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1. Lipids and lipoprotein metabolism 

 

Triglycerides (TG) and cholesterol are the most common dietary lipids. TG 

serve as an important energy source for muscle tissue and can be stored in 

adipose tissue. Cholesterol is an important component of the cell membrane and 

the precursor of vitamin D, bile acids and steroid hormones. Since TG and 

cholesterol are hydrophobic molecules, they are transported in the blood in 

specialized particles called lipoproteins. Lipoproteins consist of a hydrophobic 

core containing cholesteryl esters (CE) and TG, which is surrounded by a polar 

surface of phospholipids, unesterified cholesterol and apolipoproteins. 

Apolipoproteins stabilize the lipid particle. In addition, they regulate the 

transport and redistribution of lipids by modulation of enzyme activities in 

plasma and by serving as ligands for cell surface receptors. Lipoproteins are 

divided in five main classes according to their density, namely (in order with 

increasing density): chylomicrons, very low density lipoproteins (VLDL), 

intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and 

high density lipoproteins (HDL).
1,2

 A schematic representation of lipoprotein 

metabolism is depicted in Figure 1, and explained in sections 1.1-1.3. 

 

 

Figure 1. Schematic overview of lipoprotein metabolism. See text for explanation.  
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1.1 Chylomicrons 

 

TG are the major dietary lipids, and other dietary lipids include phospholipids 

and cholesterol. In the intestine, lipids are lipolyzed, the lipolysis products are 

taken up by the enterocyte, and lipids are re-synthesized.
3-6

 Enterocytes 

synthesize apoB48 which is lipidated in the endoplasmatic reticulum (ER) by 

the microsomal TG transfer protein (MTP), resulting in the formation of a small 

apoB48 containing particle which fuses with large apoB48-free lipid droplets to 

form a prechylomicron which moves to the Golgi, and is subsequently excreted 

via exocytosis.
3,5

 The chylomicron which than contains apoB48, apoAI and 

apoAIV enters the lymph and subsequently the blood where chylomicrons 

acquire exchangeable apolipoproteins apoCI, apoCII, apoCIII and apoE whereas 

apoAI and apoAIV can dissociate from the particle and stay in the plasma in a 

free form or become associated with HDL.
5,7

 Chylomicrons can exchange lipids 

with other lipoproteins. TG and CE are exchanged via the cholesteryl ester 

transfer protein (CETP), phospholipids via the phospholipid transfer protein 

(PLTP) and cholesterol via passive diffusion.
8,9,10,11

 Chylomicrons transport 

dietary TG and cholesterol to various parts of the body where TG are 

hydrolyzed by lipoprotein lipase (LPL), an enzyme attached to the endothelium. 

Since LPL expression is highest on adipose tissue in the postprandial state, fatty 

acids (FA) released by LPL are predominantly taken up by adipose tissue, 

where they are stored as TG, and the remainder is taken up by muscle (skeletal 

muscle and heart) for use as energy source.
12,13

 Chylomicron remnants which 

are relatively rich in cholesterol and apoE can then be taken up by the liver 

mainly via the apoE-recognizing receptors LDL receptor (LDLr) and LDLr-

related protein (LRP). In addition, uptake can occur via interaction of apoE with 

cell surface-bound heparin sulfate proteoglycans (HSPG) or scavenger receptor 

class B type I (SR-BI).
14-18

 During fasting, the intestine can produce smaller, 

less TG-rich, VLDL particles via a similar pathway.
5,6

 

 

1.2 VLDL and LDL 

 

The liver thus takes up chylomicron remnants, but can also synthesize new 

lipids as the liver contains several lipogenic enzymes including FA synthase 

(FAS) and stearoyl CoA desaturase (SCD1) for TG synthesis and HMG-CoA 

reductase for cholesterol synthesis. Hepatic lipids can be stored as TG and CE 

or can be excreted as VLDL particles. Assembly of VLDL involves a similar 

pathway as chylomicron synthesis including the transfer of lipids to apoB-100 

(or, in some animal species including mice also apoB-48) by MTP and 

subsequent fusion with protein-free lipid droplets formed in the ER to form 

mature VLDL which is secreted into the circulation and then is enriched with 

apoCI, apoCII, apoCIII and apoE.
17,19,20

 Similarly to chylomicrons, VLDL can 

exchange TG, CE and phospholipids via CETP and PLTP, and cholesterol via 
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passive diffusion.
8,9,10,11

 VLDL particles undergo similar LPL-mediated 

degradation as chylomicrons, resulting in the uptake of liberated FA by tissues. 

In contrast to chylomicrons which are synthesized in the postprandial state, 

VLDL ensures a supply of FA as energy source for muscle tissue in the fasted 

state as LPL is highest on muscle tissue during fasting.
12,13

 During lipolysis, 

VLDL becomes depleted of TG leading to conversion of VLDL via IDL to LDL 

and eventually to small dense LDL (sdLDL).
2,17

 Just like chylomicron remnants, 

VLDL remnants are taken up mainly via apoE by the LDLr and LRP, with 

additional roles for HSPG and SR-BI.
1,2,16-18,21,22

 The lipolytic end product LDL 

is virtually depleted of TG, has lost most of its apolipoproteins except for apoB-

100 and is taken up mainly via apoB-100 by the LDLr in the liver and by tissues 

involved in hormone synthesis such as the adrenals and gonads for cholesterol 

supply.  

 

1.3 HDL  

 

In contrast to apoB-containing lipoproteins, HDL is generally believed to be 

anti-atherogenic, mainly because of its involvement in the reverse cholesterol 

transport (RCT). This process describes the transport of cholesterol from the 

periphery back to the liver, after which cholesterol is secreted via the bile into 

the feces. The liver and intestine both synthesize the major HDL apolipoprotein, 

apoAI, and release it into the circulation. Subsequently, apoAI is lipidated via 

the ATP binding cassette transporter A1 (ABCA1), which is also mainly 

expressed in the liver and in the intestine. This is a crucial step in HDL 

formation as subjects with ABCA1 gene mutations as well as mice lacking 

ABCA1 have very low HDL levels.
23-26

 During this process nascent discoidal 

HDL (HDL-3) is formed, a small lipoprotein particle mainly consisting of 

apoAI and phospholipids. While the liver and intestine are essential for the 

initial lipidation of apoAI, nascent HDL can take up additional cholesterol and 

other lipids from the periphery via ABCAI or from other lipoproteins via 

PLTP.
8,9

 The acquired cholesterol is esterified by lecitin:cholesterol 

acyltransferase (LCAT), allowing the resulting CE to accumulate in the core. 

Esterification of cholesterol by LCAT is also essential in HDL metabolism, as 

patients or mice lacking LCAT have low HDL levels.
27,28

 Following cholesterol 

esterifcation by LCAT, HDL becomes a spherical HDL-2 particle which 

contains not only apoAI but can also acquire apoAII, apoAIV, apoAV, apoCI, 

apoCII, apoCIII and apoE. It has been suggested that more cholesterol from the 

periphery, including from macrophages in the vessel wall can be taken up in the 

mature particle via ABCG1.
29

 Cholesteryl esters can be transferred from HDL 

to TG-rich lipoprotein particles by CETP,
10,11

 or selectively taken up by the 

liver via SR-BI.
30,31

 TG and phospholipids in HDL can be lipolyzed by hepatic 

lipase (HL) and endothelial lipase (EL).
32-34

 Once taken up by the liver, HDL-

derived cholesterol can be stored, used for the assembly of new lipoproteins, or 
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converted into bile acids (initiated by Cyp7A1 or Cyp27A1) or neutral sterols. 

In the liver, ABCG5 and ABCG8 are involved in secretion of sterols into the 

bile, after which sterols enter the intestine and are reabsorbed (so-called 

enterohepatic circulation) or excreted into the feces.
33,35-38

 In addition to its role 

in reverse cholesterol transport, HDL has anti-oxidative, anti-inflammatory and 

anti-thrombotic properties. 

 

2. Atherosclerosis  

 

2.1 Dyslipidemia 

 

The apoB-containing lipoproteins (i.e. chylomicrons, VLDL, LDL) are 

considered to be atherogenic since these particles can enter the arterial wall, 

become modified by e.g. oxidation and aggregation, after which they can be 

taken up by arterial macrophages that subsequently turn into foam cells and 

initiate the atherosclerotic process (see section 2).
1,2,39,40

  

HDL is protective in atherosclerosis because of its role in RCT as described 

above. In addition HDL also has antioxidative, anti-inflammatory and anti-

thrombotic properties. HDL inhibits the oxidation of LDL by transition metal 

ions and 12/15-lipooxygenase-mediated formation of lipid hydroperoxides. 

HDL can scavenge oxygen-derived free radicals and carries antioxidative 

proteins including paraoxonase, platelet-activation factor acetylhydrolase (PAF-

AH) and glutathione peroxidase. In addition, apoAI may also have anti-

oxidative functions. HDL is anti-inflammatory as it can repress induction of cell 

adhesion molecules such as E-selectin, intercellular adhesion molecule-1 

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which reduces 

leukocyte attachment to the vessel wall. Other anti-inflammatory properties 

probably also result from its ability to remove cholesterol and oxysterols from 

the vessel wall and because of its anti-oxidative actions.
35,41,42

 HDL improves 

vasorelaxation via stimulation of nitric oxide (NO) and prostacyclin synthesis 

which are both stimulators of vasorelaxation. Its stimulatory effects on NO and 

the ability of HDL to inhibit tissue factors render HDL anti-thrombotic as 

well.
41,42

 

Dyslipidemia as characterized by high plasma levels of cholesterol and TG in 

VLDL and LDL particles and low plasma levels of HDL-C, is thus an important 

risk factor for the development of atherosclerosis. Dyslidemia can be caused by 

genetic disorders (i.e. primary dyslipidemia). Impaired lipoprotein clearance by 

defects in the LDLr or genes that interact with the LDLr, such as apoE and 

apoB, results in familial hypercholesterolemia (FH). Defects in LPL or genes 

interacting with LPL, for example deficiency of apoCII, the cofactor for LPL, 

are main causes of familial hypertriglyceridemia. Hypoalphalipoproteinemia 

(low HDL) can be caused by mutations in apoAI, ABCA1 and LCAT. 

Secondary dyslipidemias are not caused by a monogenetic disorder but by other 
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diseases, life style or medication. These include obesity, diabetes, 

hypothyroidism, exercise, diets rich in saturated fat, glucocorticoids, retinoic 

acid derivates, and HIV protease inhibitors.
43,44

 Dyslipidemia is a major risk 

factor for coronary heart disease (CHD) (see section 2.2). In addition to 

dyslipidema, other lipid-unrelated factors can also increase CHD risk. These 

lipid unrelated risk factors for CHD include homocysteinemia, hypertension and 

infection.
45

  

 
Figure 2. pathogenesis of atherosclerosis development. Adapted from de Winther et al.

46
 See 

text for explanation. 

 

2.2 Atherosclerosis 

 

Atherosclerosis is a complex disorder in which lipids and fibrous elements 

accumulate in the vessel wall (Fig. 2). The innermost layer of a healthy vessel is 

the thin intima, consisting of a monolayer of endothelial cells (EC) on the 

luminal side and the internal elastic lamina consisting of elastic fibers. The 

second layer, the media, consists of smooth muscle cells (SMC) and the third 

layer, adventitia, consists of connective tissue with fibroblasts and SMC.
39

  

Atherosclerosis starts with the infiltration of atherogenic lipoproteins such as 

LDL into the vessel wall where LDL-apoB can interact with proteoglycans 

which can lead to retention of LDL in the vessel wall. Once trapped, LDL can 

be modified (e.g. by oxidation or aggregation). Accumulation of oxidized LDL 

stimulates EC to produce inflammatory cytokines, such as chemoattractant 



Chapter 1 

 16

molecules (e.g. monocyte chemoattractant protein-1, MCP-1) and growth 

factors (e.g. macrophage colony-stimulation factor M-CSF) and they begin to 

express adhesion molecules such as VCAM-1, ICAM, E-selectin, P-selectin, ß2 

integrin, Very late antigen-4 (VLA-4) and platelet cell adhesion molecule 

(PCAM-1). Leukocytes such as monocytes and T cells are attracted and adhere 

to and migrate into the vessel wall via these adhesion molecules. Activation of 

leukocyte Toll-like receptors (TLRs) in the vessel wall leads to production of 

more pro-inflammatory molecules including cytokines and proteases. Within 

the plaque, monocytes become macrophages that take up LDL after extensive 

oxidation by reactive oxygen produced by EC and several enzymes including 

myeloperoxidase, sphingomyelinase and secretory phospholipase. The uptake of 

oxidized LDL occurs mainly via the scavenger receptors scavenger receptor-A 

(SR-A), cluster designation (CD)36 and CD68 which are upregulated by 

cytokines present in the plaque. Internalized cholesterol is esterified by acyl 

CoA:cholesterol acyltransferase-1 (ACAT-1) and is stored in lipid droplets, and 

the macrophage becomes a lipid-rich foam cell. In the macrophage foam cell, 

CE can be hydrolyzed again and the cell can dispose cholesterol via efflux via 

ABCA1 and ABCG1 to apoE produced by the macrophage and HDL. Early 

lesions consisting of macrophage foam cells and T cells are called fatty streaks 

and give no symptoms but are precursors of more advanced lesions.
39,40,45,47

 

When the lesion becomes more advanced, interactions between inflammatory 

cells, ECs and SMCs evoke a chronic inflammatory state, more cytokines are 

expressed and SMCs migrate into the plaque. SMCs and macrophage foam cells 

accumulate and die leaving their lipid content behind leading to accumulation of 

a lipid-rich necrotic debris which is usually covered by a fibrous cap consisting 

of SMCs and extracellular matrix excreted by these SMCs. The plaques can 

become more complex e.g. by calcification. The large plaque can lead to 

ischemic symptoms when it blocks blood flow. In addition, the plaque can lead 

to an acute block of blood flow when it ruptures. The stability of a plaque 

depends on its composition. Vunerable plaques have thin fibrous caps and a 

large number of leukocytes, mainly as macrophages produce proteases that 

degrade the extracellular matrix of the fibrous cap. Plaque rupture exposes pro-

thrombotic material which activates a coagulation cascade leading to 

thrombosis and an acute blockage of blood flow and infarction.
39,40,45,47

  

 

2.3 Animal models to study lipid metabolism and atherosclerosis 

 

To study atherosclerosis in vivo, several animal models have been used. Non-

human primates develop atherosclerosis very similar to humans but are a less 

suitable model because of ethical issues, high costs and because it takes very 

long to develop atherosclerosis.
48

 Therefore, in early atherosclerosis studies, 

birds, especially pigeons, chickens and quails
49-51

 were used, as they are 

relatively hypercholesterolemic and atherosclerosis prone.
49-52

 Another 
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atherosclerosis-susceptible model used in early studies is the swine,
48,53,54

 a 

major drawback is however the size of the animals leading to high costs and the 

need for large amounts of experimental agents.
48

 Dogs and rats are resistant to 

atherosclerosis and cats develop no human-like lesions and are, therefore, also 

not suitable models.
48,52,55

 The hamster is sensitive for cholesterol-enriched diets 

and develops mild fatty streak-like atherosclerotic lesions and is, therefore, used 

in some studies.
48,55

 Rabbits, a widely used animal model, have as herbivores 

naturally low cholesterol levels and no atherosclerosis development. On 

atherogenic diets, however, rabbits are atherosclerosis prone but lesions are 

macrophage-rich and have a fatty streak-like appearance.
52

 The Watanabe 

heritable hyperlipidemic (WHHL) rabbit has a defect in the LDLr and is 

therefore hyperlipidemic, susceptible to atherosclerosis and able to develop 

more advanced lesions.
56,57

 A drawback of rabbits is that atherosclerosis 

development is dependent on infections as pathogen-free rabbits develop no 

atherosclerosis.
48

 Another drawback is that they have no HL which is important 

in HDL metabolism.
58

 

The mouse is a widely used model for atherosclerosis studies because of low 

costs and availability of several strains and genetically modified mice. Wild-

type mice have a plasma cholesterol of approximately 2 mM, which is almost 

all confined to the HDL fraction, while VLDL and LDL are virtually absent. 

