
Flat but not shallow : towards flatter representations in deep semantic
parsing for precise and feasible inferencing
Reckman, H.

Citation
Reckman, H. (2009, March 18). Flat but not shallow : towards flatter representations in
deep semantic parsing for precise and feasible inferencing. LOT dissertation series. LOT
Netherlands Graduate School of Linguistics, Utrecht. Retrieved from
https://hdl.handle.net/1887/13687
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13687
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13687


Flat but not shallow
Towards flatter representations in deep semantic

parsing for precise and feasible inferencing



Published by
LOT Phone: +31 30 253 6006
Trans 10 Fax: +31 30 253 6000
3512 JK Utrecht e-mail: lot@let.uu.nl
the Netherlands http://wwwlot.let.uu.nl

Cover illustration: Earthrise seen for the first time by humans eyes. Photo taken by
the crew of Apollo 8, 24 December 1968. Made freely available by
NASA.
http://www.hq.nasa.gov/office/pao/History/alsj/a410/AS8-13-2329HR.jpg

ISBN: 978-90-78328-80-3
NUR: 616

Copyright c© 2009 Hilke Reckman. All rights reserved.

This dissertation is typeset using LATEX.



Flat but not shallow
Towards flatter representations in deep semantic

parsing for precise and feasible inferencing

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op Woensdag 18 maart 2009
klokke 16.15 uur

door

Hilletje Gezina Bouwke Reckman

geboren te Groningen
in 1978



Promotiecommissie

Promotores: Prof. dr. V.J.J.P. van Heuven
Prof. dr. J.H.M. Schonk

Co-promotor: Dr. C.L.J.M. Cremers

Referent: Prof. dr. F. de Jong (Universiteit Twente)

Overige leden: Dr. B. Arsenijević (Universiteit van Amsterdam)
Prof. dr. L.L. Cheng
Prof. dr. G.A.M. Kempen (Max Planck Instituut voor Psycholinguistiek)
Dr. A. van der Wouden

The research reported here was conducted in the context of the ToKeN-project ‘Narrator’,
funded by the Dutch Organization for Scientific Research (NWO).



To my parents





Contents

Acknowledgements xi

Introduction 1

1 The Narrator project, retrieval, and inference 7
1.1 The Narrator project and system . . . . . . . . . . . . . . . . . . . . . 8
1.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Different types of information retrieval . . . . . . . . . . . . . 10
1.2.2 Information retrieval in Narrator . . . . . . . . . . . . . . . . . 12
1.2.3 Hybrid retrieval in Narrator . . . . . . . . . . . . . . . . . . . 13
1.2.4 The issue of evaluation . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Logical textual entailment . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Entailment and implicatures . . . . . . . . . . . . . . . . . . . 16
1.3.2 The RTE challenges . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 The RTE data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 The approach for Narrator . . . . . . . . . . . . . . . . . . . . 22

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Delilah: a semantic parser/generator for Dutch 25
2.1 The grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 The lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 The semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Stored Logical Form . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Conversion of lambda terms . . . . . . . . . . . . . . . . . . . 42
2.3.3 Stores and quantification . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Other scopal elements . . . . . . . . . . . . . . . . . . . . . . 50
2.3.5 Scope disambiguation and underspecification . . . . . . . . . . 55
2.3.6 Adjuncts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.7 Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.8 Anaphora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.9 Extended Lexical Units . . . . . . . . . . . . . . . . . . . . . . 67
2.3.10 The representation of concepts . . . . . . . . . . . . . . . . . . 70
2.3.11 Event semantics . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.12 Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . 72



viii CONTENTS

2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1 Extending the lexicon and the grammar . . . . . . . . . . . . . 72
2.4.2 Dealing with unknown words . . . . . . . . . . . . . . . . . . 73

2.5 Other computational semantics systems . . . . . . . . . . . . . . . . . 73
2.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Events in the semantics 77
3.1 Neo-Davidsonian event semantics . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Naming the event . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1.2 Existential closure of events . . . . . . . . . . . . . . . . . . . 80
3.1.3 Thematic roles . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.4 Conclusions and suggested approach for Delilah . . . . . . . . 94

3.2 Events for verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.1 Simple eventive verbs . . . . . . . . . . . . . . . . . . . . . . 95
3.2.2 Auxiliaries and epistemic modals . . . . . . . . . . . . . . . . 95
3.2.3 Infinitival and propositional complements . . . . . . . . . . . . 96
3.2.4 Causatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.5 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.6 Parallel sub-events . . . . . . . . . . . . . . . . . . . . . . . . 106
3.2.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . 107

3.3 Nominalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3.1 Event semantics for nominalizations . . . . . . . . . . . . . . . 108
3.3.2 Expression of participants . . . . . . . . . . . . . . . . . . . . 109
3.3.3 Support verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.4 Temporal relations . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.5 Unexpressed arguments as pronouns . . . . . . . . . . . . . . . 119
3.3.6 Events and results . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.7 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.8 Other computational approaches to nominalizations . . . . . . . 122
3.3.9 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . 124
3.3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.4 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.1 Adjectives and nouns . . . . . . . . . . . . . . . . . . . . . . . 125
3.4.2 An alternative representation . . . . . . . . . . . . . . . . . . . 126
3.4.3 Adjectives and adverbs . . . . . . . . . . . . . . . . . . . . . . 131
3.4.4 Simple nouns . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.5 Stative light verb constructions . . . . . . . . . . . . . . . . . . . . . . 134
3.5.1 The state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.5.2 The light verb . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.5.3 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5.4 Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.6 General conclusions event semantics . . . . . . . . . . . . . . . . . . . 137



CONTENTS ix

4 Flat Logical Form 139
4.1 The limitations of first-order logic representations . . . . . . . . . . . . 139
4.2 An overview of FLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3 Scopal dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.4 Entailment properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4.1 Increasing and decreasing entailment . . . . . . . . . . . . . . 146
4.4.2 Properties changing under scope . . . . . . . . . . . . . . . . . 148
4.4.3 The influence of non-monotone quantifiers . . . . . . . . . . . 152
4.4.4 Relevance for functional predicates . . . . . . . . . . . . . . . 156
4.4.5 More fine-grained properties of quantifiers . . . . . . . . . . . 157
4.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.5 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.1 Flattening negation . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.2 DeMorgan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.3 Splitting decreasing quantifiers . . . . . . . . . . . . . . . . . . 167
4.5.4 Consistent and complete entailment patterns . . . . . . . . . . . 170
4.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.6 Underspecification and disjunction . . . . . . . . . . . . . . . . . . . . 171
4.7 Entailment on FLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.7.1 Basic conjunctive entailment . . . . . . . . . . . . . . . . . . . 174
4.7.2 Modifications for conjunctions in non-increasing contexts . . . 175
4.7.3 Entailments between quantifiers . . . . . . . . . . . . . . . . . 177
4.7.4 Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.7.5 What else is needed for deriving entailments? . . . . . . . . . . 180

4.8 Representation of text and hypothesis for entailment . . . . . . . . . . . 181
4.9 Examples of queries and inferences on real text . . . . . . . . . . . . . 184
4.10 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . 195

Conclusions and outlook 197

Samenvatting in het Nederlands 217

Curriculum Vitae 223





Acknowledgements

This thesis is a result of the Narrator project, made possible by NWO. I would like to
thank NWO and the Narrator group, in particular Regina Overberg, Pieter Toussaint, Leo
Wolf, Henk Herman Nap, Eduard Hoenkamp, and Gerard Kempen, the other ‘kikkers’,
and Christiane Klöditz from NWO.

Above all, I would like to thank those whose names in good Leiden tradition are
conspicuously absent form this list and the ones below, but without whom this thesis
would not have been there.

At LUCL I want to thank Boban Arsenijević, Anita Auer, Linda Badan, Sandra
Barasa, Birgit Bexten, Sylvia Blaho, Hans Broekhuis, Martine Bruil, Leston Buell, Lisa
Cheng, Liesbeth De Clerck, Camelia Constantinescu, Jeroen van Craenenbroeck, Jenny
Doetjes, Marius Doornenbal, Marion Elenbaas, Noureddine Elouazizi, Barbara Floris,
Egbert Fortuin, Thea Gagnidze, Veronique van Gelderen, Dafna Graf, Stella Gryllia,
Gea Hakker, Margarita Gulian, Sita ter Haar, Anne-Christie Hellenthal, Allison Kirk,
Annemiek Hammer, Willemijn Heeren, Roland Hemmauer, Pepijn Hendriks, Maarten
Hijzelendoorn, Juliette Huber, Mélanie Jouitteau, Alwin Kloekhorst, Elisabeth Koier, Jan
Kooij, Marjo van Koppen, Maarten Kossmann, Frantis̆ek Kratochvíl, Leontine Kremers,
Guus Kroonen, Nancy Kula, Nana Kusuma, Melissa Kwee, Stephen Laker, Frank
Landsbergen, Maarten van Leeuwen, Claartje Levelt, Boya Li, Kathrin Linke, Anikó
Lipták, Sara Lusini, Kristin Meier, Alice Middag, Ineke van der Meulen, Maarten Mous,
Karlijn Navest, Victoria Nyst, Marc van Oostendorp, Jos Pacilly, Michaël Peyrot, Mika
Poß, Tijmen Pronk, Felix Rau, Chris Reintges, Kristina Riedel, Johan Rooryck, Martin
Salzmann, Graziano Savá, Thilo Schadeberg, Jos Schaeken, Niels Schiller, Franziska
Scholz, Erik Schoorlemmer, Joanna Sio, Arlette Sjerp, Kác̆a Souc̆ková, Sander Steeman,
Robin Straaijer, Rint Sybesma, Amir Tauber, Tanja Temmerman, Kalinka Timmer, Elena
Tribushinina, Rada Trnavac, Assimakis Tseronis, Marina Tzakosta, Michiel de Vaan,
Marijn van ’t Veer, Rinus Verdonschot, Arie Verhagen, Margreet Verra, Luis Vicente,
Rebecca Voll, Mark de Vos, Jenneke van der Wal, Jeroen van de Weijer, Jurriaan
Witteman, Leo Wong, and Ton van der Wouden. Although not members of LUCL, to
me Merijn de Dreu and Asad Jaber also belong in this list. You, the inhabitants of 1166
and surrounding buildings, were a great community to be part of. Special thanks to Thea
for helping me integrate into the PhD crowd before I even started. And a big thank you
to Jeroen, Gea, Margreet, Alice and Jos for keeping the institute up and running.

Sitting alone in the office the whole day is not something I enjoy very much.
Therefore I am especially grateful for the officemates I had over the years: Boban (my
long-term officemate and older brother in linguistics), Noureddine, Leo, Stella, Jeroen,
and my present officemate Rinus. Lately my officemates have not been there very much,
but fortunately having Maarten next door pretty much made up for that. Thanks Maarten,



xii Acknowledgements

for all your help. I am also thankful to Erik for regularly dropping by at my office with his
cheerful presence and the latest gossip, to Birgit for giving me tea every time I dropped
by at her office, and to Mika for good stories and common linguistic interests and trips.
And of course thanks to everyone who picked me up for lunch.

I also would like to express my thanks to the organizers of LUSH; Berit, Jakub, Jenny,
Marieke, Kác̆a, Bert, Evangelia, Matteo, and all the others involved. It was good to have
regular semantics talks to go to.

In the course of my PhD I attended lots of LOT schools and one of the Egg schools.
I very much appreciated this opportunity. Courses that I found particularly useful
and/or inspiring were those taught by Antal van den Bosch, Antonella Sorace, Miranda
van Turenhout, Simon Garrod, Rick Nouwen, Marcus Egg, James Pustejovsky, Anatol
Stefanowitsch, and Luc Steels. I am also very happy about having met so many other
students at these schools. Here I stand no chance of providing a complete list, but Rafał,
Kasia, Asia, Olga, Irene, Wieneke, Maren, Nino, Øystein, Jutta, Natas̆a, Veronika, Ingrid,
Ming, Janneke, Diana, Roberta, Eleonora, Anne, Hedde and Robert should certainly be
in there.

Taking courses is great, but so is teaching. I was lucky to get the chance to teach, and
to have students who enthusiastically participated in the courses.

I express my gratitude as well to the audiences of the talks I gave, for their attention
and comments, and I thank LUF for sponsoring my participation in ICoS-5.

Since the home environment is as important as the work environment, I’m saying
thanks to the neighbors from the PhD ghetto, in particular Graciana, Eva, Frank, David,
Andreas, Kristo, Hana, Christian, Otto, Rob, Esther, Orion, and Percy. And thanks to
Martijn and Moira for helping us take over their apartment.

Others that I could always count on to give me a needed break from linguistics are
the astronomers; Dominic, Demerese, Sergio, Bob, Helen, Stijn, Remco, Sarah, Liesbeth,
Ned, Niruj, and many others.

I thank Diana, Gabriëlle, Zuzana, Mathieu, and Selina for their friendship, and
Ayman for making me more aware of my ambitions, helping me realize that a PhD was
what I wanted to go for.

In the end, I guess, I owe this success largely to my family who I can always count
on and who have always been convinced of my intellectual capabilities and encouraged
me to use them.

And finally Simon, thanks for your continuous love and support and for always
believing in me, and also for telling me lots about astronomy and for making me
rediscover sports, which greatly contributed to me surviving my desk job. Meeting you
has upgraded my life considerably in many ways, and I’m looking forward to a lot more
time with you.



Introduction

Simulating natural language understanding on the computer is a great challenge.
Advancements in this field will not only provide valuable insights into how human
language works, but also create possibilities for applications with a far reaching impact
on the ways in which we store and retrieve data. (Imagine having the kind of cooperative
speaking computer they use in Star Trek.)

A way to approach this challenge is by building systems that translate natural
language sentences into logical propositions. Such semantic representations are referred
to as logical form. Provers have been implemented for several logics, allowing
for automated reasoning to be performed on information presented in these logics.
First-order logic is popular among those who want to do ‘deep’ semantics; full
propositional analysis including quantification. Reasoning with first-order logic is
however computationally demanding and therefore too slow for many purposes. As a
result there is a trend toward using formalisms of ‘shallow’ semantics, which are easier
to process, but unfortunately less expressive. Many aspects of natural language meaning
cannot be adequately represented in these. In particular, quantifiers tend to be ignored.

Logical form is considered to be a level of grammatical representation at which
semantic consequences can be computed (Higginbotham, 1985). Semantic consequences
are called entailments. The computing of such entailments is called inference. Entail-
ment will be a central notion in this thesis. If the truth of a sentence A necessarily makes
a sentence B true as well, we say that A entails B. We will see more formal definitions of
entailment in chapter one.

In this dissertation a format of logical form is developed that is easier to process
than first-order logic, while actually being able to express more linguistic meanings.
It was especially designed to make the computing of many kinds of entailments as
easy as possible. The entailment patterns induced by a wide range of natural language
determiners/quantifiers can be captured. These logical forms are rather flat in structure.
Here, ‘flat’ means that the information is not arranged hierarchically, which keeps
the structure simple. The logical forms are also rich in information, incorporating,
for example, modern insights in the semantics of eventualities in words of different
grammatical categories. All together this makes the representations flat but not shallow;
manageable in processing but rich in semantic information relevant to entailment.

The research presented in this thesis was conducted in the context of the Narrator
project. This project, which is part of the NWO ToKeN program, aimed at developing an
information system that provides retrieval on essentially free narrative text. The work in
this thesis focuses on automated semantic analysis obtained through deep parsing. The
objective is to develop meaning representations that are optimized for retrieval by means
of a form of automated reasoning.



2 Introduction

The approach taken relies on the hypothesis that explicit knowledge of language
can be assembled, formalized and exploited up to full semantic interpretation, and is
considered complementary to statistically based and sub-symbolic strategies to language
processing.

Computational linguistics started off with linguists building systems that were
based on hand-coded grammar rules. This method was soon found to have several
disadvantages. The hand-coding was very labor-intensive, and grammars and lexicons
were never complete. In addition, there were problems of huge and often spurious
ambiguity. Hence, such attempts resulted in systems that left much to wish for in
terms of efficiency and robustness. The development of statistical approaches led to
fast progress on these points. Statistics-based methods for tagging, chunking, shallow,
and deeper syntactic analysis are by now quite well consolidated and have proven to
provide a solid basis for natural language analysis. Recently, however, there is a growing
consensus that to go beyond this basis and simulate a more fine-grained understanding
of language, shallow methods need to be combined with so called ‘deep’ analysis. For
instance, performance in the recent TREC Question Answering tracks has been reported
to show that inferencing substantially improves response relevance and accuracy (Dang
et al., 2007; Voorhees and Harman, 2005). The growing interest in the Semantic Web
is a related development. Its goal is to develop a common semantic annotation scheme
for web data (Berners-Lee et al., 2001). Ideally it should be possible for the annotation
to be performed automatically. At the same time several more linguistically informed
search engines, which want to compete with Google, are emerging. The need for a closer
approximation of natural language understanding reflected in these developments is one
of the main motivations for the course of research pursued in this thesis.

Attempts to build systems that automatically analyze or produce natural language
have at least two major purposes. One purpose is to increase understanding about how
language works in humans by means of modeling. The other is to develop all kinds of
useful applications. Often, the same research can be relevant to both goals, but sometimes
they require different priorities. Consider, for example, information retrieval systems that
help us process the overload of information we are confronted with. These are among the
most urgent applications to be developed. They are on the one hand required to process
text much faster than a human reader can, but on the other hand they do not necessarily
need to replicate the full human understanding of a text in order to be useful. This means
that for some tasks it can be useful to rely only on the specific strengths of the computer,
rather than trying to replicate the way a human would approach it.

The project of this thesis is application oriented in its aims. Still, the research carried
out is rather fundamental in nature. To the extent that it is available, psycholinguistic
research is considered an important source of information and inspiration. The human
brain proves so far to be the best natural language processor that exists, so any
information about how this process works is relevant in principle. Unfortunately
very little is known so far about how meaning is processed in the brain, and those
psycholinguistic insights that do exist are not always straightforward to implement. This
is true not least because the way that computers can approach language is fundamentally
different from the way humans do. Computer systems typically have no access to



3

meaning at all. For humans, understanding the meaning of words and utterances is an
essential part of language acquisition. No human child will acquire a language just by
being exposed to a corpus, when there is no way to find out what the utterances in the
corpus could possibly be about. An exception to the usual computer systems are robots
such as the ones developed by Steels and his group, which develop their language by
playing language games. They can be more like humans, because they are aware of their
surroundings and learn by interaction (Steels and Kaplan, 2001).

The success of statistic parsers shows that it turns out to be possible to learn a lot
about syntactic structure, starting out with minimal assumptions, merely by looking at
the distribution of word forms, and without any access to meaning. To some extent,
computers can work around the meaning problem by comparing lots of data. After
all, if semantics is indeed (as computational semanticists assume) compositional, then
it follows in a predictable way from words and structures. Even though it is not possible
for a system to know what an utterance is about, it might be able to figure out if it is likely
to be about the same thing as some other utterance. However, this has its limits, because
more knowledge is needed than can be extracted. It is hardly possible to find systematic
and reliable data to learn about different ways of paraphrasing. In order to compute
meaning from words and structures, one needs to know the meaning of those words
and structures. Especially the meanings of function words are crucial. For automated
reasoning it is, for example, important to know the monotonicity properties of quantifiers.

Achieving high precision in advanced tasks, such as question answering, or open
domain textual retrieval that goes beyond keyword search, requires a semantic level of
analysis. The semantic representations need to be such that they are suitable input for
automated reasoning algorithms. The problem with meaning is that it is, so far, not quite
clear how best to represent it. Meaning is much harder to grasp than syntactic structure.
For syntactic analysis the words need to be organized in hierarchical structures. This
is potentially also very difficult, but it has become clear that for practical applications
surface oriented syntactic analysis is quite successful. As a matter of fact, for computing
deep semantics, a syntactic basis of this type also appears to be sufficient. First-order
logic is often used for deep semantic analysis, but is not an ideal solution, both because
it is not a perfect match in terms of what can be expressed, especially in the domain of
quantifiers, and because reasoning with first-order logic is still very hard. And even if
the general format were decided on, there are still many issues to be resolved. We will
see several examples throughout the chapters, concerning issues like events, participant
roles, degrees and quantification.

Assembling the knowledge needed for fine-grained semantic analysis, in the form
of lexicons, ontologies and the like is a huge task. This does not mean that it is not
feasible — think of the investments that are being made in conventional dictionaries.
It only needs to be worthwhile. And for computational semantics resources it will be
worthwhile as soon as there are well-consolidated, useful and satisfying methods of
semantic representation. The development of such methods is what this thesis is intended
to contribute to. The main criterion will always be that the representations have to support
wanted entailments while blocking unwanted ones.

This research concentrates on the semantic component of the Delilah parser. This is



4 Introduction

the first and so far the only compositional semantic parser for the Dutch language. It is
an operational model of how logical form is computed.

The thesis consists of four chapters. The first chapter discusses the Narrator project as
a retrieval task. Also, the notion of entailment and the problems of automated inference
are discussed in more detail, in the context of the Recognizing Textual Entailment (RTE)
challenges (Dagan et al., 2006). It serves to set the background and present the current
state of research in inference and retrieval. The rest of the thesis sets out to contribute to
a way of improving the logical inference track to retrieval and related tasks, through the
development of better suited semantic representations.

Chapter two introduces the Delilah parser and generator, which is designed to
compute logical representations of texts. It is a strongly lexicalist system, in which
the lexicon consists of typed feature structures. The basis of the system is a categorial
grammar with rigid types and multiple modes of composition. The main focus of the
Delilah system is precise semantic analysis. In the chapter I explain how the semantic
analyses are derived, starting out from the grammar and the lexicon. I discuss some
problems that still exist in the system, such as some syntactic gaps, matters of quantifier
scope, and robustness issues.

Chapter three discusses the implementation of event semantics. This is a first step
towards making the representations flatter and giving them more handles for inference.
I discuss how event semantics was implemented for the different types of verbs, but
also for nominalizations. The approach is extended to states expressed by adjectives and
abstract nouns. The results are shown to be relevant for light verb constructions. The
choices that were made are discussed in the context of inference. The representations are
designed to make the correct entailments follow in a straightforward manner.

The fourth chapter then explores a way of representation that is flatter than first-
order logic, while incorporating higher-order quantifiers: Flat Logical Form (FLF),
designed to allow for improved inference-based retrieval. FLF is a conjunction of
predicates over variables, in which the quantifier that binds the variable, the quantifiers
and other operators that this quantifier is dependent on, and the entailment direction for
the predicate resulting from these two factors are coded on the variable. The resulting
representations are more informative than standard logical representations and at the
same time easy to process.

Both event semantics and FLF thus contribute to making the representations flatter.
The representations are now less hierarchical and contain less embedding and thus have
a simpler syntax that makes more parts of the representation available at a higher level.
FLF takes the form of a conjunction, which is a maximally flat structure, because
hierarchy is irrelevant, as the results of all possible ways of assigning hierarchical
structure are equivalent. Some relations between the conjuncts do need to be taken into
account in FLF, but it is always locally decidable which ones. For example, if a conjunct
is dependent on another one, this is marked on the conjunct itself. In other systems, the
choice of flat representations that ease processing often results in shallower semantics,
that ignores, for example, quantification. The flat FLF representations are, however, not
shallow. They are at least as rich in information as the event semantic representations in
the traditional format.



5

Whereas the long term goal in this research is to contribute to an application like
Narrator, the immediate goal in this thesis is to develop ways of semantic representation
in Delilah that are more suitable for automated inference in terms of both detail and
feasibility. Implementation is discussed to show how the representations argued for can
be computed.





Chapter 1

The Narrator project, retrieval, and
inference

Narrator is a project in the NWO ToKeN1 program, in the health-care domain. It’s goal
is to develop the Narrator system, a system accessible via internet that discloses narrative
texts relating the experiences of breastcancer patients. Narrator will help breast cancer
patients to find matching stories of others on the internet.

The Delilah parser, protagonist of the other chapters in this thesis, is to be a
central part of the language technology used in Narrator. An important ambition in
the development of Delilah is that the semantic representations that are its output
will facilitate automated inference, for example for the retrieval of information and/or
documents. In this chapter I will discuss this against the background of the Narrator
project. Building on the strengths of Delilah, Narrator pursues a method of retrieval that
involves logical inference on semantic representations.

In the first section I give some information on the Narrator project and system. And
in the second section I give a brief sketch of the field of information retrieval and how the
perspectives for Narrator fit in there. Together these sections will provide a somewhat
more concrete picture of the kind of retrieval task it is about. It is explained how Delilah
and a retrieval tool that works on its representations are envisaged to work together with
other components. The next section discusses the difficulty of automated inference,
which is the road to retrieval that we focus on, and some work that has been done in
the context of the Pascal Recognizing Textual Entailment (RTE) challenge. This section
about inference is of the most direct relevance to the work described in the other chapters.
The rest is background, sketching the long term perspectives of such efforts.

The Narrator system has not yet been built. Overberg (forthcoming) explored the role
Narrator could play in the sharing of experiences between patients. The present work
focuses on detailed semantic representation to be used in the logical track to inference,
which in turn can be employed in retrieval tasks where precision is prioritized. In this
chapter I explain how and why the approach taken is expected to contribute to retrieval
in a system like Narrator.

1ToKeN stands for Toegankelijkheid en Kennisontsluiting in Nederland ‘Accessability and Knowledge
disclosure in the Netherlands’



8 Chapter 1. The Narrator project, retrieval, and inference

1.1 The Narrator project and system
This section describes the Narrator project in some more detail. The Narrator project
started out as a joint project of the Clinical Informatics group of the Leiden University
Medical Centre (LUMC), the J.F Schouten school for User-system Interaction of the
Technical University Eindhoven (IPO institute), and the Leiden University Centre for
Linguistics (LUCL). Later, the Nijmegen Institute for Cognition and Information (NICI)
also joined. It serves as a larger frame to give direction to the different sub-projects,
among which is the work of this thesis.

The project aims at the development of a natural language dialogue system that
discloses personal narratives to facilitate patients (and their relatives) in finding relevant
experiences of their fellow patients. The system should take into account their personal
profiles and information need (Wolf et al., 2006). The particular case studied in the
project is the development of such a system for female breast cancer patients. This is
a group of patients for which there was evidence that they could benefit from such an
information system, especially in the period after treatment.

It was decided that the system will be a web-based application, so that access is
anonymous, and available from any place with an internet connection, e.g. home or
hospital. The required level of detailed analysis to support a patient in finding appropriate
illness stories in the diverse set of available stories is to be provided by natural language
analysis techniques that facilitate content-based retrieval.

There already are websites available on which breast cancer patient can share their
experiences. However, none of the websites implements search facilities based on either
the content of an illness story, or the personal features of the author. A minority of the
websites offer information about the illness stories, such as the author’s genuineness and
editor’s review (Overberg et al., 2006).

Figure 1.1 from Wolf et al. (2006) gives an overview of the functional design of the
Narrator system.

The basic component of the system is of course a database with narratives by breast
cancer patients. These are initially collected from various sources by the developers of
the system. When the system is up and running users can also send in their own stories.
Narratives are free text and as a consequence they will vary a lot in length and style, and
typically contain some imperfections, such as unfinished sentences or errors in spelling
and grammar. Some obstacles to parsing, such as typos, can be repaired. Other problems
are solved by making the parser more robust. For example, for unfinished sentences it
is preferred to give a partial parse, rather than to complete the sentence by hand before
parsing, which would compromise the authenticity of the document.

The narratives are to be parsed by the Delilah parser resulting in semantic represen-
tations of the text. Parsing happens off-line and the semantic representations are stored
alongside the texts. This allows in principle for manual corrections or adaptations to
the representations if needed. Moreover, words that occur in the text, but not in the
lexicon, can be added to the lexicon and the text can be re-parsed for a more complete
representation.

For retrieval, a combination of logic-based retrieval tools and statistics-based retrieval
tools, such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990; Hoenkamp,



Section 1.1. The Narrator project and system 9

Offline:
1. narratives input to parser

2. matrix input for LSA

3a. templates processed
3b. LSA matrix finished

4. LSA output stored

LSA input matrix
- narratives
- concepts

Categorial
semantic
parser

LSA 
module index +

metadata

Narrator   
Interface

Associator
module

Relevant concepts 
from clinical research

Concepts 
in search 
query

User 
profile 
data

Online:
5. patient inputs query

6. concepts are retrieved

7. answer produced

2

3a

5

6 7

3b
4

1

Figure 1.1 — The Narrator system in offline and online mode

2003; Landauer et al., 1998) was conceptualized. The integration of these is discussed in
section 1.2.3.

At least the logic based retrieval is aided by the use of ontologies for extra
information. Quite elaborate medical ontologies are available, but their role in Narrator is
rather limited as the focus of the narratives is in general not medical. Instead, narratives
tend to deal with issues like coping with emotional aspects and the impact of cancer on
daily life (Overberg et al., 2007). These are also the topics that users are most interested
in. Retrieval therefore also benefits from more general ontologies, for example of the
WordNet type (Miller et al., 2004). For Dutch, the most promising database of lexical
semantic information is Cornetto (Vossen et al., 2007)(see also 3.1.3).

Key concepts relevant to the topics users are most interested in can be given extra
weight in the LSA clustering . Good candidates are, for example, emotion terms. Stories,
or story fragments can also be annotated with terms that reflect their main topics, for
direct search.

Another source of information is meta-data about the author, such as age, family
situation, type of treatment received, presence of metastases, and time since diagnosis.
This information can be added to the text as logical propositions to provide background
information that is taken into account in retrieval, in addition, it can be directly used
as search criteria. Potential users show interest in such search options (Overberg et al.,
2007).

In the user interface, the user enters a query. Apart from the option of a detailed



10 Chapter 1. The Narrator project, retrieval, and inference

search in natural language, it is probably a good idea to have some ‘ready made’ search
options, with which users can search for stories with the most popular features for content
and author information. This will enable users to familiarize themselves with the system
and the kind of stories in it, before starting to formulate their own queries for a more
specific search.

An associator module acts as a kind of mediator between the off-line mode (preparing
the narratives) and the online mode (processing the query and finding a match). It uses
structures generated in the off-line process as well as query information from the user
interface to produce an answer. Information from previous online sessions (in the form
of profiles) is kept to further assist in the search and retrieval process.

1.2 Information Retrieval
Information retrieval is concerned with locating information that will satisfy a user’s
information need. The present section is about the retrieval of written text, in tasks like
document retrieval and question answering. The typical traditional text retrieval system
is the library catalogue that helps the user find books that fulfill certain criteria. A type
of document retrieval system that is very commonly used nowadays are search engines
on the internet.

1.2.1 Different types of information retrieval

The Text REtrieval Conference (TREC) can be considered to represent the state of the
art in Information Retrieval. It is a series of workshops designed to foster research on
technologies for information retrieval. The Cross-Language Evaluation Forum (CLEF) is
its multilingual counterpart. Each year they run a number of different tracks. The tracks
differ in themes and tasks. As Voorhees (2007) puts it:

The tracks serve several purposes. First, tracks act as incubators for new
research areas: the first running of a track often defines what the problem
really is, and a track creates the necessary infrastructure (test collections,
evaluation methodology, etc.) to support research on its task. The tracks
also demonstrate the robustness of core retrieval technology in that the same
techniques are frequently appropriate for a variety of tasks. Finally, the
tracks make TREC attractive to a broader community by providing tasks
that match the research interests of more groups.

A text-collection is made available for each track. Test collections consist of three parts:
a set of documents, a set of information needs (called topics in TREC), and relevance
judgments, an indication of which documents should be retrieved in response to which
topics. The result of a retrieval system executing a task on a test collection is called a
run.

TREC distinguishes between a statement of information need (the topic) and the data
structure that is actually given to a retrieval system (the query). Participants are free to



Section 1.2. Information Retrieval 11

use any method they wish to create queries from the topic statements, whether automatic
or manual.

Over the years there have been two main trends in the development of the text
collections. They moved from smaller to larger sets of documents, and from news
wire texts to a broader spectrum (such as recordings of speech, web pages, scientific
documents, blog posts, email messages, and business documents).

Different types of tasks can be distinguished. The most typical one is the ad hoc task,
in which the system cannot anticipate the particular topic that will be investigated. A
retrieval system’s response to an ad hoc search is generally an ordered list of documents
sorted such that the documents that the system believes are more likely to satisfy the
information need are ranked before the documents it believes are less likely to satisfy the
need. In a categorization task, on the other hand, the system is responsible for assigning
a document to one or more categories from among a given set of categories. Deciding
whether a given mail message is spam is one example of a categorization task. The 2007
blog track contained a polarity task, in which opinions were determined to be ‘pro’, ‘con’
or mixed. This is a second example. A task can require to return an entire document or
precisely the answer to a question. Different levels of granularity in between are also
possible.

The relevance of a document to a topic is judged by trained annotators. In order to
avoid having to annotate each document for each topic in a large collection of documents,
a technique called pooling is used. In pooling, the top results from a set of runs are
combined to form the pool and only those documents in the pool are judged. Runs are
subsequently evaluated assuming that all unpooled (and hence unjudged) documents are
not relevant.

Important evaluation measures are precision and recall at different cut-off levels.
Precision is the proportion of retrieved documents that are relevant (number-retrieved-
and-relevant/number-retrieved). Recall is the proportion of relevant documents that are
retrieved (number-retrieved-and-relevant/number-relevant). A cut-off level is the number
of retrieved documents that is taken into consideration, starting from the highest ranked
one. For example, with a cut-off level of ten, the top ten documents in the ranked list
are the ones that count for the evaluation. An imposed cut-off level is needed because
a ranking task aims to rank documents from most relevant to least relevant, rather than
categorize them as either relevant or irrelevant.

Many of the tasks in TREC are variants of document retrieval through keyword
search. It turns out that in this type of task the best results are obtained with very limited
use of linguistic analysis. This is also reflected in the success of the internet search engine
Google. There are three main strategies (which can be combined) (Kuropka, 2004). Set-
theoretic models, for example the standard Boolean model, represent documents as sets
of words or phrases. Similarities are usually derived from set-theoretic operations on
those sets. Algebraic models, such as vector space models, represent documents and
queries usually as vectors, matrices or tuples. The similarity of the query vector and
document vector is represented as a scalar value. Probabilistic models, such as Bayesian
models, treat the process of document retrieval as a probabilistic inference. Similarities
are computed as probabilities that a document is relevant for a given query. Additional



12 Chapter 1. The Narrator project, retrieval, and inference

tools that have proven important are stemming, phrasing (recognizing collocations as a
single unit), and the use of weighting schemes.

In the Question Answering track on the other hand, more linguistically informed
methods, such as parsing and semantic role labeling are used in many systems. For
retrieval from large corpora a layered approach is common (Jurafsky and Martin, 2000).
Potentially relevant passages are first selected by general retrieval methods of the types
mentioned above and only those passages are parsed for a more precise evaluation. In
TREC 2007, for example, the linguistically principled Pronto QA system (Bos et al.,
2007) scores above average. (The inferencing system used in Pronto also participated
in some of the RTE challenge mentioned below.) The task of question answering is
ultimately AI-complete. It is therefore not surprising that it benefits from detailed
linguistic analysis to simulate understanding of the question and passages containing
possible answers, as well as automated reasoning techniques.

Retrieving documents on the basis of keyword search is a much more coarse-grained
task. It turns out that the weakest link in the retrieval procedure is often the quality of the
query. Systems attempt to remedy this problem with techniques like query expansion.

It is clear that keyword search has its limitations. Lately new search engines have
appeared, making use of more linguistic analysis, and aiming to compete with Google.
Examples are Powerset and Hakia. The developers of each of these two point out that
if users enter phrases or full questions as queries, they are most likely to profit from the
strength of these engines and obtain better results than with Google. It is claimed that
this is where linguistic analysis makes a difference. Powerset once used the example of
the difference between books by children and books for children. Google will consider
the difference in preposition irrelevant, making it difficult to find the rarer documents
about the former between the more abundant documents about the latter.

Sometimes when things are hard to find with Google, clever use of double quotation
marks can help. I remember once friends of mine wanted to know what the world’s
biggest harbor was, but couldn’t find it when they searched the internet. I found an answer
in the end by giving as a query something like “is the world’s biggest harbour”. To get
more results it is natural to try variations, such as “is the largest harbor in the world”.
This method of thinking what might be the literal wording of part of the information
you are looking for is a way of trying to circumvent Google’s limitations and in general
the limitations of keyword search and search algorithms that are insensitive to linguistic
structure.

1.2.2 Information retrieval in Narrator
What kind of retrieval task fits the Narrator system? Here we have a manageable amount
of narratives, and hence we have the opportunity to parse all narratives and allow for
fine-grained search with queries in the form of phrases or questions, possibly next to the
option of keyword search. Since users might be looking for stories that resemble their
own, it is also worth considering the use of a clustering technique with the user’s own
story as an elaborate query.

The possibility of a fine-grained search is something Narrator has to offer that goes
beyond the existing websites. In principle all narratives are relevant to all users, because



Section 1.2. Information Retrieval 13

they are all about patients’ experiences with breast cancer. Finding narratives that are
more relevant than others will naturally involve rather specific queries.

The question option is the most interesting one. Here it is useful to return passages
with a hyperlink to the complete document, so that the user can quickly check whether
this document is what she was looking for and on the basis of that decide whether to read
it completely.

The question answering in this case is ideally a combination of a categorization and
ranking task. Different documents can give different and in some cases opposite answers
to a question, because they are about personal experiences. Different things happened
to different people, and in addition different people can experience the same thing, e.g.
a particular type of medical treatment or daily life situation, in different ways. In many
cases it is therefore of benefit to organize the retrieved documents in different categories,
for example distinguishing between those authors who had positive experiences with
something and those who had negative experiences with it, or, in case of a yes/no-
question, documents that answer it affirmatively and those that answer it negatively. In
our formal approach, of course, the latter kind of categorization will be easier to achieve
than the former. Within each category, ranking the documents for relevance is also useful.

A simpler format to implement is to let the user give a list of search criteria, for
example by completing the sentence I am interested in experiences of people who . . . .
On the dots they would then fill in a series of criteria, such as had radiation, did not
have chemo, have a deskjob, do sports, have teenage children, were disappointed in the
support they got from their friends. These criteria can be made into a complex system-
internal query straightforwardly, making the most out of our inference technology, while
keeping the complexity of the dialogue component to a minimum. It also encourages
the user to formulate queries that can sensibly be searched for in individual documents,
rather than asking meta questions that would require the system to compare different
narratives and perform complex reasoning in order to give an answer. The task is then
again a ranking task, with the narrative that is found to fulfill the most criteria ranked
highest.

1.2.3 Hybrid retrieval in Narrator
Offering deep semantic parsing of narratives in Narrator is the task of Delilah. Detailed
semantic analysis has the advantage of creating possibilities for very precise information
retrieval. The success of such precise retrieval depends of course on the quality of the
semantic representation and of the retrieval tool that operates on it. Being precise is
expected to be crucial in finding, among many narratives about roughly the same subject,
those that are most relevant for a particular patient.

Doing inference on deep semantic representations also has disadvantages. It is
costly in several ways. The parsing itself can be considered costly, as deep parsing
takes up more computer capacity and time than, for example, shallow parsing. The
parsing, however can be done off-line and will therefore slow down only the preparation
of the system, and not its functioning. Logical reasoning on the basis of complex
representations, on the other hand, also needs much computer power. In order to actually
retrieve information from these representations, an inference tool is needed that can



14 Chapter 1. The Narrator project, retrieval, and inference

operate on them. This happens while the system is running and therefore places a heavy
burden on its capacities. In addition, creating the resources required for detailed semantic
parsing, such as a lexicon, needs a major investment in terms of man-power. Resources
are never complete, which leads to lower robustness.

In Narrator the idea arose to make the retrieval by logical inference more feasible by
having a shallower but much more robust application narrow down the search space for
the inference tool. Statistics-based approaches to retrieval, in which less or no linguistic
knowledge is needed, have the advantage that they are fast and robust. A similar kind of
hybrid approach is common in question answering (Jurafsky and Martin, 2000). The
difference is that in question answering only selected passages are parsed (on-line),
whereas in Narrator the whole corpus is parsed (off-line). Having a corpus that is already
annotated with semantic analysis, also means that this semantic analysis can in principle
also be taken into account by the robust preprocessing tool.

Some preliminary experiments were performed in the project with Latent Semantic
Analysis. LSA is a clustering technique that at least in its basic form disregards all
structure and treats each document (that is inputted as a unit) as a bag of words. It
compares documents on the basis of the words that occur in them. Words can be weighted
differently. Function words are given less weight and important content words can be
chosen to be given more weight. Documents are represented as vectors in a multi-
dimensional space, where the words are the dimensions. Dimension reduction is applied
to reduce noise. Closeness of their vectors (in terms of the angle they make with each
other) is then interpreted as similarity of documents. The goal is to form clusters of
documents that are similar. Retrieval of relevant text with LSA is done by clustering the
query with the other documents.

The idea was that the robust LSA, the performance of which actually improves with
an increase in the number of documents it has to cluster, would be able to make a first
selection of possibly relevant documents. This narrows down the search space for the
logical inference tool, which has problems handling large amounts of data. The inference
tool then works on only a limited set of (fragments of) narratives that have been selected
by the more robust method. For this pre-selection either the bare text can be taken as
input, or the already generated semantic representations themselves, possibly in some
derived or adapted form. It is an empirical matter what works best. The LSA step should
give a good recall, because documents that do not make it through this first round will
not be considered any further. The second step is more focused on precision, perhaps
with an option of asking for more results.

Unfortunately the results of the first experiments with LSA clustering of narrative
fragments were not very satisfying (Wolf et al., 2006). The experiment did not involve
a query yet, but was done to investigate to what extent LSA produced a clustering that
made intuitive sense, and if so, whether it was more sensitive to the themes discussed,
or to the writing style of the author, or the moment in the disease that the narrative was
about. The text fragments were manually categorized according to their most important
topics. Author information was already available as meta-data. The LSA clustering
did not correspond to this categorization. It did not group fragments together that had
a large overlap in the concepts assigned to them by the annotator. Neither did the



Section 1.2. Information Retrieval 15

clustering turn out to be sensitive to author or moment in the disease. It may be possible
to solve the problem by adding more documents or by making different choices in the
clustering method. The fact that LSA did provide nice results in other domains, but so
far had problems here, also suggests that retrieval on this type of narratives is particularly
difficult, and that a bag-of-words based approach is just not sensitive enough. If it turns
out that LSA is not able to produce useful clusters with our type of narratives, there
probably are other techniques that can do the preprocessing step. This remains for future
research.

Whether a hybrid setup of this type in the end is necessary and beneficial depends on
the amount of text included in the system and the efficiency reached with an entailment
algorithm that works on the new flat logical forms (FLF) that we discuss in chapter four.
Inference on FLF will be considerably more efficient than theorem proving on first-order
logic. Therefore a hybrid approach may not be necessary for retrieval on a relatively
modest amount of text as is the case in Narrator.

1.2.4 The issue of evaluation
The evaluation of information retrieval systems is notoriously difficult and it is one of the
main issues addressed in TREC. The Narrator system can be evaluated in terms of user
satisfaction, with other ways in which they can learn about other patients experiences as
a basis for comparison. This would tell us something about the added value of the system
as a whole but not necessarily much about the quality of the retrieval technique we chose
as compared to alternatives.

It is in principle possible to let users compare different search options or evaluate
different versions of the system. The search engine Hakia, for example, offers users the
possibility to compare their results to the results they get with Google. The two ranked
lists are then displayed next to each other. A complication is that users in general will be
trained in Google-style keyword search, because that is what they have experience with.
They will have developed a sense of what makes a good query for this type of search.
Most users will however be much less familiar with other ways of searching, such as
the alternative we intend to offer in Narrator, which needs a different kind of querying
strategy if one wants to make the most of it.

What we do know of logic and linguistics based approaches to inference, and retrieval
systems based on these is that they typically have a high precision, but a low recall (e.g.
Bos et al. (2007)). This is because a system of explicit logical rules only recognizes an
entailment if all relevant information for all reasoning steps is available. Therefore many
entailments will be missed, because of some piece of missing background knowledge.

For the kind of semantic annotation produced by Delilah there are no standards for
evaluation or comparison. There are no corpora annotated with propositional semantics.
Syntactic tree banks are the most elaborate form of linguistically annotated corpora
available. On the semantic level, SemEval by SIGSEM recently announced that they
will start thinking about a challenge that goes beyond word-disambiguation. The STEP
2008 conference has organized a shared task for comparing semantic representations and
exploring the possibility of a theory-neutral gold-standard for semantic annotation (Bos,
2008).



16 Chapter 1. The Narrator project, retrieval, and inference

Moreover, there are no competing systems for Dutch that offer a comparable form of
semantic analysis.

1.3 Logical textual entailment
The retrieval of text in Narrator is approached as an entailment task. Entailment is the
central relation in formal semantics of natural language. Here is a slightly modified
definition from Chierchia and McConnell-Ginet (2000), referring to logical form and
models containing worlds w, times i and contexts c:

(1) logical entailment
A sentence S relative to Logical Form α entails a sentence S′ relative to Logical
Form β iff for every model M = <W,I,<,C,U,V>, c in C, w in W and i in I, if S
is true in <M,w,i> relative to α and c, then S′ is true in <M,w,i> relative to β
and c.

The organizers of the RTE Challenges offer a practical definition.

(2) generalized entailment
(text) t entails (hypothesis) h if, typically, a human reading t would infer that h is
most likely true.

Given an appropriate semantic representation and an appropriate logic, logical entailment
must imply generalized entailment. Logical entailment is defined in an operational
manner, which is what we need for formal grammar-based retrieval.

In this section, I investigate what kind of entailments should be covered in
Delilah/Narrator. In the process of this investigation, I discuss what we can learn from
the RTE challenge, and its dataset. At the end of this section I briefly look ahead to
the Flat Logical Form that will be discussed in chapter four, and what it means for
entailment.

1.3.1 Entailment and implicatures
Zaenen et al. (2005) prefer to call generalized entailment ‘inference’. They distinguish
three different classes of inference. One is entailment, which corresponds to logical
entailment and is based on lexical and ontological knowledge together with monotonicity.
Entailments follow from what is asserted by the utterance.

The second class of inferences are conventional implicatures or presuppositions.
Conventional implicatures, as well as entailments, are claims that the author of a text
is committed to, although they are not part of what is asserted. The truthconditional
status of sentences of which the presuppositions are not met is problematic. In textual
inference, however, veridicity plays a much more important role than truth does. It
is not possible to decide about the truth of an assertion on purely linguistic grounds.
Textual inference systems typically have no means to check statements against the actual
world. They only have access to what authors claim, and possibly to the trustworthiness
of these authors. Conventional implicatures (presuppositions) are typically computable



Section 1.3. Logical textual entailment 17

provided suitable representations of the words and constructions that introduce them (e.g.
appositives, factive verbs, epithets). Blackburn and Bos (forthcoming) show how various
kinds of presuppositions can be computed and accommodated in a DRT framework.
A complication for their computability is that conventional implicatures cannot be
considered to be author commitments when the content they convey has been introduced
in a conditional environment (Karttunen and Zaenen, 2005). The example in (3a) does
not commit the author to the view that Lance is a Frenchman, whereas (3b) does. If
Lance being a Frenchman does not follow from a condition, then it must follow from
something the author considers to be a fact.

(3) a. If Lance takes up French citizenship, as a Frenchman he will win the Tour
easily.

b. If Lance decides to participate, as a Frenchman he will win the Tour easily.

This means that deciding on the veridicity of presupposed material involves itself an
inference task.

Conversational implicatures constitute a third class of inferences. These are can
be canceled in context. To the extent that they are computable, it seems reasonable to
treat them as inferences provided they are not contradicted elsewhere in the text. Some
conversational implicatures are systematic and have a clear source, for example the ones
that come with numerals, and let three, for example, be interpreted as meaning exactly
three, rather than as at least three. Many other conversational implicatures go beyond
what can reliably be computed, as they can arise from what is said and what is not said in
a particular context. Especially recognizing the omission of something relevant requires
subtle expectations about types of situations and the ways particular people react to them.
Even human readers are often unsure about what an author intended to conversationally
imply.

Thus, a conventional implicature is something the author says. It is explicit, relevant
background information, which the author considers to be true, and which the reader may
or may not know already. Therefore conventional implicatures can reliably be used for
inference, in addition to entailments, provided a check against information embedded in
conditional contexts. They are often a useful source of information in retrieval tasks, and
should be part of what an inference engine can handle. A conversational implicature, on
the other hand, is something the author does not say, but is likely to mean. Conversational
implicatures are less reliable and can be very hard to recognize. Some of the easier
ones, introduced by particular words or constructions, can perhaps be included as likely
inferences. More than that cannot be expected of formal inference engines any time in
the near future.

1.3.2 The RTE challenges

The PASCAL Recognizing Textual Entailment(RTE) Challenges can be seen as repre-
senting the state of the art with respect to robust operational textual entailment systems.
It was initiated as an attempt to promote an abstract generic task that captures major
semantic inference needs across applications, while separating inference from other



18 Chapter 1. The Narrator project, retrieval, and inference

problems that different NLP tasks need to handle. The organizers hope to stimulate
the development of entailment recognition engines which may provide useful generic
modules across applications. So far there have been three RTE challenges (Bar-Haim
et al., 2006; Dagan et al., 2006; Giampiccolo et al., 2007).

The data set for the RTE challenge consists of pairs of text and hypothesis. The
text is usually a sentence, but up to a paragraph in a subset of the pairs in the third
challenge, as it was felt it might be useful to have a little bit more context and stimulate
the use of anaphora resolution. The hypothesis is usually a shorter sentence. The task is,
given a text and a hypothesis, to determine whether the text entails the hypothesis or not.
Common human understanding of language as well as common background knowledge
is assumed. The same referring expressions are assumed to have the same reference in
text and hypothesis. Tense is ignored. This is a limitation, because in principle one would
want an entailment recognition engine to also be able to handle temporal reasoning.
Probably this choice was made, because typically more context is needed to evaluate
temporal aspects. Ideally one should have access to the whole document that a sentence
is embedded in and also know when it was written. This would require a drastic change
in the setup of the task.

Even with the present limitations, composing a representative and balanced test set is
far from trivial. The pairs for the training set and data set are selected and annotated by
humans and designed to correspond to success and failure cases of the actual applications.
They are classified by application: information retrieval, information extraction, question
answering and multi-document summarization. The collected examples represent a range
of different levels of entailment reasoning, based on lexical, syntactic, logical and world
knowledge, at different levels of difficulty. The policy was to limit the proportion of
difficult cases, but try avoiding high correlation between entailment and simple word
overlap between text and hypothesis. From the second edition onwards, text - hypothesis
pairs were mostly based on outputs of actual web-based systems on existing application
specific benchmarks. This way the challenge could give some sense of how existing
systems could benefit from an entailment engine post-processing their output. On the
other hand, this of course limits the cases to good and bad results that the applications
have found. If, for example, these work on the basis of word overlap (e.g. bag-of-words
approaches), there will be a bias towards pairs with considerable word overlap. Good
results with less or no word overlap that could have been found by a more sophisticated
application are then not represented.

The best results got considerably higher with every new edition of the challenge. The
baseline of using only word overlap lies around 60%. In the first round hardly any system
performed better than that, but in the second edition the results showed for the first time
that systems that rely on deep analysis such as syntactic matching and logical inference
can considerably outperform lexical systems. Nevertheless, not all deep analysis systems
performed above baseline. The main problems seem to be the size of training corpus
and a lack of linguistic background knowledge. In the third edition of the challenge
the conclusion was reached that machine learning using lexical-syntactic features and
transformation-based approaches on dependency representations are well consolidated
techniques to address textual entailment. Knowledge acquisition is identified as an



Section 1.3. Logical textual entailment 19

important issue to focus on, to improve systems’ performance in future challenges.
The best performing system in the third challenge uses a technique that enumerates a

set of propositions (commitments) which are inferable – whether asserted, presupposed,
conventionally implicated, or conversationally implicated – from a text-hypothesis
pair (Hickl and Bensley, 2007). Preprocessing involves syntactic parsing, semantic
dependency parsing, annotation of named entities, pronominal and nominal coreference
resolution, and normalization of temporal and spacial expressions to fully-resolved
instances. Commitments, taking the form of short sentences, are extracted by means
of a series of heuristics. The heuristics fall into five classes: sentence segmentation,
syntactic decomposition, extraction of supplemental expressions (such as appositives),
relation extraction, and coreference resolution. A word alignment technique selects
the most likely matches for each commitment for the hypothesis. Entailment between
commitments is then evaluated by a decision tree classifier. Finally an entailment
validation module checks whether a hypothesis commitment that was judged to be
entailed by a text commitment is in contradiction with any of the other commitments
of the text.

Another relatively successful system is COGEX (Tatu and Moldovan, 2007) which
uses semantic axioms and a logic prover. Bobrow et al. (2007) present a system with
high precision but low recall. One set of rewrite rules generates abstract knowledge
representations for text and hypothesis (after LFG parsing and semantic processing),
and another set operates on these for entailment and contradiction detection. Their
sophisticated representations allow them to distinguish between top-level commitments
and embedded commitments. Chambers et al. (2007) introduce a natural logic in which
proofs are expressed as incremental edits to natural language expressions. Their system
is able to compute effective monotonicity.

1.3.3 The RTE data
The RTE data sets can be a valuable source for how to improve entailment engines,
exactly because of the naturally occurring examples. Also, most entailments are quite
uncontroversial, as pairs that the annotators didn’t agree on with each other were
excluded. The data give a nice impression of what problems need to be solved.
Vanderwende et al. (2005) analyzed the data set for the first RTE-challenge and found
that 37% of the pairs could be resolved by syntax alone, assuming an idealized parser,
and 49% could be resolved by syntax plus a general-purpose thesaurus. The question is
what is needed for the rest. Vanderwende et al. (2005) only discuss a few non-syntax
examples. Some of the examples suggest that more detailed semantics together with
a thesaurus that provides FrameNet-like information may provide systematic ways to
extend the coverage of the ideal parser-based system. A complex example is (4).

(4) (pair id="287", value="TRUE", task="IR")
<T> The G8 summit, held June 8-10, brought together leaders of the world’s
major industrial democracies, including Canada, France, Germany, Italy, Japan,
Russia, United Kingdom, European Union and United States.
<H>Canada, France, Germany, Italy, Japan, Russia, United Kingdom and



20 Chapter 1. The Narrator project, retrieval, and inference

European Union participated in the G8 summit.

One piece of semantic knowledge needed is that a bringing together results in a coming
together. A summit is basically a kind of coming together (of representatives). To
participate in the kind of meeting called a summit, is to be (or be represented by) one
of the meeting participants. This is all word knowledge, rather than world knowledge.
Such examples can give hints on how semantics and thesauri and the way they work
together can be upgraded. Another example classified as non-syntax is (5).

(5) (pair id="294", value="TRUE", task="IR")
<T> The three-day G8 summit will take place in Scotland.
<H> The G8 summit will last three days.

Here, I think, simply with a clever semantics, three-day can be represented as meaning
lasting three days, as it is productively used in that meaning. In other cases, it is
reported, the annotators considered that there were too many alternations and thesaurus
replacements necessary to confidently say that syntax could be used. Another interesting
outcome of Vanderwende’s (2005) analysis is that many pairs rely on the correct
understanding of appositives. These make up 24% of the RTE1 test set. This maybe
partly due to the genre used, news-wire like texts, but anyway they seem to have the
tendency to be a useful source of information. This again stresses the need to include
presuppositions as computed inferences.

In the RTE3 data set I found interesting pairs that depend on disambiguation. For (6)
(the next pair in the set is actually very similar) to be solved correctly, his first film has to
be interpreted as the first film that he directed/made.

(6) (pair id="1" entailment="YES" task="IE" length="short")
<T>Claude Chabrol (born June 24, 1930) is a French movie director and has
become well-known in the 40 years since his first film, Le Beau Serge, for his
chilling tales of murder, including Le Boucher .
<H>Le Beau Serge was directed by Chabrol.

For a human reader this interpretation is hardly avoidable, but it is difficult to pinpoint
exactly why. Compare this for example to (7), where he is also a movie director, but no
one would conclude that this director directed “Lawrence of Arabia”.

(7) Since he saw his first film, “Lawrence of Arabia,” at a Kabul theater in 1967,
when he was 5, his obsession was to make movies.

There has been some controversy about the nature of the data sets. Zaenen et al.
(2005) criticize some of the text-hypothesis pairs used. I think that at least for the
following pairs they have a point.

(8) T: Hippos do come into conflict with people quite often.
H: Hippopotamus attacks human.
TRUE

(9) T: The White House failed to act on the domestic threat from al Qaida prior to
September 11, 2001.



Section 1.3. Logical textual entailment 21

H: White House ignored the threat of attack.
TRUE

A thesaurus stating that come into conflict with entails attack and that fail to act on
entails ignore, would most definitely cause errors in other cases. It does not even seem
very plausible that all conflicts between hippo and human consist of the hippo attacking
the human. It is very well possible that the text is intended and in context understood as
meaning what is said in the hypothesis. But without context I don’t think the entailment
can be claimed to hold. It is unrealistic to expect computers to be able to imagine a
context in the present stage of research. For the other example, Zaenen et al. (2005)
point out that text and hypothesis are naturally understood as referring to the same event
of the White House not acting, which is entailed by both. A distinction should be made
between entailment and paraphrase. In both cases above, the hypothesis is likely to be
an appropriate paraphrase of (part of) the text, but it is not an entailment. Paraphrase is
more difficult to compute than entailment, because it is somewhat more subjective and
depends on knowledge of typical situations, which cannot easily be attributed to single
words or constructions.

Another point that Zaenen et al. (2005) have problems with is that the difference
between (10a) and (10b) is not taken seriously.

(10) a. As the press reported, Ames was a successful spy.

b. According to the press, Ames was a successful spy.

(10a) conventionally implicates that Ames was a successful spy, but (10b) does not. This
boils down to the difference between statements that hold at text level and embedded
statements. Manning (2006) argues that it is reasonable that embedded statements from
trustworthy sources are considered veridical, when there is no evidence to the contrary
(e.g the author adding that he does not actually believe what is claimed by the source
he cites). This means loosening the notion of entailment somewhat, by allowing certain
cases of embedding to be ignored. In order to be able to judge when an embedded claim
can be lifted to text level and when not, however, it is important to make the difference
in the first place and keep track of the sources of claims.

Manning (2006) also points out that modals, such as can and may, are often hedges
and should not block entailment. He takes this to be an argument that the logic applied
by semanticists is not always suitable for the task. The difficulty, I think, is to determine
when modals are hedges and when they do need to be taken seriously. There certainly
are modals that cannot be ignored. There you need the logic, which I think is still a
good starting point. This is another case where being too strict about entailments from
embedded contexts may negatively affect the results.

Crouch et al. (2006) suggest that the RTE datasets could be improved by more fine-
grained annotation along the lines of the KBEval dataset for question answering (Crouch
et al., 2005).



22 Chapter 1. The Narrator project, retrieval, and inference

1.3.4 The approach for Narrator
Automated inference on logical representations of natural language expressions has thus
been experimented with, both in the RTE challenge and in other settings. It turns out that
a combination of a theorem prover and a model builder works quite well (Blackburn et al.,
2001). Still it is computationally very expensive. When the search space increases, very
soon a solution can no longer be found in a reasonable amount of time. It is not difficult
to imagine why. Computing entailments in first order logic is a difficult task. Anyone
who took a course in first order logic that involved constructing proofs by means of, for
example, natural deduction or Fitch-style proofs, will know that coming up with a proof
is in general not trivial and requires creative thinking. Typically an exercise consists of
one to three premises and a conclusion that is to be reached. Several computer programs
have been developed that have the strategies to construct such proofs automatically. But
now suppose you have a complete text or even a large corpus of texts represented in first
order logic and you want to check whether some hypothesis you have is entailed by any
part of the text or by any combination of parts of the text. You would have to check
for each proposition and for each combination of n propositions whether they entail the
hypothesis. That is, you have to try all possible combinations of premises. And if you
want to use additional sources, such as WordNet or the encyclopedia, the set of possible
premises gets even bigger. It is clear that inference-based retrieval is a much bigger
problem than solving a self-contained logic exercise. In the RTE setting this problem did
not come up, because the text was always limited to at most a few sentences.

In Narrator a dual strategy has been developed to remedy this problem. As a
preparatory step, the search space is first narrowed down by more robust, shallower
techniques. In addition, the actual inferencing is made simpler, through the use of a
novel flat notation for the logical form. This Flat Logical Form (FLF) will allow us to
use the definition of entailment given in (11). FLF is the topic of chapter four of this
thesis.

(11) generalized entailment
A text T, represented in FLF entails hypothesis H represented in FLF iff every
part of H is entailed by some part of T.

Under the assumption that we have appropriate representations, our version of gen-
eralized entailment is intended to include strict entailment, conventional implicature
and computable cases of conversational implicature. It does not include conversational
implicatures that are not reliably computable, nor does it include cases of paraphrase that
are not instances of one of the other cases.

1.4 Conclusions
Narrator will offer illness stories on the web with elaborate search facilities. The
application is expected to benefit from the high precision that linguistically principled
retrieval has to offer. To make optimal use of this, user queries should contain more
structure than a list of keywords does. Progress is being made in in the fields of automated



Section 1.4. Conclusions 23

inferencing and of question answering systems based on it. The Delilah parser used in
Narrator gives a level of analysis called flat logical form that is expected to facilitate
inferencing. Types of entailment that can feasibly be computed are strict entailment and
conventional implicature.

The Narrator system has not yet been built since many aspects of it need further
research. I will mention a few main points here.

• As yet Delilah’s analysis does not go above the sentence level. For example,
anaphora resolution across sentence boundaries is at present not covered. Delilah’s
representations are, however, rich enough to accommodate an existing algorithm,
for example a method based on Lappin and Leass (1994).

• The use of other information, such as ontologies is vital for entailment, as the RTE
challenge also shows. One might even think of parsing an encyclopedia. Problems
in this field are how to trigger the search for external information, and how to use
different types of information in different formats.

• The use of meta-data about author and user may be beneficial in the retrieval
process. It is at present not clear how best to use such information for the inference
based retrieval. Information can be added as propositions to a text, but should they
be given a special status?

• For a real working system a dialogue manager is needed2. Especially the
processing of free text input would require an advanced dialogue manager. This
dialogue manager must produce the actual query for the inference engine on the
basis of the user input.

• It needs to be investigated if it is useful to have a preprocessing step, in which a
fast and robust algorithm selects a set of narratives or fragments that are potentially
relevant to the query, such that the inference tool does not need to do all the work
alone.

• The inference algorithm itself is yet to be developed.

This chapter served mainly as background. In the rest of the thesis we will
concentrate on the semantic representations in Delilah. These representations are
designed to be used for automated reasoning, which is one of the techniques that retrieval
can be based on. It has been argued here that for certain types of retrieval, including the
type needed in Narrator it a is promising technique.

2Nap (2008) researched as part of the project how an interface can be optimized for elderly people. As his
research assumes traditional search by key-words, it is not directly applicable to a system that offers search
possibilities based on deep natural language analysis.





Chapter 2

Delilah: a semantic
parser/generator for Dutch

This chapter introduces Delilah1. It offers a basic description and discussion and serves
as a background for the discussions in the following chapters. A running version of the
Delilah system can be consulted at www.delilah.eu.

Delilah is a parser and generator for Dutch sentences. It gives syntactic and
semantic analysis for sentences and phrases. Delilah was developed by Crit Cremers
and Maarten Hijzelendoorn, and is written in Prolog. A demo of the system is available
at www.delilah.eu. The ambition in the Delilah project is to build an operational semantic
model of Dutch. The hypothesis is that there is a compositional basis of meaning which
is computable, a research programme that goes back at least to Montague (1973).

In Narrator, Delilah is used to parse the narratives and provide them with formal
semantic representations. The semantic representation of narratives is done by the parser,
but since the same grammar is used for both parsing and generation, it is important to
also keep in mind possible consequences for the generator, when making a change to
improve parsing. Still, I will focus mostly on the parser.

