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Chapter 2 

 

Update on targets and novel treatment options for 

high grade chondrosarcoma 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the review: van Oosterwijk JG,Anninga JK, Gelderblom 

H, Cleton-Jansen AM, Bovée JVMG, Update on Update on targets and novel 

treatment options for high grade osteo- and chondrosarcoma, Hem/Onc Clinics of 

North America, 2013 
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Introduction 

 

Primary bone tumors are rare and have a very specific age distribution (fig 2.1). 

Conventional osteosarcoma (OS) is the most frequent primary high-grade bone 

tumor in humans with 4 new cases per 106 population and year with the highest 

incidence in adolescence (1). The second most frequent primary bone malignancy, 

chondrosarcoma, accounts for approximately 3 new cases per 106 population and 

year predominantly affecting adults (2).The clinical management of unresectable 

and metastatic disease as well as therapy resistance  remain a clinical challenge (3). 

This review will discuss the molecular pathways that have been identified as a 

result of intensive genome wide and basic biology analysis and rationale to current 

clinical and pre-clinical targets for therapy of these two most frequent bone 

sarcomas 

 

Chondrosarcoma 

 

Clinicopathological features 

Chondrosarcomas are hyaline cartilaginous tumors most often arising in bones 

which develop during endochondral ossification. Incidence and location are shown 

in figures 1 and 2. Conventional chondrosarcoma accounts for approximately 85% 

of all primary chondrosarcomas (3) and prognosis is strongly correlated with 

histological grading. Grade I chondrosarcoma, now reclassified as an atypical 

cartilaginous tumor, shows low cellularity and is locally aggressive, but typically 

does not metastasize (2). Grade II and grade III conventional chondrosarcomas 

show increased cellularity with mitoses and reduced cartilaginous matrix, and a 

corresponding increase in metastasizing capacity alongside poor patient survival 

(2;4). Amongst the rare chondrosarcoma subtypes, dedifferentiated 

chondrosarcoma accounts for up to 10% of all chondrosarcomas and shows a 

dismal prognosis. Dedifferentiated chondrosarcoma is comprised of two 

histologically well distinctive components: a high grade dedifferentiated 

component, and a seemingly low grade cartilaginous component (5). Mesenchymal 

chondrosarcoma is considered high grade and accounts for approximately 3% of 

primary chondrosarcoma histologically showing undifferentiated small round cells 

admixed with well differentiated cartilage (6).  Clear cell chondrosarcoma is 

considered low grade and comprises about 2% of all primary chondrosarcomas, 

demonstrating tumor cells with a clear, empty cytoplasm (7).  
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Figure 2.1. Incidence of chondrosarcoma stratified by age group. Chondrosarcoma 

(CS) is the second most common primary bone malignancy in humans and occurs 

predominantly between the 3rd and 6th decade of life. The increase in incidence observed 

after the 6th decade is attributed to recurrences. Adapted from WHO 2013 

 

Current management of chondrosarcoma and resistance to therapy 

The first line of treatment for chondrosarcoma is surgical resection with local 

adjuvant treatment such as phenol or cryosurgery, followed by filling the cavity 

with bone graft, showing long term local control in atypical cartilaginous tumor / 

grade I chondrosarcoma (8). Due to the necessity of wide resection margins to 

prevent recurrence in grade II and III chondrosarcoma, the patient often needs to 

undergo mutilating surgery. In the event of tumor location at a nonresectable site, 

such as in the skull or pelvis, or metastatic disease, there is still no curative 

treatment (3;9). Chondrosarcoma is notorious for its resistance to conventional 

chemo- and radiotherapy (3). Recently, a phase II study including 25 patients with 

chondrosarcoma using the nucleoside analog gemcitabine (657 mg/m2 on day 1 

and day 8) followed by the anti-mitotic docetaxel (75 mg/m2 on day 8) over a 

course of 21 days, was aborted as only 2 patients showed partial response (10). In a 

recent study including 9 patients with dedifferentiated chondrosarcoma treated 

with surgery and chemotherapy (adriamycin, ifosfamide, cisplatin, and 

methotrexate) all patients died of metastatic disease (11). These results illustrate 

the high need for new targeted treatments in chondrosarcoma, as the conventional 

chemotherapeutics targeting the DNA machinery are not effective.  

