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2
On measuring the gravitational-wave

background using Pulsar Timing Arrays

Science may be described as the art of systematic
over-simplification.

Karl Popper

Abstract
Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring the long-period

(months-to-years) astrophysical gravitational waves. Several gravitational-wave observational programs, called

Pulsar Timing Arrays (PTA), are being pursued around the world.

Here we develop a Bayesian inference method for measuring the stochastic gravitational-wave background

(GWB) from the PTA data. Our method has several strengths: (1) It analyses the data without any loss of infor-

mation, (2) It trivially removes systematic errors of known functional form, including quadratic pulsar spindown,

annual modulations and jumps due to a change of equipment, (3) It measures simultaneously both the amplitude

and the slope of the GWB spectrum, (4) It can deal with unevenly sampled data and coloured pulsar noise spectra.

We sample the likelihood function using Markov Chain Monte Carlo (MCMC) simulations. We extensively test

our approach on mock PTA datasets, and find that the Bayesian inference method has significant benefits over

currently proposed counterparts. We show the importance of characterising all red noise components in pulsar

timing noise by demonstrating that the presence of a red component would significantly hinder a detection of the

GWB

Lastly, we explore the dependence of the signal-to-noise ratio on the duration of the experiment, number

of monitored pulsars, and the magnitude of the pulsar timing noise. These parameter studies will help formulate

observing strategies for the PTA experiments.

This chapter is based on:

On measuring the gravitational-wave background using Pulsar Timing Arrays
R. van Haasteren, Y. Levin, P. McDonald, T. Lu

MNRAS (2009), 395, 1005

23



CHAPTER 2. BAYESIAN DATA ANALYSIS OF PULSAR TIMING ARRAYS

2.1 Introduction
At the time of this writing several large projects are being pursued in order to di-
rectly detect astrophysical gravitational waves. This chapter concerns a program
to detect gravitational waves using pulsars as nearly-perfect Einstein clocks. The
practical idea is to time a set of millisecond pulsars (called the “Pulsar Timing
Array”, or PTA) over a number of years (Foster & Backer, 1990). Some of the
millisecond pulsars create pulse trains of exceptional regularity. By perturbing the
space-time between a pulsar and the Earth, the gravitational waves (GWs) will
cause extra deviations from the periodicity in the pulse arrival times (Estabrook
& Wahlquist, 1975; Sazhin, 1978; Detweiler, 1979). Thus from the measurements
of these deviations (called “timing residuals”, or TR), one may measure the grav-
itational waves. Currently, several PTA project are operating around the globe.
Firstly, at the Arecibo Radio Telescope in North-America several millisecond pul-
sars have been timed for a number of years. These observations have already been
used to place interesting upper limits on the intensity of gravitational waves which
are passing through the Galaxy (Kaspi et al., 1994; Lommen, 2001). Together with
the Green Bank Telescope, the Arecibo Radio Telescope will be used as an in-
strument of NANOGrav, the North American PTA. Secondly, the European PTA
is being set up as an international collaboration between Great Britain, France,
Netherlands, Germany, and Italy, and will use 5 European radio telescopes to mon-
itor about 20 millisecond pulsars (Stappers et al., 2006). Finally, the Parkes PTA
in Australia has been using the Parkes multi-beam radio-telescope to monitor 20
millisecond pulsars (Manchester, 2006). Some of the Parkes and Arecibo data have
also been used to place the most stringent limits on the GWB to date (Jenet et al.,
2006).

One of the main astrophysical targets of the PTAs is the stochastic background
of the gravitational waves (GWB). This GWB is thought to be generated by a large
number of black-hole binaries which are thought to be located at the centres of
galaxies (Begelman et al., 1980; Phinney, 2001; Jaffe & Backer, 2003; Wyithe &
Loeb, 2003; Sesana et al., 2008), by relic gravitational waves (Grishchuk, 2005),
or, more speculatively, by cusps in the cosmic-string loops (Damour & Vilenkin,
2005). This chapter develops an inference method for the optimal PTA measure-
ment of such a GWB.

The main difficulty of such a measurement is that not only Gravitational Waves
create the pulsar timing residuals. Irregularities of the pulsar-beam rotation (called
the “timing noise”), the receiver noise, the imprecision of local clocks, the polari-
sation calibration of the telescope (Britton, 2000), and the variation in the refractive
index of the interstellar medium all contribute significantly to the timing residuals,
making it a challenge to separate these noise sources from the gravitational-wave
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2.1. INTRODUCTION

signal. However, the GWB is expected to induce correlations between the timing
residuals of different pulsars. These correlations are of a specific functional form
[given by Equation (2.9) below], which is different from those introduced by other
noise sources (Hellings & Downs, 1983). Jenet et al. (2005, hereafter J05) have
invented a clever method which uses the uniqueness of the GWB-induced corre-
lations to separate the GWB from other noise sources, and thus to measure the
magnitude of the GWB. Their idea was to measure the timing residual correlations
for all pairs of the PTA pulsars, and check how these correlations depend on the
sky-angles between the pulsar pairs. J05 have derived a statistic which is sensitive
to the functional form of the GWB-induced correlation; by measuring the value of
this statistic one can infer the strength of the GWB. While J05 method appears ro-
bust, we believe that in its current form it does have some drawbacks, in particular:
(1) The statistic used by J05 is non-linear and non-quadratic in the pulsar-timing
residuals, which makes its statistical properties non-transparent.
(2) The pulsar pairs with the high and low intrinsic timing noise make equal con-
tributions to the J05 statistic, which is clearly not optimal.
(3) The J05 statistic assumes that the timing residuals of all the PTA pulsars are
measured during each observing run, which is generally not the case.
(4) The J05 signal-to-noise analysis relies on the prior knowledge of the intrinsic
timing noise, and there is no clean way to separate this timing noise from the GWB.
(5) The prior spectral information on GWB is used for whitening the signal; how-
ever, there is no proof that this is an optimal procedure. The spectral slope of the
GWB is not measured.

