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Metabolic syndrome

Metabolic syndrome (MetS) refers to a cluster of risk factors for type 2 diabetes (T2D), cardiovascular 
disease (CVD) and stroke (Figure 1) that are strongly associated with the Western life style1,2,3,4. This 
life style is a result of the overwhelming and readily available supply of high-energy food that can be 
consumed at relatively low cost in westernized societies and is characterized by excess food intake 
and limited physical exercise. The term syndrome implies a complex etiology and this is confirmed by 
the variety of definitions for MetS that have been formulated over the years (Table 1). 
 The concept of MetS has been recognized for at least 80 years and during this period the 
syndrome has been (re)defined several times. MetS was introduced for the first time in the 1920s by 
the Swedish clinician Eskil Kylin5. Kylin discovered that several individual risk factors for CVD, like 
hypertension, obesity, hyperglycemia and dyslipidemia, tend to cluster. Such individual risk factors 
are still considered part of MetS and involve an increased risk for T2D, CVD and stroke. However, 
other components such as urinary albumin content and different measures for obesity like body 
mass index (BMI) or waist to hip ratio (WHR) can be considered determinants for the diagnosis of 
MetS. Systemic inflammation is widely regarded as associated with MetS, but is not part of any 
MetS definition. Table 1 presents four different MetS definitions which were formulated over the last 
decade. Alternative definitions of MetS have been developed, such as the definition of the American 
Association of Clinical Endocrinologists (AACE), and these are more focused on diabetes and insulin 
resistance6,7,8. Applying the different criteria to a single data set will lead to different patients being 

classified as MetS
 The International Diabetes 
Federation MetS definition (2006) 
includes central obesity as an 
essential component for the 
manifestation of the syndrome. 
The obligatory presence of obesity 
in this definition is driven by the 
observed strong association 
between excess energy intake over 
expenditure and MetS. As such, 
obesity is a clear indication that 
excess energy intake has taken 
place for some period of time in an 
individual.

Energy homeostasis

In the fasting state, the body relies on the production of glucose and lipids by the liver for the supply of 
energy to peripheral organs. The brain requires glucose while skeletal and heart muscle can also utilize 
fatty acids (FA) as substrates for oxidation. Glucose is secreted directly into the blood and FA’s are 
packaged into VLDL particles after secretion by adipose tissue or liver in the form of triglycerides (TG).
 Upon ingestion of a meal composed of lipids and carbohydrates, the body will respond by producing 
a variety of hormones and neuronal signals which cause the system to switch the system from a 
catabolic to an anabolic state. Carbohydrates are converted to glucose in the gut and are directly 
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Fig. 1: Schematic representation of biologically relevant components contributing to the 
metabolic syndrome (MetS): Obesity, Hyperglycemia, Hypertension, Dyslipidemia and Systemic 
inflammation. The latter component is virtually absent in MetS definitions. MetS refers to a 
clustering of risk factors for cardio vascular disease (CVD), type II diabetes mellitus (T2D) and 
stroke. 
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absorbed in the blood. 
Lipids are converted 
to chylomicrons and 
enter the blood via the 
lymph. The production of 
insulin by the pancreas is 
considered as the most 
metabolically important 
hormone signal. Insulin 
secretion is prompted 
by the relatively rapid 
increase in plasma 
glucose. Insulin represses 
the secretion of glucose 
by the liver and increases 
the uptake of glucose 
by adipose and muscle 
tissue. Insulin also 
represses the secretion of 
VLDL by the liver. 
 From an evolutionary 
perspective, the system 
is exquisitely suited 
to ensure survival of 
prolonged periods of 
chronic food deprivation, 
but seems much less 

suited to deal with chronic over consumption. A chronic excess intake of energy leads to obesity and 
is associated with low grade inflammation, disturbances in both glucose and lipid metabolism and 
high blood pressure. These aspects of MetS are discussed in detail below. In addition to quantity, 
the quality of the food plays a role in the development of pathology. For example, the Mediterranean 
diet has been associated with less pathology presumably due to the increased dietary levels of 
unsaturated FA inherent to a high intake of olive oil and fish9,10. The mechanism of excess of food 
intake leading to MetS is under debate. Although most of the processes that are involved are not 
disputed to play a role in MetS, their relative contribution and the sequence of events leading to 
MetS are the source of the debate. These processes and their overlaps are shown in Figure 1.

Pathophysiology of the metabolic syndrome 

Obesity

A misbalance between energy intake and expenditure is thought to be the cause of the current increase 
in prevalence of MetS11,12. Although obesity may not be the first pathological metabolic consequence of 
excess food intake, its presence does prove that, for a prolonged period of time, there has been higher 

