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5
Marginal likelihood calculation with

MCMC methods

The most important kind of freedom is to be what you really
are. [. . . ] There can’t be any large-scale revolution until
there’s a personal revolution, on an individual level. It’s got to
happen inside first.

Jim Morrison

Abstract
Markov Chain Monte Carlo (MCMC) methods have revolutionised Bayesian data analysis over the years by

making the direct computation of posterior probability densities feasible on modern workstations. However, the

calculation of the prior predictive, the marginal likelihood, has proved to be notoriously difficult with standard

techniques. In this chapter a method is presented that lets one calculate the marginal likelihood using nothing but

the results from standard MCMC algorithms, like Metropolis-Hastings. This new method is compared to other

methods like nested sampling, and outperforms the latter in some cases. One of the toy problems considered

in this chapter is the analysis of mock pulsar timing data, as encountered in pulsar timing array projects. This

method is expected to be useful as well in other problems in astrophysics, cosmology and particle physics.

To be submitted to MNRAS

5.1 Introduction
Bayesian inference has proved over the years to be a very powerful tool in many
branches of science as it gives a very clear prescription of how to analyse datasets
without loss of information, even for very complicated models. On the practical
side, in performing Bayesian analysis two difficult problems often emerge:
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CHAPTER 5. MARGINAL LIKELIHOOD CALCULATION WITH MCMC
METHODS

1. Producing the posterior probability density functions (PDFs) for several in-
teresting parameters requires marginalisation, i.e. the integration of the full joint
posterior probability distribution function (PDF) over most model parameters. In
a majority of cases this must be done numerically, and it is common to employ a
Markov Chain Monte-Carlo (MCMC) algorithm for performing the integration.
2. Model selection requires the calculation of the Bayes factor: the ratio of the
marginal likelihood (ML) of two competing models. This marginal likelihood,
sometimes also called the evidence, is the normalisation constant required to have
the likelihood times the prior PDF (when normalised called the posterior PDF) in-
tegrate to unity when integrating over all parameters. The calculation of this value
can be notoriously difficult using standard techniques.

The use of Markov Chain Monte Carlo (MCMC) algorithms, such as the
Metropolis-Hastings algorithm, has become extremely popular in the calculation
of the marginal posterior PDFs. MCMC algorithms allow one to sample from
posterior distribution of complicated statistical models, greatly reducing the effort
involved in evaluating numerical integrals. MCMC algorithms typically sample
from a posterior distribution in a way that does not require explicit normalization.
This is a virtue when only one model is of interest and only parameter estimation
must be pursued. But it means that most MCMC algorithms do not directly address
problem (2).

Over the years, several methods capable of calculating the ML have been de-
veloped (including Newton & Raftery, 1994; Earl & Deem, 2005; Skilling, 2004;
Feroz et al., 2009). Typically, the technical challenges of producing the posterior
PDFs, and the ML, that these methods try to overcome can be divided in three
stages:
1. Finding the high probability density (HPD) regions of the posterior in parameter
space.
2. Maximising the posterior to find the best estimators.
3. Sampling the HPD regions as accurately as possible.
It is very unlikely that one algorithm will outperform all others in all three aspects,
and complicated problems may require a combination of algorithms to be efficient.
Results of ML calculations can rarely be checked for sanity without additional
major effort, usually involving running the same or a different algorithm for the
same problem to verify a result. Especially for integrals in very high dimensional
spaces, which are particularly challenging, crosschecks between algorithms may
be desired.

In this chapter we present a method to calculate the ML from the MCMC chains
of regular MCMC algorithms. This method can be applied to chains that have
already been run, provided that the values of the likelihood times the prior have
been saved together with the values of the parameters at each point in the chain.

110



5.2. BAYESIAN INFERENCE

By using MCMC chains, the method is especially efficient in stage (3), sampling
the HPD region accurately if found correctly. In problems where sampling the HPD
region efficiently is the greatest challenge, this new method could be of particular
interest. The error on the ML can be calculated using a batch means procedure.

The outline of the chapter is as follows. In Section 5.2 we briefly review the
basic aspects of Bayesian inference for parameter estimation and model selection.
Then we provide the reader with some necessary details on MCMC in Section 5.3,
where we also outline the new algorithm to calculate the ML. In Section 5.4 we
assess the strengths and weaknesses of the new method relative to those that use
nested sampling or parallel tempering. In Section 5.5 we test all competing algo-
rithms on some toy problems like the analysis of pulsar timing data as encountered
in pulsar timing array projects.

5.2 Bayesian inference
Bayesian inference methods provide a clear and consistent approach to parameter
estimation and model selection. Consider a model, or Hypothesis, H with parame-
ters �Θ for a dataset �d. Then Bayes’ theorem states that

P
(
�Θ | �d,H

)
=

P
(
�d | �Θ,H

)
P

(
�Θ | H

)
P

(
�d | H

) ,
�

�

�

�5.1

where P(�Θ) := P(�Θ | �d,H) is the posterior PDF of the parameters, L(�Θ) := P(�d |
�Θ,H) is the likelihood function, π(�Θ) := P(�Θ | H) is the prior, and z := P(�d | H) is
the marginal likelihood.

