid 

synthesis and gluconeogenesis (57). For example Akt can regulate the phosphorylation of 

the forkhead box protein O (FOXO) family of transcription factors, which in turn inhibit the 

expression of the glucose-6-phosphatase catalytic subunit (G6Pase), leading to a suppression 

of glucose production (58). Also, insulin promotes glycogen synthesis by inactivating the 

enzyme glycogen synthase kinase 3 (GSK3) through the PI3K/AKT pathway. In the absence of 

insulin GSK3 phosphorylates glycogen synthase, which becomes inactive and thus glycogen 

synthesis will be inhibited (Figure 3).

Due to ethical considerations liver biopsies in human studies with T2DM patients are 

rare. Animal studies confirm impaired insulin signaling from IRS1/2 to PI3K/Akt leading to 

increased gluconeogenesis (54). In, addition glycogen synthesis is inhibited (59). One of the 

mechanisms by which insulin signal transduction is disturbed is excessive ectopic triglyceride 

storage in the liver (as will be discussed in the following sections).

Pancreatic β-cells

Early in the development of T2DM, insulin resistance is well established but glucose tolerance 

remains normal because of a compensatory increase in insulin secretion. There is a dynamic 

interaction between insulin secretion and overall insulin resistance within the early stages 

of T2DM. The progression from impaired glucose tolerance to T2DM is characterized by an 

inability of the beta cell to maintain the previously elevated rate of insulin secretion in re-

sponse to a glucose challenge. Tissue sensitivity to insulin deteriorates only minimally in this 

stage (unless of course the patient is able to lose weight) (Figure 4) (60,61).

Insulin secretion is biphasic with an early burst of insulin release within the first 10 minutes 

followed by a progressive increase in insulin secretion that persists as long as the hyperglyce-

mic stimulus is present (62). Loss of the first phase insulin secretion is a characteristic and an 

early abnormality in patients developing T2DM. Loss of the first phase insulin secretion has 

Figure 4. Hyperbolic relation between β-cell function and insulin sensitivity.
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important pathogenic consequences, because this early burst of insulin primes insulin target 

tissues, especially the liver (63,64). The second phase insulin secretion is important to prevent 

hyperglycemia by stimulating the uptake of glucose by the different target tissues.

A number of genetic and acquired factors have been implicated in the progressive impair-

ment in both first and second phase insulin secretion (65-67), including chronic hyperglyce-

mia (glucotoxicity) (68), chronic hyperlipidemia (lipotoxicity) (69,70) and pro-inflammatory 

cytokines (IL6 and TNFα) (71). However, the exact pathogenesis has not been elucidated yet.

Role of ectopic fat in the pathogenesis and organ dysfunction 
associated with T2DM

Adipocytes have a unique capacity to store large amounts of excess FFAs in cytosolic lipid 

droplets. Under healthy conditions, most triglycerides are stored in adipocytes. Cells of non-

adipose tissues (such as the liver, the skeletal muscle, myocardium and the pancreas) have 

a limited capacity for storage of lipids and this is very tightly regulated. When the capacity 

of the adipose tissue to store triglycerides is exceeded, lipids accumulate in non-adipose 

tissues, termed ectopic fat deposition. Ectopic fat disturbs cellular function and may even 

lead to cell death, called lipotoxicity (72,73). The reason this ectopic deposition occurs is 

not elucidated. Bluher (74) recently proposed a model in which genetic and environmental 

factors lead to adipocyte hypertrophy, hypoxia and endoplasmatic reticulum stress causing 

inflammation within adipose tissue (via attraction of macrophages) and a different adipokine 

secretion profile. This leads to impaired adipocyte differentiation, reduced lipid accumula-

tion and increased lipolysis in adipocytes, altogether culminating in a redirection of lipids 

towards non-adipose tissues.