Table 1 Four metabolic syndrome definitions

    WHO (1999)  EGSIR (1999)  ATPIII (2001)  IDF (2006)a

Components (N) b  2 + OGTT   2 + IR     3        2 + WC

_ WC (cm)   -     ≥ 94       >102       ≥ 94  

_ WC (cm)   -     ≥ 80       > 88       ≥ 80 

BMI (kg/m2)   > 30 c          -        -

_ WHR    > 0.9 c          -        -

_ WHR    > 0.85 c          -        -

FPG (mmol/L)   -     ≥ 6.0      ≥ 6.1      ≥ 5.6 d,f

AE (_g/min)   ≥ 20   -       -        -

OGTT    < glucose 25% -       -        -

IR    -     > insulin 25% c -        -

SBP (mm Hg)   > 140    ≥ 140      ≥ 135 e     ≥ 130 e

DBP (mm Hg)   > 90    ≥ 90       ≥ 85 e     ≥ 85 e

_ HDL-C (mmol/L)  < 0.9 g   < 1.0       < 1.0       < 1.03 g

_ HDL-C (mmol/L)  < 1.0 g   < 1.0      < 1.3       < 1.29 g

TG (mmol/L)   ≥ 1.7 g   ≥ 2.0      ≥ 1.7      ≥ 1.7 g

WHO; World Health Organization, EGSIR; European Group for the study of Insulin Resistance, IDF; 

International diabetes federation, ATPIII; National Education Control Panel Adult Treatment Panel III. 

a Europids. b Minimal composition of components required for diagnosis MetS. WC; waist circumference, 

BMI; body mass Index, WHR; waist to hip ratio; FPG; fasting plasma glucose, AE; albumin excretion, 

OGTT; oral glucose tolerance test, IR; insulin resistant, SBP; systolic blood pressure, DBP; diastolic blood 

pressure, HDL-C; HDL-cholesterol, TG; total plasma triglycerides., c BMI or WHR, d top 25% of fasting 

insulin values from non-diabetic population, e pharmacological treated hypertensive patients included, 

f pharmacological treated type 2 diabetes patients included, g pharmacological treated dyslipidemic 

patients included. 
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energy intake than is required for expenditure has taken place. Expansion of adipose tissue requires 
an increased influx of FA, but also extensive tissue proliferation and remodeling including precursor 
cell differentiation, extracellular matrix breakdown and neovascularization. Excess adipose tissue is 
also associated with increased effluxes of FA and altered function of the adipose tissue itself. 
 In the definitions of MetS in Table 1, obesity is defined by a threshold BMI or WC. The major difference 
between these two obesity measures is the focus on body composition (BMI) versus central obesity 
(WC) and the corresponding risk for MetS. BMI is the most widely used general measure for obesity 
and is defined by the ratio of weight and squared height (kg/m2). Because BMI involves the total 
sum of bone, fat and muscle mass, it does not make a distinction between specific fat depots. WC 
specifically measures central obesity. Although WC is more region specific than BMI, WC measures 
the total sum of visceral and subcutaneous fat depots and does not distinguish between these two 
functionally different fat depots. Alternatively, body composition can be expressed as waist to hip 
ratio (WHR) and is defined by the ratio between specific fat depots in hip and waist. This measure is 
generally used to distinguish between the benign pear-shaped overweight individuals and the more 
pathogenic apple-shaped overweight individuals. As an isolated measure, WHR does not actually 
represent the level of obesity. 

Adipose tissue

It is generally accepted that adipose tissue functions as an endocrine organ and can respond to 
neuronal and hormonal input by secreting biologically active substances in addition to FA, namely 
adipocytokines or adipokines. Chronic disturbances in the endocrine function of adipose tissue clearly 
play a role in the pathology associated with MetS. In this respect, the different adipose tissue depots, 
such as visceral and subcutaneous fat, are not each other’s equivalent in terms of the production and 
secretion of adipokines13. Visceral fat directly drains on the portal vein, and is thus likely to have a 
much more direct signaling and metabolic relation with the liver in comparison to subcutaneous fat.
The adipokine family can be divided in two types of signaling molecules, namely those with a 
metabolic/immunological function, which include interleukins 1 , 6, 8, 10 or 18, tumor necrosis factor 
alpha (TNF- ) and transcription growth factor beta (TGF- ), and those with an endocrine function, 
which include leptin, retinol binding protein-4 (RBP-4), adiponectin and resistin. All adipokines are 
thought to affect many different tissues throughout the body, including liver, gall bladder, skeletal 
muscle, brain and pancreas. 
 The metabolic/immunological adipokines are, in general, pro-inflammatory and positively 
associated with obesity and trigger a response which results in infiltration of immune cells, such as 
macrophages. Macrophages are involved in the clearance of all forms of debris, including dead cells, 
but are themselves also a source of pro-inflammatory cytokines. Once macrophages are abundant in 
adipose tissue, they maintain the inflammatory state of the adipose tissue in a vicious circle, which 
results in chronic systemic low-grade inflammation. This inflammatory state is far less severe than 
pathogen-induced inflammation14,15. 
 The adipokines with endocrine function do not only affect the liver, skeletal muscle and pancreas, 
but also the central nervous system (CNS)16. The adipokine leptin affects the arcuate nucleus in the 
brain, which is involved in the regulation of appetite and energy expenditure. Increased plasma 
leptin functions as a signal of increased adipose tissue mass. As such leptin is, potentially, an ideal 
weight loss hormone. However, obesity is associated with leptin resistance limiting the use in 
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weight reduction17,18. The adipokines resistin and adiponectin are negatively associated with adipose 
tissue mass and insulin sensitivity, whereas RBP-4 is positively associated with adipose tissue mass 
and insulin sensitivity19,20,21,22,23,24. The precise role of the adipokines resistin and adiponectin in the 
development of obesity and insulin resistance remains to be fully characterized. The role of RBP-4 
in the manifestation of T2D seems to involve a secondary mechanism25. Still, in animal intervention 
studies it has been shown that modulation of adipokine levels can determine the development of 
insulin resistance24,16. Although pharmacological interventions in patients that improve insulin 
sensitivity clearly ameliorate plasma adipokine levels, interventions that are directly aimed at 
adipokines have yet to be performed26.