The ML is the factor required to normalise the posterior over �Θ:

z =
∫

L
(
�Θ
)
π
(
�Θ
)

dmΘ,
�

�

�

�5.2

where m is the dimensionality of �Θ. The ML can then be used to calculate the
so-called odds ratio in favor of model H1 over H0, which allows one to perform
model selection:

P
(
H1 | �d

)
P

(
H0 | �d

) = z1

z0

P (H1)
P (H0)

,
�

�

�

�5.3

where P(H0) and P(H1) are the prior probabilities for the different models . As
with the prior for a model parameters, the prior probability for a model should be
chosen to reflect the available information, if any.
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In parameter estimation problems, one is interested in the posterior PDF,
marginalised over all nuisance parameters. In this case, knowing the marginalised
likelihood is not required, since the resulting marginalised posterior PDF can be
normalised after the integration. However, when model choice itself is uncertain,
the ML is no longer an uninteresting normalisation constant, but a key quantity that
allows us to perform model selection.

Being the average of the likelihood over the prior distribution, the ML is larger
for a model if more of its parameter space is likely and smaller for a model with
large areas in its parameter space having low likelihood values. Even if the likeli-
hood function has high peaks, in order to increase the ML these peaks must com-
pensate for the areas in its parameter space where the likelihood is low. Thus the
ML automatically implements Occam’s razor: a simpler theory with compact pa-
rameter space will have a larger ML than a more complicated model, unless the
latter is significantly better at explaining the data.

5.3 Markov Chain Monte Carlo
Markov Chain Monte Carlo methods (MCMC) can be used to sample from very
complicated, high dimensional distribution; for Bayesian inference it is usually the
posterior PDF. The method presented in this chapter could be useful for integration
problems other than ML calculation, so we use the more general f (�Θ) to denote
this unnormalised function. The samples drawn from a distribution proportional to
this function can then be used to perform the integrals we need for the marginal
posterior PDFs and, as we show, for the ML. The exact mechanism that produces
these samples can differ between MCMC methods and is irrelevant for the pur-
poses of this work, but the result is always a large number of samples distributed
according to f (�Θ). The main advantage of this is that we do not have to sample
from the entire volume of the parameter space or the prior, but only from a small
fraction of it: the high probability density (HPD) regions. Especially for func-
tions in high-dimensional parameter spaces this feature is crucial for efficient ML
evaluation.

In Section 5.3.2 we show that all information needed to calculate the ML is
already present in the samples of the MCMC. Then we give a practical example of
how to calculate the integral in practice in Section 5.3.4.
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5.3. MARKOV CHAIN MONTE CARLO

5.3.1 The harmonic mean estimator

A very simple ML estimator can be derived from Equation (5.1):

1
z
=

P
(
�Θ | �d,H

)
L

(
�Θ
)
π
(
�Θ
) = ∫ P

(
�Θ | �d,H

)
L
(
�Θ
) dmΘ

=

〈
1

L
(
�Θ
)〉

P

,
�

�

�

�5.4

where we have multiplied the right hand side by π(�Θ), and integrated over all pa-
rameters. The expectation is an expectation over the posterior PDF. Equation (5.4)
is then used to form the harmonic mean (HM) estimator of the ML (Newton &
Raftery, 1994):

ẑHM =
1

1
N

(∑N
i=1

1
L( �Θi)

) , �

�

�

�5.5

where the summation is over all N MCMC samples.
Although the HM estimator follows directly from a true identity, it has some

statistically undesirable properties. The HM estimator does converge to the correct
value, but the variance of the estimator can be infinite. This is because the likeli-
hood can reach values arbitrarily close to zero with nonzero probability in the case
that these values are permitted by the prior. This is especially important if a peak
in the likelihood is smaller than a corresponding peak in the prior PDF, i.e. when
the data is informative. As a result, in the case that the data is informative, the
HM estimator converges much slower than estimators that follow the central limit
theorem (Wolpert, 2002).

5.3.2 The truncated harmonic mean estimator

In this chapter we advocate a modification to the HM estimator by eliminating
the probability that we include samples in our estimator for which the likelihood
gets arbitrarily close to zero. In the derivation in this section, we consider the
general function f (�Θ) = zp(�Θ), where p(�Θ) is a PDF proportional to f (�Θ). We are
interested in the integral over all parameters of f (�Θ). Analogous to Equation (5.4),
we now integrate 1/z, but we now perform the integral only over a HPD region of
f (�Θ), given byV ⊂ Rn with volume V . This gives:

V
Z
=

∫
V

p(�Θ)

f (�Θ)
dmΘ.