In this chapter we develop an inference method which addresses all of the prob-
lems outlined above. Our method is based on essentially the same idea as that of
J05: we use the unique character of the GWB-induced correlations to measure the
intensity of the GWB. The method we develop below is Bayesian, and by construc-
tion uses optimally all of the available information. Moreover, it deals correctly
and efficiently with all systematic contributions to the timing residuals which have
a known functional form, i.e. the quadratic pulsar spindowns, annual variations,
one-time discontinuities (jumps) due to equipment change, etc. Many parameters
of the timing model (the model popular pulsar timing packages use to generate TRs
from pulsar arrival times) fall in this category.

The plan of this chapter is as follows. In the next section we review the theory
of the GWB-generated timing residuals and introduce our model for other contri-
butions to the timing residuals. In Secion 2.3 we explain the principle of Bayesian
analysis for GWB-measurement with a PTA, and we evaluate the Bayesian likeli-
hood function. There we also show how to analytically marginalise over the contri-
butions of known functional form but unknown amplitude (i.e., annual variations,
quadratic residuals due to pulsar spindown, etc.). The details of this calculation are
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CHAPTER 2. BAYESIAN DATA ANALYSIS OF PULSAR TIMING ARRAYS

laid out in Appendix A of this chapter. Section 2.4 discusses the numerical integra-
tion technique which we use in our likelihood analysis: the Markov Chain Monte
Carlo (MCMC). In Section 2.5 we show the analyses of mock PTA datasets. For
each mock dataset, we construct the probability distribution for the intensity of the
GWB, and demonstrate its consistency with the input mock data parameters. We
study the sensitivity of our inference method for different PTA configurations, and
investigate the dependence of the signal-to-noise ratio on the duration of the exper-
iment, on redness and magnitude of the pulsar timing noise, and on the number of
clocked pulsars. In Section 2.6 we summarise our results.

2.2 The Theory of GW-generated timing residuals

2.2.1 Timing residual correlation

The measured millisecond-pulsar timing residuals contain contributions from sev-
eral stochastic and deterministic processes. The latter include the gradual decel-
eration of the pulsar spin, resulting in a pulsar rotational period derivative which
induces timing residuals varying quadratically with time (hereafter referred to as
“quadratic spindown”), the annual variations due to the imperfect knowledge of the
pulsar positions on the sky, the ephemeris variations caused by the known planets
in the solar system, and the jumps due to equipment change (Manchester 2006).
The stochastic component of the timing residuals will be caused by the receiver
noise, clock noise, intrinsic timing noise, the refractive index fluctuations in the
interstellar medium, and, most importantly for us, the GWB. For the purposes of
this chapter we restrict ourselves to considering the quadratic spindowns, intrinsic
timing noise, and the GWB; other components can be similarly included, but we
omit them for mathematical simplicity. In this case, the ith timing residual of the ath

pulsar can be written as

δtai = δtGW
ai + δt

PN
ai + Q(tai),

�

�

�

�2.1

where δtGW
ai and δtPN

ai are caused by the GWB and the pulsar timing noise, respec-
tively, and

Qa(tai) = Aa1 + Aa2tai + Aa3t2
ai

�

�

�

�2.2

represent the quadratic spindown. One expects the timing noise from different
pulsars to be uncorrelated, while the GWB will cause correlations in the timing
residuals between different pulsars. Therefore, the information about GWB can
be extracted by correlating the timing residual data between the different pulsars
(J05). If one assumes that both GWB-generated residuals and the intrinsic timing
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2.2. THE THEORY OF GW-GENERATED TIMING RESIDUALS

noise are stochastic Gaussian processes, then we can represent them by the (n × n)
coherence matrices:

〈δtGW
ai δt

GW
b j 〉 = CGW

(ai)(b j)

〈δtPN
ai δt

PN
b j 〉 = CPN

(ai)(b j),
�

�

�

�2.3

with the total coherence matrix given by

C(ai)(b j) = CGW
(ai)(b j) +CPN

(ai)(b j).
�

�

�

�2.4

The timing residuals are then distributed as a multidimensional Gaussian:

P
(
�δt
)
=

1√
(2π)n det C

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−1
2

∑
(ai)(b j)

(�δt(ai) − Qa(tai))

C−1
(ai)(b j)(�δt(b j) − Qb(tb j))

]
,

�

�

�

�2.5

where P denotes the probability distribution of the timing residuals. To be able to
use Equation (2.5) we must
(1) be able to evaluate the GWB-induced coherence matrix from the theory, as a
function of variables that parametrise the GWB spectrum, and
(2) introduce well-motivated parametrisation of the pulsar timing noise. In this
chapter, the spectral density of the stochastic GW background is taken to be a
power law (Phinney, 2001; Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Maggiore,
2000)

