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4
Placing limits on the stochastic

gravitational-wave background using
European Pulsar Timing Array data

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and all science. He to whom this
emotion is a stranger, who can no longer pause to wonder and
stand rapt in awe, is as good as dead: his eyes are closed.

Albert Einstein

Abstract
Direct detection of low-frequency gravitational waves (10−9 − 10−8 Hz) is the main goal of pulsar timing ar-

ray (PTA) projects. One of the main targets for the PTAs is to measure the stochastic background of gravita-

tional waves (GWB) whose characteristic strain is expected to approximately follow a power-law of the form

hc( f ) = A( f /yr−1)α, where f is the gravitational-wave frequency. In this chapter we use the current data from

the European PTA to determine an upper limit on the GWB amplitude A as a function of the unknown spectral

slope α with a Bayesian inference method, by modelling the GWB as a random Gaussian process. For the case

α = −2/3, which is expected if the GWB is produced by supermassive black-hole binaries, we obtain a 95%

confidence upper limit on A of 6 × 10−15, which is 1.8 times lower than the 95% confidence GWB limit obtained

by the Parkes PTA in 2006. Our approach to the data analysis incorporates the multi-telescope nature of the

European PTA and thus can serve as a useful template for future intercontinental PTA collaborations.

This chapter is based on:

Placing limits on the stochastic gravitational-wave background using European Pulsar
Timing Array data

R. van Haasteren et al.
MNRAS (2011), 414, 3117
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CHAPTER 4. LIMITING THE GRAVITATIONAL-WAVE BACKGROUND
WITH EPTA DATA

4.1 Introduction
The first direct detection of gravitational waves (GWs) would be of great impor-
tance to astrophysics and fundamental physics: it would confirm some key predic-
tions of general relativity, and lay the foundation for observational gravitational-
wave astronomy. Pulsar Timing Array (PTA) projects are collaborations which
aim to detect low-frequency (10−9—10−8Hz) extragalactic gravitational waves di-
rectly, by using a set of Galactic millisecond pulsars as nearly-perfect Einstein
clocks (Foster & Backer, 1990). The basic idea is to exploit the fact that millisec-
ond pulsars create pulse trains of exceptional regularity. GWs perturb space-time
between the pulsars and the Earth, and this creates detectable deviations from the
strict periodicity in the arrival times of the pulses (TOAs) (Estabrook & Wahlquist,
1975; Sazhin, 1978; Detweiler, 1979).

One of the main astrophysical targets of the PTAs is to measure the stochastic
background of gravitational waves (GWB). This GWB is expected to be generated
by a large number of black-hole binaries located at the centres of galaxies (Begel-
man et al., 1980; Phinney, 2001; Jaffe & Backer, 2003; Wyithe & Loeb, 2003;
Sesana et al., 2008), by relic gravitational waves (Grishchuk, 2005), or, more spec-
ulatively, by oscillating cosmic-string loops (Damour & Vilenkin, 2005; Ölmez
et al., 2010).

Currently, there are three independent PTA groups:
(i) the Australian-based programme PPTA, the Parkes Pulsar Timing Array, which
uses data from the Parkes telescope (Hobbs et al., 2009; Verbiest et al., 2010), and
archival Arecibo data.
(ii) the North-American based programme NANOGrav, North-American
Nanohertz Observatory for Gravitational waves, which uses both the Green Bank
Telescope (GBT), and the Arecibo radio telescope (Jenet, 2009).
(iii) and the European programme EPTA, European Pulsar Timing Array, which
uses five different radio telescopes: the Lovell telescope near Manchester, United
Kingdom, the Westerbork Synthesis Radio Telescope (WSRT) in the north of the
Netherlands, the Effelsberg Telescope (EFF) near Bonn in Germany, the Nançay
Radio Telescope (NRT) near Nançay in France, and the Sardinia Radio Telescope
(SRT) in Sardinia, Italy1.
It is likely that the first detection of GWs by a PTA will occur as a result of a joint
effort of all current PTA projects: an International Pulsar Timing Array (IPTA;
Hobbs et al., 2010). This will involve the combination of data from several differ-
ent telescopes, each of them with its own specific hardware elements and software
analysis tools. Combining data of different observatories is a challenging task,

1The SRT is expected to become operational in 2011 (Tofani et al., 2008)
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4.2. EPTA DATA ANALYSIS

which requires extra care when dealing with the high quality data of modern ob-
servatories (Janssen, 2009).

In this chapter, we present a methodology on how to combine the data from
several radio telescopes and use it in an optimal way to obtain the information
on extragalactic gravitational waves. We use the data from three different radio
telescopes located on the European continent, to place a new upper limit on the
amplitude of the GWB. As part of our analysis, we obtain detailed information
about the statistical properties of the individual pulse time series.

The calculation of upper limits on the GWB, based on pulsar timing, go as far
back as the early 1990’s (Stinebring et al., 1990; Kaspi et al., 1994; McHugh et al.,
1996; Lommen, 2002). These analyses have been based on high quality datasets
for single millisecond pulsars. The most stringent upper limits have been obtained
recently by Jenet et al. (2006), who have used PPTA data and archival Arecibo
data for several millisecond pulsars. Our dataset is different from that used by
Jenet et al. (2006) since it includes only the pulse times of arrival measured by
the EPTA telescopes, even though some of the pulsars are being timed by multiple
PTA groups. The Bayesian inference method we use to obtain an upper limit on the
GWB is also different from the methods used by all of the previous studies. Its po-
tential advantages include the use of cross correlations between TOAs of different
pulsars, and the simultaneous constraint on both the amplitude and spectral index
of the GWB.

The outline of the chapter is as follows. In Section 4.2 we give a brief general
overview of pulsar timing observations. In Section 4.3 we detail the observations
from all of the EPTA telescopes which were used for our analysis. In Section 4.4
we compare the different data analysis methods that have thus far been developed
for PTAs, and we motivate our choice for the Bayesian inference for placing a limit
on the GWB. We outline the data analysis procedure in Section 4.5, after which, in
Section 4.6, we present the upper limits on the amplitude of the GWB, and also the
spectral analysis of the individual pulsar noises. Finally, in Section 4.7 we discuss
the astrophysical implications of our results, and provide an outlook for the future.

4.2 EPTA data analysis
In this section we present a brief overview of the observations, instrumentation and
data analysis used at the different EPTA observatories for transforming a series of
measured pulses to a TOA.

The complete data reduction process that converts the incoming data stream
from a radio telescope into one single TOA per observation, called “the pipeline”,
is optimised by hand with much care and is observatory specific. The process can
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CHAPTER 4. LIMITING THE GRAVITATIONAL-WAVE BACKGROUND
WITH EPTA DATA

be described in five general steps, shown in Figure 4.1:
1) The incoming radio waves are received by the telescope.
2) The signal is converted from analog to digital, at a Nyquist sampled rate.
3) Data is (coherently) de-dispersed and, if possible, Stokes parameters are formed.
4) The de-dispersed timeseries are folded at the pulsar period, resulting in averaged
pulse profiles. Typically a timespan containing several 105 pulses is used for each
TOA.
5) A cross-correlation with a template pulse profile yields a TOA and associated
uncertainty (Taylor, 1992).

