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Chapter 3

Abstract

Objective: In addition to lowering low-density lipoprotein (LDL)-cholesterol,
statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans
and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our
aim was to determine whether the increase in HDL depends on CETP
expression.

Methods and results: APOE*3-Leiden (E3L) mice, with a human-like
lipoprotein profile and a human-like responsiveness to statin treatment, were
crossbred with mice expressing human CETP under control of its natural
flanking regions resulting in £3L.CETP mice. E3L and E3L.CETP mice were
fed a Western-type diet with or without atorvastatin. Atorvastatin (0.01% in the
diet) reduced plasma cholesterol in both E3L and E3L.CETP mice (-26% and -
33%, P<0.05), mainly in VLDL, but increased HDL-cholesterol only in
E3L.CETP mice (+52%). Hepatic mRNA expression levels of genes involved in
HDL metabolism, such as phospholipid transfer protein (Pltp), ATP-binding
cassette transporter Al (4bcal), scavenger receptor class B type I (Sr-b1), and
apolipoprotein Al (Apoal), were not differently affected by atorvastatin in
E3L.CETP mice as compared to E3L mice. However, in F3L.CETP mice,
atorvastatin down-regulated the hepatic CETP mRNA expression (-57%;
P<0.01) as well as the total CETP level (-29%) and CE transfer activity (-36%;
P<0.05) in plasma.

Conclusions: Atorvastatin increases HDL-cholesterol in E3L.CETP mice by
reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as
related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.
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Introduction

Epidemiological studies have established that a high level of low-density
lipoprotein (LDL)-cholesterol is a major cardiovascular risk factor. In the past
decades, statins have been successfully used to reduce LDL-cholesterol. Statins
inhibit the rate-limiting enzyme of cholesterol synthesis, ie. 3-hydroxy-3-
methylglutaryl coenzyme A (HMGCoA) reductase, resulting in hepatic
depletion of cholesterol. As a consequence, VLDL production is reduced and
the hepatic expression of the LDL receptor (LDLr) is upregulated, leading to
decreased plasma cholesterol levels in apoB-containing lipoproteins (i.e., VLDL
and LDL)." Indeed, a meta-analysis of 25 studies indicated that statins reduce
LDL-cholesterol levels by 20-40%.” In addition, statins elevate high-density
lipoprotein (HDL)-cholesterol levels by typically 5-15%.> This effect is
already observed at a low dose (20 mg/day) while higher doses (40 and 80
mg/day) have no additional elevating effects on HDL levels.””

Low HDL-cholesterol has been confirmed as a strong and independent risk
factor for cardiovascular disease. An increase in HDL-cholesterol of 1 mg/dL
results in a 2-3% decrease in cardiovascular risk.® One of the key players in
HDL-metabolism is cholesteryl ester transfer protein (CETP). CETP is involved
in the exchange of triglycerides (TG) and cholesteryl esters (CE) between
lipoproteins, resulting in the net flux of CE from HDL towards apoB-containing
lipoproteins (e.g. VLDL and LDL) in exchange for TG.” Treatment of patients
with combined hyperlipidemia with atorvastatin resulted in increased levels of
relatively CE-rich large HDL2a with a concomitant decrease in CE-poor small
HDL3c,” as associated with a reduction in CETP mass.® Likewise, in type 2
diabetic subjects carrying the CETP TagIB polymorphism, the increase in HDL-
cholesterol (+7.2%) after atorvastatin treatment was correlated with a reduction
in CETP mass (-32%).” These data suggest that the effects of statin treatment on
HDL-cholesterol levels may actually be caused by a reduction in the CETP-
mediated transfer of CE.

Therefore, the aim of this study was to evaluate whether the statin-induced
increase in HDL-cholesterol would depend on CETP expression. Previously, we
demonstrated that APOE*3-Leiden (E3L) mice, with a human-like lipoprotein
profile'® show a human-like response to atorvastatin with reduced (V)LDL-
cholesterol levels accompanied by reduced VLDL production.'' In the current
study, these mice were crossbred with mice expressing human CETP under
control of the natural flanking regions, resulting in E3L.CETP mice.”> We
treated E3L and E3L.CETP mice with atorvastatin to investigate whether CETP
expression contributes to the HDL-raising effect of atorvastatin.
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Methods