Primary chemoresistance of chondrosarcoma has long been ascribed to the 

phenotypic properties, such as hyaline cartilaginous matrix surrounding the cells 

prohibiting access to the cells, poor vascularization, and a slow division rate 

(12;13). As these properties are less prominent in high grade chondrosarcoma, 
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which typically shows less matrix, increased vascularization and increased mitotic 

rate,  the resistance to therapy could also be due to activated anti-apoptosis or pro-

survival pathways (12). Moreover, nuclear accumulation of doxorubicin was 

shown despite the presence of matrix and multidrug resistance pump activity. In 

addition, inhibition of the anti-apoptotic Bcl-2 family members was found to 

overcome resistance to doxorubicin and cisplatin in chondrosarcoma cell lines 

(14).  

 

Targets and novel treatment options in chondrosarcoma 

Over the past years advances have been made identifying multiple active pathways 

in chondrosarcoma, and preclinical work has led to the identification of potential 

targets for clinical trials (table 1). Here the recent identification of IDH mutations 

will be discussed in relation to active survival pathways and HIF1α expression 

found in high grade chondrosarcomas, as well as growth plate signaling pathways 

including anti-apoptotic signaling, and retinoblastoma pathway alterations. 

 
Figure 2.2. Distribution of chondrosarcoma across the skeleton. 
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Survival pathways: IDH mutations 

Mutations in the isocitrate dehydrogenases (IDH) are found in 87% of benign 

enchondromas, 38-70% of primary conventional central chondrosarcoma, and 54% 

of dedifferentiated chondrosarcomas, but not in clear cell or mesenchymal 

chondrosarcomas (15-20). IDH is involved in the tricarboxylic acid cycle (Kreb's 

cycle) (21) and mutations in IHD1/2 lead to a diminished capacity to convert 

isocitrate to α-ketoglutarate (α-KG) and an acquired ability to convert αKG to D-2-

hydroxyglutarate (D2HG), which is considered an oncometabolite (19;21-25).  

The exact mechanism through which D2HG causes tumor formation is unknown 

although increasing evidence points towards epigenetic mechanisms (26-31). 

D2HG impairs the function of the αKG dependent dioxygenase TET2, leading to 

inhibition of DNA demethylation causing CpG island hypermethylation 

(27;32;33). Indeed, enchondromas carrying IDH mutations were hypermethylated 

(17). In addition, D2HG was shown to impair histone demethylation (33). 

Moreover, mutations in IDH are postulated to inhibit the prolyl/lysyl/hydroxylation 

of collagen proteins and thereby their maturation as an IDH1 R132H conditional 

knock-in mouse model showed a reduction in collagen IV maturation (34). Finally, 

D2HG was postulated to induce pseudohypoxia (fig3) by inhibition of the HIF 

proline hydroxylases although this is controversial (22;34;35).  

HIF-1α is upregulated by a multitude of malignancies to cope with reduced 

perfusion, and is associated with increased proliferation, VEGF production, and 

resistance to chemo- and radiotherapy (36-40). High grade conventional 

chondrosarcoma shows activation of the hypoxia pathway through HIF1α (41). 

Most drugs targeting hypoxia, are designed either to target VEGF, the downstream 

target of HIF1α, or to target the PI3K/AKT/mTOR pathway, which can induce 

HIF1α independent of oxygen conditions (fig 3) (36;42). 

 

Survival pathways: PI3K, AKT, mTOR, VEGF 

The PI3K/AKT pathway is often upregulated in cancer and can either inhibit 

apoptosis, or promote cell proliferation (fig 3) (43). Active AKT signaling was 

shown in chondrosarcoma(44) and the PI3K/AKT pathway has been shown to be 

involved in proliferation in mesenchymal chondroprogenitor cells (45). In 

chondrocytes, the PI3K/AKT can be activated by the chondrogenic transcription 

factor SOX9 (46), which is also expressed in chondrosarcoma (47;48). SOX9 

siRNA in a chondrosarcoma cell line (SW1353) induced apoptosis which could be 

rescued by PTEN expression (46). Mutations in the tumor suppressor PTEN are 

rare in chondrosarcoma (49). Perifosine, an AKT inhibitor inhibiting AKT 

membrane recruitment, showed 17% decrease in tumor size in one 

chondrosarcoma patient after two cycles (Steinert, CTOS 2006). A larger phase II 

study was conducted including patients with chemoinsensitive sarcomas but has 

not posted results (NCT00401388).  