Individual pulse amplitudes and pulse shapes are highly irregular, and pulse
phases vary significantly from pulse to pulse (Cordes & Shannon, 2010). There-
fore careful averaging (folding) has to be performed to obtain a single TOA. Fur-
thermore, the interstellar medium (ISM) results in significant delays of the arrival
time of the pulses over the receiver bandwidth. As a large bandwidth is required to
reliably detect a pulse, accounting for the ISM is key for precision timing.

Differences in templates used, e.g. the use of integrated profiles versus analytic
templates, all based on single–observatory data, and the difference in definition of
the reference point in a template will result in offsets between data sets generated
by different observatories. All extra offsets in our data will lead to information loss
of other signals like the GWB. Therefore, using a common template for each pulsar
at all observatories is desirable, and will be implemented in the near future.

The realisation of the five steps and therefore their output (the resulting TOA)
might differ among observatories. Understanding and accounting for those differ-
ences is essential for the correct analysis and optimal combining of the EPTA data.
A more detailed study on this subject is in preparation (Janssen et al. 2011).

The cross-correlation between the folded profile and the template yields an un-
certainty of the TOA (Taylor, 1992). One would like this uncertainty to be solely
due to the radiometer noise, i.e. the noise intrinsic to the measurement, but in
practice the errors sometimes appear to have been systematically over- or under-
estimated. It is a common practice, which we follow here, to allow for an ex-
tra parameter to multiply these uncertainties for each pulsar-observatory-backend
combination (Hobbs & Edwards, 2006). This extra multiplicative factor allows the
TOA uncertainties to statistically account for the TOA scatter: the deviations of the
strict periodicity of the pulses. This is clearly unsatisfactory, and in future timing
experiments the origin of the predicted and measured TOA scatter will have to be
thoroughly investigated.
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Figure 4.1: The processing pipeline for pulsar timing, step by step

Telescope WSRT NRT EFF
Equivalent dish size (m) 93.5 94.4 100

Centre observing frequencies (MHz) 1380 1398, 2048 1400
Observing bandwidth (MHz) 80 64/128 28-112

Obs. time per month per pulsar 1x30 min 4-6x60min 1x30 min
Pulsar backend PuMaI BON EBPP

Dedispersion incoherent coherent coherent
Used templates integrated profiles integrated profiles analytic

Table 4.1: Details of the different EPTA observatories relevant for this chapter. The
NRT observing bandwidth has doubled to 128 MHz in July 2009.
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4.3 EPTA observations

4.3.1 Overview of the observatories

We have used pulsar timing observations of five radio pulsars, observed with three
of the EPTA telescopes, to set a limit on the GWB. See Table 4.1, Fig. 4.2 and Ap-
pendix B of this chapter for an overview of the data sets used and the properties of
each telescope. Each pulsar was observed on average once every month for 30 min-
utes at each telescope. Although additional observing frequencies are commonly
used at WSRT and EFF, their respective 1380 and 1400 MHz observing bands have
the best sensitivity and result in the highest precision TOAs. Therefore we have
only used observations taken at those frequencies at WSRT and EFF for the anal-
ysis presented in this chapter. The data were either coherently de-dispersed (NRT
and EFF) or incoherently de-dispersed (WSRT). The observations were folded and
cross-correlated with an analytic template (EFF), or a high S/N, observatory spe-
cific, template (WSRT & NRT), to calculate one time-of-arrival (TOA) per obser-
vation. See e.g. Lazaridis et al. (2009) for a more complete description of the
observing procedures and data analysis at the different observatories.

As discussed, any change to the pipeline or to the input of the pipeline can
result in a difference in the calculated TOAs. We emphasise that it is essential to
correctly identify these systematic effects and include them in the modelling of the
TOAs. In our analysis, we have done this by introducing jumps between TOAs of
the same pulsar anywhere the pipeline differs in some way.

Once the complete set of data for each pulsar is obtained, and corrected for
global drifts by comparing to UTC, it is fit with the timing model. The timing
model is a multi-parameter fit that represents our best knowledge of the many de-
terministic processes that influence the values of the TOAs. The timing residuals
are then produced by subtracting the timing model, which is subsequently opti-
mised by minimising these residuals through a least–squares fit. This was done
using the pulsar timing package Tempo2 (Hobbs et al., 2006).

4.3.2 Selection of data sets

The European observatories have been timing millisecond pulsars for many years,
and potentially all of that data could be used in the calculation of an upper limit on
the GWB. However, like Jenet et al. (2006) we choose to use only the data from the
pulsars which perform best as ideal clocks, e.g. those with the highest precision
TOAs and the most straight-forward noise characteristics.

TOA precision is not the only factor that determines the sensitivity to the GWB;
other factors like the total timing baseline and the number of observations (i.e.
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TOAs) affect this sensitivity as well. A great advantage of the EPTA data is that
several pulsars have been monitored for a relatively long time: over 10 years. To
determine which timing residuals (i.e. pulsar-observatory combinations) are most
useful for GWB detection, we analyse each dataset separately. By doing this we
can determine the sensitivity to the GWB of a set of TOAs: the lower the 3-σ upper
limit hmax

c (1yr) we get using only a particular set of TOAs, the more sensitive that
set of TOAs is to the GWB.

The timing residuals of the selected pulsars are shown in Figure 4.2. These
five pulsars significantly outperform the other pulsars being timed by the EPTA in
terms of how well they can limit the GWB amplitude: these five pulsars can each
individually limit the GWB well below hc(1yr) = 10−13 for α = −2/3, whereas
other current EPTA datasets typically perform worse by a factor of several. Since
there is such a difference between this set of five pulsars, and the other pulsars
that have been observed by the EPTA, we do not expect to gain any significant
sensitivity by including more pulsars that cannot meet this constraint. We therefore
choose hmax

c (1yr) ≤ 10−13 with α = −2/3 as a constraint for including a dataset in
our calculation.

In addition to this constraint, we also demand that datasets that just barely
satisfy hmax

c (1yr) ≤ 10−13 do not show prominent low-frequency (“red”) timing
noise. Our criterion for presence of the latter is a peak in the posterior distribution
which is inconsistent with zero amplitude for α ≤ 0.

4.4 Overview of data analysis methods
Over the years, different data analysis methods for PTAs have been developed. In
this section we briefly discuss the differences between these methods, covering the
merits and the weaknesses of each, and we motivate our choice for the Bayesian
inference method.

Currently developed data analysis methods for isotropic GWB studies with
PTAs can be divided in two classes:
1) methods designed to set limits on the GWB characteristic strain.
2) methods designed to detect the GWB signal, and measure its parameters.
In sections 4.4.1 and 4.4.2 we describe the differences between the two approaches.
Among methods that belong to the first category are those of Stinebring et al.
(1990); Kaspi et al. (1994); McHugh et al. (1996); Lommen (2002); Jenet et al.
(2006). Methods that are primarily focused on detecting the GWB include those of
Jenet et al. (2005); Anholm et al. (2009); van Haasteren et al. (2009); Yardley et al.
(2011); see also chapter 2 of this thesis. As presented in section 4.6 of this chapter,
the present-day data of the EPTA, is not sufficient to make a detection of the GWB,
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 52000  53000  54000  55000  56000

 2000  2002  2004  2006  2008  2010  2012

MJD (Days)

Date (Year)

J1909-3744 (nrt)

J1744-1134 (nrt)

J1744-1134 (eff)

J1713+0747 (wsrt)

J1713+0747 (eff)

J1012+5307 (nrt)

J0613-0200 (nrt)

Figure 4.2: The timing residuals of all the pulsars used in the GWB limit calcula-
tion. The time in MJD is shown on the x-axis. On the left of the dash-dotted line
we have placed a sample residual with an uncertainty of 1μs.
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and this is likely to hold for the data of other PTAs as well. The primary goal of
the data analysis method presented in this chapter is therefore to place a limit on
the GWB.