These animals require an extreme atherogenic diet to develop 

atherosclerosis.
59,60

 Since mice are exceptionally suitable for genetic 

modification, several atherosclerosis-prone mouse models have been generated, 

such as apoE-knockout (apoE
-/-

), LDLr-knockout (LDLr
-/-

) and APOE*3-Leiden 

transgenic (E3L) mice. Nowadays these mice are widely used as animal model 

in atherosclerosis research. 

The apoE-knockout mouse has highly impaired VLDL and LDL clearance, as 

apoE is important in the uptake of lipoprotein remnants by the liver. Therefore, 

plasma cholesterol is increased in these mice (approx. 8 mM on chow and up to 

70 mM on a high cholesterol-containing diet) and present mainly in VLDL and 

LDL. Therefore, these animals already develop atherosclerosis on a chow diet
61-

64
 and heterozygote apoE-knockout mice develop atherosclerosis on an 

atherogenic diet.
65

 Lack of macrophage apoE also contributes substantially to 

the atherosclerosis susceptibility of these mice as mice lacking apoE specifically 

in the macrophage have increased foam cell formation and atherosclerosis.
66

 

LDLr knockout mice have also highly impaired VLDL and LDL clearance and 

increased plasma cholesterol levels, as the LDLr is important in uptake of these 

lipoproteins by the liver. However, their phenotype is milder than that of apoE-

knockout mice and they therefore need an atherogenic diet to develop 

atherosclerosis.
67,68

 A drawback of both apoE
-/-

 and LDLr
-/-

 mice is that they do 

not respond in a human-like manner to pharmacotherapeutic interventions like 

statins and fibrates, with respect to their lipid-lowering properties.
69
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E3L mice carry a construct containing apoE*3-Leiden, a mutation of apoE 

characterized by a tandem duplication of codons 120-126 that causes 

hyperlipidemia in humans,
70,71

 together with apoCI that elevates plasma TG. As 

a result, E3L mice have somewhat increased levels of plasma cholesterol and 

TG on a chow diet,
70

 but their phenotype with respect to plasma lipids is milder 

than that of apoE-knockout and LDLr-knockout mice, and the mice need an 

atherogenic diet for inducing atherosclerosis development.
72,73

 A major 

advantage of E3L mice is that they respond in a human-like manner to 

pharmaceutical interventions including statins and fibrates with respect to lipid 

lowering.
69

 Probably because mice lack CETP, an important protein in HDL 

metabolism, E3L mice do not properly respond to HDL modulating therapy. 

Therefore, we have crossbred E3L mice with CETP transgenic mice.
74-77

 

 

3. Factors regulating lipid metabolism  

 

3.1 Apolipoproteins 

 

Apolipoproteins stabilize the lipoprotein particle and have functions in lipid and 

lipoprotein metabolism. Several apolipoproteins are known and they all have 

their own functions.  

ApoAI and apoAII are the two major HDL-associated apolipoproteins and are 

both required for normal HDL synthesis. ApoAI is present on most HDL 

particles and constitutes 70% of HDL protein. ApoAII is present on two third of 

the HDL particles and constitutes 20% of HDL protein content.
33,36

 ApoAI is 

synthesized in the liver and intestine and is lipidated to form HDL. In humans 

and mice, apoAI deficiency leads to a large decrease in HDL
78,79

 and increase in 

atherosclerosis.
80

 ApoAII is synthesized in the liver, and apoAII deficiency also 

reduces HDL levels,
81

 indicating that both apoAI and apoAII are needed for 

HDL synthesis. ApoAIV is expressed in the intestine, increases HDL levels and 

protects against atherosclerosis in mice.
82,83

 It may also be involved in 

chylomicron synthesis
84,85

 and is important in regulation of food intake.
86

 

ApoAV is a more recently discovered apolipoprotein that reduces TG levels.
87

 

ApoAV stimulates LPL-mediated TG lipolysis and inhibits VLDL production 

which may explain the effect of apoAV on TG levels.
88

 

ApoB is present on chylomicrons, VLDL, IDL and LDL. ApoB consists in two 

forms: apoB48 is expressed by the intestine and is present on chylomicrons, 

whereas apoB100 is expressed in the liver and present on VLDL. In several 

species including mice both apoB forms are expressed by the liver. ApoB is 

required in the assembly of chylomicrons and VLDL and serves as ligand for 

lipoprotein clearance by the LDLr in liver and other tissues.
89

 Mutations in the 

apoB gene can lead to hypolipidemia or, when the LDLr binding domain is 

affected, to hyperlipidemia.
90
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ApoE is present on chylomicrons, VLDL, IDL and HDL. ApoE is crucial for 

the efficient uptake of lipoprotein remnants by the liver.
91

 However, at high 

concentrations, apoE inhibits LPL that may lead to hypertriglyceridemia.
92

 Lack 

of apoE in mice severely increases atherosclerosis development
61-64

 and apoE 

deletion in macrophage increases foam cell formation and atherosclerosis.
66

 

An interesting apolipoprotein which, despite its small size, has many functions 

in lipid metabolism but also in inflammation is apoCI. ApoCI is mainly 

synthesized in the liver but also in macrophages. ApoCI is released into the 

circulation, is present on chylomicrons, VLDL, LDL and HDL and is highly 

exchangeable between these lipoproteins. ApoCI is the smallest of the 

apolipoproteins (57 amino acids, 6.6 kDa) and highly positively charged. The 

apoCI peptide forms 2 α-helices which are separated by a flexible linker. ApoCI 

has many functions in lipoprotein metabolism. Overexpression of apoCI leads 

to highly increased TG levels and mildly elevated total cholesterol levels in 

mice,
93

 while apoCI knockout mice have decreased TG levels and decreased 

HDL levels at least on an apoE-knockout background. The elevated TG and 

cholesterol levels in apoCI-overexpressing mice are mainly confined to VLDL 

and were initially explained by an inhibitory effect of apoCI on lipoprotein 

clearance via the LDLr and other classical apoE-recognizing receptors.
94-98

 

Later, apoCI was found to be an inhibitor of LPL
93

 which explains the relative 

large elevation in TG as compared to cholesterol in apoCI overexpressing mice. 

In addition, apoCI affects HDL metabolism by stimulation of LCAT,
99,100

 

inhibition of HL,
101,102

 and inhibition of CETP.
103

 These effects on HDL thus 

suggest that apoCI may causally increase HDL levels. Overall, apoCI 

expression is atherogenic, at least in absence of CETP, probably because of the 

induction of hyperlipidemia.
104

 In addition to affecting plasma cholesterol and 

TG levels, apoCI has also a role in endodermal lipid metabolism as mice 

overexpressing high levels of apoCI have skin abnormalities.
105

 In addition, 

apoCI is involved in regulation of inflammation as it enhances the early 

response to LPS.
106

  

Other members of the apoC family are also involved in regulating TG lipolysis. 

ApoCII is the cofactor for LPL, is essential for lipolysis of TG, and apoCII 

deficiency thus leads to severe hyperlipidemia.
107,108

 ApoCIII, on the other hand, 

is the main endogenous LPL inhibitor. Overexpression of apoCIII thus leads to 

elevated TG levels and apoCIII-deficiency to decreased TG levels.
109,110

 

ApoCIII may also increase intestinal lipid uptake and VLDL production.
111

 

 

3.2 Cholesteryl ester transfer protein 

 

The human CETP gene is located on the long arm of chromosome 16 (16q12-

16q21).
112

 The gene is 25 kb and consist of 16 exons between 32 to 250 bp 

which account for 8% of the total gene sequence.
113,114

 CETP gene expression is 

regulated by several factors, including the zinc finger proteins SP1 and 
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SP3,
115,116

 ARP-1,
117

 C/EBP,
118

 and lipids, directly, or indirectly via 

SREBP
119,120

 and LXR.
11,121-124

 In addition to the normal full-length mRNA, an 

alternatively spliced mRNA can be expressed in which exon 9 is removed. The 

exon 9-deleted protein is inactive and inhibits secretion of the normal CETP 

protein
125,126

 and may also be involved in the regulation of plasma CETP 

activity. CETP is expressed mainly in the liver, adipose tissue and in 

macrophage-rich tissues and is a 74 kDa (476 aa) glycoprotein.
114

 CETP is 

highly hydrophobic as it consists of 45% hydrophobic amino acids which form 

a hydrophobic pocket for the binding of neutral lipids.
127

 CETP circulates in the 

plasma at a concentration of approx. 1-3 µg/mL and is mainly bound to HDL 

(74%).
11,128

 CETP transfers neutral lipids (i.e. TG and CE) between plasma 

lipoproteins leading to a net transfer of CE from HDL to VLDL and a reciprocal 

transfer of TG from VLDL to HDL.
11

 

As CETP transfers CE out of HDL, CETP activity leads to decreased HDL-C 

levels. Since HDL-C is associated with reduced cardiovascular disease (CVD) 

risk, CETP has been suggested to be atherogenic. Albeit that CETP-deficiency 

thus was expected to be atheroprotective, studies involving CETP-deficient 

subjects showed controversial results. In Japanese subjects a CETP mutation 

has been identified that leads to complete CETP deficiency (Intron14+1 

G>A)
129

 and another mutation that leads to a marked reduction of CETP 

(D442G).
130

 Both mutations indeed increase HDL levels, especially those of 

large HDL. The HDL of CETP-deficient subjects is enriched in CE and poor in 

TG. TG and LDL-C levels are not or only mildly affected and LDL particles are 

smaller and more heterogeneous compared to LDL of normal subjects.
130-133

 

Although their high HDL levels suggest protection from atherosclerosis, CETP 

deficient subjects are susceptible to atherosclerosis development.
134

 

Remarkably, prevalence of CETP-deficiency in people over 80 years is reduced 

indicating that CETP deficiency does not reduce overall mortality.
135

 Zong et 

al.
136

 showed even an increase of CHD in carriers of a CETP mutation with 

HDL-C levels between 1-1.5 mM. However, CHD prevalence was similar in 

patients with higher HDL levels with and without CETP mutations. Another 

study showed that high HDL (>2 mM) protects against CHD independent of 

CETP mutations.
137

 The relation between CETP deficiency and atherosclerosis 

thus remains controversial. However, these mutations are often linked to HL 

deficiency.
134

 Together with the low number of subjects, this makes it difficult 

to study the effect of CETP on atherosclerosis.
133,138

 

Besides the Intron14+1 G>A and D442G mutations, some other CETP gene 

polymorphisms have been identified. These polymorphisms affect plasma 

CETP activity to a milder extent, but these mutations are more common and, 

therefore, easier to study in large patient groups. The TaqIB polymorphism 

which is in strong linkage disequilibrium with -C629A
139

 is the most widely 

studied CETP polymorphism. The B2 allele is clearly associated with reduced 

CETP levels and higher HDL levels. However, again literature is inconsistent 
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about effect of the TaqIB phenotype on CHD risk. The B2 allele has either been 

associated with reduced CHD risk,
140-143

 no effect on CHD risk,
144-146

 or even an 

increased CHD risk.
147,148

  A recent review showed that the odds ratio for CVD 

risk was 1.45 in B2B2 carriers versus B1B1 carriers in population based studies, 

while the odds ratio in high risk populations was 0.84 for B2B2 carriers versus 

B1B1. This difference could possibly be explained by selection for a lower 

frequency of B2B2 carriers in high risk populations. However the effect of this 

common CETP gene variant on CVD was only modest.
149

 Mutations in the 

CETP gene that cause low CETP mass thus clearly cause higher HDL-C levels, 

but the effect of CETP mutations on atherosclerosis is controversial.  

In addition to human studies, animal models have been used to experimentally 

address the effect of CETP on atherosclerosis further. Since wild-type mice are 

naturally deficient for CETP, CETP transgenic mice have been created.
121,150,151

 

These mice have reduced HDL-C levels in plasma.
150,151

 Simian CETP 

expression in wild-type mice increases atherosclerosis.
151

 Since LDLr
-/-

 and 

apoE
-/-

 mice are hyperlipidemic and have a more human like lipoprotein profile, 

they have been considered as relevant mouse models to study atherosclerosis. 

Similarly to wild-type mice, CETP expression in both hyperlipidemic mice 

increases atherosclerosis.
152

 Also, in E3L mice, CETP expression leads to a 

higher VLDL, lower HDL and increases atherosclerosis by 7-fold.
75

  

CETP thus increases atherosclerosis in wild-type mice and in hyperlipidemic 

mice in which VLDL clearance is impaired to some extent. However, CETP has 

been shown to be anti-atherogenic in other mouse models. LCAT 

overexpressing mice have a high increase of plasma levels of large HDL, CETP 

expression in these mice reduces HDL levels and atherosclerosis.
153

 Similarly, 

SR-BI-deficient mice accumulate large HDL. In this model, CETP expression 

reduces atherosclerosis
154

 as explained by normalization of dysfunctional HDL. 