S h = A2
(

f
yr−1

)−γ
,

�

�

�

�2.6

where S h represents the spectral density, A is the GW amplitude, f is the GW
frequency, and γ is an exponent characterising the GWB spectrum. If the GWB is
dominated by the supermassive black hole binaries, then γ = 7/3 (Phinney 2001).
This definition is equivalent to the use of the characteristic strain as defined in Jenet
et al. (2006):

hc = A
(

f
yr−1

)α
,

�

�

�

�2.7
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with γ = 1 − 2α. The GWB-induced coherence matrix is then given by

CGW
(ai)(b j) =

A2αab

(2π)2 f 1+γ
L

{
Γ(−1 − γ) sin

(−πγ
2

)
( fLτ)

γ+1

−
∞∑

n=0

(−1)n ( fLτ)
2n

(2n)! (2n − 1 − γ)

⎫⎪⎪⎬⎪⎪⎭ . �

�

�

�2.8

Here αab is the geometric factor given by

αab =
3
2

1 − cos θab

2
ln

(
1 − cos θab

2

)
− 1

4
1 − cos θab

2
+

1
2
+

1
2
δab,

�

�

�

�2.9

where θab is the angle between pulsar a and pulsar b (Hellings & Downs, 1983), τ =
2π

(
tai − tb j

)
, Γ is the gamma function, and fL is the low cut-off frequency, chosen

so that 1/ fL is much greater than the duration of the PTA operation. Introducing fL

is a mathematical necessity, since otherwise the GWB-induced correlation function
would diverge. However, we show below that the low-frequency part of the GWB
is indistinguishable from an extra spindown of all pulsars which we already correct
for, and that our results do not depend on the choice of fL provided that fLτ
 1.

The pulsar timing noise is assumed to be Gaussian, with a certain functional
form of the power spectrum. The true profile of the millisecond pulsar timing
noise spectrum is not well-known at present time. The timing residuals of the most
precisely observed pulsars indicate that pulsar timing noise has a white and poorly-
constrained red component (J. Verbiest and G. Hobbs, private communications).

For the purposes of this chapter we will always choose the spectra to be of the
same functional form for all pulsars, but this is not an inherent limitation of the
inference method. We consider 3 cases of pulsar timing noise spectra:
(1) White (flat) spectra
(2) Lorentzian spectra
(3) Power-law spectra
Obviously, one could also consider a timing noise which is a superposition of these
components; we do not do this at this exploratory stage. If we choose the pulsar
timing noise spectrum to be white, with an amplitude Na, the resulting correlation
matrix becomes:

CPN−white
(ai)(b j) = N2

aδabδi j.
�

�

�

�2.10

The Lorentzian spectrum is a red spectrum with a typical frequency that deter-
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mines the redness of the timing noise:

S a( f ) =
N2

a

f0
(
1 +

(
f
f0

)2
) , �

�

�

�2.11

which yields the following correlation matrix:

CPN−lor
(ai)(b j) = N2

aδab exp (− f0τ) ,
�

�

�

�2.12

where f0 is a typical frequency and Na is the amplitude.
By using a power law spectral density with amplitude Na and spectral index γa,

one gets a timing-noise coherence matrix analogous to the one in Equation (2.8):

CPN−pl
(ai)(b j) =

N2
aδab

f γa−1
L

{
Γ(1 − γa) sin

(
πγa

2

)
( fLτ)

γa−1

−
∞∑

n=0

(−1)n ( fLτ)2n

(2n)! (2n + 1 − γa)

⎫⎪⎪⎬⎪⎪⎭ . �

�

�

�2.13

2.3 Bayesian approach

2.3.1 Basic ideas

The method described in this report is based upon a Bayesian approach to the
parameter inference. The general idea of the method is to (a) assume that the
physical processes which produce the timing residuals can be characterised by
several parameters, and (b) use the Bayes theorem to derive from the measured
data the probability distribution of the parameters of our interest. In our case, we
assume that the timing residuals are created by
(1) the GWB; we parametrise it by its amplitude A and slope γ, as in Equation
(2.6).
(2) the intrinsic timing noise of the 20 monitored millisecond pulsars. We assume
that the timing noise of each of the pulsars is the random Gaussian noise, with a
variety of possible spectra described in the previous section. We shall refer to the
variables parametrizing the timing noise spectral shape as T Na.
(3). The quadratic spindowns, parametrised for each of the pulsars by Aa1, Aa2,
and Aa3, cf. Eq. (2.2).

With these assumptions, we shall write down below the expression for the prob-
ability distribution P(data|parameters) of the data, as a function of the parameters.
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By Bayes theorem, we can then compute the posterior distribution function; the
probability distribution of the parameters given a certain dataset:

P(parameters|data) = P(data|parameters) ×
�

�

�

�2.14

×P0(parameters)
P(data)

.

Here P0(parameters) is the prior probability of the unknown parameters, which
represents all our current knowledge about these parameters, and P(data) is the
marginal likelihood, which we will use here as a normalisation factor to ensure
that P(A, γ, T Na, Aa1, Aa2, Aa3|data) integrates to unity over the parameter space.
We note here that the marginal likelihood is in essence a goodness of fit measure
that can be used for model selection. However, we will ignore the marginal like-
lihood in this chapter and postpone the model selection part of the data analysis
to future work. For our purposes, we are only interested in A and γ, which means
that we have to integrate P(A, γ, T Na, Aa1, Aa2, Aa3|data) over all of the other pa-
rameters. Luckily, as we show below, for a uniform prior the integration over Aa1,
Aa2, and Aa3 can be performed analytically. This amounts to the removal of the
quadratic spindown component to the pulsar data. We emphasise that this removal
technique is quite general, and can be readily applied to unwanted signal of any
known functional form (i.e., annual modulations, jumps, etc.—see Section 2.3.2),
even if those parameters have already been fit for while calculating the timing
residuals. The integration over T Na must be performed numerically.