Hyperglycemia 

Hyperglycemia is defined by elevated levels of fasting plasma glucose. The threshold values of 
these levels vary between the different MetS definitions (Table 1). Hyperglycemia is thought to be 
characterized by insulin resistance (IR). IR is defined as an impaired response of a specific process or 
organ to insulin. In a normal physiological state, insulin suppresses glucose production by the liver 
and increases glucose uptake by peripheral organs such as muscle and fat. As a consequence of IR, 
plasma insulin levels increase to achieve normal plasma glucose levels27. 
 Many physiological and pathological processes have been identified that can modulate the 
response of cells to insulin and thus affect insulin sensitivity. These processes include nutritional 
status, circadian rhythms, inflammation, ER stress and intracellular lipid levels28,29,30,31. A current 
important challenge lies in the understanding of the integration of these (patho) physiological 
processes in the development of insulin resistance. 
 Hyperglycemia is generally defined as T2D when fasting plasma glucose levels consistently rise 
up to 7 mmol/L. T2D is a specific risk factor for retinopathy, neuropathy and nephropathy32. The 
progression of insulin resistance to diabetes is thought to result from the chronic nature of the 
triggers that induce insulin resistance. It seems more than likely that as time progresses, some of 
these triggers exacerbate as a consequence of aging-induced changes, i.e. hormonal status and 
physical activity. At some point, the insulin resistance may fail to be compensated by increased insulin 
secretion, resulting in failure of the glucose homeostasis and thus in hyperglycemia. Since high levels 
of glucose are cytotoxic, the hyperglycemia will contribute further to the overall deterioration of the 
system. Eventually, this vicious cycle may progress to pancreatic beta-cell deterioration, at which 
point the diabetic state has become irreversible. 
 It should be noted that the threshold levels for fasting hyperglycemia in the various definitions 
of MetS (5.6-6.1 mM/L, Table 1), are all below the accepted level that is considered to be minimal for 
treatment (>7.0 mM/L). 

Dyslipidemia 

The dyslipidemia associated with MetS is defined by hypertriglyceridemia and low HDL-cholesterol levels. 
Both have been identified as risk factors for cardiovascular disease33 and especially hypertriglyceridemia 
is a target for drugs aimed at CVD prevention. These drugs include fibrates, which act mainly via the 
nuclear receptor PPAR-alpha. Similar to hyperglycemia, the level of hypertriglyceridemia required for 
MetS diagnosis is well below the level required for pharmacological intervention.

general introduction
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The lipids TG and cholesterol are transported via lipoproteins in the blood. After a meal, food derived 
TG and cholesterol are packaged into chylomicrons in the intestine and secreted via the lymph into 
the circulation. The main fate of the TG in chylomicrons is lipolysis in peripheral muscle and storage 
in fat. In the fasting state, TG and cholesterol are transported from the liver to the periphery via 
very-low-density-lipoprotein particles (VLDL). Once chylomicrons and VLDL are depleted of TG, 
their remnants are cleared by the liver. A fraction of VLDL remnants progresses to be metabolized in 
cholesterol-rich LDL particles. LDL particles are specific transporters of cholesterol to the periphery 
and LDL cholesterol is a well defined risk factor for CVD. A separate lipoprotein, HDL, is responsible 
for cholesterol transport from the periphery to the liver, which is referred to as reverse cholesterol 
transport. High levels of HDL cholesterol are associated with low levels of CVD34,35.
 From epidemiological studies it is well known that plasma TG and HDL-cholesterol are highly 
correlated inversely. The enzyme Cholesterol-Ester Transfer Protein (CETP) balances the levels of 
TG and HDL-cholesterol and is thus responsible for the mutual exchange of TG and cholesterol ester 
between apoB-containing lipoproteins (chylomicrons, VLDL and LDL) and HDL. It has been suggested 
that CETP activity explains some of the high TG levels and low HDL levels, observed in persons with 
MetS36.
It has recently been hypothesized that hepatic insulin resistance of glucose and lipid metabolism 
may be differentially affected in persons with MetS. In individuals with MetS, insulin-mediated 
suppression of hepatic glucose output may be decreased, but insulin-mediated stimulation of de 
novo lipogenesis may be increased. This will result in increased hepatic lipid accumulation, increased 
VLDL production and thus ensuing hypertriglyceridemia37,38.