First, I briefly introduce the grammar that Delilah uses. This is a description of
the existing system with some reflection. Then, I explain the structure of the lexicon.
This section too consists of a discussion of the existing system. The largest part of the
chapter is devoted to the semantics. I explain the basic principles and discuss a variety
of problematic issues. I will point out what Delilah can already do, what the problems
are and in which ways things could be improved. The first two subsections are mainly
description. In subsection 2.3.3 I explain how different scope readings are obtained now
and how that could be improved. In subsection 2.3.4 I discuss whether scopal operators
other than generalized quantifiers should be stored. Now this is not the case. I ague
that this kind of storing is desirable only for the negation in negative indefinites that give
rise to split scope readings. Subsection 2.3.5 is a more general discussion about scope
disambiguation and underspecification. In subsection 2.3.6, I discuss a problem in the
existing treatment of adjuncts and propose an alternative. Subsection 2.3.7 and 2.3.8
and 2.3.12 mention some limitations of the system in terms of coordination, anaphora

1Delilah is not an acronym, but the successor of SAMSON (SAMenStelling van ONgelijk gerichte
functoren).



26 Chapter 2. Delilah: a semantic parser/generator for Dutch

and disambiguation. Subsection 2.3.9 explains the approach to extended lexical units.
Subsection 2.3.11 briefly introduces the main characteristics of our event semantics,
which is discussed elaborately in chapter three. In subsection 2.3.10, I criticize the way
concepts are represented in the present system. Section 2.4 deals with robustness issues.
In the final section, I mention some other computational semantics systems.

2.1 The grammar
This section explains the grammar as far as it is necessary for a good understanding of the
way the lexicon and the semantics are built up. The grammar rules guide the unification
of complex graphs provided by the lexicon.

Delilah’s grammar is a variant of Combinatory Categorial Grammar (CCG), based
on Steedman’s Generalized Composition (Steedman, 1996). The backgrounds of these
formalisms are discussed by Cremers (1999b; 2004). The grammar was argued to be
mildly context sensitive by Cremers (1999a). van de Woestijne (1999) developed a
chartparser to apply the grammar more efficiently than the original parser did. The
particular version of Categorial Grammar used in Delilah is not the only grammar
formalism that is suitable to support compositional semantics. There are many others,
see the overview of other systems in section 2.5. The formalism used was developed
to resolve the ‘disharmonious’ Dutch verbal cluster without recourse to full context
sensitivity.

Each word has a syntactic type that tells how it combines with other words and
phrases. That is the basic principle of Categorial Grammar. Syntactic types in Delilah
are rigid. Ambiguity between different types is handled in the lexicon. When a word has
n different types, it has (at least) n different entries in the lexicon. The grammatical rules
are unambiguous. The grammar does not provide for type shifts in the derivation. That
is, there are no syntactic rules that change one type into another one. This also means that
every rule is a rule of composition, taking exactly two types as input and giving exactly
one type as output. Each complex type has the following form2:

(12) stack of left arguments(ln . . . l1) \head/ stack of right arguments (r1 . . . rm)

The head is a primitive category, such as np, vp or s. The arguments in the lists are
addressed by their heads, but represent complex types of the same form, i.e. a head
with two (possibly empty) argument lists. The argument lists can be seen as an agenda.
Of each stack, the first argument has to be canceled before the next argument becomes
available for canceling. The left arguments have to be found to the left of the head and the
right arguments have to be found to the right. The first argument in a list is to be found
first, i.e. closest to the head. Two categories combine if the secondary category can

2In the actual implementation the notation is different, namely:

(1) head\stack of left arguments/stack of right arguments

The adapted notation used in this book, benefits human readability, because the order of the arguments directly
corresponds to actual word order.



Section 2.1. The grammar 27

be canceled against the relevant argument of the primary category, i.e. in the following
configurations3:

(13) a. PLA\prim/[sec|RestPRA] SLA\sec/SRA
b. SLA\sec/SRA [RestPLA|sec]\prim/PRA

In the first case an element with head category “sec” is on top of the right argument
stack and a phrase headed by this category is indeed found on its right. The second
case is the same, except that the argument is sought and found on the left. In each case
the composition has four possible outcomes, depending on how the remaining argument
stacks of the primary and secondary category are combined. The result of composition is
a new complex type, where the head is still the primary category, the argument consumed
is canceled from the agenda and a new agenda is composed from the arguments that
were still on the agenda of the secondary category and the remaining arguments on the
agenda of the primary category. The new agenda is formed by appending argument lists.
The lists are never mixed, neither is the internal order of the lists altered. The two left
lists are appended to form a new left list and the two right lists are appended to form
a new right list. Arguments cannot be moved from the left list to the right list, or the
other way around. In this way directionality is preserved. The different possibilities are
demonstrated below. This mechanism is called Extended Generalized Composition.

(14) PLA\prim/[sec|RestPRA] SLA\sec/SRA ⇒ SLA+PLA\prim/RestPRA+SRA
PLA\prim/[sec|RestPRA] SLA\sec/SRA ⇒ PLA+SLA\prim/RestPRA+SRA
PLA\prim/[sec|RestPRA] SLA\sec/SRA ⇒ SLA+PLA\prim/SRA+RestPRA
PLA\prim/[sec|RestPRA] SLA\sec/SRA ⇒ PLA+SLA\prim/SRA+RestPRA

SLA\sec/SRA [RestPLA|sec]\prim/PRA ⇒ SLA+RestPLA\prim/PRA+SRA
SLA\sec/SRA [RestPLA|sec]\prim/PRA ⇒ RestPLA+SLA\prim/PRA+SRA
SLA\sec/SRA [RestPLA|sec]\prim/PRA ⇒ SLA+RestPLA\prim/SRA+PRA
SLA\sec/SRA [RestPLA|sec]\prim/PRA ⇒ RestPLA+SLA\prim/SRA+PRA

In practice, however, out of the possible compositions in (14) only the two repeated
in (15) are used; one for canceling an argument on the right and one for canceling an
argument on the left.

(15) PLA\prim/[sec|RestPRA] SLA\sec/SRA ⇒ PLA+SLA\prim/SRA+RestPRA

SLA\sec/SRA [RestPLA|sec]\prim/PRA ⇒ SLA+RestPLA\prim/PRA+SRA

These rules parse the following configurations:

(16) a. PrimArgsL SecArgsL prim sec SecArgsR PrimArgsR
b. SecArgsL PrimArgsL sec prim PrimArgsR SecArgsR

3PLA = Primary Left Arguments, PRA = Primary Right Arguments, SLA = Secondary Right Arguments,
SRA = Secondary Right Arguments



28 Chapter 2. Delilah: a semantic parser/generator for Dutch

The bold faced arguments are separated from their head. The discontinuity effect
disappears if these argument lists are empty at the time of composition, i.e. if the
secondary category has already consumed its arguments, or never required any, on the
relevant side4. Note that the primary head cannot be separated from its arguments in
any interesting way by the secondary head, because the secondary head is one of its
arguments. One of the cases in which arguments are separated from their head are the
Dutch verbal clusters with their crossing dependencies. Another such case is the more
common wh-fronting.

An example sentence for which this kind of discontinuity is needed is (17)5. It is easy
to see that, unlike in the English translation, none of the np arguments is adjacent to its
head; De nijlpaarden is the argument of voeren, Alice is an argument of helpen, Bob is
an argument of zien, and ik is an argument of heb.

(17) ...dat
...that

ik
I

Bob
Bob

Alice
Alice

de
the

nijlpaarden
hippos

heb
have

zien
seen

helpen
help

voeren.
feed

‘that I have seen Bob help Alice feed the hippos.’

Below, the same sentence is given, but now with the types for each word instead of
glosses. Heads are in boldface. The backslash ‘\’ introduces left arguments to the left of
the head, the forward slash ‘/’ introduces right arguments to the right of the head, and
empty argument lists are left out. I have numbered the nps so that it is easier to see what
they will turn out to be arguments of. The unfamiliar type s_vn is the head category of a
finite verb in a subordinate clause. This is different from the finite verb in a main clause
because of the different word order. The category of a subordinate clause is abbreviated
as s_sub. The nps would be called DPs in modern versions of generative grammar.

(18) ...dat
s_sub/s_vn

ik
np1

Bob
np2

Alice
np3

de
np4/n

nijlpaarden
n

heb
np1\s_vn/vp

zien
np2\vp/vp

helpen
np3\vp/vp

voeren.
np4\vp

To get the right parse, the verb cluster has to be formed first. Combining helpen with
voeren results in a type np3,np4\vp for the string helpen voeren. The vp argument of
helpen is canceled against the vp head, introduced by voeren. The newly formed type
keeps the vp head from helpen and its agenda is composed of the unfulfilled agenda
items of both composing types. Both were still looking for an np to the left. The
np argument of voeren is put first on the new agenda, followed by the np argument
of helpen. This is in accordance with the first rule in (15). In a similar way zien
helpen voeren gets the type np2,np3,np4\vp and heb zien helpen voeren gets the
type np1,np2,np3,np4\s_vn, the full cluster. Then, all of the np arguments can
be consumed in the right order. Of course de and nijlpaarden first have to form an
np together. This np then, np4 is the first to be found and luckily it is also the one
on top of the list. So, the string de nijlpaarden heb zien helpen voeren is of the type

4The following type of discontinuous configuration is not supported: PrimArgsL SecArgsL prim sec
PrimArgsR SecArgsR.

5A subordinate clause was chosen, to avoid the V2 effect and get a full-blown verbal cluster.



Section 2.1. The grammar 29

np1,np2,np3\s_vn. In the same way the other np arguments are consumed, resulting
finally in a type s_vn that does not need any more arguments. This s_vn is then
consumed by the type of dat to form an s_sub, a subordinate clause. The full derivation
is represented schematically in figure 2.1.

The rules of composition in their most general form cover the wildest form of verbal
clustering, while leaving it optional. The rules in (15) would also allow for the English
word order, where all the verbs combine with their np arguments, before combining
with each other. At the same time the rules also wouldn’t object to a word order in
which nijlpaarden is separated from its head de ending up to the right of the verbs. This
would happen if de could be consumed by the verb cluster, before having consumed
its own argument. Such variants of (17), however, do not occur in Dutch. Therefore,
more restricted instantiations of these rules are needed for the specific grammatical
configurations that occur in Dutch, to ensure, for example, that verbal clustering is
obligatory and that nouns stay next to their heads.

Restrictions are imposed on composition through modes of composition. In a
lexical entry, for each argument the mode is specified, under which this argument can
be consumed. Determiners will take their n arguments under a different mode, than
clustering verbs take their vp argument. The mode adds additional requirements to (one
of) the rules in (15). A common requirement is that particular stacks be empty, which
limits the possibilities for discontinuity. Also, a list may be required to only (or at most)
contain an argument that is to be canceled under the mode ‘wh’. This means that any
other argument on the list must have been canceled before this composition and that only
a wh-argument can be on the list that will be separated from its head. In principle an
argument list could also be required to be non-empty, but this doesn’t happen as such.

What does occur is the requirement that an argument, or all arguments have to have
been canceled before the present composition. This is marked by flags. Every argument
list has a flag. There are three different flags; 0, 1 and wh. The 0 flag indicates that no
argument from the list has been canceled yet. Flag 1 indicates that one or more arguments
from the list have already been canceled. So, requiring an empty list with flag 0, means
that there must never have been any arguments in that list, whereas requiring an empty
list with flag 1 means that there must have been at least one argument. The 0 flag is used,
for example, in verb clustering, where all arguments of the verbs have to occur outside
the verbal cluster. The wh flag indicates that a wh-argument has been canceled, which
means that the ‘SpecCP’ position is filled. This is relevant for the Dutch V2 effects.
The position before the finite verb can be filled only once. It is called wh, because this
is the same position that is the landing site for wh-movement (the fronting of question
words). When two argument lists are appended into one, this new list normally gets a
flag according to what the flags of the composing lists were, but exceptions are possible.
Also, when an argument from a list is canceled, the flag of the list minus that argument
should be 1. But also here manipulation is possible. For example, when a verb consumes
its separable particle on the left, this does not change the flag of its argument list. This
way the particle+verb combination, for example invullen ‘to fill in’, can still enter verbal
clustering. The use of flags is therefore somewhat opportunistic.

A lot more criteria could in principle be imposed on argument lists. It would be



30 Chapter 2. Delilah: a semantic parser/generator for Dutch

d
a
t

s
su

b
/
s

v
n

ik n
p

1

B
ob

n
p

2

A
li

ce

n
p

3

d
e

n
p
/
n

n
ij

lp
a
a
rd

en

n

n
p

4

h
eb

n
p
1
\s

v
n
/
v
p

z
ie

n

n
p
2
\v

p
/
v
p

h
el

p
en

n
p
3
\v

p
/
v
p

v
oe

re
n

n
p
4
\v

p

n
p
3
,n

p
4
\v

p

n
p
2
,n

p
3
,n

p
4
\v

p

n
p
1
,n

p
2
,n

p
3
,n

p
4
\s

v
n

n
p
1
,n

p
2
,n

p
3
\s

v
n

n
p
1
,n

p
2
\s

v
n

n
p
1
\s

v
n

s
v
n

s
su

b

Figure 2.1 — Type-logical derivation of (17)



Section 2.1. The grammar 31

possible to exactly specify the arguments that should occur in the a list with their
modes and their relative order. This, however, would make the rules very un-general
and multiply the number of modes needed. Fortunately, it turns out that rules can be
fairly general, and that only about a dozen different ones are needed. Actually the
only requirement on the content of argument lists that occurs next to the ones already
mentioned, is that certain modes do not occur in the list. There is a standard check that
can be called for this purpose, since it is always the same set of modes that is disallowed.

Earlier, I said that argument stacks can only be appended, not mixed with each other
and that the order of arguments cannot be changed. Stacks that contain a wh-argument
(these are always left argument stacks) form an exception to this. The wh-argument
always has to be at the bottom of the stack, also after composition, because it is to be
the most leftward argument. Treating wh-arguments as a special case in this way is like
having a separate list for wh-arguments.

There is one other exception that effects the order of arguments. Arguments of
the category rnp, a special category for the particles er and its stressed counterpart
daar, which mean something like ‘there’, can be canceled ‘before their turn’. An rnp
argument can be consumed if it occurs anywhere in the argument stack, not only when
it is on top. This goes against the idea of stacks and makes the grammar less restrictive.
The more arguments can do this, the less the order of the argument list will matter. At
some point all permutations will be possible. It would therefore be much better if this
rule were not needed and the phenomena could be handled in some other way.6

Some rules only apply to types with particular heads. For example in the rnp rule
mentioned above the secondary head must be of the category rnp. Sometimes rules
are differentiated for different head categories, for example, if the head is of a particular
category, an additional requirement may be imposed, which otherwise does not apply.

Changing the category of the head may be possible in the format of the rules, but is
not meaningful. The category of the secondary head plays no role anymore once it has
been consumed. In other words, it does not occur in the output type. The head of the
output type is the same as the head of the primary input type. If a head of category x in
the primary input type were changed into a head of category y in the output type, this
would give the same effect as when it had always been of category y and the rule asked
for a category y as the head of the input type. The category of the primary head only
becomes important if after composition the result will act as an argument for another
category, that is if in one of the next composition steps it will play the role of secondary
head. Composition was designed to be input-sensitive: exactly one occurrence of a head
in the input is canceled against exactly one occurrence of that head in the argument stack
of the primary head. It may be possible to consume a category from the input without
canceling the corresponding category on the agenda, in such a way that another such
category in the input can be consumed. This would relax input-sensitivity. Also, the
argument on the list will at some point have to be canceled, otherwise the derivation will
not be able to terminate. I discuss this in the section about adjuncts 2.3.6.

What is certainly not desirable is if one or more arguments are added to the agendas in

6The placement of rnps is notoriously complicated and no solid set of rules has been developed for it so
far.



32 Chapter 2. Delilah: a semantic parser/generator for Dutch

composition. Also arguments that are on the agenda should not be altered, e.g. replaced
by others. Such operations could make the grammar Turing-complete.

The types to enter the rules are provided by the lexicon. Normal lexical items
introduce exactly one complex type. Wh-words, however, introduce two types. For
example wat ‘what’ introduces the type []\q/s, something that forms a q(uestion) if
it finds something of the category s(entence) on its right, and the type []\np/[], a
noun phrase (or actually a determiner phrase) that no longer needs any arguments. Wat
combines with something of type np^wh\s/[], a sentence that is still waiting to find
an np to its left, which should be canceled under mode wh. (This np may have started
out as an argument of a category embedded under s.) This type can then consume the
np, introduced by the question word to form a complete s, which then in turn can be
consumed by the type headed by q, to form a question.

In summary, the grammar rules are based on only one rule with a right and a left
variant. Different instantiations of this rule, all with their different restrictions, are
invoked by lexical constructions through the modes of composition. The restrictions
mainly control the order in which the compositions take place. The most important tools
for doing this are flags, emptyness requirements on lists, special treatment of wh-items
and a check for the occurrence of modes that have to be executed first.

Delilah’s grammar, with its different modes of composition bears similarities to
Moortgat’s Multi-Modal Categorial Grammar (MMCG) (Moortgat, 1997). The most
important difference is that MMCG stays closer to the traditional CG in the sense that
type-lifting rules are applied in the grammar and thereby scope ambiguities are already
covered in the syntactic derivation. Each reading has a different derivation. In Delilah on
the other hand semantic underspecification of scope relations is used.

2.2 The lexicon
The complex graphs of which the grammar guides the unification are provided by the
lexicon. Which heads take which arguments under which mode is part of the information
contained in the lexicon. Lexical items are complex graphs of feature structures:
attribute-value matrices, which are created by lexical rules on the basis of lemmas and
templates. Graphs of lexical items unify with each other, until one big graph for the
whole sentence is formed, which is then the fully specified parse tree for that sentence.
Graphs are unified if the grammar allows for composition of their types and their feature
structures allow for unification.

In (19) we see one of the actual entries for lezen ‘to read’ in an infinitival form.

(19) |ID:A+B
|HEAD: |CONCEPT:read
| |PHON:lezen
| |LOG:read
| |SYNSEM: |ETYPE:event
| | |FLEX:infin
| | |VTYPE:transacc
|PHON:C



Section 2.2. The lexicon 33

|PHONDATA:lijnop(lezen,A+B,[arg(left(1),0,D)],C)
|LOG:{{[E*(B+99)#F, G*(B+H)#I,
λJ.∃K.read(K) & event(K) & J*(A+B)#L], [], []},
λM. agent_of(L, F) & theme_of(L, I) & attime(L, M)}
|SYNSEM:|CAT:vp
| |EVENTVAR:L
| |EXTTH:agent_of~[A+B,F]
| |PREDTYPE:nonerg
| |TENSE:untensed
|TYPE:0~[np^0#B+H]\vp/0~[]
|ARG:|ID:B+99
| |PHON:N
| |LOG:E
| |SYNSEM:|OBJ:subject_of(A+B)
| | |THETA:agent_of
|ARG:|ID:B+H
| |PHON:D
| |LOG:G
| |SYNSEM:|CASE:obliq
| | |CAT:np
| | |OBJ:dirobject_of(A+B)
| | |THETA:theme_of

Since this is an infinitive – sentence final in Dutch – it looks for an object NP on the
left. This is indicated under TYPE. This object argument is to be canceled under the
conditions of mode 0, indicated by ^0, which refers to a particular mode of composition
(see section 2.1). The ID feature is used for building the tree. In ID:x+y, x refers to the
higher, directly dominating node. As one can see, all arguments of the verb start with B,
which is the second variable in the value of the ID feature of the VP. The NP argument in
the left argument list has index B+H, which is the object. (An argument of this argument,
for example, will start with H.) The ID feature also links the semantic items in the store to
the syntactic constituents they originate from. I will talk elaborately about the semantics
in the next section7. For now it is useful to know that the semantic field has the form:

(20) {{[QuantifierStore], [PronounStore], [ReflexiveStore] }, Body}

Only the quantifier store and the body are important at the moment. The semantics
of the arguments is stored in the quantifier store. Stored items have the form
Sem*(ID1+ID2)#X, where Sem is the semantics of an argument, ID1+ID2 refers
to the constituent of origin, and X is the variable this item binds in the body.

The data structure is very similar to those used in Head-Driven Phrase Structure
Grammar (HPSG) (Sag and Wasow, 1999), except for the use of variables (capital letter)
instead of numbered boxes. Also Delilah’s data structures stay close to Prolog, which
does not provide the kind of large brackets used in attribute-value matrices. But one
could read the dotted lines as indicating which parts of the structure should be in such

7Minor adaptations have been made to the semantic notation, for the sake of readability.



34 Chapter 2. Delilah: a semantic parser/generator for Dutch

brackets. With respect to the features and values that can be used, Delilah is more liberal
than HPSG, but it has a rigid grammar underneath.

Entries like the one in (19) are constructed on the basis of lemmas, with the help of
templates, by rules. The most basic rules mainly just combine the information in the
lemma and the template. But there are also rules that produce derived forms, such as the
finite forms of verbs. The lemma contains information that is specific to the particular
word, such as concept and phonological form. The template contains information that a
class of words have in common. The use of templates is mostly practically motivated.
Information that is the same for a whole class of words only has to be entered once. The
entry we have seen in (19) was created on the basis of the lemma in (21) and the template
in (22).

In (21) we see the lemma of lezen ‘to read’. The predicate lemma/5 always has
the following five arguments: The first argument is the name of the lemma, which for
convenience normally corresponds to a form of the word. The lemma name has to be an
atom. The second is its broader class, such as verb, noun or adjective, which is relevant
for the lexical rules that I discuss later in this section. The third argument is a list of one
or more names of templates that the word is based on. The fourth argument is a list of
specifications, in the form of paths, to be added to the template in order to ‘personalize’
it for this particular word. And the fifth and last argument is a (possibly empty) list of
irregular derived forms.

(21) lemma(lezen,
verb,
[trans_v, trans_v_sc, trans_ssub, trans_qsub],
[arg(ID+_ID1+1):synsem:theta:theme_of,
arg(ID+_ID3+10):synsem:theta:agent_of,
head:synsem:etype:event, head:phon:lezen,
head:concept:read, head:sem:read],
[pastsing:las, pastplur:lazen,
participle:gelezen] ).

The verb lezen is here assigned four different templates. The first one is the template
for transitive verbs, given in (22).

(22) template( trans_v, verb,
[ id:Top+ID,
synsem: [cat:vp, tense:untensed, predtype:nonerg,

eventvar:EV, extth:Stheta~[Top+ID, A]],
sem: {{ {[SemS*(ID+ID1)#A, SemO*(ID+ID2)#B,}

λEStructure.∃E.Main(E) & Etype(E) &
EStructure(Top+ID)#EV],[],[]},
λTime. Stheta(EV,A) & Otheta(EV,B) &
attime(EV, Time)},

head: [phon: _X,
synsem:[vtype:transacc, flex:infin, etype:Etype],
sem: Main],

arg(ID+ID1+10): [phon:_Subj,



Section 2.2. The lexicon 35

synsem: [theta:Stheta,
obj:subject_of(Top+ID)],

sem:SemS],
arg(ID+ID2+1): [phon:_Obj,

synsem: [obj:dirobject_of(Top+ID),
theta:Otheta, cat:np,
dir:left(1), mode:0, case:obliq],

sem:SemO]
] ).

The verb takes two arguments, indicated as arg(ID+ID1+10) and
arg(ID+ID2+1). The numbers 10 and 1 are used to identify the arguments
when integrating the information in the template with the information in the lemma,
since the actual id numbers are variables. The basic position of the argument with
respect to the head is prescribed in the form of dir:left(1). (The direction can
be left or right and the lower the number between brackets, the closer the argument in
question stays to the head. Thus these numbers encode the order of the arguments.)
Rules that produce the different forms of the verb may modify this position. In the
template, the mode of composition to be used is indicated by mode:0 in the synsem
specifications of the argument.

The values left variable under head are to contain information contributed by the
lemma, namely: the phonological form of the head, the event type (so far we distinguish
between events and states) and the semantics of the head, which is used in the semantics
of the whole VP. Also the participant roles of the arguments are contributed by the lemma
and used in the semantics.

For the infinitive form above, the only thing the rule changed in the graph is the
second id value of the subject. It is changed from a variable into a constant, because the
variable would otherwise have to remain free, which means we’d have to be very careful
to not let it be instantiated by accident at some point. The subject will grammatically be
an argument of the auxiliary. Through a ‘control relation’ its semantic value is unified
with the external theta role (in this case agent) in the semantics of lezen. The combinatory
type is just constructed out of the information on categories and directions.

One other variant of the infinitival entry is made, namely one where the object (the
only argument on the agenda here) is marked for wh. This is to cover sentences like (23),
where the object of lezen ‘read’ is wh-extracted.

(23) Welk
which

book
book

heeft
has

Alice
Alice

altijd
always

al
already

willen
wanted

lezen?
read

‘Which book has Alice always been wanting to read?’

Quite a bit more happens when the finite forms are being constructed. First of all
the subject gets a category, mode and direction, which make it a grammatical argument.
Second, a tense-pronoun (see 2.3.11) is added to the quantifier store (see 2.3) and a
tense operator is added to the body of the semantics. The head category is changed
from vp to s_vn, the category of a finite verb in a subordinate clause. Also person
and number features are added. The phonology (or actually spelling) of the word



36 Chapter 2. Delilah: a semantic parser/generator for Dutch

forms that correspond to these features is provided by a morphological component. The
combinatory type is constructed on the basis of the information in the changed graph
(i.e. now the head category is s_vn and there is also a subject argument on the agenda).
The result are the entries for finite verbs in subordinate (i.e. verb final) clauses. On the
basis of these, the entries for verbs in main clauses are constructed, where they are in
second position. Here the head category changes to s and the direction of all arguments
is changed into rightward, because now that the verb is in second position all (non-wh)
arguments occur to the right of the verb. Also the modes of some arguments are changed,
because the verb in second position does not participate in clustering. Of all entries
(including the s_vn ones) wh variants are constructed. One for each argument that can
be extracted. Of the third person forms, variants are made with an added existential
expletive subject (er). Next to the s and s_vn entries, also entries are formed with the
type q, for yes/no-questions. Here the modes of all arguments are changed to modes that
do not allow any extraction, since these questions are verb-initial, and a question operator
is added to the semantics. Also imperatives are formed, with no syntactic subject and the
semantic subject set to the constant that represents second person. (25) is an example of
one of the entries produced by the finite-making rules. It is the entry for the first person
present, with a wh-subject, as it occurs for example in (24).

(24) Ik
I

lees
read

de
the

krant.
newspaper

‘I read the newspaper.’

(25) |ID:A+B
|HEAD:|CONCEPT:read
| |PHON:lees
| |LOG:read
| |SYNSEM:|ETYPE:event
| | |FLEX:fin
| | |NUMBER:sing
| | |PERSON:or([1,2])
| | |TENSEOP:at-pres
| | |VTYPE:transacc
|PHON:C
|PHONDATA:lijnop(lees,A+B,[arg(right(-1),0,D),

arg(left(11),wh,E)],C)
|LOG:{{[F*(B+G)#H, I*(B+J)#K,
λL.∃M. read(M) & event(M) & L(A+B)#N,
pron(A+B)*(A+B)#O], [], []},
AtPres(O).agent_of(N, H) & theme_of(N, K) & attime(N, O))}
|SYNSEM:|CAT:s
| |EVENTVAR:N
| |EXTTH:agent_of~[A+B,H]
| |PREDTYPE:nonerg
| |SUBQMODE:P
| |TENSE:tensed
|TYPE:0~[np^wh#B+G]\s/0~[np^0#B+J]



Section 2.2. The lexicon 37

|ARG:|ID:B+G
| |PHON:E
| |LOG:F
| |SYNSEM:|CASE:nom
| | |CAT:np
| | |NUMBER:sing
| | |OBJ:subject_of(A+B)
| | |PERSON:1
| | |QMODE:P
| | |THETA:agent_of
|ARG:|ID:B+J
| |PHON:D
| |LOG:I
| |SYNSEM:|CASE:obliq
| | |CAT:np
| | |OBJ:dirobject_of(A+B)
| | |THETA:theme_of

When comparing this entry to the infinitival entry, we see that the phon value is
different, the value of flex has changed to from infin (infinite) to fin (finite),
an extra pronoun has been added to the store in the semantics and the tense operator
atpres has been added to the body. The category has changed to s (SYNSEM:CAT:s).
The subject has gotten a category, namely np, and it is required to be 1st person. The
type now has a wh-subject np on its left agenda, whereas the object np has been moved
to the right agenda.

In a similar fashion as the entries for infinite and finite forms are constructed,
participles are also derived by a set of rules. I will not go into details, but as one can
imagine in passive participles the object is made the external argument, etc.

It follows that for each verb form in each configuration, a different entry is needed.
This creates a very large lexicon, but that is not a problem, as the lexicon is indexed in
such a way that it can be searched in linear time. Before Delilah can work, all the lexical
entries need to be created and written to a disk, organized according to the paths that they
contain. This lexicon is searched during parsing and during generation. The storage and
retrieval of lexical items was discussed in Hijzelendoorn and Cremers (2007).

The lexical rules can in principle change anything in the graph they get as input.
Arguments can be removed, added, altered; categories can be changed. The semantics
can be manipulated, as happens with the introduction of tense- pronouns and operators
or question operators. This means that these rules are rather unrestricted. As long as
the rules create a finite lexicon, however, this is not a problem. So, a rule that adds an
argument, such as expletive er, is okay, but a rule that recursively adds arguments, is not,
because then the procedure that creates the lexicon will never terminate.

The alternative to having these rules, would be specifying much more by hand,
on the lemma and template levels. For example, instead of using a set of rules to
create the entries for the finite forms of verbs, one could make different lemmas for
the different verb forms and link each of them to a number of templates to cover the
different configurations. This would be highly impractical. The advantage of rules is that



38 Chapter 2. Delilah: a semantic parser/generator for Dutch

they capture generalizations in the lexicon.
As for the division of labor between lemmas, templates and lexical rules, rules are

meant to be general. The set of rules to make finite forms applies to all verbs. This
does not necessarily mean that all words have to be treated exactly the same. A rule can
check for a certain feature and treat words with that feature differently. For example, the
rule that makes passive participles only works on verbs in which it finds a specification
for the direct object. This functions as a check on whether a verb can be passivized.
There is, however, no clear dividing line between what should be arranged by lemmas
and templates and what should be captured in rules. Plural nouns, for example, used
to have their own lemmas and their own template. Now they are derived from their
singulars. This, of course, does make the situation more consistent than it was before. It
goes towards letting the rules take care of exactly those cases that can be described as the
production of flectional paradigms. These are in general also the forms that are produced
by the morphological component.

Templates can be seen as representing some of the more general constructions that
individual entries inherit from. However, contrary to the view on constructions in (at
least most versions of) Construction Grammar (Croft, 2001), information in the lemma
can overrule information in the template, which is useful in the case of exceptions. Also,
not all abstract constructions that are assumed to play a role in Construction Grammar
are represented by templates. A lexical entry like (25) is usually assumed to inherit not
only from the transitive verb construction, but also from the first person construction.
Constructions like the first person construction, however, are at best represented by the
rules that derive these forms. A maybe more interesting construction grammar view on
the lexicon, would be to say that each lexical entry is a construction. The more general
constructions can then be extracted on the basis of the paths that lexical entries have in
common. For example, (25) shares many paths with other entries for transitive verbs and
also with other entries for first person present forms. The paths of all lexical entries can
be collected into one huge feature-value graph. This graph can be taken to represent the
inheritance network of relations between the different lexical entries.

The decision to make a separate template for a class of words (i.e. identifying it as a
distinct class) can depend on several things. A common criterion is the category of the
head together with the number of arguments and the categories of these arguments. Thus,
we have templates for intransitive verbs, transitive verbs, verbs with a PP complement,
verbs with a sentential complement, count nouns without complements, nouns with a
sentential complement, etc. The semantics also plays a role. Number adjectives, for
instance, have a template that is different from that for normal adjectives, because they
have a particular semantics. In a template the semantic structure of the ‘construction’ is
pre-programmed. Only some values still have to be filled in. The only way to change
that structure from the lemma, is to overwrite it completely. Specifying the full semantic
structure in a lemma is to be avoided as much as possible, because it is labor intensive
and mistakes are easily made. So, if a group of words shows the same pattern, it soon
becomes worthwhile to dedicate a template to this group.

When an argument does not play a role in the semantics, it is not too much of a
problem to encode it as an extra argument in the lemma. Obligatory reflexives are now



Section 2.3. The semantics 39

encoded that way. The zich ‘self’ in zich schamen ‘to be ashamed’ is an obligatory
reflexive pronoun, since the verb always requires the presence of a reflexive pronoun
that agrees with the subject. The reflexive argument is added by the lemma to the
arguments that are already in the template. The semantics doesn’t change. Since the
reflexive pronoun is always there, its contribution to the semantics of the combination
does not need to be recorded separately. Verbs with separable particles (e.g. opbellen
‘to phone’, where op is the particle), on the other hand, do have their own templates,
even though the particles do not contribute to the semantics. They are quite frequent,
so the alternative would mean that a lot of lemmas would need to have a particle added.
It does however double the number of verbal templates, because particles co-occur with
any combination of other arguments. It may be an option to let the particles be added by
the rules. If a particle is specified (with its phonology) then the rule should construct the
actual argument for it. The basic position, directly to the left of the verb and the mode
are always the same.

Sometimes there are two versions of the template, for example for transitive verbs
with an additional PP complement. Here the direct object and the PP can occur in either
order. This is not general enough to arrange in the rules. Therefore there is a version of
the template for each order.

In summary, templates are general constructions, rules create the paradigms for these
constructions and lemmas are individual words, marked for which constructions they can
head. All items in the actual lexicon that is used for parsing and generation are the output
of rules. Lemmas and templates are their input.

Also collocations are interesting in the context of lexical organization, but I will
postpone discussing them till after I have explained the semantics better.

2.3 The semantics
This section aims at explaining how the semantic representation works. Two different
levels of semantic representation can be distinguished in Delilah, Stored Logical Form
(SLF) and Logical Form (LF). SLF is a direct result of unification and is obtained
during the derivation. It is the value of the attribute LOG in the graph. Scope relations
are still underspecified in SLF. LF is a formula in first order predicate logic, that is
constructed post-derivationally on the basis of SLF and possibly additional information
in the template. In LF scope relations are fixed. One SLF can give rise to several LFs. In
chapter three a new semantic output format is discussed. To derive this new form, some
minor changes needed to be made. LF is then replaced by, on the one hand the new,
flatter representation and on the other hand a predicate logical form that is very similar
to the original LF. Since the changes are not relevant for the normal LF, I will not discuss
them until chapter three.

2.3.1 Stored Logical Form
The simple sentence in (26) will be used to illustrate the most important aspects of
semantic composition and application. The notation of semantic structures is somewhat



40 Chapter 2. Delilah: a semantic parser/generator for Dutch

simplified here for readability. I still use capital letters for variables.

(26) Elke
every

man
man

slaapt.
sleeps

‘Every man sleeps/ is sleeping.’

This sentence consist of a subject elke man and a verbal predicate slaapt. The subject
elke man in turn exists of the determiner elke and the noun man.

In principle the semantics of elke should be λP.λQ.∀x.P(x)→ Q(x), the semantics of
man λy.man(y) and the semantics of slaapt λz.sleep(z) and application and conversion
would go as in (27). (Event semantics is ignored here, as it is not relevant for the
mechanism under discussion.)

(27) λP.λQ∀x.P(x)→ Q(x)(λy.man(y))(λz.sleep(z))
⇒
λQ.∀x.λy.man(y)(x)→ Q(x)(λz.sleep(z))
⇒
λQ.∀x.man(x)→ Q(x)(λz.sleep(z))
⇒
∀x.man(x)→ λz.sleep(z)(x)
⇒
∀x.man(x)→ sleep(x)

In the implementation in Delilah, there are two things that complicate this picture.
One is that nested Cooper-storage is used to handle possible ambiguities (Cooper, 1975;
Keller, 1988). Second, as Pereira and Shieber (1987) have shown, Prolog is not very
suitable for lambda conversion. Since the parser is written in Prolog, it makes use of
partial execution, which is the solution that Pereira and Schieber propose. This means
that a lot of the work that is normally done through the application of lambda terms
is here done through the binding of variables. A third feature that makes the structure
slightly less transparent at first sight is the event semantics for the verb. This is not a
requirement of the implementation, but an upgrade of the semantic analysis.

The Prolog version of the semantics of elke man, can be represented as λQ.∀x.man(x)
→ Q, and the Prolog version of slaapt as sleep(z). This way only one of the terms has
a lambda abstraction. In order to get the effect that the second abstraction used to take
care of, the semantics of elke man (from its position in the store) binds the variable z in
the semantics of slaapt. It is straightforward that this binding of a variable has the same
function as lambda abstraction: it indicates which variable is to be substituted.

The semantics exists of a store and a body. The store is an instance of Cooper-storage
(Cooper, 1975). This is where the semantics of the arguments is stored till application.
The semantics of elke, man and slaapt are given in (28), (29) and (30) respectively.
Elke has just one argument, indicated by ‘Semarg’ in the semantics. In the case of (26),
‘Semarg’ will be unified with the semantics of man. The stores of man are empty, as
it doesn’t take any arguments. Apart from the subject, also the event that is introduced
by the verb is in the store. The semantics of the event argument isλH.∃I. sleep(I) &



Section 2.3. The semantics 41

event(I) & H. Also the temporal argument, which is treated as a pronoun, is in the store.
‘SemSubj’ stands for the semantics of the subject, which in this case will be elke man.

(28) semantics of elke (every)

{store:{Semarg applied to X binds P},
body:λQ. ∀X.(P→ Q)}

(29) semantics of man (man)

{store:{},
body:λY.man(Y)}

(30) semantics of slaapt (sleeps)

{store:{SemSubj binds S,
λR.∃E. sleep(E) & event(E) & R binds V,
temporal_pron binds T},

body: AtPres(T).(experiencer_of(V, S) & attime(V, T))}

Below is indicated what these would look like without partial execution.

(31) elke ‘every’

{store:{SemArg to be converted against P},
body:λP.λQ. ∀X.(P(X)→ Q(X))}

(32) semantics of man (man)

{store:{},
body:λY.man(Y)}

(33) semantics of slaapt (sleeps)

{store: {SemSubj to be converted against S,
λR.∃E. sleep(E) & event(E) & R(E) to be converted against V,
temporal_pron binds T},

body: λAtPres(T).(experiencer_of(V, S) & attime(V, T))}

After the semantics of man is put in the store of every to form the SLF(Stored Logical
Form) of every man, which is then in turn put in the store of sleeps, the SLF for the whole
sentence is (34).

(34) SLF of (26)

{store: {{store: {store: {},
body: λY.man(Y)applied_to X binds P},

body: λQ.∀X.(P→ Q) binds S},
λR.∃E. sleep(E) & event(E) & R binds V,
temporal_pron binds T},

body: AtPres(T).(experiencer_of(V, S) & attime(V, T))}



42 Chapter 2. Delilah: a semantic parser/generator for Dutch

The SLF is a representation that is underspecified for scope of quantificational elements
and optional bindings of pronouns. Note that everything comes with its own store and
that stores are nested. This means that structures with nested quantifiers are also covered.
Next, the stores are applied to arrive at one or more readings for the sentence.

2.3.2 Conversion of lambda terms
This section explains how the stored lambda terms are applied to generate the readings.
All conversion operations on lambda terms are performed by three rules, which are each
essentially beta-reduction. The need for partial execution prohibits a straightforward
application of the lambda calculus.

Application of the stores in (34) is as follows. The temporal pronoun is lexically
bound and does not need conversion. It is in the store to check for other binders, since
temporal pronouns can bind each other. ‘λY.man(Y)’ applied to ‘X’ yields ‘man(X)’,
and since this contains no quantifier and stores are empty the bound variable ‘B’ can
simply be unified with ‘man(A)’. This gives us the semantics in (36) for elke man, once
the stores are applied.

(35) semantics of elke man (every man), before application

{store: {store:{}
body: λY.man(Y) applied to X binds P},

body: λQ.∀x.(P→ Q)}

(36) applied version of (35)
λQ.∀X.(man(X)→ Q)

Suppose the semantics of the event argument in the store is applied before the subject.
The lambda term is applied to the body, and the quantifier is going to bind the variable
‘V’ in the body, with the following result:

(37) {store: {{store: {store: {},
body: λY.man(Y) applied_to X binds P},

body: λQ.∀X.(P→ Q) binds S}},
body: ∃E. sleep(E) & event(E) & AtPres(T).(experiencer_of(T, S)

& attime(E, T))}

Then the semantics of the subject, still in the store, is applied to the new body, with the
quantifier binding the variable S in the body. (The store of the subject itself is applied as
we have seen earlier.) This yields the following semantic representation for the sentence:

(38) reading of (26)
∀X.(man(X)→ ∃E.((sleep(E) & event(E)) &
AtPres(T).(experiencer_of(E, X) & attime(E, T))))

The relative scope of quantifiers depends on the order in which the quantificational
elements in the store are applied to the body.



Section 2.3. The semantics 43

Let us now look at it in more detail. In Delilah, convert/4 takes care of the conversion
of lambda terms. The first argument is the stored item under consideration, the second
argument is the variable that this stored item binds in the body, the third argument is
the body and the fourth argument is the result. The instance of convert/4 shown below
applies a stored quantifier to a body, e.g. applying elke man to slaapt. Note that elke man,
though syntactically an argument is here the functor.

(39) double beta reduction, for a stored quantifier applied to a body
convert( λVar.Quant8, Bound, Body, Quant ) :-

!,
binder( Quant, Bound ),
Var = Body.

In applying elke man to slaapt, the initial values are the following:

λVar.Quant:λP.∀X.man(X)→ P
(Var: P
Quant:∀X.man(X)→ P)

Bound: Z
Body: sleep(Z)
Quant: ∀X.man(X)→ P)

Then, binder/2, given in 40 picks out the variable bound by the quantifier in Quant,
i.e. ‘X’, and unifies it with Bound, i.e. ‘Z’, which also occurs in the body. This means
all ‘Z’s become ‘X’s. (Kwantor^Var^_Scope: ∀X.man(X)→ P, Var :X)

(40) binder(_Kwantor^Var^_Scope, Var)

Next, ‘P’, the variable that is abstracted over in the quantifying expression is made
equal to the body, which is by now ‘sleep(X)’.

So the final values are the following, where the value for Quant, the fourth argument
is taken as the result of the operation:

λVar.Quant:λsleep(X).∀X.man(X)→ sleep(X),
(Var: sleep(X)
Quant: ∀X.man(X)→ sleep(X))

Bound: X
Body: sleep(X)
Quant: ∀X.man(X)→ sleep(X))

This corresponds to performing the first conversion step in (41) and finalizing the
second conversion step, which had already been partially executed, i.e. the lambda
abstraction had already been removed and the variable to be substituted had been
indicated through binding. Only the actual substitution still needed to be done.

8Adapted for readability. The actual notation is Var@Quant, because the usual symbols of the lambda
calculus are not available.



44 Chapter 2. Delilah: a semantic parser/generator for Dutch

(41) λP.∀x.man(x)→ P(x)(λy.sleep(y))
⇒
∀x.man(x)→ λy.sleep(y)(x)
⇒
∀x.man(x)→ sleep(x)

The conversion steps described so far apply to cases where the stored element is the
functor and the body is the argument. This is what happens if the stored element is a
quantifier. The stored quantifier is applied to the body.

Another preparatory step used in the semantics of Delilah is application to a variable,
indicated in the store. This occurs when the body is the functor and the stored element is
the argument. So here the syntactic argument is also the semantic argument. An example
is the application of elke to man. Let us first look at the traditional, theoretical way of
computing the semantics of elke man. This is illustrated in (42), where the semantics of
elke is λP.λQ.∀x. P(x)→ Q(x) and the semantics of man is λy.man(y).

(42) λP.λQ.∀x. P(x)→ Q(x)(λy.man(y))
⇒
λQ.∀x. λy.man(y)(x)→ Q(x)
⇒
λQ.∀x. man(x)→ Q(x)

The reduction steps in (42) are identical to those in (41). What makes the two
situations different, is that here, the functor is the term in the body, as it corresponds
to the syntactic head, and the argument of this function coincides with the syntactic
argument of the head, whereas, in the case discussed previously, the roles were reversed.

In Delilah, the semantics of elke is λQ. ∀X.(P→ Q). It contains only one abstraction.
The first argument, P, is not abstracted over, but bound from the store. This is similar
to what we have seen above for the subject of slaapt. But the situation here is simpler.
The semantics of the argument will simply substitute P in the body (as if there was an
abstraction over P and the body was applied to the stored item). But first, the semantics
of man is applied to the variable that is bound by the quantifier in the body. This does
the job of the second reduction step in (42). It also solves the abstraction in the argument
term right away. In sum, the second reduction step is performed before the first one,
while the argument is still stored. The first reduction step is done through the binding of
a variable, rather than lambda abstraction.

(43) semantics of elke man (every man)

{store: {store:{},
body: λ Y.man(Y) applied to X binds P},

body: λQ. ∀X.(P→ Q)}

The relevant conversion rule is the following, which unifies the variables X and Y
and then calls a new instance of convert/4.

(44) in-store beta reduction
convert( λVar.Quant$Var, Bound, Body, Result ) :-

convert( Quant, Bound, Body, Result ), !.



Section 2.3. The semantics 45

The rule that applies then, is a simple application rule; the second stage of an already
partially executed beta reduction.

(45) substitution: finalizing beta reduction
convert( Q, Q, Body, Body ).

The first Q is man(X) (the semantics of man that has already been applied to X). This is
unified with the second Q, which was the variable P (bound), which also occurs in the
body. This leads to the result, which is the body with the variable P substituted with
man(X). This way P gets its value, without having been abstracted over.

Abstraction is always over something that is syntactically not an argument. Since
syntactic arguments are selected, their semantic contribution can be accommodated more
directly.9

Although direct reference to semantic types is not made anywhere, all applications of
lambda terms are compatible with a typed lambda calculus. The anti-symmetry between
functions and arguments guarantees this. In other words, it is always clear what is the
function and what is the argument.

Due to partial execution no additional solutions are needed, for well-known type-
related problems such as applying two quantificational np’s of the type << e, t >, t >
to a transitive verb of the type < e,< e, t >>. Partial execution lets the transitive verb
appear as type t, and the quantifiers as if they were of type < t, t >.

In sum, there are two different situations; The stored item (syntactically an argument)
can either be the functor, taking the body as a semantic argument, or it can be the
argument of the body also semantically. These two cases are handled in two slightly
different ways, but they have in common that (relative to standard lambda conversion)
the first conversion step has been partly prepared beforehand, and the second step is
applied before the first step is finalized.

2.3.3 Stores and quantification
The use of stores is a mechanism for the underspecification of scope. When all arguments
are still in store, all scope relations are still unspecified. Such an underspecified
representation of a sentence is called Stored Logical Form (SLF), inspired on Alshawi’s
Quasi Logical Form (Alshawi, 1992). SLF is the result of the unification of the semantic
fields in the graphs. It comes about when the entire graphs unify. It is in that sense
compositional; the meaning of the whole is determined by the meanings of its parts and
the way they are combined. All decisions are taken locally. The semantic composition

9The rule of composition has become obsolete, ever since subjects are part of the template from the
beginning. What happened was that when both the stored quantifier and the body had an abstraction, the
abstraction over the body would be ignored in the application and then added again to the result. This
abstraction would be an abstraction over the subject.

(1) convert( λVar.Quant, Bound, λX.Body, λX.Quant ) :-
!,
binder( Quant, Bound ),
Var = Body.



46 Chapter 2. Delilah: a semantic parser/generator for Dutch

can be described as functional application of the meaning of one subconstituent to the
meaning of the other one. It does not comply with the requirement of stricter versions of
compositionality, that the meaning of either subconstituent be opaque to this application
(Egg, 2005). In some cases the internal structure of the semantics of the argument is
referred to. LF is less compositional, because it is not a local process. It only starts when
all unifications have taken place. Readings of a sentence are, however, and fortunately,
still predictable from the meaning of the parts and the way they combine, encoded in the
constructions and the SLF-to-LF algorithm, which is fully based on information in the
sentence graph. It is not the case that recognition of a full sentence is strictly necessary
to start the process. The conversion rules can be applied as soon as a constituent has been
formed. An applied logical form can be derived for each constituent.

The alternative to SLF is having flexible syntactic types and letting each reading
be the result of a different derivation, as happens for example in traditional Categorial
Grammar. This leaves no room for underspecification.

The storing mechanism used in SLF has moved away a bit from the original Cooper-
storage. The store actually consists of three parts: a quantifier store, a pronoun store
and a reflexive store. The semantic field has the following form: {{[QuantifierStore],
[PronounStore], [ReflexiveStore]}, Body}. Apart from the semantics of the arguments,
the store also contains references to the nodes in the syntactic tree where the arguments
are located. As mentioned before, stores are nested, a property that was first introduced
by Keller (1988).

From SLF to LF: getting the readings

Here I discuss the mechanism that derives LF readings from the SLF. It is called
apply_store. The apply_store algorithm spells out the different readings based on the
SLF. What it does, is to re-order the elements in a store and decide which elements can
be promoted to a higher store. This decision is based on grammatical properties encoded
in the sentence graph. Then, for each order obtained in this process, it applies functions to
arguments according to a small set of conversion rules, as explained above. Apply_store,
thus, does not add anything new to the semantics. It manipulates the order of stored
elements and then takes care of the final function application.

In Delilah, the scopal order of quantifiers can be influenced at several points. First of
all, arguments are put in the store in a certain lexically determined order. The design is
that the order in which arguments of the same lexical head appear in the store, should not
matter. But if no additional operations are carried out on the store before it is applied,
the elements will be applied in that order. Delilah provides several mechanisms to
reorganize the store. Stored items are split up in scopal and non-scopal elements. Some
grammars let all DPs introduce scopal ambiguity, but for proper names, for example,
this is certainly not necessary. By putting them in the non-scopal list, they are kept out
of scopal interactions. The scopal elements that do relevantly contribute to ambiguity
are then reshuffled in order to generate more readings by backtracking. These scopal
elements are then also available for raising to a higher level, provided they are not inside
an island. Since every item in the store comes with a reference to the position in the
syntactic tree it comes from, the algorithm is able to check for islands. Thus the order of



Section 2.3. The semantics 47

quantifiers can be influenced at three points:

1. in the lexicon, by the order in which they are put in the store;

2. in the processing of the store, by distinguishing between different types of stored
items and by reshuffling

3. by raising to a higher store under certain conditions

The drawback of the algorithm is that quantifiers that have been raised to a higher
store will be re-ordered there in all possible orders again. This way the same reading can
be generated more than once.

When spelling out the different readings, redundancy should be avoided as much
as possible. This means first of all, not generating the same reading twice. Secondly,
it would be good to not generate readings that are logically equivalent to previously
generated readings. Besides that, one should implement all known restrictions on which
readings are actually possible.

Let me first sketch a strategy that does not generate the same reading more than
once. Instead of computing a new reading after each permutation or move we can
use an approach, inspired on the copy theory of movement (Chomsky, 1993), where
all quantifiers that can move to higher stores, are first copied to all the stores that they
can move to. The quantifiers can remain unordered with respect to each other within
a store. Then, a procedural algorithm determines the different possible orders which
contain exactly one copy of each quantifier. For example, if there only is one copy of
a particular quantifier, and this copy occurs in the highest store, then this quantifier can
only be preceded by other quantifiers that have a copy in the highest store.

The algorithm may work as follows: First, take the first order you find starting at the
beginning; start with the first quantifier you encounter, then the next, skipping quantifiers
you already have. Of this initial order, try if you can swap the last two quantifiers. Then
try to find an alternative for the second last, et cetera, till you exhaust all alternatives.
Two quantifiers can be swapped if they are in the same store, or if a copy of the first also
occurs in a lower store than the second. This way you never get two identical readings.

So far, I have only discussed the scope of generalized quantifiers in relation to other
generalized quantifiers. There may be cases, however in which it matters in which store
a quantifier is realized, even if the order with respect to all other quantifiers is in both
cases the same. This can happen when there is intervening material that does not occur
in the store, but does have scope effects, such as modals and scopal adverbials. Such
intervening material is not in the store, but will be fixed in a syntactic position between
two stores, and needs to be checked for if its scope effects are to be accounted for.

The classical example is (46), where a unicorn can either scope below or above
seems.

(46) A unicorn seems to be in the garden.

To get this right at all in Cooper-store, which does not allow for quantifier lowering, a
raising analysis is needed. A unicorn starts out, semantically, as an argument of be. From



48 Chapter 2. Delilah: a semantic parser/generator for Dutch

there it can raise to the higher store, the store of seems. Because of this intervening modal,
it matters in which store the quantifier is realized, even if there is only one quantifier.

So for each quantifier order it should be checked whether one of the quantifiers can
also be realized on the other side of a fixed scopal element, while maintaining the same
position with respect to the other quantifiers. This would be an extra reading.

This approach actually gives us three levels of LF: the SLF that is the direct result
of the derivation, the underspecified representation with copies of the quantifiers in all
possible stores, and the fully specified readings.

Equivalent readings

The procedure described above prevents generating the same reading twice. In some
cases, however, it still derives two or more readings that are equivalent to each other.
This may be (partly) prevented by imposing additional conditions on permutations, such
as: two quantifiers that are of the same type, (i.e. two universals, or two existentials)
with nothing intervening should not be swapped with each other. (Here the quantifier is
considered to be the whole DP, see Barwise and Cooper (1981).) Koller and Thater
(2006) wrote a redundancy elimination algorithm for underspecified descriptions. It
distinguishes classes of readings, the members of which are equivalent to each other,
but maintains underspecification. The algorithm works on dominance graphs. It should
be possible to translate Delilah’s nested Cooper-stores into dominance graphs, because
all the information needed seems to be available. The body and the stored elements can
function as fragments and the binding of variables between fragments is known. After
it has been calculated to what stores the quantifiers can move, it will be clear if one
quantifier has to have scope over another. This information can then also be used. I will
therefore assume that Koller and Thater’s algorithm can be used for Delilah.

Restrictions on scope

Some island constraints have been implemented to prevent unwanted readings. Islands
are subdivided into the following types: decreasing, wh, factive, intensional, and lexical.
Island constraints are general syntactic constraints. Some extra constraints may apply to
the behavior of particular types of quantifiers, though.

The sentence in (47) has often be claimed to have an enormous amount of readings.

(47) A politician can fool most voters on most issues most of the time, but no
politician can fool all voters on every single issue all of the time.

But how many (different) readings does it really have? Can we exclude any readings
without applying world knowledge?

First of all, it seems to be impossible, or at least very hard, to give the universals
in the second conjunct wider scope than ‘no politician’. Even the simpler (48) cannot
mean that all voters are such that no politician can fool them. When ‘all’ is replaced with
‘most’, however the inverse reading is available.

(48) No politician can fool all voters.



Section 2.3. The semantics 49

The phenomenon that readings in which a universal is raised over negation are disfavored
can also be observed in the contrast between (49a) and (49b). Whereas (49a) easily gets
the non-absurd reading where every corner scopes higher than a policeman, in (49b) it
can only get narrow scope, yielding a trivial reading.

(49) a. A policeman is standing on every corner.
b. No policeman is standing on every corner.

Another thing is that, although it is possible to give all three ‘most’s together scope
over ‘a politician’ (if ‘a politician is interpreted as an existential, not if it’s a generic),
it does not seem to be possible to let only one of the ‘most’s take wide scope over the
existential, while leaving the others behind. ‘Most’s, and universal quantifiers, seem to
cluster. This is also illustrated by the following simpler examples. Whereas (50a) appears
to have all readings that we would expect, (50b) does not seem to be able to mean that
for every book there was a professor who recommended it to every student, or that for
every student there was a professor who recommended him every book.

(50) a. Every professor recommended a book to a student.
b. A professor recommended every book to every student

It is not clear whether this is a hard fact nor what causes it.
Permuting the order of the universals in the second conjunct does not yield any new

readings unless there are reasons to multiply the sets under consideration. The situation
for the ‘most’s in the first conjunct is more complicated, but at least it is very difficult to
intuitively distinguish different readings, even in a simpler example.

(51) a. Most politicians can fool most voters.
b. Most voters can be fooled by most politicians.

Intuitively, (51a) and (51b) seem to entail each other. One may argue, that this is because
they are both ambiguous in the same way. That would predict that (52a) and (52b) are
just as easily accepted as equivalents. Here however it is clearly felt that the equivalence
is dependent on the choice of reading that is made for each of the sentences.

(52) a. Some politician can fool all voters.
b. All voters can be fooled by some politician.

Moreover, it is tempting to judge even the unambiguous sentences (53a) and (53b) as
equivalent. Most people need pen and paper to convince themselves that logically they
are not.

(53) a. For most politicians it is the case that they can fool most voters.
b. For most voters it is the case that they can be fooled by most politicians.

In the light of the work of Anderson (2004), who argues on the basis of psycholinguistic
experiments, that human interpreters have a preference for the surface-scope reading,
because that is the syntactically simplest reading, it is likely that humans only compute
one reading for the in principle ambiguous most-most sentences. The chance that they



50 Chapter 2. Delilah: a semantic parser/generator for Dutch

have good reasons to assign the inverse-scope is very small, since they can barely tell
the difference between the default reading and its alternatives. For a parser, it would
therefore be quite safe to also compute only the surface-scope reading.

One thing is clear: further research is necessary on restrictions on quantifier scope.
All of the issues discussed in this section require more work.

2.3.4 Other scopal elements
Considering unstored scopal elements as fixed, means that you cannot underspecify
scope relations of these fixed elements with respect to each other. Ambiguity in such
scope relations will have to be considered syntactic ambiguity. In order to be able to
underspecify the scope relations between scopal elements, these elements have to be in
the store. It is therefore worth investigating whether it is possible to store all scopal
elements, i.e. not only quantifiers, but also modals and adjuncts. I will first discuss
whether this is technically possible in the format of Delilah, and then whether, or to what
extent, it is desirable.

Storing operators

Let us look at the ambiguity in (54). The sentence can mean either that it is often possible
for Alice to come or that it is possible for Alice to often come.

(54) Alice
Alice

kan
can

vaak
often

komen.
come

‘Alice can come often.’

At present, kunnen and vaak are represented as operators. That is, the semantics
of kunnen komen (‘to be able to come’) has a schematic structure as in (55a) and the
semantics of vaak komen (‘to come often’) has a schematic structure as in (55b).

(55) a. kunnen komen
possible(∃e & come(e) . . . )

b. vaak komen
often(∃e & come(e) . . . )

The semantics of (epistemic) kunnen is (56). The result of applying the semantics
of the VP complement to X and then adding a new abstraction over X in the body, is
that the modal operator is inserted under the abstraction. This abstraction is in practice
the abstraction over tense, to be resolved by the tense of the finite verb. The quantifiers
introduced by the arguments of the complement verb (included in SemCompl) end up in
the scope of the modal, if they are not raised to a higher store.

(56) {store: {SemCompl applied to X binds A},
body: λX.possible(A)}

The simplest way of putting the operator in the store is (57), which after application
will have the same result as (56).



Section 2.3. The semantics 51

(57) store: SemCompl applied to X binds A, λY.possible(Y) binds B
body: λX.B(A)

This however does not help, as it still does not allow for scope ambiguity, as can be
seen below, where vaak takes an argument headed by kunnen.

(58) vaak kunnen VP
{store: {store:{SemVP applied to X binds A, λY.possible(Y) binds B},

body: λX.B(A) applied to W binds C,
λZ.often(Z) binds D},

body: λW.D(C)}

Whereas a quantifier binds a variable in the body, an operator substitutes its variable.
Therefore, the only reading that can be obtained from this SLF is the one where possible
scopes over often, i.e. possible(often(∃e & come(e) . . . )). Only a different syntactic
analysis, where vaak is in the complement of kunnen gets us the other reading.

This shows that storing cannot usefully be applied to scopal operators in exactly the
same way as to quantifiers.

An alternative is to not let operators in the store bind a variable in the body, but
marking them for being operators, for example, by stating that they bind ‘nothing’. The
store applying algorithm should then apply the operators to the body, when it is their turn.
This way they can be applied to the body in different orders, yielding different results.

A way of implementing this is by adding an instance of convert/4, that is reminiscent
of the old composition rule, but without a variable being bound in the body.10

(59) convert( λVar.Quant, nothing, λX.Body, λX.Quant ) :-

!,

Var = Body.

This would resolve a structure like the following:

(60) store: {store: {SemVP binds A, λY. possible(Y) binds nothing}
body: A binds B,
λZ.often(Z) binds nothing}

body: B

10Variable binding in the body when the body consists of only that variable is a bit strange. We can in
principle replace the body with the body of the argument right away. The semantics in the template of a scopal
operator would then be constructed as follows:

(1) sem:
store: StoresArg, λY. Operator(Y)
body: BodyArg

semarg:
store: StoresArg
body: BodyArg

semhead: Operator

A disadvantage is that this makes it more difficult to restrict the scope of particular items. Especially for the
arguments of the VP complement this may be problematic.



52 Chapter 2. Delilah: a semantic parser/generator for Dutch

If λY. possible(Y) is raised to a higher store, namely the same one where λZ.often(Z) is in,
the two operators can be applied in either order. The arguments of the VP complement,
here included in SemVP, can in principle also be raised to a higher store and take any
kind of scope, if they are not prevented from doing so.

Now that I have shown that it is possible to store scopal elements other than
quantifiers, and underspecify for their scope I will discuss in which cases it is useful
to do so.

Split scope effects

Before I discuss the problematic aspects of the examples used above, I will first present a
case in which it is relatively clear that the strategy described is necessary and successful.

Rullmann (1995) and Penka and Zeijlstra (2005) describe split scope effects for
negative indefinites, such as Dutch geen (‘no’) (see also Jacobs (1980), Kratzer (1995),
de Swart (1996)). They observe that the scope of a modal can intervene between the
scope of the negative operator and that of the existential quantifier, as is illustrated in
the (a) readings of (61) and (62). The (a) reading is in both cases the most natural one
and in (62) even the only really sensible one, since the (c) reading is not available under
intensional verbs and the (b) reading is trivially true in any world where there are no
unicorns.

(61) Ze
they

mogen
may

geen
no

verpleegkundige
nurse

ontslaan.
fire

a.‘They are not allowed to fire any nurse. ¬ > may > ∃
b.‘There is no nurse who they are allowed to fire.’ ¬ > ∃ > may
c.‘They are allowed not to fire a nurse.’ may > ¬ > ∃

(62) Hans
Hans

zoekt
seeks

geen
no

eenhoorn.
unicorn

a.‘Hans is not trying to find a unicorn.’ ¬ > seek > ∃
b.‘There is no unicorn Hans is trying to find.’ ¬ > ∃ > seek
c.∗‘Hans is trying not to find a unicorn.’ seek > ¬ > ∃

It is therefore argued that negative indefinites should be considered as complex lexical
items consisting of a negative and an indefinite part. Potts (2000) shows under what
conditions even English no shows such effect.

In Delilah the semantics of geen is now built up as in (63). Here, it is not possible to
generate a split scope reading. The negation and the existential will always be together.
(SemN stands for the semantics of the nominal argument of the determiner.)

(63) semantics of geen
store:SemN applied to X binds P
body:λZ.¬∃X.P & Z

If we put the negative operator in the store, however, as in (64), split scope readings
will be derivable, by raising the negative operator to a higher store.



Section 2.3. The semantics 53

(64) proposed semantics of geen
store:SemN applied to X binds P, λY.¬(Y) binds nothing
body:λZ.∃X.P & Z

This exactly predicts the readings we get for (61). It also predicts that the existential will
never scope higher than the negation. In order for the existential to get scope over the
negation, the negation operator would first have to raise to a higher store, after which the
remaining part of the semantics of geen N would need to raise to a position where it can
outscope it. This would amount to remnant movement, which Delilah does not permit.
Introducing remnant movement in Delilah is undesirable, since it would largely, if not
entirely, undo the effect of nested stores (Keller, 1988).

For (62) I need to assume that zoeken ‘seek’ has to be analyzed as ‘try to find’
(where ‘try’ introduces the intensionality). Why the (c) reading is unavailable remains
unexplained. Penka and Zeijlstra suggest it may be for pragmatic reasons. My guess
would be that it is an effect of incorporation, since (65) does have all three readings.