Simultaneously with the characterisation of the GWB signal, the PTA data
analysis method should also provide information about the timing model and the
timing noise. Because of the quality of the PTA data, the parameters of the timing
model and the timing noise are best determined from the same data set that we
are analysing to obtain information about the GWB signal. We discuss how this is
done in the different PTA data analysis methods in section 4.4.3.

4.4.1 Detecting the GWB

As described in chapter 2, the premise of GWB detection is that the GWB induces
well-defined correlations between the timing residuals of different pulsars. The
correlations between timing residuals of two pulsars induced by the GWB depend
only on the separation angle between those two pulsars. This correlation curve is
known as the Hellings & Downs curve (see Figure 1.3). Similar to the GWB signal
which is expected to be very “red” (i.e. low frequency), the unknown timing noise
for each pulsar is expected to have a very red component. Timing noise is poorly
understood, and currently we only have empirical models. Therefore, we cannot
reliably distinguish between the GWB or timing noise using data of one pulsar.
The only unique characteristic of the GWB is apparent when considering data of
many pulsars: a signal with identical statistical properties in the data of all pulsars,
correlated according to the Hellings & Downs curve.

All current PTA GWB detection schemes rely on the unique feature of the
GWB signal that it induces correlations between timing residuals of all pulsars.
Different approaches to the detection problem include:
1) Measuring the correlations between all pulsar pairs. If GWB signal is present in
the data, the correlations should match the Hellings & Downs curve (Jenet et al.,
2005). Also, by considering the cross-power spectrum, the amplitude of the GWB
can be determined, given a value for the spectral index of the power-law GWB
signal (Demorest, 2007; Yardley et al., 2011).
2) Searching for a signal in the data of all pulsars that is correlated according to
the Hellings & Downs curve. Such a search takes the correlations induced by the
GWB as a given, and measures the parameters of the signal correlated according
to the Hellings & Downs curve (Anholm et al., 2009; van Haasteren et al., 2009,
see also chapter 2 of this thesis).

In approach (1), one is primarily interested in the correlations that are induced
by an unknown signal between all pulsars, whereas in approach (2) one is primarily
interested in the parameters of the GWB signal. When attempting to present a re-
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liable GWB detection, an analysis that takes the first approach should yield results
of the GWB-induced correlations between all pulsar pairs that are accurate enough
to exclude the possibility that these correlations are induced by any other source.
An analysis that takes the second approach should include other correlated signals
in the analysis, such that a reliable distinction can be made between a GWB sig-
nal that is correlated according to the Hellings & Downs curve, and other signals
that are not correlated according to the Hellings & Downs curve. Because meth-
ods that take the first approach rely on cross-power measurements of pulsar pairs,
these methods are not suited for placing limits on the GWB with data of only a few
pulsars.

4.4.2 Placing limits

Methods that aim to place a limit on the GWB amplitude all try to answer the same
question: assuming there is a GWB-induced signal present in the observations,
what is the largest amplitude this signal can have that is still consistent with the
data. Again, there are two approaches to this problem:
1) The incoherent analysis, where one solely focuses on the power spectrum of the
timing residuals of the pulsars, neglecting the GWB-induced correlations between
pulsar pairs (Stinebring et al., 1990; Kaspi et al., 1994; McHugh et al., 1996; Lom-
men, 2002; Jenet et al., 2006; Demorest, 2007).
2) The coherent analysis, where one not only includes the certain power spectrum
of the GWB-induced signal in the timing residuals, but also the correlations be-
tween residuals of pulsar pairs. This is essentially what is done in this chapter.
We note that it is also possible to place a coherent GWB-limit by only considering
the cross-power correlations between pulsar pairs (Demorest, 2007; Yardley et al.,
2011). However, in that case, the power-spectrum information of the single-pulsar
time series is neglected, which makes these methods suboptimal.

In the case where only observations of a single pulsar are available, the inco-
herent analysis should be as sensitive as the coherent analysis. However, when
observations of multiple pulsars is available, the most stringent limits are produced
when doing a coherent analysis.

The difference between a coherent limit-placing analysis, and a GWB detec-
tion scheme, is that it is not necessary in the limit-placing analysis to convincingly
show that the GWB signal is correlated according to the Hellings & Downs curve.
The Hellings & Downs correlations are then assumed, and used to place a strin-
gent limit. This is what is done in this chapter: in our model we have not included
sources that are similar to the GWB, but correlated with a different angular depen-
dence than the GWB. To this date, the Bayesian inference presented in this chapter
is the only published method to coherently analyse PTA data with the aim to place
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upper limits on the GWB without loss of information.

4.4.3 The timing model and timing noise

Both the timing model and the timing noise parameters should be determined from
the same data as what is used to infer the parameters of the GWB. This has severe
implications for the sensitivity to the GWB, since the timing model (especially
the pulse period and pulse period derivative) and the timing noise parameters are
covariant with the GWB. The way this is dealt with is different in Frequentist and
Bayesian inference techniques.

Frequentist methods (e.g. Jenet et al., 2005; Yardley et al., 2011) to measure
or place limits on the GWB parameters rely on estimates of the timing model and
timing noise parameters. Typically, the best estimators for the timing model and
timing noise parameters enter in the detection statistic for the GWB, and the un-
certainty in the GWB parameters is determined by Monte Carlo simulations.

Bayesian methods like those presented in this chapter rely on marginalisation
to deal with covariances. Instead of separately producing best estimators for the
timing noise, the timing model, and the GWB parameters, all these contributions
are present in the Bayesian posterior distribution. All parameters but those of the
GWB are then marginalised over.

In Bayesian methods, the marginalisation process is computationally quite ex-
pensive. But once correctly carried out, the resulting marginalised posterior gives
a very clear presentation of the analysis with all covariances correctly taken into
account. In current frequentist methods, the point estimates for the GWB and the
timing noise are relatively easily produced. But the Monte Carlo simulations re-
quired to take into account the covariances between the timing model, the timing
noise, and the GWB parameters require a lot of computational resources, and opti-
mality has yet to be proved (Yardley et al., 2011).

4.5 Bayesian PTA data analysis
The analysis presented in this chapter broadly follows the procedure introduced in
van Haasteren et al. (2009, see also chapter 2). The Bayesian inference method of
chapter 2 relies on creating the parametrised models of the timing residuals, and
forming a probability distribution function (PDF) as a function of the model pa-
rameters. All known systematic contributions of known functional form should be
included in the model. In the examples used in chapter 2 the model for the sys-
tematic errors included only the quadratic contribution to the TOAs from pulsar
spindowns. The multi-telescope nature of the EPTA requires more complete mod-

87



CHAPTER 4. LIMITING THE GRAVITATIONAL-WAVE BACKGROUND
WITH EPTA DATA

els for timing residuals than the one used in chapter 2. In this section we show how
to build and implement these models in practice.