Animals

Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP
minigene under the control of natural flanking sequences were crossbred with
hemizygous E3L mice'® at our Institutional Animal Facility to obtain E3L and
E3L.CETP littermates (C57Bl/6] background)." In this study, mice were
housed under standard conditions in conventional cages with free access to food
and water. Male mice were fed a semi-synthetic diet containing 15% (w/w) fat
(Hope Farms, Woerden, The Netherlands), supplemented with 0.25% (w/w)
cholesterol (Sigma, St. Louis, MO) for two weeks. Subsequently, the mice
received the same diet without or with 0.01% (w/w) atorvastatin (Lipitor®20,
Pfizer B.V., Capelle a/d IJssel, The Netherlands) for 6 weeks (i.e. approx. 10
mg/kg/day, which corresponds to a dose of 70 mg/day for an average 70 kg
person, assuming a 10-fold higher metabolic rate in mice as compared to
humans). To study whether atorvastatin sorts similar effects in female mice, and
to evaluate the dose-response relationship, female E3L.CETP mice were fed a
diet containing 15% (w/w) fat, supplemented with 0.1% (w/w) cholesterol and
0.001% or 0.01% of atorvastatin for two weeks successively. Experiments were
performed after 4 h of fasting at 12:00 pm with food withdrawn at 8:00 am,
unless indicated otherwise. The institutional Ethical Committee on Animal Care
and Experimentation has approved all experiments.

Plasma lipid and lipoprotein analysis

Plasma was obtained via tail vein bleeding and assayed for total cholesterol
(TC) using the enzymatic kit 236691 (Roche Molecular Biochemicals,
Indianapolis, IN, U.S.A.). The distribution of lipids over plasma lipoproteins
was determined by fast-performance liquid chromatography (FPLC) as
described previously."?

Hepatic liver lipid levels

Livers were isolated from control-treated and atorvastatin-treated mice after
cervical dislocation. A small piece of liver was homogenated in 400 pL PBS
and 1.5 mL CH;0H:CHCI; (2:1, v/v) was added. After centrifugation, lipids
were extracted from the supernatant with CHCl; and H,O (1:1, v/v) and the
CHCI; phase was dried. Lipids were dissolved in H,O with 2% Triton-X100.
TC levels were assayed as described above. Free cholesterol (FC) was analyzed
with the Free Cholesterol C kit (WAKO, Neuss, Germany), and cholesteryl
esters (CE) were determined as the difference between TC and FC.
Phospholipids (PL) and TG were analyzed with the, phospholipids B kits
(Wako, Neuss Germany) and the enzymatic kit 1488872 (Roche Molecular
Biochemicals, Indianapolis, IN, U.S.A.), respectively.
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Plasma CETP level
The total CETP level in plasma was measured as the transfer of [’H]cholesteryl
oleate from exogenous human LDL to HDL as described.'

Plasma cholesteryl ester transfer activity

The transfer of newly synthesized CE in plasma was assayed by a radioisotope
method as previously described." In short, [’H]cholesterol was complexed with
BSA and incubated overnight at 4°C with mouse plasma to equilibrate with
plasma free cholesterol. Subsequently, the plasma samples were incubated for 3
h at 37°C. VLDL and LDL were then precipitated by addition of sodium
phophotungstate/MgCl,. Lipids were extracted from the precipitate by
methanol: hexane (1:2, v/v) and [’H]CE was separated from [*H]cholesterol on
silica columns, followed by counting of radioactivity.

Plasma apoAl concentration

Plasma apoAl concentrations were determined using a sandwich ELISA.
Hereto, rabbit anti-mouse apoAl polyclonal antibody (ab20453; Abcam plc,
Cambridge, UK) was coated overnight onto Costar strips (Costar, Inc., New
York, NY) (3 pg/ml) at 4°C and incubated with diluted mouse plasma (dilution
1:400,000) for 90 min at 37°C. Subsequently, goat anti-mouse apoAl antibody
(600-101-196; Rockland Immunochemicals, Inc., Gilbertsville, PA; dilution
1:3000) was added and incubated for 90 min at 37°C. Finally, horse radish
peroxidase (HRP)-conjugated rabbit anti-goat IgG antibody (605-4313;
Rockland; dilution 1:15000) was added and incubated for 90 min at 37°C, and
HRP was detected by incubation with tetramethylbenzidine (Organon Teknika,

Table 1. Primers for quantitative real-time PCR analysis.