In this chapter we shall use MCMC simulation as a multi dimensional integra-
tion technique. Besides flat priors for most of the parameters, we will use slightly
peaked priors for parameters which have non-normalisable likelihood functions.
This ensures that the Markov Chain can converge.

In the rest of the chapter, we detail the implementation and tests of our infer-
ence method.

2.3.2 Removal of quadratic spindown and other systematic signals of

known functional form

While this subsection is written with the PTA in mind, it may well be useful for
other applications in pulsar astronomy. We thus begin with a fairly general discus-
sion, and then make it more specific for the PTA case.

Consider a random Gaussian process δxG
i with a coherence matrix C(σ), which

is contaminated by several systematic signals with known functional forms fp(ti)
but a-priori unknown amplitudes ξp. Hereσ is a set of interesting parameters which
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2.3. BAYESIAN APPROACH

we want to determine from the data δx. The resulting signal is given by

δxi = δxG
i +

∑
p

ξp fp(ti),
�

�

�

�2.15

or, in the vector form, by
�δx = �δx

G
+ F�ξ.

�

�

�

�2.16

Here the components of the vectors �δx, �δx
G

, and �ξ are given by δxi, δxG
i , and ξp,

respectively, and F is the non-square matrix with the elements Fip = fp(ti). Note
that the dimensions of �δx and �ξ are different. The Bayesian probability distribution
for the parameters is given by

P(σ, �ξ| �δx) =
M√
det C

exp

[
−1

2
( �δx − F�ξ)C−1( �δx − F�ξ)

]
×P0(σ, �ξ),

�

�

�

�2.17

where P0 is the prior probability and M is the normalisation. Since we are only
interested in σ, we can integrate P(σ, �ξ| �δx) over the variables �ξ. This process is
referred to as marginalisation; it can be done analytically if we assume a flat prior
for �ξ [i.e., if P0(σ, �ξ) is �ξ-independent], since ξp enter at most quadratically into
the exponential above. After some straightforward mathematics which we have
detailed in Appendix A of this chapter, we get

P(σ| �δx) =
M′√

det(C) det(FTC−1F)

�

�

�

�2.18

× exp

[
−1

2
�δx · C′ �δx

]
,

where M′ is the normalisation, and

C′ = C−1 −C−1F(FTC−1F)−1FTC−1,
�

�

�

�2.19

and the T -superscript stands for the transposed matrix. Equation (2.18) is one
of the main equations of this work, since it provides a statistically rigorous way
to remove (i.e., marginalise over) the unwanted systematic signals from random
Gaussian processes. One can check directly that the above expression for P(σ| �δx)
is insensitive to the values ξp of the amplitudes of the systematic signals in the
Eq. (2.15).

We now apply this formalism to account for the quadratic spindowns in the
PTA. As in Section 2.2, it will be convenient to use the 2-index notation for the
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CHAPTER 2. BAYESIAN DATA ANALYSIS OF PULSAR TIMING ARRAYS

timing residuals, δtai measured at the time tai, where a is the pulsar index, and i
is the number of the timing residual measurement for pulsar a. The space of the
spindown parameters Aa j, j = 1, 2, 3 has 3N dimensions, where N is the number
of pulsars in the array. In the component language, we write

δtai = δtG
ai +

∑
b, j

F(ai)(b j)Ab j,
�

�

�

�2.20

where
F(ai)(b j) = δabt j−1

ai ,
�

�

�

�2.21

δtG is the part of the timing residual due to a random Gaussian process (i.e., GWB,
timing noise, etc.), and j = 1, 2, 3. The quantities F(ai)(b j) are components of the
matrix operator which acts on the 3N-dimensional vector in the parameter space
and produces a vector in the timing residual space. For example, for 20 pulsars,
each with 250 timing residual observations, the matrix F(ai)(b j) has 20×250 = 5000
rows, each marked by 2 indices a = 1, ..., 20, i = 1, ..., 250, and 20 × 3 = 60
columns, each marked by 2 indices b = 1, ..., 20, j = 1, 2, 3. Thus in the vector
form, one can write Eq. (2.20) as

�δt = �δt
G
+ F �A,

�

�

�

�2.22

which is identical to the Eq. (2.16). We thus can use Eq. (2.18) to remove the
quadratic spindown contribution from the PTA data.