Hypertension

Hypertension is characterized by chronically elevated systolic (SBP) and/or diastolic (DBP) blood 
pressure. The diagnosis hypertension can be subdivided in two types: primary hypertension, which 
involves an unknown cause or origin and secondary hypertension, which involves a known cause 
or origin. Threshold values for hypertension within the different MetS definitions differ slightly 
(Table 1). For diastolic blood pressure this threshold range between 85-90 mm Hg and for systolic 
blood pressure the threshold ranges between 135-140 mm Hg. The increased blood pressure found in 
persons with MetS is in general of unknown cause (primary hypertension). Similar to the previously 
discussed MetS traits, the threshold for hypertension in the definition of MetS is well below the level 
that requires pharmacological treatment.
 The exact cause for the increased blood pressure associated with MetS is not known but there is 
evidence suggesting that genetic predisposition plays an important role. However, it has also been 
suggested that MetS components hyperglycemia, dyslipidemia and low grade systemic inflammation 
affect the functioning of the vascular endothelium. A dysfunctional endothelium will not properly 
respond to physiological stimuli that increase NO production, an important signaling molecule 
involved in vascular contraction-relaxation and subsequent hypertension39. Such mechanism may 
occur independently of a joint genetic etiology.
 Alternatively, mild hypertension may be involved in the etiology of MetS in that hypertension can 
contribute to the presence of MetS as an independent risk factor. Especially when hypertension is 
the consequence of endothelial dysfunction not directly associated with MetS (i.e. genetic factors 
or smoking), this endothelial dysfunction may, in turn, affect blood supply to organs and thus affect 
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tissue function. Insulin sensitivity of the blood supply to adipose tissue, muscle and liver is an 
important regulator of glucose and fat fluxes.

Inflammation

Low grade systemic inflammation and/or hepatic inflammation are generally not included in 
MetS definitions. However, in addition to the inflammation associated with adipose tissue as 
discussed above, hepatic inflammation is also strongly associated with MetS14,15. Markers such as 
C-reactive protein, several hepatic enzymes like alanine aminotransferase (ALAT) and aspartate 
aminotransferase (ASAT) and cytokines like IL-6 can serve as determinants (biomarkers) of the 
inflammatory state40. Hepatic inflammation associated with MetS but not due to excessive alcohol 
intake is termed non-alcoholic steatohepatitis (NASH). NASH is thought to be a consequence of 
hepatic lipid accumulation. NASH is also characterized by hepatic insulin resistance. As discussed 
above, the differential insulin resistance of hepatic glucose output and hepatic de novo lipogenesis 
may explain the development of NASH in individuals with MetS. This explanation is attractive in its 
simplicity, but remains to be thoroughly investigated and confirmed. For example, the specific triggers 
that lead from lipid accumulation to inflammation remain to be fully characterized. Moreover, the 
role of immune cells, such as macrophages, in relation to the inflammatory state of the hepatocyte 
remains to be characterized.
 As discussed above, the low grade systemic inflammation has been hypothesized to present a 
continuous insult to the endothelium, leading to endothelial cell dysfunction and abnormal blood 
pressure regulation. The loss of cell function can also extend to the endothelial barrier. When the 
endothelial barrier function is compromised, LDL and other potentially harmful substances may 
enter the sub-endothelial space more easily and trigger an inflammatory response. The chronic 
accumulation of LDL, subsequent oxidation of LDL and uptake by invading macrophages leads to foam 
cell formation, which is considered the first step in the development of an atherosclerotic plaque. As 
such, chronic low grade inflammation, hypertension and dyslipidemia all represent chronic triggers 
for the development of atherosclerosis34,41,42.

Epidemiology of the metabolic syndrome and its components

Prevalence of MetS

The prevalence of MetS has increased dramatically over the last decades in societies with a Western 
lifestyle. In the US, studies have shown that the prevalence of MetS in adults and, in particular, in 
adolescents and female adults was growing constantly over the years 1984 to 2000. In this time 
frame, the prevalence of MetS in adults ranged from approximately 25% to 30%, and in it adolescents 
ranged from approximately 4% to 9%, with a higher prevalence in males than in females43,44,45. In 
Europe, studies in the general Caucasian population of the prevalence of the metabolic syndrome 
are scarcer and quite diverse due to different study methods. For example, the prevalence of MetS 
among healthy French families ranged from approximately 7% to 9%46, whereas the prevalence in an 
urban and rural German population ranged from 20% to 40%47. Although consistent and comparable 
information about the increase of the prevalence of the metabolic syndrome in European is scarce, 
there is no doubt that the prevalence of metabolic components such as obesity and hyperglycemia 
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is increasing in Europe48,49,50. The macro-economic consequences but also individual morbidity and 
mortality associated with an increase in the prevalence of MetS, are substantial51,52.

Prevalence of overweight and obesity

In westernized countries the prevalence of overweight and obesity has increased dramatically over 
the last few decades53,54,55,56. A particularly worrying development is the rise in the manifestation of 
overweight and obesity in young children and adolescents57. In 2002, the prevalence of overweight 
(BMI ≥ 25 kg/m2) or obesity (BMI ≥ 30 kg/m2) in young US children, adolescents and adults, exceeded 
the astonishing level of 60%. In a time span of approximately 25 years, a 25% increase of overweight 
was seen in children from age 6 to 11 58. In the period 1997-2001, the prevalence of European obese 
children between 13 and 17 years old ranged, in general, from 10 to 15%. However, in Greek children 
the prevalence of obesity was much higher, at 22 to 30%59,57. 
 The prevalence of overweight and obesity in the Dutch population is carefully monitored by 
the “Centaal Bureau voor Statistiek” (CBS; http://www.cbs.nl) and by the “Rijksinstituut voor 
Volksgezondheid en Milieu” (RIVM; http://www.rivm.nl). These studies are cross sectional and 
prospective and include males and females, children and adolescents. Figure 2 illustrates the cross 
sectional increase of the prevalence of overweight in the Dutch population between 1987 and 2007. 
The mean prevalence of overweight in Dutch adults (>20 years old) increased from 33% in 1983 to 
45% in 2007. 
 The prevalence of overweight (BMI>25 kg/m2) and/or obesity (BMI>30 kg/m2) in Dutch men and 
women (age> 20 years old) rose with 10% in the timeframe of 1981 to 2007. In general, the prevalence 