�

�

�

�5.6
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This equation can be used to form an estimator similar to the HM estimator as
follows. First note that the PDF p(�Θ) is not normalised onV. By defining the PDF
pV(�Θ) = wp(�Θ), we can write a truncated harmonic mean estimator for the ML:

V
Z
= w

∫
V

pV(�Θ)

f (�Θ)
dmΘ = w

〈
1

f (�Θ)

〉
pV

.
�

�

�

�5.7

Now, assuming that NV samples of the total N MCMC samples are within V, the
HPD region of f (�Θ), we can write down the new estimator:

ẑ =
V

NV
N

(
1

NV

∑
�Θi∈V

1
f (�Θ)

) , �

�

�

�5.8

where NV/N appears as an estimator for w. Equation (5.8) is the estimator we
propose as an improvement to the HM estimator in this chapter.

5.3.3 Analogy with tessellations

In order to provide a more intuitive approach to the estimator presented in Section
5.3.2, we try to motivate the use of that estimator in an entirely different way in
this section. Consider the function:

f (x, y) = exp
(
−ax2 − by2

)
,

�

�

�

�5.9

where a and b are arbitrary model parameters. For the values a = 1/5 and b = 2/5,
a Metropolis algorithm with N = 40000 samples yield a distribution of samples
similar to Figure 5.1. We use the notation �Θi = (xi, yi) to indicate the ith sample.
We would now like to calculate the integral

z =
∫ ∫

f (x, y) dxdy.
�

�

�

�5.10

In any MCMC algorithm, the function values f (�Θi) for each point are evaluated,
and usually these values are stored together with the values of the parameters.
These function values can be used to calculate the integral if we treat the MCMC
samples in parameter space as an irregular grid. A straightforward way to do this
is to calculate the Voronoi tessellation for the samples in the parameter space, an
example of which is given in Figure 5.2. The samples are then the centres of the
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Figure 5.1: A scatter plot of of 40000 samples, drawn using a Metropolis algorithm
from the function f (x, y) = exp(−ax2 − by2), with a = 1/5 and b = 2/5.
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Figure 5.2: An example of a Voronoi tessellation. Here we have taken 200 samples
from a 2-dimensional Gaussian distribution as the centres of the Voronoi diagram.
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5.3. MARKOV CHAIN MONTE CARLO

Voronoi cells, and the integral can be calculated as follows:

z ≈
∑

i

f
(
�Θi

)
Oi,

�

�

�

�5.11

where Oi is the surface of the ith Voronoi cell, and we only sum over closed cells
(with finite surface). This procedure converges to the correct value for large num-
ber of samples N, and for all tessellations, not just when we use Voronoi cells. In
practice, although Voronoi tessellations can be computed for any dimensionality,
this becomes computationally prohibitive in practice for problems with high di-
mensionality (Edelsbrunner & Shah, 1996). This procedure does illustrate that all
information needed to evaluate the integral z is present in the MCMC chain.

We now proceed to show that we can link the estimator of Equation (5.8) to the
voronoi tessellation. First, we consider the HPD region V of f (�Θ), and write the
volume V as a sum of the volumes of the voronoi cells:

V =
∑

i:�Θ∈V
Oi.

�

�

�

�5.12

These cells comprise an inhomogeneous Poisson Voronoi Tessellation (PVT). Ana-
lytical expressions about the statistics of inhomogeneous PVTs are quite difficult to
establish; most results are based on large simulations. Analytically it is known that
〈Oi〉 → 1/ density of points for N → ∞, for cells away from the boundary (Barr,
2008). For finite N this expectation is biased. We ignore the bias, and introduce a
proportionality constant αN as follows:

〈Oi〉 =
αN

f (�Θi)
.

�

�

�

�5.13

By only considering the HPD region V, we do not have to deal with cells with
infinite volume. We can estimate αN analogous to Equation (5.11), but now with
the expectation of Oi:∑

i:�Θ∈V
f (�Θ)〈Oi〉 = αN

∑
i:�Θ∈V

1 = αNNV ≈ zw,
�

�

�

�5.14

where we have used notation as in Section 5.3.2. Since the expectation of a sum is
the sum of the expectation, and using Equations (5.14 & 5.13): we also have:

V =
∑
〈Oi〉 ≈ z

w
NV

∑
i:�Θ∈V

1

f (�Θ)
.

�

�

�

�5.15
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This expression directly leads us to the estimator of Equation (5.8) that we have
derived in the previous section.

5.3.4 A practical algorithm

In this section we construct a simple practical algorithm for numerically calculat-
ing integrals using regular MCMC methods. As stated in Section 5.3.3, we need
to define a HPD region of the parameter space that is sufficiently populated by
MCMC samples. In the case of multimodal posteriors, we should take samples
that ’belong’ to one specific mode. Clustering algorithms like X-means (Pelleg &
Moore, 2000), and G-means (Hamerly & Elkan, 2003) can be used for this.