Gene Forward primer (5'-3") Reverse primer (5'-3")

Hmgcoared ~CCGGCAACAACAAGATCTGTG ATGTACAGGATGGCGATGCA
Pltp TCAGTCTGCGCTGGAGTCTCT  AAGGCATCACTCCGATTTGC
Abcal CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG
Sr-bl1 GTTGGTCACCATGGGCCA CGTAGCCCCACAGGATCTCA
Apoal GGAGCTGCAAGGGAGACTGT  TGCGCAGAGAGTCTACGTGTGT
CETP CAGATCAGCCACTTGTCCAT CAGCTGTGTGTTGATCTGGA
Abcgs TGTCCTACAGCGTCAGCAACC GGCCACTCTCGATGTACAAGG
Abcg8 GACAGCTTCACAGCCCACAA GCCTGAAGATGTCAGAGCGA
Lpl GTGGCCGAGAGCGAGAAC TCCACCTCCGTGTAAATCAAGA
Srebp-1c GGAGCCATGGATTGCACATT CCTGTCTCACCCCCAGCATA
Ldlr GCATCAGCTTGGACAAGGTGT GGGAACAGCCACCATTGTTG

Abcal, ATP-binding cassette transporter Al; Abcg5/8, ATP-binding cassette transporter
G5/GS8, Apoal, apolipoprotein Al; CETP, cholesteryl ester transfer protein; Hmgcoa
reductase, 3-hydroxy-3-methylglutaryl coenzyme A reductase; Ldlr, low density lipoprotein
receptor; Lpl, lipoprotein lipase; Pltp, phospholipid transfer protein; Sr-bl, scavenger
receptor class B type I; Srepb-Ic, sterol regulatory element-binding protein-1c.
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Boxtel, The Netherlands) for 15 min at room temperature. Purified mouse
apoAl (A23100m; Biodesign International, Saco, Maine, USA) was used as a
standard.

Hepatic mRNA expression and SR-BI protein analysis

Livers were isolated after cervical dislocation. Total RNA was isolated using
the NucleoSpin® RNA II kit (Macherey-Nagel, Diiren, Germany) as
recommended by the manufacturer. RNA expression was determined in
duplicate by real-time PCR on a MyiQ Single-Color real-time PCR detection
system (Bio-Rad Laboratories, Hercules, CA, U.S.A.). Primers are listed in
online Table 1. Expression levels were normalized, using hypoxanthine-guanine
phosphoribosyl transferase (HPRT) and cyclophilin as housekeeping genes.'
Hepatic SR-BI protein was determined by immunoblot analysis exactly as
described previously."

Statistical analysis

All data are presented as means = SD unless indicated otherwise. Data were
analyzed using the unpaired Student’s ¢ test unless indicated otherwise. P-values
less than 0.05 were considered statistically significant. SPSS 12.0.01 was used
for statistical analysis.

Results

Atorvastatin increases HDL-cholesterol in E3L.CETP mice

On a diet containing 0.25% (w/w) cholesterol, atorvastatin (0.01%, w/w)
reduced plasma total cholesterol in both E3L mice from 5.1 £ 0.9 mM to 3.8 £
1.2 mM (-26%; P<0.05) and E3L.CETP mice from 4.3 £ 0.8 mM to 2.9 = 1.0
mM (-33%; P<0.05) (Fig. 1), without substantially affecting TG levels (not
shown). These effects were reflected by a strong decrease in (V)LDL-
cholesterol in £3L mice (-86%) and E3L.CETP mice (-88%) (Fig. 2). However,
whereas atorvastatin did not affect HDL-cholesterol E3L mice (3.2 mM vs 2.9
mM) (Fig. 2A), it did raise HDL-cholesterol (+52%) in E3L.CETP mice (2.1
mM vs 1.4 mM) (Fig. 2B).

A E3L B E3L.CETP Figure 1. Effect of atorvastatin on
= L plasma total cholesterol levels. E3L
% 6 T 6T (A) and E3L.CETP (B) mice
= * '|' received a diet containing 0.25%
N At * (w/w) cholesterol without (white
7 bars) or with (black bars) 0.01%
E (w/w) atorvastatin for 6 weeks.
ear 2F Plasma was obtained, and assayed
g for total cholesterol. Values are
j:(@ 0 0 means + SD (n=6 per group).

*
Control  Atorva Control ~ Atorva P<0.05 compared to control.

o))
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Figure 2. Effect of atorvastatin on the distribution of cholesterol over lipoproteins. E3L (A)
and E3L.CETP (B) mice received a cholesterol-containing diet without (white circles) or with
(black circles) atorvastatin for 6 weeks. Plasmas of the various mouse groups were pooled
(n=6 per group). Lipoproteins were separated by FPLC, and fractions were analyzed for
cholesterol.