Mechanistic TOR (mTOR) is a point of convergence of many pathways involved 

in protein synthesis and cell proliferation, including the PI3K/AKT pathway (fig 
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3). The first suggestion of activation of the mTOR pathway was in mesenchymal 

chondrosarcoma, showing strong cytoplasmic p-AKT, p-mTOR, and PDGFR-

alpha staining (50). In an adjuvant rat orthotopic Swarm Rat chondrosarcoma 

model, everolimus alone or in combination with doxorubicin after curettage 

showed inhibition of mTORC1 and decreased cell proliferation, however, the 

combination with doxorubicin showed an antagonistic effect with activation of the 

mTORC2 pathway (51). Allosteric inhibitors of the mTOR pathway, rapalogs, 

(rapamycin (sirolimus), everolimus, and temsirolimus) have limited efficacy in the 

clinic, but show high synergy with dual PI3K/mTOR inhibitors such as BEZ235 

(52). A clinical trial with temsirolimus and liposomal doxorubicin included 

chondrosarcoma patients (NCT00949325). While awaiting the results of this trial, a 

study including ten patients with unresectable chondrosarcoma who were treated 

with sirolimus and cyclophosphamide showed a disease control rate of 70% (53). 

However, the resistance to rapalogs observed in other malignancies is suggestive 

that in chondrosarcoma a strategy including dual PI3K/mTOR inhibitors such as 

BEZ235 should be considered for future clinical trials.   

Activated Src signaling can also lead to HIF1α expression (fig 3) (12;54;55) and 

promote cell survival. Src signaling was shown to be elevated in chondrosarcoma 

(44), and the tyrosine kinase inhibitor dasatinib showed a decrease in cell 

proliferation in 7 out of 9 cell lines (44). However, in a phase II study no objective 

response was obtained with dasatinib single agent (70mg bid as starting dose) in 

chondrosarcoma patients (Schuetze CTOS 2010).   

Activation of survival pathways can be through stimulation of the receptor tyrosine 

kinases by IGF-1 or PDGF. IGF-1 pathway activation was shown to be involved in 

chondrosarcoma proliferation, migration, apoptosis (56) (57;58), as well as 

progression to malignancy (58). Activation of the PDGF pathway has been shown 

to be related to worse prognosis in chondrosarcoma (59-61). Inhibition with 

imatinib, however, showed no effect in vitro in four chondrosarcoma cell lines 

(44), and in a clinical study including 26 patients no objective response was 

measured (62). HIF1α expression is suggested to result in increased VEGF 

expression in chondrosarcoma (40). Sunitinib and pazopanib are tyrosine kinase 

inhibitors, targeting multiple kinases including both PDGF and VEGF. In 

combination with proton beam radiation, sunitinib was reported to achieve 

complete symptomatic relieve and durable response in a patient with metastatic 

clear cell chondrosarcoma (63). A clinical study with pazopanib is currently 

recruiting chondrosarcoma patients (NCT01330966). 

 

Developmental pathways: Hedgehog  

In osteochondroma, a benign cartilaginous tumor at the surface of bone that can 

give rise to secondary peripheral chondrosarcoma, mutations in the genes encoding 

either exostosin -1 (EXT1) or -2 (EXT2) have been identified (64). EXT1 and EXT2 

are involved in the biosynthesis of heparan sulfate proteoglycans, which are 

necessary for the diffusion of the morphogen Indian Hedgehog (IHH) (65). 
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Recently, osteochondromas were shown to contain a mixture of both EXT mutant 

as well wildtype tumor cells (with functional EXT), and the latter were shown to 

be the precursor cells of peripheral chondrosarcoma (66) since peripheral 

chondrosarcoma have functional EXT, pointing towards a pathogenesis in 

chondrosarcoma independent of EXT.  

 

Figure 2.3. Apoptosis and survival pathways. EXT1/2: exostosin 1/2, IHH: Indian 

hedgehog, PTHrP: parathyroid protein, Bcl-2: B-cell lymphoma 2, BAD: Bcl-2 associated 

protein 2, IDH1/2: isocitrate 1/2, PI3K: phosphoinositide 3-kinase, AKT (PKB: Protein 

kinase B), mTOR: mammalian target of rapamycin, HIF1a: hypoxia inducible factor 1a, 

Src: sarcoma. 

 

IHH is part of a negative feedback loop with parathyroid hormone-related protein 

(PTHrP), creating a tight balance between proliferation and differentiation (fig 3) 

(for review see (67;68)). Aberrant hedgehog signaling is also found in central 

chondrosarcoma (69;70), despite absence of EXT mutations. Blocking of the 

hedgehog pathway with triparanol was shown to be effective (70), but reports on 

the effect of cylopamine are conflicting (69-71).  

