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Introduction

Kidney transplantation is the preferred treatment of end-stage renal disease, because of the 

recipient’s improved life expectancy, better quality of life, and the lower total healthcare 

costs, compared to dialysis treatment.1,2 Since the first successful kidney transplantation in 

1954, patient and graft survival increased tremendously.3,4 Despite all the improvements in 

immunosuppressive drugs and surgical techniques, it appears that during the last decade a 

plateau in long term allograft survival has been reached.

As the demand for kidney grafts is ever increasing, the number of kidney transplantations 

is limited by the availability of organ donors. Almost half of all kidney transplantations 

are living donor kidney transplantations, whereas the others are transplantations with 

deceased donor kidney grafts.5 Deceased donor kidney grafts are retrieved from either 

brain dead donors or cardiac dead donors. Graft survival for living unrelated donor kidney 

transplantation is superior compared to that of deceased donor kidney transplantation, even 

though the average human leukocyte antigen (HLA) matching is worse in living unrelated 

transplantation.6 Therefore, the limited graft survival of deceased donor kidneys cannot 

be attributed exclusively to differences in immunogenicity; other causes of damage are 

probably more important. The most prominent of these causes is ischemia/reperfusion 

(I/R) injury, characterized by the exacerbation of tissue damage upon reestablishment of 

circulation after a period of ischemia. I/R injury is an important cause of delayed graft 

function, having a major influence on both graft function as well as graft survival.7

Renal ischemia/reperfusion injury 
Renal I/R injury occurs in a multitude of clinical situations. Periods of hypotension with 

impaired blood flow to the kidney can cause renal I/R injury, whereas more acute ischemia 

occurs in renal arterial thrombosis. In kidney transplantation renal ischemia is inevitable, 

and the duration of ischemia is often beyond control. Preventive and therapeutic measures 

in I/R injury would be required to reduce the severity of graft dysfunction and failure thus 

allowing safe expansion of the donor pool with marginal donor kidneys that have suffered 

more initial injury before organ retrieval. Unfortunately, current treatment for renal I/R 

injury is still primarily supportive, and experimental therapies aimed at minimizing I/R injury 

have been applied in animal models generally, not clinical trials. In order to design better 

therapeutics for clinical renal I/R injury, detailed knowledge on the pathophysiological 

mechanisms leading to ischemic acute graft injury after transplantation is required.
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Pathophysiology of renal ischemia/reperfusion injury
The pathophysiology of I/R injury is multifactorial and only partially understood. 

Inflammation however, is regarded the crucial event in the development of tissue injury and 

graft dysfunction in renal I/R injury. Based on animal experiments, many individual factors 

such as cytokines and complement have been suggested to be involved in the inflammatory 

response. However, intervention studies aimed at specific inhibition of a single factor have 

generally shown disappointing results.8,9 Cooperation, redundancy and interactions make the 

involved mechanisms more complex than previously thought. Pharmacological inhibition of 

the entire inflammatory cascade would appear a logical intervention, however the negative 

side-effects appear larger than the anticipated beneficial effects.10

Although there may be differences in the exact pathophysiological mechanisms of I/R injury 

between different organs, some processes appear to play a universal role. The endothelium 

and microvasculature are very sensitive to hypoxia and are easily affected in I/R injury. 

Upon reperfusion, the vascular endothelial cell lining can undergo swelling which may lead 

to narrowing of the vascular lumen.11,12 Moreover, vasorelaxation can be impaired, together 

contributing to the no-reflow phenomenon.13 Endothelial injury can increase microvascular 

permeability which may lead to inflammatory cell trafficking into the reperfused kidney. 

There have been many reports of invading granulocytes, monocytes, dendritic cells (DC’s) 

and lymphocytes into various tissues after reperfusion.14-20 Together with leukocytes, 

platelets can be activated by injured endothelium. In myocardial infarction, platelets 

mediate thrombotic occlusion and increase damage by causing microvascular occlusions, 

contributing to the no-reflow phenomenon.21 On the other hand, platelets are also able to 

invade tissue.22 This is essential since platelets can contribute to the inflammatory response 

through release of cytokines, chemokines and growth factors from their granules.23-25 In 

fact, platelets have been suggested to be involved in the inflammatory response of I/R 

injury in various organs. They are able to roll and adhere to post-reperfusion endothelium 

in a P-selectin dependent mechanism.26-32 In mouse myocardial tissue, the first activated 

platelets are present within two minutes after reperfusion, and then accumulate in the 

infarcted myocardium.33,34 

The ensuing inflammatory response which follows is considered to exacerbate damage. Both 

the innate as well as the adaptive immune system can be activated after reperfusion. 

Activation of the innate immune system is probably mediated by activation of pattern-

recognition receptors such as toll-like receptors that recognize their endogenous ligands 

that are released upon tissue damage.35 The complement system is part of the humoral 

immune response and can play a role both as first line innate defense, but may also 

contribute to the adaptive immune response.36 In many animal experiments a role for 
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(terminal) complement activation in I/R injury has been suggested,37-41 although recent 

animal experiments doubt the involvement of the complement system itself in the initiation 

of injury.42 The role of complement activation in human I/R injury is even more complex. 

While a role of complement activation was suggested in human myocardial I/R injury,43,44 

diverse anti-complement intervention studies did not lead to major improvements.45-50

Ischemia-related metabolic adaptations and dysregulated mitochondrial homeostasis are 

thought to result in substantial release of reactive oxygen and nitrogen species (RONS) upon 

reintroduction of oxygen. The RONS overload can overwhelm the endogenous antioxidant 

system, resulting in oxidative damage. This may trigger secondary processes and contribute 

to the pro-inflammatory response upon reperfusion.51-54 Numerous animal studies clearly 

demonstrate that antioxidant therapy ameliorates I/R injury.55-57 Despite these findings, 

studies in humans consistently fail to show any clinically relevant effect.55,58-61 The basis for 

this discrepancy between human and animal studies is still unclear. Yet, it may suggest that 

the contribution of RONS to I/R injury in humans is less than commonly thought.

