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Introduction

Ischemia/reperfusion (I/R) injury is the exacerbation of tissue damage upon reestablishment 

of circulation after a period of ischemia. I/R injury is considered a major contributor to 

tissue damage in multiple clinical situations such as myocardial infarction, stroke and organ 

transplantation. In many clinical settings, the duration of ischemia is beyond control, and 

preventive and therapeutical measures are required to reduce the extent of I/R injury. 

Unfortunately, current treatment is primarily supportive. The pathophysiology of I/R injury 

is multifactorial and only partially understood. However, the general local reaction to 

reperfusion is thought to involve an inflammatory response that leads to tissue damage. 

In the quest for new therapeutical options for renal I/R injury, stem cells have come into 

play. With their multipotent immune modulating properties they hold promise to lead to 

improvement in the repair phase after I/R injury is evident. 

Renal repair
In recent years, it has become clear that not only fibrotic repair but also restoration of 

damaged kidney tissue can occur. This has been best established for acute kidney injury, 

where resident tubular epithelial cells that survive a given damage dedifferentiate and 

subsequently re-enter the cell cycle and replace the necrotic tubular epithelium. In this 

process they take up an immature mesenchymal phenotype and re-express transcription 

factors that are involved in fetal nephrogenesis. More recently, glomerular epithelial 

repair, involving both local resident cells as well as multipotent progenitor cells has been 

described.1 

Dedifferentiated cells outside the injured kidney may also migrate to the site of injury 

within the kidney. Kidney biopsies in male recipients of a female donor kidney with acute 

tubular necrosis showed presence of the male Y chromosome in renal tubular cells. No Y 

chromosome staining was seen in patients without acute tubular necrosis. This provides 

evidence that extra-renal cells may participate in renal regeneration.2;3 

The call for better treatment strategies for I/R injury has directed research toward more 

encompassing cellular-based therapies, particularly aimed at the use of stem cells. The 

multi-factorial pathophysiology of I/R injury makes a pharmacological agent that has a 

single mechanistic target less likely to be therapeutically effective. In contrast, stem cells 

are versatile, and able to target a whole cascade of repair mechanisms simultaneously and 

successively, thereby improving organ protection and repair. 
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Mesenchymal stromal cells
Of all bone marrow-derived cells, mesenchymal stromal cells (MSCs) hold special promise 

in attenuating kidney injury, since nephrons are largely of mesenchymal origin and stromal 

cells are of crucial importance for signalling, leading to differentiation of both nephrons 

and collecting ducts. MSCs are characterized by three main criteria; 1) The ability to 

differentiate into osteoblasts, adipocytes and chondroblasts in vitro, 2) the expression of 

surface makers CD73, CD90 and CD105, and 3) plastic adherence in culture.4 

MSCs have the ability to secrete numerous growth factors and cytokines that collectively 

stimulate mitogenesis, inhibit apoptosis and modulate immune responses. MSCs can alter 

cytokine secretion profiles of naïve and effector T cells,5 DCs and natural killer cells to induce 

a more anti-inflammatory or tolerant phenotype.6;7 It is proposed that in an inflammatory 

microenvironment, MSCs promote a Th1 to Th2 shift. Furthermore, MSCs have been reported 

to induce T-cell division arrest,8 to inhibit differentiation and maturation of DCs9 and to 

decrease production of inflammatory cytokines by various immune cell populations.6 These 

immune modulating effects could be achieved both with autologous and allogeneic MSCs. 

The mechanism of MSC-induced kidney repair has been addressed in numerous studies. 

There is growing evidence that the process of transdifferentiation is rare and it probably 

does not have any relevance to renal repair in vivo. The primary means of these cells 

most likely involve paracrine and endocrine effects; including mitogenic, anti-apoptotic, 

anti-inflammatory, antifibrotic and angiogenic influences (Figure 1).10 The factors that 

mediate the paracrine effects are obviously of great interest. Several factors, such as IDO, 

VEGF, HGF and IGF-1 have been mentioned because they are abundant in MSC-conditioned 

medium.11
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Figure 1: MSCs diminish damage and induce repair. Schematic illustration of the paracrine effects of 
MSCs on their environment. While stimulating repair by mitogenic and angiogenic effects, MSCs inhibit 
ongoing inflammation, apoptosis and later fibrosis of injured tissue.