We first briefly review the inference method of chapter 2 in Section 4.5.1 and
4.5.2. We then present the extended model we use for the analysis of the TOAs in
Section 4.5.3, after which we show how we handle TOAs coming from different
observatories in Section 4.5.4.

4.5.1 Brief review of the Bayesian inference method

The set of TOAs from all pulsars forms the basic input used in the Bayesian data
analysis. Many processes influence the measured TOA values; in this chapter
we discriminate between deterministic processes, like quadratic spindown, and
stochastic processes, like timing noise:

tobs
(ai) = tdet

(ai) + δt
stoch
(ai) ,

�

�

�

�4.1

where tobs
(ai) represents the i-th TOA of pulsar a, tdet

(ai) is the corresponding contribution

to the TOA solely due to deterministic processes, and δtstoch
(ai) is the contribution due

to stochastic processes.
The effects of deterministic processes are described by the set of model pa-

rameters �η: tdet
(ai) = tdet

(ai)(�η). As is done in chapter 2, we assume that the stochastic
processes are Gaussian, though their spectra are not necessarily white. In such a
model, the stochastic processes can be represented by the correlation matrix

〈δtstoch
(ai) δt

stoch
(b j) 〉 = C(ai)(b j) = C(ai)(b j)(�ξ),

�

�

�

�4.2

where �ξ are the model parameters.
The key distribution used in a Bayesian analysis is the likelihood function,

the probability distribution of the data for a given model and its parameters. As
described in chapter 2, for PTAs the likelihood takes the following form:

L
(
�θ
)
= P

(
�δt | �θ

)
=

1√
(2π)n det C

�

�

�

�4.3

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−1
2

∑
(ai)(b j)

(�tobs
(ai) − �tfit

(ai))C
−1
(ai)(b j)(�t

obs
(b j) − �tfit

(b j))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
where �θ = (�η, �ξ), and �δt is the difference between the observed TOAs, and the
fitted TOAs. A Bayesian analysis assigns prior distributions P0(�θ) to the model
parameters, and explores the parameter space of the posterior distribution (short-
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handed simply as the posterior): P(�θ | �δt) = L(�θ)P0(�θ).

4.5.2 Obtaining a marginalised posterior distribution

The posterior P(�θ | �δt) contains information about all model parameters. We need
to express the posterior as a function of only those parameters that represent the
GWB. This process is called marginalisation, and consists of integrating over all
other parameters. The resulting marginalised posterior is the posterior probability
density of the GWB parameters.

Marginalisation of a posterior in a high-dimensional parameter space is non-
trivial, and a direct numerical integration is prohibitively computationally expen-
sive. As in chapter 2, we employ a mix of analytic integration and Markov Chain
Monte Carlo (MCMC) methods to accomplish this. The marginalisation remains
the computational bottleneck for the method’s effectiveness, as the computational
time scales with n3, with n the total number of TOAs to be analysed.

A computational shortcut can be used by analytically marginalising over the
parameters of the timing model. As shown in chapter 2, this is possible provided
that the parameters represent signals of known functional form. This condition
is equivalent to the requirement that the timing residuals generated by the timing
model are linear with respect to its parameters: δt = d(α − α̂), where δt is the
timing residual, d is a proportionality constant, α̂ is the best fit value for the model
parameter, and α is the model parameter. While this is always true for quadratic
spindown as considered explicitly in chapter 2, it is generally not true for other
timing model parameters. However, when the deviations of the timing model pa-
rameters from their best-fit values are small, it is a good approximation that the
residuals generated by the timing model are linear with respect to the deviations
from their best-fit values: δt ≈ d(α − α̂).

Analytically marginalising over the timing model is therefore possible, and by
doing so the number of parameters that must be integrated over numerically by the
use of MCMC is reduced greatly. Dependent on the model we use to describe the
statistics of the timing residuals, the number of parameters left to explore is then
just several per pulsar/backend combination. The results of the analysis can be
presented as a marginalised posterior as a function of any parameter in the model,
provided that this parameter was present in the MCMC run.

4.5.3 Used model for the TOAs

We divide the actual parameterisation in 3 parts:
a) The deterministic timing model.
b) The gravitational-wave background.
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c) Other stochastic processes (e.g.,timing noise).
In this section we discuss how we have taken these into account in our data analysis.

As a first step, the TOAs are processed using the software package Tempo2, in
order to determine the best-fit timing model. This procedure consists of the follow-
ing steps:
1. Tempo2 requires an initial guess α0i for the timing model parameters αi in order
to find timing residuals (pre-fit timing residuals).
2. It then constructs an approximation to the timing model, in which the timing
residuals depend linearly on αi − α0i.
3. It finds the best-fit αi within this linear approximation, and uses those values to
update the timing residuals using the full non linear timing model (post-fit timing
residuals).
4. The newly obtained parameters and corresponding timing residuals are then
judged by the person performing the model fitting, and if determined necessary the
newly obtained parameters can act as the initial guess for a new fitting iteration.
Tempo2 also allows adjustment and fitting of αi one by one.
Finding the timing solution with Tempo2 is not fully algorithmic, but typically re-
quires someone experienced with pulsar timing analysis, who approaches the TOAs
fitting in several different ways, which ensures that phase coherence is maintained
and that the relevant deterministic model parameters are included properly. Though
this strategy works well in practice, we should remain conscious of the possibil-
ity that different solutions might be obtained by different observers, who may also
choose to include additional model parameters. 2 In Appendix B of this chapter
we present the timing solutions we found for the analysed pulsars. These are the
values we used as our initial guess, α0i. Note that these α0i and their uncertainties,
although created with Tempo2 using the same datasets that we base our upper limit
on, do not include our model for the red noise. The values and uncertainties we
list in Appendix B of this chapter therefore do not represent our best estimates if
we were to take into account the red timing noise. Although calculating these best
estimates of αi is reasonably straightforward, these estimates are not accessible in
our MCMC because we have marginalised over these parameters analytically. The
calculated upper limit on the GWB, however, does include all these effects, and
therefore automatically incorporates the removal of power from the low-frequency
GW signal by fitting for the timing model parameters and jumps.

In the above mentioned step 2 where the timing model is linearised, we have
made an important simplification that we now describe in more detail. Since we

2Qualitatively, experienced observers are rightfully so very confident in their timing solutions.
Quantitatively however, the only statistical tool currently available for observers to check whether
the timing solution is reasonable is the reduced χ2 statistic. But since the error bars obtained with the
cross-correlation technique cannot be fully trusted, the same holds for the χ2 statistic.
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take into account, and marginalise over, all timing model parameters present in
our method, we are effectively working with the TOAs instead of just the timing
residuals. However, the timing model has been linearised by Tempo2 with respect
to αi−α0i. This implies that we need to be sufficiently close to α0i in the parameter
space for this approximation to be valid, which means that the timing residuals
derived with Tempo2 need to be approved by the person fitting the data, before
using these as inputs in the Bayesian inference method.