in men is approximately 10% 
higher than in women. The 
prevalence of obesity alone in 
this timeframe rose from 4% 
to 10% in women and from 
6% to 12% in men. In Dutch 
adolescents, a similar increase 
of the prevalence of overweight 
is seen. Especially in children / 
adolescents (age > 8 years old) 
the prevalence of overweight 
increased by approximately 10% 
between the years 1997 and 2004 
in both genders. 

1987-1989 2004-2007

29% - 35%
35% - 40%
40% - 45%
45% - 52%

BMI ≥ 25 kg/m2 BMI ≥ 25 kg/m2

< 46.1%
46.1% - 47.7%
47.7% - 48.6%
> 48.6 %

Fig. 2: Prevalence of overweight in Dutch population in the periods between 1987-1989 and 2004-
2007. Prevalence adjusted for gender and age. source: CBS 
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Prevalence of hyperglycemia

The prevalence of hyperglycemia as entity in general populations is mainly monitored by the 
prevalence of diabetes mellitus (fasting plasma glucose > 7mM/L). However, within MetS an 
impaired glucose metabolism is diagnosed using a variety of measurements (see Table 1). There are 
large differences in the definition of impaired glucose metabolism between the four MetS definitions. 
The WHO uses the oral glucose tolerance test (OGTT), whereas the EGSIR includes fasting plasma 
glucose or the top 25% of fasting insulin values from the (non-diabetic) population. Both the NCEP 
ATPIII and IDF use fasting plasma glucose levels, though with different thresholds. The choice of 
such a parameter is a matter of availability (within clinics), cost-efficiency and personal preference. 
The outcome of epidemiological studies of the presence of impaired glucose metabolism and MetS 
are affected by these methodological differences.
 The increase of the prevalence of hyperglycemia or T2D is as dramatic as the increase of the 
prevalence of obesity58,60. In 2007 the incidence of diagnosed T2D in the general US population 
was 5.9%. It should be noted that about 2% of the population was estimated to be suffering from 
undiagnosed diabetes (source: National Diabetes Information Clearinghouse: NCDIC; http://diabtes.
niddk.nih.gov/DM/PUBS/statistics).
 The prevalence of hyperglycemia (fasting plasma glucose > 6.1, T2D included) was monitored in two 
cross-sectional Dutch cohorts, the MORGEN and PREVEND studies61. The prevalence of hyperglycemia 
ranged between 5%-20% in men and 3%-9% in women. The age of the individuals in these studies 
ranged from 28 to 59 years old. The overall incidence of T2D in 2007, as monitored by the RIVM (http://
www.rivm.nl), was approximately 4.5%. The incidence of T2D in the Dutch population has increased in 
the last decade. Between 1990 and 2007, the incidence of T2D increased by approximately 50% in men 
and 40% in women. However, it should be noted that in addition to the increase of obesity, the increase 
in average age of the Dutch population also contributes to this increase of the prevalence of T2D.
 Although T2D is typically a late onset disease, the increasing incidence of T2D is also seen in young 
children and adolescents57. The prevalence of T2D or other rare forms of diabetes among US children 
ranged between 1-2%. In the last decade however, several reports have indicated an increase of 
incidence of up to 50% of newly identified non immune-mediated diabetes in US young children62. 
In Europe the increase in the prevalence of T2D in children is limited63. Recently a prevalence of T2D 
or impaired glucose tolerance of 2.5% was reported in German children with a low socioeconomic 
status64. 

Prevalence of dyslipidemia 

Two of the 5 traits defining the metabolic syndrome are dyslipidemias, namely high TG and low HDL-
cholesterol. These traits are not independent, since high TG and low HDL are strongly correlated. This 
correlation may be caused by the activity of the enzyme Cholesteryl Ester Transfer Protein (CETP), 
as discussed above65,36. The prevalence of HTG (> 1.7 mM/L) in the MORGEN and PREVEND studies, 
ranged between 13% in women and 24% to 29% in men (age ranging from 28 to 59 years old)61. The 
prevalence of low HDL-cholesterol (men <1.0 and women <1.3 mM/L) ranged between 28% and 36% 
in the MORGEN and PREVEND studies61. 
 Both high TG and low HDL are classical risk factors for CVD and stroke66. However, the other 
classical lipid risk factor for CVD and stroke, LDL-cholesterol, is not part of the definition of the 
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metabolic syndrome. This is due to the independent association of LDL cholesterol with CVD/stroke 
risk. High levels of plasma LDL-cholesterol do not consistently cluster with other components of 
MetS, such as obesity and insulin sensitivity. In some cases, a specific genetic cause (Familial Hyper 
cholesterolemia; FH) lies at the basis of this particular impairment67.