Although we only demonstrate this technique for quadratic spindown, this re-
moval technique will be useful for treating other noise sources in the PTA. All
sources of which the functional form is known (and therefore can be fit for, as most
popular pulsar timing packages do) can be dealt with, i.e.
(1) Annual variation of the timing residuals due to the imprecise knowledge of the
pulsar position on the sky. The annual variation in each of the pulsars will be a pre-
dictable function of the associated 2 small angular errors (latitude and longitude).
Thus our parameter space will expand by 2N, but this will still keep the F matrix
manageable.
(2) Changes of equipment will introduce extra jumps, and must be taken into ac-
count. This is trivial to deal with using the techniques described above.
(3) Some of the millisecond pulsars are in binaries, and their orbital motion must
be subtracted. The errors one makes in these subtractions will affect the timing
residuals. They can be parametrised and dealt with using the techniques of this
section (we thank Jason Hessels for pointing this out).
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2.3. BAYESIAN APPROACH

2.3.3 Low-frequency cut-off

All predictions for GWB spectrum show a steep power law ∝ f −γ, where for black-
hole binaries γ = 7/3 (Phinney, 2001). Physically, there is a low-frequency cut-off
to the spectrum, due to the fact that black-hole binaries with periods greater than
1000 years shrink mostly due to the external friction (i.e., scattering of circum-
binary stars or excitation of density waves in a circum-binary gas disc), and not to
gravitational radiation. However, while the exact value of the low-frequency cut-off
is poorly constrained, the PTA should not be sensitive to it since the duration of the
currently planned experiments is much shorter than 1000 years. In this subsection,
we show this formally by explicitly introducing the low-frequency cut-off and by
demonstrating that our Bayesian probabilities are insensitive to its value.

Consider the expression in Equation (2.8) for the GWB-generated correlation
matrix for the timing residuals. This expression contains an integral of the form

I =
∫ ∞

fL
cos( fτ) f −(γ+2)d f ,

�

�

�

�2.23

where τ = 2π(ti − t j). When the low-frequency cut-off is much smaller than the
inverse of the experiment duration, i.e. when flτ 
 1, the integral above can be
expanded as

I = Bτγ+1 +
1

f γ+1
L

{
1

(γ + 1)
− ( fLτ)2

2(γ − 1)
+ O

[
( fLτ)

4
]}
,

�

�

�

�2.24

where
B = Γ(−1 − γ) sin

(−πγ
2

)
τγ+1.

�

�

�

�2.25

In the expansion above we have assumed 1 < γ < 3. The terms which contain fL

diverge when fL goes to zero, and scale as τ0 or τ2 with respect to the time interval.
We now show that these divergent terms get absorbed in the process of elimination
of the quadratic spindowns.

Suppose that we add to the timing residuals of a pulsar a quadratic spindown
term, A1 + A2t + A3t2. The spindown-removal procedure described in the previ-
ous section makes our results completely insensitive to this addition: A’s could
be arbitrarily large but the measured GWB would still be the same. Clearly, the
same is true if one treats A1, A2, A3 not as fixed numbers, but as random variables
drawn from some Gaussian distribution. The correlation introduced into the timing

33



CHAPTER 2. BAYESIAN DATA ANALYSIS OF PULSAR TIMING ARRAYS

residuals by adding a random quadratic spindown is given by

〈δtiδt j〉 = 〈A2
1〉 + 〈A1A2〉(ti + t j)

+ 2〈A2
2〉tit j + 〈A1A3〉(t2

i + t2
j )

�

�

�

�2.26
+ 〈A2A3〉tit j(ti + t j) + 〈A2

3〉t2
i t2

j .

The fL-dependent part of Eq. (2.24) contains terms which scale as t2
i + t2

j , tit j, and
const, and thus have the same functional ti, t j dependence as some of the terms in
Eq. (2.26). Since the terms in Eq. (2.26) can be made arbitrarily large, it is clear
that the terms corresponding to the low-frequency cutoff could be absorbed into the
correlation function corresponding to the quadratic spindown with the stochastic
coefficients. We have made this argument for the timing residuals from a single
pulsar, but it is trivial to extend it to the case of multiple pulsars. Thus our results
are not sensitive to the actual choice of the fL so long as flτ
 1; this is confirmed
by direct numerical tests.

2.4 Numerical integration techniques

2.4.1 Metropolis Monte Carlo

The Bayesian probability distribution for the PTA is computed in multi dimen-
sional parameter space, where all of the parameters except two characterise in-
trinsic pulsar timing noise and other potential interferences. To obtain meaningful
information about the GWB, we need to integrate the probability function over all
of the unwanted parameters. This is a challenging numerical task: a direct numeri-
cal integration over more than several parameters is prohibitively computationally
expensive. Fortunately, numerical shortcuts do exist, and the most common among
them is the Markov Chain Monte Carlo (MCMC) simulation. In a typical MCMC,
a set of semi-random walkers sample the parameter space in a clever way, each gen-
erating a large number of sequential locations called a chain (Newman & Barkema,
1999). After a sufficient number of steps, the density of points of the chain be-
comes proportional to the Bayesian probability distribution. We found that for our
purposes, the number of steps required for the chain convergence scales linearly
with the number of dimensions of the parameter space; typically few×104 steps
are required for reliable convergence. In this work we use the Metropolis (New-
man & Barkema, 1999) computational scheme for generating the chain, which can
be used with an arbitrary distribution, the proposal distribution, for generating new
locations of the chain. We use a Gaussian proposal distribution, centred at the
current location in the parameter space. During an initial period, the burn-in pe-
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riod, the width of the proposal distribution in all dimensional directions is set to
yield the asymptotically optimal acceptance rate of 23.4% for Metropolis (Roberts
et al., 1997). At the end of the MCMC simulation we check the convergence of the
chain using a batched mean method (Efron, 1979). We also calculate the global
maximum likelihood value for all parameters using a conjugate directions search
(Brent, 1973). By carefully inspecting the marginalised posterior distributions we
found that the posterior distribution only has a single peak for all the parameters
and parametrisations we have considered so far. We therefore assume that we are
not hindered by chains getting stuck in local maxima when assessing convergence.