Obesity and especially T2DM is associated with elevated plasma FFA concentrations post-

prandially. The ability of insulin to inhibit the elevated basal rate of lipolysis and hence to 

reduce the plasma FFA concentration is markedly impaired (75,76). The surplus of FFA in the 

circulation will lead to ectopic fat depositions in several organs including the skeletal muscle 

(intramyocellular lipid accumulation (IMCL)); the liver (steatosis hepatis); and the heart (peri-

cardial fat and intramyocardial triglyceride (TG) content) and may result in lipotoxicity. The 

surplus fatty acids enter non-oxidative pathways leading to re-esterification into triglycerides 

within the non-adipose cell. Triglycerides per se are not harmful, however it is the availability 

of fatty acid derivatives like diacylglycerol (DAG), ceramide and long chain fatty acid-CoA 

(LC-CoA), which can negatively influence cellular processes (as described in the following 

sections).



21

Introduction and outline of the thesis

Skeletal muscle (IMCL)

Cross-sectional studies have demonstrated that intramyocellular lipid (IMCL) accumulation is 

increased in obesity and T2DM (77-80). IMCL positively correlates with insulin resistance both 

in obese and non-obese subjects with or without T2DM (77,78,81).

Triglyceride derivatives, such as DAG, ceramide and LC-CoA are known to activate protein 

kinase C (PKC) that, in turn, phosphorylates the serine residues of IRS1. Serine-phosphory-

lated IRS1 is unable to associate with and activate PI3K, leading to disruption early in the 

insulin-signaling cascade and hence diminished trafficking of GLUT4 to the cell membrane 

(as reviewed by Morino et all (82)). Furthermore LC-CoA upregulates the de novo synthesis of 

TNFα, which is also associated with diminished insulin signaling, through the same pathway 

(83). In addition, an increase in the cytosolic pool of LC-CoA could directly inhibit glycogen 

synthase activity which leads to lower glycogen storage (80,81,84). Via these mechanisms, 

lipotoxicity can disturb cellular processes leading to insulin resistance in the skeletal muscle 

cell (Figure 5).

A decreased metabolic flexibility in T2DM patients is part of the explanation how lipids can 

accumulate in the skeletal muscle cell. The switch in fuel oxidation is normally dependent on 

the amount of nutrients (glucose, FFA or amino acids) available for oxidation. After a meal, in 

the insulin-stimulated state, glucose oxidation is high while lipid oxidation is suppressed. In 

the fasting/postabsoptive state the situation is just the opposite. However, in T2DM patients 

the switch in fuel oxidation is impaired, termed metabolic inflexibility (as reviewed in (85)). 

This leads to decreased oxidation of FFA and FFA derivatives. The reduction in metabolic 

Figure 5. Cellular processes leading to insulin resistance in the skeletal muscle cell.
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FFA: free fatty acid; LC-CoA: long chain fatty acid-CoA; TNFα: tumor necrosis factor α; DAG: diacylglycerol; PKC: protein kinase C; IR: insulin 
receptor; IRS: insulin receptor substrate; PI3K: phosphatidylinositol 3-kinase PKB/AKT: Protein kinase B/AKT; GLUT4: glucose transporter protein 
4; GS: glycogen synthase.
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flexibility can partly be explained by reduced mitochondrial function and capacity. Indeed 

studies show reduced mitochondrial density and function in skeletal muscle cells of T2DM 

patients (86-88).

Liver (hepatic steatosis)

Cross-sectional studies show a positive correlation between hepatic steatosis (high hepatic 

TG content) and hepatic insulin resistance, both in T2DM patients and non-diabetic subjects 

(89,90).

The exact underlying pathophysiological mechanism by which hepatic triglyceride ac-

cumulation leads to hepatic insulin resistance is unknown. However, it is very likely that 

similarly as in the skeletal muscle lipid intermediates (such as DAG) are important. In the liver 

as well as in the skeletal muscle, DAG activates PKC which in turn binds and inactivates the IR 

resulting in reduced IRS1/2 and hence PI3K/AKT phosphorylation. Subsequently, this leads to 

an increase in GSK3 and decrease in FOXO phosphorylation, and thus respectively reduced 

liver glycogen synthesis and impaired suppression of hepatic gluconeogenesis. Thus there is 

augmented glucose release into the circulation (Figure 6) (as reviewed by Morino et all (82)).