Prevalence of hypertension

Similar to T2D, hypertension is a late onset and common disease in the general population. 
Hypertension in the general adult US population shows a prevalence of approximately 25 up to 36% 
(SBP ≥ 140 mm Hg and DBP ≥ 90mm Hg or use of medication, reported from 1988 to 1998)68,44. This 
prevalence of hypertension in general USA adults increased up to 41% in the period between 1999-
200044. In general, other countries show lower percentages of hypertension68,69. The prevalence of 
hypertension (according to NCEP ATPIII, see Table1) in the MORGEN and PREVEND studies, ranged 
between 42% and 44% in men and from 21% to 26% in women (age ranging from 28 to 59 years old)61.
 Analogous to hyperglycemia, dyslipidemia and hyperglycemia, many hypertensive patients are not 
aware that they are suffering from elevated blood pressure. 45% of US adults in the period between 
1988 and 1993 were not aware of their elevated blood pressure. Hypertension develops gradually 
and eventually does result in overt problems in the patient. Since anti-hypertension medication is 
generally prescribed life long and may have unwanted side-effects, a large proportion of patients 
does not adhere to therapy; 29% of US adults suffering from hypertension in the period between 1988 
and 1993 did not adhere properly to therapy68,70. 

Approaches in genetic epidemiology

Introduction to genetic epidemiology

Genetic diseases can be divided in disorders with a monogenic inheritance pattern and disorder 
with a complex inheritance pattern. Monogenic disorders show autosomal or X-linked dominant or 
recessive inheritance patterns. Complex disorders are characterized by inheritance patterns where 
only some of the mutation carriers are affected. This is referred to as reduced penetrance. In complex 
disorders, environmental variables or additional genetic factors contribute to the manifestation of 
the disease. For the genetic part, this means that multiple genes and interactions may contribute to 
the disease according to a threshold model. 
 An example of a monogenetic x-linked recessive disorder is Duchenne muscle dystrophy (DMD). 
DMD is characterized by a progressive dystrophy of skeletal muscles and eventual respiratory or 
heart failure. The genetic basis of this neuralmuscular disorder lies, in general, in a disrupted reading 
frame in the dystrophin gene (Xp21) caused by nucleotide insertions or deletions of variable length. 
Such disruption of the reading frame results in a truncated (dysfunctional) or absent dystophin 
protein71. An example of a complex disorder is the disease hyperlipidemia (HLP) type III, which is 
characterized by elevated plasma levels of VLDL triglyceride and cholesterol. In the last 3 decades, 
researchers have found that patients suffering from HLP type III were predominantly homozygote 
carriers of the apoE2 protein variant. Since homozygosity of this variant is mainly present in healthy 
controls, this metabolic disorder is characterized by a reduced penetrance. Functional analyses 
indicated that apoE2 has a defect in binding to the hepatic LDL receptor and is thus poorly cleared 
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from the circulation72,73,74. In addition, a number of rare variants of apoE have been identified that 
contribute to the expression of type III HLP or HTG75,76. Family analyses of these variants revealed 
clear co-segregation of disease and variant and these variants were completely absent from healthy 
controls. This provided convincing evidence for causation of disease, which was confirmed by in vivo 
analyses in transgenic mouse models77,78. Thus, monogenic disorders are completely or predominantly 
caused by variations in one single gene. In contrast, complex disorders result from joint effects of 
multiple genetic -and environmental causes with each factor having only a minor contribution to the 
expression of the disease79. 
 In general, two methods are available for the identification of loci involving monogenetic or complex 

diseases and these are illustrated in 
Figure 3. Linkage analysis is a family 
based method and was the first robust 
method in genetic epidemiology. The 
second method is association analysis 
which is based on cases and controls 
or quantitative trait analysis. Both 
methods are described below with 
regard to their design and statistical 
power in the following sections. 

Linkage analysis 

Early techniques which made large scale genotyping possible enabled a novel strategy for the 
identification of disease loci, namely large scale linkage analysis. This type of analysis is based on 
the characterization of a large number of short tandem repeats (STRs) or micro-satellites distributed 
over the genome. At present, large genotyping platforms involving SNPs are also used in linkage 
analysis, as described in the section below. 
 Linkage analysis focuses on chromosomal regions that are transmitted to diseased offspring more 
often than expected. Linkage analysis is based on the fact that particular loci do not show independent 
inheritance patterns. This means that between such loci the probability of recombination approaches 
0 within a family of closely related subjects. This phenomenon of linked loci is also called linkage80. 
Linkage analysis is thus a family-based approach where the segregation of the disease within the 
families can be linked to a specific chromosome region (locus). Linkage analysis was and still is a 
robust method to identify novel disease loci. After determining the chromosomal location of the causal 
gene, these loci often contain multiple interesting genes with regard to the disease of interest. The 
most interesting genes overlap or involve a certain pathway which is impaired in the disease. These 
are called “candidate genes”. The method for validation or replication of the involvement of such 
candidate genes in the disease is described in the section “validation and replication”. In addition, 
new pathways not implicated earlier in the disease may also be discovered. Linkage analysis can 
be performed with a relatively small number of samples and genotypes. Nevertheless, information 
about the pedigree structure is essential.
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Genome wide association 