However, CETP expression did not reduce atherosclerosis in SR-BI mice in 

another study despite of HDL normalization (Van Eck et al. unpublished 

results). The latter may be related to the finding that SR-BI-deficiency not only 

results in dysfunctional HDL, but also increases oxidative stress,
155

 which is not 

relieved upon CETP expression. In mice with hypertriglyceridemia due to 

apoCIII overexpression and in diabetic mice, CETP expression protects against 

atherosclerosis development, probably by reduction of total cholesterol 

levels.
156-158

 

CETP is thus protective in mouse models of diabetes and hypertriglyceridemia, 

possibly related to a plasma cholesterol lowering effect of CETP in these 

models. Also when HDL accumulates CETP is protective by reducing HDL via 

an alternative route. In animal models with a more humanized lipoprotein 

profile however, CETP is atherogenic.  
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3.3 Nuclear receptors 

 

Since several nuclear receptors are important in regulating expression of genes 

in lipid metabolism, they are potential targets in drug development. 

Peroxisome proliferator-activated receptors (PPARs) are important regulators of 

expression of genes involved in lipid and glucose metabolism. PPARs are 

activated by FA and ecosanoids and heterodimerize with RXR to affect gene 

expression by binding to DR-1 responsive elements. PPARα is expressed in 

several metabolically active tissues including liver and muscle where it is 

important for regulation of genes involved in lipid metabolism such as apoCIII, 

LPL and apoAI (the latter in humans, but not in mice). PPARγ is expressed in 

adipose tissue, macrophages, colon and placenta and is important in regulation 

of lipid and glucose metabolism and adipocyte differentiation. PPARγ 

activation makes tissues more insulin sensitive and agonists are therefore 

applied in diabetes. PPARδ is expressed at low levels in a variety of tissues, is 

involved in lipid and glucose metabolism
159-162

 and is regarded as novel target in 

the treatment of dyslipidemia and insulin resistance.
163

   

Sterol Regulatory Element Binding Proteins (SREBPs) are other important 

regulators in lipid metabolism. SREBPs are activated when cells are depleted of 

cholesterol. Three SREBP isoforms exist, namely SREBP1a, SREBP1c and 

SREBP2. SREBP1a and SEBP1c are derived from the same gene by use of 

alternative transcription start sites. SREBP1a is a potent activator of all SREBP 

responsive genes, these genes are involved in cholesterol, FA and TG synthesis 

and include HMG-CoA reductase, FAS and SCD. SREBP1c mainly activates 

genes for FA synthesis and SREBP2 activates genes in cholesterol synthesis.
164

 

SREBP1c and SREBP2 also induce genes important for the synthesis of 

NADPH which is used in lipid biosynthesis. 

Another group of receptors important in regulation of lipid metabolism include 

LXR, FXR, PXR and RXR. LXR consists in 2 forms, LXRα and LXRß which 

are both activated by oxysterols (i.e. cholesterol derivates). LXRα is mainly 

expressed in liver and macrophages while LXRß is more ubiquitously 

expressed. Upon activation, LXR forms a heterodimer with RXR which binds to 

LXR-responsive elements to affect expression of genes in lipid metabolism such 

as apoE, CETP, ABCA1 and SREBP1c.
165,166

 In mouse models, LXR agonism 

shows protection against atherosclerosis, but leads also to hypertriglyceridemia 

due to increased VLDL production.
167,168

 FXR and PXR also form heterodimers 

with RXR to regulate gene expression. FXR is activated by bile acids and target 

genes include Cyp7a1 and PLTP. FXR plays an important role in the regulation 

of synthesis, excretion and reuptake of bile acids from the intestine but also 

reduces plasma lipid levels.
166

 PXR is activated by xenobiotics and increases 

expression of the Cyp3a enzymes to increase removal of xenobiotics by the 

body. PXR increases hepatic TG synthesis and may affect HDL metabolism but 

the effect of PXR on overall lipid metabolism is unknown.
162,166,169
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4. Pharmacological interventions in dyslipidemia 

 

High LDL-C and low HDL-C are associated with increased CVD risk. Several 

anti-atherogenic drugs have been developed that mainly aim at reducing 

(V)LDL levels, including statins, fibrates, bile acid binding resins and 

cholesterol uptake inhibitors.  

 

4.1 Statins 

 

Statins are the most widely used drugs to reduce plasma (V)LDL-C levels. The 

first statins were fungal derivatives (e.g. pravastatin and simvastatin) but later 

more potent fully synthetic statins including atorvastatin and rosuvastatin were 

developed. Statins show structural similarities to the cholesterol precursor 

hydroxymethylglutaryl-coenzyme A (HMG-CoA) and, therefore, they block 

entry of HMG-CoA to HMG-CoA reductase, an enzyme important in 

cholesterol synthesis.
170,171

 Via this action, statins inhibit cholesterol synthesis in 

the liver and its subsequent release in the plasma within VLDL particles.
172

 In 

addition, to compensate for hepatic cholesterol depletion, the LDLr is 

upregulated and uptake of lipoproteins from the plasma is increased, which 

contributes to the reduction in plasma cholesterol levels.
173

 Statins reduce not 

only cholesterol levels but also TG which may contribute to their anti-

atherogenic effects.
174

 In addition, statins mildly increase HDL-C levels (up to 

+10%).
175

 Atorvastatin treatment has been associated with a decrease in CETP 

mass
176-178

 and activity.
177-180

 however whether a reduction in CETP is the causal 

factor for the observed HDL increase has not been established yet. In addition to 

lipid lowering, statins improve endothelial function, are anti-oxidative and are 

anti-inflammatory contributing to its atheroprotective actions. Statins also 

inhibit cell proliferation and are, therefore, anticarcinogenic and statins may 

inhibit kidney graft rejection.
181

 Statins decrease plasma (V)LDL-C efficiently 

up to -40%
182

 and the combined actions of statins lead to a reduction of 

cardiovascular events of about -20% per mM cholesterol reduction.
183

 

 

4.2 Fibrates 

 

Fibrates are PPARα agonists, and therefore affect transcription of many genes 

in lipid metabolism leading to a net reduction of mainly plasma TG (up to -

50%) and a mild reduction in plasma cholesterol.
160,184,185

 The reduction in 

plasma TG may be a consequence of increased TG lipolysis caused by 

upregulation of LPL
186

 and downregulation of the LPL inhibitor apoCIII.
187-189

 

TG may also be reduced by increased hepatic ß-oxidation and reduced FA 

synthesis.
189-192

 In addition, fibrates mildly increase HDL-C (up to +20%).
175,193

 

Fibrates induce apoAI expression in humans but not in mice which may 

contribute to the observed HDL increase in humans.
194

 Another difference 
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between humans and mice is that mice do not express CETP. CETP activity in 

humans is reduced upon treatment with fibrates
195

 but if this contributes to the 

HDL increase in humans is still unknown. The clinical benefit of fibrates is 

uncertain.
184,185

 A recent meta analysis shows a reduction of non fatal MI (-

22%) but not of other cardiovascular events including cardiovascular 

mortality.
184

 

 

4.3 Bile acid binding resins and cholesterol uptake inhibitors 

 

Other cholesterol lowering drugs available are bile acid binding resins and 

cholesterol uptake inhibitors. Resins bind bile acids in the intestine, which 

interrupts the enterohepatic circulation of bile acids and results in an increased 

excretion of bile acids via the feces. This results in an increased production of 

new bile acids from cholesterol in the liver and therefore lowers plasma 

cholesterol levels. Resins reduce plasma cholesterol levels up to -25%.
196-198

 

Cholesterol uptake inhibitors such as ezetimibe reduce intestinal cholesterol 

absorption via Niemann-Pick C1 Like 1 (NPC1L1), a protein essential in 

cholesterol uptake from the intestine.
199

 On top of statin treatment, ezetimibe 

reduces cholesterol by an additional -16%, but does not affect IMT, possibly 

related to a low baseline IMT of the study subjects. The effect of ezetimibe on 

clinical endpoints is still uncertain.
200

 

 

Via effective plasma cholesterol lowering, statins, fibrates, bile acid binding 

resins and cholesterol uptake inhibitors prevent up to 40% of cardiovascular 

events, a significant residual risk thus remains. Therefore several new drugs to 

prevent CVD further are under development. As HDL has been suggested to be 

a more important predictor of CVD development,
201

 one group of these new 

drugs are aimed to increase HDL and include niacin and CETP inhibitors.  

 

4.4 Niacin 

 

Niacin (nicotinic acid, vitamin B3) is the most potent HDL-raising drug used in 

the clinic. In addition to raising HDL-C (up to +35%),
196,202-204

 niacin decreases 

plasma LDL-C and TG levels (up to -25 and -50% respectively). The reduction 

in TG and cholesterol may be explained as niacin decreases hormone sensitive 

lipase activity via the GRP109A. This rapidly decreases plasma FA. Therefore, 

less FA are available for TG synthesis in the liver and subsequent VLDL 

production.
204

 Niacin may also decrease TG synthesis via a direct effect on TG 

production in hepatocytes.
205,206

 The underlying mechanism of the HDL 

increase is also not fully understood but is possibly related to CETP.
207

 Niacin 

reduces IMT progression
38

 and overall mortality (-11%)
208

 but is not well 

tolerated because it causes severe flushing via increasing plasma prostaglandins. 
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Addition of the prostaglandin D2 receptor 1 blocker laropiprant reduces niacin 

mediated flushing and makes niacin therefore a better tolerated drug.
203

  

 

4.5 CETP inhibitors 

 

As CETP decreases HDL, various strategies have been developed to inhibit 

CETP activity to increase HDL levels. Two natural CETP inhibitors are known. 

The lipid transfer inhibitory protein (LTIP), also called apoF, has been detected 

in LDL and inhibits the involvement of LDL in the actions of CETP.
209,210

 In 

addition, apoCI has been discovered as the main endogenous inhibitor of CETP 

activity on HDL.
103

  

The first experiments to evaluate the effect of inhibition of CETP were 

performed with antibodies against CETP. These antibodies were indeed able to 

increase HDL in hamsters and rabbits.
211-213

 Antisense oligodeoxynucleotides 

(ODNs) against CETP also reduced CETP mRNA and increased HDL in 

rabbits,
214

 and were also able to reduce the aortic cholesterol content and lesion 

area.
215

 Atherosclerosis could also be reduced in rabbits by vaccination to 

generate auto-antibodies against CETP.
216

 The first chemical compound 

designed to inhibit CETP tested in rabbits was JTT-705. JTT-705 inhibits CETP 

by the formation of a disulphide bond with CETP. In rabbits, JTT-705 indeed 

increased HDL, decreased non HDL-C and reduced atherosclerosis.
217

 In a 

second study in which rabbits were fed a high cholesterol diet, JTT-705 failed to 

reduce atherosclerosis despite of an increase in HDL.
218

 A second CETP 

inhibitor is torcetrapib, which inhibits CETP via the formation of an inactive 

complex with CETP and HDL.
219

 Torcetrapib increases HDL and reduces 

atherosclerosis in rabbits.
220

 In humans, both JTT-705 and torcetrapib are well 

tolerated in short term studies, despite of a small increase in blood pressure in 

torcetrapib treated subjects. Both compounds raise HDL-C in humans.
221-224

 

JTT-705 is only tested in short term studies in humans, and therefore its effect 

on atherosclerosis and cardiovascular events in humans is still unknown. 

Torcetrapib is tested in long term studies in combination with atorvastatin. 

Despite of a HDL increase of about 60% however, torcetrapib in combination 

with atorvastatin treatment failed to reduce atherosclerosis, as assessed by 

Intima Media Thickness (IMT) an Intravascular Ultrasound (IVUS), compared 

to atorvastatin alone.
225-227

 Moreover, more people died in the torcetrapib treated 

group as compared to the atorvastatin alone group and cardiovascular event 

rates were increased rather than decreased by torcetrapib.
228

 These adverse 

effects may well be compound-specific, but further studies into the mechanism 

of the adverse effects are necessary to evaluate if CETP inhibition is still a 

promising strategy in the search for new anti-atherogenic drugs. In addition, it is 

still unknown if the combination with atorvastatin extinguished a protective 

effect of torcetrapib. Therefore further studies are needed to evaluate if 

torcetrapib or other CETP inhibitors alone are able to reduce atherosclerosis. A 
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new CETP inhibitor is anacetrapib, a torcetrapib-like compound that increases 

HDL in humans without affecting blood pressure.
229

 If anacetrapib will decrease 

atherosclerosis is however still unknown.  

 

5. Outline of this thesis 

 

Statins, fibrates and cholesterol absorption inhibitors lower plasma cholesterol 

very efficiently (up to 40%). However, efficient cholesterol lowering only 

prevents a fraction of cardiovascular events. Therefore new therapeutic 

strategies to further reduce cardiovascular events are necessary. HDL-raising 

therapy may be such a new strategy, and CETP is an important factor in 

regulating HDL levels. In this thesis we evaluate the mechanism underlying the 

effects of pharmaceutical intervention on HDL metabolism in E3L.CETP mice. 

In humans statins and fibrates mildly increase HDL. This effect is not observed 

in E3L mice, despite a human-like cholesterol lowering effect. To evaluate 

whether the HDL increase as seen in humans depends on CETP expression, we 

treated E3L.CETP and E3L mice with a diet rich in fat and cholesterol, and 

added fenofibrate (chapter 2) or atorvastatin (chapter 3). The most potent HDL 

raising drug available is niacin, but the mechanism underlying the HDL increase 

is still unknown. In chapter 4 we treated E3L.CETP mice with niacin to 

evaluate the involvement of CETP in niacin’s HDL raising properties. 

Torcetrapib has been the first CETP inhibitor tested in large clinical trials, and 

is able to increase HDL by about 60%. However, despite the large increase in 

HDL, humans treated with atorvastatin and torcetrapib showed no reduction in 

atherosclerosis (measured by IMT and IVUS) as compared to patients treated 

with atorvastatin only. Moreover, torcetrapib treatment led to adverse effects 

including an increase in cardiovascular events and increased death rate. To 

study the effects of torcetrapib with and without atorvastatin and to study the 

adverse effects of torcetrapib, in chapter 5 we treated E3L.CETP mice with 

torcetrapib and atorvastatin.  

In chapter 6 we studied another mechanism to interfere with HDL metabolism. 

In literature, PXR agonists are shown to increase HDL levels in wild type mice. 

However, other studies suggest that PXR activation decreases rather than 

increases HDL. In addition, the effect of PXR on HDL in the presence of CETP 

is not known. To evaluate the effect of PXR in a model with a human like 

lipoprotein profile, we treated E3L and E3L.CETP mice with a high 

fat/cholesterol diet with and without the PXR agonist pregnenolone-16α-

carbonitrile (PCN). 

ApoCI has several functions in HDL metabolism. ApoCI is the main 

endogenous HDL associated CETP inhibitor, the second LCAT activator, and 

apoCI inhibits HL. The effect of apoCI on HDL clearance and overall HDL 

levels is however not known. Therefore, we studied the effect of apoCI on SR-

BI in vitro and overall effect of apoCI in HDL metabolism in vivo in chapter 7. 
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In chapter 8 we focused on the CETP-inhibitory effect of apoCI. As full length 

apoCI increases VLDL levels by LPL reduction, full length apoCI is not a good 

agent to increase HDL by CETP inhibition. Therefore we used an array of 

apoCI peptides to identify a peptide that inhibits CETP but does not inhibit LPL 

efficiently. 