The stochastic component contributing to the TOAs is characterised as follows.
Firstly, general relativity describes how the timing residuals of a pair of pulsars are
correlated due to gravitational waves:

ζab =
3
2

1 − cos θab

2
ln

(
1 − cos θab

2

)
− 1

4
1 − cos θab

2
+

1
2
+

1
2
δab,

�

�

�

�4.4

where θab is the angle between pulsar a and pulsar b (Hellings & Downs, 1983).
The GWB spectrum is parametrised as a power-law of the form (Maggiore, 2000;
Phinney, 2001; Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Sesana et al., 2008):

hc = A
(

f
yr−1

)α
,

�

�

�

�4.5

were hc is the characteristic strain as used in Jenet et al. (2006), A is the amplitude
of the signal, and α is the spectral index. This then results in a correlation matrix
for the GWB (see chapter 2):

CGW
(ai)(b j) =

−A2ζab

(2π)2 f 2−2α
L

{
Γ(−2 + 2α) cos (πα) ( fLτ)

2−2α

∞∑
n=0

(−1)n ( fLτ)
2n

(2n)! (2n + 2α − 2)

⎫⎪⎪⎬⎪⎪⎭ , �

�

�

�4.6

where, as in chapter 2, τ = 2π|ti − t j|, and fL is a cut-off frequency, set much lower
than the lowest GW frequency we are sensitive to.

Secondly, the stochastic timing noise for each individual pulsar is split into
three components:
1) Individual errors of TOA determination from the cross-correlation, represented
by the TOA error bars. An extra free parameter, called the EFAC value, is
commonly introduced by pulsar observers in order to account for possible mis-
calibration of the radiometer noise (Hobbs & Edwards, 2006); this parameter is a
multiplier for all of the TOA error bars for a given pulsar.
2) An extra white noise component, independent of the error bars. This basi-
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cally acts as extra non-time–dependent noise, and the parameter is often called
an EQUAD parameter.
3) Red noise, consisting of a power-law spectrum in the timing residuals. This
component allows for structure in the timing residuals.
All three timing noise components are uncorrelated between the pulsars.

The resulting correlation matrices from components 1, 2, and 3, as derived in
chapter 2, are given by:

Cerr
(ai)(b j) = E2

aΔt2
(ai)δabδi j

CWN
(ai)(b j) = N2

aδabδi j

CRN
(ai)(b j) =

−R2
aδab

(2π)2 f 2−2αa
L

{
Γ(−2 + 2αa) cos (παa) ( fLτ)

2−2αa

∞∑
n=0

(−1)n ( fLτ)2n

(2n)! (2n + 2α − 2)

⎫⎪⎪⎬⎪⎪⎭ , �
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where Cerr
(ai)(b j), CWN

(ai)(b j), and CRN
(ai)(b j) are the correlation matrices corresponding to

the error bars, the extra white noise, and the red noise respectively, with a and b
denoting the pulsar number, i and j denote the observation number, Δt is the TOA
uncertainty (the error bar) as calculated in the pipeline, Ea is the scaling parameter
of the error bars for the a’th pulsar (the EFAC factor), Na is the amplitude of the
white noise, Ra is the amplitude of the red timing noise, αa is the spectral index
of the red noise spectrum of pulsar a, and τ is the time difference between two
observations.

4.5.4 Combining datasets

The previous section gives a complete description of the model we use to analyse
the TOAs of a single pulsar, observed with one telescope. That model does not yet
account for the use of different observatories. In this section we explain what we
do to accomplish this.

As discussed in Section 4.2, the reduced data products are (sometimes subtlety)
influenced by many different components of the reduction process. In order to
account for slight offsets between TOAs, introduced by using slightly different re-
duction procedures on individual datasets, a calibration term needs to be introduced
when merging TOAs from different observing systems. This extra calibration term
takes the form of a “jump”, an arbitrary phase offset between datasets, which is fit
for simultaneously with other timing model parameters. We use the term dataset
for any series of TOAs that can be analysed without a jump. In practice this is any
series of TOAs, of the same pulsar, observed with the same hardware elements,
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and processed with the same algorithms, at the same observing frequency. Here
we combine 7 such datasets (those shown in Figure 4.2).

Jumps have been used routinely when combining data of different observatories
and/or data recorders (e.g., Janssen, 2009). This allows us to find a single solution
for the timing model of a pulsar timed by multiple observatories. However, the
TOAs produced by pipelines at different observatories may have different statisti-
cal properties. In order to account for this, we allow the stochastic contributions in
our model discussed in Section 4.5.3 to vary between datasets:
1) One timing model per pulsar (taken directly from Tempo2)
2) Jumps between different datasets
3) A scaling factor for the error bars (EFAC) for each dataset
4) An extra white noise component (EQUAD) for each dataset
5) Power law red noise for each dataset
A major advantage of this approach is that it allows one to detect statisti-
cal differences between observatories that may be introduced by different algo-
rithms/components, and then use this feedback to iteratively improve our datasets.

The analysis of the TOAs consists of two steps. In the first step Tempo2 is used
to find the timing solution for a single pulsar. This includes possible jumps between
datasets. Once the timing solution is obtained, the results are passed on to the
Bayesian inference method. The Bayesian method then analytically marginalises
all parameters of the timing model, including jumps, while using MCMC to explore
the rest of the parameter space.

4.6 Results
Now that we have developed the necessary framework to analyse the TOAs, we
apply the Bayesian inference method to the observations. In the following sub-
sections we explain in detail how we selected the five pulsars that we already
mentioned in Section 4.3.2, and we present the GWB upper limit we are able to
calculate using observations of those pulsars.

4.6.1 Selecting the most constraining datasets

For any pulsar, obtaining the timing solution and timing residuals is the first step
after obtaining the TOAs. The timing residuals of the pulsars used in this chapter
are shown in Figure 4.2, and the parameters of the timing model are shown in Ap-
pendix B of this chapter. The timing model also includes several jumps as some
of these pulsars have been observed with several European telescopes. The timing
solutions we find are quite consistent with the values already published in the lit-
erature. Given that we are solving for 56 parameters, it is to be expected that one
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or two parameters deviate at the 2-σ level. The only unexpected outlier we find is
the proper motion in right ascension of J1713+0747, which deviates from Splaver
et al. (2005) by over 5-σ. Given that we are combining data of several telescopes,
and that we do not take into account our red noise models in listing these timing
solutions, we postpone exploring this difference to future work where the focus lies
on investigating the statistics of the timing model parameters in the presence of red
noise. Such an investigation is beyond the scope of this manuscript.

With the model of the systematic contributions in place, we first perform the
analysis separately for each of the datasets and obtain the posterior probability
distribution for their intrinsic noise parameters, specified in Equation (4.7) of the
previous section. Note that at this stage of the analysis the contribution from a
GWB is not yet included. We determine a marginalised posterior for each pulsar
as a function of the following parameter combinations:
1) EFAC vs. EQUAD
2) Red noise amplitude vs. red noise spectral index
In both cases, the posterior is marginalised over all parameters but two, and the
resulting 2-dimensional distribution is displayed as contours at the 1-, 2-, and 3-σ
level (the regions where respectively 68%, 95%, and 99.7% of the volume of the
posterior is enclosed).

As an example we consider the TOAs of pulsar J1713+0747, which consist
of data taken with Effelsberg and Westerbork. Here we focus on the marginalised
posterior distributions that represent information about the Effelsberg TOAs; these
distributions and the residuals are shown in Figs 4.3 and 4.4. A traditional non-
Bayesian analysis of the Effelsberg TOAs consists of a fit to the timing model with
Tempo2, which yields the best-fit parameters, the corresponding uncertainties, and
a reduced χ2 statistic. The reduced χ2 is defined as:

χ2 =
1

n − m

n∑
i=1

(
tobs
i − t f it

i

)2

ε2σ2
i

,
�

�

�

�4.8

where n is the number of observations, m is the number of free parameters in the
least-squares fit, tobs

i is the observed TOA, tfit
i is best-fit value of the TOA, σi is

the TOA uncertainty of tobs
i , and ε is the EFAC value. It is usual practice to set the

EFAC such that the reduced χ2 = 1, which is accomplished by: ε =
√
χ2(ε = 1).