Assuming that we have found M samples that belong to a specific mode, we
can then define a HPD region as follows. Assume that the M samples are sorted
according to their function value f (�Θi), with f (�Θ0) the highest value. We then first
approximate the maximum of f (�Θ) as:

�μ =
1
k

k∑
i=1

�Θi,
�

�

�

�5.16

where k = aM is a small fraction of M, dependent on the shape of the mode. We
use a = 1/20 in several cases. We now define our HPD region V as an ellipsoid
with centre �μ, and covariance matrix C, defined by:

C =
1
n

n∑
i=1

(
�Θi − �μ

) (
�Θi − �μ

)T
,

�

�

�

�5.17

where n = bM is a fraction of M, again dependent on the shape of the mode. We
use b = 1/5 in several cases. All samples within this ellipsoid of size

√
r2 det C

satisfy: (
�Θ − �μ

)T
C−1

(
�Θ − �μ

)
≤ r2.

�

�

�

�5.18

We adjust the parameter r2 such that l = cM samples satisfy this relation. It is cru-
cial that we choose l to be as large as possible, while still satisfying the requirement
that the entire ellipsoid is sufficiently populated with samples. If l is too small, we
will not achieve very high accuracy for our integral z, but if l is too large, we have
underpopulated parts of the ellipsoid which results in the wrong outcome. We use
c = 1/3 in several cases.

We now have all the ingredients needed to calculate the integral z, as the Vol-
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ume of our k-dimensional HPD region is given by:

V =
rkπ

k
2

Γ
(
1 + k

2

) √det C.
�

�

�

�5.19

This, combined with Equation (5.8) allows us to evaluate the integral.
We would like to note that this prescription is merely one of many that could

be used. In this case we have defined our HPD region as an ellipsoid located at a
maximum of our integrand, but any other HPD region will suffice.

5.3.5 Error estimates

An ideal MCMC algorithm generates samples according to a PDF proportional to
f (�Θ). Consider the number of samples inside the HPD region V. This number
follows a Poissonian distribution with mean and variance equal to cM. Using that
we can obtain a rough estimate for the error in the integral:

Δz =
1√
cM

z.
�

�

�

�5.20

We note that this Equation (5.20) is too simplistic for the truncated harmonic mean
estimator we introduce in chapter, but it can be used as an order of magnitude
guide to how well a particular simulation will do. Even if the estimator follows
the central limit theorem, which we do not show here, we show in Section 5.5 that
the error estimate should depend on the samples of the MCMC algorithm that have
been used. Many MCMC algorithms produce correlated samples, and in that case
the error estimate of the ML estimator should also increase (Roberts et al., 1997).

Having efficiency as one of our goals, we would like to produce reliable error-
bars on our numerical integral using the correlated MCMC samples. We propose
to use a batch means method (Efron, 1979). In the case of several chains, one can
use the spread in the estimates based on different chains to estimate the error of
the integral. In the case of a single chain, we propose to divide the chain in 10
succeeding parts, and use the spread of the integral in those 10 parts to estimate
the error of the numerical integral. In Section 5.5.4 we test the error estimates
discussed here extensively.

Another point noting is that we expect the truncated harmonic mean estima-
tor of Equation (5.8) to be slightly biased. Because the denominator of Equation
(5.8) is an unbiased estimator, this does not hold for the ML estimator itself. We
investigate the bias of the ML estimator in Section 5.5.4.
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5.4 Comparison to other methods
Although the algorithm developed in this chapter is quite generally applicable, in
practice there are caveats for each integration problem that one needs to be aware
of in order to choose the right integration algorithm. In this section we discuss the
strengths and the weaknesses of the method developed in this chapter in combi-
nation with the Metropolis Hastings MCMC algorithm, and we compare it to two
other methods widely used in astronomy: Nested sampling, and Thermodynamic
Integration based on Parallel Tempering (TI-PT).

For all algorithms, the main criteria that we cover are efficiency, accuracy and
robustness.

5.4.1 Metropolis Hastings

The main advantage of the Metropolis Hastings (MH) algorithm in relation to ML
evaluation is that of parameter space reduction; the full parameter space over which
we would like to evaluate the integral is too large, which is why we cannot use a
regular grid. The MH algorithm will mostly sample in the HPD regions, the regions
of parameter space where the function value f (�Θ) is high enough to significantly
contribute to the integral. In general this can be done by drawing samples from a
distribution P(�Θ) that resembles the function f (�Θ), with the optimal choice being
P(�Θ) = f (�Θ). MH is specifically designed to satisfy this optimal relation, making
the MH algorithm optimally efficient from a theoretical point of view (Roberts
et al., 1997). In Figure 5.1 we show an example of samples generated with a MH
algorithm, released on a 2-dimensional Gaussian function.

The drawback of MH is that one can never be sure that all important parts of the
parameter space have been covered. Some functions have many distinct peaks, the
so-called modes of the function. The MH algorithm often has difficulty to make the
chain move from one mode to another. If the function f (�Θ) is highly multimodal,
we must make sure that the sample density ratio between the modes is right and
that we have reached all the important modes in the entire parameter space.