Figure 6. Cellular processes leading to insulin resistance in the liver cell.
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FFA: free fatty acid; LC-CoA: long chain fatty acid-CoA; DAG: diacylglycerol; PKC: protein kinase C; IR: insulin receptor; IRS: insulin receptor 
substrate; PI3K: phosphatidylinositol 3-kinase PKB/AKT: Protein kinase B/AKT; GSK3: glycogen synthase kinase 3; FOXO: forkhead box protein O; 
GLUT2: glucose transporter protein 2.

Heart (Myocardial triglyceride content; pericardial fat mass)

Cross-sectional studies report that stores of myocardial triglyceride are positively related to 

FFA exposure and are increased in obese and T2DM subjects (91,92). Ectopic fat depositions 

in the heart lead to diminished heart function. Triglyceride intermediates, such as DAG, 

ceramide and LC-CoA activate apoptotic processes, which ultimately alters the structure and 
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thus function of the heart. In cross-sectional studies, the increase in myocardial triglyceride 

stores in obese or T2DM subjects is associated with impaired systolic and diastolic function 

(92).

Pericardial fat is the adipose tissue surrounding the heart. The physiological function of 

this fat depot is still under debate. It may serve as protection for the coronary arteries and/

or energy supply for the myocardium. On the other hand, it may be a metabolically active 

organ and secrete pro-inflammatory cytokines (93,94). Several cross-sectional studies have 

suggested a positive relation between an increased pericardial fat volume and coronary 

artery disease and insulin resistance in obese patients with or without T2DM (95-97).

Quality of Life (QoL)

Several studies have shown that patients with T2DM have a worse Quality of Life (QoL) as 

compared to healthy controls. Lower QoL scores were associated with the use of insulin, the 

presence of diabetic complications or co-morbidities, physical inactivity and poor glycemic 

control. As in the normal population, socioeconomic status, demographic location and age 

are also of influence (98-101).

Obesity per se is also associated with a diminished quality of life. This is due to symptoms 

of obesity-related diseases, a negative general health perception, restricted physical activ-

ity, decreased self-image and a decline in social functioning. An improvement in QoL can 

increase patients’ compliance with their diabetes treatment and enhances their commitment 

to self-management, resulting in positive adjustments in lifestyle and diabetes care (101).

Diet-induced weight loss (using very low calorie diets)

Weight reduction with diet and exercise is one of the cornerstones in the treatment of obese 

and T2DM patients. Weight loss improves morbidity associated with obesity such as insulin 

resistance, dyslipidemia and hypertension (77,102-104). In obese patients a substantial 

energy restriction for a longer period of time is necessary to achieve weight loss. Moreover, 

in obese T2DM patients substantial weight loss is needed to improve peripheral insulin 

sensitivity, the mainstay of glucose disposal. Eight percent weight loss improved hepatic 

but not skeletal muscle insulin resistance (105) while 9-11% weight loss slightly (106) and 

20% weight loss greatly improved peripheral insulin sensitivity (107). To achieve such energy 

restriction and weight loss very low calorie diets (VLCD) can be used. VLCDs contain 800 kcal/

day or less. Usual food intake is completely replaced by specific foods or liquid formulas. 

Weight loss on VLCDs averages 1.5 to 2.5 kg/week; total loss after 12 to 16 weeks averages 

20 kg in obese patients. These results are superior to standard low-calorie diets of 1200 kcal/
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day, which lead to weight losses of 0.4 to 0.5 kg/week and an average total loss of only 6 to 

8 kg in 12 to 16 weeks.

Studies show that VLCDs can be used safely in obese insulin-dependent T2DM patients even 

up to a year (107). Already after 2 days of a VLCD, basal EGP declines (108). VLCD-induced loss 

of 50% of the excess weight significantly improves hepatic and peripheral insulin sensitivity. 