For the J1713+0747 Effelsberg TOAs, we have χ2(ε = 1) = 18.9 and therefore
ε = 4.35.

As can be seen from Figure 4.4, a non-zero red noise component is required
to describe the TOAs. The EQUAD parameter is consistent with 0-amplitude ac-
cording to Figure 4.3, while the EFAC parameter is significantly lower than what
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a Tempo2
√
χ2 estimate would give. This tells us that no separate white-noise

component is required to describe the TOAs: all the uncorrelated scatter can be as-
signed to the error bars on the TOAs. It is also of interest that in this case the EFAC
parameter is much smaller, and indeed much closer to 1, than the more traditional
estimator

√
χ2. The data is reasonably well-modelled by just the presence of red

noise.
It is also worth noting that, due to practicalities having to do with hardware

changes at the observatories, the TOAs of J1713+0747 end at an earlier epoch than
the other 4 pulsars. Although in the future the inclusion of this data will obviously
benefit the sensitivity to the GWB, we note that the GWB limit is not negatively
effected by this lack of overlap of the TOAs between pulsars.

The analysis of the TOAs of the other pulsars yields similar, but slightly dif-
ferent results. As can be seen in Appendix B of this chapter, some pulsars do have
non-negligible white noise, and some do appear to have EFAC values significantly
different from 1. As of yet we do not have a complete explanation for the exact
form of the marginalised posteriors.

We present the marginalised posterior as a function of the red noise parameters
in an intuitive way: as pointed out in Section 4.3.2 we use the same units for the red
noise amplitude and red noise spectral index as we use for the GWB parameters.
For the analysis of TOAs of just one pulsar, the red noise can now be thought of as
if it was generated solely by a GWB with a certain amplitude and spectral index.
In this case, the marginalised posterior for the red noise parameters shows us what
upper limit we are able to place on the GWB amplitude as a function of spectral
index.

We choose a 3-σ threshold of Ra ≤ 10−13 at a spectral index of αa = −2/3.
Based on the marginalised posteriors of all the EPTA pulsars, we can decide
whether a particular dataset can put a constraint on the GWB lower than this or
not. Using this threshold we include five pulsars in our final analysis. These five
significantly outperform the other pulsars in terms of how well they can limit the
GWB amplitude, and we do not expect to gain any significant sensitivity by includ-
ing more pulsars in our current archival data sets. The residuals of the pulsars we
use in our combined analysis are shown in Figure 4.2. More datasets will be added
after some extensive and detailed recalibration procedure of existing datasets.

4.6.2 GWB upper limit

Now that we have selected our pulsars that can significantly contribute to a GWB
limit, we are in the position to infer the amplitude and spectral index of the GWB.
Our model of the combined data of the five pulsars we selected in Section 4.6.1
consists of all sources we included in the analysis for the single pulsars, and an
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Figure 4.3: The marginalised posterior of J1713+0747 (Effelsberg), as a function
of the EFAC and EQUAD parameters. The contours are at the 1, 2, and 3-σ level,
indicating a respective volume inside that region of 68%, 95%, and 99.7%.
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Figure 4.5: The marginalised posterior distribution as a function of the GWB am-
plitude, and spectral index. The contours marked by ’van Haasteren et al. (2011)’
are the results of this chapter at the 1-σ and 2-σ level, indicating a respective vol-
ume inside that region of 68%, and 95%. The vertical dash-dotted line at α = −2/3
shows where we expect a GWB generated by supermassive black-hole binaries.
The most recent published limits are shown as the three upper limit arrows point-
ing down, marked by ’Jenet et al. (2006)’.

extra source that corresponds to the GWB. As discussed in Section 4.5.3, the GWB
source is a power-law correlated between pulsars as described by Equation (4.4).

As before, we use MCMC to sample the posterior distribution while analyti-
cally marginalising over the timing model; now the analytic marginalisation hap-
pens simultaneously for the timing models of the five pulsars. In Figure 4.5 we
present the posterior, marginalised over all parameters except the GWB amplitude
and spectral index. In the same figure we also show the PPTA published values
of the GWB limit (Jenet et al., 2006). For the expected spectral index for a GWB
generated by a large number of supermassive black-hole binaries, α = −2/3, we
find a 95% confidence GWB upper limit of hc(1yr) ≤ 6× 10−15. This is smaller by
a factor of 1.8 than the previously published PPTA limit.

As a cross-check with other codes, and to verify that we are definitely sensitive
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to the level of the limit we have calculated here, we perform an additional test. We
use the Tempo2 plug-in GWbkgrd (Hobbs et al., 2009) to generate simulated timing
residuals as produced by a GWB with an amplitude of hc(1yr). We then create a
new set of TOAs, consisting of the values of the simulated timing residuals added
to the values of the observed TOAs of the five pulsars that we have analysed in
this section. We then redo the whole analysis. Current PTAs aim to reach sensi-
tivities in the order of hc(1yr) = 10−15 in the future (Jenet et al., 2005), which is
over five times more sensitive than the limit we achieve here. In the case that the
GWB just happens to be at the 2-σ level of our current limit, we demonstrate what
such a fivefold increase in sensitivity could do for our ability to measure the GWB
parameters by adding a signal of hc(1yr) = 30 × 10−15 to our current TOAs. The
result is shown in Figure 4.6. We find that the results are consistent with the input
parameters of the simulated GWB, and that we can reliably detect a GWB in this
case3. The values of the GWB parameters we have used to simulate the GWB lie
within the 1-σ credible region of Figure 4.6.

4.7 Implications and outlook
The analysis performed in this chapter puts an upper limit on a GWB with a power-
law characteristic strain spectrum hc = A( f /yr−1)α. In the literature, upper limits
are typically quoted for various values of α, where the considered α depends on the
physics responsible for generation of the GWB. A useful feature of our approach
is that we are able to measure α for a strong enough GWB (see chapter 2 for a
discussion). The extra degree of freedom in our model, α, necessarily changes the
interpretation of the posterior to some extent. We interpret the 2-σ contour in our
plot of the marginalised posterior as the upper limit on the GWB as a function of
α. Fixing α and re-evaluating the 2-σ limit based on the posterior for A only does
not significantly alter our results.

In this section, we briefly discuss the implications of the new upper limits in
the context of two different mechanisms for generation of the GWB: binaries of
supermassive black holes, and cosmic strings. We also place the obtained limit in
a context with respect to other PTA projects, and we discuss how we expect this
limit to evolve in the near future.