An additional practical challenge with the method developed in this chapter is
to make sure that we have constructed a HPD region that is sufficiently populated
with samples. In the case of a not very peaked, or highly degenerate function this
requires special care.

5.4.2 Nested sampling

Nested sampling is a Monte Carlo technique aimed at accurate evaluation of numer-
ical integrals, while staying efficient (Skilling, 2004). The algorithm is especially
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well suited for problems that have huge parameter spaces, and very complicated
multi modal distributions. Nested sampling starts with sampling from the origi-
nal parameter space; in the case of ML calculation this is equivalent to sampling
from the prior distribution of the parameters. The density with which the parameter
space is sampled is adjustable in the form of an number nL of so-called live points;
the number of points evenly distributed among the part of the parameter space we
are exploring. At the start of the algorithm, the live points are evenly distributed
over the entire parameter space. Then the live points are replaced one-by-one un-
der the restriction that the newly sampled live points are higher than the lowest one
we have not replaced yet. Effectively this is the same as shrinking the parameter
space by a fixed factor every time we replace a new live point, ultimately sampling
only the part of the function close to the maximum.

The main advantage of nested sampling is that one generates samples from the
original parameter space, thereby completely eliminating the main deficiency of
the MH algorithm: all modes of the function f (�Θ) are sampled from, provided that
we choose nL high enough, i.e. that we have a high enough sampling density in the
parameter space. And due to the shrinking of the parameter space by a fixed factor
with the draw of each new live point, the size of the parameter space decreases
exponentially. This way all of the parameter space is explored in a relatively man-
ageable way, making nested sampling quite efficient in searching the parameter
space for HPD regions.

The main disadvantage of nested sampling is that the samples are not drawn
from a distribution that closely resembles the function f (�Θ) we want to integrate.
This method will therefore never reach the efficiency that the MH algorithm offers.
In Figure 5.3 we show an example of samples generated with nested sampling,
applied to a 2-dimensional Gaussian function.

5.4.3 Parallel tempering

Thermodynamic Integration based on Parallel Tempering (TI-PT) is an algorithm
spawned from the desire to solve the problems of MH and similar MCMC methods.
TI-PT algorithms possess better mixing properties, allowing the chain to “escape”
local extrema, and allow one to calculate the complete integral, or in our case the
ML (Earl & Deem, 2005). Let us briefly review TI-PT in this section, without
discussing it in too much detail.

The main idea of TI-PT is that of parameter space exploration by adding an
imaginary inverse temperature β to the system, changing the integrand of our inte-
gral to:

fβ
(
�Θ
)
=

(
f (�Θ)

)β
.

�

�

�

�5.21
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Figure 5.3: A scatter plot of 40000 samples, drawn using a nested sampling al-
gorithm with 5000 live points from the function f (x, y) = exp(−ax2 − by2), with
a = 1/5 and b = 2/5.
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Then many MCMC chains are released in the parameter space, each with a different
temperature β ∈ [0, 1]. A clever swapping system is employed, allowing the chain
with β = 1 - the “true” chain - to swap parameters with chains of higher temperature
every now and then provided that such a high-temperature chain was able to reach
a point in parameter space with high f (�Θ). This trick allows the coldest system,
the “true” chain with β = 1, to escape local extrema.

The integral over f (�Θ) is calculated by using all chains, not just the one with
β = 1, as follows. We first define a partition function:

Z(β) =
∫

d�Θ fβ
(
�Θ
)
,

�

�

�

�5.22

which has a logarithmic derivative of:

d
dβ

log (Z(β)) =
1

Z(β)
d

dβ
Z(β) =

〈
log

(
f (�Θ)

)〉
β
,

�

�

�

�5.23

where 〈.〉β is the expectation value of a quantity over a distribution proportional
to fβ(�Θ). Since we know that our desired integral can be expressed as z = Z(1),
Equation (5.23) is all we need to calculate it:

log (Z(1)) = log (Z(0)) +
∫ 1

0
dβ

〈
log

(
f (�Θ)

)〉
β
.

�

�

�

�5.24

The observant reader will have noted that we have neglected to mention the size
Z(0) of the parameter space that we explore with our chains. The high temperature
chain with β = 0 is unbounded by the function f (�Θ), and therefore will transverse
the entire parameter space. We should make sure that we limit the size of the
parameter space as much as possible, without missing any peaks of f (�Θ).

The main advantages of TI-PT are that it explores the entire parameter space,
even in the presence of strong local peaks, and that the ML can be calculated.
These advantages are accompanied with the large computational costs of the extra
chains with β � 1, which has resulted in the need for alternative methods like
nested sampling. As MultiNest, a specific nested sampling algorithm, is supposed
to outperform TI-PT in virtually all cases (Feroz et al., 2009), we compare our
method to MultiNest only in Section 5.5.