A recent randomised phase II clinical trial with IPI-926 (saridegib), a potent 

cyclopamine analogue (72), for patients with metastatic or locally advanced 

conventional chondrosarcoma was terminated as the primary endpoint, 

progression-free survival, was not met (NCT01609179). A second trial is currently 

ongoing with vismodegib, a cyclopamine-competitive SMO-inihibitor 
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(NCT01267955). Preliminary results show stable disease in 4 out of 17 patients 

(Italiano, ASCO 2012). In osteochondroma, primary cilia were found to retain their 

normal length but lose their orientation contributing to loss of chondrocyte 

directionality (73) while 70-100% of human enchondromas and chondrosarcomas 

were found to lack primary cilia (74). In lft88-/- mice lacking primary cilia 

increased hedgehog signaling and enchondroma and chondrosarcoma formation, 

was observed. As cyclopamine depends on the primary cilia for SMO 

accumulation, chondrosarcoma cells lacking primary cilia were unresponsive to 

cyclopamine treatment (74). These results support the role for IHH in initiation of 

chondrosarcoma, and suggest that when inhibiting the hedgehog pathway in 

chondrosarcoma targets should be carefully selected. 

 

Developmental pathways: Anti-apoptosis 

The anti-apoptotic protein Bcl-2 is under direct regulation of PTH1R and is 

upregulated in chondrosarcoma (fig 3) (75). Moreover, Bcl-xl, another anti-

apoptotic protein belonging to the Bcl-2 family was shown to be overexpressed in 

18 chondrosarcoma tissues (76), indicating a specific defense mechanism 

contributing to chemoresistance in chondrosarcoma.  siRNA against Bcl-2, Bcl-xl, 

and XIAP showed an enhanced sensitivity to doxorubicin and radiation (77;78), 

and treatment with the BH-3 mimetic ABT-737, was shown to synergistically 

overcome resistance to doxorubicin and cisplatin (14). Another anti-apoptotic 

protein, not related to the Bcl-2 family, survivin, was also found to be highly 

expressed in chondrosarcoma (79;80) and inhibition experiments in 2 cell lines 

resulted in overcoming resistance to doxorubicin (79). These data point towards an 

effective defense mechanism in which chondrosarcoma cells prevent programmed 

cell death in response to stress signals such as DNA damage.  

Treatment with dulanermin (rhApo2L/TRAIL), a death receptor 4 (DR4) and 5 

(DR5) agonist, showed complete remission in one patient (81), and treatment with 

apomab, a DR5 agonist, showed a 20% reduction in measureable disease in one 

chondrosarcoma patient (82), but showed no efficacy in a follow up phase 2 trial 

with 90 chondrosarcoma patients (NCT00543712). These (pre-) clinical results 

combined with this promising result with dulanermin show that restoring the defect 

in the apoptotic machinery could prove strong therapeutic potential in 

chondrosarcoma. However, since multiple anti-apoptotic proteins are upregulated 

in chondrosarcoma, a multi-targeted approach may be more effective, considering 

that dulanermin, targeting both DR4 and DR5, was more effective than apomab, 

targeting only DR5.   

 

  



Chapter 2                                                                                                          37 
 

 

 
Figure 2.4. RB-1 pathway: p16 is a tumor suppressor and inhibits the cyclin dependent 

kinases (CDKs). Upon loss of p16, active CDKs phosphorylate RB-1 and release it from 

the E2F transcription factors, allowing for E2F target gene transcription and uncontrolled 

cell cycle progression.  

 

Retinoblastoma signaling 

The retinoblastoma protein pRb is a tumor suppressor controlling the cell cycle. In 

the absence of p16INK4A, RB-1 is released from E2F transcription factors such as 

histone deacetylases (HDAC) and cell cycle progression and gene transcription can 

occur (fig 4) (83). Recently Rb was shown to be required for hypertrophic 

chondrocyte differentiation, and Rbc/c/p107-/- mice were shown to develop 

enchondromas, indicating an important role for cell cycle regulation during tumor 

development (84).  

Ninety-six percent of conventional central high grade chondrosarcoma show 

alterations in the retinoblastoma pathway (85); not only through loss of the tumor 

suppressor CDKN2A/p16 (86;87) along with elevated CDK4 (88) but also through 

amplifications of CDK6 and E2F3 (89). In dedifferentiated chondrosarcoma p16 

aberrations were found to be common (85%) and associated with loss of 

chromosome 9p (16) or promoter methylation (90).  In mesenchymal and clear cell 

chondrosarcoma p16 alterations are found in 70% and 95% of the cases, 

respectively (16). Inhibition of CDK4 using shRNA against CDK4 was found to 

inhibit cell proliferation in three central chondrosarcoma cell lines (85). In a phase 

I dose defining study of the HSP90 inhibitor alvespimycin, one chondrosarcoma 
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patient showed CR (>6months stable disease) with reduction in CDK4 levels (91), 

supporting further exploration of HSP90 or CDK4 inhibitors in chondrosarcoma.  