An important aspect of the effect of MSCs is their ability to home to areas of injury or 

inflammation. Both animal and human studies have provided evidence that stem cells from 

hematopoietic tissues are able to engraft in nephrons as cells with tubular phenotype.12;13 

Exogenously administered MSCs can engraft into various injured structures in the kidney.14-16 

Recently, studies have shed light on the exact factors that facilitate homing of MSCs. 

Amid them, CD44 and hyaluronic acid interactions were shown to be crucial in recruiting 

exogenous MSCs to injured renal tissue and to enhance renal regeneration. Others have 

shown that stromal-derived factor-1 (SDF-1) and CXCR4 interactions may play a role in 

tubular homing.14;17

Sources of MSCs
While initially isolated from the bone marrow (bm), MSCs have now been identified within 

most tissues and are thought to represent a perivascular cell population involved in normal 

tissue homeostasis.18 Indeed, MSCs have been isolated from adipose tissue, umbilical cord 

(uc) blood, placenta and different organs.19-23 Recently MSCs have also been isolated from 

the human and mouse kidney. In mice these cells were extensively compared to bm cells.24 

Transcriptome and immunophenotype analysis of the renal MSC-like populations supported 

strong congruence with bmMSCs. Interestingly, despite this molecular congruence, distinct 

identities were found within the renal MSC-like population, suggesting organ-specific 

functions.24 In addition, it is suggested that the adult mouse kidney contains interstitial 

mesenchymal cell progenitors that are able to provide paracrine support for surrounding 

vessels and tubular epithelial cells.25 Future studies are needed to elucidate whether 

regeneration and functional repair of damaged kidney epithelium and endothelium can 

be enhanced via the resident renal stem cells. In the meantime, bmMSCs are the best 
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characterized population and currently more than 200 clinical trials are ongoing using 

bmMSCs (www.clinicaltrials.gov).

MSCs ameliorate renal ischemia/reperfusion injury in vivo
Although MSCs most probably do not replace damaged cells, evidence on beneficial effects 

of MSCs in renal I/R injury is accumulating in animal experiments. Intravenous injection 

of bm derived lineage–negative pluripotent cells after experimental renal I/R significantly 

attenuated the creatinine rise.26 Peripherally administered purified MSCs were quickly 

present in peritubular capillaries and glomeruli after reperfusion, and functional and 

histological damage was significantly attenuated by MSC therapy.27 Even when administered 

24 hours after I/R injury, MSCs still were able to ameliorate damage.27;28

Different studies have reported beneficial effects of human MSCs on acute repair in the 

kidney.29 The therapeutic potential of human bmMSCs was studied in immunodeficient NOD-

SCID mice. Infused bmMSCs reduced renal cell apoptosis and increased proliferation after 

cisplatin-induced acute renal failure. bmMSCs also preserved the integrity of the tubular 

epithelium and peritubular vessels, and prolonged survival.30 In search for new sources of 

MSCs for renal repair, human ucMSCs were shown to ameliorate both renal dysfunction 

and tubular cell injury, and prolong survival in cisplatin-induced acute kidney injury.31 

Furthermore, IGF-1 gene-silenced MSCs were limited in their protective effects. These 

findings indicate that MSCs exert beneficial effects on tubular cell repair in acute kidney 

injury by producing the mitogenic and pro-survival factor IGF-1.32 

Clinical applications of MSCs in renal disease
There are only limited clinical data concerning MSC therapy in renal disease. The first phase 

I trial of autologous MSCs in kidney injury enrolls cardiac surgery patients with preexisting 

renal risk factors and therefore at high risk for developing acute kidney injury.33 In addition, 

the first safety and feasibility data of autologous MSC administration in the week after 

kidney transplantation were recently published.34 Although data are limited to two patients, 

MSC infusion appeared feasible and restricted memory T cell expansion while enlarging 