5.5 Applications and tests
In this section we consider several toy models, and we apply several integration
algorithms to these toy models as to compare the algorithms. In this whole section
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we have two ways to use the MH algorithm. To produce correlated samples, we use
a MH algorithm where we use the entire chain. To produce uncorrelated samples,
we use the same algorithm, but we only store one in every j samples produced by
the algorithm. We choose j high enough that there is negligible correlation between
2 succeeding used samples; in the case of a 4-dimensional Gaussian as in Section
5.5.1 we use j = 100.

5.5.1 Toy model 1: a high-dimensional Gaussian

We first consider a problem that is a typical example of what MH algorithm are
efficient in: a highly peaked, high-dimensional function. The curse of dimension-
ality prohibits any direct numerical integration scheme on a fine grid, but analytical
integration is possible. Consider the multiplication of N Gaussian functions,

f1
(
�x
)
=

N∏
i=1

√
ai

2π
exp

(
−1

2
aix2

i

)
,

�

�

�
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with ai the width of the Gaussian in the ith direction. Now let us perform a volume
preserving coordinate transformation using a random orthogonal matrix R, gener-
ated with a QR decomposition of a random matrix, as follows: �Θ = R�x. If we
introduce a matrix A−1

ii = ai = 1 + i with A−1
i j = 0 for i � j, we then have a highly

degenerate high-dimensional Gaussian function:

f1
(
�Θ
)
=

1

(2π)N/2
√

det C
exp
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−1

2
�ΘTC−1�Θ

)
,
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where we have introduced the covariance matrix C = RART .
We now apply in turn the MultiNest nested sampling algorithm and the al-

gorithm developed in this chapter combined with MH to the multi-dimensional
Gaussian for various number of dimensions.

For the MultiNest algorithm, we use a number of live points L = 50N with N
the number of dimensions, and we have set the sampling efficiency to e = 0.3 and
the ML tolerance to t = 0.1 as advocated in (Feroz et al., 2009).

We set up the Metropolis-Hastings algorithm to have an acceptance ratio equal
to the optimal value of 23.4% (Roberts et al., 1997). The parameters of the algo-
rithm advocated in Section 5.3.4 have been set to: a = 1/20, b = 1/5, c = 1/3.
We have used the number of samples N used by the MultiNest algorithm as the
number of samples in our MCMC chain. However, we realise that the MultiNest
algorithm might be improved in the future, as the algorithm is still under construc-
tion. The lowest efficiency (used samples / drawn samples) we encountered for
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log (z) for different algorithms
n # N MultiNest Unc. MCMC Cor. MCMC
2 2902 −0.17 ± 0.18 −0.018 ± 0.025 0.03 ± 0.025
4 7359 0.20 ± 0.17 0.007 ± 0.024 −0.01 ± 0.03
8 24540 0.17 ± 0.17 −0.01 ± 0.01 0.02 ± 0.03

16 105 0.05 ± 0.18 0.001 ± 0.006 0.004 ± 0.03
32 106 0.43 ± 0.17 0.004 ± 0.004 −0.015 ± 0.010
64 4.106 1.07 ± 0.77 −0.0004 ± 0.0007 −0.02 ± 0.016

Table 5.1: The log-integral values of the function f1 of Equation (5.26). The ana-
lytically integrated value is log z = 0 for all values of N.

Jump 1&2 Jump 3&4 Jump 5&6 Jump 7&8
Θ1 ± 4π Θ1 ± 2π Θ1 ± 2π Θ1 ± 0
Θ2 ± 0 Θ2 ± 2π Θ2 ∓ 2π Θ2 ± 4π

Table 5.2: The possible jumps in the eggbox MCMC toy-problem.

this toy-problem was e = 0.08; we therefore estimate that the error-bars could be
decreased with a factor of maximally

√
1/0.08 ≈ 3.5. The results of this toy-model

are shown in table 5.1.

5.5.2 Toy model 2: egg-box function

Just as in FHB09, we now consider a highly multimodal two-dimensional problem
for which the function resembles an egg-box. The function is defined as:

f2
(
�Θ
)
= exp [2 + cos (Θ1) cos (Θ2)]5 ,

�

�

�
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where we set the domain of the function equal to [0, 10π] for both parameters. The
shape of this function is shown in Figure 5.4. This is a typical problem where diffi-
culties arise for traditional MCMC algorithms. Many solutions have been proposed
for situations like this (Newman & Barkema, 1999), but in practice one needs to
have additional information about the problem for any of those solutions to be reli-
able. For the sake of clarity of this chapter, we do not concern us with the practical
implementation of the MCMC algorithm. We assume that a suitable trick can be
found for the problem at hand so that the algorithm proposed in this chapter can be
used. For the eggbox toy-model we will use a jump-technique. At each iteration of
the MCMC algorithm, there is a small probability, 1% in this case, that the chain
will jump to a neighbouring mode. The available jumps are shown in table 5.2.