On close proximity to the CDKN2 locus on chromosome 9 is the 

methylthioadenosine phosphorylase (MTAP), an enzyme vital for the recycling of 

adenine and methionine synthesis. Deletions involving the MTAP locus (9p21) 

have been reported in 50% of chondrosarcoma cases (89;92-94). In MTAP 

deficient cells, adenine and methionine are not metabolized rendering these cells 

more sensitive to selective inhibition of de novo purine synthesis. Permetrexed 

disodium is a multitargeted anti-folate preventing the formation of precursor purine 

and pyrimidine nucleotides (95).  A phase II trial with permetrexed disodium, has 

been performed in patients with metastatic or locally advanced chondrosarcoma 

(NCT00107419). No results have been posted yet.  

 

Other therapies: COX-2 and aromatase inhibitors 

Estrogen signaling plays a role in skeletal maturation and was found to be active in 

all chondrosarcoma subtypes (96-98). Even though initial results were promising 

(96;99), a recent retrospective series including 6 patients with locally advanced or 

metastatic chondrosarcoma treated with aromatase inhibitors did not show an 

increase in PFS compared to historically untreated patients (98). The prostaglandin 

synthase cyclooxygenase-2 (COX-2) is upregulated during inflammation, but also 

in for example colorectal, breast and prostate cancer (100). COX-2 upregulation 

was shown in chondrosarcoma (101;102) and to be associated with poor survival 

(103). COX-2 inhibition with celecoxib showed decreased cell viability in 4 

chondrosarcoma cell lines, however, in chondrosarcoma xenografts, a relapse was 

observed after 6 weeks (102). The negative results obtained with aromatase 

inhibitors in patients and COX-2 inhibitors in mice do not support clinical 

implementation of these therapeutic strategies.  
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Table 2.1 Overview of Targets and Selected Trials in chondrosarcoma 

Target Drug Mechanism Clinical results 

Clinical trial 

identifyer  or 

reference 

DNA 

synthesis 

gemcitabine Nucleoside 

analog 

Phase II (n=53) combination with 

docetaxel. Terminated due to lack of 

evidence of efficacy  

(10). 

 permetrexed Prevents 

formation of 

DNA and RNA 

Study completed, no results posted NCT00107419 

AKT/PI3K perifosine Inhibits AKT 

membrane 

recruitment 

Phase I (n=10) combination with 

gemcitabine  

CS patient showed 17% decrease in 

tumor size after two cycles  

NCT00401388 

(Steinert CTOS 

2006) 

mTOR sirolimus mTOR inhibitor Combination with cyclophosphamide 

in 10 patients 

disease control rate of 70%   

(53) 

SRC dasatinib Small molecule 

kinase inhibitor 

Phase II, ongoing, NOR in CS 

 

NCT00464620 

(Schuetze CTOS 

2006) 
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PDGF sunitinib 

(SU11248) 

Multi-targeted 

receptor tyrosine 

kinase inhibitor 

Phase II, completed, no results posted 

Case study: Antitumor activity in 2 

patients with extraskeletal myxoid CS  

Case study: Durable response after 

combination with proton beam 

radiation in 1 patient with metastatic 

clear cell CS 

NCT00474994 

(104) (63) 

 imatinib Competitive 

tyrosine kinase 

inhibitor 

Phase II (n=26), NOR  

 

(62) 

 pazopanib Blocks 

autophosphospho

rylation of PDGF 

receptors, VEGF 

receptors, FGF 

receptors 1 and 

3; inhibits Kit 

and Lck 

Recruiting NCT01330966 

Hedgehog saridegib (IPI-

926) 

Smoothened 

inhibitor 

Study terminated due to lack of 

evidence of efficacy 

Ongoing 

NCT01609179 

 

NCT01310816 

 vismodegib 

(GDC-0449) 

Smoothened 

inhibitor 

Ongoing NCT01267955 
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Apoptosis Dulanermin 

rhAPO2L/TRAIL 

(AMG 951) 

induces 

apoptosis 

through binding 

to DR4 and DR5  

Phase I study n=71  

2 CS patients durable PR  

Case study: near CR over 78 months in 

one patient with metastatic disease  

(81;105) 

 apomab Mono-clonal 

IgG1 anti-

antibody that 

triggers extrinsic 

apoptotic 

pathway through 

DR5 

Phase I study n=50, terminated due to 

lack of evidence of efficacy 

CS patient 20% reduction in 

measurable disease  

(82) 

Rb 

pathway 

alvespimycin HSP90 inhibitor Phase I study n=25 

CS patient CR with reduction in CDK4 

levels  

(9) 

CS: chondrosarcoma, NOR: no objective response, CR: complete response, PR: partial response.  
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