Chapter 9 gives an overview of animal models that are used to study HDL 

metabolism. The results of the studies described in this thesis and the future 

perspectives are discussed in chapter 10. 
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Abstract 

 

In addition to efficiently decreasing VLDL-triglycerides (TG), fenofibrate 

increases HDL-cholesterol levels in humans. We investigated whether the 

fenofibrate-induced increase in HDL-cholesterol is dependent on the expression 

of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden 

(E3L) transgenic mice without and with the human CETP transgene, under 

control of its natural regulatory flanking regions, were fed a Western-type diet 

with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma 

TG in E3L and E3L.CETP mice (-59% and -60%; P<0.001), caused by a strong 

reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L 

mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP 

mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesteryl 

esters (CE), indicating that fenofibrate causes a higher steady-state HDL-

cholesterol level without altering the HDL-cholesterol flux through plasma. 

Analysis of the hepatic gene expression profile showed that fenofibrate did not 

differentially affect the main players in HDL metabolism in E3L.CETP mice 

compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced 

hepatic CETP mRNA (-72%; P<0.01) as well as the CE transfer activity in 

plasma (-73%; P<0.01). We conclude that fenofibrate increases HDL-

cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL 

to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma 

(V)LDL pool. 
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Introduction 

 

High plasma TG levels are correlated with an increased risk for cardiovascular 

disease.
1
 Fibrates are widely used to reduce hypertriglyceridemia, thereby 

generating a less atherogenic lipid phenotype. Fibrates perform their actions 

through activation of peroxisome proliferator-activated receptor alpha 

(PPARα).
2,3

 Activated PPARα heterodimerizes with retinoid X receptor (RXR) 

and subsequently binds to specific peroxisome proliferator response elements 

(PPREs) in target genes to alter their transcription.
2,4

 Fibrates thus decrease TG 

levels by inhibiting hepatic TG production through increased hepatic ß-

oxidation and inhibition of de novo fatty acid synthesis, increasing LPL-

mediated lipolysis, and providing a higher affinity of remnants for the LDL 

receptor (LDLr).
3
 

A meta-analysis of 53 clinical studies using fibrates enrolling 16,802 subjects 

indicated that apart from a 36% reduction in plasma TG, fibrates increase HDL-

cholesterol levels by ~10% in humans.
5
 Studies in vitro and in (transgenic) mice 

showed that fibrates increase the hepatic transcription of human APOA1
6
 and 

APOA2,
7
 decrease hepatic receptor B type I (SR-BI) protein,

8
 increase the SR-

BI-mediated
9
 and ABCA1-mediated

10
 cholesterol efflux from human 

macrophages, and increase plasma phospholipid transfer protein (PLTP) 

activity.
11,12

 All of these effects may thus potentially contribute to the increase 

in HDL-cholesterol as observed in humans. 

In contrast to humans, fibrates decrease HDL-cholesterol levels in 

apolipoprotein E (apoE)-deficient mice
13

 and do not affect HDL-cholesterol 

levels but increase the HDL particle size in wild-type mice and human APOA1 

transgenic mice by downregulation of SR-BI
8
 and/ or induction of PLTP.

11
 The 

fact that fibrates do not increase the level of regularly sized HDLs in mice may 

be attributed to the fact that, in contrast to the human APOA1 promoter, which 

contains a functional positive PPRE leading to increased APOA1 transcription, 

the murine apoa1 promoter contains a nonfunctional PPRE.
6
 However, another 

major difference between both species is that, in contrast to humans,
14

 mice do 

not express the cholesteryl ester transfer protein (CETP).
15

 CETP is a 

hydrophobic plasma glycoprotein that is involved in the exchange of cholesteryl 

esters (CE) and TG between HDL and apoB-containing lipoproteins (e.g. VLDL 

and LDL), resulting in the net transfer of CE from HDL to apoB-containing 

lipoproteins.
16

 CETP deficiency in humans is associated with increased HDL-

cholesterol levels
17

 and inhibition of CETP activity by small-molecule inhibitors 

increases HDL-cholesterol levels.
18-21

 Interestingly, bezafibrate,
22,23

 

fenofibrate,
24

 and ciprofibrate
25

 increase HDL-cholesterol in subjects with 

hyperlipidemia with a concomitant reduction in plasma CETP activity. In the 

latter study, plasma apoAI levels were not affected, which indicates that fibrates 

may increase HDL-cholesterol levels via apoAI-independent mechanisms, 

including a potential effect of fibrates on CETP expression.  
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Therefore, our aim was to investigate whether the fibrate-induced increase in 

HDL-cholesterol depends on CETP expression. To this end, we used, APOE*3-

Leiden (E3L) mice that express a natural mutation of the human APOE3 gene 

(i.e., tandem repeat of codons 120-126, yieling a protein of 306 amino acids) in 

addition to the human APOC1 gene. Introdution of these genes results in an 

attenuated clearance of apoB-containing lipoproteins via the LDL receptor 

pathway. Therefore these mice show modlerately increased cholesterol and TG 

levels on a chow diet and a human-like lipoprotein profile an a cholesterol rich 

diet.
26,27

 E3L mice were crossbred with mice expressing human CETP under 

control of its natural flanking regions,
28

 resulting in E3L.CETP mice.
29

 

E3L.CETP and E3L littermates were fed a cholesterol-rich (0.25%, w/w) diet 

with or without fenofibrate. After 2 weeks of administration, fenofibrate dose-

dependently increased HDL-cholesterol in E3L.CETP mice, but did not affect 

HDL levels in E3L mice. In addition, in E3L.CETP mice fenofibrate reduced 

hepatic CETP mRNA expression, as well as CE transfer activity in plasma. 

From these studies, we conclude that fenofibrate increases HDL-cholesterol by 

reducing CETP-dependent transfer of CE from HDL to apoB-containing 

lipoproteins.  

 

Materials and Methods 

 

Animals 

Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP 

minigene under the control of its natural flanking sequences
28

 were purchased 

from the Jackson Laboratory (Bar Harbor, ME) and cross-bred with hemizygous 

E3L mice
30

 at our Institutional Animal Facility to obtain E3L
 
and E3L.CETP 

littermates.
29

 In this study, male mice were used, housed under standard 

conditions in conventional cages with free access to food and water. At the age 

of 8 weeks, mice were fed a semi-synthetic cholesterol-rich diet, containing 

0.25% (w/w) cholesterol and 15% (w/w) fat (Western-type diet) (Hope Farms, 

Woerden, The Netherlands) for 3 weeks. Upon randomization according to total 

plasma cholesterol (TC) levels, mice received Western-type diet without or with 

0.004%, 0.012%, or 0.04% (w/w) fenofibrate (Sigma, St. Louis, MO). 

Experiments were performed after 4 h of fasting at 12:00 PM with food 

withdrawn at 8:00 AM, unless indicated otherwise. The institutional Ethical 

Committee on Animal Care and Experimentation approved all experiments.  

 

Plasma lipid and lipoprotein analysis 

Plasma was obtained via tail vein bleeding as described
31

 and assayed for TC 

and TG, using the commercially available enzymatic kits 236691 and 11488872 

(Roche Molecular Biochemicals, Indianapolis, IN), respectively. The 

distribution of lipids over plasma lipoproteins was determined by fast-
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performance liquid chromatography using a Superose 6 column as described 

previously.
31

 

 

Cholesteryl ester transfer activity in plasma 

The transfer of newly synthesized CE in plasma was assayed by a radioisotope 

method as described previously.
32

 In short, [
3
H]cholesterol was complexed with 

BSA and incubated overnight at 4°C with mouse plasma to equilibrate with 

plasma free cholesterol. Subsequently, the plasma samples were incubated for 3 

h at 37°C. VLDL and LDL were then precipitated by addition of sodium 

phophotungstate/MgCl2. Lipids were extracted from the precipitate by 

methanol-hexane (1:2, v/v) and [
3
H]CE was separated from [

3
H]cholesterol on 

silica columns, followed by counting of radioactivity. 

 

Plasma apoAI concentration 

Plasma apoAI concentrations were determined using a sandwich ELISA. Rabbit 

anti-mouse apoAI polyclonal antibody (ab20453; Abcam plc, Cambridge, UK) 

was coated overnight onto Costar strips (Costar, Inc., New York, NY) (3 µg/ml) 

at 4°C and incubated with diluted mouse plasma (dilution 1:400,000) for 90 min 

at 37°C. Subsequently, goat anti-mouse apoAI antibody (600-101-196; 

Rockland Immunochemicals, Inc., Gilbertsville, PA; dilution 1:3000) was added 

and incubated for 90 min at 37°C. Finally, HRP-conjugated rabbit anti-goat IgG 

antibody (605-4313; Rockland Immunochemicals; dilution 1:15,000) was added 

and incubated for 90 min at 37°C. HRP was detected by incubation with 

tetramethylbenzidine (Organon Teknika, Boxtel, The Netherlands) for 15 min at 

room temperature. Purified mouse apoAI (A23100m; Biodesign International, 

Saco, ME) was used as a standard. 

 

Radiolabeling of autologous HDL 

One mouse from each experimental group was euthanized by cervical 

dislocation, and blood was drawn from the retro-orbital vein. Sera were 

collected and HDL was isolated after density ultracentrifugation in a SW 40 Ti 

rotor (Beckman Instruments, Geneva, Switzerland) (4°C; 40,000 rpm; 

overnight).
33

 HDL (0.4 µmol HDL-cholesterol) was radiolabeled by incubation 

(37°C; 24 h) with [
3
H]cholesteryl oleyl ether ([

3
H]COEth)-labeled egg yolk 

phosphatidylcholine vesicles (40 µCi; 0.5 mg phospholipid) in the presence of 

lipoprotein deficient serum (1 ml) from E3L.CETP mice. Subsequently, HDL 

was reisolated after density ultracentrifugation (12°C; 40,000 rpm; 24 h).  

 

In vivo clearance of autologous HDL 

After 6 weeks of diet, mice were injected via the tail vein with a trace of 

autologous [
3
H]COEth-labeled HDL (0.2x10

6
 cpm in PBS) at 8:00 am. At the 

indicated time points after injection, blood was collected to determine the 

plasma decay of [
3
H]COEth by scintillation counting (Packard Instruments, 
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Dowers Grove, IL). The total plasma volumes of the mice were calculated from 

the equation V (ml) = 0.04706 x body weight (g), as determined from previous 
125

I-BSA clearance studies.
34

 The fractional catabolic rate (FCR) was calculated 

as pools of HDL-CE cleared per h from the plasma decay curves as described 

previously.
35

 Briefly, curves were fitted using GraphPad Prism software, giving 

the best fit for one-phase exponential decay curves, described by the formula 

Y=span*exp(-k*x)+plateau. Subsequently the FCR was calculated as span/(area 

under the curve). Taking into account the fact that the plasma level of HDL was 

altered by the expression of CETP and fenofibrate treatment, the FCR was also 

calculated from these data as millimolar HDL-CE cleared per hour, based on the 

actual level of HDL-CE in the various mouse groups.  

 

Hepatic mRNA expression, SR-BI protein analysis, and lipid analysis 

Livers were isolated after cervical dislocation. Total RNA was isolated using 

the NucleoSpin
®
 RNA II kit (Macherey-Nagel, Düren, Germany) as 

recommended by the manufacturer. RNA expression was determined in 

duplicate by real-time PCR on a MyiQ Single-Color real-time PCR detection 

system (Bio-Rad Laboratories, Hercules, CA). Primers for CETP
36

 and sr-b1
37

 

have been described previously. Primers for abca1, apoa1, cyp7A1, and pltp are 

listed in Table 1. Expression levels were normalized using hypoxanthine-

guanine phosphoribosyl transferase (HPRT) and cyclophilin as housekeeping 

genes.
37,38

 Hepatic SR-BI protein was determined by immunoblot analysis as 

described previously.
39

 Liver lipids were determined by homogenizing liver 

samples in water (~10% wet w/v) using a mini-bead beater (Biospec Products, 

Inc., Bartlesville, OK; 20 sec; 5,000 rpm), followed by lipid extraction as 

described by Bligh and Dyer.
40

 Extracts were assayed for TC as described 

above. Protein was determined according to the method of Lowry et al.
41

 

 
Table 1. Primers for quantitative real-time PCR analysis 

Gene Forward primer (5'-3') Reverse primer (5'-3') 

abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG 

apoa1 GGAGCTGCAAGGGAGACTGT TGCGCAGAGAGTCTACGTGTGT 

cyp7a1 CAGGGAGATGCTCTGTGTTCA AGGCATACATCCCTTCCGTGA 

pltp TCAGTCTGCGCTGGAGTCTCT AAGGCATCACTCCGATTTGC 

 
Abca1, ATP-binding cassette transporter a1; apoa1, apolipoprotein a1; cyp7a1, cholesterol 

7α-hydroxylase; pltp, phospholipid transfer protein. 

 

Statistical analysis 

All data are presented as means ± SD unless indicated otherwise. Data were 

analyzed using the unpaired Student’s t test. P < 0.05 was considered 

statistically significant. 



Fenofibrate increases HDL by reducing CETP expression 

 49 

Results 

 

Fenofibrate increases HDL-cholesterol in E3L.CETP mice 

To study the dose-dependent effect of fenofibrate on plasma lipid levels on a 

hyperlipidemic background, E3L.CETP mice were fed a cholesterol-rich diet 

with increasing doses of fenofibrate in the diet (0%, 0.004%, 0.012%, and 

0.04%) for 2 weeks each (Fig. 1). Fenofibrate caused a dose-dependent decrease 

in plasma TG levels (up to -62% at the highest dose; P<0.05) (Fig. 1A), and 

only tended to reduce plasma cholesterol levels (up to -35%; NS) (Fig. 1B). 

However, fenofibrate had a great impact on the distribution of cholesterol over 

the various lipoproteins. Whereas on a cholesterol-rich diet, most cholesterol in 

E3L.CETP mice is carried in (V)LDL, fenofibrate resulted in a dose-dependent 

shift of cholesterol from (V)LDL to HDL (Fig. 1C). 

Subsequently, we compared the effect of fenofibrate on plasma lipid levels in 

E3L.CETP mice with those in E3L mice by using the highest dose of fenofibrate 

(0.04%) (Fig. 2). In E3L mice, fenofibrate decreased plasma TG levels (-59%; 

P<0.001) (Fig. 2A) to a similar extent as in E3L.CETP mice (-60%; P<0.01) 

Figure 1. Dose-dependent effect of 

fenofibrate on plasma TG and cholesterol 

in E3L.CETP mice. Mice received a 

Western-type diet with increasing doses 

of fenofibrate in the diet (0%, 0.004%, 

0.012%, and 0.04%) for two weeks each. 