2.4.2 Current MCMC computational cost

The greatest computational challenge in constructing the chain is the fast evaluation
of the matrix C−1 in Eqs. (2.18)&(2.19). If 250 timing residuals are measured
for each of the pulsars (50 weeks for 5 years), the size of the matrix C becomes
(5000 × 5000). We find it takes about 20 seconds to invert C and thus about 1.5
times as much to arrive to the next point in the chain. Therefore, for the required
105 chain points to get the convergent distribution, we need of order 1 month of
the single-processor computational time. On a cluster this can be done in a couple
of days. We emphasise that this is an order n3 process. For matrices of (2000 ×
2000) the calculation can be done overnight on a single modern workstation, but
for (104 × 104) the calculation is already a serious challenge.

For the currently projected size of the datasets (Manchester, 2006), the amount
of timing residuals will most likely not exceed the 250 (Hobbs, private commu-
nications). Thus, the brute-force method presented here is not computationally
expensive for the projected data volume over the next 5 years.

2.4.3 Choosing a suitable prior distribution

For some models (e.g. the power law spectral density for pulsar timing noise)
the likelihood function proves to be not normalisable. This would pose a serious
problem in combination with uniform priors as the nuisance parameters then can-
not be marginalised and the posterior cannot represent a probability distribution.
Although this is a sign that our model is incorrect (zero evidence/normalisation),
this can be easily solved by choosing a more realistic prior. The prior distribution
reflects our a priori knowledge of the model parameters. Because timing noise is
currently not well enough understood to properly parametrise it, the natural choice
of prior would be an uninformative one. Studies by Verbiest et al. (2009, see also
chapter 4 of this thesis) have suggested that the timing noise that is dominant in
MSPs at current sensitivity levels is less “red” than the GWB. We therefore pro-
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pose to use a proper prior distribution in the form of a Lorentzian shaped profile,
much broader than the likelihood distribution in the spectral index parameter:

P0(γi) =
Δi

π
(
Δ2

i + γ
2
i

) , �

�

�

�2.27

where γi is the parameter for which we are construction a prior, and Δi is some
typical width/value for this parameter.

As an example we show the likelihood function and the prior for the pulsar
timing noise spectral index parameter of Equation (2.13) in Fig. 2.1. The likelihood
function seems to drop to zero for high γi, but it actually has a non-negligible value
for all γi greater than the maximum likelihood value. The broadness of the prior is
chosen such that it does not change the representation of the significant part of the
likelihood in the posterior, but it does make sure that the posterior is normalisable.

2.4.4 Generating mock data

In order to generate mock data, we produce a realisation of the multi dimensional
Gaussian process of Equation (2.5), as follows. We rewrite Equation (2.5) is a basis
in which C is diagonal:

P
(
�δt
)
=

n∏
i=1

1√
λi
ϕ

(
yi√
λi

)
,

�

�

�

�2.28

where,

ϕ(x) :=
1√
2π

exp

(
− x2

2

)
.

�

�

�

�2.29

Here λi are the eigenvalues of C, and

�y = T−1�δt,
�

�

�

�2.30

where T is the transformation matrix which diagonalises C:

(T−1CT )i j = λiδi j.
�

�

�

�2.31

Thus we follow the following steps:
(1) Diagonalise matrix C, find T and λi.
(2) Choose yi from random Gaussian distributions of widths

√
λi.

(3) Compute the timing residuals via Eq. (2.30).

It is then trivial to add deterministic processes, like quadratic spindowns, to the
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Figure 2.1: The likelihood and prior distribution for a pulsar timing noise spectral
index parameters γi. The solid line represents the likelihood function. It is sharply
peaked and it looks as if it drops to zero for high γi. However, for high γi it will
have a constant non-negligible value. The dashed line represents our chosen prior
distribution. The prior is normalisable, and its application makes the posterior
distribution normalisable as well.
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simulated timing residuals.

2.5 Tests and parameter studies
We test our inference method by generating mock timing residuals for a number
of millisecond pulsars which are positioned randomly in the sky. We found it
convenient to parametrise the GWB spectrum by [cf.Equation (2.6)]

S h( f ) = A2
(

f
yr−1

)−γ
.

�

�

�

�2.32

Our mock timing residuals are a single realisation of GWB for some values of A
and γ and the pulsar timing noise. Random quadratic spindown terms are added.
We then perform several separate investigations as follows:

2.5.1 Single dataset tests

Our inference method is tested on several datasets in the following way:
The mock datasets were generated with parameters resembling an experiment of
20 pulsars, with observations approximately every 5 weeks for 5 years. The pulsar
timing noise was set to an optimistic level of 100 ns each (rms timing residuals).
In all cases the level of GWB has been set to A = 10−15yr1/2, with γ = 7/3.
This level of GWB is an order of magnitude smaller than the most recent upper
limits of this type(Jenet et al., 2006). We then analyse this mock data using the
MCMC method. In Figs 2.2—2.4 we see examples of the joint A—γ probability
distribution, obtained by these analyses. For each dataset we also calculate the
maximum likelihood value of all parameters using a conjugate directions search.
The Bayesian inference method gives results consistent with the input parameters
(i.e., they recover the amplitude and the slope of the GWB within measurement
errors). This was observed in all our tests.