Atorvastatin also reduced cholesterol levels in the liver of E3L mice (-24%) and
E3L.CETP mice (-32%) (P<0.05). This decrease in hepatic cholesterol was
mainly confined to the cholesteryl ester content in E3L mice (-38%) and
E3L.CETP mice (-60%) (P<0.05)(Fig. 3).

Atorvastatin does not differentially affect hepatic mRNA expression of genes
involved in HDL metabolism in E3L versus E3L.CETP mice

Atorvastatin increased the hepatic expression of Hmgcoa reductase both in E3L
mice (2.5-fold; P<0.05) and in E3L.CETP mice (2.8-fold; P<0.05) (Fig. 4).
Concomitantly, Ldlr expression was increased in E3L mice (+22%) and
E3L.CETP mice (+24%) (not shown). These effects are in line with previous
observations in E3L mice,'® and likely reflect an attempt of the liver to maintain
its cholesterol balance.

Since atorvastatin may affect PLTP, ABCA1, SR-BI, and apoAl, which are
crucially involved in HDL metabolism, and may account for the increase in
HDL-cholesterol in E3L.CETP mice upon atorvastatin treatment, we examined
the effect of atorvastatin on their hepatic mRNA expression (Fig. 4). The
expression of these genes was not substantially different in £3L.CETP mice as
compared to E3L mice (<16%, not significant). Atorvastatin tended to increase
the expression of Pltp, involved in remodeling of HDL by mediating transfer of
phospholipids between lipoproteins, in £3L mice (+34%) and E3L.CETP mice
(+69%), which did not reach statistical significance. The expression of Abcal,
which is an important determinant for HDL formation, was decreased by
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A E3L B E3L.CETP
30 301

FC CE TG PL TC FC CE TG PL
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Figure 3. Effect of atorvastatin on hepatic lipid levels. E3L (A) and E3L.CETP (B) mice
were fed a cholesterol-containing diet without (white bars) or with (black bars) atorvastatin.
After 6 weeks, livers were collected and lipids were extracted. Total cholesterol (TC), free
cholesterol (FC), cholesteryl esters (CE), triglycerides (TG) and phospholipids (PL) were
quantified. Values are means = SD (n=3-5 per group). *P<0.05 compared to control.

atorvastatin in E3L mice (-59%; P<0.05) and E3L.CETP mice (-45%; P<0.05)
to a similar extent. The expression of Sr-b1, which is largely involved in the
selective uptake of HDL-CE in mice, tended to be decreased in E3L (-30%) and
E3L.CETP (-27%) mice, but hepatic SR-BI protein levels were unaffected in
both mouse groups (not shown). Also, in both types of mice, atorvastatin did not
increase hepatic Apoal expression or the plasma apoAl levels (not shown).
Atorvastatin thus affects the mRNA expression of Pltp, Abcal, Sr-bl, and
Apoal to a similar extent in E3L and E3L.CETP mice, and is thus unlikely to
explain the differentially raised HDL in E3L.CETP mice as compared to E3L
mice.

In general, atorvastatin tended to decrease the expression of LXR target genes,
including Abcg5 (-2% and -38%), Abcg8 (-26% and -46%), Lpl (-85% and -
77%) and Srebp-1c (-31% and -32%) in E3L and E3L.CETP mice, respectively.

Atorvastatin decreases hepatic CETP mRNA expression and cholesteryl ester
transfer activity in plasma of E3L.CETP mice

To investigate whether atorvastatin increases HDL-cholesterol in E3L.CETP
mice by reduction of CETP activity, we determined the hepatic CETP mRNA
expression, the total plasma CETP level, and the CE transfer activity in plasma
(Fig. 5). Indeed, atorvastatin markedly decreased CETP expression in
E3L.CETP mice (-57%; P<0.01) (Fig. 5A). This effect was accompanied by a
trend towards a reduction in the total plasma CETP level (-29%), which did not
reach statistical significance, probably related to the relatively high variation in
combination with the limited group size (Fig. 5B). Additionally, the CE transfer
activity in plasma of E3L.CETP mice was reduced (-36%; P<0.05) (Fig. 5C).
Taken together, the HDL-raising effect of atorvastatin in E3L.CETP mice
appears a direct consequence of reduced CETP expression.
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Figure 4. Effect of atorvastatin on hepatic mRNA expression of genes. E3L (A) and
E3L.CETP (B) mice were fed a cholesterol-containing diet without (white bars) or with
(black bars) atorvastatin. After 6 weeks, livers were collected to determine mRNA
expression. Values are expressed as means + S.E. relative to control mice (n=4 per group).
*P<0.05 compared to control.