At the end of the 2-week periods, plasma 

TG (A), plasma cholesterol (B), and the 

distribution of cholesterol over 

lipoproteins (C) were determined. Values 

are means ± SD (n=7 per group). 

**P<0.01 compared to control. 
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(Fig. 2B). In both E3L mice and E3L.CETP mice, these effects of fenofibrate on 

plasma TG levels were reflected by a strong reduction in VLDL-TG (not 

shown). Fenofibrate also caused small trends towards lower plasma cholesterol 

levels in both E3L and E3L.CETP mice (Fig. 2C,D). Fenofibrate similarly 

decreased (V)LDL-cholesterol in both E3L mice (-91%) and E3L.CETP mice (-

93%). However, whereas fenofibrate did not affect HDL-cholesterol levels in 

E3L mice, fenofibrate increased HDL-cholesterol in E3L.CETP mice (+91%) 

(Fig. 3), consistent with the dose-escalating study (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of fenofibrate on the distribution of cholesterol over lipoproteins in E3L and 

E3L.CETP mice. E3L mice (A) and E3L.CETP mice (B) received a Western-type diet 

without (white circles) or with (black circles) fenofibrate. Plasmas of the various mouse 

groups were pooled (n=6 per group). Lipoproteins were separated by FPLC, and fractions 

were analyzed for cholesterol. 

 

 

 

Figure 2. Effect of fenofibrate on 

plasma TG and cholesterol in E3L 

and E3L.CETP mice. E3L mice 

(A, C) and E3L.CETP mice (B, 

D) received a Western-type diet 

without (white bars) or with 

(black bars) fenofibrate for 2 

weeks, and plasma TG (A, B) and 

cholesterol (C, D) were 

determined. Values are means ± 

SD (n=6 per group). **P<0.01 

compared with controls. 
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Fenofibrate increases the steady-state plasma HDL level without affecting net 

HDL-CE output in E3L.CETP mice  

To examine the mechanism underlying the fenofibrate-induced increased HDL-

cholesterol in E3L.CETP mice, E3L and E3L.CETP mice were injected with 

autologous [
3
H]COEth-labeled HDL and the plasma decay was determined (Fig. 

4). The expression of CETP per se appeared to accelerate the plasma decay, 

reflected by an increased fractional catabolic rate (FCR) as calculated pools of 

HDL-CE cleared per hour (+65%; P<0.01; Table 2). In E3L mice, fenofibrate 

administration did not affect the clearance of HDL-CE (Fig. 4A; Table 1). In 

contrast, fenofibrate decreased the FCR of HDL in E3L.CETP mice (-27%; 

P<0.01). However, taking into account the fact that CETP expression and 

fenofibrate treatment influence plasma HDL levels (Fig. 3), the FCR was also 

calculated as millimolar HDL-CE cleared per hour. In fact, CETP expression in 

E3L mice, or fenofibrate feeding of either E3L or E3L.CETP mice, did not 

affect the amount (mM) of HDL-CE cleared per hour (Table 2). This indicates 

Figure 4. Effect of fenofibrate 

on the plasma clearance of HDL 

in E3L and E3L.CETP mice. 

E3L mice (A) and E3L.CETP 

mice (B) received a Western-

type diet without (white circles) 

or with (black circles) 

fenofibrate. Mice were injected 

with autologous [
3
H]COEth-

labeled HDL and plasma 
3
H-

activity was determined at the 

indicated time points. Values 

are means ± SD (n=5 per 

group). **P<0.01 compared 

with controls. 
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Table 2. Effect of fenofibrate on the FCR of HDL-CE in E3L and E3L.CETP mice  

  Control Fenofibrate 

FCR (pools HDL-CE per h) 

 E3L 0.067±0.003 0.057±0.004 

 E3L.CETP 0.111±0.006 0.081±0.003* 

FCR (mM HDL-CE per h) 

 E3L 0.166±0.008 0.162±0.011 

 
E3L.CETP 

 

0.142±0.008 

 

0.162±0.007 

 

 

E3L and E3L.CETP mice were fed a Western-type diet with or without fenofibrate, and mice 

were injected with autologous [
3
H]COEth-labeled HDL. The data from Figure 4 were used to 

calculate the FCR as pools of HDL-CE cleared per hour or millimolar HDL-CE cleared per 

hour. Values are expressed as means ± SEM relative to control mice (n=5 mice per group). 

*P<0.01 compared with controls.  
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that CETP expression and fenofibrate feeding alter the steady-state plasma 

HDL-cholesterol level without affecting the net HDL-cholesterol flux through 

plasma. These data indicate that the residual CETP activity in E3L.CETP mice 

on fenofibrate is sufficient to maintain net HDL-CE output. 

 

Fenofibrate does not differentially affect hepatic mRNA expression of genes 

involved in plasma HDL metabolism 

Because differences in genes encoding proteins that are crucially involved in 

HDL metabolism may account for the increase in HDL-cholesterol in 

E3L.CETP mice upon fenofibrate treatment, we examined the effect of 

fenofibrate on their hepatic expression (Fig. 5). The expression of these genes 

was not substantially different in E3L.CETP mice compared with E3L mice. 

Fenofibrate increased Pltp in E3L (3.5-fold; P<0.01) and E3L.CETP mice (2.7-

fold; P<0.05), consistent with previously reported effects of fenofibrate.
11,12

 The 

expression of abca1, which is involved in HDL formation, was similarly 

decreased in E3L (-50%; P<0.05) and E3L.CETP (-33%; P<0.05) mice. 

Likewise, sr-b1 was decreased in E3L (-48%; P<0.05) and E3L.CETP (-42%; 

P<0.05) mice to a similar extent, as reflected by similar reductions in hepatic 

SR-BI protein levels (~-25%) for E3L (P=0.06) and E3L.CETP mice (P<0.05) 

(data not shown). Apoa1 expression was decreased in E3L (-49%; P<0.05) and 

E3L.CETP (-41%; P<0.05) mice, without substantially affecting the plasma 

apoAI level (~80 mg/dL in all groups). The expression of cyp7a1, pltp, abca1, 

sr-b1, and apoa1 is thus similarly affected by fenofibrate in E3L and E3L.CETP 

mice, and cannot explain the differentially raised HDL in E3L.CETP mice as 

compared to E3L mice. 

 

Figure 5. Effect of fenofibrate on hepatic mRNA expression in E3L and E3L.CETP mice. 

E3L mice (A) and E3L.CETP mice (B) were fed a Western-type diet with or without 

fenofibrate. Mice were euthanized, and livers were collected to determine mRNA expression. 

Values are expressed as means ± S.E. relative to control mice (n=4 per group). *P<0.05; 

**P<0.01 compared with controls. 
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Fig. 6. Effect of fenofibrate on 

hepatic CETP mRNA 

expression and cholesteryl ester 

transfer activity in plasma of 

E3L.CETP mice. E3L.CETP 

mice received a Western-type 

diet with or without fenofibrate, 

and mice were euthanized. 

Livers were collected to 

determine CETP mRNA 

expression (A), and plasma was 

assayed for CE transfer activity 

(B). Values are means ± SD 

(n=4-6 per group). **P<0.01 

compared with controls. 

 

 

 

 

 

 

 

 

 

 

 

Fenofibrate decreases hepatic CETP mRNA expression and CE transfer activity 

in plasma 

To investigate whether the effect of fenofibrate on increasing HDL-cholesterol 

in E3L.CETP mice is caused by reduction of CETP activity, we determined the 

hepatic CETP expression and CE transfer activity in plasma (Fig. 6). Indeed, 

fenofibrate markedly decreased CETP expression in E3L.CETP mice (-72%; 

P<0.01) (Fig. 6A). Because the liver X receptor (LXR) strongly regulates the 

expression of CETP,
42

 we determined whether fenofibrate feeding would 

decrease the cholesterol content in the liver. Indeed, fenofibrate reduced the 

hepatic cholesterol content in E3L mice (4.9±2.6 vs 9.6±3.7 µg TC/mg protein) 

and E3L.CETP mice (3.6±1.0 vs 13.0±3.7 µg TC/mg protein; P<0.05). The 

fenofibrate-induced reduction in hepatic CETP expression was accompanied by 

a similar reduction in the CE transfer activity in plasma of E3L.CETP mice (-

73%; P<0.01) (Fig. 6B). Therefore, the HDL-raising effect of fenofibrate in 

E3L.CETP mice is thus likely to be a direct consequence of lower CETP 

expression. 

 

Discussion 

 

In this study, we investigated whether CETP might play a role in the 

fenofibrate-induced increase in HDL-cholesterol. Here we show that fenofibrate 

increases HDL-cholesterol in E3L.CETP mice, as paralleled by a reduction in 

hepatic CETP mRNA and plasma CE transfer activity, whereas fenofibrate does 

not increase HDL in E3L mice.  

We showed previously that E3L mice are highly susceptible to dietary 

interventions with respect to modulating plasma lipid levels, and that these mice 

show a human-like response to drug interventions aimed at reducing plasma 

levels of apoB-containing lipoproteins, including statins (atorvastatin
43

 and 

rosuvastatin)
44

 and fibrates (gemfibrozil).
45

 This is in sheer contrast with wild-

 



Chapter 2 

 54

type mice
6,13

 and more conventional hyperlipidemic mice such as apoE-

deficient
13,46

 or LDL receptor-deficient
47

 mice, which show either an adverse or 

no response to such interventions. In particular, administration of fenofibrate to 

wild-type
13

 and apoE-deficient
13,48

 mice showed an unexpected increase in 

plasma TG and TC levels caused by elevated levels of lipoprotein remnants, 

with a concomitant reduction in HDL-cholesterol. Here we demonstrate that 

E3L mice also show a human-like response to fenofibrate with respect to 

decreasing TG and cholesterol in apoB-containing particles, although HDL-

cholesterol was not increased after 2 weeks of intervention (Fig. 3A). We 

reasoned that introduction of human CETP in these E3L mice, which permits 

CE exchange between HDL and apoB-containing lipoproteins, would result in 

an excellent mouse model to study the effects of fenofibrate on HDL 

metabolism. 

Indeed, we demonstrate that although E3L.CETP mice retain their ability to 

respond to fenofibrate with respect to a similar reduction of VLDL-TG and 

VLDL-cholesterol as compared with E3L mice, they also respond with an 

increase in HDL-cholesterol level. Apparently, the fact that mice normally do 

not express CETP prevents a human-like response to HDL-modulating drug 

interventions, such as fibrate treatment. In agreement with this hypothesis, we 

observed previously that treatment of E3L mice with statins also did not 

increase HDL-cholesterol even though VLDL reductions of as much as 60% 

were achieved.
43,45,49

  

HDL-cholesterol levels can theoretically be modulated by several key proteins 

involved in HDL metabolism, including ABCA1,
10

 SR-BI,
9
 PLTP,

11,23
 

apoAI,
3,6,48,50,51

 and CETP.
22,24,25

 Therefore, we examined the potential 

contribution of each of these factors in the fenofibrate-induced increase of 

HDL-cholesterol in E3L.CETP mice. The HDL-cholesterol level in mice is 

largely determined by the hepatic expression of ABCA1, which plays an 

important role in HDL formation by mediating hepatic cholesterol efflux to 

apoAI.
52

 In fact, it has been reported that treatment of chow-fed rats with 

ciprofibrate increased their hepatic abca1 expression, concomitant with an 

increase in plasma HDL-cholesterol levels.
53

 However, fenofibrate did not 

increase hepatic abca1 expression in either E3L or E3L.CETP mice. On the 

contrary, fenofibrate decreased abca1 mRNA in both genotypes and thus can 

not explain the selective increase of HDL-cholesterol in E3L.CETP mice. 

Whereas bezafibrate did not increase the plasma PLTP mass and activity levels 

in humans,
23

 fenofibrate has been shown to increase the hepatic pltp expression 

in mice, which was associated with increased plasma PLTP activity and HDL 

size, at least in human apoAI transgenic mice.
11

 Accordingly, we found that 

fenofibrate induced the hepatic pltp expression both in E3L and E3L.CETP 

mice. However, the relative increase was even more pronounced in E3L mice as 

compared to E3L.CETP mice, whereas HDL-cholesterol was not affected in 

E3L mice. It is also of note that adenovirus-mediated hepatic expression of 
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PLTP results in a dose-dependent reduction of HDL-cholesterol levels, instead 

of increasing HDL-cholesterol, in both wild-type and human apoAI-transgenic 

mice.
54

 It is thus unlikely that the induction of PLTP is the cause of the increase 

in HDL-cholesterol as observed in E3L.CETP mice.  

In mice, hepatic SR-BI represents the most important pathway for the selective 

clearance of HDL-associated cholesteryl ester from plasma.
55

 It has been shown 

that fenofibrate can downregulate hepatic SR-BI protein in wild-type mice, 

independent of sr-b1 expression, via a posttranscriptional mechanism. This was 

correlated with a substantially increased HDL size, based on fast-performance 

liquid chromatography profiling.
8
 We found that fenofibrate treatment did result 

in a similar reduction of sr-b1 expression in E3L mice (-48%) and E3L.CETP 

mice (-42%), with a concomitant reduction in hepatic SR-BI protein levels (~-

25%). Although fenofibrate did not increase in large HDL-1 in E3L mice after 

only 2 weeks of fenofibrate intervention (Fig 3A), cholesterol within large 

HDL-1 was indeed increased (+69%) after prolonged treatment of E3L mice 

(i.e., 6 weeks), as has also been shown for wild-type mice,
8
 In E3L.CETP mice 

fenofibrate treatment for 2 weeks increased the levels of cholesterol in regularly 

sized HDLs but also increased the levels of HDL-1 to some extent (Figs. 1C, 

3B). Therefore, the reduction in hepatic SR-BI levels may contribute to the 

appearance of HDL-1 in both E3L and E3L.CETP mice but does not explain the 

increase of regularly sized HDL in E3L.CETP mice. 

In APOA1 transgenic mice, human apoAI hepatic mRNA and plasma protein 

levels were increased after fenofibrate treatment,
6
 probably by the binding of 

PPARα to a positive PPRE in the human apoAI gene promoter.
51

 Given the tight 

relation between HDL-cholesterol and apoAI levels in humans, it could be 

expected that upregulation of apoAI expression would be the main causal factor 

for increasing HDL-cholesterol levels in humans. Fenofibrate treatment has an 

opposite effect on murine apoAI (i.e., reduction of expression and plasma 

levels),
6
 which theoretically could easily explain why fenofibrate does not 

increase HDL-cholesterol in mice. However, although we do observe a 

reduction in hepatic apoa1 expression upon fenofibrate treatment of E3L (-49%) 

and E3L.CETP (-41%) mice, HDL-cholesterol was nevertheless markedly 

increased in E3L.CETP mice. The fact that plasma apoAI was not affected by 

fenofibrate treatment may thus be explained by increased lipidation of apoAI, 

thereby preventing the clearance of apoAI. 