For all datasets we also calculated the Fisher information matrix, a matrix con-
sisting of second-order derivatives to all parameters, at the maximum likelihood
points. We can use this matrix to approximate the posterior by a multi dimensional
Gaussian, since for some particular models this approximation is quite good. The
Fisher information matrix can be calculated in a fraction of the time needed to per-
form a full MCMC analysis. For all datasets we have plotted the 1σ contour of the
multi dimensional Gaussian approximation.

As an extra test, we have also used datasets generated by the popular pulsar
timing package tempo2 (Hobbs et al., 2006) with a suitable GWB simulation plug-
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Figure 2.2: The GW likelihood function (GW amplitude, GW slope vs prob. den-
sity contours), determined with the MCMC method for a set of mock data with
20 pulsars, and 100 data points per pulsar approximately evenly distributed over 5
years. Each pulsar has a white timing noise of 100ns. The true GW amplitude and
slope are shown as a “+” with an arrow, and the maximum likelihood values are
shown as “x”. The contours are in steps of σ, with the inner one at 1σ. The 1σ
contour of the Gaussian approximation is also shown.

in (Hobbs et al., 2009). We were able to generate datasets with exactly the same
parameters as with our own inference method, provided that the timing noise was
white. We have confirmed that those datasets yield similar results when analysed
with our inference method.

An important point is that that the spectral form of the timing noise has a large
impact on the detectability of the GWB. For a red Lorentzian pulsar timing noise
there is far greater degeneracy between the spectral slope and amplitude in the
timing residual data for the GWB than for white pulsar timing noise, and thus the
overall signal-to-noise ratio is significantly reduced by the red component of the
timing noise.
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Figure 2.3: Same as in Fig. 2.2, but the mock data is generated and analysed us-
ing Lorentzian timing noise. Overall timing noise amplitude and characteristic
frequency f0 are taken to be 100ns and 1yr−1 for each pulsar.
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Figure 2.4: Same as in Fig. 2.2, but the mock data is generated and analysed using
power law timing noise. Overall timing noise amplitude and spectral index γi are
taken to be 100ns and 1.5 for each pulsar. For all γi, a prior distribution according
to Equation 2.27.
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2.5.2 Multiple datasets, same input parameters

To estimate the robustness of our inference method, we also perform a maximum
likelihood search on many datasets:
(a) We generate a multitude of mock timing residual data for the same PTA
configurations as in Section 2.5.1, with white timing noise.
(b) For every one of these datasets we calculate the maximum likelihood parame-
ters using the conjugate directions search. The ensemble of maximum likelihood
estimators for (A, γ) should be close to the true values used to generate the timing
residuals.

The results of maximum likelihood search on many datasets is demonstrated
in Fig. 2.5. The points are the maximum likelihood values for individual datasets.
It can be seen that the points are distributed in a shape similar, but not identical,
to Fig. 2.2: some points are quite far off from the input parameters. In order to
test the validity of the results, we calculate the Fisher information matrix at the
maximum likelihood points, and show the 1σ contour of the multidimensional
Gaussian approximation based on the Fisher information matrix for three points.
We wee that the error contours do not exclude the true values at high confidence,
even though the Fisher matrix does not yield a perfect representation of the error
contours (the true posterior is not perfectly Gaussian), and we have a posteriori
selected outliers for 2 of the 3 cases.

2.5.3 Parameter studies

To test the accuracy of the Bayesian inference method, and to provide suggestions
for optimal PTA configurations, we conduct some parameter studies on simplified
sets of mock timing residuals:
(a) We generate many sets of mock timing residuals for the simplified case of
white pulsar timing noise spectra, all with the same white noise amplitude. The
datasets are timing residuals for some number of millisecond pulsars which are
positioned randomly in the sky. We parametrise the GWB by Equation (2.32). We
then generate many sets of timing residuals, varying several parameters [i.e., timing
noise amplitude (assumed the same for all pulsars), duration of the experiment, and
number of pulsars].
(b) For each of the mock datasets we approximate the likelihood function by a
Gaussian in the GWB amplitude A, with all other parameters fixed to their real
value. We use A as a free parameter since it represents the strength of the GWB, and
therefore the accuracy of A is a measure of the detectability. All other parameters
are fixed to keep the computational time low, but this does result in a higher signal
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Figure 2.5: The maximum likelihood values for an ensemble of realisations of
mock datasets, all with the same model parameters: 100 ns white noise, 20 pulsars,
and 100 data points per pulsar approximately evenly distributed over 5 years. The
contours are confidence contours based on Fisher information matrix approxima-
tions of the likelihood function.
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Figure 2.6: Density plot of the signal to noise ratio μ/σ for different realisations
of timing residuals. We have assumed monthly observations of pulsars with white
timing noise of 100 ns each. The GWB amplitude has been set to 10−15yr1/2.

to noise ratio than is obtainable with a full MCMC analysis.
(c) For this Gaussian approximation, we calculate the ratio μ/σ as an estimate
for the signal to noise ratio, where μ is the value of A at which the likelihood
function maximises, and σ is the value of the standard deviation of the Gaussian
approximation. Our results, represented as signal-to-noise contour plots for pairs
of the input parameters, can be seen in Fig. 2.6—Fig. 2.12.