(65) Hans
Hans

probeert
tries

geen
no

eenhoorn
unicorn

te
to

vinden.
find

a.‘Hans is not trying to find a unicorn.’ ¬ > try > ∃
b.‘There is no unicorn Hans is trying to find.’ ¬ > ∃ > try
c.‘Hans is trying not to find a unicorn.’ try > ¬ > ∃

This particular effect, which is specific to verbs with intensional objects, will be hard
to implement, but for the rest, the approach of putting the negative operator in the store
seems very fruitful for split scope effects. It will also prove very useful for the analysis
of geen in collocations, which I will discuss in section 2.3.9. Note also, that there is
no way to analyze simple negation as a quantifier, quantifying, for example, over times
or possible worlds, although for many other operators that may be an option. Simple
negation can only be an operator. I therefore conclude that at least for these negation
cases, the operator-in-store technique is required.

Modal verbs and scopal adverbs

The operator-in store analysis for the original ambiguous examples in section (2.3.4)
is more problematic, because the ambiguity in these examples is normally considered
syntactic. Two different syntactic trees accidentally have the same surface order.
Although for computational semanticists it would of course be convenient to be able
to underspecify for this kind of ambiguity, getting two different syntactic analysis for a
sentence like (54), seems unavoidable, since, no matter your analysis of adverbs, vaak
will always be able to combine with komen as well as with kunnen komen. Examples
(66a) to (66c) show that vaak can combine with matrix verbs as well as with embedded
verbs, depending on its position.

(66) a. Vaak
often

ontkent
denies

hij
he

te
to

zijn
have

gekomen.
come

‘Often he denies to have come.’



54 Chapter 2. Delilah: a semantic parser/generator for Dutch

b. Hij
he

ontkent
denies

vaak
often

te
to

zijn
have

gekomen.
come

‘He often denies to have come.’/ ‘He denies to often have come.’
c. Hij

he
ontkent
denies

dat
that

hij
he

vaak
often

is
has

gekomen.
come

‘He denies that he has often come.’

In addition, the scope of adverbs amongst each other is mostly fixed, and determined
by the order. (67a) and (67b) are unambiguous. Likewise, the relative scope of modal
verbs is completely determined by their order.

(67) a. Bob
Bob

komt
comes

niet
not

vaak.
often

‘Bob does not come often.’
b. Bob

Bob
komt
comes

vaak
often

niet.
not

‘Bob often doesn’t come.’

Where a sentence with two adverbials does display an ambiguity which might be
considered scopal, such as (68) from Broekhuis (1999), this still seems to originate from
a syntactic ambiguity. Broekhuis argues that in one reading vaak is interpreted as a VP-
adverb and in the other reading as a clausal adverb.

(68) Alice
Alice

gaat
goes

op
on

zondag
Sunday

vaak
often

naar
to

de
the

kerk.
church

‘Alice often goes to church on Sundays.’

I conclude that the scope of modal verbs and adverbials is fixed by their (surface)
syntactic position. In the next section I will discuss whether that excludes underspecifi-
cation.

Syntactic vs. semantic ambiguity

The scope ambiguity of quantifiers that is underspecified is considered semantic ambigu-
ity. The difference between syntactic (structural) and semantic (scopal) ambiguity is the
result of giving up on a 1:1 relation between syntax and semantics. In theoretical syntax, a
sentence that is ambiguous only in quantifier scope still gets two different syntactic trees.
These two trees only differ in which copy of which quantifier is interpreted, to put it the
minimalist way. Or in more traditional terms, the difference between the two structures
is only the result of movement on LF. It is a particular kind of structural ambiguity, but it
can still be considered structural.

In computational semantics, on the other hand, underspecification of scope ambigui-
ties is widely embraced.

Also, I concluded that ambiguity in adverb scope is syntactic, whereas a negation
that is expressed on a determiner should be stored. This gives us the weird result that
the scope of the negation in (69a) en (69b) is determined by their syntactic position,



Section 2.3. The semantics 55

i.e. the negation occupies different positions, whereas the scope of the negation in (70a)
and (70b) would not be determined by the syntax, i.e. the negation occupies the same
syntactic position in both cases.

(69) a. Ik
I

kan
can

niet
not

komen.
come

(normal intonation)

‘I can’t come.’ (¬ > can)
b. Ik

I
kan
can

(ook)
(also)

NIET
NOT

komen.
come

‘I can also NOT come. (can > ¬)

(70) a. Ik
I

kan
can

geen
no

soep
soup

bestellen.
order

(normal intonation)

‘I can’t order soup.’ (¬ > can)
b. Ik

I
kan
can

(ook)
(also)

GEEN
NO

soep
soup

bestellen.
order

‘I can (also) NOT order soup.’ (can > ¬)

However, the cases seem completely parallel, except for the fact that (70a) and (70b)
contain an indefinite direct object. An alternative analysis that has been proposed (Klima,
1964; Rullmann, 1995), and seems more likely, is that the negation in (70a) and (70b)
is only pronounced on the determiner, but that its actual syntactic position is a different
one. The simplest assumption would be that the negation in (70a) is in exactly the same
position as in (69a), and that the negation in (70b) is in the same position as the negation
in (69b). Nevertheless, the approach sketched above for negative indefinites appears to
be the most suitable one for implementation in Delilah.

The difference in treatment of the two cases is then an artefact of Delilah’s rather
lexicalist and surface oriented syntax. It may be the case that the whole distinction
between syntactic and semantic ambiguity (or at least its significance) is the result of
a choice for a not too complex, surface oriented syntax. This choice however, has the
advantage that it limits the number of trees that are possible for a sentence.

Allowing that an ambiguous sentence can have two different parse trees and one
unified underspecified semantic representation is problematic, because it would suggest
that each of the trees can have any of the readings, which is not correct (Bunt, 2007). It
is an open question whether there can be semantic underspecification based on syntactic
underspecification.

2.3.5 Scope disambiguation and underspecification
The assumption that scopal elements can in principle take scope in any order creates a
problem of massive ambiguity. A sentence with n scopal elements potentially has n!
readings.

To avoid having to enumerate all readings, several underspecified representation
formalisms have been introduced. Cooper-storage is one of them. Other prominent
ones are MRS (Copestake et al., 2005), dominance diamonds (Egg, 2004) and hole



56 Chapter 2. Delilah: a semantic parser/generator for Dutch

semantics (Bos, 1996). It is not too difficult to represent all n! readings of a sentence
with n scopal elements in a compact way. Difficulties arise if one wants to be able to
represent that certain readings are excluded. Ebert (2005) shows that no underspecified
representation formalism can be both expressively complete and avoid combinatorial
explosion. Expressively complete means that in all cases where some readings are ruled
out, for example by partial disambiguation through context, the formalism is able to
represent all remaining readings in one underspecified representation. In order to do that
it would have to be able to represent each subset of the set of n! readings, which means
2n! different sets.

It looks like underspecification does not solve all our problems. Of course having a
reliable algorithm to obtain the intended meaning of a sentence would be preferable11.
Unfortunately such an algorithm has not been invented yet. Here I will discuss two
alternatives to the underspecification approach described above. The first one is to only
give the most general reading. The second is to initially compute only the most likely
reading.

An interesting way of avoiding computing and enumerating all possible readings, is
to only give the most general reading. For example, the sentence in (71), in its surface
scope reading, that is the reading with wide scope for every, is also true in a situation
where all girls push the same truck.

(71) Every girl pushed some truck

Pietroski and Hornstein (2002), would even go as far as saying that a sentence like
(71) is not ambiguous. It only has one reading, which is the wide scope reading for every.
It can be made true by several different situations, including ones in which all girls push
the same truck. An important argument is that in (72) through (74), where an inverse
reading would not entail the surface reading, the inverse reading does not appear to be
available.

(72) Two girls pushed few trucks.

(73) Few/Most/Several girls pushed no truck.

(74) No girl pushed no truck.

That is, (72) cannot mean that there were few trucks pushed by two girls, (73) cannot
mean that there was no truck that few/most/several girls pushed, and (74) cannot mean
that there was no truck that no girl pushed. (These facts seem to be related to what was
presented in (48).)

For a sentence like (71), one could thus quite safely give only the reading with a wide
scope for the universal quantifier. Some possible situations that would make the sentence
true may be incompatible with the context. So, inferences that are based not only on
this one sentence, but also on the context, should then turn out correct. This means that
for representations that aim to support inferencing, this may be an interesting way of
underspecification.

11I assume that in most cases there is an intended reading, although it is of course true that some utterances
may be intended to be ambiguous.



Section 2.3. The semantics 57

This strategy is less straightforward for examples like (75), though. Here the object
can take scope over the subject.

(75) Some girl pushed every truck.

According to Pietroski and Hornstein, sentence (75), in contrast with the sentences (71)
through (74), is ambiguous. In their account, they distinguish between strong and weak
determiners/quantifiers. When a sentence contains two quantifiers Q1 and Q2 (where Q1
is the subject and Q2 is the object), the LF will look as follows:

(76) [Q1 Q2 [VP Q1 V Q2]]

There are two copies of each quantifier. One is the original copy inside the VP and the
other one is the result of quantifier raising. What determines the scope ordering, is which
copies are realized and which are deleted. The VP-internal copy of a strong quantifier
must always be deleted. This means that if Q1 is a strong quantifier, Q1 will always
outscope Q2.

In spite of this, one could of course still consider giving (75) only the most general
reading as a means of underspecification (i.e. the reading with wide scope for the
universal quantifier). This approach would lead to an algorithm where the order of
the quantifiers in the underspecified reading would depend on the types of quantifiers
involved. For example, a universal quantifier would always have scope over an existential
one.

The problem with this approach is that not for all quantifier pairs one order entails
the other. Consider (77).

(77) No girl pushed two trucks

The sentence is ambiguous. But if there was no girl who pushed two trucks, this does
not necessarily mean that two trucks were not pushed. Maybe each girl pushed just one
truck, but all trucks got pushed by a girl. And if there were two trucks that were pushed
by no girl, that does not have to mean that there was no girl who pushed two trucks. So in
this case there is no most general reading, of which the other reading is a special case. In
conclusion, although the strategy of giving the most general reading seemed interesting,
it fails because there is not always a most general reading.

Pietroski and Hornstein’s approach can possibly be used to restrict the number of
readings. It does not cover all cases, though. Whereas it predicts, for instance, the
ambiguity of (77), since both quantifiers are weak, it also predicts (72) and (74) to be
ambiguous for the same reason, which they are not.

A different approach is to initially give only the most likely reading and only compute
alternative readings if the first turned out not to be compatible with the context or with
world knowledge. Computing an alternative reading should be guided by context, and be
conservative. One should not invert more than what is necessary to make the sentence
compatible with its context.

Anderson (2004) shows psychological evidence that surface scope readings are more
easily computed by humans than inverse scope readings, even in contexts that favor the
latter. Even in unambiguous inverse-scope sentences, the greater processing cost can be



58 Chapter 2. Delilah: a semantic parser/generator for Dutch

measured in terms of slower reading times. (Also the examples (72) through (74) seem
to indicate that surface order is important.) The problem is that Anderson’s experiments
are limited to active subject-verb-object sentences containing the quantifiers a and every.
Kurtzman and MacDonald (1993) show that in passive sentences there is a much weaker
preference and in complex NPs containing two quantifiers, the most embedded one is
preferred to have the widest scope. It seems it is not always clear what makes something
the simplest reading. This makes it difficult to systematically predict which will be the
simplest reading.

Several factors play a role in how people pick a reading for a multiply quantified
sentence, among which at least the following:

1. syntax
Effects of syntactic configurations, such as islands, can completely exclude certain
readings. Syntax can also influence preference for one reading or the other,
as Anderson shows. Readings that are syntactically more complex seem to be
dispreferred.

2. linear order
Linear order is likely to play a role, because this is the order in which hearers
perceive the different quantifiers and presumably also the order in which they
process them. As a condition, it is hard to tease apart from syntax and topicality
(Bunt, 1985; Fodor, 1982; Johnson-Laird, 1969; Kroch, 1979; Lakoff, 1971;
VanLehn, 1978).

3. topicality/discourse
Topics tend to preferably have wide scope. (They tend to be fronted, and in spoken
language, topicality is also marked by intonation.)(Kempson and Cormack, 1981;
May, 1985)

4. context
Context can help to disambiguate, for example by suggesting that a phrase that
starts with a introduces one or more than one entity (Anderson, 2004).

5. real-world knowledge
Expectancies based on world-knowledge play an important role. If world
knowledge only allows one reading, this probably overrules most other factors,
except for hard syntactic constraints or a context that tells the reader that the text
is about a world that differs at the relevant point from the world he knows.

6. lexical preference of a quantifier
For example, each has a stronger preference for wide scope than every (Beghelli
and Stowell, 1997).

7. thematic role effects
Agents having a stronger preference for wide scope than e.g. experiencers
(Grimshaw, 1990; Jackendoff, 1972). (This can also be considered part of syntax.)



Section 2.3. The semantics 59

In Anderson’s experiments it turns out that a context that was intended to disambiguate
a sentence, did not always have that effect. This suggest that humans may not always
choose the reading that was intended by the speaker. The conclusion is that at this point
too little is known about preferred readings and disambiguation in context, to base a
general computational strategy on.

There is one other research direction in scope disambiguation worth mentioning.
Saba and Corriveau (2001) describe a strategy of disambiguating based on a database
that contains knowledge about what relations are normally one to many, many to many,
etc. It will for example contain the information that a house is normally on one street, but
that there are typically multiple houses on one and the same street. This is interesting,
because possibly this kind of knowledge can be harvested, by extracting unambiguous
sentences with particular subject-verb-object combinations. (e.g. sentences containing
demonstratives).

2.3.6 Adjuncts

Adverbials are well known for being problematic syntactically as well as semantically
(Austin et al., 2004). Their syntactic position is not clear. Both syntactically and
semantically there appear to be different classes of adjuncts with different behavior, but
there is no consensus on the exact classification. Syntactically, adverbials are optional.
The question is whether they optional in the semantics too, or fill an existing position,
which in absence of an appropriate adjunct would get a default value.

I will talk here about ‘adjuncts’, because that is what adverbials are now considered
to be in Delilah, though the alternative approach that I propose here, may be closer to the
“adverbials are specifiers” position (Alexiadou, 1997; Cinque, 2004; Laenzlinger, 1998).

The category of adjuncts

In the present version of Delilah, adjuncts are categorially treated as automorphisms.
This means, that they combine with a sentence to form a sentence, or combine with a
VP to form a VP, or combine with an NP to form an NP, etc. We can thus say, that they
are of the type x/x (or x\x), taking something of category x (on the left or the right side)
to form something of the category x. A grammar rule that combines a phrase with an
adjunct will have the general form in (78).

(78) x x\x⇒ x

This means the adjunct is the functor and the other phrase is the argument. The result
of the application is again of category x, and can combine with yet another adjunct in
exactly the same way. This accounts for the observation that adjuncts are never required
and that another adjunct can always be added. Placement of adjuncts is regulated by
modes12 (explained in section 2.1).

12The mode that is used for adjuncts is the same one that makes the third construction possible in verbal
clustering.



60 Chapter 2. Delilah: a semantic parser/generator for Dutch

However, long extraction of adjuncts cannot be handled by this approach (Cremers,
2002). For example, waar in (79a) can at present not be interpreted by Delilah as being
extracted from the embedded clause.

(79) a. Waar
where

denk
think

jij
you

dat
that

hij
he

mij
me

wou
wanted

onderbrengen?
lodge

‘Where do you think he wanted to lodge me?’
b. Wie

who
denk
think

jij
you

dat
that

hij
he

hier
here

wou
wanted

onderbrengen?
lodge

‘Who do you think he wanted to lodge here?’

Recall from the grammar section that wie introduces two grammatical types. The first
one is q/s and the second one np, together with the np^wh\s, the whole thing nicely
goes to q. And since the np that the sentence was still searching to the left, was the
object of the embedded verb, the question word is interpreted as being extracted from
the embedded clause. Now consider waar, also introducing a type q/s, but next to that
an adjunct of the type x/x, which in this case will turn out to be s/s, combining with
a complete s. The result is still q, but the adjunct will be interpreted as modifying the
matrix sentence, i.e. asking about the place of the thinking, rather than as extracted from
the embedded clause, which would be the most natural reading.

(80) a. Waar
[]\q/s []\s/s

denk jij dat hij mij wou onderbrengen?
[]\s/[]

b. Wie
[]\q/s []\np/[]

denk jij dat hij hier wou onderbrengen?
npˆwh\s/[]

This is because nothing is looking for an adjunct. The embedded clause is perfectly
happy without it. In (79b) on the other hand, there is no problem. Because wie is an
argument, it is searched for by the verb in the embedded clause, which still wants an
object, and therefore it is interpreted as extracted from the embedded clause.

Note also, that this is not a problem for real sentential adjuncts. (81a) does not have a
reading where misschien (‘maybe’) is interpreted as modifying only the embedded clause
(i.e. (81a) does not have a reading in which it means the same as (81b)). Sentential
adjuncts cannot be targeted by wh-question words either. (i.e. misschien cannot be the
answer to a wh-question).

(81) a. Misschien
maybe

denkt
thinks

Bob
Bob

dat
that

Piet
Piet

komt.
comes

‘Maybe Bob thinks Piet is coming.’
b. Bob

Bob
denkt
thinks

dat
that

Piet
Piet

misschien
maybe

komt.
comes

‘Bob thinks Piet may be coming.’

NP-adjuncts, such as relative clauses (82a) and prepositional phrases (82b), are not
available for long extraction either, (or even short extraction, since no extraction is
possible from a complex NP), but they can be right dislocated, giving rise to the same
kind of problem.



Section 2.3. The semantics 61

(82) a. Ik
I

heb
have

de
the

man
man

proberen
tried

op
up

te
to

bellen
phone

die
who

de
the

prins
prince

beledigd
offended

heeft.
has

‘I have tried to phone the man who offended the prince.’

b. Bob
Bob

heeft
has

gisteren
yesterday

een
a

boek
book

gekocht
bought

met
with

veel
many

plaatjes.
pictures

‘Bob bought a book with many pictures yesterday.’

Treating VP-adjuncts as arguments would solve the extraction problems. Adjuncts
can for example be selected as optional arguments. In categorial grammar, that would
mean, having a rule like (83) instead of (78) for VPs that take adjuncts, where x/a is the
type of a VP that optionally takes an adjunct. There is an optional argument slot for an
adjunct and if it is filled, a new such slot is created.

(83) x/a a⇒ x/a

And in addition, one would need (84).

(84) x/a⇒ x

(84) takes care of the optionality of the adjunctive argument. It lets x/a go to x even
without a positive occurrence of a. (83) makes this optionality recursive, allowing for an
amount of adjuncts that is in principle unlimited. In other words, the two rules together
let a category absorb any amount of adjacent adjuncts and in the end always go to x.

An alternative to having (84) is to list everything of type x/a also as type x in the
lexicon for the case where there are no adjuncts and then use normal cancelation for
the last adjunct. Then we would use (83) and (85), plus ambiguity in the lexicon. The
chartparser is capable of deciding which rule should be used when, to let the whole string
go to s.

(85) x/a a⇒ x

Unlike (78), which was an innocent case of cancelation of a negative occurrence of a
category against a positive one, (83) and (84) are not the kind of rules that fit in a normal
categorial grammar. In fact, (83) is a non-canceling rule.

Bouma and van Noord (1994) avoid this problem, by letting the adjunctive argument
be introduced by a recursive lexical rule (or constraint). In the architecture of Delilah,
such a lexical rule would be problematic, because Delilah works with the whole lexicon
already compiled and indexed in such a way that it can be searched in in linear time. A
recursive lexical rule would lead to an infinite lexicon, which therefore can not be created
and indexed as a whole. What Bouma and Van Noord do, is to postpone the application
of the lexical rule. Only when it is clear what the category of the verb should be to
make the sentence grammatical, it is checked whether it can get this category through the
lexical rule. This is equivalent to having the kind of syntactic rule in (86). By making it
a lexical constraint, they restrict which categories can play the role of x in this rule.

(86) x⇒ x/a



62 Chapter 2. Delilah: a semantic parser/generator for Dutch

This rule is possibly even worse in a grammar than the previous ones, because, rather than
reducing complexity, it introduces extra complexity. It is a sort of lifting rule, introducing
an extra slash. This causes the risk that the parse will not terminate. Bouma and Van
Noord argue that with a special parsing strategy this can be kept under control. It is,
however, one of the advantages of CCG that it can do without type lifting. Therefore
this strategy is not very attractive for Delilah. Rules (83) and (84) at least appear less
dangerous than (86). (84) is rather harmless, because it gets rid of a slash anyway. (83) is
slightly more risky, because it does not reduce complexity, but it does not introduce any
new slashes either. And at the point that no more adjuncts are found, x/a will reduce
to x, through (84). It’s the running out of adjuncts that terminates the process. (84) and
(83) could of course never be general rules in a classical CG. That is also the reason
why Bouma and Van Noord make theirs a lexical rule. In CCG, however, rules are not
general. Conditions on the cases in which a rule applies can be formulated in the grammar
by means of the modes. And in a way the adjunct in (83) is still an automorphism, as it
combines with something of the category x/a to form something of the category x/a.

If one thinks of the slash as a (direction sensitive) division and of composition as
multiplication, then one could think of a as the number 1. This would make all the rules
valid. (84) then corresponds to x/1=1, (83) to x/1·1=x/1 and even x/x=1. Also (86) fits
in this picture (x=x/1), but is less suitable for Delilah, as it is a type changing rule. So,
whatever approach we take to adjuncts, their grammatical type always corresponds to 1.

If it could be shown that an event only has one slot for each type of adjunct, e.g. time,
location, instrument etc. that would make the number of possible adjuncts per verb finite.
In this case it might in principle be possible to arrange the optionality in the lexicon,
without making it infinite. This is probably not a good idea, though, as the amount
of lexical entries will not get infinite, but still extremely large, depending of course on
how many different adjunct slots there are and in how many different configurations they
can occur. It will still be a lexical explosion. Therefore a plug-in syntax for adjuncts
through a non-cancelation rule seems to be the best option for a lexically based system
like Delilah13.

The relatively free position of adjuncts in the sentence, illustrated by (87), was nicely
arranged by the mode of composition, when adjuncts were of the category x/x.

(87) a. Ik
I

probeer
try

Bob
Bob

vrijwillig
voluntarily

het
the

boek
boek

voor
for

Agnes
Agnes

te
to

laten
let

kopen.
buy

‘I try to let Bob voluntarily buy the book for Agnes.’

b. Ik
I

probeer
try

Bob
Bob

het
the

boek
boek

vrijwillig
voluntarily

voor
for

Agnes
Agnes

te
to

laten
let

kopen.
buy

‘I try to let Bob buy the book voluntarily for Agnes.’

c. Ik
I

probeer
try

Bob
Bob

het
the

boek
boek

voor
for

Agnes
Agnes

vrijwillig
voluntarily

te
to

laten
let

kopen.
buy

‘I try to let Bob buy the book for Agnes voluntarily.’

13Syntax based systems have the option of using a fixed syntactic hierarchy for adjuncts, such as the one
Cinque (1995) argued for.



Section 2.3. The semantics 63

Similar results can be obtained with the proposed adjunct rule if the position of the
adjunct in the list (i.e. the search agenda) does not matter. The rule should apply when
the adjunct is somewhere in the list, not only when it is on top of the list. In order not to
block canceling of normal arguments, the adjuncts should either be transparent/skippable
or be put at the end of the list. The latter is the most simple solution. Of course, when in
composition two agendas of two categories are combined, all adjuncts need to end up in
the end again. This boils down to having a separate, unordered, list for adjuncts.

It may become problematic, though, to control for the relative order of adjuncts,
if there are restrictions on that (e.g. ‘place before time’ in English), or to implement
restrictions on the placement of different adjuncts. Not all adverbials can occur in all
positions (in all interpretations).

Both the flexibility and some types of possible restrictions can elegantly be captured
if an optional adjunct-argument is placed in every place in the argument list where it can
occur. This means that adjunct can be excluded from certain positions. Illustration of
free adverb placement in (87), for example, is actually somewhat misleading. At least
according to my intuitions het boek voor Agnes has to be one constituent in (87c). In
(87b) it obviously is not, and in (87a) I suppose both analyses are possible. That means
that the position of the adverb is less free than it appears to be at first sight. It is possible
to distinguish different classes of adjuncts, which can occupy different positions, and
their relative order can be constrained where they are adjacent. The number of verbal
lexical entries remains the same. Each existing entry is enriched with a number of adjunct
positions.

The semantics of adjuncts

Sentential adjuncts are semantically treated as operators. VP-adjuncts started out as
operators too, but with the introduction of events in the semantics (see section 2.3.11 and
chapter 2), we have experimented with letting them modify the event directly, making
them very similar to arguments. Under the approach where the adjunct was the head
and the VP the argument, a trick was needed, to make the event variable available for
modification, because there is no lambda abstraction over it. Normally the semantics of
an argument comes in as one variable, which is then put into the store. This means the
semantics of the argument cannot be looked into. Therefore, a feature eventvar was
added to the synsem path of all verbs, individuating the event variable.

For example, the verb semantics will be the following:

(88) semantics from intransitive verb template
{store: { SemSubj binds C,

λBodyV.∃E.SemVerb(E) & EventType(E) & BodyV binds EV)}

body: λTime.ThetaSubj(EV,C) & attime(EV, Time) }

Elsewhere in the template the path “synsem:eventvar:EV” will be present.
A manner adverb, for example, will then look in its argument for

synsem:eventvar:EV and for the semantics, sem:{Stores, λX.Body},
rather than just sem:SemArg. Here it can take the different parts of the semantics as



64 Chapter 2. Delilah: a semantic parser/generator for Dutch

separate variables, because the semantics will always have this form; stores, a lambda
abstraction and a body. It is the form of the body that can not be predicted, because,
for example, the number of theta roles can vary. And that is why we need to have
the event variable. The semantics of the whole will then be: {stores:Stores,
body:λX.Body & atmanner(EV, Mod)} The stores are copied from the
verb and so is the variable that is abstracted over (i.e. the time). And to the body
atmanner(EV, Mod) is added, where EV is the same variable that already occurs
in the body as the variable for the event and Mod is the lexical meaning of the adverb
itself.

If we switch to an approach where verbs look for adjuncts, we run into the problem
that the verb needs to reserve slots in the semantics for these adjuncts. A rule is then
needed that post-derivationally maps the adjuncts to the right slots. The assumption then
is that for these types of adjuncts there is only one slot per event.

No such assumption is needed if we switch the primary and the secondary graph in the
unification of a verb with an adjunct. Unification is guided by the grammar and normally
the graph that is the head according to the grammar is made the primary graph in the
unification process. The secondary graph unifies with a designated part of the primary
graph. It is, however possible to do this the other way around, when the grammatically
secondary category being consumed is an adjunct. The adjunct’s graph will then be
made primary in the unification, which means that the feature structures, including the
semantics, can remain largely as they are. When there is no adjunct nothing happens,
and when there is one it looks like the head in the resulting graph, even though the
grammatical categories tell otherwise.

Summary

VP adverbials that modify the event can be treated as optional arguments. For NP
adverbials this seems to be useful too. For sentential adjuncts (matrix, modal, attitude,
. . . ) the situation is different. They will still be operators.

2.3.7 Coordination

The coordination algorithm is elaborately described by Cremers (1993). It is treated as
an extra-grammatical procedure. The challenge in parsing and interpreting coordination
is to determine where it starts and where it ends, especially when non-constituent
coordination is to be covered, too. The algorithm still needs to be extended to also cover
ellipsis. The present algorithm cannot efficiently handle more than one coordination
per sentence. For covering cases of multiple coordination (and also multiple ellipsis)
probably some heuristic strategies are needed.

Semantically a sentence containing one coordination is analyzed as two propositions.
For example, (89a) is split up into (89b) and (89c) and then these two sentences are
analyzed normally.

(89) a. Henk
Henk

en
and

Agnes
Agnes

werken.
work



Section 2.3. The semantics 65

‘Henk and Agnes work.’
b. Henk

Henk
werkt.
works

‘Agnes works.’
c. Agnes

Agnes
werkt.
works

‘Henk works.’

Thus, a sentence of the general form (90a) comes out as (90b).

(90) a. X Y1 Coord Y2 Z
b. X Y1 Z (Coord) X Y2 Z

For coordination of subjects this works quite well. Even the option of a collective
reading can be derived on the assumption that the two event descriptions can refer to the
same event, which then has a complex agent.

In cases of coordination at the VP-level and lower, (90a) and (90b) are not always
equivalent. Depending on the quantifiers involved, the entailment normally holds in only
one direction. Cremers (1993) argues that the relation between (90a) and (90b) is never
trivial. Non-monotone quantifiers (such as exacly two) then need to be analyzed as a
conjunction of a monotone increasing and a monotone decreasing quantifier (at least two
and at most two).

It would, however, be preferable to get the exact reading for the sentence, rather than
something that either entails it or is entailed by it. This requires merging the two SLFs
into one. In the resulting LF representations everything that scopes over the coordination
occurs only once. Everything that scopes below the coordination occurs twice. Willis
(2007) describes an implementation for NP-coordination in hole-semantics along these
lines.

2.3.8 Anaphora
When the stores are applied, the binding of pronouns is also taken care of. The
mechanism for the binding of pronouns and reflexives has been described by Visser
(2005). She also proposes some changes in order to cover the difference between SE-
anaphora (zich) and SELF-anaphora (zichzelf ) (Reinhart and Reuland, 1993).

The binding algorithm is based on the classical binding theory from Chomsky’s
Government and Binding (Chomsky, 1981). For pronouns, the relevant principle is
principle B, which states that pronouns must be free in their binding domain. Anaphora
(reflexives) are subject to principle A, which requires them to be bound within their
binding domain.

The algorithm works as follows. Pronouns are put in a special pronoun store. First an
interpretation is derived in which all pronouns are free, since that is always grammatical.
Then the possibilities for binding are investigated. A possible binder is a constituent of
the category NP (equivalent to DP in modern versions of Generative Grammar) higher
in the tree than the pronoun. The binder should not be a co-argument of the pronoun.



66 Chapter 2. Delilah: a semantic parser/generator for Dutch

This reflects the notion of binding domain. A co-argument would be inside the binding
domain and is therefore ruled out as a possible binder.

Reflexives are put in the reflexive store. Early in the apply_store algorithm, it is
checked whether the reflexive can be bound, as sentences with unbound reflexives are
ungrammatical. Also here, the binder must be an NP, but the positional requirements are
of course different from those that apply to pronouns and their binders.

Both pronouns and reflexives must agree with their binders in person, number and
gender.

Non-obligatory reflexives are treated as normal arguments. When the object of a verb
is a non-obligatory reflexive the verb is interpreted as a relation between the subject and
itself. There are two semantic arguments, but they both refer to the same entity.

Some Dutch verbs have obligatory reflexive arguments that do not seem to contribute
to the meaning. For example, zich schamen ‘to be ashamed’ is taken to behave syntac-
tically as a transitive verb, where the object is obligatorily reflexive, but semantically as
an intransitive verb.

An interesting question is to what extent this approach is justified. Do these reflexives
really not contribute to the semantics? It does not seem to be a total coincidence that some
verbs have these reflexives and others do not. Cross-linguistically we see that verbs that
are obligatorily reflexive in Dutch, tend to be so in, for example, Italian as well. Also the
English counterparts tend to have a special form. They (for example) look like passives.

In addition, there exist alternations like the following.

(91) a. Het
it

verveelt
bores

mij.
me

‘It bores me.’
b. Ik

i
verveel
bore

me.
me

‘I’m bored.’

(92) a. Het
it

ergert
annoys

mij.
me

‘It annoys me.’
b. Ik

i
erger
annoy

me
me

eraan.
there-on

‘I’m annoyed by it.’

As yet, Delilah’s analysis does not go above the sentence level. We will need to
extend Delilah with a discourse component, in order to bind pronouns across sentence
boundaries. Then also finding referents for other definite expressions becomes an issue.
DRT may be a good candidate with which to handle anaphora, because it stays close to
first order logic. In their textbook, Blackburn and Bos (2005, forthcoming) show how
to build a system with DRT-semantics that is suitable for inference. Another option may
be incorporating other existing systems. In general, Delilah’s representations are rich
enough to incorporate an existing algorithm for anaphora resolution



Section 2.3. The semantics 67

2.3.9 Extended Lexical Units
Extended lexical units (ELU’s) are also called multi-word expressions or collocations.
It is clear that there are many different types of ELU’s. Sag et al. (2002) make a
classification of multi word units that are problematic for NLP. Poß and van der Wouden
(2005) propose a categorization of Extended Lexical Units (ELU’s) on a cline, based on
their flexibility. Some ELU’s, are completely fixed. Examples are ‘words with spaces’,
such as by and large and to a somewhat lesser extent idioms, such as to kick the bucket,
which do enter the inflectional paradigm. Others are more flexible. Different ELU’s can
have varying degrees of flexibility. For completely fixed collocations a compositional
analysis is not possible, but also not necessary. The more flexible a collocation is the
harder it is to capture it in a fixed scheme with one fixed meaning. This also depends
on the nature of the flexibility. Consider (93).‘Here the word bal can be replaced by a
whole range of other nouns (and every now and then, new variants appear), but that has
no effect on the meaning.

(93) Hij
he

snapt
understands

er
there

geen
no

bal
ball

van.
of

‘He doesn’t understand a thing of it.’

In spite of the variation, it is possible to make one entry for all variants, in which
the words that can occupy the noun position are listed. The semantics is kept non-
compositional because the choice of the noun does not have any effect on the semantics
of the whole unit14.

A type of ELU, that has been implemented in Delilah in a systematic way, are verbs
with a fixed PP-complement, such as in stand houden ‘to preserve’. The meaning is
attributed to the syntactic head. In most of the ELU’s of this type that we implemented,
this is a verb. The fixed argument comes with its own semantics, but this semantics does
not contribute to the semantics of the whole. So, houden has the meaning preserve if it
takes the fixed PP-complement in stand. The words in and stand are retrieved from the
lexicon. Their templates are transformed to paths that are added to the specifications of
the lemma, as shown in (94).

(94) lemma( houden, verb, [trans_pp_fix],
[id:Top+ID, head:concept:preserve,
head:sem:preserve, head:phon:houden,
synsem:extth:agent_of[̃Top+ID, A],
arg(ID+ID1+1):sem:SemO,
arg(ID+ID1+1):synsem:theta:theme_of,
arg(ID+ID2+10):sem:SemS,
sem: { { [SemS*(ID+ID2)#A, SemO*(ID+ID1)#B,

λBody.∃E.preserve(E) & event(E) & Body)

*(Top+ID)#EV],[],[]},
λTime.agent_of(EV,A) & theme_of(EV,B)
& attime(EV, Time) }

14The choice of the noun does reflect a choice of register, but we do not consider this to be part of the kind
of semantics we want to represent.



68 Chapter 2. Delilah: a semantic parser/generator for Dutch

|InStand],
MorfForms ) :-

lemma(houden, verb, [trans_v, trans_v_sc], _,
MorfForms),

lemma( in, pp, [pp_coll], SpecIn, _ ),
template( pp_coll, [id:ID+ID4|Template]),
construct( SpecIn, Template, TemplateIn ),
lemma( stand, noun, [abstract_noun], SpecStand, _ ),
template( abstract_noun, [id:ID4+ID5|TemplateH] ),
find( [synsem:cat:np], TemplateH ),
construct( SpecStand, TemplateH, TemplateStand ),
template_to_paths( TemplateStand, StandPaths ),
affix( arg( ID4+ID5+1), StandPaths, Stand ),
construct( Stand, TemplateIn, TemplateInStand ),
template_to_paths( TemplateInStand, InStandPaths ),
affix( arg( ID+ID4+2), InStandPaths, InStand ).

Many ELU’s follow this pattern, with a bare noun. One problem is that stand as a
bare noun does not occur outside this ELU (and a few others). Therefore, the generator
should not freely use it as a normal mass/abstract noun. This can be done by giving it a
different category, or by giving it a special feature that the generator is sensitive to, and
that makes it be selected only if it is specifically asked for.

An ELU that is a bit more complex is honger hebben ‘to be hungry’ (lit. ‘to have
hunger’). honger is not the same kind of bare noun as stand above. It is a proper abstract
mass noun15 and can occur with a determiner, such as geen ‘no’, which has an impact
on the semantics; geen honger hebben means ‘not to be hungry’. The negation is on the
determiner of the argument, but modifies the semantics of the whole construction.

This is not very surprising, since putting a negative determiner on the internal
argument is a very usual way to negate an event in Dutch. For example, (95b) is the
normal way of negating (95a), whereas (95c) is marked and only possible in particular
contexts (e.g. for a contrastive effect).

(95) a. Bob
Bob

eet
eats

een
a

boterham.
sandwich

‘Bob eats a sandwich.’
b. Bob

Bob
eet
eats

geen
no

boterham.
sandwich

‘Bob does not eat a sandwich.’
c. (?) Bob

Bob
eet
eats

niet
not

een
a

boterham.
sandwich

‘Bob eats not a sandwich.’

Employing the approach developed in section 2.3.4 for split scope effects gives us the
right results for geen in ELU’s, too. The prediction that the negation can then also move

15An abstract mass noun behaves like a mass noun, as long as it is unmodified. If it is modified by, for
instance, an adjective, it can also occur with an indefinite article (een).



Section 2.3. The semantics 69

higher than just above the verb is born out. For (96) a reading is available in which the
negation takes scope over the modal, the equivalent of a split scope reading.

(96) Bob
Bob

kan
can

geen
no

honger
hunger

hebben.
have

a.‘Bob can’t be hungry.’ ¬ > can
b.‘Bob can be not hungry.’ can > ¬

The problem, of course, is that geen is not selected for in the original entry of the
ELU, so what we would need is an additional entry that includes geen and puts its
meaning in the store.

The situation gets more complicated in the presence of an adjective such as enorme
in (een) enorme honger hebben ‘to be enormously hungry’. Many of the adjectives that
occur in this ELU also occur as an adverb, resulting in the same meaning.

(97) a. Bob
Bob

heeft
has

(een)
(an)

enorme
enormous

honger.
hunger

‘Bob is enormously hungry.’

b. Bob
Bob

heeft
has

enorm
enourmously

honger.
hunger

‘Bob is enormously hungry.’

In (97b), the version with the adverb, it is unproblematic for the meaning of the adverb to
modify the meaning of the ELU as a whole. For the version with the adjective, however,
it is highly problematic to get such an interpretation under the present approach. For each
adjective that the ELU can occur with, we would need a different entry for it. One lexical
entry with one open slot for adjectives may also be an option, to cover at least a class of
adjectives in one go, but that would still make it very difficult to get the semantics right,
which would then have to be partly compositional.

An interesting point concerning all of these ELUs, is that they are listed in the lexicon
under the verb, because that is the syntactic head that selects the rest. However, these
verbs are in general light verbs and the central part of the meaning of the construction
actually comes from the noun. In a traditional dictionary, such ELUs would be listed
under the noun.

In the next chapter, I will propose to treat honger hebben not like an ELU, but like a
light verb construction, where the core meaning is contributed by the noun honger and
the light verb contributes the verbal properties, such as tense and aspect. This way the
meaning of honger hebben can be built up compositionally in essentially the same way
as to be hungry in English. An argument for this compositional approach is that the
contribution of hebben (‘have’) is the same in e.g. dorst hebben ‘to be thirsty’ and the
contribution of honger is the same in honger krijgen ‘to get/become hungry’. In order to
prevent overgeneration we just have to specify which light verbs go with which nouns.

An ELU with a lot of (semantically relevant) flexibility is the way-construction,
described for Dutch by Verhagen (2003), and, from a computational perspective by



70 Chapter 2. Delilah: a semantic parser/generator for Dutch

Poß (forthcoming). The construction is zich een weg16 PPdir Vintrans-en, equivalent
to English to Vintrans one’s way PPdir, and is illustrated by (98).

(98) Alice
Alice

bluft
bluffs

zich
herself

een
a

weg
way

naar
to

de
the

top.
top

‘Alice bluffs her way to the top.

The meaning is roughly: to get to the place or point specified by the directional PP by
V-ing. (Directional PP’s will have to be analyzed as resultative.) This construction can
be implemented with a fixed frame for the semantics in which the meaning of the verb
and the PP have to be filled in, in specified places. The way it is implemented now, is
that the event from the verb causes a moving event with the goal expressed by the PP. (A
preliminary semantic representation for (98) is given in (99).) Thus the meaning of the
whole is composed of the meanings of some of the parts plus an additional meaning part
that comes from the construction.

(99) ιA.[top(A) & ∃B.[event(B) & move(B) & theme_of(B,alice) & goal_of(B,A) &
∃D.[bluff(D) & event(D) & agent_of(D,alice) & cause(D,A) & attime(D,E) &
tense(D,pres)]]]

A problem is that the determiner of the way-DP is not entirely fixed. In particular, it can
be geen. For the moment this is solved by putting the meaning of the determiner of this
DP as a quantifier on the moving event.

A lot of work on ELUs still remains to be done, but I hope to have shown that we have
some promising ways to compute the semantics of different types of ELUs. Like most
lexicalist systems, Delilah can be seen as the embodiment of a construction grammar.
The grammar is lexicon-driven, in the sense that all grammatically relevant specifications
are stored in the lexicon. This makes the system particularly suitable to handle extended
lexical units.

2.3.10 The representation of concepts
English words are used to represent concepts in the semantics, i.e. the lexical predicates
in the logic of the representation. The underlying assumption is that we do not really
know what words mean anyway. The concepts are just labels or placeholders. The
reasons for using English words are mainly political. It stresses the distinction between
concepts and word forms. (If Dutch words were used, this would appear less obvious.)
Also, the use of English words makes the semantic output much more readable for an
international audience. This is useful for presentations and demonstrations of the system.

However, representing concepts as English words may easily raise the suggestion of
language independence, or of translation, which would be misleading. English words are
not more neutral than Dutch ones, since English and Dutch are both natural languages.
And translating Dutch to another language through semantic representations that make
use of English words as concepts, would actually introduce extra errors, because of the

16weg can also be pad ‘path’, but this is semantically not relevant. In the present implementation the noun in
this position is selected on the basis of its concept, not of its phonology.



Section 2.3. The semantics 71

additional translation step that is made. It is much better to try to map Dutch words with
words of the target language directly.

For automated reasoning purposes, the most useful way of representing concepts,
would be using the Dutch words themselves, or better, their citation forms. Next to
containing syntactic information, representing a concept may be exactly what a word
form does. Whatever information is available about the meaning of these words can then
be looked up in sources such as dictionaries, encyclopedias, ontologies, and Wordnet.

Fortunately, word forms are in principle always available. Even if they do not appear
in the semantic representation, they will occur elsewhere in the parse tree and are as such
retrievable. The citation forms, do not occur in the parse tree, but a field dedicated to this
information can easily be added. The concept field could also be used for this purpose.

Another advantage of using Dutch citation forms to refer to concepts and abandoning
the use of English translations is that it improves the possibilities of (semi-)automatically
extending the lexicon.

2.3.11 Event semantics
As will have become clear from the examples, the semantic representations in Delilah
include reification of predicates in the form of event semantics. The format used is a
variant of neo-Davidsonian event semantics based on the work of Parsons (1990).

One typical aspect of neo-Davidsonian semantics that we have already come across,
are the argument roles that are part of the representation. In the older semantic
format of Delilah, theta roles have always been present in the parse tree and they
were referred to by certain lexical rules, such as the construction of passive forms.
Since the introduction of event semantics in Delilah, theta roles have become part of
the semantic representation too. Roles used are: agent_of, source_of, location_of,
experiencer_of, goal_of, theme_of, patiens_of, instrument_of, place_of, manner_of, and
time_of. (Another value that occurs in this field is ‘expletive’, but that one does not
appear in the semantics. It actually indicates that the argument in question does not have
a theta role.) A weakness of the way these roles are used in Delilah is that it is not very
systematic. There appears to be no clear policy as to what criteria there are to determine
what role should be used. Roles for the arguments are chosen rather intuitively and per
lemma. I will come back to this point in the next chapter.

As we have seen in the example, tense introduces an operator, such as ‘AtPres’ or
‘AtPast’ that binds a pronoun, which is used in an ‘at-time’ relation to the event. The
idea to treat tense anaphorically originates from Hinrichs (1986). The temporal pronoun
in e.g. infinitival complements is bound by the tense operator of the matrix verb. For the
rest temporal relations are not very much worked out.

The introduction of event semantics has made the representations flatter, splitting up
the meaning of a sentence into a collection of conjoined ‘small clauses’. Event semantics
has been implemented not only for verbs, but also for nominalizations. In addition the
approach has been extended to intersective predicative adjectives and their corresponding
abstract nouns. Both the principle of ‘conjunctivism’ and its extension beyond verbs are
of benefit for deriving wanted entailments. The details of the implementation of event
semantics in Delilah form the topic of the next chapter.



72 Chapter 2. Delilah: a semantic parser/generator for Dutch

2.3.12 Disambiguation

In section 2.3.5, I have discussed scope ambiguity, its underspecification and its prospects
for disambiguation. The present section is about other types of ambiguity. Delilah thus
far does not have a statistical component. This means that it is designed to compute all
possible analyses of a sentence that the grammar allows, but does not have statistical
means to decide which is the most likely analysis. A recent development is that it can
select the least complex SLF as the best analysis. This favors argument readings over
adjunct readings (where both are possible), because the semantics of an argument unifies
with an element already present in the store, whereas an adjunct adds a new element.
It also favors idiomatic readings over literal ones. However, this still leaves many
ambiguities unresolved, for example ambiguities in PP attachment, between different
binding options for a pronoun or between canonical order and inverted readings (object
fronting, resulting in OVS order). Note that a statistical component would only help
resolving syntactic ambiguities. There are no corpora on which a statistical algorithm
could be trained to determine what is the most likely semantic analysis, although there
are some that target very specific isolated aspects of semantics, such as role-labeling or
anaphora resolution. It is probably also early to develop a corpus that is annotated with
full semantic representations, because there is still a lot of room for improvement of such
representations. This means that at least for favoring collocational readings over literal
readings there is probably no syntax-statistics based alternative. See section 2.3.9 for
ELUs in Delilah.

2.4 Robustness
Delilah is being made more robust in several ways. This is necessary if we want the
parser to parse whole texts. The lexicon and the grammar will need to be extended, but
even then, they will not cover everything. Therefore, strategies are needed to deal with
unknown words and grammatical constructions. If all else fails, a partial parse can be
given. Whereas Delilah was originally designed to only recognize sentences, it turned
out to be relatively easy to let the system give partial parses as well. If it is unable to
parse the whole sentence, it tries to construct phrases that contain the largest possible
strings from the input.

2.4.1 Extending the lexicon and the grammar

Delilah started out with a toy-lexicon, to which every now an then words were added,
all manually, so for a long time the lexicon was very small. Possibilities of using
external information sources to extend the lexicon are currently being explored. One
such source is the lexicon of the Alpino parser. Alpino has a big lexicon that covers a
newspaper corpus. Alpino entries can be partially automatically transformed into Delilah
entries. The tags that are used in Alpino can be mapped onto templates in Delilah. The
Alpino lexicon, however, does not contain any semantic information, as Alpino is only
a syntactic parser. Missing information includes theta roles, event type and semantic



Section 2.5. Other computational semantics systems 73

concept. For the theta roles defaults can be used, e.g. per template. The event type can
either be left unspecified, or a default can be chosen (possibly also per template). In
order to stick to the English-words-for-concepts policy, one would need to automatically
use a machine readable Dutch-English dictionary. It seems very hard to do this. One of
the problems is, for example, how to choose between different options. Of course one
could try to make a different lemma for each translation equivalent, but this would create
a lot of ambiguity, and if the meanings are close to each other, this may not be necessary.
Alternatively, one could also use the Dutch word form.17

The grammar is also extendable. A number of verbal templates have, for example,
been added in order to accommodate all the verb classes from Alpino. New modes can
be added as well. The only principled limitation to the number of modes is that it should
be finite.

2.4.2 Dealing with unknown words
In the past, Delilah would stop and give up on the sentence, as soon as it encountered a
word that was not in the lexicon. Now that it is also possible to give partial parses, it of
course makes sense to just skip unknown words, or assume by default, that they are NPs.

In principle it should also be possible to guess the category of an unknown word,
especially if there is only one unknown word in the sentence. The categorial grammar
should certainly be able to decide which category is still needed in order to form
a sentence together with the other words. Such an algorithm would be related to
the coordination algorithm, which is described in Cremers (1993). Default semantic
structures can be used for each category.

A similar strategy can possibly be applied to gaps in the grammar. If a certain
configuration is not covered by the grammar, it may help to try to consume one of the
arguments under a different mode than specified. For this, Delilah would need to be able
to diagnose that a parse crashes on one particular mode. If an argument that was believed
to be obligatory is not found, Delilah may want to assume that the head can also occur
without this argument. Or if the arguments appear in a different order than expected, this
order can be added.

2.5 Other computational semantics systems
Delilah is so far the only system that gives semantic representations for Dutch sentences.
There are some syntactic parsers for Dutch, such as Alpino (Bouma et al., 2001),
developed in Groningen, and Amazon (Coppen, 1995), developed in Nijmegen.

For English there are a few systems that provide (deep) semantic representations. An
influential one is English Resource Grammar (ERG) by the LinGO project (Copestake
and Flickinger, 2000), an HPSG parser that makes use of minimal recursion semantics
(MRS)(Copestake et al., 2005). MRS is an underspecified representation formalism,

17Another strategy that was considered, was to assign vague concepts, such as thing for nouns and action for
verbs. This, however would give rise to a lot of unwanted entailments. This may be prevented by numbering
them, for instance.



74 Chapter 2. Delilah: a semantic parser/generator for Dutch

which includes constraints on scopal relations. It was developed with machine translation
in mind and therefore uses somewhat flattened structures. The difference between an
underspecified representation and a fully specified one is only in the constraints. As
constraints are added, fewer readings become possible, till there is only one left18. For
automated reasoning it needs an adapted mechanism for reasoning with underspecified
representations, since the output is not in predicate logic, but in this particular MRS
formalism.

Verbmobil (Wahlster, 2000), a speech-to-speech translation system for German,
English and Japanese makes use of the LinGO ERG parser. The HPSG parser is applied
in combination with a statistical parser and a chunker, where the chunk parser produces
the most robust and the HPSG parser the most accurate results. The semantic formalism
used is LUD, a description language for underspecified discourse representations (Bos
et al., 1996). The Verbmobil system is the result of a huge project with many
collaborating parties. It is very elaborate comprising a wide range of techniques, from
prosodic to discourse analysis.

XLE (Maxwell and Kaplan, 1993) is the parsing project by Xerox PARC. It is based
on Lexical functional grammar (LFG) (Dalrymple, 2001), and the semantic formalism is
glue semantics. The XLE parser is also used by Powerset for their internet search engine.

Bos et al. (2004) describe a CCG parser that parses part of speech tagged text. This
way it is very robust and barely needs a lexicon. It is only for closed class lexical
items that the lexical semantics is spelled out for each lemma individually. Open class
lexical items are assigned a lambda expression based on their CCG category and the
lemmatized wordform. Davidsonian event semantics is used. Their paper does not
explain from where they get the theta roles that are used in the representation. Semantic
representations are in first order logic and in a later version in a first order logic translation
of DRT. Any information that one would like to add about the semantics of lexical items,
which goes beyond the standard semantic structure that is assigned on the basis of the
POS-tag, should come from some other source, for example a collection of meaning
postulates. In Bos (2005) world knowledge from Wordnet is used to support inferencing.
One of the current research efforts is to make the semantics more detailed. A possible
limitation of this approach is that it is dependent on the finegrainedness of POS-tags.
Adaptations to the tag-set are not easily made, because the tagger needs to be trained
on an annotated corpus. If you want to make additional distinctions that are useful to
your grammar and semantics, you need to re-annotate the corpus for these categories and
re-train the tagger. Delilah, in contrast, is strongly lexicalist. However, if techniques are
developed to automatically upgrade Delilah’s lexicon, the difference might become less
important.

Mooney (2007) reviews several systems he and his group developed for learning
semantic parsers from corpora annotated with formal meaning representations.

In general, interest in deep semantic analysis is increasing.

18In principle it is probably possible to combine constraints in such a way that no reading is possible
anymore.



Section 2.6. Summary and conclusion 75

2.6 Summary and conclusion
Delilah is a semantic parser and generator based on Combinatory Categorial Grammar
with modes of composition. Its lexicon consists of typed feature structures. Delilah is at
present the only deep semantic parser for Dutch. The combination of categorial grammar
and feature structures results in a strong lexicalist approach. Delilah has a huge lexicon,
a large portion of which is produced by morphological rules. The semantic component
applies the composition of lambda terms to yield first order logic formulas.

A storage mechanism based on the work of Cooper and Keller is used to compute
the different semantic readings of a sentence. Binding of pronouns is covered within
the sentence. SLF is also underspecified for that. The device of storage is an effective
tool for allowing one syntactic structure to have more than one reading. For partial
disambiguation and reasoning with underspecified representations it is less effective. The
flat semantic format that will be discussed in chapter three offers a different way of
underspecification, or compact notation of different readings. No ideal method exists
either for underspecification, or for disambiguation of scope.

I argued that for correct analysis of split scope constructions, the negation involved
needs to be stored as an operator. Other operators do not need to be stored, because
their scope is fixed by syntax. The algorithm that computes the different scope options
of quantifiers, does need to be sensitive to such operators. I proposed an algorithm that
prevents generating the same reading twice.

There are several problems with adjuncts, both in the syntactic and the semantic
domain. I discussed them and proposed some tentative solutions. VP-adjuncts need to
be treated as optional arguments syntactically. Semantically the adjunct acts as the head,
because its graph gets the role normally assigned to the head category’s graph in the
unification process.

Delilah is, as a construction grammar, able to handle extended lexical units. I
discussed the implementation of several types of these. Their idiomatic readings can
be distinguished from the literal alternatives, by their less complex SLFs.

I also reported on efforts to make the parser more robust. Extensions of lexicon and
grammar are being planned. Partial parses have been made possible. A way to guess the
category of unknown words has been conceptualized.

I have pointed out that using Dutch words for concepts has advantages over using
English ones.

More work is needed in all of the areas mentioned. Most of the issues are complex
and important enough to have a separate thesis devoted entirely to it. Instead, my
intention has been to give an overview of the current status of the parser.

In the next chapter, I will discuss event semantics, which was briefly introduced in
section 2.3.11.





Chapter 3

Events in the semantics

This chapter discusses event semantics in Delilah. Events were introduced to get flatter
structures with more handles for inference. The use of event semantics, usually neo-
Davidsonian is by now common in computational semantics. The semantic role labeling,
typical for shallower approaches, is a related phenomenon. The identification of events
and their participants offers valuable information which one wants to be able extract from
text. In event semantics, the event argument reifies predicates and thereby makes them
addressable and quantifiable. This has advantages for reasoning with modifiers. The
neo-Davidsonian approach has the additional advantage that it avoids complications to
do with the arity of predicates. All together event-semantics makes several important
inference patterns to follow naturally, which otherwise would need the help of meaning
postulates. For these reasons it was felt that an implementation of event semantics was
indispensable for Delilah.

Also on theory side, event semantics is an important field of research nowadays. In
particular, explanations for the aspectual behavior of verbs are sought in properties of the
event and its internal structure. Our discussion here barely scratches the surface of this
elaborate field. The theoretical work generally targets a very limited subdomain for a very
detailed analysis. In our implementation, first a basic across the board implementation
was needed. From there on in future one can try to put in more state-of-the-art theory for
specific groups of verbs or specific phenomena.

The implementation started out from the verb classes we have in Delilah, based on the
templates. The template is the natural place to introduce a frame for the event semantics,
containing the event, the quantification over it and slots for the participant roles.

The basic case are verbs that introduce an event with one, two or three NP or PP
arguments that get roles and without further complications. There are also cases where
the complement of the verb is a VP or an embedded clause or small clause, containing
itself an event (or state), so one has to consider what the relation should be between the
two complex structures. Often intensionality plays a role in such cases. Also, it can
happen that there is evidence for the event structure introduced by a verb to be more
complex, or that an event is introduced by a word that is not a verb. I will discuss per
case what choices have been made.

Section 1 provides some background on Davidsonian and neo-Davidsonian event
representation and discusses problematic issues of a general nature. In section 2, I discuss
the implementation of neo-Davidsonian event semantics for verbs in Delilah, starting out



78 Chapter 3. Events in the semantics

with the most basic case and then discussing several verb classes that need more attention.
Section 3 shows how event semantics is implemented for nominalizations. The challenge
here is the interpretation of the participants which can be expressed in many ways. In
section 4, I discuss underlying states and show how adjectives and their corresponding
abstract nouns can be analyzed parallel to verbs and their nominalizations, but with states
instead of events. Finally, I show how the combination of the type of implementation that
I used for support verbs of nominalizations with an underlying state approach suggests
a compositional analysis of light verb constructions, which used to be implemented as
collocations.

I make the distinction between events and states, mainly because the latter are
more controversial, so I want to argue for them separately. Events and states are both
eventualities. The term events is sometimes also used to refer to the whole class of
eventualities.

The implementation of event semantics prepares the ground for the flat logical form
discussed in the next chapter. It is a first step towards flatter semantic representations.

3.1 Neo-Davidsonian event semantics
Davidson (1967) proposed that simple event sentences should be analyzed as asserting
the existence of an event of a type specified by the semantics of the sentence. He used the
idea of Reichenbach (1947) that action sentences have an existential quantifier binding
the action-variable. Events are introduced as entities about which an indefinite number
of things can be said. He takes predicates of action verbs as containing an extra place for
the event variable. Thus the logical form of (100) will be saying something like ‘there is
an event x such that x is a flying of my spaceship by me and x is to the Morning Star’.
Advantages of this notation are that (100) and (101) together entail1 (102) and, most
importantly, that (100) entails (103).

(100) I flew my spaceship to the Morning Star.
(∃x) (Flew(I, my spaceship, x) & To(the Morning Star, x))

(101) the Morning Star = the Evening Star

(102) I flew my spaceship to the Evening Star.
(∃x)(Flew(I, my spaceship, x) & To(the Evening Star, x))

(103) I flew may spaceship.
(∃x)(Flew(I, my spaceship, x))

The advantages become even clearer in sentences with more modifiers. (104a) entails
(104b) through (104f), but (104c), (104d) and (104e) together do not entail (104a),
because they may each refer to different events.

(104) a. Jones buttered the toast in the bathroom at midnight with a knife.

1A entails B iff whenever A is true, B is necessarily also true.



Section 3.1. Neo-Davidsonian event semantics 79

b. Jones buttered the toast.
c. Jones buttered the toast in the bathroom.
d. Jones buttered the toast at midnight.
e. Jones buttered the toast with a knife.
f. Jones buttered the toast in the bathroom at midnight.

Davidson’s events are quite widely accepted. In different semantic subfields it
is common to assume underlying events. Also some more syntactically oriented
work makes reference to events. Relatively many computational semantic formalisms
incorporate some form of event semantics. Nevertheless, opinions on the details of the
representation differ. Davidson’s original proposal consisted of the addition of an event
argument to action verbs. Neo-Davidsonians have proposed an eventuality argument for
states as well. Also, they started using thematic role relations in the representation to
link the traditional arguments to the event. Within the neo-Davidsonian stream there are
different ways to link the verbal concept to the event variable. A potential issue of debate
that applies to both variants is the status of the existential quantification, usually assumed
to bind the event variable. In this section I will discuss these issues, except for that of
underlying states, which will be elaborately discussed in section 3.4.

3.1.1 Naming the event
An event is usually represented as, for example, work(e) for a work event, where e is a
variable bound by a quantifier and work is a name for the verbal concept. That is, events
are named in the same way as entities are (cf. book(x)). The event name is a predicate
over a variable. Instead of ‘work’, also ‘working’ occurs in some approaches. I think
that, in principle, the difference is not interesting, as concept names are arbitrary. For
reasons of inference, it is of course important to be consistent, that is, to use the same
concept for all word forms.

In Delilah, there are no dedicated variables for events. Therefore an extra predicate
was added, yielding event(x) & work(x). The information that something is an event
appears to be relevant, because we can infer that something happened if there was an
event at the relevant time (and place). Introducing this extra predicate prompts the
question whether these two predicates over the event variable are actually of the same
kind and should be represented in the same way.

Jurafsky and Martin (2000) use the is_a relation to relate the event variable to the
verbal concept: is_a(e, work). This inspired the use of concept(e, work) in Reckman and
Cremers (2006). If it is extended to (other) entities as well (concept(x, book)), it may
have the advantage that there are only functional predicates and that concepts that may
need to be looked up in, e.g. , an ontology are in a predictable place in the representation.

The option event(e, work) draws a parallel with the representation of thematic roles
in a neo-Davidsonian approach. It seems convenient because it packages the two pieces
of information together. Nevertheless, it is somewhat unintuitive because if we read it
the same way as with the thematic roles, then it says that the event of e is work. But what
is e then?



80 Chapter 3. Events in the semantics

I take it that work is a concept and event is a superconcept, a hypernym. It provides
extra ontological information. This is consistent with the present representation where
both pieces of information are of the same kind; both are conceptual information. It
is, however, a more principled approach, to make this extra information available in an
external ontology, rather than include it in the semantic representation of a sentence. On
the other hand, if it is information that is very often needed, it may prove more efficient
to standardly include it in the representation, instead of having to look it up. In that case,
it may acutally be usefull to use a notation that is more common in artificial intelligence,
where an event would be represented in the format of event(e, work), but an object also
in the same format; object(x, book). This has the advantage that if this appraoch is taken
consistently, all predicates in the representation will be functional, drawn from a limited
set, and all concepts will appear in argument positions. This kind of normalization makes
it easier to decide which elements in the representation are open class concepts which
may need to be looked up in an ontology or encyclopedia. This will need to be evaluated
when experimenting with inference and ontology use. The present choice was made
in order to let our representations include the same information as the representations
proposed by e.g. Parsons (1990) do. The information in the semantics is not used for
purposes of argument selection. For this, a syntactic feature is included that conveys the
event status of an argument.

3.1.2 Existential closure of events
The event argument is normally represented as bound by an existential quantifier, which
is generally assumed to be the result of existential closure. I have found no alternative
proposals in the literature. The use of choice functions is a more general alternative way
to deal with indefinites, which probably can also be applied to events.

Amsili and Hathout (1996), building on Kamp and Reyle (1993) and Asher (1993),
convincingly argue that the existential quantifier over the event scopes below sentential
negation and that negated events are not states. That is, (105) means that there was no
event of Alice going to Paris at the relevant time, and not that there was an event (or state)
of Alice not going to Paris.

(105) Alice didn’t go to Paris.

Of course, this is a simplification. When focus is taken into account (cf. Herburger 2000),
(105) could also mean any of the following, depending on what is in focus.

(106) a. Alice did something, but it wasn’t going to Paris.
b. Alice went somewhere, but it wasn’t Paris.
c. Someone went to Paris, but it wasn’t Alice.

These readings are all more specific than the one proposed above. All of these entail that
there was no event of Alice going to Paris. This is therefore the most general reading
and the safest one to use in absence of focus information. It does not entail that someone
went somewhere, which all the others do. When it becomes clear in the context that



Section 3.1. Neo-Davidsonian event semantics 81

one of the other readings is intended, for example (106b) in (107), we still can entail all
the information needed, while keeping the general reading, because the disambiguating
sentence actually disambiguates by providing the additional information.

(107) Alice didn’t go to Paris. She went to Berlin.

The following examples by Dölling (2005), however, suggest that there can be states
that are characterized by something not happening.

(108) a. Het
the

landschap
landscape

bleef
remained

niet
not

onveranderd.
unchanged

‘The landscape did not remain unchanged.’
b. De

the
dijk
dike

weerstond
withstood

de
the

waterdruk
water pressure

niet.
not

‘The dike did not withstand the water pressure.’

In the implementation in Delilah, the event is introduced, with the existential
quantifier, in the store of the verb semantics, as an argument. This is illustrated in
the general scheme in (109). The stores of the event argument are empty, and are
omitted here. Information that is only about the event is included in the stored quantifier.
Thematic role relations involve a variable that is bound by another quantifier. Therefore
they are introduced in the body.

(109) store:{λR.∃E. event(E) & . . . & R binds A,
Arg1 binds B, . . . , Argn binds K}

body: λT. role1(A,B) & . . . & rolen(A,K) & attime(A,T) . . .