Collectively, these data thus suggest that downregulation of CETP expression is 

the predominant cause of the fenofibrate-induced elevation of HDL-cholesterol. 

Expression of CETP in E3L mice decreased the HDL-cholesterol level (~-35%) 

but did not affect the HDL turnover, calculated as millimolar HDL-CE cleared 

per hour. Likewise CETP inhibition in rabbits, although increasing HDL-

cholesterol, does not compromise the HDL-CE clearance from plasma.
56

  

Treatment of E3L.CETP mice with fenofibrate resulted in an increased HDL-

cholesterol level, strongly decreased hepatic CETP expression levels, and 
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reduced cholesteryl ester transfer activity in plasma. Thus the increase in HDL-

cholesterol may be caused by the combination of reduced hepatic CETP 

expression and reduced levels of apoB-containing lipoproteins as CE acceptors, 

thereby inhibiting the CETP-mediated transfer of CE from HDL to (V)LDL. 

It is tempting to speculate about the mechanism(s) underlying the effect of 

fenofibrate on hepatic CETP expression. Dietary cholesterol has been shown to 

increase CETP mRNA expression in CETP transgenic mice,
28,29

 presumably via 

an LXR responsive element in the CETP promoter.
42

 Conversely, a decrease in 

hepatic CETP mRNA expression might thus be the consequence of a reduction 

in LXR signaling. Fenofibrate treatment indeed decreased hepatic cholesterol, 

which is likely to reduce the level of oxysterols, the natural ligands of LXRα. 

Down-regulation of LXRα is supported by a concomitant decrease in the 

expression of cyp7a1, another LXR-target gene.
57

 This is in accordance with the 

observation that administration of ciprofibrate to wild-type mice caused a  65% 

reduction in hepatic cyp7a1 mRNA.
58

 Nevertheless it should be mentioned that 

cyp7a1 is also regulated directly by fibrates via a negative PPRE in its promoter 

sequence.
59
 A reduction in LXRα might also explain the reduction of abca1 

expression.
60

 In addition to these mechanisms explaining reduced CETP 

expression by fenofibrate, a potential PPRE in the promoter region of CETP 

was recently identified,
61

 which provides the possibility for direct regulation of 

CETP by PPARα agonists, although it is unclear whether this potential PPRE is 

functional.  

Our finding that fenofibrate reduced CETP activity in E3L.CETP mice 

corroborates the outcome of two human studies. Although one study failed to 

detect an effect of fenofibrate on plasma CETP activity,
62

 fenofibrate treatment 

did decrease CETP activity by 26% in subjects with combined hyperlipidemia
24

 

and by 18% in subjects with the metabolic syndrome.
63

 Based on our 

experimental study, the fenofibrate-induced decrease in CETP activity in 

humans is likely also a causal factor for the generally observed increase in 

HDL-cholesterol. 

Fibrate treatment has been associated with a reduction of cardiovascular 

disease.
5
 The recent FIELD study, which assessed the effects of fenofibrate on 

cardiovascular risk in subjects with type 2 diabetes mellitus in a long-term, 

controlled trial, showed a reduction in total cardiovascular events, but did not 

reveal a reduced risk of the primary outcome of coronary events.
64

 Nevertheless, 

the authors suggested that a more beneficial outcome might have been masked 

by a larger portion of statin treatment in the placebo group as compared with the 

fenofibrate group. Even though the benefit of an increase in HDL-cholesterol by 

CETP inhibition is still under debate,
65-68

 and despite the recent failure of the 

CETP inhibitor torcetrapib in the ILLUMINATE study,
69

 increasing HDL-

cholesterol levels is still generally considered anti-atherogenic. Besides the 

ability of fibrates to potently reduce plasma TG, their concomitant effect on 

increasing HDL by reducing CETP expression may thus be an additional 
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advantageous anti-atherogenic property. We speculate that combination 

therapies of fibrates (i.e., reducing CETP expression) with small molecule 

CETP inhibitors (i.e., reducing plasma CETP activity) may help to further 

reduce cardiovascular risk. 

Together, our data show that fenofibrate increases HDL-cholesterol by reducing 

CETP expression and plasma CE transfer activity in E3L.CETP mice. 

Therefore, we postulate that reduction of CETP expression also contributes to 

the increase in HDL that is found in human subjects treated with fibrates. 

Furthermore, we anticipate that the E3L.CETP mouse is a valuable model in 

which to test the effect of combination therapies (i.e., fibrates and CETP 

inhibitors) on plasma lipid metabolism and atherosclerosis.  
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Abstract 
 

Objective: In addition to lowering low-density lipoprotein (LDL)-cholesterol, 

statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans 

and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our 

aim was to determine whether the increase in HDL depends on CETP 

expression. 

 

Methods and results: APOE*3-Leiden (E3L) mice, with a human-like 

lipoprotein profile and a human-like responsiveness to statin treatment, were 

crossbred with mice expressing human CETP under control of its natural 

flanking regions resulting in E3L.CETP mice. E3L and E3L.CETP mice were 

fed a Western-type diet with or without atorvastatin. Atorvastatin (0.01% in the 

diet) reduced plasma cholesterol in both E3L and E3L.CETP mice (-26% and -

33%, P<0.05), mainly in VLDL, but increased HDL-cholesterol only in 

E3L.CETP mice (+52%). Hepatic mRNA expression levels of genes involved in 

HDL metabolism, such as phospholipid transfer protein (Pltp), ATP-binding 

cassette transporter A1 (Abca1), scavenger receptor class B type I (Sr-b1), and 

apolipoprotein AI (Apoa1), were not differently affected by atorvastatin in 

E3L.CETP mice as compared to E3L mice. However, in E3L.CETP mice, 

atorvastatin down-regulated the hepatic CETP mRNA expression (-57%; 

P<0.01) as well as the total CETP level (-29%) and CE transfer activity (-36%; 

P<0.05) in plasma. 

 

Conclusions: Atorvastatin increases HDL-cholesterol in E3L.CETP mice by 

reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as 

related to lower hepatic CETP expression and a reduced plasma (V)LDL pool. 
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Introduction 

 

Epidemiological studies have established that a high level of low-density 

lipoprotein (LDL)-cholesterol is a major cardiovascular risk factor. In the past 

decades, statins have been successfully used to reduce LDL-cholesterol. Statins 

inhibit the rate-limiting enzyme of cholesterol synthesis, i.e. 3-hydroxy-3-

methylglutaryl coenzyme A (HMGCoA) reductase, resulting in hepatic 

depletion of cholesterol. As a consequence, VLDL production is reduced and 

the hepatic expression of the LDL receptor (LDLr) is upregulated, leading to 

decreased plasma cholesterol levels in apoB-containing lipoproteins (i.e., VLDL 

and LDL).
1
 Indeed, a meta-analysis of 25 studies indicated that statins reduce 

LDL-cholesterol levels by 20-40%.
2
 In addition, statins elevate high-density 

lipoprotein (HDL)-cholesterol levels by typically 5-15%.
3-5

 This effect is 

already observed at a low dose (20 mg/day) while higher doses (40 and 80 

mg/day) have no additional elevating effects on HDL levels.
3-5

 

Low HDL-cholesterol has been confirmed as a strong and independent risk 

factor for cardiovascular disease. An increase in HDL-cholesterol of 1 mg/dL 

results in a 2-3% decrease in cardiovascular risk.
6
 One of the key players in 

HDL-metabolism is cholesteryl ester transfer protein (CETP). CETP is involved 

in the exchange of triglycerides (TG) and cholesteryl esters (CE) between 

lipoproteins, resulting in the net flux of CE from HDL towards apoB-containing 

lipoproteins (e.g. VLDL and LDL) in exchange for TG.
7
 Treatment of patients 

with combined hyperlipidemia with atorvastatin resulted in increased levels of 

relatively CE-rich large HDL2a with a concomitant decrease in CE-poor small 

HDL3c,
8
 as associated with a reduction in CETP mass.

8
 Likewise, in type 2 

diabetic subjects carrying the CETP TaqIB polymorphism, the increase in HDL-

cholesterol (+7.2%) after atorvastatin treatment was correlated with a reduction 

in CETP mass (-32%).
9
 These data suggest that the effects of statin treatment on 

HDL-cholesterol levels may actually be caused by a reduction in the CETP-

mediated transfer of CE.  

Therefore, the aim of this study was to evaluate whether the statin-induced 

increase in HDL-cholesterol would depend on CETP expression. Previously, we 

demonstrated that APOE*3-Leiden (E3L) mice, with a human-like lipoprotein 

profile
10

 show a human-like response to atorvastatin with reduced (V)LDL-

cholesterol levels accompanied by reduced VLDL production.
11

 In the current 

study, these mice were crossbred with mice expressing human CETP under 

control of the natural flanking regions, resulting in E3L.CETP mice.
12

 We 

treated E3L and E3L.CETP mice with atorvastatin to investigate whether CETP 

expression contributes to the HDL-raising effect of atorvastatin.  
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Methods 

 

Animals 

Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP 

minigene under the control of natural flanking sequences were crossbred with 

hemizygous E3L mice
10

 at our Institutional Animal Facility to obtain E3L
 
and 

E3L.CETP littermates (C57Bl/6J background).
12

 In this study, mice were 

housed under standard conditions in conventional cages with free access to food 

and water. Male mice were fed a semi-synthetic diet containing 15% (w/w) fat 

(Hope Farms, Woerden, The Netherlands), supplemented with 0.25% (w/w) 

cholesterol (Sigma, St. Louis, MO) for two weeks. Subsequently, the mice 

received the same diet without or with 0.01% (w/w) atorvastatin (Lipitor
®
20, 

Pfizer B.V., Capelle a/d IJssel, The Netherlands) for 6 weeks (i.e. approx. 10 

mg/kg/day, which corresponds to a dose of 70 mg/day for an average 70 kg 

person, assuming a 10-fold higher metabolic rate in mice as compared to 

humans). To study whether atorvastatin sorts similar effects in female mice, and 

to evaluate the dose-response relationship, female E3L.CETP mice were fed a 

diet containing 15% (w/w) fat, supplemented with 0.1% (w/w) cholesterol and 

0.001% or 0.01% of atorvastatin for two weeks successively. Experiments were 

performed after 4 h of fasting at 12:00 pm with food withdrawn at 8:00 am, 

unless indicated otherwise. The institutional Ethical Committee on Animal Care 

and Experimentation has approved all experiments.  

  

Plasma lipid and lipoprotein analysis 

Plasma was obtained via tail vein bleeding and assayed for total cholesterol 

(TC) using the enzymatic kit 236691 (Roche Molecular Biochemicals, 

Indianapolis, IN, U.S.A.). The distribution of lipids over plasma lipoproteins 

was determined by fast-performance liquid chromatography (FPLC) as 

described previously.
12
 

 

Hepatic liver lipid levels  

Livers were isolated from control-treated and atorvastatin-treated mice after 

cervical dislocation. A small piece of liver was homogenated in 400 µL PBS 

and 1.5 mL CH3OH:CHCl3 (2:1, v/v) was added. After centrifugation, lipids 

were extracted from the supernatant with CHCl3 and H2O (1:1, v/v) and the 

CHCl3 phase was dried. Lipids were dissolved in H2O with 2% Triton-X100. 

TC levels were assayed as described above. Free cholesterol (FC) was analyzed 

with the Free Cholesterol C kit (WAKO, Neuss, Germany), and cholesteryl 

esters (CE) were determined as the difference between TC and FC. 

Phospholipids (PL) and TG were analyzed with the, phospholipids B kits 

(Wako, Neuss Germany) and the enzymatic kit 1488872 (Roche Molecular 

Biochemicals, Indianapolis, IN, U.S.A.), respectively. 
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Plasma CETP level 

The total CETP level in plasma was measured as the transfer of [
3
H]cholesteryl 

oleate from exogenous human LDL to HDL as described.
12

  

 

Plasma cholesteryl ester transfer activity 

The transfer of newly synthesized CE in plasma was assayed by a radioisotope 

method as previously described.
13

 In short, [
3
H]cholesterol was complexed with 

BSA and incubated overnight at 4°C with mouse plasma to equilibrate with 

plasma free cholesterol. Subsequently, the plasma samples were incubated for 3 

h at 37°C. VLDL and LDL were then precipitated by addition of sodium 

phophotungstate/MgCl2. Lipids were extracted from the precipitate by 

methanol: hexane (1:2, v/v) and [
3
H]CE was separated from [

3
H]cholesterol on 

silica columns, followed by counting of radioactivity. 

 

Plasma apoAI concentration 

Plasma apoAI concentrations were determined using a sandwich ELISA. 

Hereto, rabbit anti-mouse apoAI polyclonal antibody (ab20453; Abcam plc, 

Cambridge, UK) was coated overnight onto Costar strips (Costar, Inc., New 

York, NY) (3 µg/ml) at 4°C and incubated with diluted mouse plasma (dilution 

1:400,000) for 90 min at 37°C. Subsequently, goat anti-mouse apoAI antibody 

(600-101-196; Rockland Immunochemicals, Inc., Gilbertsville, PA; dilution 

1:3000) was added and incubated for 90 min at 37°C. Finally, horse radish 

peroxidase (HRP)-conjugated rabbit anti-goat IgG antibody (605-4313; 

Rockland; dilution 1:15000) was added and incubated for 90 min at 37°C, and 

HRP was detected by incubation with tetramethylbenzidine (Organon Teknika, 

Table 1. Primers for quantitative real-time PCR analysis. 