2.5.4 Comparison to other work

More then a decade ago, McHugh et al. (1996) used a Bayesian technique to pro-
duce upper limits on the GWB using pulsar timing. We found the presentation of
this work rather difficult to follow. Nonetheless, it is clear that the analysis pre-
sented here is more general than that of McHugh et al.: we treat the whole pulsar
array, and not just a single pulsar; we take into account the extreme redness of
the noise and develop the formalism to treat the systematic errors like quadratic
spindown.
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Figure 2.7: Density plot of the signal to noise ratio μ/σ for different realisations
of timing residuals. We have assumed 100 data points per pulsars, approximately
evenly distributed over a period of 7.5 years. The GWB amplitude has been set to
10−15yr1/2.
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Figure 2.8: Density plot of the signal to noise ratio μ/σ for different realisations of
timing residuals. We have used a constant GWB amplitude of 10−15yr1/2 and 20
pulsars.
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Figure 2.9: Density plot of the signal to noise ratio μ
σ

for different realisations of
timing residuals. We have used 20 pulsars with white pulsar timing noise levels
of 100 ns each, with monthly observations. The GWB amplitude has been set to
10−15yr1/2. The points and error bars are the mean and standard deviation of 10
realisations.
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Figure 2.10: Plot of one over the signal to noise ratio (μ/σ)−1 with respect to the
pulsar timing noise for an experiment of 5 years, 20 pulsars and monthly observa-
tions. The GWB amplitude has been set to 10−15yr1/2.
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Figure 2.11: Plot of the signal to noise ratio μ
σ

with respect to the number of ob-
served pulsars. The white timing noise of each pulsar has been set to 100 ns and
the observations were taking every 2 months for a period of 7.5 years. The GWB
amplitude has been set to 10−15yr1/2. The points and error bars are the mean and
standard deviation of 10 realisations.
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Figure 2.12: Several plots of the signal to noise ratio μ
σ

with respect to the level
of the GWB amplitude. The number of pulsars was set at 20, with bi-weekly
observations for a period of 5 years. The pulsar noise levels were set at 50, 100,
200, 500, 1000 ns for the different plots. The points and error bars are the mean
and standard deviation of 10 realisations.
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Simultaneously with our work, a paper by Anholm et al. (2009) has appeared
on the arxiv preprint service. Their approach was to construct a quadratic esti-
mator (written explicitly in the frequency domain), which aims to be optimally
sensitive to the GWB. This improves on the original non-quadratic estimator of
J05. However, a number of issues important for the pulsar timing experiment re-
mained unaddressed, the most important among them the extreme redness of the
GWB and the need to subtract consistently the quadratic spindown.

2.6 Conclusion
In this chapter we have introduced a practical Bayesian inference method for mea-
suring the GWB using Pulsar Timing Arrays. Several attractive features of the
inference method should make it useful to the PTA community:
(1) the ability to simultaneously measure the amplitude and slope of GWB,
(2) its ability to deal with unevenly sampled datasets, and
(3) its ability to treat systematic contributions of known functional form. From the
theoretical point of view, the inference method is guaranteed to extract information
without loss of information, provided that our parametrisation of the timing noise
is correct.

Test runs of our inference method have shown that the experiments signal-to-
noise (S/N) ratio strongly decreases with the redness of the pulsar timing noise, and
strongly increases with the duration of the PTA experiment. We have also charted
the S/N dependence on the number of well-clocked pulsars and the level of their
timing noise. These charts should be helpful in the design of the optimal strategy
for future PTA observations.
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Appendix A
In this Appendix we show explicitly how to perform marginalisation over the nui-
sance parameters �ξ in Eq. (2.16), rewritten here for convenience:

P(σ, �ξ| �δx) =
M√
det C

exp

[
−1

2
( �δx − F�ξ)C−1( �δx − F�ξ)

]
×P0(σ, �ξ),

�

�

�

�2.33

From here on we assume that P0 is independent of �ξ (a flat prior). All values
are therefore equally likely for all elements of �ξ prior to the observations. This
assumption is also implicitly made in the frequentist approach when fitting for
these kinds of parameters as is done in popular pulsar timing packages. We now
perform the marginalisation:

P(σ| �δx) =
∫

P(σ, �ξ| �δx)dmξ,
�

�

�

�2.34

where m is the dimensionality of of �ξ. The idea now is to rewrite the the exponent
E of Equation (2.33) in such a way that we can perform a Gaussian integral with
respect to �ξ (we have to get rid of the F in front of �ξ). Therefore, we will expand
E and complete the square with respect to ξ:

E =
(
�δx − F�ξ

)T
C−1

(
�δx − F�ξ

)
= �δx

T
C−1 �δx − 2�ξT FT C−1 �δx + �ξT FT C−1F�ξ

= �δx
T

C−1 �δx +
(
�ξ − �χ

)T
FT C−1F

(
�ξ − �χ

)
−�χT FT C−1F�χ,

�

�

�

�2.35

where we have used the substitution:

�χ =
(
FT C−1F

)−1
FT C−1 �δx.

�

�

�

�2.36

Using this, we can write the �ξ dependent part of the integral of Equation (2.34) as
a multi dimensional Gaussian integral:

I =
∫

exp

(−1
2

(
�ξ − �χ

)T
FT C−1F

(
�ξ − �χ

))
dmξ

= (2π)m det
(
FT C−1F

)−1
.
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�

�

�2.37
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From this it follows that:

P(σ| �δx) =
M′√

det(C) det(FTC−1F)

�

�

�

�2.38

× exp

[
−1

2
�δx · C′ �δx

]
,

where we have absorbed all constant terms in the normalisation constant M′, and
where we have used:

C′ = C−1 −C−1F(FTC−1F)−1FTC−1.
�

�

�

�2.39
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