Introducing the event in the store means that it can exhibit scope ambiguities with
respect to its arguments. There is some evidence that this is indeed the case. For (110a)
the readings (110b) to (110e) seem to be distinguishable. (110c) is a more general version
of (110b) and (110e) is a more general version of (110d). That is, (110b) entails (110c),
because if there is a event of carrying two tables, then for each of the tables there is an
event of being carried, even though it is in both cases the same event. Thus, (110c) is the
most neutral surface scope reading and (110e) is the most neutral inverse scope reading.
There also is a scenario that makes both (110b) and (110e) true, as well as a scenario that
makes both (110c) and (110e) true.

(110) a. four girls carried two tables
b. 4 > ∃ > 2

for each of the four girls there was an event of her carrying two tables (4
girls, 4 events, 2 to 8 tables)

c. 4 > 2 > ∃
for each of the four girls there were two events of her carrying a different
table (4 girls, 8 events, 2 to 8 tables)

d. 2 > ∃ > 4
for each of the two tables there was an event of four girls carrying it (2 tables,
2 events, 4 to 8 girls)



82 Chapter 3. Events in the semantics

e. 2 > 4 > ∃
for each of the two tables there were four events of a different girl carrying it
(2 tables, 4 to 8 girls, 4 to 8 events)

Readings where the event has widest scope only seem to allow for collective readings,
where there are no more than 4 girls and 2 tables involved. (For further discussion of this
type of data, see e.g. Verkuyl and van der Does (1991).)

Also, for verbs that only have a subject and no other participants, it is not very clear
whether there is a (meaningful) scope ambiguity, for example in (111). Some well-known
predicates, such as meet and gather only allow for collective readings.

(111) All women worked.
for every woman there was a (possibly distinct) working event
there was one single event of all women working

Because of the way the lexicon is built, all derived forms of a verb also contain the
event argument in their semantics. This is for example the case for adjectival forms. Here
however, the event quantifier cannot raise out of the complex NP (e.g. (112a), just like
the indefinite in (112b).

(112) a. alle
all

gekochte
bought

boeken
books

b. alle
all

boeken
books

met
with

een
a

foto
photo

op
on

de
the

voorkant
front(cover)

Lexical nominalizations are not derived from verbal entries because their form
and to some extent also their meaning are not predictable on the basis of the verb.
Nominalizations and their events are discussed in section 3.3.

What exactly are the restrictions on the scope of the existential quantification over the
event needs to be sorted out more in detail. The important thing is that when it is in the
store, it can scope like any other quantifier and restrictions can be formulated as needed.
The present strategy is to keep the event low, as this yields the most general readings.

Treating the event as definite rather than existential would make it scope insensitive.
This creates a problem under negation. The negation of such an event would then entail
that there is no unique event with the relevant properties. This leaves room for the
existence of some events that are not unique and have the relevant properties.

3.1.3 Thematic roles
With the introduction of event semantics in Delilah, thematic roles started to be used
in the semantic representations, that is, we used a neo-Davidsonian version of event
semantics, mainly based on Parsons (1990). This is, however not the only possible way
to implement event semantics. The main problem of semantic roles, is that it turns out to
be very difficult to assign them consistently. This was of course always a problem, but it
gets more important now that the thematic roles are used in the semantic representation,
because in that way they become relevant for inference. In this section, I discuss whether
thematic roles should be used in the semantics of Delilah and if so, which set of roles
should be used, and how it can be determined which participant should get which role.



Section 3.1. Neo-Davidsonian event semantics 83

Davidsonian versus neo-Davidsonian representations

I will first briefly motivate the use of thematic roles in event semantics, before going
into theories of thematic roles. In Davidson’s original proposal, an event argument was
added to a traditional predicate, making an n + 1 place predicate out of an n place one,
illustrated in (113b). Others, such as Parsons (1990), represent arguments by means of
thematic relations to the event, which is more similar to the representation of adverbials,
resulting in a higher degree of decomposition, illustrated in 113c.

(113) a. Brutus stabbed Ceasar with a knife.
b. stab(brutus, ceasar, e) & with(e, a knife)
c. ∃e [ stab(e) & agent(e, brutus) & theme(e, ceasar) & with/instrument(e, a

knife)]

As Herburger (2000) points out, the latter approach is advantageous in cases where
there are theta-marked arguments that are genuinely optional. Meant by ‘optional’ is that
they do not have to be lexically realized and are not semantically implicit when they are
absent. For example, (114a) does not entail that Brutus stabbed someone, (114b) does
not entail that Alice wrote a note to someone, and (114c) does not entail that he said
something to someone.

(114) a. Brutus stabbed and missed.
b. Alice wrote a note.
c. He said something.

A classical Davidsonian representation would require a two place version of stab for
(114a) next to the three place version above. But then (115a) would not entail (115b).
This is because there are no entailment relations between predicates with different arity:
pred(x,y,z) and pred(x,y) are two different and unrelated predicates that accidentally have
the same name.

(115) a. Brutus stabbed Ceasar.
b. Brutus stabbed.

Similarly for (116a) and (116b).

(116) a. Alice wrote a note to Bob.
b. Alice wrote a note.

A second argument for separating the arguments in this way is put forward by Schein
(2002). He argues that the most natural reading of a sentence like (117) is “There was
a teaching in which three video games were the teachers, and that teaching resulted in
every quarterback’s learning two new plays each.” This is an argument for having a
separate clause at least for the agent role.

(117) Three video games taught every quarterback two new plays.



84 Chapter 3. Events in the semantics

Kratzer (forthcoming) shows that this “group reading argument” only holds for agents
and not for themes2. The optionality argument above, however, does hold for themes
(e.g. (114a)).

A third argument is that we may want to infer that the agent of an event did something.
Both (116a) and (116b) entail (118).

(118) Alice did something.

This follows if the representation of (118) is (119).

(119) ∃e. agent(e, alice)

Here also the content of the role matters.
An additional advantage of the representation with semantic roles is that arguments

and adjuncts are represented in essentially the same way. This way, for example,
prepositional phrases can be represented in a consistent way, no matter whether they
are selected and obligatory or not selected or not obligatory.

To summarize, the use of roles avoids variation in arity/valency of predicates,
which is good if there are optional arguments, separable agents seem to be needed for
group readings and thematic roles help in deriving, for example, that the agent “did
something”. Therefore, I conclude that inferencing can benefit from neo-Davidsonian
event semantics, i.e. with thematic roles.

Approaches to thematic roles

As it was judged to be beneficial to use thematic roles in the semantic representation, we
will need to decide what set of roles to use, and what criteria to apply for deciding which
participant gets which role. There exists a wide variety of approaches to thematic roles.
This is at least partly because the study of thematic roles can have different purposes. A
quite common purpose in syntactic research is to explain matters of argument selection,
also known as the linking problem: Why are which participants expressed how in the
syntax? Another purpose is to gain insight in conceptual structure (Jackendoff, 1983,
1987). This is common for the more cognitive approaches. Thematic roles are also used
to pursue criteria for event identity. On the assumption that in an event there is exactly
one filler for each role (bi-uniqueness), events cannot be identical if they have different
fillers for a particular role (e.g. different agents) (Carlson, 2001). My main concern will
be entailment relations between events.

Views on thematic roles vary from those that posit a small number of general roles,
such as agent and patient, to those that let each verb assign its own verb-specific thematic
roles.

Letting each verb assign its own roles reflects the idea that in every kind of event
the exact nature of the involvement of the participants is different. Related to this is the
point of view that thematic roles also include information about what are suitable fillers
(Altmann, 1999). Verb-specific roles, of course, do not allow any kind of generalization,
unless they are built up of more general features, or are organized in role types.

2See Cremers (2001) for a list of other observed restrictions on collective readings



Section 3.1. Neo-Davidsonian event semantics 85

Another disadvantage3 of verb specific roles is that they do not automatically allow
inferences from more specific to less specific verbs (in hyponym-hypernym relation). If
run and go both assign the same role to their subject and to their directional argument,
then you only need to know that running is a specific kind of going in order to conclude
that (120a) entails (120b).

(120) a. Bob ran to the store.
b. Bob went to the store.

Information on hyponymy relations between verbs is typically available in resources like
WordNet. If the two verbs each assign their own roles to their participants, a mapping of
these would be needed in addition (e.g. a runner is a specific kind of goer). The latter kind
of information is less readily available. An interesting case is FrameNet (Baker et al.,
1998), which has rather specialized roles, but does have a mapping between specific and
more general frames.

A disadvantage of role types, on the other hand, at least in the way that they are
sometimes applied by researchers working on the linking problem, is that roles are taken
to change in alternations. The typical case are spray/load alternations. It has been argued
that in (121a) the truck is the theme, whereas in (121b) hay is the theme and the truck is
the goal. (Note that it is the pattern that is of interest here, not the labels that are chosen
for the roles.)

(121) a. Alice loaded the truck with hay.
b. Alice loaded hay onto the truck.

For inference, this is a particularly bad solution, since (121a) entails (121b). The same
goes for (122a) and (122b). When they are analyzed as (Schein, 2002) does, with music
being the theme in (122a) and the clarinet being the theme in (122b) the entailment is
lost.

(122) a. Ray played music on the clarinet.
∃e. play(e) & agent(e, ray) & theme(e, music) & on(e, the clarinet)

b. Ray played the clarinet.
∃e. play(e) & agent(e, ray) & theme(e, the clarinet)

Note that intermediate positions between verb specific roles and a very limited
number of generalized roles are harder to realize with a Davidsonian than with a neo-
Davidsonian approach. In a system without explicit roles, the number of roles is either
limited to the number of places of a predicate, i.e. the first place role, the second place
role, etc., or completely verb specific (the first place role of verb A is a different one than
the first place role of verb B). In the latter case, a mapping may be specified, e.g. the first
place role of verb A corresponds to the second place role of verb B. In the former case,
the possible assignment of roles is more restricted than in a similar neo-Davidsonian
approach, because a two-place predicate cannot assign a third place role, for instance.

3This is of course only a disadvantage if we agree that such entailments between different verbs actually
hold.



86 Chapter 3. Events in the semantics

Dowty’s proto agent and proto patient properties

A very influential position is that of Dowty (1991), who focusses on the problem
of argument selection. He introduces two proto-roles: proto-agent and proto-patient.
Depending on how many proto-agent and proto-patient properties a participant has (also
in comparison to other participants) it is mapped to a certain syntactic position (subject,
object, oblique). The participant with the most agent properties becomes the subject and
the participant with the most patient properties becomes the direct object. The properties
are things that are entailed for a participant. The Proto-Agent and Proto-Patient properties
are listed in (123) and (124), respectively.

(123) Contributing properties for the Agent Proto-Role:
a. volitional involvement in the event or state
b. sentience (and/or perception)
c. causing an event or change of state in another participant
d. movement (relative to the position of another participant)
e. (exists independently of the event named by the verb)

(124) Contributing properties for the Patient Proto-Role:
a. undergoes change of state
b. incremental theme
c. causally affected by another participant
d. stationary relative to the movement of another participant
e. (does not exist independently of the event, or not at all)

Dowty’s theory elegantly explains several alternations with partially symmetrical
predicates, such as kiss and collide. For kiss, he argues that in (125a), where both Bob
and Alice are in subject position, volitional involvement in the event is entailed for both
of them, and hence the event is symmetrical, both participants are involved in exactly the
same way. In (125b), Bob appears in subject position and Alice in object position, with
the result that volition is only entailed for Bob. This accounts for (125a) entailing (125b)
and (125c) but not vice versa. ((125b) and (125c) together do not entail (125a) either,
because they may refer to different events.)

(125) a. Alice and Bob kissed.
b. Alice kissed Bob.
c. Bob kissed Alice.

The same goes for collide, except that here the additional Proto-Agent property
entailed for the subject is that of movement. This is shown by the oddness of (126c).
It is odd because it entails that the wall moved. (126d) on the other hand, does not have
such an entailment. Since the oblique participant does not have any properties that the
subject doesn’t have, it follows that (126a) entails (126b) (and (126c) entails (126d).

(126) a. The car and the truck collided.



Section 3.1. Neo-Davidsonian event semantics 87

b. The car collided with the truck.

c. (#)The car and the wall collided.

d. The car collided with the wall.

Note that some verbs that display this kind of pattern are fully symmetrical (at least
in truth-conditional terms). For example, (127a) entails (127b) and (127c) and (127b)
and (127c) each entail both each other and (127a). This means that the transitive version
of marry must assign exactly the same thematic properties to its subject and its object.

(127) a. Alice and Bob married.

b. Alice married Bob.

c. Bob married Alice.

That (127a), (127b) and (127c) are truth-conditionally equivalent, of course does not
mean that they are identical. With respect to information structure they are certainly
different. Dowty, however, argues against information structure being reflected in
thematic roles. I agree that this kind of information must be kept separate. If, for instance
we want to know whether Bob ever married anyone and we find sentence (127b), we want
to be able to conclude that Bob married Alice, and we do not care that this sentence may
have been intended to tell us something about Alice, rather than about Bob.

For psych verbs, there is a draw, because sentience and causation are both proto-agent
properties and the participants do not differ in other properties. Then it can go either way
and may differ per verb; in (128a) the subject is sentient and the object causing, while in
(128b) they have changed place.

(128) a. Alice fears the monster.

b. The monster frightens Alice.

In the spray/load alternation, according to Dowty, the participant in the object
position has the property of incremental theme, in addition to its other properties, that
remain the same in both configurations. So, in (129a) it is the truck that has the additional
property of incremental theme, and in (129b) it is the hay. This correctly predicts that
neither (129a) entails (129b), nor the other way around. In (129a) the truck ends up
full, while some of the hay may be left over. (The option of hay being left over is
pragmatically a bit odd. It helps to imagine that the purpose of hay is to fill trucks. In
the spray equivalent (130a) it is much clearer that not all the paint needs to be used.) In
(129b) the truck does not need to end up full, but all of the hay referred to ends up on the
truck.

(129) a. Alice loaded the truck with the hay.

b. Alice loaded the hay onto the truck.

(130) a. Alice sprayed the wall with the paint.

b. Alice sprayed the paint on the wall.



88 Chapter 3. Events in the semantics

Summarizing, the advantages of Dowty’s theory are that not all agents and all patients
are the same, that thematic hierarchy effects follow and that there can be a draw (e.g.
psych verbs).

What Dowty’s proposal does not explain, however, is that (131a) as well as (129a)
entail (131b) (though not the other way around). In addition, it is not clear how to derive
that (132a) entails (132b).

(131) a. Alice loaded the truck with hay.
b. Alice loaded hay onto the truck.

(132) a. Alice loaded hay onto the truck.
b. Alice loaded the truck at least partially with hay.

The incremental theme is defined as an NP that can determine the aspect of the
sentence, since the parts of the event correspond to parts of the NP referent that are
affected by the action. To correctly represent aspectual effects, more decomposition
is needed than just thematic roles. It is necessary to assume, for example, a resulting
subevent. Dowty’s properties may be precise enough to explain argument selection, but
they are not precise enough to explain all entailment patterns.

Below are some inferences that we would like to have for Alice loaded the truck with
Q hay.

(133) inferences of: Alice loaded the truck with Q hay.
a. Alice moved some hay. (some hay being part of what is referred to by Q hay,

possibly all of it)
b. Some hay ended up on the truck.
c. The truck ended up full of hay.

This suggest that a representation is needed that roughly contains the following informa-
tion.

(134) Alice moved part (or all) of Q hay (but non-zero amount) with the result that it
ended up on the truck and that the truck was full of hay.

That the amount of hay that ends up on the truck cannot be zero, is supported by the
‘unsemanticality’ of (135a).

(135) a. ??Alice loaded the truck with no hay.
b. Alice loaded no hay onto the truck.

For Alice loaded Q hay onto the truck our entailment wish list is the following.

(136) inferences of: Alice loaded Q hay onto the truck.
a. Alice moved Q hay.
b. Q hay ended up on the truck.

It looks like it can have a more simple representation without reference to parts.



Section 3.1. Neo-Davidsonian event semantics 89

(137) Alice moved Q hay with the result that it ended up on the truck.

So it turns out that thematic role properties are not enough to capture telicity related
effects, but that decomposition into subevents is necessary. That telic events can be
decomposed into a process and a result subevent has been proposed for example by
Arsenijević (2006). ‘Incremental theme’ thus appears to be a derived rather than a
primitive notion. Since the problem of argument selection is not my main concern, I
will simply assume that Dowty’s properties (or something equivalent) can be extracted in
some way from the decomposed structures. Decomposition, however, may mean going
beyond structural semantics.

The usability of Dowty’s properties in semantic representation

We have seen that the property of incremental theme is not directly usable in semantic
representations. What about the other properties? Can they be used instead of thematic
roles, e.g replacing agent(e, x) by sentient(e, x) & move(x) or some other combination of
properties, depending on the verb, the construction and the participant?

The first problem is that some participants do not seem not to have any of the
properties, or for example, only the property of existing independently of the event. This
is not restrictive enough. All kinds of things can exist independently of an event without
being one of its participants. Engelberg (2004) represents Dowty’s roles as follows:

(138) abtrocknen ‘dry off’ (German)
dry(x,y,e) & causer(x,e) & sentient(x,e) & . . . & change-of-state(y,e)

But, for reasons mentioned above, we do not want to fix the arity of the verb in this way.
An alternative is to introduce a basic relation ‘participant’, that applies to all participants
in addition to possible other properties.

A problem that remains is that it is often debatable whether a participant has a
particular property or not. Dowty is careful enough to never give a complete list of
properties for any participant.

A second problem is how to prevent Alice and Bob kissed from being able to mean
that each of them kissed themselves.4 If there is one event in which Alice and Bob both
have exactly the same properties, that boils down to Alice and Bob each being both agent
and patient of the event. This means that uniqueness is lost and (139a) would be expected
to not only entail (139b), (139c) and (139d), which it does, but also (140a) and (140b),
which it does not.

(139) a. Alice and Bob kissed.
b. Alice kissed Bob.
c. Bob kissed Alice.
d. Alice and Bob kissed each other.

(140) a. Alice kissed Alice.
b. Bob kissed Bob.

4In some languages there actually is ambiguity between each other and themselves, e.g. German and Italian.



90 Chapter 3. Events in the semantics

(139b) means: Alice brought it about (volitionally, etc.) that there was a kissing-contact
between Alice’s lips and Bob (some part of Bob’s body).
(139c) means: Bob brought it about (volitionally, etc.) that there was a kissing-contact
between Bob’s lips and Alice (some part of Alice’s body).
(139d) means: Alice brought it about (volitionally, etc.) that there was a kissing-contact
between Alice’s lips and Bob (some part of Bob’s body) and Bob brought it about
(volitionally, etc.) that there was a kissing-contact between Bob’s lips and Alice (some
part of Alice’s body) .
These two events may coincide, happening at the same time, with Bob’s lips being the
relevant part of Bob’s body in the first clause and Alice’s lips being the relevant part of
Alice’s body in the second clause. On that reading (139d) means the same as (139a).

Proposed meaning for (139a): Alice brought it about (volitionally, ect.) that there
was a kissing-contact between Alice’s lips and Bob’s lips and Bob brought it about
(volitionally, ect.) that there was a kissing-contact between Bob’s lips and Alice’s lips
and the two kissing contacts coincided. In addition, movement is entailed for the kisser’s
lips (the kisser causes this movement). This makes the kissing contact asymmetrical. A
way to do it is (141).

(141) ∃e. coinciding_subevents(e) &
∃e1. kiss(e1) & agent(e1, alice) & theme(e1, Bob’s lips) & instrument(e1, Alice’s
lips) &
subevent(e, e1) &
∃e2. kiss(e2) & agent(e2, bob) & theme(e2, Alice’s lips) & instrument(e2, Bob’s
lips) &
subevent(e, e2)

The proposed meaning for (139a) straightforwardly entails (139b), (139c) and (139d).
This shows that coinciding subevents are needed for symmetrical predicates. It is
necessary to keep each party responsible for their own contribution to the kissing.
Therefore uniqueness should hold for each (non-reflexive) subevent: each participant
gets only one role per subevent.5

Because of the need for different subevents, I conclude that Dowty’s properties are
important, but not directly applicable for our purposes.

FrameNet

Another interesting approach to thematic roles is the one developed in FrameNet (Baker
et al., 1998). Frame semantics describes the meaning of predicates through reference
to frames. A frame is intended to characterize a small abstract scene or situation, the
properties of which need to be understood in order to understand the semantic structure
of a predicate that evokes the frame. A frame also specifies a number of frame elements
(FEs) that play a role in the scene described by the frame and can be expressed as
satellites of the frame evoker. The names of these frame elements are comparable to

5for some predicates, such as weighs the same as uniqueness may not be necessary as things anyway weigh
the same as themselves



Section 3.1. Neo-Davidsonian event semantics 91

thematic roles. FrameNet uses roles per frame, for example the TRANSFER frame has
the roles Donor, Theme and Recipient. These roles are frame specific. Several words
instantiate this frame, for example give and receive. The frame is also used in other,
more complex frames. For example, the COMMERCIAL TRANSACTION frame, which
has the roles Buyer, Seller, Goods and Money consists of two TRANSFER subevents:

(142)

subev1: the Buyer gives the Seller some Money
Donor Recipient Theme

subev2: the Seller gives the Buyer the Goods
Donor Recipient Theme

These kind of subevents seem to be very similar to the ones I proposed for partially
symmetrical predicates like kiss. In a semantic representation that supports inference,
the more specific roles are probably not necessary. It suffices to use the two subevents
with the TRANSFER roles (plus a relation between the events: compensation). The
theme in the first subevent can then get the content ’money’ or ’value’ when it remains
unexpressed. If, however, it cannot be maintained that both subevents and all their
participants are entailed whenever one of the verbs is used, then the specific roles are
needed. I will come back to this discussion in section 3.2.6.

FrameNet is a valuable resource, especially because it is based on corpora. The
developers had to assign frame elements to all participants that a frame evoking lexical
unit occurs with. They have done so in quite a lot of detail. FrameNet is most
developed for English, but even for English it is not complete, neither in lexical and frame
coverage, nor in generalizations i.e. relations between frames. The effort of building
such a resource is comparable to that of writing a traditional dictionary. A resource
containing similar information is currently being developed for Dutch in the Cornetto
project (Vossen et al., 2007). What they consider to be their FrameNet component,
however, is the Referentie Bestand Nederlands (‘Reference Database of Dutch’), which
does not seem to contain much of the information that is interesting for us in FrameNet,
though this may to some extent be compensated for through their use of WordNet and
other ontologies. The D-Coi project (Schuurman and Monachesi, 2006) incorporates
FrameNet information into semantic annotation of the Corpus of Spoken Dutch. Padó
(2007) suggests that the semantic generalizations that frame semantics makes for English
carry over to other languages to a considerable degree. The exact way in which FrameNet
information can best be used to aid the choosing of thematic roles in the Delilah lexicon
is not clear at present. But it will certainly be useful to look at which distinctions are
made. Since FrameNet is based on corpus data, this will help in making sure all possible
participants of an event are taken into account. It is also useful to look at relations
between frames and their embedding in scenarios, because they will help discover which
paraphrases should be accounted for.

FrameNet uses a very large number of roles, or, as they call it, Frame Element names.
One would think that Frame Elements (FEs) in more specific frames that are mapped to
FEs in more general frames could have the same names as the FEs they are mapped
to. One matter that complicates this is multiple inheritance through blending of frames
(Fillmore et al., 2004). An example is the blending of the JUDGEMENT frame with the



92 Chapter 3. Events in the semantics

COMMUNICATION frame. The FEs for the JUDGEMENT frame include the JUDGE, the
EVALUEE and the BEHAVIOUR being judged. Verbs that fall in this class are admire,
appreciate, blame, disapprove of, etc. The COMMUNICATION frame includes (among
others) the FEs SPEAKER and ADDRESSEE. Verbs like praise and criticize can be seen
as evoking both these frames. The argument that is the JUDGE in the JUDGEMENT
frame corresponds to the SPEAKER in the communication frame6. In flatter, compliment,
scold the ADDRESSEE is, in addition, equated with the EVALUEE. Since in the praise
class EVALUEE and ADDRESSEE can be distinct, they cannot be collapsed into one more
abstract role.

Also, the FEs of a frame are often not independent of each other. For example a
TOPIC (e.g. in the COMMUNICATION frame), tends to be a topic of a MESSAGE. Such
relations are sometimes mentioned in the descriptive text, but not formalized.

Some distinctions made are doubtful such as AGENT versus CAUSE (they don’t occur
together) in the PLACING frame.

(143) a. Alice puts the book into her bag.
b. Clover puts nitrogen into the soil.

Although FrameNet is not (yet) perfect, it explicitly aims at being relevant for
inference and since developing a lexicon that supports detailed inference requires a huge
lexicographic effort, it would be good if we could use FrameNet or a similar source to
improve our lexicon in a (partially) automated way.

The methodology of starting out with verb or frame specific roles (at maximal fine-
grainedness every word might have its own frame) and then looking for generalizations
seems especially useful.

Van Trijp (2008) did an experiment on the evolution of case marking. Embodied
agents played language games in which they had to describe scenes to each other. The
introduction of markers was made available as a strategy to avoid ambiguity as to which
object introduced by a noun played which role in the event introduced by the verb.
Initially, the agents used all case markers that they invented as verb specific. Then,
verb specific roles were grouped into more general roles, to be covered by the same
case marker, but some specific roles were left over that did not fall into any group.
Generalizations emerged on the basis of analogies between actions. The grouping is
done on a semantic/conceptual basis, possibly using properties like the ones put forward
by Dowty. The purpose is grammatical: It is efficient to re-use grammatical structures.
More than one way of grouping is possible. Such generalized roles are likely to support
some inferences but lose others. The results of these experiments are thus compatible
with Dowty’s ideas. The properties he puts forward are then those that happen to be
relevant to the grouping reflected in the syntax of English. These most likely are a subset
of the ones that are relevant to entailment.

If these experiments are representative for human language, there is no level of
generalized semantic roles independent form syntax. In this case, using verb-specific
roles and specifying relations between them would be the most principled approach.

6For speaker/judge, the participant is first of all speaker; you can compliment/praise without what you are
saying corresponding to your actual judgement. You cannot admire someone without meaning it. There is no
verb that expresses communicating someone else’s judgement.



Section 3.1. Neo-Davidsonian event semantics 93

Some open questions

There appears to be a trade-off between thematic roles and subevents. When we use
subevents we need fewer thematic roles. On the basis of what we have seen so far, it
seems very unlikely that thematic roles can replace subevents. But maybe subevents can
replace thematic roles? Thematic role information may largely or completely follow
from decomposition into subevents. Arsenijević (2006) proposes a decompositional
analysis of inner aspect and telicity, in which he completely dispenses with thematic
roles. Participants are distinguished from each other only on the basis of the subevents
they participate in. In the telic template, which is the maximal event structure, there
are two subevents; the initiating subevent and the result subevent. There are at most
three participants. One participates only in the first subevent, one participates only in the
second subevent, and one participates in both.

His approach, however, does not translate straightforwardly to the kind of semantic
representation we want to use for inference. A line of future research would be to see if
a fine-grained analysis into subevents can make thematic roles superfluous.

A case to illustrate the choice between a dedicated role and a subevent is the question
whether the object of gebruiken ‘use’ should get the role of instrument or whether the
instrumental preposition met ‘with’ should introduce a use event (with its complement as
theme) in order to account for the entailments between (144a) and (144b).

(144) a. Alice
alice

sneed
cut

het
the

brood
bread

met
with

een
a

scherp
sharp

mes.
knife

‘Alice cut the bread with a sharp knife.’
b. Alice

alice
gebruikte
used

een
a

scherp
sharp

mes
knife

(om
(in-order-to

het
the

brood
bread

te
to

snijden).
cut)

‘Alice used a sharp knife (to cut the bread).’

A problem of letting the adjunct with met ‘with’ introduce an event is that it will be hard
to identify the subject of the verb as the agent of this event. A third option is of course
that this should follow from world knowledge, or in any case must be stored in a different
place than in the lexicon.

Some of Dowty’s properties may not follow from other things and yet be important,
in particular volition. For example, the difference between kill and murder seems to be
that volition is entailed only for the subject of the latter. That explains why (145a) entails
(145b), but not vice versa.

(145) a. Alice murdered Bob.
b. Alice killed Bob.

Is volition assigned in addition to a role? Is it a separate subevent? Or is murdering just a
specific type of killing? Evidence against the latter option is that (145a) entails that Alice
wanted Bob dead, and (145b) does not.

FrameNet looks like a valuable source of information, as it can be useful to see what
distinctions are made there and which frames inherit from each other. I leave it for further
research how exactly FrameNet can best be used.



94 Chapter 3. Events in the semantics

If we do not want to commit to any particulars about the verb meaning, it may also
be an option to use grammatical relations instead of thematic roles, i.e. subject, direct
object, indirect object, prepositions used, in order to project a coarse semantic structure.
We could use a normalization step for passives and nominalizations, and postulates or
other sources of lexical knowledge for entailments that do not follow from this structure
alone. I do not prefer this approach, because it heavily compromises compositionality,
and leaves no room for implicit arguments in the semantic representation.

3.1.4 Conclusions and suggested approach for Delilah
Events are introduced with an existential quantifier, which is kept low in verbs for the
most general reading.

On the basis of the discussion on thematic roles, I conclude that we should keep
using thematic roles in the semantic representations in Delilah. Also decomposition into
subevents is needed. Two such cases we have already seen: Telic predicates need process
and resulting state. (Partially) symmetrical predicates need ‘parallel’ subevents. This
leads to analysis below the word level.

Which roles are used is not so important as long as their use is consistent at least
between verbs that have some semantic relation. It is best to start out with considering
roles to be verb specific.

For determining the roles of the participants of a verb V , I suggest to investigate
what entailments hold between different sentences with V , what sentences with a verb
less specific than V a sentence with V entails, and possibly also what sentences with
a verb more specific than V entail a sentence with V . The latter can probably better be
done when studying the more specific verb in question. On the basis of these entailments,
it should be determined what roles and subevents are needed to get the entailments. If
the list of entailments of a given sentence is not endless, the amount of detail needed to
get these entailments is not endless either.

At present, thematic roles are also used for syntactic operations. The passivization
rule (involved in the construction of the lexicon) only applies to verbs that assign the
theme role to their original direct objects. If we make inference the highest priority
when deciding about thematic roles, this may no longer work, because direct objects that
licence passive may in some cases get a different role than theme. In this case, the ability
to passivize should be based on syntactic features.

In the remainder of this chapter, roles will have traditional names like agent and
theme. It is to be kept in mind that these are relatively arbitrary.

3.2 Events for verbs
This section discusses the implementation of event semantics for different classes of
verbs. I take the templates as a starting point, often grouping several of them together,
because for example extra NP or PP arguments do not make a difference for the issues
discussed. I start with the most simple type of eventive verb, introducing the general
machinery. I then move on to auxiliaries. Next, verbs with different types of infinitival



Section 3.2. Events for verbs 95

and propositional complements are discussed and after that, I discuss causatives and
particle verbs. At the end the implementation of parallel subevents, which were discussed
in section 3.1.3, is considered.

3.2.1 Simple eventive verbs
Here, I show the most basic case, verbs introducing a single event and having one or
more participants expressed through NPs and PPs. As an example I use the intransitive
verb werken ‘to work’ The relevant features of an infinitival entry of werken are shown
in (146).

(146) werken ‘to work’ (inf.)

sem:{store: {SemSubj binds A,
λR.∃V. work(V) & event(V) & R binds E},

body: λT.(agent_of(E, A) & attime(E, T))}
...
node:Top+ID
head:phon:werken

eventtype:event
concept:work

synsem:eventvar:E
external:agent_of∼[Top+ID, A]

...
arg:sem:SemSubj

node:ID+ID2
synsem:theta:agent_of

In the ‘body’ of the semantics, there is a lambda abstraction over the time. The
event argument is only a semantic argument and appears directly in the store. The
existential quantifier comes with the event. No mechanism of existential closure has
been implemented so far. Such a mechanism will be necessary, if the event variable
should be available for different kinds of quantification. Rothstein (1995) proposes, for
example, that the expression every time actually targets events, and results in universal
quantification over the event. The feature eventtype distinguishes between events and
states. The event variable is being kept track of by the eventvar feature, so it can be
targeted by adverbs. The variable that the subject binds in the semantics is also kept track
of. This is because the infinitive does not syntactically select its subject. The filler of the
subject role will be an argument of an auxiliary, modal, raising or control verb.

3.2.2 Auxiliaries and epistemic modals
Auxiliaries and epistemic modals do not introduce an event of their own and do not assign
a theta role to their subject either. The subject gets its theta role from the main verb, which
occurs in infinitival or participial form. In order for the subject of the inflected verb to be
interpreted as the subject of the main verb, the semantics of the subject is recorded under



96 Chapter 3. Events in the semantics

extsem. This is a technical feature, comparable to the event variable, that is passed on,
also by intervening adjuncts, and takes care that the variable is available on every level,
so that unification can take place. The same happens, by the way, for the agreement
properties of the subject, which also have to be passed on upwards in order to be available
when the subject is instantiated. These are not included in the schematic representation,
here. The event variable is passed on to the higher level, too. The following example is
of an infinitival version of the future auxiliary zullen ‘will’.

(147) zullen ‘will/shall’ (inf.)

sem:{store: {SemVP applied to T binds V},
body: λT.future(V)}

...
node:Top+ID
head:phon:zullen

concept:future
synsem:eventvar:E

external:Theta∼[Top+ID, A]
extsem:SemSubj

...
arg1:sem:SemSubj
node:ID+ID2

synsem:theta:Theta
...
arg2:sem:SemVP

node:ID+ID3
synsem:cat:vp

eventvar:E
external:Theta∼[ID+ID3, A]
extsem:SemSubj

Non-epistemic modals pattern with semi-modals in terms of their semantics. These
are discussed in the next section.

3.2.3 Infinitival and propositional complements
Control verbs also take infinitival complements and normally bind one of their thematic
roles, but, contrary to auxiliaries they do introduce an event of their own and assign a
separate theta role to their subject. I discuss perception verbs, verbs with propositional
complements, verbs with VP-complements, and object control verbs.

Perception verbs

Verbs of perception take an event as their internal argument. Whether something can
occur as the complement of a verb of perception is actually often used to test whether or
not it denotes an event.



Section 3.2. Events for verbs 97

An implementation like in (148) derives analyses like (149), for perception sentences.
(The order of the conjoined predicates does not matter in principle, as long as all variables
stay under their quantifier.)

(148) zien ‘to see’ (inf.)

sem:{store: {SemSubj binds A,
ECM binds B,
SemVP applied to T binds VP,
λR.∃V. see(V) & state(V) & R binds E},

body: λT. experiencer_of(E, A) & VP & theme_of(E, F)
& attime(E, T)}

...
node:Top+ID
head:phon:zien

eventtype:state
concept:see

synsem:eventvar:E
external:experiencer(Top+ID, A)

...
arg:sem:SemSubj
node:ID+ID2

synsem:theta:experiencer
...
arg:sem:SemVP

node:ID+ID3
synsem:cat:vp

eventvar:F
external:Theta∼[ID+ID3, _B]

...
arg:sem:ECM
node:ID+ID4

synsem:theta:Theta

(149) Bob
Bob

zag
saw

Alice
Alice

werken.
work

‘Bob saw Alice work.’
∃e1. see(e1) & state(e1) & AtPast(t) ∃e2. work(e2) & event(e2) & agent(e2,
alice) & attime(e2, t) & experiencer(e1, bob) & theme(e1, e2) & attime(e1, t)

The semantics of the subject of the embedded verb is unified with that of the ‘exceptional
case marking (ecm)’7 argument of the matrix verb. The event variable of the embedded

7Exceptional Case Marking verbs are those which assign accusative case to the subject of their infinitival
complement, without assigning it a thematic role.



98 Chapter 3. Events in the semantics

verb is used to make it the theme of the matrix verb. The event of the embedded verb is
assumed to be instantiable/extensional.

The idea is that in these constructions it is the event of the embedded verb, and not
its subject, that is the theme of the matrix verb is supported by the fact that in various
languages there seem to be restrictions as to the kind of event that can be the complement
of a verb of perception (see also section 3.4.2). Another hint lies in the fact that you can
see it rain. The expletive does not refer and can therefore not be what is seen.

Perceiving an event often goes together with perceiving its participants, but this is
not necessarily so. If Alice works at the help desk and controls Bob’s computer through
remote access to fix a problem for him, while he is watching his screen, then he can see
her open a directory without seeing her. Therefore, Alice should not get a role in the
matrix event. Also, (150a) seems clearly less contradictory to me than (150b).

(150) a. Alice
Alice

zag
saw

een
an

onzichtbaar
invisible

spook
ghost

een
a

pagina
page

uit
out

een
a

boek
book

scheuren.
tear

‘Alice saw an invisible ghost tear a page out of a book.’
b. Alice

Alice
zag
saw

een
an

onzichtbaar
invisible

spook.
ghost

‘Alice saw an invisible ghost.’

Of course, the helpdesk scenario is an exception and normally it would be useful to be
able to conclude from (149) that Bob saw Alice. It is possible to give Alice a theta role
in the see event, but the question is which theta role this should be. If it is the same role
as the work event, uniqueness of theta roles is violated. If it is a different theta role, that
means that if the object of zien is a person, it gets a different role than when it is an event.

Verbs of perception may differ from each other in subtle ways. For horen ‘to hear’,
the object always needs to be coerced into something audible; a sound. Typically the
object produces the sound. From (151a) we may want to infer (151b), but also (151c)
and (151d).

(151) a. Alice
Alice

hoorde
heard

Bob
Bob

de
the

deur
door

open
open

doen.
do

‘Alice heard Bob open the door.’
b. Alice

Alice
hoorde
heard

Bob.
Bob

‘Alice heard Bob.’
c. Alice

Alice
hoorde
heard

de
the

deur.
door

‘Alice heard the door.’
d. Alice

Alice
hoorde
heard

een
a

geluid.
sound

‘Alice heard a sound.’

Giving Bob a separate role in the hearing event would derive the entailment of (151b), but
it is not possible to derive the entailment of (151c) in a similar way. I therefore maintain



Section 3.2. Events for verbs 99

the analysis that verbs of perception only have two semantic arguments: the perceiver
and (the producer of) the stimulus.

Propositional complements

Other control verbs take infinitival arguments that are propositions. They normally have
a that-clause counterpart. Whether the proposition is stated to be true depends on the
nature of the matrix verb. In the example below it cannot be derived to hold true and
neither can its negation/opposite. There are also factive and counterfactive verbs.

I assume that both (152a) and (152b) get the representation (152c). The proposition
is considered definite (represented by the iota operator), and therefore scope-insensitive.
This analysis is backed up by the fact that the complementizer dat is clearly related to
the definite (demonstrative) article.

(152) a. Bob
Bob

beweerde
claimed

te
to

werken.
work

‘Bob claimed to be working.’
b. Bob

Bob
beweerde
claimed

dat
that

hij
he

werkte.
worked

‘Bob claimed that he was working.’
c. ∃e1. claim(e1) & agent(e1, bob) & ιp. proposition(p) & theme(e1, p) &

content_of(p, ∃e2 & work(e2) & agent(e2, bob))

The example entry is for the version with an infinitival complement as in (152a).

(153) beweren ‘to claim’ with infinitival complement (inf.)

sem:{store: {SemSubj binds A,
+SemVP applied to T binds VP,
λR.∃V. claim(V) & event(V) & R binds E},

body: λT. agent_of(E, A) & ιP. proposition(P)
& theme_of(E, P) & content_of(P, VP)
& attime(E, T)}

...
node:Top+ID
head:phon:beweren

eventtype:event
concept:claim

synsem:eventvar:E
external:agent∼[Top+ID, A]
control:controls(agent∼[Top+ID, A],

Theta∼[ID+ID2, A])
...
arg:sem:SemSubj
node:ID+ID1

synsem:theta:agent



100 Chapter 3. Events in the semantics

...
arg:sem:SemVP

node:ID+ID2
synsem:cat:vp

eventvar:F
external:Theta∼[ID+ID3, A]

The proposition gets the theme role. This means that it gets the same role as non-
clausal (non propositional) direct objects of these verbs do, as in (154a) and (154b).

(154) a. Alice
Alice

beweerde
claimed

iets
something

raars.
strange

‘Alice claimed something strange.’
b. Bob

Bob
zei
said

twee
two

woorden.
words

‘Bob said two words.’

Some verbs can have propositional complements that do not appear as infinitivals or
that-clauses. Examples are vinden and constateren.

(155) a. Alice
Alilce

vindt
finds

Bob
Bob

aardig
nice

/
/

een
a

aardige
nice

jongen.
boy

‘Alice finds Bob nice / a nice boy.’
b. Alice

Alilce
vindt
finds

dat
that

Bob
Bob

aardig
nice

/
/

een
a

aardige
nice

jongen
boy

is.
is

‘Alice finds that Bob is nice / a nice boy.’
c. Alice

Alice
constateerde
diagnosed

griep
flu

bij
at

Bob.
Bob

‘Alice diagnosed Bob with flu.’
d. Alice

Alice
constateerde
diagnosed

dat
that

Bob
Bob

griep
flu

had.
had

‘Alice diagnosed Bob with flu.’

Here is an example of an entry of vinden with an adjectival predicate. The semantics
is modeled after the small clause structure (see section 3.2.4).

(156) vinden ‘find’ with small-clause (inf.)

sem:{store: {SemSubj binds A, SemObj binds B
SemAP applied to B binds SC,
λR.∃V. find(V) & state(V) & R binds E},

body: λT. experiencer_of(E, A) & ιP. proposition(P)
& theme_of(E, P)& content_of(P, L)
& attime(E, T)}

...



Section 3.2. Events for verbs 101

node:Top+ID
head:phon:vinden

eventtype:state
concept:find

synsem:eventvar:E
external:experiencer∼[Top+ID, A]

...
arg1:sem:SemSubj

node:ID+ID1
synsem:theta:experiencer

cat:np
...
arg2:sem:SemAP

node:ID+ID2
synsem:eventvar:F

cat:adjectival_phrase
...
arg3:sem:SemObj

node:ID+ID4
synsem:cat:np

Nothing has been done here to introduce or bind a temporal argument in the
embedded proposition.

VP-complements of ‘semi-modals’

Subject control verbs that take what Cremers (1983) identifies as VP-complements, as
opposed to the clausal complements above, are harder to represent. In the present
implementation the whole event structure of the embedded verb is embedded as the theme
of the matrix verb.

Epistemic modals do not have this problem. They are similar to auxiliaries and
introduce a modal operator over the whole event structure of the embedded verb. They
do not introduce an eventuality of their own.

Another complication is the instantiability of the event of the embedded verb. To
some extent this problem also applies to the verbs with propositional complements above.
The instantiability is not only dependent on the directly embedding verb but also on the
context which that verb is embedded in, such as negation or other verbs of this type.
For example, (157a) implies (157b) and (158a) implies (158b). These are (at least in
the case of forget conventional implicatures, rather than entailments, because they can
be cancelled in context. They are however of the computable type. They are clearly and
systematically introduced by these particular lexical items.

(157) a. Bob forgot to close the window.
b. ⇒ Bob did not close the window.

(158) a. Bob did not forget to close the window.



102 Chapter 3. Events in the semantics

b. ⇒ Bob closed the window.

The effect, however, is sensitive to focus.

(159) a. Bob did not FORGET to close the window (he left it open on purpose).
b. ⇒ Bob did not close the window.

(160a) is an example where two such verbs (pretend and forget) are stacked. Peeling
off outer layers and changing the sign as required, we can infer (160b) and (160c). In
addition, it also seems to be possible to infer (160d).

(160) a. Bob pretended not to have forgotten to close the window.
b. ⇒ Bob forgot to close the window.
c. ⇒ Bob did not close the window.
d. ⇒ Bob pretended to have closed the window.

The implicatures do not always switch between positive and negative, some verbs have
no implicature in one of the contexts, such as refuse to and try to.

Nairn et al. (2006) calculate the instantiability in a top down manner, which may very
well be the only way to do it.

Object control

Certain object control verbs, like force and cause, are causative. Here, in contrast to
perception verbs, the subject of the embedded verb does get a role from the matrix verb
as well. If Alice forced Bob to work, then she did something to Bob that resulted in
him working. One event is taken to cause the other. The implementation of causatives is
discussed in the next section. Some other object control verbs are propositional, usually
with a modal element (adviseren ‘advise’). Some may be a combination of propositional
and causative (overtuigen ‘convince/persuade’).

3.2.4 Causatives
There are a number of different causative structures. The object control causatives were
already mentioned. Related to these are the small clause causatives, based on a transitive
verb, as in (161a).

(161) a. Alice
Alice

verft
paints

het
the

hek
fence

groen.
green

‘Alice paints the fence green.’
b. ιx. fence(x) & ∃e. paint(e) & agent(e, alice) & theme(e, x) & ∃s. green(s) &

theme(s, x) & result(e, s)

An analysis like (161b) can be obtained if the adjective introduces state. The
motivation for and details of states for adjectives are discussed in section 3.4. The ‘result’
relation between the event and the state comes in as part of the small clause construction.
The variable R in the body is instantiated by the semantics of the adjective applied to the



Section 3.2. Events for verbs 103

variable bound by the direct object. Suppose the adjective is groen, then Res will be ∃S.
green(S) & theme(S, B).

(162) verven ‘paint’ selecting a small clause

sem:{store: {SemSubj binds A, SemObj binds B
SemAP applied to B binds Res,
λR.∃V. paint(V) & event(V) & R binds E},

body: λT. agent_of(E, A) & theme_of(E, B) & Res
& result_of(E, S) & attime(E, T)}

...
node:Top+ID
head:phon:verven

eventtype:event
concept:paint

synsem:eventvar:E
external:agent∼[Top+ID, A]

...
arg:sem:SemSubj

node:ID+ID1
synsem:theta:agent

cat:np
...
arg:sem:SemAP

node:ID+ID2
synsem:eventvar:S

cat:adjectival_phrase
...
arg:sem:SemObj

node:ID+ID4
synsem:theta:theme

cat:np

The semantics of the adjective could also bind a variable in the stored event quantifier
instead, but that would make no real difference. The result state cannot take scope over
the event.

I see no reason to postulate a bigger event of which both the event and the state are
subevents.

Levin and Rappaport Hovav (1999) discuss two causative structures that differ
slightly from each other and argue that causatives with a reflexive, as in (163a), are
complex (consist of two subevents), whereas similar causatives without a reflexive, as in
(164a) are simple events (event coidentification). They propose the event structures in
(163b) and (164b), respectively.

(163) a. Robin danced herself stiff.



104 Chapter 3. Events in the semantics

b. ∃e1∃e2[Dancing(e1) & Agent(e1,Robin) & Become-Stiff(e2) &
Theme(e2,Robin) & Cause(e1,e2)]

(164) a. Robin danced out of the room.
b. ∃e[Dancing(e) & Agent(e,Robin) & Go-Out(e) & Source(e,the room)]

A shortcoming of both these representations, is that they do not entail that Robin
ends up outside the room or stiff, respectively. At least they do not do so without
extra machinery, such as meaning postulates for Become-Stiff and Go-Out. And for the
case of event coidentification, it is not clear where the go-out event comes from in the
composition. It is possible that the verb dance, in one of its senses, also has a meaning
component that is similar to the meaning of go and that this is the sense that combines
with a directional PP. In that case the going may not need to be spelled out. A related
possibility is that dance can occur in a construction that adds the go component to its
meaning and subcategorizes for a directional PP, such that the event is conceptualized as
both dance and go. A third option is that the verb does not select the directional PP, but
that the PP selects a suitable verb to express the event that can realize the movement along
the path included in the PP (Gehrke, 2008). All these options can lead to the following
alternative representation, in which, for the moment, the internal structure of the result
state has not been worked out yet. Arguably, also a path should be introduced.

(165) a. Robin danced out of the room.
b. (∃e)(∃s)[dance(e) & go(e) & agent(e,Robin) & result_of(e, s) & theme(s,

Robin) & outside-the-room(s)]

The alternative analysis of (163a) remains close to the original. Only the ‘becoming stiff’
has been further analyzed into an event with a result state.

(166) a. Robin danced herself stiff.
b. (∃e1)(∃e2)(∃s)[dance(e1) & Agent(e1,Robin) & Cause(e1,e2) &

result_of(e2,s) & stiff(s) & Theme(s,Robin)]

3.2.5 Particles
Many Dutch verbs come with separable particles. The same verb can occur with different
particles, yielding different meanings (e.g. (167)). The meaning of the verb-particle
combination is often not transparent/compositional. Therefore the meaning of the verb-
particle combination is entirely attributed to the verb, leaving the particle semantically
empty.

(167) a. Alice
Alice

valt
falls

op.
up

‘Alice attracts attention.’
b. Alice

Alice
valt
falls

af.
off

‘Alice looses weight.’



Section 3.2. Events for verbs 105

It is clear that the meanings are complex, but they are not composed of the meaning of the
verb and the meaning of the particle. For the transparent cases it might not be necessary
to do it this way. Also the semantics of these predicates in general needs to be looked at
more carefully, as the particle often introduces a small clause.

(168) Alice
Alice

komt
comes

terug.
back

‘Alice comes back.’

(168) means that Alice comes and that the result of that will be that Alice is back.
This suggests that such transparent particle verbs could also be treated parallel to the
causatives above.

Since the result state is dependent on the event, it has to scope below it.
In the case of particle verbs, it does seem to be useful to introduce an event with

subevents. In the small clause construction (e.g. groen verven ‘paint green’) it was clear
that the verb introduced the event and that the adjective introduced the state. They did
so independently of each other. The state was the result of the event that was contributed
by the construction. In particle verbs, the division of tasks is usually not that clear. Take
schoonmaken ’to clean’: does it have as a result that the object is clean? There is some
evidence for this. If the object remained dirty, one would say (169a), rather than (169b).

(169) a. Ik
I

heb
have

het
it

proberen/geprobeerd
try/tried

schoon
clean

te
to

maken,
make,

maar
but

het
it

is
is

nog steeds
still

vuil.
dirty
‘I have tried to clean it, but it is still dirty.’

b. ? Ik
I

heb
have

het
it

schoongemaakt,
cleanmaked,

maar
but

het
it

is
is

nog steeds
still

vuil.
dirty

‘I have cleaned it, but it is still dirty.’

Notice that in the intended reading of (169a) only the result is intensionally embedded
under proberen ‘to try’. A problem is, that (169b) does not sound like complete nonsense.
This may be because the standard for resulting cleanness seems to be to some extent
dependent on how clean or dirty the object was before. Vuil ‘dirty’ in the second
clause would then be evaluated against more independent standards. The compositional
interpretation is to some extent available, as in (170), but it does feel a bit like language
play. The English equivalent to clean does not support this move. It seems to be a matter
of morphology.

(170) (?) Ik
I

heb
have

het
it

schoongemaakt.
cleanmaked

Nou ja,
well

schoner
cleaner

dan
than

het
it

was.
was

‘I have made it clean. Well, cleaner than it was.’

The lexicalized status of schoonmaken also becomes apparent in (171a).

(171) a. Ik
Ik

moet
have-to

nog
still

even
shortly

schoonmaken.
cleanmake

‘I still have to do some cleaning .’



106 Chapter 3. Events in the semantics

b. * Ik
I

moet
have-to

nog
still

even
shortly

vuil
dirty

maken.
make

c. * Ik
I

moet
have-to

nog
still

even
shortly

schoonborstelen.
clean-brush

d. * Ik
I

moet
have-to

nog
still

even
shortly

groen
green

verven.
paint

How should we then represent schoonmaken? I think, in this case, it makes sense
to have an event with subevents, because schoonmaken is also a concept by itself. We
would then get a representation as schematically indicated in (172).

(172) ∃e. event(e) & schoonmaken(e) & agent_of(e, subj) & theme_of(e, obj)
& ∃p. event(p) & subevent_of(e, p) & agent_of(p, subj) & theme_of(p, obj)
& ∃s. state(s) & subevent_of(e, s) & result_of(p, s) & schoon(s) & theme_of(s,
obj)

The process that leads to the result cannot be called schoonmaken because in this concept
the result is already included. The process subevent here is not further specified. It can
be made explicit in a PP with door, e.g. door het te borstelen ‘by brushing it’.

Many particle verbs have some sort of resultative structure, but there is quite a lot
of variety. In vastpakken ‘grab, take hold of’ the result involves both participants.
vastpakken results in vasthouden(/hebben) ‘to hold’, whereas bijkomen ‘to recover’
results in the subject returning to an earlier state.

Events consisting of a process and a result subevent are quite widely accepted and
there exists some syntactic evidence for their structure. This form of decomposition takes
us slightly beyond structural semantics, because it involves decomposition of lexical
verbs. It is not clear at present how far we should go with this kind of decomposition.

3.2.6 Parallel sub-events
In section 3.1.3 about thematic roles we have seen two examples in which parallel
subevents were proposed. One is the well known buy/sell case from FrameNet. Adopting
their analysis in our type of semantics is not completely unproblematic. One problem is
a lack of evidence for all this structure to be there. Most of the participants cannot be
referred to by means of a pronoun if they were not explicitly mentioned. In (173), the
pronoun he cannot refer to the buyer, if he wasn’t mentioned before.

(173) Alice sold her tv. #He was happy with it. (he=the buyer)

This is however also the case for unexpressed underlying subjects of passives (Koenig
and Mauner, 1999). In (174) the pronoun cannot refer to the murderer.

(174) Alice was murdered. #He hasn’t been caught yet. (he=the murderer)

Yet, it can clearly be inferred from (173) that someone bought Alice’s tv, just like it can be
inferred from (174) that someone murdered Alice. On the other hand, the acceptability of
(175b) suggests that the MONEY participant is not strictly entailed. Yet, there is a certain
amount of money that Alice is still entitled to.



Section 3.2. Events for verbs 107

(175) a. #Alice sold her tv, but no-one bought it.

b. Alice sold her tv, but she never got the money.

Another point is that the subevents can occur in any temporal order, with an undetermined
amount of time in between.

(176) a. Buy now, pay later.

b. Alice bought a new tv, but she doesn’t have it yet.

Determining what properties an event needs to have in order to call it buy or sell clearly
falls under lexical semantics. And since lexical meanings are stretchable, it is not possible
to define it precisely. Storing the knowledge needed for these inferences elsewhere is
likely to involve doing some of the work double, as reference to the structures that
can occur will probably be necessary. The choice should ultimately depend on what
alternative ways there are to make the relevant information available.

Cases where the subject needs to be split up into different participants are computa-
tionally problematic. There must be some mechanism that for intransitive kiss (zoenen in
Dutch) interprets the subject as a group and assigns roles to members of that group. This
challenge also applies to the interpretation of explicit reciprocals (Moltmann, 1992).

For the marry case, where there is a subject and an object, the fact that the
relation also holds the other way around, can quite easily be stored in a wordknowledge
component as part of what we know about the meaning of the word.

3.2.7 Discussion and conclusions

This section has presented a basic implementation of event semantics for verbs in Delilah
which is a good basis for further refinement. Implementations of event semantics in
other deep semantic parsers, such as the ones mentioned in section 2.5 seem to be
similarly basic. They typically introduce one event per verb and a number of roles for
the participants. In Delilah, the task was approached by starting out from the different
templates we have, so that each of our templates now introduces the basic ingredients
for an event semantics for the verbs based on it. On a closer look it may turn out that
we need more differentiation. For example the template for transitive verbs may need to
be split into different templates for transitive verbs corresponding to different aspectual
classes.

A general property of the implementation is that main events (from main verbs) are
introduced with an existential quantifier in the store of the verb’s semantics. Auxiliaries
and epistemic modals are assumed not to introduce an event of their own.

Verbs with infinitival and clausal complements are a diverse group. Verbs of
perception are a separate type. Their infinitival complement is an event. The subject
role filler of this event is treated as an ‘ecm’ argument of the main verb. When a verb
can occur with a clausal complement, this complement is a proposition. The alternating
infinitival complement is analyzed in this way as well. There are also some different
kinds of complements that can be analyzed as propositional. Propositional arguments
get a theta role.



108 Chapter 3. Events in the semantics

(Semi-)modals are notoriously difficult to represent and need further research.
Especially important for these and the verbs with propositional complements are the
relative polarity effects that influence entailment. An implementation of these effects,
possibly along the lines of Nairn et al. (2006) deserves high priority.

Several causative constructions are covered. Of course, we cannot pretend to be
complete here, since a lot of research is still going on in this area. Object control verbs
can be causative and/or propositional. Many particle constructions can be considered to
have a complex event structure. For some, the particle expresses a result state, but many
are less transparent. They will need to be looked at verb by verb. Subevents are not put
in the store, as they are not expected to scope outside the main event.

Parallel subevents do not fit very well in the general implementation format, but they
can be implemented if needed.

The exact event structure of many verb classes still has to be worked out. However,
in the general format, many different kinds of analyses are implementable.

3.3 Nominalizations
This section8 discusses event semantics for nominalizations and describes the com-
binatorially relatively comprehensive implementation of lexical nominalizations in
Delilah. Nominalizations are nouns that are derived from verbs or adjectives. This
section discusses nominalizations derived from verbs. The next section will be about
nominalizations derived from adjectives. The focus here is on eventive nominalizations,
but see section 3.3.6 for non event-denoting nominalizations. Infinitival nominalizations
are in terms of semantics comparable to the lexical ones that we discuss, apart from subtle
aspectual differences (Bartsch, 1986). The main difference is that they need some extra
syntactic machinery.

The implementation of lexical nominalizations discussed in this section covers the
various ways in which semantic arguments can be expressed, including a treatment of
support verbs. A novel feature of this implementation is the use of the general pronoun
binding algorithm to find possible binders within the sentence for implicit arguments. In
the end, I give a short overview of related work for comparison.

3.3.1 Event semantics for nominalizations
The main argument for assuming event semantics for nominalizations, parallel to verbs,
are the inference patterns between verbs and their nominalizations. For example,
sentence (177a) uses the noun operatie ‘operation, surgery’ and (177b) uses the verb
opereren ‘operate’. The intuition is that (177a) and (177b) are equivalent. They can be
inferred from each other.

(177) a. Alice
Alice

onderging
underwent

een
an

operatie.
operation

‘Alice went through/ had surgery.’

8The content of this section largely corresponds to that of Reckman and Cremers (2007).



Section 3.3. Nominalizations 109

b. Alice
Alice

werd
was

geopereerd.
operated

‘Alice was operated on.’

The same goes for (178a) and (178b), containing negation.

(178) a. Alice
Alice

onderging
underwent

geen
no

operatie.
operation

‘Alice went through/ had surgery.’
b. Alice

Alice
werd
was

niet
not

geopereerd.
operated

‘Alice was not operated on.’

Since the narratives in Narrator are about experiences of patients (in the prototype
aimed at they are about breast cancer), this kind of information is rather relevant and
should preferably not be missed or misinterpreted. If one of the search criteria is, for
example, that the narrative should tell about a patient who had surgery, then each of
these sentences above, if occurring in a narrative, provides the relevant information to
determine whether it meets this search criterion or not. And of each pair, both variants
provide the same information.

Opereren and operatie introduce the same concept. Also the relation between
opereren/operatie and Alice is the same in both (177a) and (177b). Arguably it can also
be inferred in both cases that there is yet someone else involved who is not mentioned, a
filler for the agent-slot of opereren/operatie.

By using neo-Davidsonian event analysis both sentences can be given the same
semantic representation. The basic event representation for both (177a) and (177b) is
illustrated below. The verb form is taken to name the concept. The verb can be considered
as basic in a situation like this because underived nouns do not usually introduce events.
Seeing that it does not lie within the scope of this thesis to discuss what is the best way
to represent time/tense, the representations are kept very simple in that respect.

(179) ∃e.event(e) & operate(e) & agent_of(e, x) & theme_of(e, alice) & at-time(e, past)

For (177b) this kind of representation is quite standard and we have seen in section
3.2 how it is derived. Event representations for event-denoting nominalizations have also
been suggested before (Higginbotham, 2000; Parsons, 1990). The verb ondergaan in
(177a) plays a special role. It places the event in time (makes it extensional) and it lets
its subject be the theme of the surgery event.

3.3.2 Expression of participants
The semantic role fillers of the event denoted by the nominalization, which correspond
to the arguments of the verb from which it is derived, can be expressed in different
ways. I will use the terms ‘subject argument’ and ‘object argument’ for what would
be respectively the subject and the object of the corresponding verb in an active sentence.
Subject and object arguments can by expressed in a prepositional phrase (illustrated in



110 Chapter 3. Events in the semantics

(180a)), as a prenominal genitive (as in (180b)), as an adjective (as in (180c)), as the
first part of a compound noun (shown in (180d)) and through a light verb / support verb
construction (example in (180e)). Often, there is ambiguity. For example, (180d) can
mean either ‘observation by satellite’, or ‘observation of satellites’.

(180) a. the destruction of the city by the Romans

b. the city’s destruction

c. the American invasion

d. satellite observation

e. Bob made a decision.

Other arguments, such as prepositional or sentential arguments, are expressed in the
same way as they were with the verb, except that they are more often optional with
nominalizations.

When an argument is not expressed in any of these ways, it can get a referent from
the (linguistic or non-linguistic) context, or remain unspecified.

The implementation discussed here is one of Dutch (lexical) nominalizations.
Semantic role fillers in Dutch nominalizations surface in essentially the same ways as
their English counterparts (Hoekstra, 1999). The Dutch versions of of and by are van
and door, respectively.9

(181) de
the

verwoesting
destruction

van
of

de
the

stad
city

door
by

de
the

Romeinen
Romans

‘The destruction of the city by the Romans’

The prenominal genitive position is more restricted in Dutch than it is in English.
Mainly pronouns and proper names occur in this position. In compounding, on the other
hand, proper names occur much less easily as the first part of a compound than they do
in English.

The implementation in Delilah covers event- and result-denoting nominalizations
with semantic arguments expressed as PPs (subject, object and others), as prenominal
genitives, as adjectives and as subjects of support verbs. Compounds are covered to
a lesser extent. A neo-Davidsonian event semantics is used. Some cases of temporal
anchoring of events are covered.

Nominalizations taking complements

Whereas dealing with the optionality of complements to nouns is a major issue for the
HPSG based approach by Badia and Saurí (1998) (see section 3.3.8), optionality is not
a problem for Delilah. We saw in section 2.2, that when the arguments of a verb occur
in different orders or on different sides of the verb, a different lexical item is needed for
each configuration, and that the very large lexicon this creates, is not a problem, since it
can be searched in very efficiently.

9Just like of, van is also the genitive preposition and just like by, door also introduces the agents of passives.



Section 3.3. Nominalizations 111

It is, therefore, completely in line with the architecture of Delilah to have many
different lexical items per nominalization as well. Some of them select PPs as
complements. Others do not syntactically realize the fillers of their semantic roles. The
(at this level) unexpressed participants are listed as arguments, but lack syntactic category
and phonological form. Their semantics is like that of a pronoun. They can be bound
later by constituents higher in the structure.

As there are different (sets of) templates for different classes of verbs, such as tran-
sitive, intransitive, selecting a PP, etc., we also have different classes of nominalizations,
each with its own set of templates. This way we can accommodate peculiarities of
particular classes of nominalizations.

For example, a nominalization of a transitive verb, with two argument slots, in
principle gets four different templates. One that selects two PPs (with the prepositions
van and door), two that select only one PP, and one without any PPs. Where an argument
is not selected in the form of a PP, there is an empty argument slot. The semantics of this
slot has the same form as that of a pronoun. It has its normal place in the store of the
nominalization’s semantics, and binds a variable in the body of the semantics, just like
a normal argument would do. The variable that this pronoun binds is made visible for
selecting categories. The pronoun can get bound in various ways. If it doesn’t get bound,
it will simply remain a not further specified pronoun in the sentence semantics.

Below is a schematic representation of the main semantic parts of the entries for
operatie ‘surgery’. The four different versions are summarized into one representation.
The paths between brackets are not part of every version.

(182) operatie ‘operation’ (transitive event nominalization)

sem: {store: {SemSubj binds S, SemObj binds O},
body: λE.operate(E) & event(E) & agent(E, S)

& theme(E, O) (& attime(E, Time))}
...
node:Top+ID
head:phon:operatie
synsem:cat:n

subcat:nominalization
...
arg1:node:ID+ID1

sem:SemSubj
(cat:pp, head:phon:door)

...
arg2:node:(ID+ID2)

sem:SemObj
(cat:pp, head:phon:van)

Here the abstraction in the body is over the event. This is different from the
implementation for verbs, where the event was introduced, already existentially closed,
in the store, and the abstraction in the body was over the temporal argument. In
nominalizations the event variable gets its quantification from the determiner it is



112 Chapter 3. Events in the semantics

combined with. The event variable is also the target of predication, for example by a verb
that takes the nominalization as an argument. The examples in (183) make it clear that it
cannot be the temporal argument that is abstracted over in the body of a nominalization’s
semantics, because it is the event that was a success, not the time at which it occurred.