The more than 100% increase in insulin-stimulated glucose disposal was accompanied by an 

improvement in insulin signaling at the cellular level. Both basal and insulin-stimulated phos-

phorylation of AS160 improved after the loss of 50% of the excess weight by the VLCD (107).

Some (101,109,110) but not (111) all investigators have found an improvement in QoL after 

diet-induced weight loss. This was mainly due to a reduction in symptoms of the diseases 

associated with excess weight such as low self-image and joint pain. Long-term studies on 

the effect of diet-induced weight loss on QoL in obese T2DM patients are lacking.

Diet-induced weight loss induces a decline in low-grade inflammation (as expressed in 

hsCRP levels), both in obese non-diabetic subjects as well as in obese T2DM patients (112-

114). No data is available on the specific effect of long-term VLCDs on low-grade inflamma-

tion in T2DM.

Diet-induced weight loss might decrease ectopic fat depositions and hereby decrease the 

harmful effects of these excess lipids in non-adipose tissues. Indeed, a decrease in IMCL accu-

mulation following weight loss has been shown in obese subjects and obese T2DM patients 

by some but not all investigators (107,115-117). Even a relatively small drop in BMI consid-

erably reduces hepatic triglyceride content as measured by proton magnetic resonance 

spectroscopy (1H-MRS). The main reduction in hepatic TG content already occurs in the first 

two weeks of the diet (116,118). This is associated with improved hepatic insulin resistance 

as measured by the hyperinsulinaemic euglycaemic clamp technique (78,105,119,120). The 

effect on myocardial TG stores following weight loss in obese T2DM patients has not yet been 

studied.

Long-term maintenance of weight loss with VLCDs is not very satisfactory and is no better 

than with other forms of weight reducing treatment with the exception of bariatric surgery.

Exercise

Physical activity has long been recognized as an effective interventional strategy in the 

treatment of T2DM. The current guidelines for the treatment of diabetes from the ADA, The 

European Association for the Study of Diabetes (EASD) or the American College of Physi-

cians (ACP) all firmly recognize the therapeutic strength of exercise interventions. The ADA 

states that “to improve glycemic control, assist with weight maintenance, and reduce risk of 

CVD, at least 150 min/week of moderate-intense aerobic physical activity is recommended 

distributed over at least 3 days/week” (121,122).
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Prolonged application of either endurance or the combination of resistance- and 

endurance-type exercise training has been shown to increase whole body insulin sensitiv-

ity and improve cardiovascular risk profile in obese T2DM and non-diabetic subjects. This 

is attributed to the concomitant induction of modest weight loss, the up-regulation of 

GLUT4 via non-insulin mediated pathways (i.e. adenosine monophosphate-activated kinase 

(AMPK)), improved nitric oxide-mediated skeletal muscle blood flow, and the normalization 

of blood lipid profiles (123-127). However, studies assessing the effect of exercise training in 

long-standing, insulin-dependent T2DM patients are lacking since these patients are usually 

unable to perform a reasonably intensive exercise program. Literature regarding the effect of 

exercise on QoL in patients with T2DM is conflicting. Exercise can either improve QoL because 

it increases physical fitness and is associated with increased social activity or it can decrease 

QoL due to an increase in body or joint pain, or the negative perception of high psychological 

demands and pressure of participating in an exercise program (128-131).

The effects of acute and chronic exercise are different with respect to the effect on low-

grade inflammation (132,133). Acute exercise can elicit a pro-inflammatory response whereas 

chronic exercise is thought to mediate an anti-inflammatory effect (134). However, in several 

long-term exercise studies the effects on low-grade inflammation were less clear as they 

showed an improvement of hsCRP and IL6 without effects on TNFα levels.

Outline thesis

In previous studies we showed that 50% reduction of excess body weight in obese insulin-

dependent T2DM patients using a VLCD without an exercise program significantly improved, 

but not normalized hepatic and peripheral insulin resistance (107). In these studies ectopic 

fat depositions, mitochondrial capacity, QoL and low-grade inflammation were not studied. 