3We note that, although such a detection is consistent with a GWB, we would need more pulsars
to exclude the possibility that some other effect is causing the correlated signal we detect here.
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Figure 4.6: Same marginalised posterior distribution as in 4.5, but here we have
injected the residuals of a simulated GWB with amplitude hc(1yr) = 30 × 10−15 in
the data.
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4.7.1 Supermassive black hole binaries

Several authors discuss the characteristic strain spectrum generated by an ensem-
ble of supermassive black holes (SMBHBs) distributed throughout the Universe
(Begelman et al., 1980; Phinney, 2001; Jaffe & Backer, 2003; Wyithe & Loeb,
2003). They show that the characteristic strain spectrum generated by such black
hole binaries can well be approximated by a power-law:

hc = h1yr

(
f

yr−1

)−2/3

,
�

�

�

�4.9

where h1yr is a model-dependent constant. Though the form of the characteris-
tic strain, the power-law, is quite general among the different SMBHB assembly
models the authors use in their work, the parameterisations and assumptions about
other physical quantities differ between all investigators. The predicted h1yr there-
fore differs depending on what SMBHB assembly scenarios were assumed.

Recently, Sesana et al. (2008) have extensively investigated a wide variety
of assembly scenarios, including those considered in Jenet et al. (2006). For
our purposes in this chapter, their most important result is an estimate of h1yr

for all models4. In calculating this value, they take into account the uncer-
tainties of the key model parameters for different scenarios, and come up with
h1yr ≈ 2× 10−16 − 4× 10−15. We are less than a factor of two away from this range,
so we foresee that we can start to rule out some models in the near future.

Two more results of Sesana et al. (2008) are interesting with respect to the
limit presented in this chapter. The first is that the frequency dependence of the
GWB is expected to be steeper than a power-law ∝ f −2/3 for frequencies f � 10−8

Hz. The steepness depends on the chosen model. We have incorporated a varying
spectral index α in our current analysis, and since we are not yet able to detect the
GWB, we postpone a more thorough investigation of the exact dependence of hc

on f to later work with even better datasets. The second interesting result is that in
the frequency range of 10−8 Hz ≤ f ≤ 10−7 Hz, the GWB might be dominated by
single sources. In that case, a search for just a certain characteristic strain spectrum
is not appropriate, and we note that further investigation is required in this regard.

4.7.2 Cosmic strings

Several authors have suggested that oscillating cosmic string loops will produce
gravitational waves (Vilenkin, 1981; Damour & Vilenkin, 2005; Ölmez et al.,

4The model for the GWB that Sesana et al. (2008) use is a broken power-law. Their h1yr therefore
has a slightly different meaning, and our quoted value should be taken as a crude approximation.
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2010). Damour & Vilenkin (2005) have used a semi-analytical approach to de-
rive the characteristic strain hc of the GWB generated by cosmic strings:

hc( f ) = 1.6 × 10−14c1/2 p−1/2ε−1/6
eff

×(h/0.65)7/6
( Gμ
10−6

)1/3 (
f

yr−1

)−7/6

,
�

�

�

�4.10

where μ is the string tension, G is Newton’s constant, c is the average number of
cusps per loop oscillation, p is the reconnection probability, εeff is the loop length
scale factor, and h is the Hubble constant in units of 100km s−1Mpc−1. Usually,
the dimensionless combination Gμ is used to characterise the string tension. Theo-
retical predictions of string tensions are 10−11 ≤ Gμ ≤ 10−6 (Damour & Vilenkin,
2005).

From the above expression for the characteristic strain generated by cosmic
strings, we see that this is again a power-law, but now with α = −7/6. Using a
standard model assumption that c = 1, the facts that p and εeff are less than one,
and that h is expected to be greater than 0.65, we can safely use our derived upper
limit on hc for α = −7/6 to limit the string tension: Gμ ≤ 4.0 × 10−9. This already
places interesting constraints on the theoretical models, and in a few years the
EPTA will be able to place much tighter restrictions in the case of a non-detection
of a GWB: with only a factor of five decrease of the upper limit, we would be
able to completely exclude the 10−11 ≤ Gμ ≤ 10−6 range mentioned in Damour &
Vilenkin (2005).

4.7.3 Comparison with other PTA projects, and prospects

The EPTA data we have analysed in this chapter consists of only a small subset
of pulsars from the complete ensemble of pulsars that is observed by the EPTA.
The observatories of the EPTA have been continuously upgrading their systems
and their data processing pipelines. The limit on the GWB produced by EPTA data
will therefore improve substantially in the near future. But even though the limit
hc(1yr) ≤ 6 × 10−15 we present here is significantly lower than the limit published
by Jenet et al. (2006), it is worth placing this value into context.

Because of the redness of the GWB signal, the rms of the timing residuals
induced by the GWB increases sharply with the duration of the PTA experiment.
For an spectral index α = −2/3, the rms scales as σGWB ∝ T 5/3, where σGWB is the
rms of the GWB-induced timing residuals, and T is the duration of the experiment.
Since PTA observations have been rapidly improving over the past several years,
we conclude that the Jenet et al. (2006) results are not representative for the PPTA
data quality. Also the greater timespan of high-quality data makes the PPTA much
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more sensitive to the GWB now than it was in 2006.
The sensitivity to the GWB should be compared between the three projects

PPTA, NANOGrav, and EPTA, by performing the same analysis on their respective
datasets: there may still be noise contributions to the TOAs that can be mitigated,
and the effect on GWB sensitivity due to the differences between data reduction
pipelines is not completely understood. We note here that all three projects have
their strengths. The PPTA was the first to organise itself and has been timing a full
array of 20 pulsars regularly for over five years, and it has access to the southern
hemisphere pulsars. NANOGrav has the largest telescopes at their disposal, and
the EPTA has many telescopes which, next to their regular observing schedule,
will be coherently combined in the near future (Ferdman et al., 2010).

Most likely, the first detection of GWs by a PTA will occur as a result of a joint
IPTA effort. We use the graphs of chapter 2 to create rule of thumb that sensitivity
of a PTA to the GWB with a fixed T scales as

√
n, with n the total number of

TOAs. Because the GWB signal increases in strength with time as σGWB ∝ T 5/3,
we can be optimistic about prospects for detection of the GWB by PTAs. Given
that we have only used five pulsars, most of which were observed for five years,
and that there are three currently organised PTAs, we can hope to reach a sensitivity
to the GWB by the IPTA in five years an order of magnitude greater than we have
accomplished in this chapter. Although this prediction is probably optimistic due
to our selection of best pulsars in this chapter, and because it neglects the mostly
unknown level of red timing noise which is expected to be present in all millisecond
pulsars, we conclude that the sensitivity of PTAs to the GWB will greatly increase
in the near future.

4.8 Conclusion and discussion
In this chapter we have developed the methodology on how to handle combined
PTA datasets of several telescopes and how to robustly calculate a corresponding
upper limit on the GWB. Our Bayesian approach has handled in a straightforward
way different data sets of varying duration, regularity, and quality. The current
upper limit on the GWB, calculated with EPTA data, is hc ≤ 6 × 10−15 in the case
of α = −2/3, as predicted for a GWB created by an ensemble of supermassive
BH binaries. More generally, the analysis has resulted in a marginalised posterior
as a function of the parameters of the GWB: the GWB amplitude and the spectral
index.

Due to hardware and software upgrades at the EPTA observatories, and due to
the ever increasing time baseline of the data, we expect the sensitivity to increase
greatly over the next few years. Especially the combination of the EPTA data sets
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with the data of the other PTA projects seems promising.
The raw telescope data must first undergo careful reduction and modelling

before it can be analysed by the Bayesian inference method. We have provided
some discussion of these processes and have motivated our choice of model for
the TOAs. As part of our analysis, we have studied the probability distribution
of the pulsar noise parameters, and highlighted the crucial importance of precise
characterisation of the red component of pulsar timing noise.