(183) a. De
the

operatie
surgery

was
was

een
a

succes.
success

‘The surgery was a success.’
b. Elke

every
operatie
surgery

was
was

een
a

succes.
success

‘Every surgery was a success.’

The temporal argument can be either added here, in the semantics of the nominalization
itself, (possibly also bound by a stored element), or it can be added later by a higher
predicate. I will not go into the details here.

Theoretically, one could also argue for treating the PPs as adjuncts, so they become
the governing category. (Solstad (2007) proposes an analysis along these lines.)
Arguments would then uniformly be initially implicit and only one template for the
nominal would be needed. Such an implementation is possible, but more complex. As
the PPs are semantic arguments, I think it makes more sense to directly interpret them as
arguments.

Either way, it is predicted that the event quantifier can never take scope over the
participants. This is also what is predicted by May (1985)’s theory of Quantifier Raising.
That means that in (184), elke operatie should not be able to take wider scope than een
oudere patiënt. That seems to be a problem.

(184) Elke
every

operatie
operation

van
of

een
a

oudere
elderly

patiënt
patient

is
is

extra
extra

risicovol.
risky

‘Every surgery of an elderly patient is extra risky.’

I will assume that in the reading where een patiënt seems to have narrow scope, it is
actually a generic, which is insensitive to scope. On that reading, (184) would be a
generalization, similar to (185).

(185) Operaties
operations

van
of

oudere
elderly

patiënten
patients

zijn
are

(altijd)
(always)

extra
extra

risicovol.
risky

‘Surgeries of elderly patients are (always) extra risky.’

Compounds

The implementation does not yet cover noun-noun compounds in a systematic way.
If they were written as two separate nouns, like in English, they could be treated as
a nominalization taking one of its arguments on its left, in the form of a noun.10 In
Dutch however, compounds are written together as one word. We would therefore need
a preprocessing step, that recognizes compounds and splits them up. For the time being,

10Note also that this argument is non-referential.



Section 3.3. Nominalizations 113

a limited number of compounds is included in the lexicon as nominalizations of which
one semantic role is already filled in manually in the semantics of the lexical entry. This
is the way in which the less transparent compounds will need to be treated anyway, as
collocations, in fact.

Prenominal genitive pronouns

An example of a prenominal genitive pronoun that can be interpreted as the subject or
object of a nominalization is found in (186).

(186) Zijn
his

operatie
operation

slaagde.
succeeded

‘His surgery was successful’

Identifying elements higher in the tree as fillers of semantic roles is not trivial in
deep parsing, because the nominalization cannot select them: they are not arguments.
Interpreting them is accomplished by making the information about which argument
slots are still free and which variable they bind in the semantics visible for selecting
categories. The selecting category can then look for this information and use it to select a
nominalization that still has a role available for it, and to pick the variable it should bind.

The semantics of the genitive pronoun is unified with the semantics of an unspecified
pronoun from an empty argument slot. This way, the pronoun gets person, number, and
gender features.

For the argument to be bound it needs to be made available on the higher synsem
level. We have already seen an example of this kind of lexical binding in control verbs.
A point of discussion is whether one external theta-argument is enough in the case
of nominalizations. If it is, the implementation can be very much parallel to that of
verbs. We would then have active and passive entries for nominalizations. In the active
entries, the subject (agent) is the external argument, and in the passive entries the object
(theme) is the external argument. In the entry where both roles are already filled there
is no external argument (the feature gets the value ‘none’). This is different from verbs
because there, the basic template from which the entries are derived is based on the
infinitive. There is no need to remove the external argument specification in the finite
forms, because these will not occur in structures where the external argument is bound
from a higher position, that is, they are not selected by auxiliaries or control verbs. A
nominalization with all its roles filled through prepositional arguments, however, still
occurs as an argument of a determiner, possibly a genitive pronoun. Therefore, such
a genitive pronoun should not be tempted to try and bind an argument position that
has already been filled. The active/passive distinction would yield one extra entry for
a nominalization with two empty slots.

(187) zijn ‘his’ (genitive pronoun)

sem:{store: { SemEv applied to E binds N,
SemPron binds A},

body: λP.ιE. N & P)}



114 Chapter 3. Events in the semantics

...
head:phon:zijn
node:Top+ID
synsem:cat:np
...
arg1:node:ID+ID1

sem:SemPron
...
arg2:node:ID+ID2

sem:SemEv
synsem:external:Theta∼[ID+ID2, A]

cat:n
subcat:nominalization

Examples like (188), however, suggest that one external argument might not be
enough, at least if both arguments are to be interpreted as lexically bound by a higher
constituent.

(188) Deze
this

chirurg
surgeon

heeft
has

Alice’
Alice’s

operatie
operation

uitgevoerd.
carried-out

‘This surgeon has carried out Alice’s surgery.’

In order to allow this, there needs to be a version of the possessive pronoun that
specifically selects a nominal with only an empty slot for the object. It binds the theme
and returns a category with no empty slots. And then there is a similar version that
selects nominals with only an empty subject slot. Then, there are two versions that select
nominals with two empty slots; one that binds the subject and returns a constituent which
still has an empty object slot, and one that binds the object and returns a constituent
which still has an empty subject slot.11 This boils down to some extra bookkeeping of
participant slots.

Solstad (2007) proposes an elegant way to interpret German post-nominal genitives,
which can most likely be extended to possessives and prenominal genitives. The genitive
has an underspecified relational meaning which can get unified with a participant role.
His approach relies on a DRT framework (Kamp and Reyle, 1993). Major adaptations to
the organization of Delilah would however be needed to implement this.

Adjectives

Adjectival semantic role fillers (of the type American invasion) are treated in a similar
way as the genitive pronouns. Only a limited set of adjectives can fill a semantic role of
a nominalization. These are linked to the templates that let them select a nominalization
and bind one of its free argument slots.

11In addition to all this, the possessive pronoun also has its ‘normal’ possessive version that does is indifferent
to empty argument slots in the nominals it selects. When there are free argument slots it simply passes on this
information, so it will be visible for the next selecting category (e.g. the verb). Other determiners also do so.



Section 3.3. Nominalizations 115

Adjectives that do not fill a semantic role are generally interpreted as event modifiers,
parallel to their adverbial counterparts. No extra machinery is needed for this. They apply
in the same way as normal intersective adjectives do to simple nouns. They do need to
pass on information about the nominalization that is relevant to selecting categories.

Genitive s

In a genitive construction with a genitive s (example in (189)), the s is treated as the head.
If the right argument of the genitive s is a nominalization, then the left argument, which
is a proper name, can bind a free argument slot in this nominalization.

(189) Bobs
Bob’s

operatie
operation

slaagde.
succeeded

‘Bob’s surgery was successful.’

(190) genitive s

sem:{store: { SemEv binds N, SemName binds A},
body: λT.attime(N, T)}

...
node:Top+ID
head:phon:s
synsem:cat:np
...
arg1:node:ID+ID1

sem:SemName
synsem:cat:np

subcat:name
...
arg2:node:ID+ID2

sem:SemEv
synsem:external:Theta∼[ID+ID2,A]

cat:n
subcat:nominalization

3.3.3 Support verbs

There is a class of verbs that select eventive nominalizations (or other event-denoting
nouns) as objects, and then bind one of the arguments with their own subject. Examples
of such verbs are ondergaan (‘undergo’) and uitvoeren (‘carry out’).

(191) a. Bob
Bob

heeft
has

een
an

operatie
operation

ondergaan.
undergone

‘Bob went through/ had surgery.’



116 Chapter 3. Events in the semantics

b. Alice
Alice

heeft
has

de
the

operatie
operation

uitgevoerd.
carried-out

‘Alice has carried out the surgery.’

Whether the subject of the verb binds the agent or the theme of the nominalization,
is a lexical property of the verb. For ondergaan it is always the theme, and for uitvoeren
it is the agent. The binding typically is obligatory.

An object binding support verb selects an eventive argument DP that still has an
empty object slot, and the subject of the verb binds the object argument of this eventive
DP (obligatorily). A subject binding support verb does the same, but then for subject
arguments. The information about what argument slots of the nominalization are still
free is passed on to the verb by the determiner.12 Apart from contributing the content of
the nominalization’s object argument, the verb also contributes the tense specifications
to the event in the nominalization. Sentence (192a), with the verb in the past, thus gets
the representation in (192b), derived compositionally.

(192) a. Iedereen
everyone

onderging
underwent

een
an

operatie.
operation

‘Everyone went through/ had surgery.’
b. ∀x.person(x)→∃e.operate(e) & agent_of(e, y) & theme_of(e, x) & attime(e,

past)

(193) support verb: ondergaan

sem:{store: { SemEv binds E, SemSubj binds A},
body: λT.attime(E, T)}

...
node:Top+ID
head:phon:ondergaan
synsem:cat:vp
...
synsem:external:Theta∼[Top+ID, A]
...
arg1:node:ID+ID1

sem:SemSubj
...
arg2:node:ID+ID2

sem:SemEv
synsem:freeobj:Theta∼[ID+ID2, A]

cat:np

Since this binding through control is obligatory, and each argument can be expressed
only once, an object interpretation of the PP in (194) is ruled out, even though the pronoun

12The DP then of course has to select an object argument. In a unification based system, this means one has
to add some ‘ugly’ feature to DP’s that do not have an object argument, to prevent them from being selected.



Section 3.3. Nominalizations 117

in it can be bound by the subject of the support verb. This corresponds to the intuitions.
The PP is in this case interpreted as a general possessive, with an underspecified relational
meaning.13

(194) Moet
should

Bob
Bob

die
that

operatie
operation

van
of

’m
him

nog
still

ondergaan?
undergo

‘Does Bob still have to go through this surgery of his?’

When we look at cases with different kinds of quantification over the event, however,
we see that the approach above is too simple. For (195a), it gives us the representation
in (195b) (all operations of which Alice is the agent occurred in the past), whereas
something like (195c) is much more intuitive (all operations were carried out by Alice).
That is, the information that Alice is the agent shows up in the restrictor of the universal
quantifier, while it should be in the nuclear scope.

(195) a. Alice
Alice

heeft
has

alle
all

operaties
operations

uitgevoerd.
carried-out

‘Alice has carried out all surgeries.’
b. ∀e.operate(e) & agent_of(e, alice) & theme_of(e, x)→ at-time(e, past)
c. ∀e.operate(e) & theme_of(e, x)→ agent_of(e, alice)

Where the temporal information should be is not immediately clear. It probably
should provide a temporal frame for the whole sentence, rather than being either in the
restrictor or in the nuclear scope. To get the temporal argument in the restrictor it has to
be introduced already in the semantics of the nominalization itself, and then bound at the
level of the support verb.

In the present implementation, the temporal argument shows up in the nuclear scope
of the event quantifier, rather than in the restrictor because it is introduced at the level
of the support verb rather than at the level of the nominalization. Introducing the
participants later than they are introduced now, would make analyses like (195c) possible.
However, this would mean that participants are only introduced when they are expressed.
This is not attractive, because participants can also be bound by discourse, linguistic or
non-linguistic. For this, they need to be already present in the representation.

An alternative is to repeat the relevant role in the scope, i.e. in the body of the
semantics of the support verb and bind it only there. This yields the representation in
(196) for (195a).

(196) ∀e.operate(e) & agent_of(e, y) & theme_of(e, x)→ agent_of(e, alice)

It says something like: for every operation with an agent and a theme, Alice was the
agent. For this to work, it is important that an event can have only one agent.

With existential quantifiers the separation of restriction and scope is less obvious. On
closer inspection, though, it becomes clear that also for existentially quantified events
it makes sense to assume that the participant provided by the subject of a support verb
occurs in the scope; e.g. there was an operation with an agent and a theme and that agent
was Alice.

13A strong pronoun in this position would most naturally be interpreted as an agent and not bound.



118 Chapter 3. Events in the semantics

(197) a. Alice
Alice

heeft
has

een
an

operatie
operation

uitgevoerd.
carried-out

‘Alice has carried out an operation.’
b. ∃e.operate(e) & agent_of(e, y) & theme_of(e, x) & agent_of(e, alice)

Below in (198) is a revised version of the entry for ondergaan ‘undergo’. I have left
the temporal argument as it was. This aspect still needs to be worked on.

(198) support verb: ondergaan

sem:{store: { SemEv binds E, SemSubj binds B},
body: λT. Theta(E, B) & attime(E, T)}

...
node:Top+ID
head:phon:ondergaan
synsem:cat:vp
...
synsem:external:Theta∼[Top+ID, B]
...
arg1:node:ID+ID1

sem:SemSubj
...
arg2:node:ID+ID2

sem:SemEv
synsem:freeobj:Theta∼[ID+ID2, A]

cat:np

The theta role, Theta, of the argument of the nominalization that is to be bound is
identified under freeobj (freesubj for uitvoeren) and copied to the body of the
semantics. Note that the variable it binds, B, is a new one. The original variable A
remains unbound (and should be existentially closed).

FrameNet contains quite a range of support verbs for English. As Fillmore et al.
(2002) notice, support verbs may add registral, aspectual and other semantic aspects to
the predication. Also, many support verbs are collocationally highly restricted. Erbach
and Krenn (1993) actually focus on the real idiomatic support verb constructions. But
also, for example, ondergaan does not just take any kind of eventive nominalization as a
complement. However, restrictions on what complements may occur cannot be finitely
formulated for open domains.14 Therefore, no such restrictions have been implemented.
For parsing, this is good, because now also novel uses are covered. For generation
however, which Delilah also does, it would be useful if support verb constructions can
be checked against some information source, such as a corpus. Some attemps have been
made to correlate nominalizations with support verbs through extraction from a corpus
(Grefenstette and Teufel, 1995).

14Stevenson et al. (2004) show that grading the acceptability of support verb - nominalization combinations
is a hard task for human annotators



Section 3.3. Nominalizations 119

3.3.4 Temporal relations

The events in the nominalizations are temporally dependent on the tense of the verb in
the sentence, either directly as in (180e) or (199a), or indirectly, through a temporal
preposition as in (199b).

(199) a. The presentation started at three.

b. After the presentation we went for drinks.

In addition, temporal expressions can occur in some of the positions in which
arguments can also occur (e.g. last month’s observations).

Nominalizations that occur with support verbs and other light verbs such as occur or
happen, get their temporal specification from this verb. Typically, this is the only thing
the light verb contributes to the semantics, and the temporal information applies to the
event argument of the nominalization in exactly the same way as it would to the event
argument of a verb.

We also have a tentative implementation for nominalizations that occur in temporal
adjuncts, headed by prepositions like before and after. The event variable of clauses had
already been made visible to adjuncts for reasons discussed in 2.3.6. It was therefore
decided that the temporal relation would be a relation between two events; the event
introduced by the nominalization and the event of the main clause. It would perhaps be
more correct to assign a time to the nominalization event, and state that it precedes or
follows the time of the event in the main clause. It is certainly possible to do this. The
present implementation is only a preliminary one, since the way temporal relations are
represented in general is rather limited, and in need of revision.

Except for the inclusion of support verbs, the temporal relations covered in Delilah
are comparable to those covered in PUNDIT (Dahl et al., 1987).

Adjuncts like van gisteren, the Dutch equivalent of yesterday’s, are treated as heads,
of which the nominalization is an argument. With event-denoting nominals, their
interpretation is, therefore, relatively straightforward.

3.3.5 Unexpressed arguments as pronouns

Implicit arguments are treated like (a kind of) pronouns in order to capture most of their
binding possibilities within the sentence. An additional advantage of treating implicit
arguments like pronouns, is that this way, we avoid the use of free variables, which put
the stability of the system at risk. Pronouns are much easier to control.

The mechanism for binding pronouns was explained in section 2.3.8. This same
mechanism is also used for implicit arguments, with some adaptations to make sure that
arguments that are already lexically bound, are not affected.

The following data show that within the sentence, implicit arguments are optionally
bound outside their binding domain in more or less the same fashion as normal pronouns.
That binding inside the binding domain is inhibited, corresponds to the fact that an
expressed subject cannot bind an unexpressed object (or the other way around), yielding
a reflexive interpretation.



120 Chapter 3. Events in the semantics

In (200a) the pronoun hij is most naturally interpreted as binding the implicit theme
of operatie, in (200b) the pronoun is likely to bind the implicit agent, and in (200c) it may
very well not bind either one of the implicit arguments. (The syntactic relations between
pronoun and implicit arguments are the same in all three cases. World knowledge
determines what is the most likely interpretation.)

(200) a. Na
after

de
the

operatie
operation

mocht
was-allowed

hij
he

weer
again

bezoek
visitors

ontvangen.
receive

‘After the surgery, he was allowed to receive visitors again.’
b. Na

after
de
the

operatie
operation

ging
went

hij
he

naar
to

één
one

van
of

z’n
his

andere
other

patiënten.
patients

‘After the surgery he went to one of his other patients.’
c. Na

after
de
the

operatie
operation

mocht
was-allowed

hij
he

op
on

bezoek
visit

komen.
come

‘After the surgery he was allowed to come for a visit.’

These are the same results we get when the argument to be bound is expressed as
a possessive (weak) pronoun. It looks like implicit arguments are bound (within the
sentence) under the same conditions as overt pronouns.

(201) a. Na
after

z’n
his

operatie
operation

mocht
was-allowed

hij
he

weer
again

bezoek
visitors

ontvangen.
receive

‘After his surgery, he was allowed to receive visitors again.’
b. Na

after
z’n
his

operatie
operation

ging
went

hij
he

naar
to

één
one

van
of

z’n
his

andere
other

patiënten.
patients

‘After his surgery he went to one of his other patients.’
c. Na

after
z’n
the

operatie
operation

mocht
was-allowed

hij/zij
he/she

op
on

bezoek
visit

komen.
come

‘After his surgery he/she was allowed to come for a visit.’

Under quantification, we get the same effect. The implicit pronoun is bound by the
quantifier in exactly the same way as overt pronouns are. The quantificational expression
geen van de patiënten binds an implicit argument in (202a), an overt pronominal
argument of a nominalization in (202b) and a pronominal subject of a verb in (202c).

(202) a. Geen
none

van
of

de
the

patiënten
patients

mocht
was-allowed

na
after

de
the

operatie
operation

direct
directly

naar
to

huis.
home

‘None of the patients was allowed to immediately go home after the surgery’
b. Geen

none
van
of

de
the

patiënten
patients

mocht
was-allowed

na
after

z’n
his

operatie
operation

direct
directly

naar
to

huis.
home

‘None of the patients was allowed to immediately go home after his surgery’
c. Geen

none
van
of

de
the

patiënten
patients

mocht
was-allowed

nadat
after

hij
he

geopereerd
operated

was
was

direct
directly

naar
to

huis.
home



Section 3.3. Nominalizations 121

‘None of the patients was allowed to immediately go home after he had
surgery’

There is however one important difference between implicit arguments and pronouns.
Whereas pronouns need to be bound at some point in the linguistic or non linguistic
context, implicit arguments do not always get bound. This calls for a procedure that
checks at a high level, presumably discourse, for unbound implicit arguments and applies
low existential closure to these. For example the theme of operatie in (203) needs to
be existentially closed below the other quantifiers, if it does not get a referent from
discourse, because it can co-vary with the surgeons and surgeries.

(203) Elke
every

chirurg
surgeon

heeft
has

een
an

operatie
operation

uitgevoerd.
out-carried

‘Every surgeon has carried out an operation.’

On the revised analysis of support verb constructions, the agent in the restriction of the
event quantifier also needs to be closed.

3.3.6 Events and results
Next to an eventive interpretation, a considerable group of nominalizations also have a
result state or result object interpretation. For example, selection can refer to a selecting
event or to the result of such an event, i.e. the group of objects that were selected.
Several attempts have been made in the literature to identify the classes of verbs, of
which the nominalizations have one or both of these interpretations available, but none
of these appear to satisfactorily cover all the data (Osswald, 2005). Result-denoting
nominalizations are therefore entered as separate lemmas in the lexicon and have their
own set of templates, because different restrictions may apply to them, and because their
semantics is different.

Many authors are only interested in the eventive readings of nominalizations. Meyers
et al. (1998), however, also take into account result-denoting nouns as well as patient
denoting nouns such as appointee. This makes sense because an appointee is someone
who has been appointed. This means an appointing event can be inferred. The same
goes for resultative nominalizations. If the result exists, the event must have taken
place. Therefore, in our representation, an event is included in the semantics of a result-
denoting nominalization. It is the result of this event that is the target for quantification
and predication, i.e. the lambda abstraction is over the result.

Cases in which the event is not strictly entailed, fall beyond the scope of this thesis.

3.3.7 Restrictions
Several restrictions have been formulated on possible argument configurations. A
common one is, that some other argument cannot be expressed if the object is not also
expressed. The problem with such restrictions is that they are often not really hard. An
object that is considered obligatory, can often remain unexpressed, if it is, in FrameNet
terms (Johnson and Fillmore, 2000), a definite null argument. This means that the hearer



122 Chapter 3. Events in the semantics

is expected to know what the filler of this argument role is. Therefore, these restrictions
cannot be correctly implemented on the local level, but only on the level of discourse.

Other restrictions, however, are of a different nature. The prenominal genitive
position is not available for other objects than affected objects (Grimshaw, 1990).
Therefore nominalizations are marked for their object being affected or not.

And in certain result nominals, such as uitvinding ‘invention’ the result corresponds
to what would be the object of the verb uitvinden ‘invent’. Therefore, the nominalization
does not take an object argument in the result reading.

3.3.8 Other computational approaches to nominalizations
This section briefly introduces relevant work that has previously been done in computa-
tional linguistics on interpreting nominalizations. The intention is to give an overview of
what is covered in other approaches.

Quite a variety of treatments for nominalizations have been proposed and imple-
mented, especially in the domains of statistical analysis and shallow parsing. In the
HPSG framework, which is equipped for full semantic interpretation, some proposals for
the treatment of certain aspects of nominalizations have been put forward. However, no
actual implementation in a working system seems to have been reported.

PUNDIT (Dahl et al., 1987; Palmer et al., 1986) is a highly modular system,
consisting of distinct syntactic, semantic and pragmatic components, using a lexicon,
a broad coverage grammar of English, semantic verb decompositions, rules mapping
between syntactic and semantic constituents, and a domain model. PUNDIT deals with
nominalizations in a closed domain. Therefore, domain knowledge can be used, when
looking in the context for referents for unexpressed essential roles. This account covers
at least noun-noun compounds and nouns with PP complements. The semantic output
ignores determiners/quantifiers. A temporal analysis is provided for nominalizations,
when the nominalization is either introduced by a temporal preposition (before, after), or
is the subject of a verb like occur.

Hull and Gomez (1996) propose an interpretation algorithm that attempts to deter-
mine the verbal concept of a nominalization and to fill its thematic roles. The different
senses in WordNet, and their restrictions on fillers of semantic roles are used. First
of all, a distinction is made between verbal and non-verbal senses of nominalizations.
Further disambiguation and semantic role filling only applies to nominalizations used in
(one of) their verbal senses. Result-denoting nominalizations are considered non-verbal.
Fillers for sematic roles can be found in the noun phrase that also the nominalization is
contained in, and in prepositional phrases that follow it. This presumably covers all types
of argument expression, except for light verb constructions.

Meyers et al. (1998) describe how NOMLEX (Macleod et al., 1998), a dictionary of
nominalizations, can be used in information extraction. NOMLEX attempts to list all
possible nominalization based paraphrases of a verbal clause. This means that several
configurations, in which the noun and its semantic role fillers can occur, are listed. In
a configuration, most arguments are optional, but some can be marked as obligatory
(typically the object). Also, nominalizations that do not denote events (such as appointee)
are included. They also discuss the possibility of including temporal information, that



Section 3.3. Nominalizations 123

may be expressed in similar ways as the semantic role fillers. Based on NOMLEX,
all possible paraphrases of a sentence should be able to be generated and searched for.
This way, they avoid having a separate level of semantic representation. Paraphrases are
directly mapped onto each other. They also avoid parsing the texts they want to search
in.

Lapata (2000) uses statistic methods to determine, for noun-noun compounds of
which the second noun is a nominalization, whether the first noun should be interpreted
as subject or object. She uses the NOMLEX and CELEX (Burnage, 1990) dictionaries to
identify nominalizations in text. For the subject versus object choice, she uses statistics
on which words occur as subjects and objects of the corresponding verbs (plus several
smoothing techniques). In Lapata (2002) also context is used; i.e. two words preceding
and following the nominalization. She reckons this method can also be applied to
adjectival subjects and objects of nominalizations.

Terada and Tokunaga (2003) present a corpus based method of transforming nom-
inalized phrases into clauses for a text mining application. They extract candidate
nominalizations, based on their morphological similarities to verbs. Through a system
of rules, they assign a series of possible analyses. By checking in what combinations
the words involved, occur elsewhere in the corpus, they determine what is the most
likely analysis. Their analysis consists of bracketing and assigning labels like ‘subject’,
‘object’, ‘verb’ and ‘pp’.

Pradhan et al. (2004) use a machine learning approach to semantic argument parsing,
to parse arguments of eventive nominalizations in the FrameNet (Baker et al., 1998)
database, resulting in shallow semantic analysis. Annotated example sentences from
FrameNet are used for training and testing. Particularly interesting is that they include
intervening verbs as a feature, distinguishing between auxiliaries, a small set of light
verbs, and other verbs. Also the actual form of the verb is taken into account and the path
through the parse tree from constituents that might be semantic role fillers to the verb, in
order to recognize subjects of support verbs. To my knowledge this is the only system
that covers subjects of support verbs as semantic role fillers (although PUNDIT might be
able to cover some of these cases through co-reference resolution).

The Parallel PropBank II (Palmer et al., 2005), in contrast to other annotated corpora
and treebanks, includes detailed annotation of nominalizations and their arguments, using
event structure, for English and Chinese.

Badia and Saurí (1998) present a treatment of optional complements to nouns in a
framework that combines HPSG syntax and the semantic approach of the Generative
Lexicon (GL) (Pustejovsky, 1995). Complements to nouns are treated as thematically
bound adjuncts. This keeps them available for reference, even when they are not
syntactically realized. The scope of the implementation seems relatively limited. The
paper only discusses complements to nouns and does not mention how semantic role
fillers that show up in prenominal genitive position or those that appear as the subject of
a support verb can be identified and interpreted.

Another HPSG proposal (Erbach and Krenn, 1993) only discusses support verb
constructions, without explaining how this fits in a broader implementation of nomi-
nalizations.



124 Chapter 3. Events in the semantics

3.3.9 Evaluation and discussion

The Delilah system, so far, covers all cases of lexical binding. Implicit arguments that
are not lexically bound remain free and can be bound within the sentence by general
principles.

Selecting the least complex SLF as the best analysis (see section 2.3.12) favors
argument readings over adjunct readings, because the semantics of an argument unifies
with an element already present in the store, whereas an adjunct adds a new element. In
the case of nominalizations, this means that a PP or a genitive is preferably interpreted
as a semantic argument of the nominalization, rather than getting the ‘normal’, e.g.
possessive, interpretation that it would get with a simple noun. This seems to be correct.
However, many other ambiguities are still left unresolved, for example, ambiguities
between subject and object readings or between different binding options for a pronoun.
Only ungrammatical readings are ruled out (or in fact: not produced).

It would be interesting to see, if the present approach can be combined with a
statistical approach in such a way that the best analysis is found. Other than in the current
statistical approaches, the outcome would be a full fledged ‘deep’ semantic analysis.

We very much rely on having a good lexicon, but so do most other approaches. For
English, NOMLEX (Macleod et al., 1998), a special lexicon for nominalizations has been
developed. WordNet and FrameNet (Baker et al., 1998) as well are important sources of
lexical information. In addition, some methods have been proposed that can be of help
in creating a lexicon of support verbs (Grefenstette and Teufel, 1995). I think that for
precise analysis of nominalizations, one needs such information.

3.3.10 Conclusions

A deep parsing, deep semantics implementation of the interpretation of nominalizations
and their arguments was presented. It covers most realizations of semantic role fillers,
including subjects of support verbs. It was also shown that arguments of nominalizations
that remain implicit can be treated as pronouns and be subject to general mechanisms
for pronoun binding within the sentence. The event analysis for nominalizations lets
entailments between verbs and nominalizations follow naturally.

3.4 States
Several computational semantics systems have by now implemented a form of event
analysis for verbs (Bos et al., 2004; Copestake et al., 2005). There has been much debate
on whether it is desirable to assume underlying states, parallel to underlying events.
Katz (2000) argues against an underlying state analysis, even for stative verbs, whereas
Parsons (2000) is ready to accept an underlying state analysis, even for simple nouns. It
is clear that states are more problematic than events.

After having argued in the previous section that verbs and their nominalizations,
although being of different grammatical categories, introduce the same concept, I
will now discuss whether adjectives and their corresponding abstract nouns do so as



Section 3.4. States 125

well15. I show that underlying states give us the same advantages as underlying events,
with respect to recognizing concepts across categories for the purpose of inference,
as they reify the predicates. I then discuss an alternative representation for copular
expressions by Maienborn (2005), which is based on the conviction that the states in these
expressions are ontologically different from eventualities, and I show that this alternative
representation has unfavorable consequences for inference. I end with a short note on
related adjective-adverb pairs.

3.4.1 Adjectives and nouns
In the previous section we have looked at nominalizations of verbs, and seen that event
semantics helps us in getting the right entailments. Now we will look at adjectives
and their nominalizations. The following pair of example sentences is at least close
to equivalent. Who has an illness, is ill. Who is ill, has an illness (at least one).

(204) a. Alice
Alice

had
had

een
an

ziekte.
illness

‘Alice had an illness.’
b. Alice

Alice
was
was

ziek.
ill

‘Alice was ill.’

One could try to treat ’have an illness’ as a kind of collocation and this way have
(204a) interpreted as ill(alice). This, however leaves no space in the representation for
the determiner, which may vary in form and accordingly in interpretation.

For the pair boos/boosheid, it is more difficult to come up with two equivalent
sentences, for lack of a suitable “support verb”. Still we can observe that (205a) entails
(205b).

(205) a. Bob
Bob

probeerde
tried

zijn
his

boosheid
anger

te
to

verbergen.
hide

‘Bob tried to hide his anger.’
b. Bob

Bob
was
was

boos.
angry

‘Bob was angry’

For Katz, however, stative nominalizations denote either a fact or an extent/degree,
but never a state. So (205a) could mean that Bob tried to hide (the fact) that he was angry,
or how angry he was, but not the state of his being angry. At least the factive reading
seems very intuitive here. It is not clear whether there is also a stative reading. In some
other contexts, though, a factive reading is not possible. In (206a) boosheid is combined
with a durational predicate. (A fact does not have a duration; once a fact, always a fact.)
An extent or degree reading does not seem to make a lot of sense either.

15The contents of this section were published in Reckman and Cremers (2006)



126 Chapter 3. Events in the semantics

(206) a. Hun
their

boosheid
anger

duurt
lasts

nooit
never

lang.
long

‘Their anger never lasts long.’
b. Ze

they
zijn
are

nooit
never

lang
long

boos.
angry

‘They never are angry for a long time’

Besides, even if zijn boosheid in (205a) does only have a factive reading, how should
we represent the content of this fact in such a way that (205b) follows from it and
that we faithfully represent the quantifier? (His anger is definite.) We can’t choose a
representation like angry(bob), because of the quantifier. But if we represent it as a noun
(with a possessive kind of relation to Bob), while still using a traditional representation
for (205b), then we lose the entailment. So even when embedded in a fact, reification of
the predicate still yields better representations.

These considerations lead us to the following type of representation for sentences like
(204b) and (205b).

(207) ∃e.state(e) & ill/anger(e) & theme_of(e, alice/bob) & at-time(e, past)

Interestingly, for the adjective-noun pairs it is not always that clear and systematic
which is the basic form. For the verb - noun pairs in the previous section, the verb
was always basic and the noun was its nominalization. There are also verbs derived
from nouns, but they follow a different pattern. Adjective - noun pairs behave less
systematically. In the pair verdrietig ‘sad’ - verdriet ‘sadness’, the adjective seems to
be the derived form in Dutch, whereas in English the noun has a nominalizing suffix.
And for boos ‘angry’ - boosheid ‘anger’ it is the other way around.

3.4.2 An alternative representation
We have seen that adjectives and their “nominalizations” display the same kind of
inference patterns as verbs and their nominalizations, and that reification of the predicate,
through postulating an eventuality argument, makes these patterns follow naturally. This
reification seems to be the crucial point, though. And since independent evidence for
a Davidsonian analysis for statives is kind of shaky, we should investigate whether we
really need the full structure. Maienborn (2005) proposes a representation for statives
which does involve reification of the predicate, but is different from the Davidsonian
event structure representation. In this subsection, I discuss this alternative.

Kimian states

Maienborn (2005) argues for a distinction between Davidsonian states (D-states) and
Kimian states (K-states), the latter based on Kim (1998). Examples of verbs introducing
D-states are stand, sit and sleep. Examples of verbs introducing K-states are know, hate,
resemble and copular expressions. In the latter it is the copula that introduces the K-state.

D-states introduce a normal Davidsonian argument, just like other eventualities.
For the K-states, Maienborn shows that, like D-states, they are available to anaphoric



Section 3.4. States 127

reference and time modification, and therefore they need a referential argument. This ref-
erential argument, she argues though, is of a different ontological kind than Davidsonian
eventuality arguments. It is of a more abstract nature, similar to facts and propositions.
The main argument is their deviant combinatorial behavior. K-state verbs cannot serve as
the infinitival complement of a verb of perception (see also examples (213b) and (215a)
later in this section), they cannot combine with most adverbials, such as manner adverbs
and instrumentals, and neither do they combine with locative modifiers, all of this in
contrast with D-states and other eventualities. This brings her to the following (tentative)
definition of K-states.

(208) Kimian states:
K-states are abstract objects for the exemplification of a property P at a holder x
at a time t.

Here are some of Maienborn’s (German) examples: (209a), with a D-state, is
represented as (209b), and (210a), with a K-state, is represented as (210b). The
representations are in a flat DRT notation.

(209) a. Carol
Carol

schläft.
sleeps

‘Carol is sleeping.’
b. [se , v | sleep(s), theme(s, v), carol(v)]

(210) a. Carol
Carol

ist
is

müde.
tired

‘Carol is tired.’
b. [sz , v | s ≈ [tired(v)], carol(v)]

The embedded box in (210b) contains the property that is the K-state, and the discourse
referent s reifies this property.

Introduction of the state by the copula

Engelberg (2005) argues the K-state should not be introduced by the copula, but rather
by the post-copula predicate (e.g. an adjective), because attributively used adjectives also
show the relevant behavior, without being accompanied by a copula.

A problem that Dölling (2005) points out, also supports this. (211a) should entail
(211b) and (211c), but if (211a) is to be represented as one complex state, since there is
only one copula, these entailments do not follow without extra postulates.

(211) a. Anna
Anna

ist
is

eine
a

blonde
blond

Frau.
woman.

b. Anna
Anna

ist
is

blond.
blond.

c. Anna
Anna

ist
is

eine
a

Frau.
woman.



128 Chapter 3. Events in the semantics

I conclude that states are not introduced by the copulas but by the predicates
themselves.

Extensionalized participants

Engelberg also shows that it is problematic to put individuals introduced by an NP, under
the copula in the box that is introduced by “≈” and presents the ‘content’ of the state.
This is because in that case the state in (212a) (being related to Opus) would be a different
one than the state in (212b) (being related to George). And while the states in (212b) and
(212d) are the same, if Opus is the tuba player of the Deathtöngue, since the subject is
in the outer box and therefore extensionalized over, this is not the case for the states in
(212a) and (212c).

(212) a. George is related to Opus.
b. Opus is related to George.
c. George is related to the tuba player of the Deathtöngue
d. The tuba player of the Deathtöngue is related to George.

Identity relations between states get more coherent and intuitive if the content of the
box embedded under “≈” is restricted to only the core predicate (e.g. related(x, y)).

Now, if Engelberg is right that K-states are not more fine-grained than events and D-
states, and the content of the embedded K-state box is in all cases only a core predicate,
one can wonder what the advantage of the Kimian style representation still is. For facts
and propositions this kind of representation is useful, exactly because the content of
a proposition is more than a single predicate; it is a full-fledged proposition, and it
makes sense to assign a referential argument to the proposition as a whole. Individuals
introduced by NPs in embedded propositions are not extensionalized over. If George
said that he is related to Opus and if Opus is the tuba player of the Deathtöngue, it is not
entailed that George said that he is related to the tuba player of the Deathtöngue. The
main remaining difference between the D-state and K-state representations seems to be
that the K-state predicate directly predicates over its argument(s), whereas in D-states
this relation is mediated through theta roles. It is not clear why this should be the case.

Entailments between K-state and D-state verbs

Representing K-states in a different format than D-states, also causes another compli-
cation in the domain of inference. German liegen ‘to lie’ is a D-state verb, hence the
grammaticality of (213a). Sein ‘to be’ and also sich befinden ‘to be located’ are K-state
verbs, as shown by the ungrammaticality of (213b).

(213) a. Ich
I

sah
saw

das
the

Buch
book

auf
on

dem
the

Tisch
table

liegen.
lie

‘I saw the book lie on the table.’
b. *Ich

I
sah
saw

das
the

Buch
book

sich
REFL

auf
on

dem
the

Tisch
table

befinden.
be-located

‘I saw the book be located on the table’



Section 3.4. States 129

But (214a) entails (214b)16. (Not all German speakers seem to like the version
with the copula, but with befinden (214b) is certainly good.) If these two predicates
introduce two very different types of states that require different styles of representation,
this entailment is problematic.

(214) a. Das
the

Buch
book

liegt
lies

auf
on

dem
the

Tisch.
table

‘The book is lying on the table.’
b. Das

the
Buch
book

befindet
located

sich
REFL

/
/

ist
is

auf
on

dem
the

Tisch.
table

‘The book is (located) on the table’

It is of course conceivable that the verb liegen actually introduces two substates, one
of which is Kimian. Intuitively positional location verbs (with their complements) such
as liegen convey two different pieces of information. One of these is the location of
the subject (expressed by the complement) and the other one is what kind of position
the subject is in (upright or lying flat...). The locational information will have to be the
K-state that gets us the entailment. That means that the positional information has to
constitute the D-state that saves the construction in (213a).

So far the problem seems fixable, be it at the cost of losing the clear-cut distinction
between D-state verbs and K-state verbs. (The positional location verbs stand, sit and lie
are actually quite a substantial group within the D-state verb class.) But it gets worse.
The verb to sleep is a D-state verb and to be asleep, being a copula construction, behaves
like a K-state expression, as is illustrated below, for Dutch.

(215) a. *Ik
I

zag
saw

Carol
Carol

diep
deep(ly)

in
in

slaap
sleep

zijn.
be

‘I saw Carol be fast asleep.’
b. Ik

I
zag
saw

Carol
Carol

slapen.
sleep

‘I saw Carol sleep.’

But we can observe that (216a) entails (216b).

(216) a. Carol
Carol

was
was

diep
deep(ly)

in
in

slaap.
sleep

‘Carol was fast asleep.’
b. Carol

Carol
sliep.
slept

‘Carol was sleeping’

Here, it is not plausible that (216a) contains a D-state as well as a K-state, because the
presence of this D-state should save (215a).17 Dölling (2005) makes a similar point.

16These examples can be reproduced in Dutch, but there the copula version of (214b) is somewhat marginal.
17An anonymous reviewer proposed the representation (1a) for ‘Carol was asleep’. Made consistent with the

view that a K-state is the exemplification of a property that would be (1b). (Where the property is ‘being the



130 Chapter 3. Events in the semantics

Although the distinction between two groups of statives with different behavior
is reasonably convincing, I conclude that in a semantic representation for inference
purposes, it does not appear to be a good idea to treat to sleep and to be asleep as
fundamentally different kinds of entities. I therefore prefer to stick to Davidsonian style
representations for all states. The differences between the two classes that Maienborn
shows are of course real. But as they mainly seem relevant for selectional restrictions,
they can probably best be captured as part of the feature structure of the predicates, in a
computational system like Delilah. In Delilah, the decision of whether two constituents
can combine to form a new one depends on the unifiability of their graphs of features.
Here, one can include a feature that says for example that a predicate is “abstract”. Verbs
of perception, all kinds of adverbials and locative modifiers can then be specified for
combining only with concrete predicates. The semantic representation then only needs
to contain information that is relevant for inference.

Distinction between D-states and K-states

Dölling (2005) also points out that the distinction between D-states and K-states on the
criteria that Maienborn proposes is not entirely unproblematic. He shows through (217)
that two predicates that are clearly eventive, because they express a change, cannot occur
with a locative modifier. Through (218) he shows that they cannot occur as infinitival
complements of perception verbs either. That is, eventive predicates behave here like
K-states with respect to properties that were used to argue that K-states are of a different
nature than Davidsonian arguments.

(217) a. *Hans
Hans

wurde
became

(gerade)
(at.the.moment)

in
in

Italien
Italy

30
30

Jahre
years

alt.
old.

b. *Marias
Maria’s

Vertrag
contract

lief
ran

(gerade)
(at.the.moment)

in
in

Deutschland
Germany

aus.
out.

(218) a. *Eva
Eva

sah
saw

Hans
Hans

30
30

Jahre
years

alt
old

werden.
become.

b. *Eva
Eva

sah
saw

Marias
Maria’s

Vertrag
contract

auslaufen.
run out.

Another verb with incoherent behavior is sich befinden. It patterns with stehen ‘stand’
(D-state) in (219) where it is modified by an adverb, and with sein ‘be’ (K-state) in (220),
where it is the infinitival complement of a perception verb.

theme of a sleep event’)

(1) a. [s | s ≈ [s′, v | [sleep(s′), theme(s′, v), carol(v)]]
b. [sz , v | s ≈ [s′e | [sleep(s′), theme(s′, v)], carol(v)]]

With a D-state embedded in a K-state, this looks like an interesting compromise. The main problem with it,
is that Maienborn introduces K-states next to D-states in order to derive the different combinatory properties
of K-states and D-states from their different ontological status. Now if a K-state embeds a D-state, with the
same ontological status as any other D-state, one would expect the embedded D-state to also have the same
properties as other D-states, such as being able to have a location. This would make the positing of K-states
lose its main advantage.



Section 3.4. States 131

(219) a. Das
the

Auto
car

stand
stood

illegal
illegally

auf
on

dem
the

Fabrikgelände.
factory premises.

b. Das
the

Auto
car

befand
found

sich
REFL

illegal
illegally

auf
on

dem
the

Fabrikgelände.
factory premises.

c. ?Das
the

Auto
car

war
was

illegal
illegally

auf
on

dem
the

Fabrikgelände.
factory premises.

(220) a. Alice
Alice

sah
saw

das
the

Auto
car

auf
on

dem
the

Fabrikgelände
factory premises

stehen.
stand.

b. *Alice
Alice

sah
saw

das
the

Auto
car

sich
REFL

auf
on

dem
the

Fabrikgelände
factory premises

befinden.
be-located.

c. *Alice
Alice

sah
saw

das
the

Auto
car

auf
on

dem
the

Fabrikgelände
factory premises

sein.
be.

This provides an additional argument against a fundamental difference between David-
sonian arguments and Kimian states.

3.4.3 Adjectives and adverbs
Adjectives and adverbs are closely related categories (Broekhuis, 1999). If we assume
underlying states for adjectives, we should do so for their adverbial counterparts as
well. (This is one of the reasons Katz (2000) does not want underlying states for
adjectives.) This is not necessarily problematic, because the German dabei-construction
which Maienborn uses as a diagnostic for whether a predicate has a referential argument,
also appears to work for adverbs. In (221), (found with Google), the da in dabei refers
to schnell. This means that schnell should introduce a referential argument.

(221) Erstaunlich
amazing

ist,
is

wie
how

schnell
fast

und
and

dabei
thereat

zuverlässig
reliably

der
the

neue
new

Mozilla
Mozilla

Firebird
Firebird

Seiten
web sites

darstellt.
displays

‘Amazing is, how quickly and reliably the new Mozilla Firebird displays web
sites.’

This suggests that the representation for these kinds of adverbs can be similar to the one
that I have proposed for adjectives.

On the other hand, the main group of adverbs that also occur as adjectives, are the
manner adverbs. Real manner adverbs always modify events, even when they occur as
adjectives with nouns. They frequently occur with deverbal nouns, but even a fast car is
a car that drives fast (can drive fast, typically drives fast). In that sense, the choice we
made for adjectives may not force us to do the same for manner adverbs.

Next to the real manner adverbs, there also is a group of de-adjectival adverbs. These
normally get a manner-like interpretation too, even though the manner aspect was not
part of the meaning of the adjective.



132 Chapter 3. Events in the semantics

When it comes to adjectives, we do not need states for all adjectives either. States are
needed for set denoting/intersective adjectives. They are not needed for e.g. relational
(monthly, Davidsonian, American, wooden) and modal (alleged) adjectives. (For an
elaborate classification of Dutch adjectives and adverbs, see Broekhuis (1999).)

3.4.4 Simple nouns
There is not much support for underlying states in simple nouns. An argument against it,
is that simple nouns do not seem to introduce any thematic roles. In Alice’s anger Alice
is in a state of anger or being angry, but in Alice’s table Alice is not in any way involved
in whatever state table may express. The only thing that could possibly be considered to
be a participant in a (being a) table state is the thing itself. But if the thing is a participant
in the state the word table introduces, it is not clear what the state refers to.

3.4.5 Implementation
Let us start with the adjective in predicative position. This is the type we have already
seen in the small clause construction (groen verven). The semantics of such an adjective,
e.g. boos ‘angry’ without an underlying state looks like (222).

(222) {store:{},
body: λX.anger(X)}

The simplest way to make it a state is shown in (223). Remember that the variable of
the state needs to be identified for future reference.

(223) boos ‘angry’ (predicative adjective)

sem:{store: {},
body: λX.∃S.anger(S) & state(S) & theme_of(S, X)}

...
head:phon:boos
synsem:cat:ap

eventvar:S

In parallel to the events in verbs, the state can also be introduced in the store, as in
(224). The result is the same, except that now it would be theoretically possible to let the
state quantifier raise to a higher store.

(224) boos ‘angry’ (predicative adjective)

sem:{store: {λRest.∃E.anger(E) & state(E) & Rest binds S},
body: λX.theme_of(S, X)}

...
head:phon:boos
synsem:cat:ap

eventvar:S



Section 3.4. States 133

The adjective in adnominal position can certainly not scope out of the NP. The state
is introduced as in (225).

(225) boos ‘angry’ (adnominal adjective)

sem:{store:{SemN applied to X binds N},
body: λX.N & ∃S.anger(S) & state(S) & theme_of(S, X)}

...
head:phon:boos
synsem:cat:ap

eventvar:S
...
arg:sem:SemN

synsem:cat:noun

An adjective in predicative position, combines with a copula. The entry for the copula
needs to be adapted to make this work. (226) shows a version of the copula zijn ‘to be’,
that combines with a state introducing adjective.

(226) zijn ‘to be’ (copula, inf.)

sem:{store:{SemN binds X, SemAdj applied to X binds P},
body: λT.P & attime(S, T)}

...
head:phon:zijn
synsem:cat:vp

eventvar:S
...
arg1:sem:SemN

synsem:cat:np
...
arg2:sem:SemAdj

synsem:cat:ap
eventvar:S

Modal copulas like lijken ‘to seem’ also introduce a modal operator over the state.
The copula worden ‘to become’ introduces an event that results in the state.

The issue with the temporal argument is like with nominalizations. It is probably
more correct to let the state start out with a temporal argument, which can then be bound
by, for example, the copula.

State denoting nouns are implemented parallel to event-denoting nouns. They get
their participants in largely the same ways.

3.4.6 Conclusions
It was shown that a nice side effect of (neo-)Davidsonian event representations, is that
entailment relations between verbs and their nominalizations and between adjectives



134 Chapter 3. Events in the semantics

and their corresponding nouns follow naturally, without any extra machinery. I have
defended the use of a Davidsonian representation for adjectives, by showing that
assuming states of different ontological sorts obscures certain inferential relations. My
point of view is that semantic representations should only contain information that is
needed for inference. Information that is relevant for selectional restrictions should be
accommodated elsewhere, where it does not interfere with inference.

Underlying states have been introduced in Delilah for intersective adjectives and the
nouns that express the same concept as these. Also stative verbs have underlying states.
Simple nouns do not get an underlying state representation.

3.5 Stative light verb constructions
Combining the support verb technique with underlying states, we get a way of dealing
with the kind of stative light verb constructions that we have seen in 2.3.9, e.g honger
hebben ‘to be hungry’.

3.5.1 The state
Honger behaves as an abstract noun (similar to mass noun), and can therefore occur as a
noun and as an NP. If we assume an underlying state for honger, then (227) represents
some relevant features of the lexical entry of honger as an NP. (Remember that P is the
partial execution version of P(S).)

(227) honger ‘hunger’ (NP)

sem:{store: { SemArg binds A},
body:λP.∃S.hunger(S) & state(S)

& experiencer(S, A) & P}
...
node:ID+ID2
head:phon:honger
synsem:external:experiencer(ID+ID2, A)

cat:np
...
arg1:node:ID2+ID3

sem:SemArg

This entry of honger features an implicit argument that semantically fills the role of
experiencer in the state. Like the arguments of deverbal nominalizations, this argument
can be bound not only by the subject of a light verb, but also, for example, by a genitive
(zijn honger ‘his hunger’).

3.5.2 The light verb
Relevant features of the entry for hebben as a light verb are shown in (228). The subject
binds the argument of the complement state through control.



Section 3.5. Stative light verb constructions 135

(228) hebben ‘to have’ (light verb, inf.)

sem:{store: { SemState binds S, SemSubj binds A},
body: λT.attime(S, T)}

...
node:Top+ID
head:phon:hebben
synsem:cat:vp

external:Theta∼[Top+ID, A]
control:controls(Theta∼[Top+ID, A],

Theta∼[ID+ID2, A])
...
arg1:node:ID+ID1

sem:SemSubj
...
arg2:node:ID+ID2

sem:SemState
synsem:external:Theta∼[ID+ID2, A]

cat:np

When hebben takes honger as a complement, that results in the SLF shown in (229).

(229) semantics of honger hebben

{store: {store: { SemArg binds A},
body: λP.∃S.hunger(S) & state(S)

& experiencer(S, A) & P}binds S,
SemSubj binds A},

body: λT.attime(S, T)}

For (230a), this yields the representation in (230b).

(230) a. Alice
Alice

heeft
has

honger.
hunger

‘Alice is hungry.’
b. ∃e.hunger(e) & state(e) & experiencer_of(e, alice) & at-time(e, past)

I chose here to let the thematic role of the external argument of hebben be the same
as the role of the external argument of its stative complement. It is also possible to let
the light verb introduce its own theta role for its subject. In the semantic representation
as I propose it here, however, this role will not surface. It may surface if the light verb is
taken to introduce a (sub)event of its own. In the case of honger krijgen ‘to get/become
hungry’, the light verb krijgen will have to introduce an event of which the state is the
result. The subject may get a theta role in this event.

3.5.3 Negation
For geen honger hebben we need the noun version of honger. The determiner geen will
bind the state, saying that there is no state of being hungry.



136 Chapter 3. Events in the semantics

(231) honger ‘hunger’ (noun)

sem:{store: { SemArg binds A},
body: λS.honger(S) & state(S) & experiencer(S, A)}

...
node:ID+ID2
synsem:external:exp∼[ID+ID2, A]
...
arg1:node:ID2+ID3

sem:SemArg

The NP geen honger can then serve as a complement of a light verb, just like the NP
honger above. This way the construction is derived compositionally, resulting in the
representation (232b) for (232a).

(232) a. Alice
Alice

heeft
has

geen
no

honger.
hunger

‘Alice is not hungry.’
b. ¬∃e.hunger(e) & state(e) & experiencer_of(e, alice) & at-time(e, past)

With geen, containing a separable, stored negation, as proposed in section 2.3.4, also
split scope effects are accounted for (see also 2.3.9).

3.5.4 Degrees
Now, let us have a look at adjectival modification. Adjectives in this construction tend
to modify a degree. The same goes for some determiners, like weinig ‘few/little’. This
indicates that the semantics of honger must contain reference to a degree too18.

No effort has so far been made to implement degrees and degree modification in
Delilah. Actually, modifiers of adjectives (e.g. very) and comparative constructions are
not covered at all, the latter because they involve ellipsis. These are some of the most
important gaps in the grammar.

I assume that a degree argument can be added to the representation of honger, that
is picked out by the degree modifier. (This can be done in a similar way as with the
event variable that is modified by adverbials.) A problem is how to apply the positive
in absence of modification. Alternatively, the main lambda abstraction can be over the
degree. In that case, the way tense is applied has to be changed. If this turns out to
be the better option, it raises the question whether the state argument is needed at all.
An argument against it is that geen would then apply to the degree argument as well.
Bob heeft geen honger would then be interpreted as: ‘There is no degree to which Bob
is hungry.’ This does not seem to be correct. The zero degree is still a degree. This
would then require an analysis of geen as a degree modifier, returning the zero degree,
or a degree below the standard (assuming that hungry has a minimum standard). The

18In principle, the modifier could be taken to introduce the degree as well, but this is less likely, unless
perhaps in cases of coercion.



Section 3.6. General conclusions event semantics 137

interpretation “There is no state of Bob being hungry to at least the (minimum) standard
degree” is intuitively more appealing to me.

3.5.5 Conclusion
The important point however, is that no matter the exact analysis of degree modification,
as long as it can be implemented compositionally, the analysis of these light verb
constructions will be compositional. This means that they can be interpreted with any
determiner and adjective that they occur with, i.e. that the variation in the construction is
fully accounted for.

3.6 General conclusions event semantics
Events and states have been implemented for verbs, nominalizations, intersective
adjectives, and some abstract nouns. The temporal dimension has been largely abstracted
away from. I have assumed that it is a level that can be added, with the things that I have
discussed here still holding. Aspect is another thing that has only been partly covered.
We have looked into aspectual properties in cases where they were shared by all the
words that were based on a particular template. However, different verbs based on the
same template, such as transitive verbs, may also fall into different aspectual classes.
What has been accomplished is a basic implementation on a template basis. It is open
for further refinement, after more detailed study of specific phenomena.

For the nominalizations we have focussed on getting the interpretation of the
participants right. Now that the general frame is there, future work can concentrate more
on the variation among nominalizations, and investigate which nouns exactly should be
interpreted as eventive.

It is clear that many problems still need to be solved and that detailed inferencing
requires a large lexicographic effort (or a very advanced way of automatically harvesting
and incorporating the required knowledge).

The biggest representational problem is that of thematic roles. The more general
problem that returns throughout this chapter, is the decomposition of word meaning.
Word meanings cannot be precisely defined. Yet, if something is a hard entailment
(agreed upon amongst speakers) and follows from lexical knowledge below the word
level, this can be taken as a valid reason for including the knowledge needed to derive this
entailment as part of the word meaning, and therefore part of the semantic representation.





Chapter 4

Flat Logical Form

An important ambition in the development of the Delilah parser, is that the semantic
representations that are its output will facilitate automated inference, for example for
the retrieval of information and/or documents. In this chapter the newly developed Flat
Logical Form (FLF) is introduced. This is a semantic output format for Delilah that is
expected to make detailed semantics-based inference easier. The introduction of events,
which was described in the previous chapter, split up the meaning of a sentence into
minimal conjuncts, and thereby prepared the ground for FLF, which can be considered a
radical form of ‘conjunctivism’ (Pietroski, 2006).

In this chapter I argue that first-order logic is not the ideal language for representing
natural language meanings. On the one hand, there are important natural language
expressions that first-order logic cannot satisfactorily represent. On the other hand,
reasoning with first-order logic turned out to be so computationally demanding that many
who wanted to build robust systems took recourse to simpler but less expressive forms of
logic. FLF offers an alternative that is simple (flat) in structure, but rich in information.
Valuable information on quantification and embedding is annotated on the variables in
the formula, ready to be used for inference.

Section 4.1 discusses the limitations of using first-order logic for representing
linguistic meanings. The rest of the chapter is devoted to FLF. First a general introduction
to this way of representation is given. Then the different aspects of FLF are discussed
separately. Subsequently, the way entailments are computed on the basis of FLF is
discussed, and examples are given of how it is expected to work.

4.1 The limitations of first-order logic representations

Automated inference on logical representations of natural language expressions is
attractive because of the level of precision that can be achieved. An important question
is what kind of logical representation to use. In theoretical semantics, higher order logics
are commonly used. In computational semantics, variants of first-order logic are more
popular, because of the availability of increasingly well performing first-order theorem
provers and model builders.

Blackburn and Bos (2003) argue that first-order logic can be considered a reasonable
approximation to the expressive power needed to deal with natural language semantics,



140 Chapter 4. Flat Logical Form

especially when one allows for a rich ontology. They show that with some flexibility
about the kinds of entities that can be used in models, a lot of natural language
phenomena, such as modality, tense and aspect, and plurals, can be handled in first order
logic. Modalities can be expressed through possible worlds, tense and aspect by making
use of events/timepoints/intervals, and plurals by introducing groups as entities together
with a member relation. The behavior of the extra predicates that are introduced to help
express these phenomena, is regulated by postulates. Ultimately, in some of the cases,
postulates would be needed that cannot be formulated in first-order logic. In these cases
the representation in first order logic is only an approximation. For the future, they expect
developments in the domain of description logic, restricted fragments of first order logic
that are typically decidable and allow for more efficient inference. These have, however,
less expressive power than first order logic does.

Light and Schubert (1997), on the other hand, propose to extend first order logic to
cover a range of similar phenomena. They judge this more effective than enriching the
ontology with, for example, possible worlds and propositions because they think that
complicates both inferencing and the maintenance of their system. They favor one step
lexical inferences. One of their extensions concerns nonstandard quantifiers, an issue
that Blackburn and Bos (2003) do not discuss. They propose axioms that capture the
monotonicity behavior of such quantifiers.

It can be concluded, that for adequate analysis of many natural language phenomena,
the expressiveness of first-order logic appears to be the very minimum. Of course it is
possible to do interesting and useful things with less, depending on your aims, but it will
not be enough to simulate full language understanding even in a purely linguistic sense.
As an aside, note that there is also another side to the mismatch between natural language
and first order logic. Not only is it not possible for everything that can be expressed in
natural language to be expressed in first order logic, but neither can everything that can
be expressed in first order logic be expressed in natural language. For example, in natural
language, a quantifier always has a restrictor, whereas in first order logic there is no such
requirement. This means that predicate logic does not entertain a privileged relation to
semantic interpretation: the set of meanings of a natural language is neither a subset nor
a superset of the well-formed and interpretable propositions of predicate logic or their
complement. It is at best a helpful tool in describing certain aspects of the relations
between concepts and operators in natural language.

Whereas first order logic seems to represent a minimum for expressing natural
language, for feasible automated inference it rather represents a maximum. Inference
on first-order logic representations is computationally very expensive. Especially when
the search space increases, it soon becomes problematic to find a solution in a reasonable
amount of time. Shallower forms of semantic representation, on the other hand, that
allow for more efficient inference algorithms, tend to ignore quantification and/or related
phenomena and therefore compromise considerably on precision. In Delilah, a form of
semantic representation that we will call Flat Logical Form (FLF) has been developed.
It is designed to allow for more efficient inference than first-order logic does, while still
retaining the information on quantification.



Section 4.2. An overview of FLF 141

4.2 An overview of FLF
Chapter two described the underspecified Quasi Logical Form (QLF) and how LFs were
derived from it. In this section we will consider a slightly adapted version of QLF which
derives Flat Logical Forms (FLFs), plus LFs in an alternative notation. FLF takes the
form of a series of conjoined predicates, in which the quantificational properties are
coded on the variables, and is expected to facilitate inference-based retrieval. This section
explains how FLF is derived and briefly introduces its components. The different aspects
of the formalism are worked out in the next sections.

To get an FLF output, a few changes are made to the semantic system explained in
chapter one. In the lexicon, the most important change is to the semantics of quantifiers.
(233) shows the semantics of elke ‘every’ as we saw it in chapter one.

(233) elke ‘every’
{store:{Semarg applied to X binds P}
body:λQ. ∀X.(P→ Q)}

(234) is the version that contains the information needed for FLF. 1

(234) elke ‘every’
{store:{Semarg applied to X binds P}
body:λQ. ∃X. quant(X, every) & P & entails1(X, decr) & Q & entails(X, incr)}

The predicate quant has as its first argument a variable and as its second the quantifier
that binds it. The existential quantifier over X helps parsing the formula, as the variable
X needs to be bound. Also theoretically a special status for the existential quantifier
is defendable. Jaspers (2005), for instance, assigns a central role to the existential
quantifier as the pivot of the whole quantificational system. Entails1 encodes the
entailment property of the left argument of the quantifier (the restrictor) and entails
encodes the entailment property on the right argument (the nuclear scope). It can have
the values incr(easing), decr(easing) and nonm(onotone). These monotonicity properties
tell what entailments are licensed. Every is monotone decreasing on its left argument
and monotone increasing on its right argument. This means that a sentence with elke
’every’ entails sentences in which the nominal argument is replaced with one that denotes
a subset of the set that the nominal denotes (decreasing:going to a smaller set). It
also entails sentences in which the verbal argument is replaced with one that denotes
a superset of the set denoted by the original verb (increasing:going to a bigger set).

1Without partial execution, these would be:

(1) elke ‘every’
{store:{Semarg to be converted against P}
body:λP.λQ. ∀X.(P(X)→ Q(X))}

(2) elke ‘every’
{store:{Semarg to be converted against P}
body:λP.λQ. ∃X. quant(X, every) & P(X) & entails1(X, decr) & Q(X) & entails(X, incr)}



142 Chapter 4. Flat Logical Form

Examples are shown in (235a) an (235b) respectively. Here [[blond man]]is taken as
a subset of [[man]]and [[does something]]as a superset of [[works]](Barwise and Cooper,
1981; Zwarts, 1981).

(235) a. Elke man werkt. ⇒ Elke blonde man werkt.
every man works⇒ every blond man works

b. Elke
every

man
man

werkt.
works

⇒
⇒

Elke
every

man
man

doet
does

iets.
something

(236) gives a simplified semantics for the sentence elke man werkt ‘every man works’
after application of the stores. For clarity, semantics of the verb, which would come with
its own quantificational structure, has been abbreviated to a simple predicate.

(236) elke man werkt ‘every man works’
∃X. quant(X, every) & man(X) & entails1(X, decr) & work(X) & entails(X, incr)

The full structure is here:

(237) elke man werkt ‘every man works’
∃X. quant(X, every) & man(X) & entails1(X, decr) & ∃E. quant(E, some) &
work(E) & event(E) & entails1(E, incr) & agent_of(E, X) & attime(E, T) &
tense(E, pres) & entails(E, incr) & entails(X, incr)

From this applied logical form (ALF), which is derived from QLF through applying
the stores, the two final logical forms are derived. One, which we call Normal Logical
Form (NLF), can be considered a notational variant from the LFs we have seen in the
previous chapters:

(238) quant(X,every).[man(X) → quant(E,some).[work(E) & event(E) &
agent_of(E,X) & attime(E,T) & tense(E,pres)]]

The additional information about entailment directions, needed for FLF has been
removed in NLF. ’quant(X, every)’ is equivalent to ‘∀X’. Another difference is that the
temporal variable is now free, open to contextual assignment, and that the notation for
tense is different. In the form of NLF, the more traditional output format is preserved
next to FLF.