Atorvastatin dose-dependently decreases CETP and increases HDL

To determine whether atorvastatin also reduces CETP and increases HDL-
cholesterol in female mice, and to evaluate whether these effects would be dose-
dependent, female E3L.CETP mice were fed a cholesterol-containing diet that
successively contained 0.001% and 0.01% of atorvastatin (w/w) for two weeks
each. Atorvastatin dose-dependently decreased plasma cholesterol (-34% and -
71%, P<0.01). This was accompanied by a dose-dependent increase in HDL-
cholesterol levels (+118% and +176%) and reductions in total plasma CETP
activity (-31% and -61%; P<0.01) (not shown).

o A ~ B C
£ < o _
€120 = 2 200
19) g B >
S T £ 800 =
S 100 | 2 )
° E 53 150 F
£ 80Ff 5 600 T zE b
2 5 § )
8 60 ok e " = £ 10 |
£ & 400 82
>< = 8 g
2 40 | O E‘ 2
& & g
2, 2
=¥ —_ <=
m <O > o <O X4 <O \:d
© & v~“°é S v~“°é & v‘°é

Figure 5. Effect of atorvastatin on hepatic CETP mRNA expression and cholesteryl ester
transfer activity in plasma. E3L.CETP mice were fed a cholesterol-containing diet without
(white bars) or with (black bars) atorvastatin. After 6 weeks, livers were collected to
determine CETP mRNA expression (A), and plasma was assayed for total CETP level (B)
and CE transfer activity (C). Values are means + SD (n=4-6 per group). *P<0.05; **P<0.01.
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Figure. 6. Proposed mechanism underlying the HDL-raising effect of statins. See text for
explanation. CE, cholesteryl ester; TG, triglyceride.

Discussion

E3L mice respond to statin treatment with respect to lowering of apoB-
containing lipoproteins and reduced atherosclerosis development similarly as
humans,'"'*!" whereas statins do not affect or even increase plasma cholesterol
levels in apoE-deficient mice'®'” and LDL receptor-deficient mice.”’ However,
whereas statins increase HDL in humans, atorvastatin and rosuvastatin did not
increase HDL levels in E3L mice.'"'®"”

To investigate whether the statin-induced elevation of HDL-cholesterol in
humans depends on CETP expression, we crossbred E3L mice with human
CETP transgenic mice. We found that atorvastatin decreased (V)LDL in both
E3L and E3L.CETP mice but increased the steady-state HDL-cholesterol level
only in E3L.CETP mice, which was not observed in E3L littermates. We
previously showed that atorvastatin reduces plasma cholesterol in £3L mice by
reducing VLDL production.'" Since atorvastatin similarly reduces (V)LDL
cholesterol in E3L.CETP mice as compared to £3L mice, and CETP expression
per se does not affect VLDL production,” it is likely that the mechanisms by
which atorvastatin reduces (V)LDL-cholesterol are similar in E3L.CETP mice
and E3L mice. In addition, the mild increase in LDLr expression in both E3L
and E3L.CETP mice may contribute to lower plasma cholesterol levels. The
increase in HDL was accompanied by decreased hepatic CETP mRNA
expression levels with a concomitant reduction in plasma CE transfer activity.
Apparently, the fact that mice naturally lack CETP expression prevents the
atorvastatin-induced increase in HDL-cholesterol in mice.