Family based genome wide linkage analysis is especially powerful for the detection of association of 
rare genetic variants with rare diseases, since large chromosomal regions are linked to the disease. 
Traditionally, genetic association has been used for fine mapping of the linked region. Moreover, the 
last decade (genome wide) genetic association was also used. The basic underlying assumption is 
the “common disease – common variant” (CD-CV) hypothesis. This hypothesis involves the idea that 
a prevalent disease in the general population (common) is caused by many common genetic variants. 
Thus, according to the CDCV hypothesis, proposed in the last decade of the 20th century, common 
prevalent diseases like hypertension, CVD or T2D, might be caused by (multiple) common variants 
in genes throughout the general population81. Discovery of novel loci using linkage analysis is not 

suitable in CDCV because different 
genes may be involved in the same 
family. Thus, for the search for 
common variants, causing common 
disease, preferably large cohorts 
with extensive genotype data are 
used. Within such large cohorts, 
cases and controls can be selected for 
binary association or alternatively, 
quantitative trait analyses can be 
performed. The statistical power 
(see section statistical power) of the 
two study designs, linkage analysis 
and genome wide association, are 
illustrated in Figure 4. 

To find novel loci according the CDCV hypothesis, extensive genotyping is necessary and the available 
techniques have evolved rapidly in recent years. Extensive genotyping techniques are based on micro-
array technology. Two major companies, Affymetrix and Illumina, have developed micro-arrays, 
among which SNP-arrays. At present, SNP micro-arrays involving 6K to 1000K SNPs are available. 
The SNPs present on the Illumina SNP arrays are based on their tag property. This implies that these 
SNPs were selected because each SNP covers a relatively large region in linkage disequilibrium (LD). 
Such tag property of the SNPs is of less importance in the Affymetrix design. By contrast, Affymetrix 
SNP arrays also contain known “coding” mutations.
 Since it is likely that common variants are associated with small effects, large cohorts are needed 
to achieve sufficient statistical power. Therefore, in Genome Wide Association studies (GWAs), the 
aim is to accumulate the highest achievable number of genotypes of as many subjects as possible. 
When GWAs results in novel loci, the “candidate gene” approach is generally chosen to search for and 
validate the causal variant82. 

Allele frequency

iR/tceffE

Fig. 4: Schematic overview of the most powerful approach for discovering genes based on 
minor allele frequency.
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Validation and replication

A classical method in genetic research of disease is the “candidate gene” approach. Candidate genes 
can be selected after indication obtained through several different methods, namely by means of: (1) 
linkage analysis, (2) GWAs or by (3) selecting a gene / protein according to its biochemical characteristic 
in the disease process or pathway. In general, fine mapping of the gene of interest is performed 
using sequencing analysis. Replication of a candidate gene is, mostly, performed using association 
analysis. This association analysis can be performed using SNPs and is based on the fact that most 
genetic variants causally related to the trait are expected to be more or less prevalent in patients 
than in controls, depending on whether they increase or decrease the risk of disease. However, also 
the SNPs close to the causal ones are expected to be increased or decreased in patients, when SNPs 
are close to each other. This phenomenon is called linkage disequilibrium (LD).
 Thus causal mutations can be identified using SNP analysis or sequencing analysis. Mutations that 
cause overt changes in protein function (i.e. reading frame shifts leading to stop codons) provide 
strong proof for being the cause of a genetic disease. Less overt changes that nevertheless lead 
to protein dysfunction (i.e. missense mutations) can be identified by comparing the prevalence of 
the variants in patients versus controls. Putative dysfunction of the proteins encoding these genes 
can subsequently be characterized in vitro in material (i.e. blood cells) derived from patients versus 
healthy controls. Finally, a SNP that is located in a gene desert may very well influence the expression 
of a gene in the region (cis regulation) or elsewhere (trans regulation).

Alternative Study cohort

Most association studies are conducted in the general population. Alternatively, the design of a study 
can be based on a genetically isolated population. In short, this design is a mix between a family 
based cohort and a general cohort. It requires an extensive and more expensive collection procedure 
of study subjects, as in most cases a pedigree confirmation is required to rule out possible admixture 
with the general population. The statistical power of association analysis in such genetically isolated 
populations or founder populations is thought to be much stronger due to the fact that it is based 
on a limited gene pool83,84,82. This limited gene pool is a result of a limited number of founders in 
combination with a fast expansion of the population. Furthermore, a genetically isolated population 
is characterized by minimal immigration, due to social, geographical or religious reasons. Genetically 
isolated populations are liable to genetic drift. Genetic drift is defined by the phenomenon that rare 
genotypic variants disappear or, vice-versa, that rare variants become overrepresented with regard 
to the general (out bred) population. Common genetic variants are, however, generally not affected 
in genetically isolated populations and their frequencies are expected to be similar to those in the 
general population83.