The other output logical form is the FLF:

(239) FLF of ‘Elke man werkt.’
man(X+decr+every+[]) &
work(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+incr+every+[]) &
attime(E+incr+some+[X],T) &
tense(E+incr+some+[X],pres)

In FLF, each variable occurrence is locally annotated with information as to:

1. the entailment direction of its predicate’s environment



Section 4.3. Scopal dependencies 143

2. the quantificational regime it is bound to

3. the variables its instantiation is dependent upon

This makes it a 4-tuple: (variable + entailment direction + binding quantifier +
governors). The entailment property indicates whether the predicate of which the variable
is an argument, allows for upward, downward or no entailment with respect to the
variable. Note that the entailment property of the variable X above varies with the domain
of its quantifier: in the restrictor of the universal quantifier, the variable bound by it
allows for downward entailment, in the nuclear scope it gives rise to upward entailment.
The specification of ‘governing’ variables indicates whether a variable is referentially
dependent or independent. This is the reflection of scope. It is used for dependence
on other quantifiers as well as for dependence on intensional operators, and can block
entailment, dependent on the nature of the governor.

So, the first conjunct in the example, man(X+decr+every+[]), states that a predicate
man predicates over the variable X in a decreasing environment, under the quantifier
every, and that it is not (or not in a relevant way) scopally dependent on anything else.

This way, all the information related to quantification and scopal operators is coded
directly on the variables, and therefore always locally available.

The remainder of this chapter will discuss the FLF representation and its use in more
detail and address some problems. We start with the fourth slot, the scopal dependencies.
Then we move on to the second slot, the entailment properties. This is a relatively
complex matter, because the effects of the composition of different quantifiers need to be
calculated through. A related issue both to scope and entailment properties is negation,
which gets a section of its own. Here, several issues related to negation are discussed,
such as the implementation of the DeMorgan rules for quantifiers and the split scope
effects that we already came across in chapter one. These also bear on the representation
of quantifiers in the third slot of the FLF variable. The variable itself in the first slot of the
4-tuple is not discussed separately, as its function is just that of a normal variable, which
is bound by the quantifier in the third slot. Then, underspecification in FLF is discussed
and disjunction is briefly touched upon. Section 4.7 discusses the basic principles for
entailment on FLF and some of the main challenges. Finally, an overview is given of
how the proposed solutions are envisaged to be integrated into an entailment strategy and
give a somewhat more complex example of entailment, for extra illustration.

4.3 Scopal dependencies
In FLF, scope relations are not encoded in the order of the quantifiers, like in first order
logic representations, but instead, scopal dependencies are marked in the fourth slot of
the variable 4-tuple. The application of the stores to obtain different scope-readings stays
largely the same as described in chapter one, but now the division into scope-sensitive
and scope-insensitive quantifiers is used in a different way. The idea is that there are
two types of quantifiers. One type can be dependent on other quantifiers and the other
type is always independent. Take, for example, the sentence every man reads a book.
Here, a book can either be dependent on every man, which corresponds to a narrow



144 Chapter 4. Flat Logical Form

scope reading for a book, or independent, which corresponds to a wide scope reading.
Every man, on the other hand, is never dependent on a book, because every is not one of
those quantifiers that can be dependent. Quantifiers that can be dependent are taken to
correspond to dynamic quantifiers. These are the quantifiers that can also bind pronouns
across sentence boundaries. Quantifiers that are always independent then correspond to
static quantifiers, which can only bind pronouns within the sentence. This distinction was
introduced in Dynamic Semantics (Groenendijk and Stokhof, 1991). When a generalized
quantifier is dependent on another one, the variable bound by this other one occurs in
the fourth position of the quadruple of the dependent quantifier’s variable. In (240b),
one possible reading of (240a), some book is dependent on every man, indicated by the
X in its fourth position. In (240c) it is independent. The fourth position is a list; it
can also contain more than one variable2. The dependency relation is transitive and
antisymmetric.

(240) a. Elke
every

man
man

leest
reads

een
a

boek
book

‘Every man reads a book.’

b. man(X+decr+every+[]) &
book(Y+incr+some+[X]) &
read(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+incr+every+[]) &
theme_of(E+incr+some+[X],Y+incr+some+[X]) &
attime(E+incr+some+[X],T) &
tense(E+incr+some+[X],pres)

c. man(X+decr+every+[]) &
book(Y+incr+some+[]) &
read(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+incr+every+[]) &
theme_of(E+incr+some+[X],Y+incr+some+[]) &
attime(E+incr+some+[X],T) &
tense(E+incr+some+[X],pres)

As explained in section 2.3.3, ambiguity is limited where possible. The layeredness of the
derivation is preserved. Only when the full structure of the sentence has been computed,
it is determined which derivations of the underspecified semantic representation are
sensible.

Not only quantifier scope is handled this way, but also other scopal operators.
Take, for example, the adverb misschien ‘maybe’. The meaning of such an operator is
represented in FLF as specifying the evidence for a proposition. It is then the proposition
that takes scope. Everything that is dependent on the proposition can no longer be

2This aspect of the representation shows parallels with skolemnization, where ∀x.∃y.R(x, y) is rewritten
as ∀x.R(x, f(x)).



Section 4.4. Entailment properties 145

entailed independently of the proposition. Thus, it cannot be inferred from (241) that
every man works.

(241) a. Elke
every

man
man

werkt
works

misschien.
maybe

‘Maybe every man works.’

b. proposition(A+nonm+the+[]) &
man(B+decr+every+[A]) &
work(C+incr+some+[A,B]) &
event(C+incr+some+[A,B]) &
agent_of(C+incr+some+[A,B],B+incr+every+[A]) &
attime(C+incr+some+[A,B],D) &
tense(C+incr+some+[A,B],pres) &
evidence(A+incr+the+[],possible)

Entities like ‘proposition’ replace the intensional indexes as used in Montague
(1973), where the idea was put forward that each form of embedding in principle
introduces intensionality, something that cannot be expressed in standard first order logic.
The proposition creates the separate semantic level that is needed for intensionality.
Montague (1973) uses meaning postulates to lift this intensionality in some cases. In
FLF too, sometimes embedding can be ignored. For example, factive embedding does
not block entailment. The choice for introducing abstract entities is also an extension of
the reification strategy that started with the introduction of event semantics. It makes the
complement, the intensional domain, as a whole addressable, while still displaying its
internal structure, leading to a more analytical semantics. The present implementation is
a tentative one. It is not yet clear exactly which abstract entities need to be distinguished
and which properties of these need to be specified.

Only dependencies that are relevant for referentiality or intensionality are marked. In
sections 4.4.2, where we compute effective entailment directions, and 4.5.2, where we
apply the DeMorgan rules for quantifiers, we will see that this is not always enough and
discuss modifications.

In sum, FLF is an operator-free conjunction. All logical information is specified as
indices on the variables in mainly predefined meta-predicates. It can be seen as a logical
description of the sentence, but in contrast to description logic it offers full specification
of all relevant logical relations. Also, all quantifiers are represented by descriptions, thus
integrating first and higher order forms of quantification for inference. Future research
will have to establish how different kinds of operators can be sensibly transformed to fit
this format. The case of negation will be discussed in section 4.5.

4.4 Entailment properties
The entailment property indicates whether the predicate of which the variable is an
argument, allows for upward, downward or no entailment with respect to the variable,
that is, it determines the entailment direction. The entailment property is marked on the



146 Chapter 4. Flat Logical Form

Figure 4.1 — Venn diagrams representing the quantifiers every, some, and no. The arrows and
dashed circles indicate the upward and downward entailment directions.

variable, but is relevant for the entire scope of the quantifier. FLF distinguishes between
three different entailment properties; monotone increasing, monotone decreasing and
non-monotone. Much more fine-grained distinctions can be made. Kas (1993) gives a
calculus of how all these functions combine. A calculus of this type can be implemented
in FLF. The result would be that some extra inferences can be derived for certain
quantifiers.

4.4.1 Increasing and decreasing entailment
Barwise and Cooper (1981) developed the theory of generalized quantifiers for natural
language, where determiners can be seen as relations between predicates. The determiner
takes a noun as its left argument. This is the first predicate, or set. The determiner and the
noun together form a generalized quantifier, a set of sets. The second predicate, the VP,
is stated to be a member of this set of sets. The determiner specifies the required overlap
between the set denoted by the noun and the set denoted by the VP, for the VP to be a
member of the set of sets denoted by the generalized quantifier. For example, every F G,
with F a noun and G a VP is true iff the set denoted by G is a member of the set of sets
of which the set denoted by F is a subset, that is iff F is a subset of G (the intersection of
F and G equals F). So every man works is true, iff the set of men is a subset of the set of
workers. Likewise, some F G requires some overlap between the sets F and G, a non-zero
intersection, and no F G requires no overlap between F and G, a zero intersection. Venn
diagrams are given in figure 4.1. Also non-logical quantifiers can be described in this
way. For instance, most F G requires that the intersection of F and G takes up most of
F (e.g. more than half). This way of looking at determiners makes it easy to see certain
properties, like monotonicity. Suppose that every F G is true, i.e. F is a subset of G.
Now if we take a set F′ which is a subset of F, F′ will also be a subset of G and therefore
every F′ G will also be true. For supersets of F, on the other hand it is not guaranteed
that they are still subsets of G. We conclude that every is monotone decreasing on its left,
nominal, argument. For G, on the other hand, we can take a superset G′. If F is a subset
of G, than F is automatically also a subset of G′. If we take G′ a subset of G, however,
this is not guaranteed. From this we conclude that every is monotone decreasing on its
right argument. Monotonicity is often discussed in the context of negative and positive
polarity items, which are sensitive to the entailment direction of the environment they



Section 4.4. Entailment properties 147

occur in (Zwarts, 1981). Here we purely look at entailment. Monotonicity is defined in
terms of entailment, but originates in the determiner. Knowing the entailment properties
of the determiner is crucial for being able to derive the correct entailments.

The determiner thus assigns an entailment direction to its left argument (restrictor)
and (a possibly different) one to its right argument (nuclear scope). The entailment
direction for the restrictor can affect those of other quantifiers in the restrictor (e.g. in
a relative clause) and the entailment property for the nuclear scope can affect all other
quantifiers in the scope. Note that FLF reflects the theory of generalized quantifiers in an
interesting way, as the quantifying determiner forms a natural unit with its (immediate)
restrictor: Restricting_predicate(X+Dir+Quant+Dep). (This only holds in simple cases,
where no other quantifier is embedded in the restrictor.) The nuclear scope is then
indicated through dependency on X. We can indicate scopal dependencies in the fourth
slot of the variable quadruple as we have seen in the previous section. Then we get the
contrast between (242) and (243) represented as below.

(242) niemand werkt
no-one works

person(A+decr+no+[]) &
work(B+incr+some+[A]) &
event(B+incr+some+[A]) &
agent_of(B+incr+some+[A],A+decr+no+[]) &
attime(B+incr+some+[A],C) &
tense(B+incr+some+[A],pres)

(243) iedereen werkt
everyone works

person(A+decr+every+[]) &
work(B+incr+some+[A]) &
event(B+incr+some+[A]) &
agent_of(B+incr+some+[A],A+incr+every+[]) &
attime(B+incr+some+[A],C) &
tense(B+incr+some+[A],pres)

Niemand is decreasing on both restrictor and nuclear scope. Iedereen is decreasing
on its restrictor, but increasing on its nuclear scope. This has consequences for the
entailment direction of the event, originally marked as increasing by its own quantifier. In
(242), it behaves as decreasing (illustrated in (244a)) and in (243) it behaves as increasing
(illustrated in (244b))3.

3Without events it seems to be more straightforward; the verbal predicate predicates over the subject
variable, and increasing under negation becomes decreasing, and decreasing under negation becomes
increasing. However, more than one place predicates would complicate matters again.



148 Chapter 4. Flat Logical Form

(244) a. No one works.
; No one does something.
⇒ No one works hard.

b. Everyone works.
⇒ Everyone does something.
; Everyone works hard.

This shows that the entailment direction of dependent predicates cannot be accounted
for at the lexical or local level, but that the effective entailment direction needs to be
computed, taking into account the quantificational structure of the sentence. In the next
few sections, it is discussed how to do these computations.

4.4.2 Properties changing under scope
It is not entirely straightforward to read the relevant entailment property off the
representation as it was proposed so far (in the examples above it only appears on one of
the arguments of predicate). And actually, it is preferable to only display the resulting
entailment direction in the final FLF representation, such that the effective entailment
direction is always locally available. In the process deriving this representation, not only
the variable of the scopal dependency needs to be marked, but also the relevant entailment
property, as below in (245b). This is one of the cases in which it is important to have
all (non-increasing) scopal dependencies marked. In (245c) the dependency marker is
preserved after its entailment property has been canceled out against the change in the
entailment direction of the dependent.

(245) a. niemand
no-one

werkt
works

b. person(A+decr+no+[]) &
work(B+incr+some+[A+decr]) &
event(B+incr+some+[A+decr]) &
agent_of(B+incr+some+[A+decr],A+decr+no+[]) &
attime(B+incr+some+[A+decr],C) &
tense(B+incr+some+[A+decr],pres)

c. person(A+decr+no+[]) &
work(B+decr+some+[A]) &
event(B+decr+some+[A]) &
agent_of(B+decr+some+[A],A+decr+no+[]) &
attime(B+decr+some+[A],C) &
tense(B+decr+some+[A],pres)

(1) a. iedereen werkt
person(A+decr+every+[]) & work(A+incr+every+[])

b. niemand werkt
person(A+decr+no+[]) & work(A+decr+no+[])



Section 4.4. Entailment properties 149

For explanatory purposes this is displayed here as an operation on FLF, but it would
be more correct to see it as a final step in the algorithm deriving FLF. (245b)
is an intermediate step on the way to deriving (245c). The entailment properties
do not change after this. This way every resulting entailment property is marked
locally. The entailment properties being propagated through scope, also means that
the ability to create, for example, a decreasing environment is not necessarily reserved
for quantifiers/determiners. An example of a non-quantifier influencing the entailment
direction of what is in its scope, is negation, which will be discussed in section 4.5.

Now, what we need are the rules for how entailment properties influence each other.
To start with, we can use the two theorems from Zwarts (1986):

• If f is monotone increasing and g is monotone decreasing then the composition of
f and g is monotone decreasing

• If f and g are both monotone decreasing then the composition of f and g is
monotone increasing

We have already seen above that upward entailment changes into downward in the
scope of downward entailment, which is consistent with Zwarts. Next, we illustrate how
downward entailment influences downward entailment. In (246) geen man is downward
entailing on man and creates a downward entailing environment for its scope. Elk boek
would normally allow for downward entailment on boek, but we see that in the decreasing
environment it behaves as upward entailing. Gelezen behaves as we have seen before.
Originally it would allow for upward entailment. Elk boek does not change that, as it does
not create a downward entailing environment for its nuclear scope. Being in the scope
of geen man, however, makes its entailment decreasing. This can be shown by checking
whether the sentences in (247) are entailments of (246). For each correct entailment,
the conclusion that can be drawn about the entailment direction of the predicate tested
is added between brackets, with upward and downward arrows indicating upward and
downward entailment, respectively.

(246) Geen
no

man
man

heeft
has

elk
every

boek
boek

gelezen.
read

‘No man has read every book.’

(247) entailments and non-entailments of (246):
a. ⇒ Geen

no
slimme
smart

man
man

heeft
has

elk
every

boek
book

gelezen.
read

(man↓)

b. ; Niemand
no one

heeft
has

elk
every

boek
book

gelezen.
read

c. ; Geen
no

man
man

heeft
has

elk
every

goed
good

boek
book

gelezen.
read

d. ⇒ Geen
no

man
man

heeft
has

alles
everything

gelezen.
read

(boek↑)

e. ⇒ Geen
no

man
man

heeft
has

elk
every

boek
book

aandachtig
attentively

gelezen.
read

(lezen↓)



150 Chapter 4. Flat Logical Form

f. ; Geen
no

man
man

heeft
has

elk
every

boek
book

gezien
seen

We see that a decreasing property not only turns upward entailment into downward
entailment, but also downward entailment into upward entailment. We can derive the
resulting representation as above.

(248) a. Geen
no

man
man

heeft
has

elk
every

boek
boek

gelezen.
read

‘No man has read every book.’
b. man(X+decr+no+[]) &

book(Y+decr+every+[X+decr]) &
read(E+incr+some+[X+decr]) &
event(E+incr+some+[X+decr]) &
agent_of(E+incr+some+[X+decr],X+decr+no+[]) &
theme_of(E+incr+some+[X+decr],Y+incr+every+[X+decr]) &
attime(E+incr+some+[X+decr],T)

c. man(X+decr+no+[]) &
book(Y+incr+every+[X]) &
read(E+decr+some+[X]) &
event(E+decr+some+[X]) &
agent_of(E+decr+some+[X],X+decr+no+[]) &
theme_of(E+decr+some+[X],Y+decr+every+[X]) &
attime(E+decr+some+[X],T)

Now let us see what happens in the scope of two decreasing properties. For that we turn
to the (admittedly somewhat unnatural, but presumably true) sentence (249), with double
negation.

(249) Geen
no

professor
professor

heeft
has

geen
no

boek
boek

gelezen.
read

‘No professor did not read any book.’

Also note that (249) is logically equivalent to every professor read a book, and that
therefore the entailment directions for professor, book and read must be the same in both
sentences.

(250) (non-)entailments of (249):
a. ⇒ Geen

no
slimme
smart

professor
professor

heeft
has

geen
no

boek
book

gelezen.
read

(professor↓)

b. ; Niemand
no one

heeft
has

geen
no

boek
book

gelezen.
read

c. ; Geen
no

professor
professor

heeft
has

geen
no

goed
good

boek
book

gelezen.
read

d. ⇒ Geen
no

professor
professor

heeft
has

niks
nothing

gelezen.
read

(boek↑)



Section 4.4. Entailment properties 151

e. ; Geen
no

professor
professor

heeft
has

geen
no

boek
book

aandachtig
attentively

gelezen.
read

f. ⇒ Geen
no

professor
professor

heeft
has

geen
no

boek
book

gezien.
seen

(lezen↑)

What we see is that gelezen under two decreasing quantifiers, allows for upward
entailment. We can understand that as the same mechanism as above applied twice.
Initially, the first scoping quantifier changes the entailment from upward to downward,
and then, the second changes it from downward to upward.

(251) a. Geen
no

professor
professor

heeft
has

geen
no

boek
boek

gelezen.
read

‘No professor did not read any book.’
b. professor(X+decr+no+[]) &

book(Y+decr+no+[X+decr]) &
read(E+incr+some+[X+decr,Y+decr]) &
event(E+incr+some+[X+decr,Y+decr]) &
agent_of(E+incr+some+[X+decr,Y+decr],X+decr+no+[]) &
theme_of(E+incr+some+[X+decr,Y+decr],Y+decr+no+[X+decr]) &
attime(E+incr+some+[X+decr,Y+decr],T)

c. professor(X+decr+no+[]) &
book(Y+incr+no+[X]) &
read(E+incr+some+[X,Y]) &
event(E+incr+some+[X,Y]) &
agent_of(E+incr+some+[X,Y],X+decr+no+[]) &
theme_of(E+incr+some+[X,Y],Y+incr+no+[X]) &
attime(E+incr+some+[X,Y],T)

It is important to notice that the dependencies should not be nested, that is, the
directions marked on the variables in the dependency lists do not change in the process.
They mark the initial directions of the scoping quantifiers. If the consequences on Y
were first calculated through, before considering its influence on E, it would be an
increasing property for Y that E was dependent on and we would expect the property
on E to end up as decreasing, as in the previous example. It is clear that this is wrong.
If we represent it as read(E+incr+some+[X+decr,Y+decr+[X+decr]]) it is immediately
visible that the influence of X’s quantifier is taken into account twice when computing
the effective entailment direction of E’s predicate. The computation must be incremental
starting at the lowest quantifier. It is easier to see that this is correct in a more traditional
representation: Q1 .P 1 (X) . . . Q2 .P 2 (Y ) . . . Q3 .P 3 (E). Quantifier Q2 influences the
properties of quantifier Q3 , because Q3 is in the scope of Q2 , then Q1 influences the
properties of Q2 and Q3 , because they are both in the scope of Q1 .

For natural language quantifiers that can be represented in first order logic (using ∃,
∀, ¬. . . ), the results are the same as would be obtained through logical reasoning. The
FLF format also extends to quantification that can not be captured by first order logic.
For example, de meeste N (‘most N’) is increasing on its second argument. The following



152 Chapter 4. Flat Logical Form

example by Geurts and van der Slik (2005b), nicely illustrates upward entailment under
two non-standard increasing quantifiers.

(252) Most impresarios possess more than seventeen gold watches.
⇒Most impresarios possess more than seventeen watches.

4.4.3 The influence of non-monotone quantifiers
We have seen that monotone decreasing quantifiers influence the entailment properties of
other quantifiers in their scope and monotone increasing quantifiers do not. Now we will
look at non-monotone quantifiers. We observe that one non-monotone argument makes
the entailment non-monotone. For example, (253) does not entail any of the sentences
in (254), nor does (255) entail any of the sentences in (256). Neither the upward nor
the downward entailments are preserved. That is, in addition to being sensitive to the
scope of negation, entailment properties also need to be sensitive to dependence on non-
monotone quantifiers.

(253) precies
exactly

twee
two

mannen
men

hebben
have

een
a

roman
novel

gelezen.
read

‘Exactly two men read a novel.’

(254) a. ; precies
exactly

twee
two

mannen
men

hebben
have

een
a

boek
boek

gelezen.
read

b. ; precies
exactly

twee
two

mannen
men

hebben
have

een
a

streekroman
regional novel

gelezen.
read

c. ; precies
exactly

twee
two

mannen
men

hebben
have

een
a

roman
novel

gezien.
seen

d. ; precies
exactly

twee
two

mannen
men

hebben
have

een
a

roman
novel

aandachtig
attentively

gelezen.
read

(255) precies
exactly

twee
two

mannen
men

hebben
have

geen
no

roman
novel

gelezen.
read

‘Exactly two men did not read a novel.’

(256) a. ; precies
exactly

twee
two

mannen
men

hebben
have

geen
no

boek
boek

gelezen.
read

b. ; precies
exactly

twee
two

mannen
men

hebben
have

geen
no

streekroman
regional novel

gelezen.
read

c. ; precies
exactly

twee
two

mannen
men

hebben
have

geen
no

roman
novel

gezien.
seen

d. ; precies
exactly

twee
two

mannen
men

hebben
have

geen
no

roman
novel

aandachtig
attentively

gelezen.
read

If you see the combination of quantifiers as the composition of functions, as Kas (1993)
does, (see also 4.4.5), and extend his approach to non-monotone quantifiers, these



Section 4.4. Entailment properties 153

observations are not surprising. ‘Non-monotone’ means ‘less than monotone’, lacking
the property of monotonicity. A non-monotone function is therefore a ‘weaker’ function
than a monotone function, one with fewer special properties that allow for entailments.
The composition of a monotone function with a weaker function will yield a weaker
function. Entailment patterns like the ones that define monotonicity are only preserved
in composition, if they are supported by all composing quantifiers.

We can conclude that in addition to being sensitive to the scope of decreasing
quantifiers, entailment properties also need to be sensitive to dependence on non-
monotone quantifiers.

Implementing the influence of non-monotone quantifiers in the same way as proposed
for decreasing quantifiers leads to a complication, because (253) does entail all of (257)
and (255) does entail all of (258).

(257) entailments of (253)

a. ⇒ minstens
at least

twee
two

mannen
men

hebben
have

een
a

roman
novel

gelezen
read

b. ⇒ hoogstens
at most

twee
two

mannen
men

hebben
have

een
a

roman
novel

gelezen
read

c. ⇒ minstens
at least

twee
two

mannen
men

hebben
have

een
a

boek
book

gelezen
read

d. ⇒ minstens
at least

twee
two

mannen
men

hebben
have

een
a

roman
novel

gezien
seen

e. ⇒ hoogstens
at most

twee
two

mannen
men

hebben
have

een
a

streekroman
regional novel

gelezen
read

f. ⇒ hoogstens
at most

twee
two

mannen
men

hebben
have

een
a

roman
novel

aandachtig
attentively

gelezen
read

g. ⇒ iemand
someone

heeft
has

een
a

roman
novel

gelezen
read

h. ⇒ iemand
someone

heeft
has

een
a

boek
book

gelezen
read

(258) entailments of (255)

a. ⇒ minstens
at least

twee
two

mannen
men

hebben
have

geen
no

roman
novel

gelezen
read

b. ⇒ hoogstens
at most

twee
two

mannen
men

hebben
have

geen
no

roman
novel

gelezen
read

c. ⇒ minstens
at least

twee
two

mannen
men

hebben
have

geen
no

streekroman
regional novel

gelezen
read

d. ⇒ hoogstens
at most

twee
two

mannen
men

hebben
have

geen
no

boek
book

gelezen
read

. . .



154 Chapter 4. Flat Logical Form

If both increasing and decreasing are taken to change into non-monotone in a nonmono-
tone environment, as illustrated in (259), where (259b) is the intermediate step and (259c)
is the result, it is problematic to reconstruct the original direction that is needed for the
entailments above.

(259) a. Precies
exactly

twee
two

mannen
men

hebben
have

een
a

roman
novel

gelezen.
read

‘Exactly two men read a novel.’

b. man(X+nonm+exactly2+[]) &
novel(Y+incr+some+[X+nonm]) &
read(E+incr+some+[X+nonm,Y]) &
event(E+incr+some+[X+nonm,Y]) &
agent_of(E+incr+some+[X+nonm,Y],X+nonm+exactly2+[]) &
theme_of(E+incr+some+[X+nonm,Y],Y+incr+some+[X+nonm]) &
attime(E+incr+some+[X+nonm,Y],T)

c. man(X+nonm+exactly2+[]) &
novel(Y+nonm+some+[X]) &
read(E+nonm+some+[X,Y]) &
event(E+nonm+some+[X,Y]) &
agent_of(E+nonm+some+[X,Y],X+nonm+exactly2+[]) &
theme_of(E+nonm+some+[X,Y],Y+nonm+some+[X]) &
attime(E+nonm+some+[X,Y],T)

Rather than being an entailment property in its own right, non-monotonicity is the
lack of an entailment direction. In the case of exactly n N, the lack of entailment direction
is the result of the quantifier both specifying an upper and a lower limit. Exactly two N is
equivalent to at least two N and at most two N, a coordination of a monotone increasing
and a monotone decreasing quantifier, which is therefore non-monotone.

A solution that presents itself here is to represent non-monotone continuous quanti-
fiers already in the lexicon as a coordination of monotone quantifiers. Every continuous
function is a finite meet of monotonic functions (Fyodorov et al., 2000). (See section
4.4.5 for a definition of continuous functions.) This is an attractive option, because it
makes the entailments more easily available. Its implementability is to be tested in the
context of a general treatment of coordination.

A second option, which is also available for discontinuous quantifiers, is to keep
(259b) as a final representation, rather than (259c). This reflects the idea that non-
monotonicity blocks entailment rather than changing the direction.

An example of a discontinuous environment is the left argument of most. Also
most can entail monotone quantifiers, such as some. When this happens the entailment
properties of the lower quantifiers become active again.

(260) De meeste
most

mannen
men

die
who

een
a

roman
novel

lezen
read

zijn
are

gelukkig.
happy

‘Most men who read a novel are happy.’



Section 4.4. Entailment properties 155

(261) a. ; De meeste
most

mannen
men

die
who

een
a

boek
book

lezen
read

zijn
are

gelukkig.
happy

b. ; De meeste
most

mannen
men

die
who

een
a

streekroman
regional novel

lezen
read

zijn
are

gelukkig.
happy

c. ⇒ Sommige
some

mannen
men

die
who

een
a

roman
novel

lezen
read

zijn
are

gelukkig.
happy

d. ⇒ Sommige
some

mannen
men

die
who

een
a

boek
book

lezen
read

zijn
are

gelukkig.
happy

Most cannot be analyzed as a combination of monotone quantifiers. An entailment
like (261c) must be encoded by a rule that says that an entailment can be produced by
replacing most with some. This replacement of course also needs to take effect in the
dependencies. That is P(X+nonm+most+Dep) is changed into P(X+incr+some+Dep)
and all occurrences of X+nonm into X(+incr).

This is a feasible solution for discontinuous quantifiers. For continuous non-
monotone quantifiers decomposition is more attractive, as it straightforwardly accounts
for some important entailments, without the use of additional rules.

It is an open question whether this problem also occurs with decreasing quantifiers.
The answer depends on whether there are entailments possible in which a decreasing
quantifier is replaced with an increasing one, changing the environment for its depen-
dents. This, in turn, depends on the logic to be used (see section 4.7.3). Candidates
for such entailments are illustrated in (262). In (262a), een roman is in a decreasing
environment, created by the determiner hoogstens twee. This is shown by the entailment
in (262b). But if (262c), where een roman is in an increasing enviroment, can be inferred
from (262a), then (262d) can be inferred from (262c). It takes a particular (non standard)
kind of logic to infer (262c) from (262a) (see also section 4.7.3).

(262) a. Hoogstens
at most

twee
two

mannen
men

die
that

een
a

roman
novel

lezen
read

zijn
are

gelukkig.
happy

‘At most two men who read a novel are happy.’
b. ⇒ Hoogstens

at most
twee
two

mannen
men

die
that

een
a

streekroman
regional novel

lezen
read

zijn
are

gelukkig.
happy

c. ⇒ Er
there

zijn
are

mannen
men

die
that

een
a

roman
novel

lezen.
read

d. ⇒ Er
there

zijn
are

mannen
men

die
that

een
a

boek
book

lezen.
read

With a decreasing effective entailment direction it is in principle easier to calculate
back than with a non-monotone one. If you want to replace a decreasing quantifier with
an increasing one, it suffices to check all quantifiers that are dependent on it. On these
dependent quantifiers, the effect of one decreasing quantifier needs to be subtracted,
reconstructing what the property would be without the effect of the relevant decreasing
quantifier. This amounts to changing increasing into decreasing and vice versa. It is
also possible not to reduce in the final representation, but to always calculate the effect



156 Chapter 4. Flat Logical Form

on-line. But this is not preferred as it makes searching less straightforward, because the
same result can be represented in different ways.

4.4.4 Relevance for functional predicates
What we haven’t looked at so far, is whether the entailment properties also have
consequences for the functional predicates in the representation. Participant roles, for
instance, such as agent_of, are two-place predicates. The entailment properties do turn
out to have some relevance for them. A participant role predicate can be considered
upward entailing when a more specific role entails a less specific role, e.g. agent_of
entails participant_of, and downward entailing when a less specific role entails a more
specific role, e.g. participant_of entails agent_of. This presupposes a hierarchy of
participant roles. Some evidence for the necessity of such a hierarchy can be found
in entailment relations as in (263a) and (263b). In order to explain the entailments and
non-entailments one needs to assume that the subject role of betrokken zijn bij x ‘to be
involved in x’ is more general than the subject role of een misdaad plegen ‘to commit a
crime’4.

(263) a. Alice
Alice

heeft
has

een
a

misdrijf
crime

gepleegd.
committed

:⇒ Alice
Alice

is
is

betrokken
involved

geweest
been

bij
at

een
a

misdrijf.
crime
‘Alice has committed a crime.’ :⇒ ‘Alice has been involved in a crime.’

b. Geen
none

van
of

ons
us

heeft
has

een
a

misdrijf
crime

gepleegd.
committed

⇐; Geen
none

van
of

ons
us

is
is

betrokken
involved

geweest
been

bij
at

een
a

misdrijf.
crime

‘None of us has committed a crime.’ ⇐; ‘Non of us has been involved in a
crime.’

Such entailments could be accounted for by the relation between the verbal predicates
alone, but only if they both assign the same role to their subject. No matter what approach
to thematic roles you take, it is unlikely that the predicates in the example at hand can
be considered to assign the same roles. (See section 3.1.3 for a discussion of participant
roles.)

If we check the inferential behavior of the participant roles in the examples we have
seen so far, we can see that they pattern completely with the verb. This is due to the
fact that this information is in the scope of the same combination of quantifiers as the
event is. We can conclude that in functional predicates that are two-place, the entailment
direction that comes with the variable with the lowest scoping quantifier is determining
for the entailment direction of the predicate.

4If geen van ons is replaced with niemand, the entailment in (263b) can be considered to hold both ways,
because if nobody committed a crime there can not have been one that anyone was involved in, as crimes only
exist if someone commits them. This extra entailment is, however dependent on world knowledge, rather than
on the entailment properties.



Section 4.4. Entailment properties 157

What the entailment property means for the attime predicate is unclear, because
this predicate does not seem to fit in such a hierarchy. There may be alternative
representations of time, where this is different, as there are systematic relations between
points or intervals on a time line.

I conclude that functional predicates do not cause problems in the context of
entailment directions. To the extent that they fit into a hierarchical ontology, where
upward and downward entailment are defined, they behave as expected.

4.4.5 More fine-grained properties of quantifiers

FLF distinguishes between three different entailment properties; monotone increasing,
monotone decreasing and non-monotone. Much more fine-grained distinctions can
be made. Kas (1993), who views generalized quantifiers as functions, distinguishes
discontinuous and continuous functions, where monotone functions are a subset of the
latter. This leaves us with two types of non-monotone functions. (In the previous section
I argued for decomposition of continuous non-monotone quantifiers.) (264) gives the set
theoretical definition of continuous functions, and the natural language inference pattern
that holds for them.

(264) continuous:
f(X ∩ Y ) ∩ f(Y ∪ Z) ⊆ f(Y )
NP VP1 and VP2 & NP VP2 or VP3⇒ NP VP2

Exactly three N is an example of a non monotone, but continuous function. Functions
for which this inference pattern doesn’t hold are discontinuous (e.g. more N1 than N2).
All monotone quantifiers are continuous.

(265) Exactly three princes walk and cry
Exactly three princes cry or talk
- - - - - - - - - - - - - - - - - - - - -
Exactly three princes cry

The (maybe) slightly more intuitive pattern in (266) also holds for continuous functions
(Fyodorov et al., 2000).

(266) Exactly three princes walk and cry and talk
Exactly three princes talk
- - - - - - - - - - - - - - - - - - - - -
Exactly three princes cry and talk
Exactly three princes walk and talk

Monotone quantifiers are either monotone increasing or monotone decreasing. Their
inferential properties are listed in (267) an (268), respectively. The first property is the
one we have been using so far to show entailment direction, the other two can be derived
from it and correspond to two more entailment patterns, relevant for conjunction and
disjunction.



158 Chapter 4. Flat Logical Form

(267) monotone increasing:
X ⊆ Y implies f(X) ⊆ f(Y )
f(X ∩ Y ) ⊆ f(X) ∩ f(Y ) (>multi)
f(X) ∪ f(Y ) ⊆ f(X ∪ Y ) (<add)

NP (VP1 and VP2)⇒ (NP VP1 and NP VP2)
(NP VP1 or NP VP2)⇒ NP (VP1 or VP2)

(268) monotone decreasing:
X ⊆ Y implies f(Y ) ⊆ f(X)
f(X) ∪ f(Y ) ⊆ f(X ∩ Y ) (<anti-multi)
f(X ∪ Y ) ⊆ f(X) ∩ f(Y ) (>anti-add)

(NP VP1 or NP VP2)⇒ NP (VP1 and VP2)
NP (VP1 or VP2)⇒ (NP VP1 and NP VP2)

Two additional properties that a monotone increasing function can have are multi-
plicativity and additivity. If a function is multiplicative, the inclusion marked above as
>multi holds both ways, which means that its corresponding entailment pattern is also
valid in both directions. The additive property relates to the property marked as <add
above in the same way.

(269) a. multiplicative:
f(X ∩ Y ) = f(X) ∩ f(Y )
NP (VP1 and VP2)⇔ (NP VP1 and NP VP2)

b. additive:
f(X ∪ Y ) = f(X) ∪ f(Y )
(NP VP1 or NP VP2)⇔ (NP (VP1 or VP2)

The counterparts of these properties for monotone decreasing functions are anti-
multiplicativity and anti-additivity.

(270) a. anti-multiplicative: f(X ∩ Y ) = f(X) ∪ f(Y )
(NP VP1 or NP VP2)⇔ (NP (VP1 and VP2)

b. anti-additive: f(X ∪ Y ) = f(X) ∩ f(Y )
NP (VP1 or VP2)⇔ (NP VP1 and NP VP2)

Two more properties that monotone increasing and decreasing functions can have
are consistency and completeness. In order to be consistent it needs to be (anti-
)multiplicative or (anti-)additive. In order to be complete it needs to be both.

(271) a. consistent:f(−X) ⊆ −f(X)
NP (do) not VP⇒ It is not the case that NP VP

b. complete:−f(X) ⊆ f(−X)
It is not the case that NP VP⇒ NP (do) not VP



Section 4.4. Entailment properties 159

On the basis of these properties we can distinguish a number of subclasses of
monotone functions, next to the basic ones5.

(272) classes of monotone increasing functions with additional properties:

1. multiplicative

2. additive

3. purely multiplicative (multiplicative + consistent)

4. (purely additive (additive + consistent))

5. homomorphism (multiplicative + additive + consistent + complete)

(273) classes of monotone decreasing functions with additional properties:

1. anti-multiplicative

2. anti-additive

3. (purely anti-multiplicative (anti-multiplicative + consistent))

4. purely anti-additive (anti-additive + consistent)

5. antimorphism (anti-multiplicative + anti-additive + consistent + complete)

In addition, all monotone increasing functions have the ‘hidden’ properties <anti-
add and >anti-multi, and all monotone decreasing functions have the ‘hidden’ properties
>add and <multi.

Kas gives a calculus of how all these functions combine. Some of the results are
somewhat surprising. Kas’s calculus predicts that our more coarse-grained system yields
wrong results in some cases. The combination of a quantifier that is anti-additive, anti-
multiplicative, or simple monotone decreasing with a simple monotone decreasing or
simple monotone decreasing quantifier should not be monotone increasing or decreasing,
respectively, but a weaker function. The data do not seem to support this. Niemand
is anti-additive, hoogstens n N is monotone decreasing and minstens n N is monotone
increasing. Still in (274a) through (276a), the (a) sentences intuitively entail the (b) and
(c) sentences.

(274) a. Niemand
no-one

heeft
has

minstens
at least

twee
two

romans
novels

gelezen.
read

‘No-one read at least two novels.’
b. Niemand

no-one
heeft
has

minstens
at least

twee
two

streekromans
regional novels

gelezen.
read

‘No-one read at least two regional novels.’
c. Niemand

no-one
heeft
has

minstens
at least

twee
two

romans
novels

grondig
thoroughly

gelezen.
read

‘No-one thoroughly read at least two novels.’

5The classes between brackets are not attested among natural language quantifiers.



160 Chapter 4. Flat Logical Form

(275) a. Niemand
no-one

heeft
has

hoogstens
at most

twee
two

romans
novels

gelezen.
read

‘No-one read at most two novels.’
b. Niemand

no-one
heeft
has

hoogstens
at most

twee
two

boeken
regional novels

gelezen.
read

‘No-one read at most two regional novels.’
c. Niemand

no-one
heeft
has

hoogstens
at most

twee
two

romans
novels

gezien.
thoroughly read

‘No-one thoroughly read at most two novels.’

(276) a. Hoogstens
at most

twee
two

mannen
men

hebben
have

minstens
at least

drie
three

romans
novels

gelezen.
read

‘At most two men read at least three novels.’
b. Hoogstens

at most
twee
two

mannen
men

hebben
have

minstens
at least

drie
three

streekromans
regional novels

gelezen.
read

‘At most two men read at least three regional novels.’
c. Hoogstens

at most
twee
two

mannen
men

hebben
have

minstens
at least

drie
three

romans
novels

grondig
thoroughly

gelezen.
read

‘At most two men thoroughly read at least three novels.’

Kas’s reasoning in a case like (276a) goes as follows (<additivity is a property of
monotone increasing functions and>anti-additivity is a property of monotone decreasing
functions):

(277) The composition of f = <additive and g = >anti-additive (g ◦ f)
1. g(X ∪ Y ) ⊆ g(X) ∩ g(Y ) definition >anti-additivity
1a. g(X ∩ Y ) ⊇ g(X) ∪ g(Y ) inferred: <anti-multiplicativity
2. f(X ∪ Y ) ⊇ f(X) ∪ f(Y ) definition <additivity
2a. f(X ∩ Y ) ⊆ f(X) ∩ f(Y ) inferred: >multiplicativity

3. g(f(X ∩ Y )) hypothesis, lefthand-side 2a.
4. ⊆ g(f(X) ∩ f(Y )) according to 2a.
5. stuck: 4. matches with the lefthand-side of 1a., but the derivation

cannot be continued from here, since the inclusion points in the
wrong direction.

Alternative:
3’. g(f(X)) ∪ g(f(Y )) hypothesis, righthand-side 1a.
4’. ⊆ g(f(X) ∩ f(Y )) according to 1a.
5’. stuck: 4. matches with the righthand-side of 2a., but the

derivation cannot be continued from here, since the inclusion
points in the wrong direction.

A possible explanation for the discrepancy between this reasoning and the observations
above is that the logic Kas bases his reasoning on may not be the most suitable logic for



Section 4.4. Entailment properties 161

capturing natural language intuitions about entailment. In section 4.7.3, the possibility
of using a different logic is discussed.

Another issue that comes to mind when studying Kas is that he shows that many verbs
behave as homomorphisms, which does not correspond to the existential quantifier that
we represent them with. However, not all classes of verbs are homomorphisms. Letting
the quantifier match the behavior, would mean having different quantifiers for different
verbs.

Kas’s calculus, or a variant thereof, can in principle be implemented. The set of
entailment properties, then, needs to be extended. Quantifiers are taken to compose when
one scopes over the other with nothing intervening. When a quantifier is dependent on
more than one other quantifier, the property of the lowest of these needs to take effect
first, because the order of composition matters in some cases. The calculus would have
to be translated into a set of rules on how the different properties influence each other.

The result of implementing the more fine-grained properties and a calculus for their
composition would be that some extra inferences can be derived for certain quantifiers.
For the continuous property, which many quantifiers have, this would mean that when
trying to derive a proposition of the form NPcont VP, the inference mechanism can search
for occurrences of this NP in the two patterns that together allow for this inference. The
(anti-) additive and multiplicative properties make extra entailment patterns involving
conjunction and disjunction available. Consistency and completeness concern the scope
of negation. I will come back to these in the section about negation.

For the time being, we stick to the more coarse-grained approach.

4.4.6 Summary

I showed how the effective entailment direction for a predicate can be calculated. It starts
off with the direction it gets from its quantifier. The original direction is influenced by
the properties of the other quantifiers it is dependent on. Changes apply according to the
schema in (278), as this set of rules turns out to match intuitions best.

(278) increasing under decreasing becomes decreasing
decreasingunder decreasing becomes increasing
increasing under non-monotone becomes non-monotone
decreasingunder non-monotone becomes non-monotone

The property of upward monotonicity does not cause any changes to the environments
dependent on it. Dependency on an increasing quantifier is therefore not explicitly
marked as such. Non-monotonicity is not susceptible to change.

It has advantages for inference if continuous non-monotone quantifiers are repre-
sented as a combination of monotone ones. Only discontinuous quantifiers are then still
marked as non-monotone.



162 Chapter 4. Flat Logical Form

4.5 Negation
Being able to handle negation is a crucial test for FLF. We will show that also negation
needs to be described in a flat way and not used as a logical operator in the structure at
the same level as the conjunction.

4.5.1 Flattening negation
If we have a negation with wide scope, like in (279a) and represented it as (279b), then
by applying DeMorgan, we get a disjunction, as in (279c). At least one of the original
conjuncts needs to be false, for the sentence to be true. At first glance this seems correct
(either it isn’t every man, or it isn’t a book or it isn’t reading or it isn’t happening at
present. . . ) At least one of the truth conditions of the material in the scope of the negation
is not fulfilled. As we have seen in section 3.1.2, a wide scope reading for negation is the
most general one. In focus readings, the negation would then pick out a specific conjunct.

(279) a. Het
it

is
is

niet
not

zo
so

dat
that

elke
every

man
man

een
a

boek
book

leest.
reads

‘It is not the case that every man reads a book.’
b. not.[ man(X+decr+every+[]) &

book(Y+incr+some+[X]) &
read(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+incr+every+[]) &
theme_of(E+incr+some+[X],Y+incr+some+[X]) &
attime(E+incr+some+[X],T) &
tense(E+incr+some+[X],pres)
]

c. not.man(X+decr+every+[]) ;
not.book(Y+incr+some+[X]) ;
not.read(E+incr+some+[X]) ;
not.event(E+incr+some+[X]) ;
not.agent_of(E+incr+some+[X],X+incr+every+[]) ;
not.theme_of(E+incr+some+[X],Y+incr+some+[X]) ;
not.attime(E+incr+some+[X],T) ;
not.tense(E+incr+some+[X],pres)

There are however serious problems with this way of treating negation. First of all,
it does not make sense to negate all conjuncts independently. Negation scopes over
a quantifier or it doesn’t. If it does, it affects all occurrences of the quantifier in the
representation. Second, when negation scopes over a quantifier it changes its entailment
directions, as we have seen in section 4.4.2. Negations as structural operators can hardly
be integrated in the approach developed there. The entailment directions were changed
under the influence of governors in the fourth slot of the variable’s quadruple. This is a



Section 4.5. Negation 163

flattened way of treating higher operators. Such a flattening is also needed for negation to
make it fit into the system. Third, for maximum flatness, the conjunction should ideally
be the highest operator.

The simplest solution is to let negation always target a quantifier, namely the highest
one that it has scope over. That way we get rid of ‘loose’ negations. FLF then does not
contain logical negation, just like it does not contain logical quantifiers. In that sense it
is structurally comparable to description logics.

The disadvantage of this solution is that it complicates the application procedure that
derives FLF. Negation must attach to a quantifier and change its entailment properties.
These changed properties must then be used in the dependency relations which influence
the entailment directions of dependent quantifiers. This is inconsistent with the non-
nesting policy explained in section 4.4.2.

An alternative solution is to let the negation form a conjunct of its own in FLF.
Quantifiers can then be marked as being dependent on it. Dependence on a negation
has the same effect as dependence on a decreasing quantifier. It is, however, not clear
how exactly the negation conjunct is best represented; does it introduce a predicate (if so,
which) and a variable, is it relevant to mark what it is dependent on, etc.? Also, the status
of such a conjunct is problematic, because it is not clause-like, like the other conjuncts.
We take the position that the negative conjunct itself can be dispensed with, but that its
scope should be marked, as if it were there, on other conjuncts in their fourth slot. (279a)
is then represented as (280c) with (280b) as an intermediate step.

(280) a. Het
it

is
is

niet
not

zo
so

dat
that

elke
every

man
man

een
a

boek
book

leest.
reads

‘It is not the case that every man reads a book.’

b. man(X+decr+every+[neg+decr]) &
book(Y+incr+some+[X,neg+decr]) &
read(E+incr+some+[X,neg+decr]) &
event(E+incr+some+[X,neg+decr]) &
agent_of(E+incr+some+[X,neg+decr],X+incr+every+[neg+decr]) &
theme_of(E+incr+some+[X,neg+decr],Y+incr+some+[X,neg+decr])&
attime(E+incr+some+[X,neg+decr],T) &
tense(E+incr+some+[X,neg+decr],pres)

c. man(X+incr+every+[neg]) &
book(Y+decr+some+[X,neg]) &
read(E+decr+some+[X,neg]) &
event(E+decr+some+[X,neg]) &
agent_of(E+decr+some+[X,neg],X+decr+every+[neg]) &
theme_of(E+decr+some+[X,neg],Y+decr+some+[X,neg]) &
attime(E+decr+some+[X,neg],T) &
tense(E+decr+some+[X,neg],pres)



164 Chapter 4. Flat Logical Form

As there may be more than one negation in a sentence, negs need to be numbered. We
will see an example of this in the next section.

This is the most minimal way to do it. One may ask whether it is possible to treat
negation in a way that is parallel to modal adverbs, via the evidence for a proposition
(see section 4.3). The evidence would then be negative. The problem is that this
offers no straightforward way to transfer the decreasing entailment property, since the
proposition is assumed to have a definite quantifier because of its transparency. Therefore
the variable of the proposition cannot carry this property and the evidence predicate does
not introduce an extra variable. Moreover, negation is not an intensional operator. Only
intensional operators should introduce an intensional domain, such as proposition, as this
extra layer stands for intensional embedding.

Negation is therefore represented by marking its scope on the conjuncts that are in its
scope. Negations bring in downward monotonicity.

4.5.2 DeMorgan

With this approach we can formulate the DeMorgan rules for quantifiers at FLF. For
(246), repeated here as (281), (282b) and (282c) follow from (282a) by the DeMorgan
rules for quantifiers.

(281) Geen
no

man
man

heeft
has

elk
every

boek
boek

gelezen.
read

‘No man has read every book.’

(282) a. ¬∃x[man↓(x)&∀y[book↑(y)→ ∃e[read↓(e)&ag(e, x)&th(e, y)]]]
geen man heeft elk boek gelezen
no man has read every book

b. ∀x[man↓(x)→ ¬∀y[book↑(y)→ ∃e[read↓(e)&ag(e, x)&th(e, y)]]]
elke man heeft niet elk boek gelezen
every man has not read every book

c. ∀x[man↓(x)→ ∃y[book↑(y)&¬∃e[read↓(e)&ag(e, x)&th(e, y)]]]
voor elke man is er een boek dat hij niet heeft gelezen
for every man there is a book that he didn’t read

These effects can be reproduced in FLF as illustrated in (283). The first step shown
is just negation influencing the entailment directions. Then, one quantifier per step is
moved out of the scope of negation, starting with the highest one. This means that all
dependencies need to be marked in this stage, because it needs to be known which is
the highest quantifier. Dependencies that pose no further conditions on entailment can
possibly be deleted afterwards. Another way to increase efficiency is to mark the nature
of the dependencies from the beginning, so that it is clear which ones affect referentiality
and which don’t. The entailment directions, unsurprisingly, stay as they are. Thus, (283b)
corresponds to (282a), (283c) to (282b), and (283d) to (282c). These are three equivalent
forms.



Section 4.5. Negation 165

(283) a. man(X+incr+some+[neg+decr]) &
book(Y+decr+every+[neg+decr]) &
read(E+incr+some+[Y,neg+decr]) &
event(E+incr+some+[Y,neg+decr]) &
agent_of(E+incr+some+[Y,neg+decr],X+incr+some+[neg+decr]) &
theme_of(E+incr+some+[Y,neg+decr],Y+incr+every+[neg+decr]) &
attime(E+incr+some+[Y,neg+decr],T)

b. man(X+decr+some+[neg]) &
book(Y+incr+every+[X,neg]) &
read(E+decr+some+[Y,X,neg]) &
event(E+decr+some+[Y,X,neg]) &
agent_of(E+decr+some+[Y,X,neg],X+decr+some+[neg]) &
theme_of(E+decr+some+[Y,X,neg],Y+decr+every+[X,neg]) &
attime(E+decr+some+[Y,X,neg],T)

c. man(X+decr+every+[]) &
book(Y+incr+every+[neg]) &
read(E+decr+some+[Y,X,neg]) &
event(E+decr+some+[Y,X,neg]) &
agent_of(E+decr+some+[Y,X,neg],X+decr+every+[]) &
theme_of(E+decr+some+[Y,X,neg],Y+decr+every+[X,neg]) &
attime(E+decr+some+[Y,X,neg],T)

d. man(X+decr+every+[]) &
book(Y+incr+some+[]) &
read(E+decr+some+[Y,X,neg]) &
event(E+decr+some+[Y,X,neg]) &
agent_of(E+decr+some+[Y,X,neg],X+decr+every+[]) &
theme_of(E+decr+some+[Y,X,neg],Y+decr+some+[X]) &
attime(E+decr+some+[Y,X,neg],T)

The function of the boldface text is to help the reader spot the differences with respect
to the previous step. (Of course all occurrences of a quantifier need to be adapted. They
are identified by the variable that they are marked on.) For a more unified approach the
quantifier geen ‘no’ has been split up into a negation operator plus a quantifier some.
Additional motivation for this comes from split scope constructions (Penka and Zeijlstra,
2005), which we discussed in section 2.3.4. Another advantage is that dependence on
negation is uniformly marked locally. The steps can in principle also be applied in the
inverse order, moving the quantifiers one by one under the scope of negation. In this
example there was only one negation. When a sentence contains more than one negation,
like (284), an extra rule is needed that cancels two negations against each other.

(284) Niemand
no-one

werkt
works

niet.
not

‘No-one doesn’t work.’ (double negation)

In the FLF of this sentence, (285), I have added neg1 and neg2 between the conjuncts as
an extra indication of the scope of the negations. Note that this is purely for the purpose



166 Chapter 4. Flat Logical Form

of visualization. The order of the conjuncts is irrelevant and scope is indicated by the
dependencies.

(285) FLF of (284)
neg1

person(X+decr+some+[neg1]) &
neg2

work(E+incr+some+[neg2,X,neg1]) &
event(E+incr+some+[neg2,X,neg1]) &
agent_of(E+incr+some+[neg2,X,neg1],X+decr+some+[neg1]) &
attime(E+incr+some+[neg2,X,neg1],T)

If we now move the highest quantifier out of the scope of negation by DeMorgan, as
above, we get (286), in which nothing intervenes between the scope of the two negations.
(In fact, the representation does not even tell which of the two is the higher one.)

(286) from (285) by DeMorgan for quantifiers
person(X+decr+every+[]) &
neg1

neg2

work(E+incr+some+[neg2,X,neg1]) &
event(E+incr+some+[neg2,X,neg1]) &
agent_of(E+incr+some+[neg2,X,neg1],X+decr+every+[]) &
attime(E+incr+some+[neg2,X,neg1],T)

These two negations can be canceled against each other, by a rule of negation elimination,
yielding (287),which is identical to the representation of (288).

(287) from (286) by negation elimination
person(X+decr+every+[]) &
work(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+decr+every+[]) &
attime(E+incr+some+[X],T)

(288) Iedereen
everyone

werkt.
works

‘Everyone works.’

Doing this the other way round is unpractical from a procedural perspective, because you
can keep adding negations, i.e. the process has no natural end. This rule should therefore
only be applied in one direction. In other words, if the text contains a sentence meaning P,
it is not very sensible to produce an equivalent form ¬¬P, to match a possible hypothesis
¬¬P, even though this is a valid equivalent. It is much better to produce an equivalent
form P for a hypothesis of the form ¬¬P, if it occurs.

For applying DeMorgan at FLF, we thus need two rules: one to move quantifiers out
of the scope of the negation, replacing them by their dual, their DeMorgan counterpart,



Section 4.5. Negation 167

so to say, (see Barwise and Cooper (1981) for a mathematical definition of dual), and one
to cancel two negations against each other, when nothing scopes between them.

The implementation of DeMorgan in FLF requires a list of quantifiers and their duals
(e.g every changes to some and vice versa). Homomorphisms (proper names and singular
definites) are selfdual, that is, they do not change when moved out of the scope of a
negation. For many other quantifiers the DeMorgan rules do not apply.

An important question with respect to the representation of texts is whether to keep all
DeMorgan variants of a sentence available. As all the DeMorgan variants of a sentence
are logically equivalent, deriving a normal form and using only that suffices for purposes
of logical inference. Discourse related processes, such a anaphora resolution, need the
original representation of the sentence. It is best to assign the variant in which the
negation is lowest, the status of normal form. The DeMorgan rules must then also be
applied to the query, to bring it in normal form.

4.5.3 Splitting decreasing quantifiers
Splitting up geen ‘no’ into negation plus some prompts the question whether certain other
decreasing quantifiers such as weinig ‘few’6 should also be analyzed with a separable
negation. At least two diagnostics to decide on this issue present themselves. One could
test whether the quantifier can give rise to split scope readings and whether it supports
DeMorgan-like equivalence patterns. That is, is there a quantifier Q for which (289)
holds?

(289) Weinig
few

mannen
men

slapen
sleep

⇔ Q
Q

mannen
men

slapen
sleep

niet
not

Few men are asleep⇔ Q men are not asleep

Veel ‘many’ seems to present itself as a candidate for Q (which would require many
to be its own DeMorgan counterpart, on the analysis of few as not many), but this is
problematic. It only holds when the number of men who sleep is considered small in
comparison to the total set of men, but not when it is considered small with respect to
the total set of sleepers (or to some other subset of sleepers, e.g. women who sleep). It
thus fails the DeMorgan test. That means that, at least for the correct functioning of the
DeMorgan rules, it is not necessary to be able to split it.

For split scope effects on the other hand, it does appear to be necessary to also split
up determiners like weinig. (290) seems to have all three readings, parallel to (291)
(repeated from chapter one), though some judge the (b) reading as a bit odd.

(290) Ze
they

mogen
may

weinig
no

verpleegkundigen
nurse

ontslaan.
fire

a.‘They are not allowed to fire many nurses. ¬ > may > many

b.(?)‘There are few nurses who they are allowed to fire.’ ¬ > many > may

c.‘They are allowed not to fire many nurses.’ may > ¬ > many

6Weinig is actually not neatly decreasing, but it patterns in some ways with decreasing quantifiers.



168 Chapter 4. Flat Logical Form

(291) Ze
they

mogen
may

geen
no

verpleegkundige
nurse

ontslaan.
fire

a.‘They are not allowed to fire any nurse. ¬ > may > ∃
b.‘There is no nurse who they are allowed to fire.’ ¬ > ∃ > may
c.‘They are allowed not to fire a nurse.’ may > ¬ > ∃

This observation is strengthened if we use the modal verb hoeven, which is a negative po-
larity item (NPI). Here the (c) reading is ruled out, because the NPI is not licensed, since
with weinig completely scoping below it, hoeven is not in a decreasing environment.7 As
the (b) reading is still found a bit odd, the (a) reading, which is the split reading that we
are after, is clearly the most likely reading.

(292) We
we

hoefden
needed

weinig
few

boeken
books

te
to

lezen.
read

a.‘We were not required to read many books. ¬ > may > many

b.(?)‘There were not many books we were required to read.’ ¬ > many > may

c.*‘We were required not to read many books.’ may > ¬ > many

What exactly are the composing parts of such a decreasing quantifier is however a
puzzling question. For geen the situation seems clear. If it decomposes into antimorphic
negation and an additive existential quantifier, it is to be expected that geen itself, the
composition of these two elements, is anti-additive, which is indeed the case.

Since the raising behavior that the negative part shows is rather peculiar, we would
expect the raising element to be the same in all cases. Therefore the default assumption
would be that the negative part that is split off in the case of weinig, is also the normal
antimorphic negation. Whether the negative part that is split off is indeed a normal
negation or something weaker, is difficult to test. Testing the strength of the separated
negation would require an NPI modal verb that can only be licensed by strong negation.
At least in Dutch, such a modal verb has not been reported to exist. Let us thus assume
that one of the two parts that make up weinig (and other decreasing quantifiers) is a
regular negation. Then we still need to figure out what the other part is. It would
be tempting to think that this is its increasing counterpart veel ‘many’. Zwarts (1981)
however, argues against analyzing weinig as niet veel. On the one hand he points out that
there is a danger of circularity, since one could just as well analyze veel as niet weinig.
Here the split scope effect would provide independent evidence to favor the former, since

7Notice in this context also that, as Ton van der Wouden pointed out to me, decreasing quantifiers seem
to be ungrammatical in the complement of positively polar modal verbs. moeten is weakly positive polar and
dienen is a real positive polarity item (PPI).

(1) a. We hoeven maar drie roeiers uit te nodigen.

b. ? We moeten maar drie roeiers uitnodigen.

c. * We dienen maar drie roeiers uit te nodigen.



Section 4.5. Negation 169

veel does not show split scope effects. But Zwarts also observes that (293) is not a
contradiction, which it should be if weinig meant the same as niet veel8.

(293) Er
there

zijn
are

er
there

niet
not

veel,
many

maar
but

ook
also

niet
not

weinig.
few

‘They aren’t many, but there aren’t few either.’

Lappin (2000) gives an intensional parametric account for the interpretation of many
and few, defined in (294a) and (294b) respectively, where sa is the actual situation and S
is a set of normative situations sn. A possible situation sn is normative in that it provides
a case in which the number of objects in the intersection of the A an B sets is large
enough to provide a standard for comparison for the assertion that many A are B in the
actual situation. Different extensional readings can be derived from the intensional ones
by placing additional constraints on S.

(294) a. [[B]]sa ∈ [[many]]([[A]]sa ) iff S 6= ∅, and for any sn ∈ S,
|[[A]]sa ∩ [[B]]sa | ≥ |[[A]]sn ∩ [[B]]sn |

b. [[B]]sa ∈ [[few]]([[A]]sa ) iff S 6= ∅, and for any sn ∈ S,
|[[A]]sa ∩ [[B]]sa | < |[[A]]sn ∩ [[B]]sn |

Few and many are not actually monotone because the set of normative situations
normally does not stay the same, when one of the argument sets is replaced with a
superset or subset. For example, if many men read a regional novel, those men (and
possibly some others) read a book. But typically, that same number no longer counts as
many, when it is the number of men reading a book. The upward monotonicity gets into
trouble, because with going to a superset (less specific) the standard also tends to go up
and might therefore not be met. For few, downward monotonicity is likewise damaged
by the standard going down. Yet they go in opposite directions, as many is evaluated with
respect to a minimum and few is with respect to a maximum. If we take not many to be
the complement of many, the definition of not many is exactly the same as that of few.

(295) [[B]]sa ∈ [[not]]([[many]]([[A]]sa )) iff S 6= ∅, and for any sn ∈ S,
|[[A]]sa ∩ [[B]]sa | < |[[A]]sn ∩ [[B]]sn |

Normally, however, different standards for comparison are used for many and few. The
maximum for few is not usually the same as the minimum for many. Therefore, there may
be certain values for the cardinality of the intersection of A and B, that neither counts as

8This may be due to the vagueness that is more generally observed in predication. Few and many have a
partly predicative character, rather than being purely quantificational. Like (1a), (1b) is with the right intonation,
where the second niet forms a unit with veel, not necessarily felt as contradictory

(1) a. Het
it

is
is

niet
not

groot,
big

maar
but

ook
also

niet
not

niet
not

groot.
big

‘It is not big, but it isn’t not big either.’
b. Er

there
zijn
are

er
there

niet
not

veel,
many

maar
but

ook
also

niet
not

niet
not

veel.
many

‘They aren’t many, but there aren’t not many either.’



170 Chapter 4. Flat Logical Form

few, nor as many. There typically is such a grey area of a more or less normal amount,
just like with adjective pairs like tall and short. This explains why sentences like (293)
are not contradictory. When few is split up into a negation and another part, this other
part is like many, but with the parameter settings of few, let’s call it many+, as it includes
a wider range of cases than many.

many+ does not occur as a separate determiner, but only as part of few. In this light
it is interesting that Seuren (2006) argued that no is different from not some, or actually,
that the some in not some, and by itself, is different from the ‘some’ in no. In his approach
the basic natural meaning of some excludes all (some A are B entails not all A are B). He
calls this ‘exclusive some’. No on the other hand is the negation of the ‘inclusive some’,
that corresponds to the standard logical existential quantifier.

Numerical quantifiers of the type at most n, on the other hand, neatly split up in
negation plus more than n.

(296) Ze
they

hoeven
need

hoogstens
at most

drie
three

verpleegkundigen
nurses

te
to

ontslaan.
fire

a.‘It is not necessary for them to fire more than three nurses. ¬ > � > morethan3

b.(?)‘There are at most three nurses who they need to fire.’ ¬ > morethan3 > �

Psycholinguistic experiments by Geurts and van der Slik (2005a) provide additional
evidence that decreasing quantifiers are more complex than increasing quantifiers.
Subjects take longer and make more mistakes in reasoning with decreasing quantifiers.
The authors suggest that decreasing and increasing quantifiers may exhibit the same kind
of asymmetry as adjectives associated with opposite ends of the same scale. There, the
one associated with the upper end of the scale is the simpler and more neutral one and
often considered basic, whereas the other one is derived from it.

It goes too far, at this point, to claim that all decreasing quantifiers contain a negation.
Universal quantifiers are decreasing on their left argument and it is not clear how they
should be analyzed along these lines. Yet, for the vast majority of decreasing quantifiers,
I conclude that it is reasonable to analyze them as containing a separable negation.

4.5.4 Consistent and complete entailment patterns
The definitions of consistent and complete NPs are repeated here.

(297) a. consistent:f(−X) ⊆ −f(X)
NP (do) not VP⇒ It is not the case that NP VP

b. complete:−f(X) ⊆ f(−X)
It is not the case that NP VP⇒ NP (do) not VP

Generalized quantifiers that are both consistent and complete (homomorphisms) are
selfdual (their own DeMorgan counterpart, underspecification and disjunction), as
observed in section 4.5.2. I am not aware of the existence of any that are complete, but
not consistent. However, Kas (1993) does show that there are some which are consistent



Section 4.6. Underspecification and disjunction 171

but not complete. The examples he gives are both N, the n N and the N(pl). Consider
(298a) and (298b). That the three men is consistent, is shown by the fact (298a) entails
(298b). That the three men is not complete is shown by the fact that (298b) does not
entail (298a). Suppose that two of the three men work, then (298b) is true, but (298a) is
not.