Treg population. However, both patients showed a transient increase in serum creatinine 

levels within two weeks after cell infusion. In one patient a renal biopsy was performed, 

which demonstrated a focal inflammatory infiltrate in the renal interstitium, consisting 

mainly of granulocytes with very few lymphocytes. It was suggested that the various soluble 

factors produced by MSCs also include proinflammatory mediators,35-37 which eventually 

may have contributed to the intragraft recruitment of granulocytes, and deterioration of 

renal function. This may suggest that timing of infusion is of particular importance. Indeed, 

other studies have shown that the therapeutic properties of MSCs may largely depend on 
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the timing of their infusion.38-40 Importance of timing is probably related to the necessity 

for the appropriate micro-environment to allow MSCs to acquire their anti-inflammatory 

properties. In our clinical trial we investigate safety and feasibility of autologous bmMSC 

treatment in patients with subclinical rejection and/or IF/TA in the renal biopsy at 4 weeks 

or 6 months after renal transplantation (Clinical trials NCT00734396). Hereby we expect to 

provide additional information about the importance of timing in the transplant setting.

Autologous versus allogeneic MSCs

Until now, most studies have focused on the use of autologous cells, since allogeneic cell 

transplantation has been reported to be connected with allograft rejection and possibly 

sensitization.41;42 However, the use of autologous MSCs also has disadvantages. The cells 

need weeks of culture and it is still unclear whether autologous MSCs are affected by the 

renal disease. A few studies have reported influence of renal failure on MSC behavior. In 

mice, functional incompetence of MSCs was reported under uremic conditions.43 In addition, 

in human MSCs it was shown that uremic serum induced an osteoblast-like phenotype in 

MSCs accompanied by matrix remodeling and calcification.44 

MSC number, route of administration, and interaction with immunosuppressives

Alongside the cell source, the number of MSCs and the timing of administration are critical. 

In clinical trials to date, most investigators have used doses of 0,4x106 to 10x106/kg body 

weight.45-47 However, no clear correlations have been made between cell dose and clinical 

effect. Dose escalation studies to monitor safety and efficacy are one of the major objectives 

for future studies of MSCs. 

In most human trials, MSCs have been administered intravenously. Another possible successful 

route of administration includes intra-arterial or intrarenal infusion.48-50 An advantage of 

these routes may be the direct administration at the place of injury, whereas disadvantages 

include the complexity and possible side effects such as obstruction of capillaries. To date, 

there are no reports of these treatment modalities in humans.

Current immunosuppressive drugs cannot be withheld from patients receiving MSC 

treatment after renal transplantation. Therefore, it is of importance that an optimal 

concurrent immunosuppressive regimen is chosen in which drugs have no negative impact 

on MSC function and vice versa. So far, this interaction has mainly been assessed by in vitro 

studies 51;52 and future studies are needed to elucidate their interaction with concurrent 

immunosuppression in vivo in order to facilitate successful translation to the clinic. 
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Possible hurdles of MSC treatment 

Although cell therapy with MSCs holds enormous promise for the treatment of many diseases, 

unwanted side effects of MSC infusions must be assessed with the greatest care. Experimental 

studies have demonstrated maldifferentiation after injecting MSC directly into damaged 

tissue.50;53 In addition, MSCs may adopt and unwanted, myofibroblast-like phenotype after 

administration.54;55 Another important concern is that MSCs may differentiate into neoplastic 

cells or may cause promotion of tumor cell growth,56-58 although an increased risk of tumor 

formation has never been confirmed in humans.59 Currently, more than 2000 patients have 

been treated with allogeneic or autologous MSCs worldwide for a variety of diseases and so 

far no major side effects have been reported. However, still little is known about long-term 

side effects.

Summary
The pathophysiology of I/R injury is complex and characterized by inflammation, leading 

to tissue injury and graft dysfunction. Given current shortage of donor organs and usage 

of marginal donor kidneys for transplantation, novel treatment options to minimize renal 

I/R injury are urgently needed. Recent developments in stem cell research and derived 

clinical stem cell therapies have given reason to believe that such cell based treatments will 

become generally available in the near future. Although substantial additional time for the 

maturation of these therapies for routine clinical use is needed, the first steps of MSC based 

therapeutic strategies in the treatment of I/R injury have been taken.
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