Appendix B
Here we show the timing solutions of all datasets used in this chapter, combined
with the posterior distributions for the timing noise.
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Pulsar name . . . . . . . . . . . . . . . . . . . . J0613−0200 J1012+5307 J1713+0747

Fit and data set

Telescopes used . . . . . . . . . . . . . . . . NRT NRT EFF & WSRT
MJD range . . . . . . . . . . . . . . . . . . . . 53367 - 55012 53443 - 55030 51426 - 54637
Number of TOAs . . . . . . . . . . . . . . . 280 107 195
Rms timing residual (ns) . . . . . . . . 912 769 396
Reduced χ2 value . . . . . . . . . . . . . . 1.00 1.00 1.13
Epoch . . . . . . . . . . . . . . . . . . . . . . . . . 54189 54236 53031

Measured Quantities

Right ascension, α (J2000) . . . . . . . 06:13:43.97385(4) 10:12:33.43241(10) 17:13:49.530782(3)
Declination, δ (J2000) . . . . . . . . . . . −02:00:47.0720(12) +53:07:02.665(2) +07:47:37.52343(8)
Pulse freq., ν (s−1) . . . . . . . . . . . . . . 326.600562095168(13) 190.26783448248(14) 218.811840486637(30)
Derivative of pulse freq., ν̇ (s−2) . . −1.02281(3)×10−15 −6.1998(4)×10−16 −4.0836(2)×10−16

PM in RA, μα (mas yr−1) . . . . . . . . . 1.90(4) 3.17(7) 5.017(12)
PM in DEC, μδ (mas yr−1) . . . . . . . −10.31(9) −24.96(9) −3.96(3)
Parallax, π (mas) . . . . . . . . . . . . . . . . — — 0.915(7)
Dispersion measure, DM (cm−3pc) 38.77700 9.0176 15.9907

Binary model . . . . . . . . . . . . . . . . . . . DD ELL1 DD
Orbital period, Pb (d) . . . . . . . . . . . . 1.19851257534(5) 0.60462272322(4) 67.8253309255(20)
Derivative of orbital period, Ṗb . . . — — —
Epoch of periastron, T0 (MJD) . . . 54189.019(6) — 53014.9592(7)
Projected sm. axis of orbit, x (lt-s) 1.09144417(8) 0.58181742(13) 32.34242015(7)
Longitude of periastron, ω0 (deg) . 47.1(1.6) — 176.2109(12)
Orbital eccentricity, e . . . . . . . . . . . . 5.47(15) ×10−6 — 7.49312(13) ×10−5

Time of ascending node (MJD) . . . — 54236.2078302(3) —
EPS1 (ε1), e sinω . . . . . . . . . . . . . . . — 1.18(5)×10−5 —
EPS2 (ε2), e cosω . . . . . . . . . . . . . . . — 2.20(5)×10−5 —
Sine of inclination angle, sin i . . . . — — —
Companion mass, Mc (M�) . . . . . . — — —

Assumptions

Clock correction procedure . . . . . . TT(TAI)
Solar system ephemeris model . . . DE405

Table 4.2: The timing solutions for the pulsars used in this chapter before apply-
ing the Bayesian inference method. These solutions are determined using Tempo2,
which uses the International Celestial Reference System and Barycentric Coor-
dinate Time. As a result this timing model must be modified before being used
with an observing system that inputs Tempo format parameters. See Hobbs et al.
(2006) for more information. Note that the figures in parentheses are the nomi-
nal 1-σ Tempo2 uncertainties, with EFACs included, and therefore do not include
the red noise model. In the GWB limit calculation these respective parameters are
marginalised over. Also, the dispersion measure quoted here results from combin-
ing these observations with EPTA data of other frequencies. These DM values are
used in the dedispersion, but we didn’t include all observations in our GWB anal-
ysis. We therefore have not fit for the DM here, and an error estimate cannot be
given. 105
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Pulsar name . . . . . . . . . . . . . . . . . . . . J1744−1134 J1909−3744

Fit and data set

Telescopes used . . . . . . . . . . . . . . . . EFF & NRT NRT
MJD range . . . . . . . . . . . . . . . . . . . . 51239 - 55001 53366 - 55127
Number of TOAs . . . . . . . . . . . . . . . 159 113
Rms timing residual (ns) . . . . . . . . 444 134
Reduced χ2 value . . . . . . . . . . . . . . 1.05 1.00
Epoch . . . . . . . . . . . . . . . . . . . . . . . . . 53120 54247

Measured Quantities

Right ascension, α (J2000) . . . . . . . 17:44:29.391592(7) 19:09:47.437982(5)
Declination, δ (J2000) . . . . . . . . . . . −11:34:54.5762(6) −37:44:14.3176(2)
Pulse freq., ν (s−1) . . . . . . . . . . . . . . 245.426119777227(4) 339.31568732355(1)
Derivative of pulse freq., ν̇ (s−2) . . −5.3817(4)×10−16 −1.614853(8)×10−15

PM in RA, μα (mas yr−1) . . . . . . . . . 18.817(10) −9.490(11)
PM in DEC, μδ (mas yr−1) . . . . . . . −9.30(6) −35.89(4)
Parallax, π (mas) . . . . . . . . . . . . . . . . 2.602(10) 1.01(7)
Dispersion measure, DM (cm−3pc) 3.13632 10.37877

Binary model . . . . . . . . . . . . . . . . . . . — ELL1
Orbital period, Pb (d) . . . . . . . . . . . . — 1.53349947490(6)
Derivative of orbital period, Ṗb . . . — 3.5(5)×10−13

Epoch of periastron, T0 (MJD) . . . — —
Projected sm. axis of orbit, x (lt-s) — 1.89799108(11)
Longitude of periastron, ω0 (deg) . — —
Orbital eccentricity, e . . . . . . . . . . . . — —
Time of ascending node (MJD) . . . — 54247.169903748(15)
EPS1 (ε1), e sinω . . . . . . . . . . . . . . . — 6.4(5.5)×10−8

EPS2 (ε2), e cosω . . . . . . . . . . . . . . . — −3(3)×10−8

Sine of inclination angle, sin i . . . . — 0.9980(3)
Companion mass, Mc (M�) . . . . . . — 0.208(7)

Assumptions

Clock correction procedure . . . . . . TT(TAI)
Solar system ephemeris model . . . DE405

Table 4.3: Same as table 4.2.
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Figure 4.7: The marginalised posteriors of all datasets, as a function of the EFAC
and EQUAD parameters. The contours are at the 1, 2, and 3-σ level, indicating a
respective volume inside that region of 68%, 95%, and 99.7%. For the J1713-0747
posterior, the Tempo2 χ2 estimate is not shown because it has the off-scale value of
4.4.
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Figure 4.8: The marginalised posterior of all datasets, as a function of the power-
law red noise parameters: the amplitude and the spectral index. The contours are
at the 1, 2, and 3-σ level, indicating a respective volume inside that region of 68%,
95%, and 99.7%. The more negative the value of α, the steeper the power-law
spectrum, with the spectrum approaching a white spectrum at the right of the plot.
We also note that the amplitude of the red noise cannot be trivially scaled linearly
to an rms value of the timing residuals.
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