(298) a. The three men do not work.
b. It is not the case that the three men work.

The rule for consistent quantifiers is like the DeMorgan rule for homomorphisms,
except that it only holds in one direction. Instead of producing an equivalent formula, it
only produces an entailment. As long as we only move the negation over one quantifier at
a time and then check if a next step is possible, we do not deal with composed functions,
and hence do not need a calculus to compute the effects.

4.5.5 Summary
Negation is only represented in the fourth slot of a variable’s quadruple of the conjuncts
that are in its scope. It comes with a decreasing property, which takes effect in the way
we have seen in the previous section. Most decreasing quantifiers can be analyzed as
containing a separable negation. DeMorgan rules for quantifiers are applied to derive a
normal form where the negation is as low as possible.

4.6 Underspecification and disjunction
In case one QLF in its ‘spell out’ gives rise to real ambiguity, this ambiguity is expressed
in terms of scopal dependencies. This section explores whether, if ambiguity occurs, FLF
can take the form of a single conjunction of disjunctions, representing the complete class
of readings. A conjunct would then internally be a disjunction iff a variable occurring in
it may or may not be referentially dependent.

Using disjunction to represent different readings is notoriously problematic because
of its interaction with negation. The DeMorgan rule for negation over disjunctions
(¬(A ∨ B) ↔ ¬A ∧ ¬B), would turn disjunctions into conjunctions, negating all
possible readings of a sentence at the same time. If negation is completely excluded
from the (meta level) logic we use for our representations, this opens up possibilities for
underspecification of scope ambiguities by means of disjunction.

When a generalized quantifier can be referentially either dependent or independent,
all predicates in which its variable is bound have two options: one in which the fourth
position of the variable’s quadruple contains a governor and one in which it is empty.
This could be written as a disjunction as illustrated in (299). Note that this is the result
of the merging of two fully specified analyses.

(299) a. Elke
every

man
man

leest
reads

een
a

boek.
book

‘Every man reads a book.’



172 Chapter 4. Flat Logical Form

b. man(X+decr+every+[]) &
book(Y+incr+some+[X]) ; book(Y+incr+some+[]) &
read(E+incr+some+[X]) &
event(E+incr+some+[X]) &
agent_of(E+incr+some+[X],X+incr+every+[]) &
theme_of(E+incr+some+[X],Y+incr+some+[X]) ;

theme_of(E+incr+some+[X],Y+incr+some+[]) &
attime(E+incr+some+[X],T) &
tense(E+incr+some+[X],pres)

Of course, if the disjunction concerning one occurrence is resolved, it is also resolved
for the other occurrences in the same way. A reading without disjunctions in which the
same variable in one place is marked as dependent and in another place as independent
is not possible. This is actually better represented in (300)

(300) . . . &
(book(Y+incr+some+[X]) &
theme_of(E+incr+some+[X],Y+incr+some+[X]));
(book(Y+incr+some+[]) &
theme_of(E+incr+some+[X],Y+incr+some+[])) &
. . .

Similarly, it should be prevented that quantifiers can be dependent on each other. Many,
for example can be dependent on other quantifiers, but other quantifiers can also be
dependent on many. When the different readings of a sentence with two or more
occurrences of many are merged into one, it should be prevented that it is an option that
each of the two is dependent on the other. This can also be done with extra bracketing
like above.

(301) (pred1(X+nonm+many+[] & pred2(Y+nonm+many+[X]) ;
(pred1(X+nonm+many+[X] & pred2(Y+nonm+many+[])

If there is a third reading where both are independent, this option will need to be added
as an extra disjunct (or within both existing ones as a extra option for the one that is now
dependent). Similar problems can be expected to occur in all cases where the choice in
one disjunction has consequences for the choices in others. One always needs to beware
of ruled out readings sneaking back in.

A solution to problems of this type is to mark each conjunct for the sentence and
reading(s) it belongs to. Something like this will anyway be necessary for processing
text, because a sequence of different sentences needs to be treated differently from
different readings for the same sentence. Material that occurs in all readings can be
inferred independently of the choice of the reading. This way of marking sentences
and readings is illustrated in (302), a revised representation of (299), in the format
CONJUNCT:sentence_number:[reading1 ,. . . readingn ] ((299) is here represented as the
first sentence of a text).

(302) man(X+decr+every+[]):1:[1,2] &
book(Y+incr+some+[X])1:[1] ; book(Y+incr+some+[]):1:[2] &



Section 4.6. Underspecification and disjunction 173

read(E+incr+some+[X]):1:[1,2] &
event(E+incr+some+[X]):1:[1,2] &
agent_of(E+incr+some+[X],X+incr+every+[]):1:[1,2] &
theme_of(E+incr+some+[X],Y+incr+some+[X]):1:[1] ;
theme_of(E+incr+some+[X],Y+incr+some+[]):1:[2] &
attime(E+incr+some+[X],T):1:[1,2] &
tense(E+incr+some+[X],pres):1:[1,2]

This way of representing ambiguity can be considered an abbreviated notation. In the
entailment process it is not allowed to combine information that does not occur together
in one reading. The written conjunction is then a reflection of a higher disjunction, an
exclusive disjunction between complete readings, exclusive, not in the sense of truth and
falsity, but in the sense that only one reading at the time may be consulted for entailment.
Looking into one, makes the others unavailable. It is not essential to write a disjunction,
a conjunction will do just as well. The ‘disjunctivity’ is sufficiently encoded in the
indexes and the way they are treated. The different readings are merged together into one
representation, but can always be reconstructed as separate readings. The representation
of (299) with bookkeeping of sentence and readings is then (303).

(303) man(X+decr+every+[]):1:[1,2] &
book(Y+incr+some+[X])1:[1] &
book(Y+incr+some+[]):1:[2] &
read(E+incr+some+[X]):1:[1,2] &
event(E+incr+some+[X]):1:[1,2] &
agent_of(E+incr+some+[X],X+incr+every+[]):1:[1,2] &
theme_of(E+incr+some+[X],Y+incr+some+[X])1:[1] &
theme_of(E+incr+some+[X],Y+incr+some+[]):1:[2] &
attime(E+incr+some+[X],T):1:[1,2] &
tense(E+incr+some+[X],pres):1:[1,2]

The disjunction can better be reserved for linguistic disjunction. I assume with
Pietroski (2006) and Jaspers (2005) that conjunction is the basic operation in language.
As Pietroski puts it:

“each complex expression of natural language is the concatenation of two
simpler expressions; these two constituents, together with the meaning of
concatenation, determine the meaning of the complex expression; con-
stituents are understood as monadic predicates and concatenation signifies
conjunction. so from a semantic perspective every complex expression is a
conjunction of predicates.”

This intuitively makes sense. With everything you say, you add information. Disjunction
is an exceptional case. It complicates reasoning considerably. If you know A and B, you
know that both A and B are the case. If you know A or B then you don’t know whether A
is the case, nor whether B is the case. Introducing disjunction that can interact with the
conjunctions in FLF is most likely unavoidable, and the exploitation of disjunctions for
entailment can be expected to require extra reasoning steps.



174 Chapter 4. Flat Logical Form

4.7 Entailment on FLF
The main purpose of the flat representation is inferential: to decide whether a certain
inference is possible, it suffices to linearly inspect an FLF and, for each conjunct, to
decide locally whether or not it gives rise to (part of) the hypothesis induced by the
query.

Quantifiers are represented in a ‘flattened’ way. They are removed from the logic
in which the representation is cast, but the information about them is retained. The
representation is, on the surface, a conjunction, so the only thing that follows from it by
logic is the entailment of each conjunct. From the quantificational information nothing
follows immediately, but the information is available to rules (comparable to meaning
postulates) that can derive additional entailments. Because of this, even natural language
quantifiers of which the translation to first-order logic is problematic, can be handled.
Each variable is bound in its propositional domain.

4.7.1 Basic conjunctive entailment
Entailment on FLF applies the elementary insight that a conjunction of closed propo-
sitions (propositions without free variables) entails each of its conjuncts. In (304) a
recursive definition of this concept of entailment is given.

(304) conjunctive entailment

0. p entails p

1. a conjunction of propositions p1 & p2 & .... & pn entails pi for every i
between 1 and n (1≤i≤n)

2. p1 & p2 & .... & pn entails pi & pj iff the conjunction entails both pi and
pj

3. p1 & p2 & .... & pn entails pr if there is an explicit inferential relation stated
between pi and pr and the conjunction entails pi

Statement (2) generalizes (1). Statement (3) sees to the situation that additional
specifications from ontologies, structured thesauri or extended lexicons are applied to
a certain corpus of texts, providing additional inferences for individual propositions. The
application of statement (3) is mediated by the entailment properties:

• P(Var+incr+Quant+Dep) entails P↑(Var+incr+Quant+Dep), where P↑ denotes a
superset of P

• P(Var+decr+Quant+Dep) entails P↓(Var+decr+Quant+Dep), where P↓ denotes a
subset of P

• P(Var+Dir+Quant+Dep) entails Q(Var+Dir+Quant+Dep), when P and Q denote
the same set

This is the basic idea for conjunctive entailment, but it does not suffice entirely.



Section 4.7. Entailment on FLF 175

4.7.2 Modifications for conjunctions in non-increasing contexts
Conjunctive entailment as defined above, works well in increasing contexts. In
decreasing or non-monotone contexts modifications are needed.

When two or more propositions containing the same variable are marked as decreas-
ing, they cannot be entailed independently, but only in combination. The entailment
in (305a) does not hold, even though on the basis of statement (2) above, the premise,
as represented in (305b), should entail the conclusion, as represented in (305c). (As
ambiguity is not relevant for the discussion here, I omit the bookkeeping of sentences
and readings.)

(305) a. elke
every

blonde
blond

man
man

werkt
works

;
;

elke
every

man
man

werkt
works

b. elke blonde man werkt
man(A+decr+every+[]) &
blond(A+decr+every+[]) &
work(B+incr+some+[A]) &
event(B+incr+some+[A]) &
agent_of(B+incr+some+[A],A+incr+every+[]) &
attime(B+incr+some+[A],C) &
tense(B+incr+some+[A],pres)

c. elke man werkt
man(A+decr+every+[]) &
work(B+incr+some+[A]) &
event(B+incr+some+[A]) &
agent_of(B+incr+some+[A],A+incr+every+[]) &
attime(B+incr+some+[A],C) &
tense(B+incr+some+[A],pres)

A solution is to sort the conjuncts first by variable and then by entailment property.
For each variable A we then get PA, the set of all conjuncts in which A is bound, which
is then divided into PA

−, the set where A is marked as decreasing, PA
+, the set where

A is marked as increasing, and PA
0 , the set where A is marked as non-monotone.

For our premiss above, the sorted version is given in (306). (Some conjuncts now
occur more than once, because they contain more than one bound variable, but this does
not matter.) The sorting can be done off-line.

(306) PA
− = {PA| A bound in P and decreasing}:

man(A+decr+every+[]) &
blond(A+decr+every+[])
PA

+ = {PA| A bound in P and increasing}:
agent_of(B+incr+some+[A],A+incr+every+[])
PB

+:
work(B+incr+some+[A]) &
event(B+incr+some+[A]) &
agent_of(B+incr+some+[A],A+incr+every+[]) &



176 Chapter 4. Flat Logical Form

attime(B+incr+some+[A],C) &
tense(B+incr+some+[A],pres)
PC

+:
attime(B+incr+some+[A],C)9

Subsets are entailed of the intersection of all predicates on which A’s quantifier is
decreasing. That is, all entailed sets lay within the intersection. A subset of [[man]]∩
[[blond]]is, for example, [[man]]∩ [[blond]]∩ [[young]], but not, for example, [[man]](that
would be a superset). For the predicates on which A’s quantifier is increasing, on the
other hand, supersets of the intersection are entailed.

On the other side, if several predicates over the same variable in a decreasing
environment occur in the query, only one of them needs to be found in the text.

As an alternative to off-line preparation, as sketched above, it is also possible to build
the adjustment into the inference procedure entirely. Suppose (305c) is a hypothesis for
which we want to check entailment by some text. First we look at the first conjunct
man(A+decr+every+[]). It is marked as decreasing. We check if there are more
decreasing conjuncts with the same variable. This is not the case. Now we try to
find a match for this conjunct in the text. Suppose we find a matching conjunct in
(305b). Because this is a decreasing conjunct, we need to check if there are more
decreasing conjuncts with the same variable in the sentence. If this is not the case we
have found a good match for the first conjunct. In (305b), however, there is another
decreasing conjunct with the same variable, namely blond(A+decr+every+[]). Since
no such conjunct occurred in the hypothesis, as we already verified in the beginning,
it is concluded that (305b) cannot entail (305c). Let us now consider a scenario where
(305b) is the hypothesis to be tested. The first conjunct is again man(A+decr+every+[]).
But this time there is another decreasing conjunct in the hypothesis with the same
variable blond(A+decr+every+[]). Now if we find (305c) in the text, we see that
it contains man(A+decr+every+[]) and no other decreasing conjuncts with the same
variable. This conjunct now suffices as a good match for the first two conjuncts of the
hypothesis. Such a procedure seems feasible and not necessarily more complicated than
checking for dependencies. The two alternatives have to be compared and evaluated in
implementation.

This problem arose, because the conjunctions between predicates under a decreasing
quantifier should actually be interpreted as being in a decreasing environment, too, but
they are not marked as such in the flat representation. Compare this to a first-order logic
representation. In a traditional representation of elke blonde man werkt (∀x. man(x)
∧ blond(x) → work(x)), the conjunction between man(x) and blond(x) is also in a
decreasing environment. Here this is not explicitely marked, but the corresponding
behaviour in terms of entailment, follows from the rules of the logic. The solution
proposed for FLF, in either implementation, boils down to grouping the predicates
marked as decreasing, in order to specify which conjunctions are to be interpreted in
a decreasing context. An alternative would be to work with brackets and/or markers on
the conjunction symbols themselves to build in a more principled grouping of predicates

9C is taken to be a referring constant (remember tense was treated as a pronoun), and therefore increasing
and insensitive to negation.



Section 4.7. Entailment on FLF 177

in decreasing environments in the process of deriving FLF. It is at present not clear if this
is possible.

Note that trying to extract the conjunction from its decreasing environment by turning
it into a disjunction only would work for a very limited set of cases. The pair in (307),
where and is in an antimorphic environment, is indeed equivalent. With anti-additive
nobody, the equivalence already does not hold anymore. Though (308b) entails (308a),
(308a) does not entail (308b). This is the general pattern for monotone decreasing
quantifiers, as Zwarts (1981) already observed.

(307) a. Alice does not dance and sing.
b. Alice does not dance or Alice does not sing.

(308) a. Nobody dances and sings.
b. Nobody dances or nobody sings.

In non-monotone contexts, several predicates over the same variable always need an
exact match. There may not be any in the text that are not in the hypothesis, and there
may not be any in the hypothesis that are not in the text.

4.7.3 Entailments between quantifiers
The logic that concerns entailments between quantifiers, takes the form of a set of
rules. It is not necessary to stick with the standard modern predicate calculus. Seuren
(ming) shows that there are more intuitive alternatives, which, for instance, preserve
the Aristotelian entailments that were rejected in modern logic. He hypothesizes that
humans have an innate basic natural logic, which can be upgraded to strict natural
logic. Standard modern logic as developed by mathematicians is only available through
specialistic education on the topic.

Still, the logics that Seuren discusses are so far limited to some, all and, in some
variants, no. We also can include entailment rules for non-standard quantifiers. Many of
these have at least existential entailments. Examples are more than half of the N, most
N, at least n N, all but n N. These all give rise to entailments in which they are replaced
with some N.

Also the universal quantifier all intuitively has an existential entailment (I will
indicate this entailment rule with ∀ ⇒ ∃), as demonstrated by Aristotelian logic. This
follows, if we assume, inspired on Seuren (2006) that universal quantification in natural
language is not to be modeled with empty restrictors. As an example, we show the kind of
rule that gives us such entailments. When a universal quantifier is the highest operator in
a sentence you may infer a sentence where this universal quantification is substituted with
an existential one. (On the claim that if you are talking about ‘all men’, you are saying
that there are men in your domain, which in turn means that there are men in the domain
for which the predicate holds that holds for all men.) The new existential quantifier
gives a normal upward entailment on man, the other entailment directions in the sentence
remain as they were. This is illustrated in (310) for the DeMorgan equivalents of (246),
repeated in (309.



178 Chapter 4. Flat Logical Form

(309) a. ¬∃x[man↓(x)&∀y[book↑(y)→ ∃e[read↓(e)&ag(e, x)&th(e, y)]]]
geen man heeft elk boek gelezen
no man has read every book

b. ∀x[man↓(x)→ ¬∀y[book↑(y)→ ∃e[read↓(e)&ag(e, x)&th(e, y)]]]
elke man heeft niet elk boek gelezen
every man has not read every book

c. ∀x[man↓(x)→ ∃y[book↑(y)&¬∃e[read↓(e)&ag(e, x)&th(e, y)]]]
voor elke man is er een boek dat hij niet heeft gelezen
for every man there is a book that he didn’t read

(310) a. from (309b), by ∀ ⇒ ∃:
∃x[man↑(x)&¬∀y[book↑(y)→ ∃e[read↓(e)&ag(e, x)&th(e, y)]]]

b. from (309c), by ∀ ⇒ ∃:
∃x[man↑(x)&∃y[book↑(y)&¬∃e[read↓(e)&ag(e, x)&th(e, y)]]]

The ∀ ⇒ ∃ rule may only be applied to the original formula and its DeMorgan
equivalents, not to its logical consequences that are derived by making use of the
entailment properties. So, from our original sentence follows (311a), by downward
entailment on man, and from that, by DeMorgan, follows (311b). But it is at least
questionable whether it is allowed to apply the ∀ ⇒ ∃ rule here to derive (311c),
because then the original sentence would have had to claim that there are clever men
in the domain, which it didn’t say anything about.

(311) a. Geen
no

slimme
smart

man
man

heeft
has

elk
every

boek
book

gelezen.
read

‘No smart man read every book.’
b. Elke

every
slimme
smart

man
man

heeft
has

niet
not

elk
every

boek
book

gelezen.
read

(wide scope for elke)

‘Every smart man has not read every book.’
c. Er

there
heeft
has

een
a

slimme
smart

man
man

niet
not

elk
every

boek
book

gelezen.
read

‘Some smart man has not read every book.’

Likewise, other entailment relations between quantifiers can be defined. An
interesting subclass are quantifiers that allow for numerical reasoning, for example at
least n N entails at least n-m N in increasing context, and at least n+m N in decreasing
contexts (with n and m natural numbers). This reasoning is thus also sensitive to the
monotonicity properties of the environment.

(312) a. Everyone read at least three books.
b. ⇒ Everyone read at least two books.
c. ; Everyone read at least four books.



Section 4.7. Entailment on FLF 179

(313) a. No one read at least three books.
b. ; No one read at least two books.
c. ⇒ No one read at least four books.

Since the information on the entailment direction is available locally, these effects are not
difficult to capture. A rule just needs to allow substitution of Pred(X+incr+≥n+Deps)
by Pred(X+incr+≥(n-1)+Deps)10, and of Pred(X+decr+≥n+Deps) by
Pred(X+decr+≥(n+1)+Deps).

The details of such entailments, as well as the exact choice of the logic to be
implemented, still need to be worked out. The work of Seuren offers interesting
possibilities, but is in itself also rather a research program, than a worked out system
ready for implementation. Much about the logic of natural language is to date unknown.
Therefore, it is not the ambition of this thesis to specify the complete inferential system.
Rather, the intention is to develop a logical form to which insights on semantic inference
can be applied.

4.7.4 Syllogisms
Sometimes it is necessary to combine pieces of information from different places that
together entail the query. Keenan and Westerståhl (1997) gives the example in (314).
One can easily see that it holds, by filling in for example some or a proper name for
NPincr and no for NPdecr .

(314) a. All socialists are vegetarians. NPincr is a socialist.
⇒ NPincr is a vegetarian.

b. All socialists are vegetarians. NPdecr is a vegetarian.
⇒ NPdecr is a socialist.

It can be considered a generalization of some of Aristotle’s syllogisms, extending to
other increasing and decreasing NPs. Several syllogisms fit into these two patterns, some
after DeMorgan was applied to one or more of the propositions.

We can represent the pattern shown above more schematically as follows.

(315) a. Qincr A is a B, every B is a C⇒ Qincr A is a C
b. Qdecr A is a B, every C is a B⇒ Qdecr A is a C

The every part is extendable indefinitely, because every x is a y is transitive (if every x is
a y and every y is a z then every x is a z).

(316) a. Qincr A is a B, every B is a D, every D is a . . . C⇒ Qincr A is a C
b. Qdecr A is a B, every C is a D, every D is a . . . B⇒ Qdecr A is a C

After the invention of first order logic, syllogisms were no longer needed as a tool for
reasoning, since their validity follows from first order logic reasoning. But as we do
not use first order logic in our representations, we need to derive the syllogisms in some

10The rule can be applied recursively.



180 Chapter 4. Flat Logical Form

other way. It is obvious that some rules are needed, but the application of these rules
is complicated by the fact that it is unknown how many pieces of information will be
needed to derive the inference searched for.

All syllogisms depend on a universal statement, either positive (all) or negative (no,
which can be reanalyzed as all not), this is also the part that is extendable. Therefore,
these patterns can be made accessible if chains of universals are compiled as part of the
off-line representation of a text11. The text is searched to form these chains through the
text. A chain can be headed by a different quantifier. This way a body of knowledge
is compiled12. Chains go from predicates that share a variable to variables that share
a predicate to predicates that share a variable etc. with conditions on the quantifiers,
entailment properties and dependencies. Chains can be branching.

(317) A(X+incr+Q1+Dep1) – B(X+incr+Q1+Dep2) – B(Y+decr+every+Dep3) –
C(Y+incr+every+Dep4) – C(Z+every. . .

Suppose we now want to know whether some linguists are vegetarians, and the text only
tells us that some linguists are socialists and all socialists are vegetarians. After the
entailment algorithm has not been able to find the information directly, it looks whether
some linguists is connected to any universal chain that also contains vegetarians.

There will always be a finite number of chains of finite number of elements in a text.
Chains may be circular, but also that is detectable and representable as such. Chaining
is a commonly used technique in deriving instantiations of modus ponens in ontology
languages, such as description logics (Jurafsky and Martin, 2000).

4.7.5 What else is needed for deriving entailments?
Suppose we have sufficiently accurate FLF representations on the sentential level, and an
algorithm that derives entailments on the basis of these, do we then get all entailments
that we want?

In the RTE challenges (see chapter one), it turned out that the main reason for missed
entailments was a lack of background knowledge. We will assume here that we can use
pre-compiled external sources, such as ontologies. Terms in the query can be looked up
in order too enrich the query with extra information that can be found about these terms
(see Bos and Markert (2006)).

Not all relevant information can be expected to be found this way. Consider the term
problem. In Narrator it may happen that a user asks what problems others encountered
when going back to work. Narratives that describe such problems may not always
explicitly mention the word problem or a closely related term, especially when it will
anyway be obvious to the human reader that what is being described is a problem. It is
unlikely that it can be found in an ontology or even an encyclopedia what kind of thing
counts as a problem for what or for who. A possible strategy is to try and harvest such

11Also generics are interesting in this respect, but they require techniques for non monotone reasoning.
12In order to combine information from different texts their universal chain information needs to be

combined. (Some extra care is required here, since the contextually determined set that the universal applies
to is more likely to be different.) In the context of the Narrator project, which is about the retrieval of single
(parts of) documents, it is unlikely that this is needed.



Section 4.8. Representation of text and hypothesis for entailment 181

information by collecting states of affairs that are explicitly described as problems from
a corpus. Still, making useful generalizations on the basis of these data and then deciding
what to search for in the narratives is far from trivial.

Reasoning about time and space will need background knowledge about some of the
physical properties of our world. It needs to be investigated whether this can be covered
by a set of FLF postulates.

Coreference resolution will also be important. The natural thing to do is to use an
existing system or a combination of systems. Some systems are rather specialized, for
example in recognizing when names in different formats refer to the same people.

Another discourse phenomenon not covered yet is that of discourse relations between
sentences or clauses. Bosma (2008) gives an overview of the work in the field of
annotation of discourse structure. Several taxonomies of coherence relation types exists
using categories such as causality, justification, contrast, condition, and elaboration.
There are annotated corpora automatic based on the Rhetorical Structure Theory (RST) of
Mann and Thompson (1988). Marcu (1997) used such a corpus to develop an automatic
RST annotation system. It mainly relies on layout and cue phrases.

In our system, explicitly indicated discourse relations within the sentence will in
general be represented in the logical form. Relations between sentences will in some
cases be a matter of coreference resolution. For example if a sentence begins with
therefore, it needs to be established what there refers to. Discourse relations are however
not always expressed explicitly. If I say for example I’m going to bed. I’m tired.,
then anybody will immediately understand that I am going to bed because I am tired.
Recognizing such implicit relations faces similar challenges as the problem problem
above. It is therefore not clear to what extent the use of an existing system for annotating
discourse relations will be helpful. The taxonomies probably will be of help to decide
on useful and consistent representations for the cue phrases that are relevant to discourse
relations.

4.8 Representation of text and hypothesis for entailment

This section is intended to summarize what has been discussed so far into a coherent
picture as well as to give an outlook on what could not be covered here.

The texts are parsed off-line to get FLF representations for the sentences, representing
their readings and equivalent forms. Every conjunct is annotated for the text, the
sentence, the reading, and the alternative form it is part of. An alternative form of a
reading can be obtained by applying DeMorgan or possibly some other defined operation
that produces forms that are equivalent to the original one. All variables are distinct and
have distinct names, unless they are bound by the same quantifier or stand in an anaphora
relation. That is, fresh variable names need to be generated for every new sentence.

In order to combine information from different places it will be helpful to identify
chains formed through predicates that share a variable and variables that share a
predicate: P1(A)–P2(A)–P2(B)–P3(B)–P3(C). Especially when universal quantifiers are
involved, such chains will help to find entailments.



182 Chapter 4. Flat Logical Form

In general it is important to do as much work as possible off-line, to make as many
steps as possible in the direction of possible hypotheses. The remaining steps needed to
check the entailment against such an elaborately represented text must be driven by the
query/hypothesis. The hypothesis should determine what has to be searched for.

The hypothesis itself is also parsed and represented in FLF. The entailment algorithm
derives search terms from the hypothesis; the hypothesis itself, its DeMorgan-equivalent
normal form, minimal conjunctions that entail the hypothesis,. . . The latter can be derived
by applying entailment rules, for example between different quantifiers. Changing a
quantifier has consequences for more than one conjunct, therefore these rules cannot
apply purely locally. Making use of the entailment properties in combination with, for
example, an ontology can be applied to conjuncts in isolation. To look for evidence
against the hypothesis, its negation can be derived (add negation to the dependency list of
every conjunct and adjust the entailment properties), and the negations of its entailments.

The conjuncts of the hypothesis, in original or derived form, are then matched with
conjuncts in the text. A conjunct P(Var1+Dir+Quant+[]) in the hypothesis, matches with
a conjunct P(Var2+Dir+Quant+[]) in the text. If two conjuncts share the same variable
in the hypothesis, their counterparts in the text must also share a variable in the same
positions. After the preparatory steps, the actual matching is thus a matter of searching,
plus a variable check.

If a dependent conjunct is found, while an independent one was searched for,
it depends on the scopal operator in question whether the entailment holds or not.
P(B+Dir+Quant+[A]) does not by default entail P(B+Dir+Quant+[]), but it can if A
allows for it. This means that also conjuncts with more dependencies than in the
hypothesis can be taken into consideration.

Below is an example that illustrates some aspects of inference on FLF. The hypothesis
(h) in (319) is checked against a text (t) containing (318) as its 23rd sentence. The
matching conjuncts are indicated with the same symbol.

(318) text
a. Hoogstens

at most
twee
two

mannen
men

weten
know

dat
that

minstens
at least

drie
three

vrouwen
women

hard
hard

werken.
work

‘At most two men know that at least three women work hard.’
b. man(A+decr+>2+[neg1]):23:[1] &

proposition(B+nonm+the+[]):23:[1] &
evidence(B+incr+the+[], factive):23:[1] &

♠ woman(C+incr+≥3+[B]):23:[1] &
♥ work(D+incr+some+[B,C]):23:[1] &
♦ event(D+incr+some+[B,C]):23:[1] &
♣ agent_of(D+incr+some+[B,C],C+incr+≥3+[B]) &

attime(D+incr+some+[B,C],E):23:[1] &
manner_of(D+incr+some+[B,C], hard):23:[1] &
tense(D+incr+some+[B,C],pres):23:[1] &
know(F+decr+some+[neg1]):23:[1] &
state(F+decr+some+[neg1]):23:[1] &
experiencer_of(F+decr+some+[neg1],A+decr+>2+[neg1]):23:[1] &



Section 4.8. Representation of text and hypothesis for entailment 183

theme_of(F+decr+some+[neg1],B+incr+the+[]):23:[1] &
attime(F+incr+some+[neg1],G):23:[1] &
tense(F+incr+some+[neg1],pres):23:[1]

(319) hypothesis

a. Sommige
some

vrouwen
women

werken.
work

‘Some women work.’

b. ♠ woman(X+incr+some_pl+[]) &
♥ work(Y+incr+some+[X]) &
♦ event(Y+incr+some+[X]) &
♣ agent_of(Y+incr+some+[X],X+incr+some_pl+[]) &

attime(X+incr+some+[X],Z) &
tense(Y+incr+some+[X],pres)

Every X in h corresponds to a C in t and every Y in h corresponds to a D in t. The
quantifier on woman in h differs from the one in t. The entailment needs to be mediated
by a rule: P(Var1+incr+some_pl+[]) is entailed by P(Var2+incr+>n+[]), for all n≥2. As
for the dependencies, the conjuncts that are dependent on C in h, are dependent on X
in t. That is fine. In addition, all the relevant conjuncts in t are dependent on B. This
needs to be checked. Since B refers to a proposition marked as factive, it does not block
entailment. The temporal information can in this case also be matched, but an exact
match, especially of tense, is not always needed. (In the RTE task tense was ignored.)

The entailment is effective to the degree that the representation it operates on is
analytical; we consider a representation to be fully analytical if every possible semantic
consequence of a sentence is isolated in a closed proposition. The notion of entailment
exploited is rather restrictive. It implies that nothing is entailed unless it is explicitly
represented or can be deduced from representations with linear means. It is restricted
to relations that are made explicit in the linguistic analysis. However, if additional
knowledge is explicitly specified in a linguistic mode, the entailment mechanism may
account for logical relations based on that knowledge. The restrictiveness of conjunctive
entailment neglects other formal or informal conclusions a human being may derive
from texts. Thus, applying conjunctive entailment provides, by necessity, a subset of
documents supporting a certain query. Whether this still yields a useful and/or valuable
level of retrieval, is to be evaluated in application.

The restrictiveness as such, however, is possibly balanced by the option of parame-
terizing conjunctive entailment. In particular, certain semi-veridical semantic operators
like probability, which under strict conditions obscure propositions in their domain from
entailment, can be handled more loosely as to allow inferences. That is, on a query p?,
documents can be brought up that entail mod(p) for certain modal operators mod. The
inference mechanism can be parameterized for this, or the results can be presented as
supporting a weaker hypothesis. This applies to the different cases of embedding that are
sometimes better ignored, such as modals used as hedges, or citations that the author can
be assumed to agree with.



184 Chapter 4. Flat Logical Form

Similarly, if no sentence can be found that entails the hypothesis, but there is a
sentence in the text that is entailed by the hypothesis, this may be returned as a weaker
version of the hypothesis. For example, instead of all men work, you find some men work.
Then one of the conjuncts in the hypothesis is not supported by the text, and therefore
the hypothesis is not supported, but an entailment of the hypothesis is. Or, instead of all
men work you find all blond men work, or instead of all men work hard you find all men
work. In all these cases an output that reports on finding support for a weaker version of
the hypothesis may be useful.

4.9 Examples of queries and inferences on real text
Throughout this chapter, we have seen examples of representations and inferences
concerning the phenomena discussed. The examples were always constructed single
sentences. Now we will briefly look at a real text that would be included in the Narrator
system. It gives a clearer impression of the kind of stories Narrator is about and at the
same time of the problems and opportunities of representing and inferencing on real text.
On the next page you find the text that is used, found at http://www.kankerpatient.nl,
followed by a rough translation.

The queries used for illustration have been constructed on the basis of the text.
Natural language questions have been chosen as the query form. This is a natural type
of input that is likely to profit from a deep semantic approach. Most, but not all are
somewhat plausible as user input. The representations of those sentences from the text
that are relevant to the queries are given, together with the inferences that are to be
checked. In the FLF representations of the text sentences, variable names were used
that consist of a letter and the number of the sentence, in order to generate enough
different variable names for the whole text. In the hypotheses only letters are used
and the variables are considered to be independent from those occurring elsewhere.
In the process of matching hypothesis conjuncts against text conjuncts, variables unify.
Sometimes extra white lines were introduced in the FLFs for reading convenience. Tense
is largely ignored as the system for its representation is too poor to sensibly make use of
it for inference with some form of temporal reasoning.

The examples do not necessarily represent results that other methods cannot get, but
give an impression of the way our approach can be very precise.

Of course the new FLF format is only successful if the representations are in general
of high quality, that is, if the right information is adequately encoded in it. Some
limitations will immediately become apparent, as there are many aspects of semantics
that lack the implementation of a systematic analysis.

The imaginary queries we will consider (some more likely to actually occur in the
envisioned setting than others) are the following:

1. Did a breast cancer patient receive surgery and radiation?

2. Can someone who had axillary clearance still do cleaning?

3. What can carwax be used for?



Section 4.9. Examples of queries and inferences on real text 185

Eind december 1992 werd bij mij borstkanker geconstateerd en onderging ik een
borstsparende operatie en een okseltoilet. De behandelende chirurg meldde tussen
neus en lippen door dat ik mijn rechterarm nooit meer functioneel zou kunnen
gebruiken, dat ik misschien nog net mijn haar zou kunnen kammen. Verbijsterd
hoorde ik de man aan, maar eigenwijs als ik was en nóg ben, heb ik dát verhaaltje
naast me neergelegd.

Immers, ik moest thuis en op mijn werk toch gewoon kunnen functioneren, als
kostwinner en alleenstaand moeder van een dochter van twaalf jaar. Na alle
bestralingen, die voor mij alleen psychisch vervelend waren, heb ik mezelf drie
maanden gegeven om bij te komen. Ik heb op mijn manier het verdriet en de boosheid
verwerkt en ben vervolgens weer voor halve dagen aan het werk gegaan.

Ja, natuurlijk was ik moe, maar daaraan mocht ik niet toegeven. Met behulp van
een fysiotherapeut ben ik mijn arm gaan trainen, want, zo dacht ik, die zit aan
mijn lichaam en doet maar mee met de rest. Ook dat was heel vermoeiend, maar
het werkte wel. Als ik van mijn werk thuiskwam, dook ik mijn bed in, in de hoop
dat de vermoeidheid over zou gaan. Want daarna kwamen de boodschappen, de
huishouding en de moeder-die-met-thee-klaar-zit als mijn dochter uit school kwam.

Dat heb ik een half jaar volgehouden en toen was het op! Ik heb me ziek gemeld en
heb hulp gezocht bij een psychiater. Hij heeft me geleerd dat op je tenen lopen niet
goed is, dat je zwak mag zijn, soms even niet kan of geen zin hebt om de dingen te
doen die gebeuren moeten. Luister naar je lichaam, zei hij, en ik die dat altijd een
‘geitenwollensokkenverhaal’ vond, heb zijn raad aangenomen. Ik ontdekte trucjes
die me in het huishouden helpen. Als ik daarover aan iemand vertel, verklaren ze
me voor gek, maar wat kan mij dat schelen? Om een voorbeeld te noemen: als
ik handwas heb, neem ik dat mee in bad en zit in het warme water op een relaxte
manier de kledingstukken te wassen. Als de badkamer schoongemaakt moet worden,
doe ik de muren terwijl ik zelf onder de douche sta en smeer vervolgens wat autowas
op de tegels, zodat er de eerste weken geen kalkaanslag verschijnt. Kortom, ik ben
het type ‘luie huisvrouw’ geworden. Als mensen zich storen aan de pluizen op het
kleed is dat jammer, ze nemen dan zelf maar de stofzuiger ter hand. Ik vind het veel
belangrijker dat ik lekker in mijn vel zit, me goed voel en daar heeft mijn dochter en
de rest van de omgeving ook veel meer plezier van. En als ik heel erg moe ben, doe
ik alleen de dingen die ik leuk vind, ga lekker een film kijken op bed, lees een boek,
ga in de tuin zitten genieten. . .

Natuurlijk zijn er dagen dat het helemaal niet gaat, maar ik accepteer dat als iets dat
erbij hoort. Alleen mijn werkgever was niet zo blij, ik kon mijn eigen werkzaamheden
niet meer doen en toen ik ook nog een whiplash opliep tijdens de dienst - ik werkte
bij de politie - en gedeeltelijk in de WAO terechtkwam, was dat een reden om mijn
ontslag aan te vragen. In eerste instantie ben ik daar erg boos over geweest, voelde
me afgedankt, maar eigenlijk ben ik nu dankbaar. Het geeft me meer tijd voor mezelf
en daar word ik alleen maar beter van.

Ik hoop dat dit verhaal voor anderen bijdraagt aan de acceptatie van vermoeidheid.
Denk er maar eens over na en laat dat ‘moeten’ eens varen. Je zult merken dat het
helpt.



186 Chapter 4. Flat Logical Form

At the end of December 1992 I was diagnosed with breast cancer and I underwent
a breast conserving surgery and an axillary clearance. The surgeon who treated
me mentioned casually that I would never be able to functionally use my right arm
again, that perhaps I could just still manage to brush my hair. Flabbergasted I
listened to the man, but headstrong as I was and still am, I decided to ignore that
little story.

After all, I would have to be able to function normally at home and at work, being
a breadwinner and single mother of a twelve year old daughter. After all the
radiations, which only bothered me psychologically, I gave myself three months to
recover. In my own way I came to terms with the anger and sadness, and afterwards
I started working again half-time.

Yes, of course I was tired, but I couldn’t give in to that. With the help of a
physiotherapist I started training my arm, because, so I thought, it is part of my
body and it ’d better keep up with the rest. That was very tiring too, but it did work.
When I came home from work I jumped into bed, hoping that the tiredness would go
away. Because after that there was the grocery shopping, the household, and the
mother-waiting-with-tea when my daughter came home from school.

I managed to continue like that for half a year and that was it! I called in sick and
went to a psychiatrist for help. He taught me that walking on tiptoe is not good, that
it’s ok to be weak, that sometimes you just don’t manage or don’t feel like doing the
things that need to be done. Listen to your body, he said, and I who always used to
consider that something for sissies, accepted his advice. I discovered little tricks
that help me in the household. When I tell someone about it, they think I’m crazy,
but what do I care? To give an example: when I need to wash things by hand, I
take them with me into the bath and I sit in the warm water washing those clothes
in a relaxed way. when the bathroom needs to be cleaned, I clean the walls while I
am taking a shower and then I use some car wax to wax the tiles, to prevent scale
from appearing for the next few weeks. In short, I have become the ‘lazy housewife’
type. If people are bothered by fluff on the carpet they are free to get out the vacuum
cleaner themselves. I find it much more important that I feel good and my daughter
and the other people around me benefit much more from that too. And when I am
really exhausted, I only do the things I like, I watch a nice movie in bed, read a book,
sit down in the garden and enjoy. . .

Of course there are days that it doesn’t go at all, but I accept that as something
that’s just part of it. Only my employer wasn’t that happy, I couldn’t do my own type
of work anymore and when on top of that I got a whiplash while on duty - I worked
for the police - and ended up relying partly on disability benefits, that was a reason
to apply for my dismissal. At first I was very upset about that, felt discarded, but
really I now am grateful. It gives me more time for myself and I only benefit from that.

I hope this story contributes for others to the acceptance of tiredness. Think about it,
and let go of that ‘ have to’. You will see that it helps.



Section 4.9. Examples of queries and inferences on real text 187

4. Can a someone who had breastcancer function normally at work?

The questions are transformed into hypotheses for which entailment is checked.
We start with the first query about whether a breast cancer patient had surgery and

radiation. As it is a yes/no question the way to proceed is to look whether a hypothesis
that would result in an affirmative answer is entailed by the text and whether a hypothesis
that would result in a negative answer is entailed by the text. This kind of query could
easily occur to select texts about particular types of treatment. This method of deriving a
hypothesis (statement) from a question is common practice in question answering and is
also used in the RTE challenge to transform question-answer pairs into text-hypothesis
pairs for the data set. I assume algorithms are available.

So the hypothesis we will try to find evidence for or against and that will put this
text in the yes or in the no category is the following (the result of parsing the Dutch
equivalent of the statement derived from the question, which may contain verbs rather
than nominalizations), assuming an implementation of coordination along the lines of
Willis (2007):

person(A+incr+some+[])&
breastcancer(B+nonm+gen+[]) &
suffer_from(C+incr+some+[B]) &
state(C+incr+some+[B]) &
experiencer_of(C+incr+some+[B],A+incr+some+[]) &
theme_of(C+incr+some+[B],B+incr+gen+[]) &
event(D+incr+some+[]) &
operate(D+incr+some+[]) &
agent_of(D+incr+some+[],E) &
theme_of(D+incr+some+[],A) &
attime(D,F) &
tense(D,past) &

event(G+incr+some+[]) &
radiate(G+incr+some+[]) &
agent_of(G+incr+some+[],H) &
theme_of(G+incr+some+[],A) &
attime(G,I) &
tense(G,past)

Borstkankerpatient ‘breast cancer patient’ is here analyzed as ‘person who suffers
from breast cancer’. In a system as Narrator it makes sense to include this in the the
lexicon. Alternatively, this information can be looked up in an external source.

Evidence for the first part of the query is found in sentence number one. It needs to
be specified somewhere that ‘i’ refers to a person13.

13In cases where ‘i’ refers to personified things, one can either accept these things as persons in these contexts
or alternatively ‘i’ can be specified to refer to a person only in absence of evidence to the contrary. The latter
option needs a logic that is suitable for reasoning with this type of information.



188 Chapter 4. Flat Logical Form

“Eind december 1992 werd bij mij borstkanker geconstateerd en onderging ik een
borstsparende operatie en een okseltoilet.”
End of December 1992 I was diagnosed with breastcancer and I went through a breast
conserving surgery and an axillary clearance.

year_1992(A1+nonm+the+[]) &
month_december(B1+nonm+the+[]) &
attime(B1+nonm+the+[],A1+nonm+the+[])&
end(C1+nonm+the+[]) &
related_to(C1+nonm+the+[],B1+nonm+the+[]) &
proposition(D1+incr+the+[]) &
breastcancer(E1+nonm+gen+[]) &
suffer_from(F1+incr+some+[D1,E1]) &
state(F1+incr+some+[D1,E1]) &
experiencer_of(F1+incr+some+[D1,E1],i) &
theme_of(F1+incr+some+[D1,E1],E1+incr+gen+[D1]) &
attime(F1+incr+some+[D1,E1],B1) &
tense(F1+incr+some+[D1,E1],past) &
ascertain(G1+incr+some+[]) &
event(G1+incr+some+[]) &
agent_of(G1+incr+some+[],H1) &
theme_of(G1+incr+some+[],D1+incr+the+[]) &
attime(G1+incr+some+[],C1+incr+the+[]) &
tense(G1+incr+some+[],past)&

breast(I1+decr+gen+[]) &
event(J1+incr+some+[]) &
operate(J1+incr+some+[]) &
agent_of(J1+incr+some+[],K1) &
theme_of(J1+incr+some+[],i) &
event(L1+incr+some+[]) &
conserve(L1+incr+some+[]) &
agent_of(L1+incr+some+[],J1+incr+some+[]) &
theme_of(L1+incr+some+[],I1+incr+gen+[]) &
attime(J1,E) &
tense(J1,past) &

armpit(M1+incr+some+[]) &
related_to(M1+incr+some+[],i) &
gland(N1+decr+every+[]) &
location_of(N1+decr+every+[],M1+incr+some+[]) &
event(O1+incr+some+[]) &
operate(O1+incr+some+[]) &



Section 4.9. Examples of queries and inferences on real text 189

agent_of(O1+incr+some+[],P1) &
theme_of(O1+incr+some+[],i) &
subevent_of(O1+incr+some+[],Q1+incr+some+[]) &
event(Q1+incr+some+[]) &
remove(Q1+incr+some+[]) &
agent_of(Q1+incr+some+[],P1) &
theme_of(Q1+incr+some+[],N1+incr+every+[]) &
attime(O1,R1) &
tense(O1,past) &

Evidence for the second part is found in sentence number five. In one of its
readings the theme of radiation is resolved as ‘i’, referring to the first-person narrator.
If mechanisms to extract world knowledge are used, this might even be identified to be
by far the most likely reading. The text says that the radiations were unpleasant for the
‘i’ referent. By extracting unambiguous cases from a corpus it may be concluded that
it is most likely for radiation to be unpleasant for the person receiving it. For now we
consider one legitimate reading to be enough to support the inference. Since the sentence
is part of the same text as the previous one and no embedding in a direct quotation is
involved, the ‘i’ referent of this sentence and the previous one is assumed to be the
same. Therefore the entailment is recognized and the text is retrieved as providing an
affirmative answer to the question asked in the query.

“Na alle bestralingen,[. . . ] , heb ik mezelf drie maanden gegeven om bij te komen.”
After all the radiations, I have given myself three months to recover.

event(A5+decr+every+[]):5:[1,2,3] &
radiate(A5+decr+every+[]):5:[1,2,3] &
agent_of(A5+decr+every+[],B5):5:[1,2] &
theme_of(A5+decr+every+[],C5):5:[1,3] &
agent_of(A5+decr+every+[],i):5:[3] &
theme_of(A5+decr+every+[],i):5:[2] &

month(D5+incr+three+[]):5:[1,2,3] &
give(E5+incr+some+[]):5:[1,2,3] &
event(E5+incr+some+[]):5:[1,2,3] &
source_of(E5+incr+some+[],i):5:[1,2,3] &
theme_of(E5+incr+some+[],D5+incr+three+[]):5:[1,2,3] &
goal_of(E5+incr+some+[],i):5:[1,2,3] &
attime(E5+incr+some+[],F5):5:[1,2,3] &
aspect(E5+incr+some+[],perf):5:[1,2,3] &
tense(E5+incr+some+[],pres):5:[1,2,3] &
property(G5+decr+the+[]):5:[1,2,3] &
recover(H5+incr+some+[G5]):5:[1,2,3] &
event(H5+incr+some+[G5]):5:[1,2,3] &



190 Chapter 4. Flat Logical Form

experiencer_of(H5+incr+some+[G5],i):5:[1,2,3] &
attime(H5+incr+some+[G5],I5):5:[1,2,3] &
purpose_of(E5+incr+some+[],H5+incr+the+[G5]):5:[1,2,3] &
after(A5+incr+every+[],E5+incr+some+[]):5:[1,2,3] &

The second query asked whether someone who had axillary clearance can still do
cleaning. Also a reasonable question as the removal of the axillary glands may affect the
functioning of the arm. Users may ask a question of this type when trying to find out
whether (ex-)patients experienced any trouble with household activities and for example
had to employ someone to do their cleaning. We will look for evidence for the following:

person(A+incr+some+[]) &
armpit(B+incr+some+[]) &
related_to(B+incr+some+[],A+incr+some+[]) &
gland(C+decr+every+[]) &
location_of(C+decr+every+[],B+incr+some+[]) &
event(D+incr+some+[]) &
operate(D+incr+some+[]) &
agent_of(D+incr+some+[],E) &
theme_of(D+incr+some+[],A+incr+some+[]) &
subevent_of(D+incr+some+[],F+incr+some+[]) &
event(F+incr+some+[]) &
remove(F+incr+some+[]) &
agent_of(F+incr+some+[],E) &
theme_of(F+incr+some+[],C+incr+every+[]) &
attime(D,G) &
tense(D,past) &

state(H+incr+some+[]) &
proposition(I+decr+the+[]) &
clean(J+incr+some+[I]) &
event(J+incr+some+[I]) &
agent_of(J+incr+some+[I],A+incr+some+[]) &
theme_of(J+incr+some+[I],K) &
attime(J+incr+some+[I],L) &
theme_of(H+incr+some+[],I+incr+the+[]) &
evidence(I+incr+the+[],possible) &
attime(H+incr+some+[],M) &
tense(H+incr+some+[],pres)

The evidence in this case is a bit less straightforward than in the previous example.
The person undergoing axillary clearance is identified as the first-person narrator of the
story as above. Now we have to establish whether this person is able to do cleaning.
Sentence fourteen is about cleaning the bath room. The protagonist is said to ‘do’ the



Section 4.9. Examples of queries and inferences on real text 191

walls. For the inference to be supported this ‘do’, which could in principle refer to
any kind of activity, should be identified as cleaning. In this conditional relation to
cleaning, this can be judged likely or at least compatible with the sentence, which is
about cleaning and and the protagonist doing something and is therefore already likely
to be relevant. It is reasonable to tune the system in such a way that this document is
retrieved in the ‘yes’ list, but ranking below documents that contain more conclusive
evidence, if there are any. The document can not be identified as strictly entailed, but,
with a sufficiently advanced retrieval strategy, as relevant and compatible with a yes
answer. A more powerful solution would be to consider do as anaphoric and resolving
its reference. That would yield a real entailment.

“Als de badkamer schoongemaakt moet worden, doe ik de muren terwijl ik zelf onder de
douche sta en smeer vervolgens wat autowas op de tegels, zodat er de eerste weken geen
kalkaanslag verschijnt.”
If the bathroom needs to be cleaned, I do the walls while I am taking a shower and then
I spread some car wax on the tiles, so no lime scale appears in the first few weeks

wall(A14+decr+the+[]) &
do(B14+incr+some+[]) &
event(B14+incr+some+[]) &
agent_of(B14+incr+some+[],i) &
theme_of(B14+incr+some+[],A14+incr+the+[]) &
attime(B14+incr+some+[],C14) &
tense(B14+incr+some+[],pres) &
shower(D14+decr+the+[]) &
stand(E14+incr+some+[]) &
state(E14+incr+some+[]) &
theme_of(E14+incr+some+[],i) &
attime(E14+incr+some+[],F14) &
tense(E14+incr+some+[],pres) &
under(D14+incr+the+[],E14+incr+some+[]) &
while(B14+incr+some+[],G14) &
state(H14+incr+some+[]) &
proposition(I14+decr+the+[]) &
bathroom(J14+decr+the+[I14]) &
clean(K14+incr+some+[I14]) &
event(K14+incr+some+[I14]) &
agent_of(K14+incr+some+[I14],L14) &
theme_of(K14+incr+some+[I14],J14+incr+the+[I14]) &
attime(K14+incr+some+[I14],M14) &
theme_of(H14+incr+some+[],I14+incr+the+[]) &
evidence(I14+incr+the+[],necessary) &
attime(H14+incr+some+[],N14) &
tense(H14+incr+some+[],pres) &



192 Chapter 4. Flat Logical Form

if(H14+incr+some+[],B14+incr+some+[]) &

carwax(O14+incr+some+[]) &
tile(P14+decr+the+[]) &
smear(Q14+incr+some+[]) &
event(Q14+incr+some+[]) &
agent_of(Q14+incr+some+[],i) &
theme_of(Q14+incr+some+[],O14+incr+some+[]) &
goal_of(Q14+incr+some+[],P14+incr+the+[]) &
attime(Q14+incr+some+[],R14) &
tense(Q14+incr+some+[],pres) &

week(S14+decr+the+[]) &
first(S14+decr+the+[]) &
scale(T14+decr+some+[neg]) &
appear(U14+decr+some+[neg]) &
event(U14+decr+some+[neg]) &
theme_of(U14+decr+some+[neg],T14+decr+some+[neg]) &
attime(U14+decr+some+[neg],S14+decr+the+[]) &
tense(U14+decr+some+[neg],pres) &
atplace(P14+incr+the+[],U14+incr+some+[]) &

lead_to(V14+incr+some+[]) &
event(V14+incr+some+[]) &
cause_of(V14+incr+some+[],Q14+incr+some+[]) &
effect_of(V14+incr+some+[],U14+incr+the+[]) &

The third query is considerably less likely to occur naturally in the Narrator context,
but is still interesting for purposes of illustration. It asks what car wax can be used
for, a what-question for a change. I assume a representation like the following will be
searched for.

state(A+incr+some+[]) &
proposition(B+decr+the+[]) &
carwax(C+incr+some+[B]) &
use(D+incr+some+[B]) &
event(D+incr+some+[B]) &
agent_of(D+incr+some+[B],E) &
theme_of(D+incr+some+[B],C+incr+some+[B]) &
lead_to(F+incr+some+[B]) &
event(F+incr+some+[B]) &
cause_of(F+incr+some+[B],D+incr+some+[B]) &
effect_of(F+incr+some+[B],G) &
attime(D+incr+some+[B],H) &



Section 4.9. Examples of queries and inferences on real text 193

theme_of(A+incr+some+[],B+incr+the+[]) &
evidence(B+incr+the+[],possible) &
attime(A+incr+some+[],I) &
tense(A+incr+some+[],pres)

The answer is found in sentence number fourteen, already given above. Applying
wax to tiles must be identified as an instance of use. I assume we can rely on ontologies
here. The clause with zodat can be identified as introducing a purpose or effect. Rules
for modality should make clear that when something is used, it can be used, but not the
other way around. The use of this rule must be triggered by the occurrence of can in the
hypothesis. On the basis the match that is obtained this way it is concluded that sentence
fourteen contains the answer. Also notice that if the negation in the text scoped higher
than it does, embedding the wax or the event, the inference could not be made and the
document would not be retrieved. This illustrates the precision of detailed semantic
analysis.

Our last example illustrates a case of embedding that blocks entailment. We have
already seen before how we the first-person narrator in the story with the breast cancer
patient in the query. So let us leave that step out here and just see what happens if we try
to match ‘Ik kon op mijn werk gewoon functioneren.’ I could function normally at work
against the text.

state(A+incr+some+[]) &
work(B+decr+the+[]) &
related_to(B+decr+the+[],i) &
proposition(C+decr+the+[]) &
property(D+decr+the+[C]) &
normal(E+incr+some+[C]) &
state(E+incr+some+[C]) &
theme_of(E+incr+some+[C],F+incr+some+[C]) &
function(F+incr+some+[C]) &
event(F+incr+some+[C]) &
agent_of(F+incr+some+[C],i) &
attime(F+incr+some+[C],G) &
theme_of(A+incr+some+[],C+incr+the+[]) &
evidence(C+incr+the+[],possible) &
attime(A+incr+some+[],H) &
tense(A+incr+some+[],past) &
atplace(B+incr+the+[],A+incr+some+[]) &

The relevant text sentence here is sentence number four. All conjuncts can be
matched, except that the proposition introduced by kunnen ‘can’ in the text is dependent,
whereas in the query/hypothesis it is not. The conjuncts proposition(C+decr+the+[])
and evidence(C+incr+the+[],possible) cannot immediately be matched with
proposition(P4+decr+the+[O4]) and evidence(P4+incr+the+[O4],possible) respectively,



194 Chapter 4. Flat Logical Form

because the latter is dependent on O4. The nature of this dependency must be checked.
The variable O4 belongs to the proposition introduced by moeten ‘have to’. This
embedding does not allow for the inference.

“[Immers,] ik moest thuis en op mijn werk [toch] gewoon kunnen functioneren, . . . ”
After all, I would have to be able to function normally at home and at work, . . .

state(A4+incr+some+[]) &
state(B4+incr+some+[]) &
home(C4+decr+the+[]) &
proposition(D4+decr+the+[]) &
proposition(E4+decr+the+[D4]) &
property(F4+decr+the+[E4]) &
normal(G4+incr+some+[F4]) &
state(G4+incr+some+[F4]) &
theme_of(G4+incr+some+[F4],H4+incr+some+[E4]) &
function(H4+incr+some+[E4]) &
event(H4+incr+some+[E4]) &
agent_of(H4+incr+some+[E4],i) &
attime(H4+incr+some+[E4],I4) &
theme_of(A4+incr+some+[],E4+incr+the+[D4]) &
evidence(E4+incr+the+[D4],possible) &
attime(A4+incr+some+[],J4)] &
theme_of(B4+incr+some+[],D4+incr+the+[]) &
evidence(D4+incr+the+[],necessary) &
attime(B4+incr+some+[],K4) &
tense(B4+incr+some+[],past) &
atplace(C4+incr+the+[],B4+incr+some+[]) &

state(L4+incr+some+[]) &
state(M4+incr+some+[]) &
work(N4+decr+the+[]) &
related_to(N4+decr+the+[],i) &
proposition(O4+decr+the+[]) &
proposition(P4+decr+the+[O4]) &
property(Q4+decr+the+[P4]) &
normal(R4+incr+some+[Q4]) &
state(R4+incr+some+[Q4]) &
theme_of(R4+incr+some+[Q4],S4+incr+some+[P4]) &
function(S4+incr+some+[P4]) &
event(S4+incr+some+[P4]) &
agent_of(S4+incr+some+[P4],i) &
attime(S4+incr+some+[P4],T4) &
theme_of(L4+incr+some+[],P4+incr+the+[O4]) &



Section 4.10. Conclusions and future research 195

evidence(P4+incr+the+[O4],possible) &
attime(L4+incr+some+[],U4)] &
theme_of(M4+incr+some+[],O4+incr+the+[]) &
evidence(O4+incr+the+[],necessary) &
attime(M4+incr+some+[],V4) &
tense(M4+incr+some+[],past) &
atplace(N4+incr+the+[],M4+incr+some+[])&

The basis of reasoning with FLF is a matter of finding matching conjuncts. We have
seen in the first example that these do not all need to come from the same sentence. A
system of tracking referents is needed for many cases in which information from different
sentences is combined. Additionally, successful inferencing relies on possibilities of
expanding the query, through the use of ontologies and, for example, rules of modality.
Many aspects of the representation that are independent of the FLF format remain
important. For example in the third query, the representation of purpose introduced in
one case by use for and in the other case by zodat was in both cases the same. If it
were not, additional rules would be necessary. Because complex relations are concerned,
this is not straightforwardly covered by an ontology. Of course, some information that
is needed for inference cannot be included in the representations which are computed
compositionally, because it is dependent on interpretation in context, with the help of
world knowledge. There is however no reason why strategies that make guesses about
such things possible, for example by using harvested knowledge, should not be able to
be integrated with the present approach.

All these additional mechanisms are necessary in other logical approaches too, except
maybe referent tracking, which might be already covered in DRT. The advantage of FLF
is that the basic logical operation is simply the matching of conjuncts.

4.10 Conclusions and future research
This chapter introduced Flat Logical Form (FLF), a semantic output format of our
semantic parser (and generator) for Dutch, which is specifically designed to facilitate
inferencing. Quantifiers and their properties are coded on the variables they bind. What
remains is a conjunction of predicates over variables with all quantificational properties
and dependencies marked on those variables, subject to conjunctive entailment. In order
to make use of the quantificational properties for entailment, rules that operate on these
properties are to be formulated. After a number of preparatory steps on the text and the
hypothesis, checking entailment is a matter of searching in a list of conjuncts.

I have introduced a rather coarse-grained system for computing effective entailment
directions. When continuous quantifiers are analyzed in terms of increasing and
decreasing ones, no additional property is needed to obtain the continous entailment
pattern. Consistent and complete entailments can also be obtained by other means.
Further research is needed to determine how to best make (anti-)additive and (anti-
)multiplicative entailment patterns available.

A promising aspect of FLF that is yet to be explored is that the representation



196 Chapter 4. Flat Logical Form

can be viewed as a network. The conjuncts are separate, but interlinked units, of
which the order does not matter. Therefore, FLF representations are potentially more
representative for the way meanings are represented in the human brain, than first-order
logic representations are.

FLF is expected to facilitate entailment-based retrieval in the Narrator system.
FLF offers semantic representation at a level of specification that renders obsolete
deep inspection of the formula for the sake of automated inference: the computation
of the majority of logical dependencies has been transferred to the off-line semantic
representation. The surface representation only makes use of conjunction and to a limited
extent disjunction. Entailment directions and dependencies induced by quantifiers and
different kinds of operators, including negation, are all coded on the variables in an
explicit and localized way. Entailments are mediated by simple rules that operate on
the encoded properties. Of course, as is the case in any kind of deep semantic analysis,
countless phenomena are still waiting for improved analyses and representations. The
FLF approach is expected to shed an interesting new light on at least some of the
known challenges. More research is needed to further develop FLF and experiment with
applications. Yet, I hope to have shown that FLF is a promising new way of semantic
representation.



Conclusions and outlook

This thesis investigated meaning representation, with as a main criterion that it should
be optimized for computing entailments. A way of representation has been developed,
which contains detailed information, accounts for a number of entailments straightfor-
wardly, but is simple in structure. The resulting format can capture more natural language
meanings than first-order logic and at the same time is easier to handle computationally,
because of its flat structure, which properties relevant for entailment can be read off
locally.

The Narrator project offered a concrete aim to work towards: the retrieval of narrative
documents about personal experiences related to breast cancer, to be made available to
fellow-sufferers. The differences that determine how relevant a story is will often be a
matter of details. (For example, a user may be looking for particular daily life situations
or particular kind of emotional reaction.)

The basis that the research presented here started out from was the existing Delilah
system (to be used to parse narratives), which parses (and generates) Dutch sentences.
It is built on a variant of multi-modal combinatory categorial grammar designed to deal
with the kind of discontinuities that occur in Dutch. Lexical items are feature-value
matrices (in graph format). One of the features has as a value the category that is targeted
by the grammar rules. Lexical items can compose to form a bigger unit, if a grammar rule
allows for it and also their other features can be unified with each other. The working
lexicon is fast but static, as it is completely compiled and indexed before the parsing
session. This means that recursive lexical rules are not possible. (Since the compiling is
relatively time-consuming, making adjustments and recompiling during a session would
completely undo the speed benefit.) The semantic analysis works with a nested storage
mechanism. An important feature of Delilah is its ability to deal with extended lexical
units. It allows for the local semantics of fixed arguments to be ignored and for the whole
phrase to get a dedicated meaning, lexically determined at its highest level.

The current system has two main limitations in terms of structural coverage. First,
long extraction of VP adverbials is problematic. I have shown how this can be remedied
by changing the category of the adjunct. A problem of the same nature occurs with
extraposed relative clauses. Second, multiple coordination and ellipsis are at present not
covered. This looks like a solvable problem, too, but not within the scope of the present
work. Also, a number of robustness issues need to be solved. The system as it is, is
suitable for a proof of concept of new ideas about semantic representation, but not for
larger scale testing. Implementations show that things work in principle, e.g. that the
desired representations are obtained for particular types of constructions.

I discussed the following minor improvements to the system, as part of chapter two:
1) I proposed a way of processing the stores that prevents generating the same reading



198 Conclusions and outlook

twice. 2) I argued for switching to Dutch concept names instead of the present English
ones. 3) The separable negation of geen is now stored to account for split scope effects.
(Modal verbs and scopal adverbs do not need to be stored.) 4) I showed how VP adjuncts
can be selected if their category is no longer x/x, but a special category a, which is
selected as an optional argument.

The larger scale improvements made, were the implementation of event semantics
(discussed in chapter three) and the development of Flat Logical Form (the topic of
chapter four). Both contribute to making the representations flatter. Event semantics
also makes them ‘deeper’, i.e. more informative. Flat Logical Form to some extent does
so as well, as it makes non-standard quantifiers less problematic to represent.