Therefore in this thesis, we studied both short and long-term effects of addition of exercise 

to a 16-week VLCD on insulin sensitivity, ectopic fat depositions, QoL and low-grade inflam-

mation. Our study population consisted of obese insulin-dependent T2DM patients, who still 

had endogenous insulin secretion as measured by a 1 mg glucagon stimulation test.

Our first aim was to systematically review the literature to look at the effect of diet-induced 

weight reduction and exercise on ectopic fat depositions in the liver, skeletal muscle and 

heart and the function of these organs (hepatic and peripheral insulin sensitivity and cardiac 

function) (Chapter 2).

The second aim was to evaluate whether the addition of exercise had extra beneficial 

effects on insulin sensitivity. Our a priori hypothesis was that addition of exercise would 

further improve and might even normalize insulin sensitivity in T2DM patients. We therefore 

studied both hepatic and peripheral insulin sensitivity before and after the 16-week inter-

vention using a hyperinsulinaemic euglycaemic clamp with stable isotopes ([2H5]-glycerol 
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and [6,6-2H2]-glucose). In addition, muscle biopsies were taken to evaluate the (differential) 

effects of the two interventions on insulin signaling at the myocellular level. Importantly, we 

also evaluated the possible additional effects of an exercise program on mitochondrial copy 

number (muscle biopsy), maximum aerobic capacity (incremental cyclo-ergometer exercise 

test) and substrate (lipid and glucose) oxidation (indirect calorimetry with a ventilated hood) 

(Chapter 3).

The third aim was to evaluate long-term effects (18 months) on weight en glycemic control 

of a 16-week VLCD with or without exercise, and to evaluate the (differential) effects of the 

two interventions (Chapter 4).

Improvement of QoL in T2DM patients is an important treatment goal. Interventions aimed 

at improving the perception of patients of their physical and mental health can enhance their 

commitment to self-management and adherence to therapy that will lead to positive lifestyle 

changes and better diabetes control. Therefore, the fourth aim was to evaluate whether QoL 

could be improved or even normalized using a 16-week VLCD with or without exercise in 

obese T2DM patients. Both short- and long-term (18 months) results of a 16-week VLCD with 

or without exercise on QoL are described in Chapter 4. QoL of the patients was compared to 

that of a healthy lean and healthy obese control population.

Chronic low-grade inflammation is a pathogenetic factor in the development of insulin 

resistance and T2DM. Diet and exercise have been recognized to control T2DM and to amelio-

rate the classic CVD risk factors, such as hyperlipidemia and hypertension (7,135). Reduction 

in bodyweight in obese subjects is associated with a decline in hsCRP levels, and hence low-

grade chronic inflammation. However, it is unclear whether exercise has additional beneficial 

effects, besides the weight loss effect, on chronic low-grade inflammation. Most physical/

fitness studies have been cross-sectional in nature. Therefore, the fifth aim was to study 

both the short- and long-term effect of a 16-week VLCD with or without exercise in obese 

insulin-dependent T2DM patients on low-grade inflammation and cardiovascular risk factors 

(Chapter 5).

Our sixth aim was to evaluate both short (Chapter 6) and long-term (Chapter 7) effects of 

a 16-week VLCD with or without the addition of exercise on quantity and functional effects 

of ectopic fat depositions in the heart. To this end a subpopulation of the study patients was 

studied before, directly after and 18 months after the intervention. Ectopic fat deposition 

in the heart (intramyocardial TG content) was measured using 1H-MRS and was related to 

function of the heart.

Our last and seventh aim was to examine the short (Chapter 6) and long-term (Chapter 

8) effects of a 16-week VLCD with or without the addition of exercise on quantity of visceral 

and subcutaneous fat mass and ectopic fat depositions (in the liver and the pericardium). To 

this end magnetic resonance imaging (MRI) was used to measure pericardial fat, visceral and 

subcutaneous fat mass and 1H-MRS for hepatic TG content.

In the last chapter (Chapter 9) the results are summarized and discussed.
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