Gene Forward primer (5'-3') Reverse primer (5'-3') 

Hmgcoa red. CCGGCAACAACAAGATCTGTG ATGTACAGGATGGCGATGCA 

Pltp TCAGTCTGCGCTGGAGTCTCT AAGGCATCACTCCGATTTGC 

Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG 

Sr-b1 GTTGGTCACCATGGGCCA CGTAGCCCCACAGGATCTCA 

Apoa1 GGAGCTGCAAGGGAGACTGT TGCGCAGAGAGTCTACGTGTGT 

CETP CAGATCAGCCACTTGTCCAT CAGCTGTGTGTTGATCTGGA 

Abcg5 TGTCCTACAGCGTCAGCAACC GGCCACTCTCGATGTACAAGG 

Abcg8 GACAGCTTCACAGCCCACAA GCCTGAAGATGTCAGAGCGA 

Lpl GTGGCCGAGAGCGAGAAC TCCACCTCCGTGTAAATCAAGA 

Srebp-1c GGAGCCATGGATTGCACATT CCTGTCTCACCCCCAGCATA 

Ldlr GCATCAGCTTGGACAAGGTGT GGGAACAGCCACCATTGTTG 

 

Abca1, ATP-binding cassette transporter A1; Abcg5/8, ATP-binding cassette transporter 

G5/G8, Apoa1, apolipoprotein AI; CETP, cholesteryl ester transfer protein; Hmgcoa 

reductase, 3-hydroxy-3-methylglutaryl coenzyme A reductase; Ldlr, low density lipoprotein 

receptor; Lpl, lipoprotein lipase; Pltp, phospholipid transfer protein; Sr-b1, scavenger 

receptor class B type I; Srepb-1c, sterol regulatory element-binding protein-1c. 
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Boxtel, The Netherlands) for 15 min at room temperature. Purified mouse 

apoAI (A23100m; Biodesign International, Saco, Maine, USA) was used as a 

standard. 

 

Hepatic mRNA expression and SR-BI protein analysis 

Livers were isolated after cervical dislocation. Total RNA was isolated using 

the NucleoSpin
®
 RNA II kit (Macherey-Nagel, Düren, Germany) as 

recommended by the manufacturer. RNA expression was determined in 

duplicate by real-time PCR on a MyiQ Single-Color real-time PCR detection 

system (Bio-Rad Laboratories, Hercules, CA, U.S.A.). Primers are listed in 

online Table 1. Expression levels were normalized, using hypoxanthine-guanine 

phosphoribosyl transferase (HPRT) and cyclophilin as housekeeping genes.
14
 

Hepatic SR-BI protein was determined by immunoblot analysis exactly as 

described previously.
15
  

 

Statistical analysis 

All data are presented as means ± SD unless indicated otherwise. Data were 

analyzed using the unpaired Student’s t test unless indicated otherwise. P-values 

less than 0.05 were considered statistically significant. SPSS 12.0.01 was used 

for statistical analysis. 

 

Results 

 

Atorvastatin increases HDL-cholesterol in E3L.CETP mice 

On a diet containing 0.25% (w/w) cholesterol, atorvastatin (0.01%, w/w) 

reduced plasma total cholesterol in both E3L mice from 5.1 ± 0.9 mM to 3.8 ± 

1.2 mM (-26%; P<0.05) and E3L.CETP mice from 4.3 ± 0.8 mM to 2.9 ± 1.0 

mM (-33%; P<0.05) (Fig. 1), without substantially affecting TG levels (not 

shown). These effects were reflected by a strong decrease in (V)LDL-

cholesterol in E3L mice (-86%) and E3L.CETP mice (-88%) (Fig. 2). However, 

whereas atorvastatin did not affect HDL-cholesterol E3L mice (3.2 mM vs 2.9 

mM) (Fig. 2A), it did raise HDL-cholesterol (+52%) in E3L.CETP mice (2.1 

mM vs 1.4 mM) (Fig. 2B).  

Figure 1. Effect of atorvastatin on 

plasma total cholesterol levels. E3L 

(A) and E3L.CETP (B) mice 

received a diet containing 0.25% 

(w/w) cholesterol without (white 

bars) or with (black bars) 0.01% 

(w/w) atorvastatin for 6 weeks. 

Plasma was obtained, and assayed 

for total cholesterol. Values are 

means ± SD (n=6 per group). 

*P<0.05 compared to control. 
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Figure 2. Effect of atorvastatin on the distribution of cholesterol over lipoproteins. E3L (A) 

and E3L.CETP (B) mice received a cholesterol-containing diet without (white circles) or with 

(black circles) atorvastatin for 6 weeks. Plasmas of the various mouse groups were pooled 

(n=6 per group). Lipoproteins were separated by FPLC, and fractions were analyzed for 

cholesterol. 

 

 

 

 

 

Atorvastatin also reduced cholesterol levels in the liver of E3L mice (-24%) and 

E3L.CETP mice (-32%) (P<0.05). This decrease in hepatic cholesterol was 

mainly confined to the cholesteryl ester content in E3L mice (-38%) and 

E3L.CETP mice (-60%) (P<0.05)(Fig. 3).  

  

Atorvastatin does not differentially affect hepatic mRNA expression of genes 

involved in HDL metabolism in E3L versus E3L.CETP mice 

Atorvastatin increased the hepatic expression of Hmgcoa reductase both in E3L 

mice (2.5-fold; P<0.05) and in E3L.CETP mice (2.8-fold; P<0.05) (Fig. 4). 

Concomitantly, Ldlr expression was increased in E3L mice (+22%) and 

E3L.CETP mice (+24%) (not shown). These effects are in line with previous 

observations in E3L mice,
16

 and likely reflect an attempt of the liver to maintain 

its cholesterol balance. 

Since atorvastatin may affect PLTP, ABCA1, SR-BI, and apoAI, which are 

crucially involved in HDL metabolism, and may account for the increase in 

HDL-cholesterol in E3L.CETP mice upon atorvastatin treatment, we examined 

the effect of atorvastatin on their hepatic mRNA expression (Fig. 4). The 

expression of these genes was not substantially different in E3L.CETP mice as 

compared to E3L mice (<16%, not significant). Atorvastatin tended to increase 

the expression of Pltp, involved in remodeling of HDL by mediating transfer of 

phospholipids between lipoproteins, in E3L mice (+34%) and E3L.CETP mice 

(+69%), which did not reach statistical significance. The expression of Abca1, 

which is an important determinant for HDL formation, was decreased by  
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atorvastatin in E3L mice (-59%; P<0.05) and E3L.CETP mice (-45%; P<0.05) 

to a similar extent. The expression of Sr-b1, which is largely involved in the 

selective uptake of HDL-CE in mice, tended to be decreased in E3L (-30%) and 

E3L.CETP (-27%) mice, but hepatic SR-BI protein levels were unaffected in 

both mouse groups (not shown). Also, in both types of mice, atorvastatin did not 

increase hepatic Apoa1 expression or the plasma apoAI levels (not shown). 

Atorvastatin thus affects the mRNA expression of Pltp, Abca1, Sr-b1, and 

Apoa1 to a similar extent in E3L and E3L.CETP mice, and is thus unlikely to 

explain the differentially raised HDL in E3L.CETP mice as compared to E3L 

mice.  

In general, atorvastatin tended to decrease the expression of LXR target genes, 

including Abcg5 (-2% and -38%), Abcg8 (-26% and -46%), Lpl (-85% and -

77%) and Srebp-1c (-31% and -32%) in E3L and E3L.CETP mice, respectively. 

 

Atorvastatin decreases hepatic CETP mRNA expression and cholesteryl ester 

transfer activity in plasma of E3L.CETP mice 

To investigate whether atorvastatin increases HDL-cholesterol in E3L.CETP 

mice by reduction of CETP activity, we determined the hepatic CETP mRNA 

expression, the total plasma CETP level, and the CE transfer activity in plasma 

(Fig. 5). Indeed, atorvastatin markedly decreased CETP expression in 

E3L.CETP mice (-57%; P<0.01) (Fig. 5A). This effect was accompanied by a 

trend towards a reduction in the total plasma CETP level (-29%), which did not 

reach statistical significance, probably related to the relatively high variation in 

combination with the limited group size (Fig. 5B). Additionally, the CE transfer 

activity in plasma of E3L.CETP mice was reduced (-36%; P<0.05) (Fig. 5C). 

Taken together, the HDL-raising effect of atorvastatin in E3L.CETP mice 

appears a direct consequence of reduced CETP expression. 

Figure 3. Effect of atorvastatin on hepatic lipid levels. E3L (A) and E3L.CETP (B) mice 

were fed a cholesterol-containing diet without (white bars) or with (black bars) atorvastatin. 

After 6 weeks, livers were collected and lipids were extracted. Total cholesterol (TC), free 

cholesterol (FC), cholesteryl esters (CE), triglycerides (TG) and phospholipids (PL) were 

quantified. Values are means ± SD (n=3-5 per group). *P<0.05 compared to control. 
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Atorvastatin dose-dependently decreases CETP and increases HDL  

To determine whether atorvastatin also reduces CETP and increases HDL-

cholesterol in female mice, and to evaluate whether these effects would be dose-

dependent, female E3L.CETP mice were fed a cholesterol-containing diet that 

successively contained 0.001% and 0.01% of atorvastatin (w/w) for two weeks 

each. Atorvastatin dose-dependently decreased plasma cholesterol (-34% and -

71%, P<0.01). This was accompanied by a dose-dependent increase in HDL-

cholesterol levels (+118% and +176%) and reductions in total plasma CETP 

activity (-31% and -61%; P<0.01) (not shown).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of atorvastatin on hepatic mRNA expression of genes. E3L (A) and 

E3L.CETP (B) mice were fed a cholesterol-containing diet without (white bars) or with 

(black bars) atorvastatin. After 6 weeks, livers were collected to determine mRNA 

expression. Values are expressed as means ± S.E. relative to control mice (n=4 per group). 

*P<0.05 compared to control. 

Figure 5. Effect of atorvastatin on hepatic CETP mRNA expression and cholesteryl ester 

transfer activity in plasma. E3L.CETP mice were fed a cholesterol-containing diet without 

(white bars) or with (black bars) atorvastatin. After 6 weeks, livers were collected to 

determine CETP mRNA expression (A), and plasma was assayed for total CETP level (B) 

and CE transfer activity (C). Values are means ± SD (n=4-6 per group). *P<0.05; **P<0.01. 
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Figure. 6. Proposed mechanism underlying the HDL-raising effect of statins. See text for 

explanation. CE, cholesteryl ester; TG, triglyceride. 

 

Discussion 

 

E3L mice respond to statin treatment with respect to lowering of apoB-

containing lipoproteins and reduced atherosclerosis development similarly as 

humans,
11,16,17

 whereas statins do not affect or even increase plasma cholesterol 

levels in apoE-deficient mice
18,19

 and LDL receptor-deficient mice.
20

 However, 

whereas statins increase HDL in humans, atorvastatin and rosuvastatin did not 

increase HDL levels in E3L mice.
11,16,17

 

To investigate whether the statin-induced elevation of HDL-cholesterol in 

humans depends on CETP expression, we crossbred E3L mice with human 

CETP transgenic mice. We found that atorvastatin decreased (V)LDL in both 

E3L and E3L.CETP mice but increased the steady-state HDL-cholesterol level 

only in E3L.CETP mice, which was not observed in E3L littermates. We 

previously showed that atorvastatin reduces plasma cholesterol in E3L mice by 

reducing VLDL production.
11

 Since atorvastatin similarly reduces (V)LDL 

cholesterol in E3L.CETP mice as compared to E3L mice, and CETP expression 

per se does not affect VLDL production,
21

 it is likely that the mechanisms by 

which atorvastatin reduces (V)LDL-cholesterol are similar in E3L.CETP mice 

and E3L mice. In addition, the mild increase in LDLr expression in both E3L 

and E3L.CETP mice may contribute to lower plasma cholesterol levels. The 

increase in HDL was accompanied by decreased hepatic CETP mRNA 

expression levels with a concomitant reduction in plasma CE transfer activity. 

Apparently, the fact that mice naturally lack CETP expression prevents the 

atorvastatin-induced increase in HDL-cholesterol in mice. 

Since several additional key players in HDL metabolism might have been 

affected differently by atorvastatin treatment in E3L.CETP as compared to E3L 
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mice, and thus participate in the HDL-cholesterol raising effect, we have also 

evaluated the effect of atorvastatin on the hepatic expression of Apoa1, Abca1, 

Pltp, and Sr-b1. ApoAI is involved in the generation formation nascent HDL 

particles,
22

 which acquire cholesterol via ABCA1. In fact, the HDL-cholesterol 

level in mice is largely determined by the hepatic expression of ABCA1.
23

 

PLTP plays an important role in the remodeling of HDL, by facilitating 

phospholipid transfer to HDL during its maturation from discoidal HDL into 

spherical HDL.
24

 Finally, at least in mice, hepatic SR-BI is crucially involved in 

the selective uptake of HDL-CE.
25

 We found that atorvastatin did not affect the 

hepatic expression of Pltp, Sr-b1, and Apoa1. Atorvastatin did decrease Abca1 

expression in E3L and E3L.CETP mice. However, since a decreased Abca1 

expression would be expected to lower HDL levels, it also cannot be a causal 

factor for the selective elevation of HDL in E3L.CETP mice. Previous 

experiments in mice in which hepatic ABCA1 expression levels were 

modulated specifically, have shown a causal relationship between hepatic 

ABCA1 expression and plasma HDL-cholesterol. In our study, atorvastatin 

primarily decreases CETP expression as related to a reduced hepatic cholesterol 

content. We speculate that, as a consequence rather than as a cause, the liver 

attempts to maintain its cholesterol balance by an upregulation of LDL 

receptors to enhance cholesterol influx and a down-regulation of ABCA1 to 

decrease cholesterol efflux. 

Taken together, the selective raise in HDL-cholesterol in E3L.CETP mice 

cannot be explained by atorvastatin-mediated effects on apoAI, ABCAI, PLTP, 

or SR-BI, but is primarily caused by the reduction in CETP expression. Both a 

decrease in plasma CETP activity and a reduction in (V)LDL (i.e. acceptor of 

HDL-CE) can account for a reduction in CE transfer activity, which in its turn 

causes the increase in HDL-cholesterol. In addition to its transfer activity, 

CETP has also been implicated in the direct
26

 and in the SR-BI-mediated
27

 

HDL-CE uptake by hepatocytes. Inhibition of these uptake pathways by 

atorvastatin via reducing cellular CETP may thus potentially also contribute to 

the increase in HDL-cholesterol. 

The atorvastatin-induced down-regulation of CETP expression is presumably 

caused by a reduction in plasma and hepatic cholesterol levels. Cholesterol 

feeding of CETP transgenic mice increases hepatic CETP mRNA expression via 

an LXR responsive element in the CETP promoter.
28

 Conversely, atorvastatin 

may down-regulate CETP expression by reducing LXR signaling, as 

atorvastatin reduced plasma and hepatic cholesterol levels
16

 and consequently 

probably also hepatic oxysterols, the natural ligands of LXRα. In line with this 

hypothesis, the expression of other LXR target genes such as ABCG5, ABCG8, 

LPL and SREBP-1c were also reduced upon atorvastatin treatment. In addition, 

the CETP promoter activity is affected by several other regulatory transcription 

factors,
7
 which alone or in combination could also be responsible for decreased 

transcription. The fact that atorvastatin treatment of humans also decreases 
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plasma CETP
8,9

 may well be explained by similar regulation of CETP 

expression. 