Ultimately, when I/R injury to the cell is severe, various programs of cell death can be 

activated. Three major forms of cell death can be distinguished: necrosis, apoptosis, and 

autophagy. Besides acute cell death by necrosis or apoptosis during and directly after the 

ischemic period, cell death continues for several days following reperfusion. All three types 

of cell death can contribute to the continued loss of cells for days and even weeks in the 

reperfused tissue. In animal models, both necrosis and apoptosis continued after reperfusion 

with a maximum severity three days after reperfusion.62,63 Autophagy during the ischemic 

episode appears to keep cells viable and might play a protective role. It can be suggested, 

however, that activation of autophagy after reperfusion is detrimental. Indeed, a mouse 

model of myocardial I/R illustrates that protein levels of the autophagic mediator beclin 

can be greatly upregulated during reperfusion. Mice with reduced beclin levels exhibited 

smaller myocardial infarct sizes.64,65

Long term impact
Although short term results of kidney transplantation are excellent, 5 year graft loss can be up 

to 30% in older recipients.66 Protocol biopsies obtained in the first years after transplantation 

have shown rapid increase in the prevalence of interstitial fibrosis/tubular atrophy (IF/

TA). This finding has been correlated with later graft dysfunction and graft loss, mostly in 

cases of concomitant interstitial inflammation and fibrosis.67,68 Both allogen dependent and 

independent factors determine IF/TA. I/R injury is an important non-allogeneic factor and 

the duration of the cold ischemic period is directly correlated to delayed graft function and 

even graft failure.69,70 Even without allogeneic transplantation, I/R injury itself has been 
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shown to cause interstitial fibrosis and glomerulosclerosis in experimental models (Figure 

1).71-73 

Figure 1: Experimental renal I/R injury induces severe patchy renal fibrosis, although kidney function 
partially recovers. Sirius red staining shows A) normal mouse kidney and B) severe fibrosis 3 weeks after 
mice underwent 25 minutes of warm renal I/R injury. (Non published data)

Opportunities in studying renal I/R injury
Until now, results of renal I/R experiments in small animal models have not been 

translatable into clinical kidney transplantation. The most probable reason is that the exact 

mechanism involved are probably different between species. Detailed knowledge on the 

pathophysiological mechanisms leading to I/R injury in human kidney transplantation is 

required to form a basis for experimental therapies. 

Studying the pathophysiology of human renal I/R injury requires careful techniques that 

specifically assess the processes that occur in the kidney at the moment of reperfusion and 

thereafter. Two complementary approaches have been chosen in previous studies: assessment 

of processes in the intravascular compartment or assessment of changes in the renal tissue. 

Intravascular changes have been assessed frequently in renal I/R injury, and almost all 

studies measured changes in circulating factors by collecting sequential peripheral blood 

samples. In these peripheral blood samples however, the source of the released factors 

can never be ascertained to be the kidney. Even more since haemodynamics change upon 

reperfusion of the kidney graft, and the leg is reperfused simultaneously with the kidney 

upon removal of the iliac arterial clamp. Furthermore, release of factors into the circulation 

may be undetected because of their dilution in the total circulating volume. By collecting 

arteriovenous blood samples over the kidney during reperfusion, specific measurements can 

be done studying those factors that are released from the kidney, i.e. that have a higher 

concentration in renal venous blood compared to arterial blood. Moreover, the release of 

these markers can be assessed with higher sensitivity, since a small release will produce the 

A B
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largest concentration difference in the efferent vein. Finally, by measuring time-series of 

these arteriovenous differences a dynamic and specific footprint of the processes occurring 

in the reperfused kidney can be reconstituted. In Figure 2 the technique of arteriovenous 

measurements over the transplanted kidney is illustrated. The renal artery and vein are 

selectively cannulated before reperfusion, and during the first half hour of reperfusion, 

timed and paired arterial and venous samples can be collected from the kidney. This 

technique is applied in many of the studies described in this thesis. 

Figure 2: Schematic representation of the arteriovenous sampling method over the reperfused kidney 
by simultaneous blood collection from the renal artery (left) and renal vein (right). Illustration by 
Manon Zuurmond© (www.manonproject.com). Adapted from de Vries et al. 77

Aims of this thesis
The aims of this thesis were to explore the factors and processes involved in the 

pathophysiology of renal I/R injury in clinical kidney transplantation, in order to establish 

a basis for the development of specific therapies preventing and limiting renal I/R injury in 

kidney transplantation. Exact knowledge on the sequence of events by which graft damage 

is initiated after reperfusion in human kidney transplantation was still lacking. In chapter 

2, 3 and 4, the release of pro-inflammatory cytokines from the reperfused graft is assessed 

and compared between living and deceased donor kidney transplantations. In chapter 5, an 

important actor of the innate immune system, the complement system, is assessed in human 

kidney transplantations. Whether endothelial activation and concomitant platelet activation 

are present in early reperfusion of transplanted kidneys is investigated in chapters 6, 7 and 

8. Finally, oxidative damage, the most commonly mentioned process in the pathophysiology 

of I/R injury is carefully investigated in human kidney transplantation in chapter 9. Chapter 
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10 shows new insights as I/R injury is approached from an unbiased, hypothesis generating 

angle, in which gene expression profiles are compared to assess changes upon reperfusion 

and baseline differences between different donor types. Chapter 11 and 12 summarize the 

findings in this thesis and review future perspectives in treatment of I/R injury. 
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