Statistical power in association studies

To perform linkage analysis or GWAs with sufficient statistical power, the study cohort must be of 
sufficient size and this requires significant effort and finances. Statistical power represents the 
measure of confidence to detect an (genetic) effect in a particular number of samples. However, the 
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problem with both linkage analysis and GWAs is the enormous number of tests which might result 
in false positive signals; type I errors. Statistical methods generally use a 95% confidence interval, 
which implies that five percent of the associations that are found are actually type I errors. When 
performing a single test, the 5% probability of finding a false positive result is acceptable. However, 
when performing half a million tests such as in GWA, the amount of false positive results will be 
large.
 To address the multiple test correction issue in GWAs, methods like the method of Bonferroni are 
used to overcome the problem of accumulating type I errors85,86. In brief, the method of Bonferoni 
decreases the probability of a true finding by dividing the confidence (represented by the P-value) by 
the number of independent tests performed. This method is, however, a very stringent multiple test 
correction which might result in a high probability of type II errors; or false negatives. Therefore, other 
multiple test correction methods, like the method of Benjaminii – Hochberg, have been developed. 
This correction method also reduces the number of false positive associations, but also takes into 
account the possibility of false negative findings85,86. 

Meta-analysis of association studies

To validate GWAs results and tackle the remaining probability of both false positive and false negative 
associations, meta-analyses are performed87. Meta-analysis is a statistical method to compare and 
strengthen similar observed candidate loci for disease associations in different studies/cohorts. Meta-
analysis is capable of detecting in several different study cohorts consistent, yet small significant 
associations, but is also capable of excluding single significant false positive associations88. Meta-
analysis is now generally accepted as a powerful tool in genetic epidemiology and the application of 
meta-analysis in the field of genetic epidemiology is widely used. Large international consortia have 
been formed over the last years, resulting in studies exceeding 30.000 samples. Meta-analysis on 
such large number of samples resulted for example in the discovery of several new loci associated 
with T2D and obesity and several quantitative traits such as plasma lipids89,90,91,92. 
 Three common problems in meta-analysis are (1) the use of different types of cohorts, (2) 
inconsistency in phenotyping and (3) inconsistency in genotyping. The use of different types 
of cohorts in GWAs meta-analysis, at least with regard to ethnicity, should be avoided or at least 
carefully monitored since population specific genetic associations might unjustly be disregarded. 
Differences in (the accuracy of) phenotyping might also result in false negative findings. For example, 
in a meta-analysis of plasma glucose GWAs, consistent use of information about the fasting state of 
the samples and the use of glucose lowering medication should be included in each individual GWA. 
Genotypic inconsistencies between cohorts are for example caused by the use of different genotyping 
platforms. In this respect, the design of two major suppliers of genome wide genotyping platforms, 
Illumina and Affymetrix, are totally different. 
 To overcome the problem of missing SNPs, the statistical tool of imputation was developed93,94. 
Imputation is based on the fact that most genetic variants are more or less in LD with nearby genetic 
variants. Based on the genetic data of Hapmap, which involves about 2.500.000 genetic variants, 
differences in genetic variants between platforms can be filled in using estimation of the missing 
genetic variants95. This way, different platforms (cohorts) can be forced towards similarity in genetic 
variation and thus be used in meta-analysis. 
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Outline thesis

In this thesis several aspects of metabolic syndrome are addressed. The focus involves questions 
concerning the genetics of obesity, TG and cholesterol and hyperglycemia. Since we hypothesized 
that obesity is the most important trigger of metabolic impairment, the MetS definition in this 
thesis was chosen to include the obesity measure waist circumference as an essential component. 
In the study described in chapter 2, the heritability of the metabolic syndrome was addressed and 
compared to the heritability of its individual components. Since the individual components of MetS 
were shown to be more heritable than MetS itself, the studies described in chapter 3 and 4 focused 
on the genetics of the individual MetS component plasma TG. For this purpose, a candidate gene 
approach was employed using HTG patients and healthy controls. The involvement of a series of 
candidate genes was confirmed. The study described in chapter 5 followed a similar approach to that 
used in the studies described in chapter 3 and 4. Several candidate genes were studied in patients 
suffering from hyperlipoproteinemia (HLP) type III, which is characterized by elevated levels of 
total plasma cholesterol and plasma TG. HLP type III is characterized by APOE2 homozygosity. 
Contributing genetic factors in the (metabolically stressed) APOE2/2 environment were confirmed. 
Plasma adiponectin, an adipose tissue secreted hormone (adipokine), has been suggested to be a 
biomarker for MetS. In chapter 6 we describe a study which particularly aimed to determine the 
effect of menopause on the discriminating accuracy of adiponectin to predict MetS. Especially low 
levels of plasma adiponectin in postmenopausal women were found to be a risk for MetS. However, 
the discriminating accuracy of adiponectin for the presence of MetS was exceeded by BMI in men and 
pre –and post menopausal women. Since plasma adiponectin levels are very well correlated with 
MetS components or related traits, the study described in chapter 7 addressed the question whether 
these correlations are caused by a genetic overlap (genetic correlation). The genetic correlation 
was mono-laterally validated with regard to the adiponectin gene (ADIPOQ). Chapter 8 describes a 
study towards finding novel loci associated with adiponectin or loci that are possibly involved in the 
genetic overlap between adiponectin and MetS components or related traits. This study followed 
a genome-wide association (GWA) approach. The results of this GWA were used in a joined analysis 
with two other cohorts in a meta-analysis. In addition, a selected proportion of SNPs was submitted 
for replication in several cohorts. Chapter 9 provides a general discussion by reviewing all previous 
chapters in the thesis. Furthermore, chapter 9 includes suggestions and proposals for future analyses 
towards unraveling genetic and environmental factors involved in the expression and manifestation 
of metabolic risk factors. 
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