A form of neo-Davidsonian event semantics was implemented. In this implementa-
tion, the adding of a logical predicate event preserves the information included in the
representations in the literature. The predicate event provides ontological information,
being a hypernym of the verb. The event is introduced with an existential quantifier, and
in verbs, it is introduced in the store, so it can in principle raise for wider scope. It was
shown that in some cases subevents are needed to account for certain entailments. The
issue of participant roles, turned out to be a complicated one. There is no ready theory of
participant roles that is suitable for our purposes, though in both Dowty’s (1991) theory
and the FrameNet approach (Baker et al., 1998) entailments played a role, and both have
interesting aspects. Starting out with considering participant roles verb specific and then
making generalizations seems to be a useful approach.

In implementing event semantics for verbs, I distinguished the following classes:
verbs that introduce one event and a number of participants that get roles, auxiliaries and
epistemic modals, which do not introduce an event of their own, verbs that do introduce
an event but also take a complement with internal event structure, verbs in which the
events have results, and verbs that require an analysis with parallel subevents, because of
the involvement of their participants.

I also implemented event semantics for nominalizations. It accounts for entailment
relations between nominalizations and verbs. The participants are either expressed or
silent. They can be expressed as arguments or be interpreted through binding. In any
case, they must always be already introduced in the semantics of the nominal, because
they can be bound in discourse and because they get participant roles. For support verb
constructions it was shown that they need more than just binding of a participant.

States were discussed separately, because they are more controversial. I reached the
conclusion that Davidsonian states are the right choice for attributive adjectives and their
derived nouns, and also for stative verbs. Stative light verb constructions, previously
treated as units under the ELU approach, are reanalyzed, using states and binding of the
participant. This accounts better for their flexibility.

Flat Logical Form (FLF) is the new approach to meaning representation developed
in this thesis. In FLF, conjunctions are the highest operators. Each conjunct is a
predicate over a variable (or two variables in case of a two-place predicate). Each
variable is annotated with the effective entailment direction that applies to its predicate,
the quantifier that binds it, and the quantifiers and operators (including negation) it is
dependent on. The effective entailment direction can be computed, because dependence



199

on decreasing quantifiers and negation, which also brings in a decreasing property, is
marked on the variable. For this purpose the basic theorems by Zwarts (1986) were
used, rather than Kas’s 1993 complex calculus. Also the behavior of non-monotone
quantifiers was incorporated. Intensional environments and scope are also handled in
terms of dependency. The quantifiers can license entailment rules that are also sensitive
to the entailment direction of the environment. A two-place predicate is in the scope
of the quantifiers of both its variables. Therefore, the effective entailment direction that
comes with the lowest of the two is the one that applies to the direct environment of
the predicate. I argued that most decreasing quantifiers can be analyzed, like geen,
with a separable negation. This accounts for them giving rise to split scope effects.
Marking every conjunct for the sentence and reading it is part of makes it possible to
give a compact representation of all readings of a sentence. I showed that the DeMorgan
rules can be reformulated to work on FLF. DeMorgan for quantifiers is used to compute
an equivalent form in which the negation cannot be lowered further. A rule of negation
elimination cancels two adjacent negations against each other. Consistent and complete
entailment patterns can be covered in a DeMorgan-like way, in spite of the fact that the
fine-grained calculus is not used. Checking entailment basically becomes a matter of
finding matching conjuncts. In non-increasing context, however, there are additional
requirements on certain conjuncts occurring together. The main trick of FLF is that two
pieces of information that are normally implicitly encoded in the structure of logical
formulas, namely the effective entailment direction resulting from monotonicity and
dependency on higher operators, are made explicitly and locally available in FLF. Search
strategies will need to be developed to reproduce syllogism-like reasoning. I already
proposed the preparation of universal chains. Patterns like Name is X, Name does Y
|= some X does Y do not need such preparation, because the number of steps will
be limited. Still, a good strategy is needed to perform the different steps. This will
be part of the search algorithm, yet to be developed, that performs the actual textual
entailment checking by searching the FLF representations of the text to find support for
the hypothesis.

I concluded that our notion of entailment or inference should include both strict
entailment, conventional implicature and presuppositions. Computable cases of con-
versational implicature can be useful, but do not always make reliable inferences.
Paraphrases that are not instances of these are not to be considered entailments. This
does not necessarily mean that they cannot be recognized and used (in some cases they
may satisfy a weaker hypothesis), but they are not to be confused with entailments.

Working on a system like Delilah and its semantic representations basically means
working on the semantic analysis of a whole language. It is therefore not difficult to come
up with ideas for further research. I will mention a few which naturally connect to what I
have done. To really see inference on FLF at work, a strategy to check entailments needs
to be developed. A logic of quantifiers is to be built into the entailment rules that are used.
FLF offers the possibility to derive entailments from non-standard quantifiers. Ideally, a
comprehensive ‘natural’ logic of quantifiers is needed. Next to that, several aspects of
FLF itself need to be worked out further, such as the representation of different operators
and of proper names, the composition of complex quantifiers, and coordination. Since



200 Conclusions and outlook

the FLF notation is so different from the conventional one, it invites for re-examining
natural language semantic phenomena to see how exactly they are best represented in
FLF, and if that leads to new insights. As it looks now, I expect that most of these topics
will lead to satisfactory outcomes, which confirm the usefulness of FLF.

Independently of FLF, there are many other aspects of the semantic analysis that
could be improved. For instance, many aspects of event analysis could use improvement.
Much theoretical work is still being done in this field. Likewise, there is still little
consensus about the semantics of degrees and degree modifiers. I touched upon the issue
in the context of stative light verb constructions. It is relevant for all kind of constructions
involving adjectives. Tense and temporal expressions need a coherent approach in which
they define the timing of events in discourse. Here one could build on the results of the
TimeML project (Pustejovsky et al., 2003). All of these are complex issues with many
unsolved problems at the theoretical level.

On as somewhat more basic level, there are some issues that should make the
coverage of the system more complete. Resolving these will enable larger scale testing,
which will be good for trying out the benefits of the new advances in practice. Ellipsis
and multiple coordination need to be implemented. Some preparatory work for that has
already been done. There are a few other grammatical gaps to be filled as well, such
as syntactic nominalizations. The lexicon also needs to be extended. There are plans
to import the lexical entries of the Alpino parser, which covers a fairly large corpus of
newspaper text (Bouma et al., 2001). An algorithm developed for guessing categories for
unknown words needs to be implemented.

The Recognizing Textual Entailment challenge shows that progress is being made
in the field of entailment engines (Giampiccolo et al., 2007). In the RTE challenges it
becomes clear that one of the biggest remaining problems is the lack of word and world
knowledge. (The boundary between the two is not always clear.) Also the recurring
theme in the second chapter about how deep the analysis should go, is essentially
about how much of this kind of knowledge should be incorporated in the representation.
Ultimately, I think knowledge representations will always be poorer when the knowledge
is not grounded in real experience consisting of interaction with others and with the
world, than when it is. This holds even if the knowledge is harvested from large amount
of data and and regardless of whether it is recorded explicitly or implicitly. So far systems
used for textual entailment and similar applications only have access to linguistic data,
sometimes manipulated, annotated or translated to some form of logic. None are able to
perceive the non-linguistic world which the texts are about. It is not surprising if such a
system can simulate understanding only to a limited extent.

Real-world experience however does not solve the problem of meaning representa-
tion. Steels and Bleys (2005) did pioneering experiments with embodied agents that
developed their own language by playing language games with each other. The language
of these agents is therefore grounded in real-world experience. At the same time, the
agents do make use of logic-based meaning representations. Their fluid construction
grammar contains predicates and variables. The predicates refer to complex non-static
concepts, formed through observing things in the world and communicating about them.
In this state-of-the-art fundamental research into how linguistic expressions and concepts



201

are formed hand in hand, taking all kind of factors about embodied communication in a
physical world into account, semantic representations are still an important issue. This
suggest that the main challenges of semantic representations are not an artifact of the
limitations of purely symbolic systems, like the one described here. How to represent
linguistic meanings remains an important line of research.





Bibliography

Alexiadou, A. (1997). Adverb Placement: A Case Study in Antisymmetric Syntax.
Amsterdam: John Benjamins Publishing Company.

Alshawi, H. (1992). The Core Language Engine. Cambridge, Massachusetts: MIT Press.

Altmann, G. (1999). Thematic role assignment in context. Journal of Memory and
Language 41(1), 124–145.

Amsili, P. and N. Hathout (1996). Computational semantics of time/negation interaction.
In Proceedings of the 16th conference on Computational linguistics, Copenhagen,
Denmark, pp. 29–34. Association for Computational Linguistics.

Anderson, C. (2004). The Structure and Real-Time Comprehension of Quantifier Scope
Ambiguity. Ph. D. thesis, Northwestern University.

Arsenijević, B. (2006). Inner Aspect and Telicity. Ph. D. thesis, Leiden University.

Asher, N. (1993). Reference to Abstract Objects in Discourse. Dordrecht: Kluwer
Academic Publishers.

Austin, J., S. Engelberg, and G. Rauh (2004). Current issues in the syntax and
semantics of adverbials. In J. Austin, S. Engelberg, and G. Rauh (Eds.), Adverbials:
The Interplay Between Meaning, Context, and Syntactic Structure, pp. 1–44. John
Benjamins Publishing Company.

Badia, T. and R. Saurí (1998). The representation of syntactically unexpressed
complements to nouns. In F. Busa, I. Mani, and P. Saint-Dizier (Eds.), (Workshop
on) The Computational Treatment of Nominals, COLING-ACL, Montreal, Quebec,
pp. 1–9.

Baker, C. F., C. J. Fillmore, and J. B. Lowe (1998). The Berkeley FrameNet project. In
Proceedings of COLING ACL, Montreal, Quebec, pp. 86–90.

Bar-Haim, R., I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini, and
I. Szpektor (2006). The second PASCAL Recognising Textual Entailment challenge.
In Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual
Entailment, Venice, Italy, pp. 1–9.

Bartsch, R. (1986). On aspectual properties of Dutch and German nominalizations.
In V. Lo Cascio and C. Vet (Eds.), Temporal Structure in Sentence and Discourse,
Number 5 in Groningen-Amsterdam Studies in Semantics, pp. 7–39. Dordrecht: Foris
Publications.



204 BIBLIOGRAPHY

Barwise, J. and R. Cooper (1981). Generalized quantifiers and natural language.
Linguistics and Philosophy 4(2), 159–219.

Beghelli, F. and T. Stowell (1997). Distributivity and negation: The syntax of each and
every. In A. Szabolcsi (Ed.), Ways of scope taking, pp. 71–107. Dordrecht: Kluwer
Academic Publishers.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). The Semantic Web. Scientific
American 284(5), 28–37.

Blackburn, P. and J. Bos (2003). Computational Semantics. Theoria: Revista Trimestral
de Teoria, Historia y Fundamento de la Ciencia 18(46), 27–45.

Blackburn, P. and J. Bos (2005). Representation and Inference for Natural Language: A
First Course in Computational Semantics. Stanford, California: CSLI Publications.

Blackburn, P. and J. Bos (forthcoming). Working with Discourse Representation Theory:
An Advanced Course in Computational Semantics. Stanford, California: CSLI
Publications.

Blackburn, P., J. Bos, M. Kohlhase, and H. de Nivelle (2001). Inference and
computational semantics. In H. Bunt, R. Muskens, and E.Thijsse (Eds.), Computing
Meaning, Volume 2, pp. 11–28. Dordrecht: Kluwer Academic Publishers.

Bobrow, D., C. Condoravdi, R. Crouch, V. de Paiva, L. Karttunen, T. King, R. Nairn,
L. Price, and A. Zaenen (2007). Precision-focused textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Rochester,
New York, pp. 16–21.

Bos, J. (1996). Predicate logic unplugged. In In Proceedings of the 10th Amsterdam
Colloquium, pp. 133–143.

Bos, J. (2005). Towards wide-coverage semantic interpretation. In Proceedings of the
Sixth International Workshop on Computational Semantics IWCS-6, Tilburg, pp. 42–
53.

Bos, J. (2008). Introduction to the shared task on comparing semantic representations. In
J. Bos and R. Delmonte (Eds.), Semantics in Text Processing. STEP 2008 Conference
Proceedings, Volume 1 of Research in Computational Semantics, pp. 257–261.
College Publications.

Bos, J., S. Clark, M. Steedman, J. R. Curran, and J. Hockenmaier (2004). Wide-coverage
semantic representations from a CCG parser. In COLING ’04: Proceedings of the
20th international conference on Computational Linguistics, Geneva, Switzerland, pp.
1240. Association for Computational Linguistics.

Bos, J., J. R. Curran, and E. Guzzetti (2007). The pronto QA system at TREC
2007: Harvesting hyponyms, using nominalisation patterns, and computing answer
cardinality. In Proceedings of TREC 2007.



BIBLIOGRAPHY 205

Bos, J. and K. Markert (2006). Recognising textual entailment with robust logical
inference. Lecture Notes in Computer Science 3944, 404.

Bos, J., Y. Mori, B. Gambäck, M. Pinkal, C. Lieske, and K. Worm (1996).
Compositional semantics in Verbmobil. In Proceedings of the 16th conference
on Computational Linguistics, Volume 1, Copenhagen, Denmark, pp. 131–136.
Association for Computational Linguistics.

Bosma, W. (2008). Discourse Oriented Summarization. Ph. D. thesis, University of
Twente.

Bouma, G. and G. van Noord (1994). Constraint-based categorial grammar. In
Proceedings of the 32nd annual meeting on Association for Computational Linguistics,
Las Cruces, New Mexico, pp. 147–154. Association for Computational Linguistics.

Bouma, G., G. van Noord, and R. Malouf (2001). Alpino: Wide-coverage computational
analysis of Dutch. In Computational Linguistics in The Netherlands 2000, pp. 45–59.

Broekhuis, H. (1999). Adjectives and adjective phrases. Working Paper 2, University of
Tilburg.

Bunt, H. (1985). Mass Terms and Model-Theoretic Semantics. New York: Cambridge
University Press.

Bunt, H. (2007). Underspecification in semantic representations: Which technique for
what purpose? In H. Bunt and R. Muskens (Eds.), Computing Meaning, Volume 3 of
Studies in Linguistics and Philosophy, pp. 55–86. Springer.

Burnage, G. (1990). CELEX — A Guide for Users. Centre for Lexical Information,
Nijmegen.

Carlson, G. (2001). Thematic roles and the individuation of events. In S. Rothstein (Ed.),
Events and Grammar, pp. 35–51. Dordrecht: Kluwer Academic Publishers.

Chambers, N., D. Cer, T. Grenager, D. Hall, C. Kiddon, B. MacCartney, M. de Marneffe,
D. Ramage, E. Yeh, and C. Manning (2007). Learning alignments and leveraging
natural logic. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, Rochester, New York, pp. 165–170.

Chierchia, G. and S. McConnell-Ginet (2000). Meaning and Grammar: An Introduction
to Semantics. Cambridge, Massachusetts: MIT Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris
Publications.

Chomsky, N. (1993). A minimalist program for linguistic theory. In K. Hale and
S. Keyser (Eds.), The View From Building 20, pp. 1–52. Cambridge, Massachusetts:
MIT Press.



206 BIBLIOGRAPHY

Cinque, G. (1995). Adverbs and the universal hierarchy of functional projections. GLOW
Newsletter 34, 14–15.

Cinque, G. (2004). Issues in adverbial syntax. Lingua 114(6), 683–710.

Cooper, R. (1975). Montague’s Semantic Theory and Transformational Syntax. Ph. D.
thesis, University of Massachusetts.

Copestake, A. and D. Flickinger (2000). An open source grammar development
environment and broad-coverage English grammar using HPSG. In Proceedings of
the 2nd International Conference on Language Resources and Evaluation, pp. 591–
598.

Copestake, A., D. Flickinger, C. Pollard, and I. Sag (2005). Minimal Recursion
Semantics: An introduction. Research on Language & Computation 3(4), 281–332.

Coppen, P. (1995). A new version of the AMAZON/CASUS system. In P. de Haan
and N. Oostdijk (Eds.), Proceedings of the Department of Language and Speech,
Volume 18, Nijmegen, pp. 85–90. University of Nijmegen.

Cremers, C. (1983). On two types of infinitival complementation. In F. Heny and
B. Richards (Eds.), Linguistic Categories: Auxiliaries and Related Puzzles, pp. 169–
221. Dordrecht: Reidel.

Cremers, C. (1993). On Parsing Coordination Categorially. Ph. D. thesis, Leiden
University.

Cremers, C. (1999a). A note on categorial grammar, disharmony and permutation. In
Proceedings of the Ninth Conference of the European Chapter of the Association
for Computational Linguistics, Bergen, Norway, pp. 273–274. Association for
Computational Linguistics.

Cremers, C. (1999b). Formalizing the syntax. Unpublished manuscript, available at
http://www.delilah.eu/.

Cremers, C. (2001). Why pluralities don’t mean a thing. In Quitte ou double
sens. Articles sur l’ambiguïté offerts à Ronald Landheer, pp. 33–43. Amsterdam:
Atlanta/Rodopi.

Cremers, C. (2002). (’n) Betekenis berekend. Nederlandse Taalkunde 7, 375–395.

Cremers, C. (2004). Modal merge and minimal move for dislocation and verb clustering.
Research on Language & Computation 2(1), 87–103.

Croft, W. (2001). Radical Construction Grammar. New York: Oxford University Press.

Crouch, R., L. Karttunen, and A. Zaenen (2006). Circumscribing
is not excluding: A response to Manning. Available at
http://www2.parc.com/istl/members/karttune/publications/reply-to-manning.pdf.



BIBLIOGRAPHY 207

Crouch, R., R. Sauri, and A. Fowler (2005). AQUAINT pilot
knowledge-based evaluation: Annotation guidelines. Available at
http://www2.parc.com/istl/groups/nltt/papers/aquaint_kb_pilot_evaluation_guide.pdf.

Dagan, I., O. Glickman, and B. Magnini (2006). The PASCAL Recognising Textual
Entailment challenge. In J. Quiñonero Candela, I. Dagan, B. Magnini, and F. d’Alché
Buc (Eds.), Machine Learning Challenges, Volume 3944 of Lecture Notes in
Computer Science, pp. 177–190. Springer.

Dahl, D. A., M. S. Palmer, and R. J. Passonneau (1987). Nominalizations in PUNDIT. In
Proceedings of the 25th annual meeting on Association for Computational Linguistics,
Stanford, California, pp. 131–139. Association for Computational Linguistics.

Dalrymple, M. (2001). Lexical Functional Grammar. San Diego, California: London
Academic Press.

Dang, H., D. Kelly, and J. Lin (2007). Overview of the TREC 2007 Question Answering
Track. In E. Voorhees and L. Buckland (Eds.), The Sixteenth Text REtrieval Conference
Proceedings 2007, Number 500-274 in Special Publication, Gaithersburg, Maryland.
NIST.

Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The
Logic of Decision and Action, pp. 81–95. Pittsburgh, Pennsylvania: University of
Pittsburgh Press.

de Swart, H. (1996). Scope ambiguities with negative quantifiers. In C. von
Heusinger and U. Egli (Eds.), Proceedings of the Konstanz Workshop: Reference
and Anaphorical Relations, Number 79 in Arbeitspapier, pp. 145–164. Fachgruppe
Sprachwissenschaft der Universität Konstanz.

Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman (1990). Indexing
by Latent Semantic Analysis. Journal of the American Society for Information
Science 41(6), 391–407.

Dölling, J. (2005). Copula sentences and entailment relations. Theoretical
Linguistics 31(3), 317–329.

Dowty, D. (1991). Thematic proto-roles and argument selection. Language 67, 547–619.

Ebert, C. (2005). Formal Investigations of Underspecified Representations. Ph. D. thesis,
King’s College.

Egg, M. (2004). Mismatches at the syntax-semantics interface. In S. Müller (Ed.),
Proceedings of the 11th International Conference on Head-Driven Phrase Structure
Grammar, Stanford, California, pp. 119–139. CSLI Publications.

Egg, M. (2005). Against opacity. In F. Richter and M. Sailer (Eds.), Proceedings of he
ESSLLI’05 Workshop on Empirical Challenges and Analytical Alternatives to Strict
Compositionality, Heriot-Watt University Edinburgh, Scotland, pp. 120–132.



208 BIBLIOGRAPHY

Engelberg, S. (2004). Lexical event structures for verb semantics. Journal of Language
and Linguistics 3(1), 62–108.

Engelberg, S. (2005). Kimian states and the grammar of predicative adjectives.
Theoretical Linguistics 31, 331–347.

Erbach, G. and B. Krenn (1993). Idioms and support-verb constructions in HPSG.
CLAUS Report 28, Universität des Saarlandes.

Fillmore, C., C. Baker, and H. Sato (2004). FrameNet as a “Net”. In Proceedings of
the 4th International Conference on Language Resources and Evaluation, Volume 4,
Lisbon, Portugal, pp. 1091–1094. ELRA.

Fillmore, C. J., C. F. Baker, and H. Sato (2002). Seeing arguments through transparent
structures. In Proceedings of LREC 2002, Las Palmas de Gran Canaria, Spain, pp.
787–791.

Fodor, J. (1982). The mental representation of quantifiers. In S. Peters and E. Saarinen
(Eds.), Processes, Beliefs, and Questions: Essays on Formal Semantics of Natural
Language and Natural Language Processing, pp. 129–164. Dordrecht: Reidel.

Fyodorov, Y., Y. Winter, and N. Francez (2000). A natural logic inference system. In
Inference in Computational Semantics ICoS-2 Proceedings.

Gehrke, B. (2008). Ps in Motion: On the Semantics and Syntax of P Elements and Motion
Events. Ph. D. thesis, Utrecht University.

Geurts, B. and F. van der Slik (2005a). Monotonicity and Processing Load. Journal of
Semantics 22(1), 97–117.

Geurts, B. and F. van der Slik (2005b). Ups and downs in
syllogistic reasoning. Unpublished manuscript, available at
http://www.linguistics.pomona.edu/LGCS121Spring2005/Reading/Geurtsupsdowns.pdf.

Giampiccolo, D., B. Magnini, I. Dagan, and B. Dolan (2007). The third PASCAL
Recognizing Textual Entailment challenge. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing, Rochester, New York, pp. 1–9.
Association for Computational Linguistics.

Grefenstette, G. and S. Teufel (1995). Corpus-based method for automatic identification
of support verbs for nominalizations. In Proceedings of the 7th Conference of the
European Chapter of the ACL, Dublin, Ireland, pp. 27–31.

Grimshaw, J. (1990). Argument Structure. Cambridge, Massachusetts: MIT Press.

Groenendijk, J. and M. Stokhof (1991). Dynamic Predicate Logic. Linguistics and
Philosophy 14(1), 39–100.

Herburger, E. (2000). What Counts: Focus and Quantification. Cambridge,
Massachusetts: MIT Press.



BIBLIOGRAPHY 209

Hickl, A. and J. Bensley (2007). A discourse commitment-based framework for
recognizing textual entailment. In Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing, Rochester, New York, pp. 171–176. Association
for Computational Linguistics.

Higginbotham, J. (1985). On semantics. Linguistic Inquiry 16(4), 547–593.

Higginbotham, J. (2000). On events in linguistic semantics. In J. Higginbotham,
F. Pianesi, and A. Varzi (Eds.), Speaking of Events, pp. 49–79. Oxford, New York:
Oxford University Press.

Hijzelendoorn, M. and C. Cremers (2007, December). An Object-Oriented and
Fast Lexicon for Semantic Generation. Paper presented at the 18th meeting of
Computational Linguistics in the Netherlands (CLIN 2007), Nijmegen.

Hinrichs, E. (1986). Temporal anaphora in discourses of English. Linguistics and
Philosophy 9(1), 63–82.

Hoekstra, T. (1999). Parallels between nominal and verbal projections. In D. Adger
(Ed.), Specifiers: Minimalist Approaches, pp. 163–187. Oxford University Press.

Hoenkamp, E. (2003). Unitary operators on the document space. Journal of the American
Society for Information Science and Technology 54(4), 321–334.

Hull, R. and F. Gomez (1996). Semantic interpretation of nominalizations. In
Proceedings of AAAI-96, Portland, Oregon, pp. 1062–1068.

Jackendoff, R. (1972). Semantic Interpretation in Generative Grammar. Cambridge,
Massachusetts: MIT Press.

Jackendoff, R. (1983). Semantics and Cognition. Cambridge, Massachusetts: MIT Press.

Jackendoff, R. (1987). The status of thematic relations in linguistic theory. Linguistic
inquiry 18(3), 369–411.

Jacobs, J. (1980). Lexical decomposition in Montague-Grammar. Theoretical Linguistics
Berlin 7(1-2), 121–136.

Jaspers, D. (2005). Operators in the Lexicon: On the Negative Logic of Natural
Language. Ph. D. thesis, Catholic University of Brussels.

Johnson, C. and C. J. Fillmore (2000). The FrameNet tagset for frame-semantic and
syntactic coding of predicate-argument structure. In Proceedings of the first conference
on North American chapter of the Association for Computational Linguistics, San
Francisco, California, pp. 56–62. Morgan Kaufmann Publishers Inc.

Johnson-Laird, P. (1969). On understanding logically complex sentences. The Quarterly
Journal of Experimental Psychology 21(1), 1–13.



210 BIBLIOGRAPHY

Jurafsky, D. and J. Martin (2000). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition.
Upper Saddle River, New Jersey: Pearson/Prentice-Hall.

Kamp, H. and U. Reyle (1993). From Discourse to Logic: Introduction to
Model-Theoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Studies in Linguistics and Philosophy. Dordrecht: Kluwer
Academic Publishers.

Karttunen, L. and A. Zaenen (2005). Veridicity. In G. Katz, J. Pustejovsky, and
F. Schilder (Eds.), Annotating, Extracting and Reasoning about Time and Events,
Number 05151 in Dagstuhl Seminar Proceedings. Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI). Available at
http://drops.dagstuhl.de/opus/volltexte/2005/314.

Kas, M. (1993). Essays on Boolean Functions and Negative Polarity. Ph. D. thesis,
University of Groningen.

Katz, G. (2000). Anti neo-Davidsonianism: Against a Davidsonian semantics for state
sentences. In C. Tenny and J. Pustejovsky (Eds.), Events as Grammatical Objects, pp.
393–416. Stanford, California: CSLI Publications.

Keenan, E. and D. Westerståhl (1997). Generalized quantifiers in linguistics and logic.
In J. van Benthem and A. ter Meulen (Eds.), Handbook of Logic and Language, pp.
837–893. Cambridge, Massachusetts: MIT Press.

Keller, W. (1988). Nested Cooper storage: The proper treatment of quantification in
ordinary noun phrases. In U. Reyle and C. Rohrer (Eds.), Natural Language Parsing
and Linguistic Theories, pp. 432–447. Dordrecht: Reidel.

Kempson, R. and A. Cormack (1981). Ambiguity and quantification. Linguistics and
Philosophy 4(2), 259–309.

Kim, J. (1998). Events as Property Exemplifications. In S. Laurence and C. Macdonald
(Eds.), Contemporary Readings in the Foundations of Metaphysics, pp. 310–326.
Blackwell Publishers.

Klima, E. (1964). Negation in English. In J. Fodor and J. Katz (Eds.), The Structure of
Language: Readings in the Philosophy of Language, pp. 246–323. Prentice-Hall.

Koenig, J.-P. and G. Mauner (1999). A-definites and the discourse status of implicit
arguments. Journal of Semantics 16(3), 207–236.

Koller, A. and S. Thater (2006). Towards a redundancy elimination algorithm for
underspecified descriptions. In J. Bos and A. Koller (Eds.), Inference in Computational
Semantics ICoS-5 Proceedings, Buxton, England, pp. 37–46.

Kratzer, A. (1995). Stage-level and individual-level predicates. In G. Carlson and
F. Pelletier (Eds.), The Generic Book, pp. 125–175. University of Chicago Press.



BIBLIOGRAPHY 211

Kratzer, A. (forthcoming). The Event Argument. Cambridge, Massachusetts: MIT Press.

Kroch, A. (1979). The Semantics of Scope in English. Garland Press.

Kuropka, D. (2004). Modelle zur Repräsentation natürlichsprachlicher Dokumente:
Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Daten-
banken. Number 10 in Advances in Information Systems and Management Science.
Berlin: Logos Verlag.

Kurtzman, H. and M. MacDonald (1993). Resolution of Quantifier Scope Ambiguities.
Cognition 48(3), 243–79.

Laenzlinger, C. (1998). Comparative Studies in Word Order Variation: Adverbs,
Pronouns, and Clause Structure in Romance and Germanic. Amsterdam: John
Benjamins Publishing Company.

Lakoff, G. (1971). On generative semantics. In D. Steinberg and L. Jakobovits (Eds.),
Semantics, pp. 232–296. Cambridge. Massachusetts: Cambridge University Press.

Landauer, T., P. Foltz, and D. Laham (1998). An introduction to Latent Semantic
Analysis. Discourse Processes 25(2-3), 259–284.

Lapata, M. (2000). The automatic interpretation of nominalizations. In Proceedings of
AAAI, pp. 716–721.

Lapata, M. (2002). The disambiguation of nominalizations. Computational
Linguistics 28(3), 357–388.

Lappin, S. (2000). An intensional parametric semantics for vague quantifiers. Linguistics
and Philosophy 23(6), 599–620.

Lappin, S. and H. Leass (1994). An Algorithm for Pronominal Anaphora Resolution.
Computational Linguistics 20(4), 535–561.

Levin, B. and M. Rappaport Hovav (1999). Two structures for compositionally
derived events. In Proceedings of SALT IX, pp. 127–144. CLC Publications, Cornell
University.

Light, M. and L. Schubert (1997). Knowledge representation for lexical semantics:
is standard first order logic enough? In Proceedings of the Second International
Workshop on Computational Semantics IWCS-2, Tilburg University.

Macleod, C., R. Grishman, A. Meyers, L. Barrett, and R. Reeves (1998). NOMLEX: A
lexicon of nominalizations. In Proceedings of the Eighth International Congress of
the European Association for Lexicography, Liège, Belgium, pp. 187–193.

Maienborn, C. (2005). On the limits of the Davidsonian approach: The case of copula
sentences. Theoretical Linguistics 31(3), 275–316.



212 BIBLIOGRAPHY

Mann, W. and S. Thompson (1988). Rhetorical structure theory: Toward a functional
theory of text. Text 8(3), 243–281.

Manning, C. (2006). Local textual inference: It’s hard to circumscribe, but you know
it when you see it, and NLP needs it. Available at http://nlp.stanford.edu/ man-
ning/papers/LocalTextualInference.pdf.

Marcu, D. (1997). The rhetorical parsing of natural language texts. In Proceedings of the
35th annual meeting on Association for Computational Linguistics, Morristown, New
Jersey, pp. 96–103. Association for Computational Linguistics.

Maxwell, J. and R. Kaplan (1993). The interface between phrasal and functional
constraints. Computational Linguistics 19(4), 571–590.

May, R. (1985). Logical Form: Its Structure and Derivation. Cambridge, Massachusetts:
MIT Press.

Meyers, A., C. Macleod, R. Yangarber, R. Grishman, L. Barrett, and R. Reeves (1998).
Using NOMLEX to produce nominalization patterns for information extraction. In
The Computational Treatment of Nominals (Coling-ACL98 workshop), Volume 2,
Montreal, Canada, pp. 25–32.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller (2004). Introduction to
WordNet: An on-line lexical database. International Journal of Lexicography 3(4),
235–244.

Moltmann, F. (1992). Reciprocals and same/different: Towards a semantic analysis.
Linguistics and Philosophy 15(4), 411–462.

Montague, R. (1973). The proper treatment of quantification in ordinary English.
Approaches to Natural Language 49, 221–242.

Mooney, R. (2007). Learning for semantic parsing. Lecture Notes in Computer
Science 4394, 311.

Moortgat, M. (1997). Categorial type logics. In J. van Benthem and A. ter Meulen (Eds.),
Handbook of Logic and Language, pp. 93–177. Elsevier.

Nairn, R., C. Condoravdi, and L. Karttunen (2006). Computing relative polarity for
textual inference. In J. Bos and A. Koller (Eds.), Inference in Computational Semantics
ICoS-5 Workshop Proceedings, Buxton, England, pp. 67–76.

Nap, H. H. (2008). Stress in Senior Computer Interaction. Ph. D. thesis, Technical
University of Eindhoven.

Osswald, R. (2005). On result nominalization in German. In E. Maier, C. Bary, and
J. Huitink (Eds.), Sinn und Bedeutung, Volume 9, pp. 256–270.

Overberg, R. (forthcoming). Illness Stories on the Internet. Ph. D. thesis, Leiden
University.



BIBLIOGRAPHY 213

Overberg, R., L. Alpay, J. Verhoef, and J. Zwetsloot-Schonk (2007). Illness stories
on the internet: What do breast cancer patients want at the end of treatment?
Psychooncology 16(10), 937–44.

Overberg, R., P. Toussaint, and B. Zwetsloot-Schonk (2006). Illness stories on the
internet: Features of websites disclosing breast cancer patients’ illness stories in the
Dutch language. Patient Education and Counseling 61(3), 435–442.

Padó, S. (2007). Cross-Lingual Annotation Projection Models for Role-Semantic
Information. Ph. D. thesis, Saarland University.

Palmer, M., D. Dahl, R. Schiffman, L. Hirschman, M. Linebarger, and J. Dowding
(1986). Recovering implicit information. In Proceedings of the 24th Annual Meeting
of the Association for Computational Linguistics, Columbia University, New York, pp.
10–19. Association for Computational Linguistics.

Palmer, M., N. Xue, O. Babko-Malaya, J. Chen, and B. Snyder (2005). A parallel
proposition bank II for Chinese and English. In Workshop on Frontiers in Corpus
Annotation II: Pie in the Sky, Ann Arbor, pp. 61–67. Association for Computational
Linguistics.

Parsons, T. (1990). Events in the Semantics of English: A Study in Subatomic Semantics.
Massachusetts: MIT press.

Parsons, T. (2000). Underlying states and time travel. In J. Higginbotham, F. Pianesi, and
A. Varzi (Eds.), Speaking of Events, pp. 81–93. Oxford, New York: Oxford University
Press.

Penka, D. and H. Zeijlstra (2005). Negative indefinites in Dutch and German. Available
at http://ling.auf.net/lingbuzz/000192.

Pereira, F. and S. Shieber (1987). Prolog and Natural-Language Analysis. Stanford,
California: CSLI Publications.

Pietroski, P. (2006). Events and Semantic Architecture. Oxford University Press.

Pietroski, P. and H. Hornstein (2002). Does every Sentence Like This Contain a Scope
Ambiguity. In W. Hinzen and H. Rott (Eds.), Belief in Meaning: Essays at the
Interface. Frankfurt: Hansel-Hohenhausen.

Poß, M. (forthcoming). Under Construction. Ph. D. thesis, Leiden University.

Poß, M. and T. van der Wouden (2005). Extended Lexical Units in Dutch. In T. van der
Wouden, M. Poß, H. Reckman, and C. Cremers (Eds.), Computational Linguistics in
the Netherlands 2004, Utrecht, pp. 187–202. LOT.

Potts, C. (2000). When even no’s neg is splitsville. Available at
http://ling.ucsc.edu/Jorge/index.html.



214 BIBLIOGRAPHY

Pradhan, S., H. Sun, W. Ward, J. Martin, and D. Jurafsky (2004). Parsing arguments of
nominalizations in English and Chinese. In Proceedings of HLT-NAACL, Boston.

Pustejovsky, J. (1995). The Generative Lexicon. Cambridge, Massachusetts: MIT Press.

Pustejovsky, J., J. Castano, R. Ingria, R. Saurí, R. Gaizauskas, A. Setzer, and G. Katz
(2003). TimeML: Robust specification of event and temporal expressions in text. In
Proceedings of the Fifth International Workshop on Computational Semantics IWCS-
5. Kluwer Academic Publishers.

Reckman, H. and C. Cremers (2006). Concepts across categories. In J. Bos and A. Koller
(Eds.), Inference in Computational Semantics ICoS-5 Proceedings, Buxton, England,
pp. 97–106.

Reckman, H. and C. Cremers (2007). Deep parsing semantic interpretation of
nominalizations and their (un)expressed arguments. Leiden working papers in
Linguistics 4(1), 40–55.

Reichenbach, H. (1947). The tenses of verbs. In H. Reichenbach (Ed.), Elements of
Symbolic Logic. New York: The Macmillan Company.

Reinhart, T. and E. Reuland (1993). Reflexivity. Linguistic inquiry 24(4), 657–720.

Rothstein, S. (1995). Adverbial quantification over events. Natural Language
Semantics 3(1), 1–31.

Rullmann, H. (1995). Geen eenheid. TABU Squibnummer 2(4), 194–197.

Saba, W. and J. Corriveau (2001). Plausible Reasoning and the Resolution of Quantifier
Scope Ambiguities. Studia Logica 67(2), 271–289.

Sag, I., T. Baldwin, F. Bond, A. Copestake, and D. Flickinger (2002). Multiword
expressions: A pain in the neck for NLP. In Proceedings of the 3rd International
Conference on Intelligent Text Processing and Computational Linguistics (CICLing-
2002), Mexico City, Mexico, pp. 1–15.

Sag, I. and T. Wasow (1999). Syntactic Theory: A Formal Introduction. Stanford,
California: CSLI Publications.

Schein, B. (2002). Events and the semantic content of thematic relations. In G. Preyer
and G. Peter (Eds.), Logical form, Language & Semantic content: On Contemporary
Developments in the Philosophy of Language and Linguistics, pp. 236–344. Oxford,
New York: Oxford University Press.

Schuurman, I. and P. Monachesi (2006). A semantic annotation scheme for Dutch.
In K. Sima’an, M. de Rijke, R. Scha, and R. van Son (Eds.), Proceedings of
Computational Linguistics in the Netherlands 2005, pp. 67–82.

Seuren, P. (2006). The natural logic of language and cognition. Pragmatics: A Quarterly
Journal of the International Pragmatic Association 16(1), 103–138.



BIBLIOGRAPHY 215

Seuren, P. (forthcoming). The Victorious Square: A Study of Natural Predicate Logic.

Solstad, T. (2007). Arguments in nominalisations: A unified approach to
postnominal PPs and genitives in German. Presentation at the work-
shop Nominalizations Across Languages, Slides available at http://web.uni-
frankfurt.de/fb10/rathert/forschung/nominalizations.html.

Steedman, M. (1996). Surface Structure and Interpretation. Cambridge, Massachusetts:
MIT Press.

Steels, L. and J. Bleys (2005). Planning what to say: Second order semantics for fluid
construction grammars. In Proceedings of CAEPIA’05, Lecture Notes in AI, Berlin.
Springer Verlag.

Steels, L. and F. Kaplan (2001). AIBO’s first words. the social learning of language and
meaning. Evolution of Communication 4(1), 3–32.

Stevenson, S., A. Fazly, and R. North (2004). Statistical measures of the semi-
productivity of light verb constructions. In Proceedings of the ACL-04 Workshop on
Multiword Expressions: Integrating Processing, pp. 1–8.

Tatu, M. and D. Moldovan (2007). COGEX at RTE3. In Proceedings of the
Workshop on Textual Entailment and Paraphrasing, Prague, pp. 22–27. Association
for Computational Linguistics.

Terada, A. and T. Tokunaga (2003). Corpus based method of transforming nominalized
phrases into clauses for text mining application. IEICE Transactions on Information
and Systems 86(9), 1736–1744.

Van Trijp, R. (2008). The emergence of semantic roles in fluid construction grammar. In
A. D. Smith, K. Smith, and R. Ferrer i Cancho (Eds.), The Evolution of Language.
Proceedings of the 7th International Conference, Singapore, pp. 346–353. World
Scientific Publishing.

van de Woestijne, C. (1999). A formal characterisation of the Delilah system. Master’s
thesis, Leiden University.

Vanderwende, L., D. Coughlin, and B. Dolan (2005). What syntax can contribute in the
entailment task. In I. Dagan, O. Glickman, and B. Magnini (Eds.), Proceedings of the
1st. PASCAL Recognision Textual Entailment Challenge Workshop, pp. 13–16.

VanLehn, K. (1978). Determining the scope of english quantifiers. Technical report,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Verhagen, A. (2003). The Dutch Way. In A. Verhagen and J. van de Weijer (Eds.), Usage-
Based Approaches to Dutch, Number 1 in Occasional Series, pp. 27–58. Utrecht: LOT.

Verkuyl, H. and J. van der Does (1991). The semantics of plural noun phrases. In J. van
der Does and J. van Eyck (Eds.), Generalized Quantifier Theory and Applications, pp.
403–439. Amsterdam: NLLI.



216 BIBLIOGRAPHY

Visser, W. (2005). Reflexieven en pronomina in Delilah. Bachelor’s thesis, Leiden
University.

Voorhees, E. (2007). Overview of TREC 2007. In E. Voorhees and L. Buckland
(Eds.), The Sixteenth Text REtrieval Conference Proceedings 2007, Number 500-274
in Special Publication, Gaithersburg, Maryland, pp. 1–16. NIST.

Voorhees, E. and D. Harman (Eds.) (2005). TREC: Experiment and Evaluation in
Information Retrieval. MIT Press.

Vossen, P., K. Hofmann, M. de Rijke, E. Tjong Kim Sang, and K. Deschacht (2007). The
Cornetto database: Architecture and user-scenarios. In M.-F. Moens, T. Tuytelaars,
and A. de Vries (Eds.), Proceedings of the 7th Dutch-Belgian information retrieval
workshop DIR 2007, University of Leuven, pp. 87–96.

Wahlster, W. (Ed.) (2000). Verbmobil: Foundations of Speech-To-Speech Translation.
Springer.

Willis, A. (2007). NP coordination in underspecified scope representations. In
J. Geertzen, E. Thijsse, H. Bunt, and A. Schiffrin (Eds.), Proceedings of the Seventh
International Workshop on Computational Semantics IWCS-7, Tiburg, pp. 235–246.

Wolf, L., R. Overberg, P. Toussaint, E. Hoenkamp, and H. Reckman (2006). Design of
the Narrator system: processing, storing and retrieving medical narrative data. Journal
of Integrated Design and Process Science 10(4), 13–33.

Zaenen, A., L. Karttunen, and R. Crouch (2005). Local textual inference: can it be
defined or circumscribed? In Proceedings of the ACL 2005 Workshop on Empirical
Modeling of Semantic Equivalence and Entailment, Ann Arbor, Michigan, pp. 31–36.
Association for Computational Linguistics.

Zwarts, F. (1981). Negatief polaire uitdrukkingen I. GLOT 4(1), 35–132.

Zwarts, F. (1986). Categoriale Grammatica en Algebraïsche Semantiek. Ph. D. thesis,
University of Groningen.



Samenvatting in het Nederlands

Natuurlijke taal stelt mensen in staat complexe informatie over te dragen. Het overdragen
van informatie speelt een belangrijke rol in technische en wetenschappelijke vooruitgang.
Sinds de uitvinding van het schrift kan informatie ook in de vorm van taal worden
bewaard voor later gebruik. Nu teksten ook in digitale vorm kunnen worden opgeslagen,
kunnen ze sneller doorzocht worden.

Een tekst wordt in de computer opgeslagen als een serie tekens. De meeste
zoekmechanismen zijn gebaseerd op het vergelijken van rijtjes lettertekens: waar komt
het rijtje dat gezocht wordt voor in de tekst? De computer heeft geen toegang tot de
informatie die in de vorm van tekst gecodeerd is. Informatie waarmee de computer
complexere taken moet kunnen uitvoeren wordt daarom niet opgeslagen in de vorm van
lopende tekst, maar in de strak georganiseerde vorm van een database. Het maken van
zo’n database is veel werk en je moet van te voren precies bedenken wat je ermee wil.

Dit proefschrift draagt bij aan het onderzoek dat probeert het begrijpen van informatie
in menselijke taal te simuleren op de computer. Voor toepassingen betekent dit
dat de computer zich gedraagt alsof hij begrijpt wat er in een tekst staat. Een
computerprogramma dat dat kan, kan gebruikers beter helpen bij het zoeken naar en
verwerken van informatie die is opgeslagen als gewone tekst.

Internet zoekmachines hebben het vinden van informatie al een stuk makkelijker
gemaakt, maar de gebruiker moet nog veel zelf doen. Als je de computer in mensentaal
kon uitleggen wat je zoekt en hij gerichter kon zoeken, documenten kon vergelijken en
de resultaten op een inzichtelijke manier kon presenteren zou dat veel tijd schelen. De
sprekende computer in Star Trek is een tot de verbeelding sprekend voorbeeld.

Semantiek is een deelgebied van taalkunde dat de betekenis van woorden, zinnen en
teksten bestudeert. Een uiting in een taal is een reeks klanken, of op papier een reeks
tekens. Maar voor degenen die de taal kennen is het veel meer dan dat. Taal is een
code. De spreker codeert in zijn uiting informatie en de luisteraar decodeert en haalt die
informatie er weer uit. Semantici willen weten hoe dit werkt. Hierbij gaat het vooral om
de eerste betekenislaag (wat wordt er beweerd?), en niet zozeer om diepere interpretatie
(hoe is dit bedoeld?). Het raden van elkaars bedoelingen is veel breder dan taal. En de
direct gecodeerde betekenis is voorlopig al ongrijpbaar genoeg. We weten bijvoorbeeld
nog heel weinig over hoe en in wat voor vorm we informatie in onze hersenen opslaan
en verwerken.

De strategie die binnen het hier beschreven onderzoeksproject gebruikt wordt om
begrip van talige informatie te simuleren is gebaseerd op het ‘vertalen’ van zinnen naar
logische formules, als een poging om de betekenis op een voor de computer hanteerbare
manier weer te geven. Formele logica maakt gebruik van een nauwkeurig gedefinieerde
notatie waarin informatie wordt opgeschreven en van een systeem van redeneerregels



218 Samenvatting in het Nederlands

die vertellen hoe je nieuwe informatie kunt afleiden uit wat je al weet. Daar is formele
logica ook voor; om op een systematische en controleerbare manier te redeneren. Er zijn
computerprogramma’s die de redeneerstrategieën van sommige formele logica’s kunnen
uitvoeren.

Binnen de computationele taalkunde wordt eerste orde logica veel gebruikt voor het
weergeven van betekenis van uitingen in natuurlijke taal. Een eenvoudige zin als elke
man fietst wordt dan bijvoorbeeld weergegeven met de volgende logische vorm:

∀x. man(x)→ fietst(x)

Hier staat zoiets als: ‘voor elke x geldt: als x een man is dan fietst x’. De ∀ noemen
we een kwantor. Als de computer nu dit soort formules ter beschikking heeft, waarin
bijvoorbeeld staat dat elke man fietst en dat Bob een man is, dan kan hij afleiden, volgens
de regels van de logica, dat Bob fietst. Dit noemen we automatisch redeneren.

Eerste orde logica is niet noodzakelijk het beste formalisme om de betekenis van
zinnen en teksten weer te geven. Het is duidelijk dat er bij het vertalen informatie
verloren gaat. In de theoretische semantiek worden bijvoorbeeld ook hogere orde logica’s
gebruikt, maar die zijn voor de computer niet meer goed hanteerbaar. In deze dissertatie
wordt gewerkt aan een manier om betekenis weer te geven die zowel informatiever als
hanteerbaarder is dan eerste orde logica.

Het programma dat hier gebruikt is om taal naar logica te vertalen heet Delilah.
Delilah ontleedt Nederlandse zinnen met behulp van kennis van de Nederlandse gram-
matica. Het is een sterk lexicalistisch systeem. Dit betekent dat het ingebouwde woor-
denboek (een database) een belangrijke rol speelt. Bij elk woord in het woordenboek
staat een heleboel informatie, bijvoorbeeld wat de woordsoort is en met welke andere
woordsoorten het een woordgroep vormt. Dit is dus eigenlijk grammaticale informatie,
belangrijk voor de combinatoriek. Op deze manier wordt informatie over taal opgeslagen
in een database om informatie in taal te kunnen verwerken. Elk woord brengt ook z’n
eigen stukje logische vorm mee. In zo’n stukje logische vorm is steeds aangegeven
waar de gaten zitten in de formule die moeten worden ingevuld door stukjes logische
vorm van andere woorden in de grammaticale structuur (het stap voor stap samenvoegen
van woorden tot woordgroepen en woordgroepen tot zinnen levert een hiërarchische
structuur op). Zo worden de formules opgebouwd. De betekenisweergave van een
zin is het resultaat van de stukjes betekenis die de woorden meebrengen en de manier
waarop deze gecombineerd worden, wat bepaald wordt door de grammaticale structuur
van de zin. Er wordt dus vanuit gegaan dat betekenis tenminste tot op zekere hoogte
op een systematische manier berekenbaar is. Er zijn natuurlijk allerlei complicerende
factoren. Zinnen zijn bijvoorbeeld vaak dubbelzinnig. Er is dan voor elke lezing
een aparte vertaling nodig. Voor mensen is meestal meteen duidelijk wat de bedoelde
interpretatie is, maar die gebruiken daarvoor een heleboel achtergrondkennis die moeilijk
in een computer te stoppen is. Verder zijn er een heleboel woorden, zoals hij of dat die
terugverwijzen naar een antecedent. Dit antecedent moet dan worden geïdentificeerd en
de formule aangepast. De stijl van analyse die Delilah hanteert wordt wel ‘diepe’ analyse
genoemd; de grammaticale structuur van zinnen wordt zo volledig mogelijk geanalyseerd
en de betekenisanalyse is daarop gebaseerd. Deze nauwkeurigheid gaat typisch ten koste
van de robuustheid en snelheid van het systeem.



219

Het Narrator project in het NWO programma voor Toegankelijkheid en Ken-
nisontsluiting in Nederland, waarin het hier beschreven onderzoek was ingebed, streeft
ernaar een systeem voor een website te ontwikkelen waarin borstkankerpatiënten kunnen
zoeken naar voor hen relevante ervaringsverhalen van lotgenoten. Borstkankerpatiënten
hebben vooral in het stadium na de behandelingen vaak behoefte aan lotgenotencontact.
Dit kan helpen bij de emotionele verwerking van hun ervaringen. Ze lezen dan
bijvoorbeeld op internet verhalen van anderen. Het internet heeft als voordelen voor
de patiënten dat het laagdrempelig en anoniem is en dat er in principe veel verschillende
verhalen beschikbaar zijn. Het zou daarbij ideaal zijn als er een geschikt zoekprogramma
was dat iemand kon helpen om uit een verzameling verhalen over ongeveer hetzelfde
onderwerp de meest relevante bij elkaar te zoeken om te lezen, bijvoorbeeld verhalen die
goed aansluiten bij de eigen ervaringen. Het bieden van deze hulp bij het zoeken is de
taak voor het Narrator systeem. Hoofdstuk één van dit proefschrift gaat over dit systeem,
zoektechnieken en automatisch redeneren. De bedoeling is om een systeem te maken dat
passende verhalen vindt door middel van gesimuleerd taalbegrip. Er kan dan meer dan
bij het traditionele zoeken op ‘keywords’ het geval is, worden gezocht op inhoud.

Hoofdstuk twee beschrijft Delilah, bespreekt een aantal problemen en stelt oplossin-
gen voor. Een interessant probleem is bijvoorbeeld de interpretatie van bijwoorden in
bepaalde posities. In de zin Waar denk je dat hij Alice gezien heeft? vraagt waar
bijvoorbeeld (in de meest voor de hand liggende lezing) naar de plaats van het zien (uit
de bijzin). Bij de manier waarop bijwoorden tot nu toe geregeld waren in de grammatica
was dit problematisch: Waar kon alleen geïnterpreteerd worden als vragend naar de
plaats van het denken (uit de hoofdzin). Dit heeft te maken met het feit dat bijwoorden
normaal gesproken niet verplicht zijn in de grammatica. Ik denk dat hij Alice gezien heeft,
zonder plaatsbepaling in de bijzin, is bijvoorbeeld een prima zin. Als we dit vergelijken
met een zin waar naar het lijdend voorwerp uit de bijzin gevraagd wordt, bijvoorbeeld
Wie denk je dat hij daar gezien heeft?, zien we dat het hier wel meteen duidelijk is dat
het vooropgeplaatste wie eigenlijk bij de bijzin hoort. Zonder lijdend voorwerp is de
bijzin namelijk niet compleet. Ik denk dat hij daar gezien heeft is geen goede zin. De
grammatica zit zo in elkaar dat als twee woorden of woordgroepen samengaan er altijd
één is die de ander selecteert (‘nodig heeft’). De selecterende partij noemen we het
hoofd, de geselecteerde partij het argument. Een hoofd heeft een lijst van één of meer
argumenten waarmee gecombineerd moet worden om een complete woordgroep of zin
te vormen. Als een werkwoord en een lijdend voorwerp combineren tot een geheel, dan
is het werkwoord het hoofd, want een transitief werkwoord kan alleen gebruikt worden
in combinatie met een lijdend voorwerp. Bij het combineren van een werkwoord en een
bijwoord, ligt het om verschillende redenen voor de hand om het bijwoord het hoofd
te laten zijn. Dit lijdt echter tot het hierboven beschreven probleem. Dit probleem is
opgelost door de verhoudingen in de grammatica om te draaien en het bijwoord een
optioneel argument te laten zijn bij het werkwoord. Daardoor kan waar in ons eerste
voorbeeld geïnterpreteerd worden als horend bij de bijzin.

Hoofdstuk drie gaat over een systematische verrijking van de logische vorm met
informatie over de beschreven gebeurtenissen of ‘events’. De betekenis van elke man
fietst wordt dan als volgt weergeven:



220 Samenvatting in het Nederlands

∀x. man(x)→ ∃e. gebeurtenis(e) & fietsen(e) & fietser/doener(e,x)

Hier staat zoiets als dat er voor elke man een gebeurtenis is die omschreven kan worden
als fietsen en waarbij hij betrokken is als fietser; degene die het doet. Deze notatie
maakt de gebeurtenis direct adresseerbaar. Er kan nu heel makkelijk informatie over
de gebeurtenis worden toegevoegd, zoals de tijd en de plaats ervan. Daarvan wordt
de formule wel langer, maar niet complexer. De informatie kan op hetzelfde niveau
worden toegevoegd als de informatie over de betrokkene, die er al is. In de notatie die
we eerder hebben gezien zou dat soort informatie de hele formule moeten inbedden en
dus complexiteit toevoegen. De representaties zijn dus informatiever geworden en in
sommige gevallen eenvoudiger qua structuur.

Werkwoorden zijn typisch de woorden die gebeurtenissen introduceren. Daarom zijn
alle soorten werkwoorden zo aangepast dat er in het stukje formule dat ze bijdragen
aan de zinsbetekenis verwezen wordt naar een gebeurtenis (of een toestand). Er zijn
ook zelfstandige naamwoorden die naar een gebeurtenis verwijzen. Vaak zijn deze
zelfstandige naamwoorden afgeleid van werkwoorden. We noemen dit nominalisaties.
Een voorbeeld van een nominalisatie is het woord operatie, afgeleid van opereren. Als
we nu naar de volgende twee zinnen kijken: Alice werd geopereerd en Alice onderging
een operatie dan zien we dat beide gaan over eenzelfde soort gebeurtenis en dat Alice
beide keren dezelfde rol speelt bij die gebeurtenis (die van patiënt). Het is zelfs zo
dat de ene zin niet waar kan zijn zonder dat de andere ook waar is en andersom.
Als er verschillen zijn, zijn dit misschien verschillen in stijl, of in de manier waarop
de informatie wordt gepresenteerd, maar wat er beweerd wordt is in beide gevallen
hetzelfde. Met de betekenisweergave nieuwe stijl wordt dit gemakkelijk herkend. Dus
als een gebruiker zoekt naar teksten over mensen die geopereerd zijn, dan wordt een
tekst waar één van de bovenstaande zinnen in staat gevonden. Het maakt niet uit welke
formulering gekozen is.

Iets soortgelijks is gedaan voor bijvoeglijke naamwoorden (bijv. boos) en de daaraan
verwante abstracte zelfstandige naamwoorden (bijv. boosheid). Beide refereren aan
iets wat we een toestand of ‘state’ noemen. Dit leidt ook tot een nieuwe analyse van
constructies van het type honger hebben. Deze constructie werd eerst beschouwd als
een vaste verbinding. In de nieuwe aanpak heeft hebben eenzelfde soort functie als
ondergaan in het operatie-voorbeeld en komt het belangrijkste deel van de betekenis
van honger. Dit ondervangt de variatie die mogelijk is in deze constructie beter.

Een belangrijk concept in de semantiek is dat van logische consequentie. Om te
weten of zin B een logische consequentie is van zin A, stel je je voor dat zin A waar is
en ga je na of zin B in dat geval ook waar moet zijn. Als dat zo is, is zin B een logi-
sche consequentie van zin A en anders niet. De opereren/operatie zinnen hierboven zijn
bijvoorbeeld logische consequenties van elkaar. Ons begrip van de betekenis van zinnen
stelt ons in staat logische consequenties te herkennen. “B is een logische consequentie
van A” zullen we schijven als A⇒ B (Uit A volgt logischerwijs B.) Als B geen logische
consequentie is van A, schrijven we A ; B.

Determinatoren zoals alle, sommige en geen spelen een belangrijke rol bij logische
consequenties. Vergelijk bijvoorbeeld∗:
∗De voorbeelden met geen klinken misschien wat onnatuurlijk. Vervang dit patroon rustig door geen aap



221

alle apen geeuwen⇒ alle mannetjesapen↓ geeuwen
; alle apen geeuwen luidruchtig↓

alle mannetjesapen geeuwen luidruchtig ; alle apen↑ geeuwen luidruchtig
⇒ alle mannetjesapen geeuwen↑

sommige apen geeuwen ; sommige mannetjesapen↓ geeuwen
; sommige apen geeuwen luidruchtig↓

sommige mannetjesapen geeuwen luidruchtig⇒ sommige apen↑ geeuwen↑

geen apen geeuwen⇒ geen mannetjesapen↓ geeuwen luidruchtig↓

geen mannetjesapen geeuwen luidruchtig ; geen apen↑ geeuwen luidruchtig
; geen mannetjesapen geeuwen↑

Je ziet dat wat uit wat volgt, afhangt van de determinator. Als uit iets specifieks iets
algemeens volgt, noemen we dat stijgend. Als uit iets algemeens iets specifieks volgt
noemen we dat dalend. Alle is dalend met betrekking tot z’n eerste argument (apen)
en stijgend met betrekking tot z’n tweede argument (geeuwen), sommige is stijgend met
betrekking to beide argumenten en geen is dalend met betrekking tot beide argumenten.
In de voorbeelden is dit aangegeven met pijltjes naar boven en naar beneden. In figuur 1
wordt geïllustreerd hoe dit komt.

F
G

alle F G

F G

sommige F G geen F G

GF

Figuur 1 — Venn-diagrammen die de determinatoren alle, sommige, en geen illustreren. De twee
argumenten (bijvoorbeeld apen en geeuwers) zijn weergegeven als de verzamelingen F en G. De
determinator vertelt wat de overlap moet zijn tussen de twee verzamelingen. Bij sommige mag
die overlap bijvoorbeeld niet leeg zijn. Dit blijft zo als je van één of beide verzamelingen een
bovenverzameling neemt. De pijltjes en cirkels in stippellijnen geven de stijgende en dalende
richtingen voor logische consequenties aan.

In eerste orde logica kunnen deze logische consequenties berekend worden, tenmin-
ste als ergens is vastgelegd dat mannetjesapen apen zijn en apen dieren, enzovoorts. Om
dat soort kennis op te zoeken bestaan ontologieën. Logica’s zijn er op gemaakt dat je
met weinig regels veel kunt afleiden. De redeneringen kunnen dan wel erg ingewikkeld
worden. Eerste orde redeneringen zitten aan de bovengrens van wat een computer
tegenwoordig kan. Als zo’n programma grotere hoeveelheden tekst langs moet om te
kijken of wat je wil weten ergens uit volgt, gaat het al snel lang duren. Maar er is nog een

geeuwt, er geeuwen geen apen of geen van de apen geeuwt. De logische consequenties blijven hetzelfde. De
zinnen zijn hier parallel gehouden met de andere, om de aandacht te vestigen op de verschillen die er in dit
verband toe doen.



222 Samenvatting in het Nederlands

probleem. Natuurlijke talen hebben veel meer verschillende determinatoren dan eerste
orde logica kwantoren heeft. De betekenis van de meeste kan bijvoorbeeld niet in eerste
orde logica worden uitgedrukt.

De titel van dit proefschrift luidt: Flat but not shallow; ‘Plat maar niet oppervlakkig’.
Dit gaat over de eigenschappen die semantische representaties liefst zouden moeten
hebben. Ze moeten enerzijds zo plat mogelijk zijn, in de zin dat ze zo min mogelijk
hiërarchische structuur bevatten, omdat die het verwerken ervan bemoeilijkt. Daarom
is er een trend ontstaan om te werken met shallow semantics. Het probleem met
formalismen voor shallow semantics is dat je er nog minder in kunt uitdrukken. Je
verliest dus extra informatie over de betekenis van de zin die je ontleedt. Typisch wordt
de betekenis van determinatoren genegeerd.

In hoofdstuk vier wordt een nieuw soort logische vorm ontwikkeld, waarin de
informatie behouden blijft maar de structuur versimpeld wordt. De representaties
zijn eenvoudiger te verwerken omdat er al een heleboel voorwerk is gedaan voor het
berekenen van logische consequenties. De betekenis van onze zin elke man fietst wordt
nu als volgt weergegeven in Flat Logical Form (Platte logische vorm of FLF):

man(x+↓+elke+[]) &
gebeurtenis(e+↑+een+[]) &
fietsen(e+↑+een+[]) &
fietser/doener(e+↑+een+[],x+↑+elke+[])

De predicaten (man, fietsen. . . ) zijn hetzelfde als in de vorige notatie en ook de variabelen
(x en e) zien we terug. De variabelen zijn hier uitgebreid met extra informatie. De
kwantoren zijn hier in weggewerkt. Ook is steeds lokaal (door middel van de pijltjes)
de richting aangegeven die voor de logische consequenties van belang is. Er is ook nog
een positie, die hier steeds wordt opgevuld door een lege lijst ([]), waar informatie over
afhankelijkheden kan worden weergegeven. Was de zin bijvoorbeeld geweest ik denk
dat elke man fietst, dan mocht daar niet zomaar uit worden afgeleid dat elke man fietst
omdat deze informatie onder denken is ingebed. Om te kunnen voorkomen dat dit wel
gebeurt moet deze afhankelijkheid worden vastgelegd en daar biedt die lijst op de laatste
positie van de variabele ruimte voor. Nu volstaan eenvoudige redeneerregels om logische
consequenties te berekenen.

FLF heeft als bijkomend voordeel dat ook determinatoren die geen vertaling hebben
in de eerste orde logica meegenomen kunnen worden en dat je niet perse vast zit aan de
redeneerregels van eerste orde logica, die niet altijd overeenkomen met de intuïties over
natuurlijke taal.

Bij een zoektaak zoals die in Narrator kunnen nu zowel de zoekvraag (query) die de
gebruiker ingeeft (of een afgeleide daarvan) en de teksten waarin gezocht moet worden in
de vorm van FLF worden weergegeven. Door de representaties te vergelijken en enkele
regels toe te passen kan dan gekeken worden waar de gezochte informatie in de tekst
staat. Doordat een niveau van betekenis representatie gebruikt wordt, zit je niet vast aan
de toevallige letterlijke formuleringen. Doordat FLF gebruikt is in plaats van eerste orde
logica is het zoek- en redeneerproces relatief eenvoudig.

Als dit type onderzoek op de juiste weg is, is de Star Trek computer weer een klein
stapje dichterbij.



Curriculum Vitae
Hilletje Gezina Bouwke (Hilke) Reckman was born in Groningen on the 26th of
December 1978, and grew up in Appingedam, where she also attended the Ommelander
College (1991-1997). After secondary school she spent a year in Verona, Italy as an au
pair and learned Italian. This turned out to be an excellent way to gather the courage
needed to make a decision on what to study. In 1998 she enrolled to study African
Linguistics at Leiden University, in retrospect the most linguistically oriented first year
program she could find. After the first year she continued in the General Linguistics
program, from which she graduated cum laude in 2003. From 2003 till 2008 she held a
position as a PhD student at the Leiden University Centre for Linguistics, participating
in an NWO-funded interdisciplinary project. Her research during that period, on the
Delilah parser and its semantic representations, resulted in the present study. At present
she works as a lecturer at the Gerard Tuning Institute at Leiden University, teaching
courses in computational linguistics and semantics.