The MultiNest algorithm is ideally suited for this problem, as this is a low-
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Figure 5.4: Toy-model 2: the eggbox of Equation (5.27)
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log (z) for different algorithms
# N MultiNest Unc. MCMC Cor. MCMC

60210 240.19 ± 0.05 240.19 ± 0.027 240.23 ± 0.05

Table 5.3: The log-integral values of a single mode of the eggbox function of
Equation (5.27) The fine-grid integrated value is log z = 240.224

dimensional multimodal function. With enough live samples all modes should be
easily discovered, and the peaks are symmetric and well-behaved. We run Multi-
Nest on this problem with the same parameters as in FHB09: We use L = 2000
live points, efficiency e = 0.3, and tolerance t = 0.1.

Table 5.3 shows the results of this analysis1. For evaluating the integral with the
MCMC chain, we have taken a total of N = 60210 samples as was done with Multi-
Nest, but we have used only the samples of one single peak in Equation (5.8). The
number of samples in a single peak is 2/25 of the total number of samples, leading
to loss of accuracy. Though more sophisticated methods can be constructed by,
say, averaging the ML estimators for several HPD regions for all individual peaks,
we show here that we only need to find one single HPD region that is sufficiently
populated to calculate a reliable value for the integral.

5.5.3 Application in Pulsar Timing

In pulsar timing data analysis, one often encounters datasets of which the ex-
act statistics are not well known. Bayesian model selection would provide the
ideal tool to obtain information about the power spectra present in the data. van
Haasteren et al. (2009, see also chapter 2) give a full description of the Bayesian
data analysis for pulsar timing arrays, but their work lacks a method to calculate the
ML from the MCMC samples. In this section, we use a pulsar timing mock dataset
to show that the method developed in this chapter is well-suited for ML calculation
in pulsar timing problems. We also use MultiNest to analyse this dataset, and we
compare the two results.

For the purposes of this chapter, the description of the pulsar timing posterior
distribution is kept brief; full details can be found in chapter 2. The data of pulsar
timing experiments consists of the arrival times of pulsar pulses (TOAs), which
arrive at the earth at highly predictable moments in time (Hobbs et al., 2006). The
deviations from the theoretically predicted values of these TOAs are called the
timing-residuals (TRs). These TRs are the data we concern ourselves with in this
example.

1The true value presented here is different from the one noted in FHB09. We have incorporated
hypercube transformation into our results.

127



CHAPTER 5. MARGINAL LIKELIHOOD CALCULATION WITH MCMC
METHODS

Consider n = 100 TRs, denoted as �δt, observed with intervals between succeed-
ing observations of 5 weeks. Assume that we are observing a stable and precise
millisecond pulsar with timing accuracy about σ = 100ns (the error bars on the
TRs). Usually σ not precisely known, since pulsar timers generally assume that
their estimate of the error bar is slightly off. Several datasets of millisecond pulsars
also seem to contain correlated low frequency noise (Verbiest et al., 2009). We
therefore also allow for some correlated timing-noise in the data, with a power-
spectrum given by:

S ( f ) = r2γ exp (−γ f ) ,
�

�

�

�5.28

where f is the frequency, r is the amplitude of the correlated timing-noise in ns, and
γ is the typical size of the structures that appear in the data due to this correlated
timing-noise. Following chapter 2, we can now write the likelihood function for
the TRs as a multi-dimensional Gaussian:

P
(
�δt | σ, r, γ

)
=

1√
(2π)n det C

exp
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2
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C−1�δt

)
,
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where C is an (n × x) matrix, with elements defined as:

Ci j = σ
2δi j + r2 γ2

γ2 + τ2i j

,
�

�

�
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with δi j the Kronecker delta, and τi j is the time difference between observation i
and observation j.

Simulating a mock dataset from such a Gaussian distribution is quite straight-
forward; for details see chapter 2. We now analyse a mock dataset, shown in Figure
5.5, generated with parameters: σ = 100ns, r = 100ns, and γ = 2yr. We assume
uniform prior distributions for all parameters: σ ∈ [0, 1000]ns, r ∈ [0, 1000]ns, and
γ ∈ [0, 10]yr. The posterior is then sampled using both MultiNest and a Metropolis-
Hastings algorithm, resulting in marginalised posterior distributions as shown in
Figure 5.6 &5.7. ML values are in good agreement between the two methods:

zMCMC = exp (1523.12 ± 0.17)

zMultiNest = exp (1522.93 ± 0.15) .
�

�

�

�5.31

For both methods, the same number of samples has been used: N = 9617.
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Figure 5.5: The mock timing-residuals we have analysed with both MultiNest and
the method developed in this chapter
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Figure 5.6: The marginalised posterior of the a parameter, sampled using a
Metropolis-Hastings MCMC method.
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Figure 5.7: The marginalised posterior of the r and γ parameters, sampled using a
Metropolis-Hastings MCMC method.
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5.5.4 Assessing bias

We now test the accuracy and the bias of the algorithm by running it many times
on the same toy-problem, and then considering the statistics of the ensemble. We
found the 16-dimensional Gaussian of Section 5.5.1 to be an illustrative example.
Just as in table 5.1, we take N = 105 and c = 0.3, and then we run n = 104