Since several additional key players in HDL metabolism might have been
affected differently by atorvastatin treatment in £3L.CETP as compared to E3L
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mice, and thus participate in the HDL-cholesterol raising effect, we have also
evaluated the effect of atorvastatin on the hepatic expression of Apoal, Abcal,
Pltp, and Sr-b1. ApoAl is involved in the generation formation nascent HDL
particles,”® which acquire cholesterol via ABCA1. In fact, the HDL-cholesterol
level in mice is largely determined by the hepatic expression of ABCAI.”
PLTP plays an important role in the remodeling of HDL, by facilitating
phospholipid transfer to HDL during its maturation from discoidal HDL into
spherical HDL.** Finally, at least in mice, hepatic SR-BI is crucially involved in
the selective uptake of HDL-CE.” We found that atorvastatin did not affect the
hepatic expression of Pltp, Sr-b1, and Apoal. Atorvastatin did decrease Abcal
expression in E3L and E3L.CETP mice. However, since a decreased Abcal
expression would be expected to lower HDL levels, it also cannot be a causal
factor for the selective elevation of HDL in E3L.CETP mice. Previous
experiments in mice in which hepatic ABCAI1 expression levels were
modulated specifically, have shown a causal relationship between hepatic
ABCAI1 expression and plasma HDL-cholesterol. In our study, atorvastatin
primarily decreases CETP expression as related to a reduced hepatic cholesterol
content. We speculate that, as a consequence rather than as a cause, the liver
attempts to maintain its cholesterol balance by an upregulation of LDL
receptors to enhance cholesterol influx and a down-regulation of ABCA1 to
decrease cholesterol efflux.

Taken together, the selective raise in HDL-cholesterol in E3L.CETP mice
cannot be explained by atorvastatin-mediated effects on apoAl, ABCAI, PLTP,
or SR-BI, but is primarily caused by the reduction in CETP expression. Both a
decrease in plasma CETP activity and a reduction in (V)LDL (i.e. acceptor of
HDL-CE) can account for a reduction in CE transfer activity, which in its turn
causes the increase in HDL-cholesterol. In addition to its transfer activity,
CETP has also been implicated in the direct’® and in the SR-BI-mediated”’
HDL-CE uptake by hepatocytes. Inhibition of these uptake pathways by
atorvastatin via reducing cellular CETP may thus potentially also contribute to
the increase in HDL-cholesterol.

The atorvastatin-induced down-regulation of CETP expression is presumably
caused by a reduction in plasma and hepatic cholesterol levels. Cholesterol
feeding of CETP transgenic mice increases hepatic CETP mRNA expression via
an LXR responsive element in the CETP promoter.”® Conversely, atorvastatin
may down-regulate CETP expression by reducing LXR signaling, as
atorvastatin reduced plasma and hepatic cholesterol levels'® and consequently
probably also hepatic oxysterols, the natural ligands of LXRa. In line with this
hypothesis, the expression of other LXR target genes such as ABCGS, ABCGS,
LPL and SREBP-1c were also reduced upon atorvastatin treatment. In addition,
the CETP promoter activity is affected by several other regulatory transcription
factors,” which alone or in combination could also be responsible for decreased
transcription. The fact that atorvastatin treatment of humans also decreases

73



Chapter 3

plasma CETP®® may well be explained by similar regulation of CETP
expression.

Based on our collective data, we thus propose the following mechanism by
which statins raise HDL-cholesterol, as summarized in Fig. 6. By inhibiting
HMGCoA reductase activity, statins decrease the hepatic lipid content. This
results in decreased (V)LDL levels by a lower VLDL production and a higher
(V)LDL clearance. In addition, reduction in hepatic cholesterol results in
reduced levels of hepatic oxysterols (i.e. the natural ligands of LXRa) and,
consequently, decreased LXRa-induced hepatic expression of CETP. Therefore,
the HDL-cholesterol levels are raised by lower (V)LDL levels and lower CETP
expression, resulting in decreased CE transfer activity from HDL to (V)LDL.
Clinical studies have established that statins improve the survival rate of
patients with hypercholesterolemia and coronary artery disease by lowering
LDL-cholesterol and by their pleiotropic anti-inflammatory effects.” However,
a high residual cardiovascular risk still remains.’ Even with aggressive
atorvastatin treatment in the PROVE-IT study, the risk remained 60-70%
despite greater protection against death or major cardiovascular events.”
Therefore, concomitant raising of HDL-cholesterol is generally considered to
enhance the anti-atherogenic potential of statins. Since our novel E3L.CETP
mouse model is responsive to modulation of apoB-containing lipoproteins as
well as HDL levels, we anticipate that our mouse model will be valuable to
study the effect of such HDL-raising therapeutic strategies, alone or in
combination with (V)LDL-lowering strategies, on plasma lipid metabolism and
atherosclerosis development, and to study the underlying mechanisms.

In conclusion, our results show that atorvastatin increases HDL-cholesterol by
reducing the hepatic CETP expression and plasma CE transfer activity in
E3L.CETP mice. Therefore, we postulate that reduction of CETP expression
contributes to the increase in HDL that is found in human subjects treated with
statins.
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