Metropolis-Hastings chains on this toy-problem. For the ith chain we then calcu-
late the integral zi and batch means error estimate σBM. We have presented the
results of this analysis as a histogram of zi values in Figure 5.8. Several useful
quantities that characterise the ensemble are:

z̄ =
1
n

n∑
i=1

zi = 0.980

σ̄ =

√√
1
n

n∑
i=1

(zi − z̄)2 = 0.028

σ̄BM =

√√
1
n

n∑
i=1

(
σBM

i

)2
= 0.027,

�

�

�
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where z̄ is the integral average, σ̄ is the rms of the integral values, and σ̄BM is the
rms value of the batch means errors.

Figure 5.8 shows that the batch means error estimate is quite correct, since
σ̄ ≈ σ̄BM. However, though smaller than σ̄, there is a significant deviation in the
value of of z̄ compared to the true value z = 1. This shows that the estimator indeed
has a small bias, as noted in Section 5.3.5.

In order to investigate the behaviour of the bias of z̄, we perform 3 additional
tests. In all 3 cases, we construct a new ensemble of MCMC chains identical to the
ensemble above, except for one parameter. The differences with the above men-
tioned ensemble are:
1. Instead of a correlated MCMC chain, we use an MCMC chain of uncorrelated
samples, produced by performing a regular MCMC but only storing every 100th

sample.
2. N = 107, instead of N = 105. This results in much more samples in the HPD
region.
3. c = 0.7, instead of c = 0.3, which also results in more samples in the HPD
region.
We note that these results are merely illustrative of the behaviour of the ML esti-
mator, since the bias of the estimator is problem dependent.

We present the results of this analysis as the values of Equation (5.32) in table

132



5.5. APPLICATIONS AND TESTS

Figure 5.8: Histogram of the frequency of calculated integral using the method
developed in this chapter. We have taken the 16-dimensional Gaussian of Equation
(5.26) as integrand. Here we have analysed it with N = 105, and c = 0.3. This
histogram has mean and standard deviation: z̄ = 0.980, σ̄ = 0.028. The rms of the
batch means error of the ensemble was σ̄BM = 0.027
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Ensemble statistics for different parameters
Cor./Unc. N c z̄ σ̄ σ̄BM

Cor. 105 0.3 0.980 0.028 0.027
Unc. 105 0.3 1.000 0.006 0.006
Cor. 107 0.3 1.000 0.003 0.003
Cor. 105 0.7 0.994 0.020 0.034

Table 5.4: The statistics of Equation (5.32) for various ensembles of n = 104

MCMC runs on a 16-dimensional Gaussian. The first chain has the same param-
eters as used in section 5.5.1. The other chains differ in either number of samples
per chain N, the size of the HPD region c, or whether or not the samples in a chain
are correlated. Note that the error in the uncorrelated chain equals the limit of
σ =

√
1/cN = 0.006.

5.4. All adjustments seem to reduce the bias of the estimator. Several notes are in
order:
1. The only reason we can increase c is because we know exactly what the in-
tegrand looks like. In practical applications this is probably not an option. Also
note that batch means error increases, indicating that estimate of the integral is less
stable.
2. The fact that the uncorrelated chain performs as well as described by Equation
(5.20) shows that the algorithm suffers significantly under the use of correlated
MCMC chains.
3. Increasing the number of samples in a chain makes the calculated integral more
reliable, as the HPD region is more densely populated. Note that this large chain is
build up of small chains that would yield a more biased value.

5.6 Discussion and conclusions
We develop and test a new algorithm that uses MCMC methods to accurately eval-
uate numerical integrals that typically arise when evaluating the ML. The new
method can be applied to MCMC chains that have already been run in the past
so that no new samples have to be drawn from the integrand, provided that we
can define a high probability density region of the integrand well enough based on
the MCMC samples. We test the new algorithm on several toy-problems, and we
compare the results to other methods: nested sampling and thermodynamic inte-
gration based on parallel tempering. We conclude that the new algorithm could be
of great value for high-dimensional, peaked problems. When applicable, the new
algorithm can outperform other algorithms, provided that the MCMC has been
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properly executed. This new algorithm is therefore expected to be useful in astro-
physics, cosmology and particle physics.

We have demonstrated that the new algorithm suffers under the use of corre-
lated MCMC chains, produced by using the entire chain of a particular MCMC
method like Metropolis-Hastings. If the new algorithm is used in combination
with an uncorrelated chain, the accuracy of the numerical integral can reach the
value: σ = z/

√
N, with σ the uncertainty, z the value of the integral, and N the

number of MCMC samples in the high probablility density region. Using corre-
lated MCMC samples can significantly increase the integral uncertainty, and longer
MCMC chains are needed for the integral to converge. We have also shown that the
new estimator is slightly biased, where the bias is problem dependent. Additional
tests to assess convergence and bias are required.
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