Based on our collective data, we thus propose the following mechanism by 

which statins raise HDL-cholesterol, as summarized in Fig. 6. By inhibiting 

HMGCoA reductase activity, statins decrease the hepatic lipid content. This 

results in decreased (V)LDL levels by a lower VLDL production and a higher 

(V)LDL clearance. In addition, reduction in hepatic cholesterol results in 

reduced levels of hepatic oxysterols (i.e. the natural ligands of LXRα) and, 

consequently, decreased LXRα-induced hepatic expression of CETP. Therefore, 

the HDL-cholesterol levels are raised by lower (V)LDL levels and lower CETP 

expression, resulting in decreased CE transfer activity from HDL to (V)LDL. 

Clinical studies have established that statins improve the survival rate of 

patients with hypercholesterolemia and coronary artery disease by lowering 

LDL-cholesterol and by their pleiotropic anti-inflammatory effects.
29

 However, 

a high residual cardiovascular risk still remains.
3
 Even with aggressive 

atorvastatin treatment in the PROVE-IT study, the risk remained 60-70% 

despite greater protection against death or major cardiovascular events.
30

 

Therefore, concomitant raising of HDL-cholesterol is generally considered to 

enhance the anti-atherogenic potential of statins. Since our novel E3L.CETP 

mouse model is responsive to modulation of apoB-containing lipoproteins as 

well as HDL levels, we anticipate that our mouse model will be valuable to 

study the effect of such HDL-raising therapeutic strategies, alone or in 

combination with (V)LDL-lowering strategies, on plasma lipid metabolism and 

atherosclerosis development, and to study the underlying mechanisms. 

In conclusion, our results show that atorvastatin increases HDL-cholesterol by 

reducing the hepatic CETP expression and plasma CE transfer activity in 

E3L.CETP mice. Therefore, we postulate that reduction of CETP expression 

contributes to the increase in HDL that is found in human subjects treated with 

statins. 
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Abstract 

 

Objective: Niacin potently decreases plasma triglycerides and LDL-cholesterol. 

In addition, niacin is also the most potent HDL-cholesterol increasing drug used 

in the clinic. In the present study, we aimed at elucidation of the mechanism 

underlying its HDL-raising effect. 

 

Methods and Results: In APOE*3Leiden transgenic mice expressing the human 

CETP transgene, niacin dose-dependently decreased plasma triglycerides (up to 

-77%, P<0.001) and total cholesterol (up to -66%, P<0.001). Concomitantly, 

niacin dose-dependently increased HDL-cholesterol (up to +87%, P<0.001), 

plasma apoAI (up to +72%, P<0.001), as well as the HDL particle size. In 

contrast, in APOE*3Leiden mice not expressing CETP, niacin also decreased 

total cholesterol and triglycerides but did not increase HDL-cholesterol. In fact, 

in APOE*3Leiden.CETP mice, niacin dose-dependently decreased the hepatic 

expression of CETP (up to -88%; P<0.01) as well as plasma CETP mass (up to -

45%, P<0.001) and CETP activity (up to -52%, P<0.001). Additionally, niacin 

dose-dependently decreased the clearance of apoAI from plasma and reduced 

the uptake of apoAI by the kidneys (up to -90%, P<0.01).  

 

Conclusion: Niacin markedly increases HDL-cholesterol in 

APOE*3Leiden.CETP mice by reducing the CETP activity, as related to lower 

hepatic CETP expression and a reduced plasma (V)LDL pool, and increases 

HDL-apoAI by decreasing the clearance of apoAI from plasma.  
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Introduction 

 

Dyslipidemia is an important risk factor for the development of cardiovascular 

disease (CVD). Although lowering of LDL-cholesterol (C) by e.g. statins 

reduces CVD risk by approximately 30%, substantial residual cardiovascular
 

risk remains, even with very aggressive reductions in levels
 
of LDL-C.

1-3
 

Because of clinical studies, which have shown that HDL-C, independently of 

LDL-C, is inversely correlated with the risk of CVD,
4,5

 attention has shifted 

toward strategies for targeting HDL composition as adjunctive therapy to 

prevent
 
and treat CVD. Current strategies to mildly increase HDL-C levels 

include aggressive overall lifestyle modification (i.e. exercise, diet, weight loss, 

and smoking cessation), and modest increases in HDL-C levels are achieved 

with statins
6
 and fibrates (5-10%).

7
 

Niacin (nicotinic acid, vitamin B3) has been described to exhibit lipid-

modifying capacities already since the 1950s. Since then various (clinical) 

studies have shown the beneficial effects of niacin on plasma lipid levels. 

Treatment with niacin alone was associated with a 27% reduction in non-fatal 

myocardial infarction and it reduced all cause mortality by 11%.
8,9

 In 

combination with colestipol (FATS trial) or simvastatin (HATS trial), niacin 

reduced cardiac events by as much as 80-90%.
10,11

 These potent atherogenic 

properties of niacin are thought to be attributable to its marked HDL-elevating 

effect (+20% to +30%), besides it potent effect on reducing plasma TG (-40% to 

-50%) and LDL-C (-20%).
7,12

 In fact, niacin is currently the most effective 

therapy for elevating HDL-C. 

The mechanism underlying the ability of niacin to reduce the plasma (V)LDL 

level has been well-studied. By selective binding to GPR109A on adipocytes, 

niacin suppresses hormone sensitive triglyceride lipase (HSL) activity, resulting 

in a decreased release of free fatty acids (FFA) from adipose tissue and 

decreased plasma FFA levels.
13

 The resulting reduced supply of FFA towards 

the liver is believed to bring about a decreased hepatic VLDL-TG production, 

resulting in reduced VLDL-TG and (V)LDL-C levels.
13,14

 In contrast, the 

mechanism underlying the HDL-C raising effect of niacin has not been 

elucidated as yet. This is probably related to the lack of suitable animal models 

that respond in a human-like manner to HDL-raising drug interventions. In 

wild-type mice and apoE-knockout mice (the classical animal model for 

hyperlipidemia and atherosclerosis), rats and dogs, niacin only transiently 

reduced plasma levels of TG but failed to failed to raise HDL-C.
15,16

 An HDL-

C-elevating effect of niacin has been reported in rabbits, but with 30% ethanol 

as dosing vehicle and only after 12 weeks of treatment.
17

 

Therefore, the aim of this study was to elucidate the mechanism underlying the 

HDL-C raising effect of niacin. To this end, we used our recently developed 

APOE*3Leiden (E3L).CETP transgenic mouse model. We have previously 

demonstrated that E3L mice have a human-like lipoprotein profile in which the 
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elevated plasma cholesterol and TG levels are mainly confined to the (V)LDL-

sized lipoprotein fractions.
18,19

 These mice develop atherosclerosis upon dietary 

cholesterol feeding and respond in a human-like manner to drugs used in the 

treatment of CVD (e.g. statins, fibrates, cholesterol uptake inhibitors, calcium 

channel blockers and angiotensin II receptor antagonists),
20-23

 but they did not 

yet respond to HDL-modulating interventions. By cross-breeding E3L mice 

with mice expressing human CETP under control of its natural flanking regions, 

E3L.CETP were obtained
24

 that respond to the HDL-raising effects of 

fenofibrate,
25

 atorvastatin
26

 and torcetrapib.
27

 We now fed these mice a 

Western-type diet without or with increasing doses of niacin to reveal the 

mechanism underlying its HDL-C raising effect. 

 

Methods 

 

Animals 

Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP 

minigene under the control of its natural flanking sequences
28

 were purchased 

from the Jackson Laboratory (Bar Harbor, ME) and crossbred with hemizygous 

E3L mice
18

 at our Institutional Animal Facility to obtain E3L
 
and E3L.CETP 

littermates.
24

 In this study, female mice were used, housed under standard 

conditions in conventional cages with free access to food and water. At the age 

of 12 weeks, E3L and E3L.CETP mice were fed a semi-synthetic cholesterol-

rich diet, containing 15% (w/w) fat and 0.25% (E3L) or 0.1% (E3L.CETP) 

(w/w) cholesterol (Western-type diet; Hope Farms, Woerden, The Netherlands) 

for three weeks to obtain similar total cholesterol levels in both strains (about 

12-14 mmol/L). After matching based on total plasma cholesterol (TC), 

triglyceride (TG) levels, and age, mice (n=8 per group) received a Western-type 

diet without or with 0.03% (~36 mg/kg/day), 0.1% (~118 mg/kg/day), 0.3% 

(~360 mg/kg/day) or 1% (~1180 mg/kg/day) niacin (Sigma, St. Louis, MO, 

USA) for at least 3 weeks. These doses correspond well to the doses used in 

humans, if the 10 times faster metabolism of mice as compared to humans is 

taken into account. Experiments were performed after 4 h of fasting at 12:00 pm 

with food withdrawn at 8:00 am, unless indicated otherwise. The institutional 

Ethical Committee on Animal Care and Experimentation has approved all 

experiments.  

 

Plasma lipid and lipoprotein analysis 

Plasma was obtained via tail vein bleeding as described
24

 and assayed for TC, 

TG and phospholipids (PL), using the commercially available enzymatic kits 

236691 and 11488872 (Roche Molecular Biochemicals, Indianapolis, IN, USA) 

and ‘Phospholipids B’ (Instruchemie, The Netherlands), respectively. The 

distribution of lipids over plasma lipoproteins was determined by fast-

performance liquid chromatography (FPLC) using a Superose 6 column as 
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described previously.
24

 HDL-C was isolated by precipitating the apoB-

containing lipoproteins from 20 µL EDTA plasma by adding 10 µL heparin 

(LEO Pharma, The Netherlands; 500 U/mL) and 10 µL 0.2 M MnCl2. Mixtures 

were incubated for 20 min at room temperature and centrifuged for 15 min at 

13,000 rpm at 4°C. In the supernatant HDL-C was measured using enzymatic 

kit 236691 (Roche Molecular Biochemicals, Indianapolis, IN, USA). 

 

Plasma apoAI concentration 

Plasma apoAI concentrations were determined using a sandwich ELISA. 

Hereto, rabbit anti-mouse apoAI polyclonal antibody (ab20453; Abcam plc, 

Cambridge, UK) was coated overnight onto Costar strips (Costar, Inc., New 

York, NY) (at 3 µg/mL) at 4°C and incubated with diluted mouse plasma 

(dilution 1:400,000) for 90 min at 37°C. Subsequently, goat anti-mouse apoAI 

antibody (600-101-196; Rockland Immunochemicals, Inc., Gilbertsville, PA; 

dilution 1:3000) was added and incubated for 90 min at 37°C. Finally, horse 

radish peroxidase (HRP)-conjugated rabbit anti-goat IgG antibody (605-4313; 

Rockland; dilution 1:15000) was added and incubated for 90 min at 37°C. HRP 

was detected by incubation with tetramethylbenzidine (Organon Teknika, 

Boxtel, The Netherlands) for 15 min at room temperature. Purified mouse 

apoAI (A23100m; Biodesign International, Saco, ME, USA) was used as a 

standard. 

 

HDL size by native PAGE 

The HDL size was determined essentially as described.
29

 Total lipoproteins 

were isolated from plasma by ultracentrifugation (5 h at 541,000 g) as the d < 

1.21 g/mL plasma fraction in a TLA 100.3 rotor (Beckman). Lipoproteins (7.5 

µg protein) were loaded onto a 4-20% polyacrylamide Tris.HCl gel (BioRad, 

Hercules, CA, USA) and electrophoresis was performed according to the 

manufacturer’s protocol. Gels were stained with Coomassie Brilliant Blue 

(Merck) and HDL size was compared with globular protein standards (HMW 

native marker kit, GE Healthcare). 

 

Plasma lipolysis 

Post-heparin plasma from overnight fasted mice was collected from the tail vein 

at 20 minutes after intraperitoneal injection of heparin (1.0 U/g body weight). 

Post-heparin plasma triacylglycerol hydrolase activity was determined in the 

presence or absence of 1 mol/L NaCl to estimate the hepatic lipase (HL) 

activity, which was calculated as the portion of total triacylglycerol hydrolase 

activity not inhibited by 1 mol/L NaCl.
30

 

 

Preparation of  
125

I-apoAI-labeled autologous HDL 

ApoAI was radiolabeled at pH 10 with carrier-free 
125

I according to the ICl 

method
31

, and separated from unbound 
125

I by Sephadex G50 gel filtration. 
125

I-
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apoAI (~75 µg) was incubated with 1.4 mL of plasma from E3L.CETP mice (3 

h at 37°C), and 
125

I-apoAI-HDL was isolated after density gradient 

ultracentrifugation. The specific activity was ~15 cpm /ng HDL protein. 

 

In vivo kinetics of 
125

I-apoAI-labeled HDL 

E3L.CETP mice were injected via the tail vein with 
125

I-apoAI-HDL (40 µg 

protein) in a total volume of 200 µL PBS. At the indicated time points after 

injection, blood was collected from the tail vein to determine the plasma decay 

of 
125

I-apoAI. The total plasma volumes of the mice were calculated from the 

equation V (mL) = 0.04706 x body weight (g), as determined from previous 
125

I-BSA clearance studies.
32

 At 6 h after injection, the mice were sacrificed and 

organs were taken and counted for 
125

I-activity. Values were corrected for serum 

radioactivity present in the liver (84.7 µL/g wet weight), kidneys (135.2 µL/g 

wet weight), skeletal muscle (13.7 µL/g wet weight) and white adipose tissue 

(16.1 µL/g wet weight).
33

 

 

Hepatic lipid analysis 

Liver tissue samples were homogenized in phosphate-buffered saline (approx. 

10% wet w/v), and the protein content was measured according to the method of 

Lowry et al. Lipids were extracted, separated by high-performance thin-layer 

chromatography on silica gel plates and analyzed with TINA2.09 software 

(Raytest Isotopen Messgeräte, Straubenhardt, Germany), as described before.
34

 

 

Hepatic mRNA expression 

Total RNA extraction from liver tissue samples was performed using RNA-Bee 

(Amsbio, Oxon, UK) according to the manufacturer’s instructions. RNA was 

converted to single-stranded cDNA by a reverse transcription procedure 

(Promega) according to the manufacturer’s protocol using random primers. 

cDNA levels were measured by real-time polymerase chain reaction (PCR) 

using the ABI Prism 7700 Sequence Detection System (Applied Biosystems, 

Foster City, CA, USA), according to the manufacturer’s instructions. PCR 

master mix from Eurogentec was used. Primers and probes were obtained from 

Biosource (Nivelles, Belgium). The probes were labelled with 3-BHQ1 and 5-

FAM or 5-TET. The mRNA levels were normalized to mRNA levels of three 

housekeeping genes (i.e., cyclophilin, HPRT and GAPDH). Primers and probes 

used for this study were described previously.
25

 The level of mRNA expression 

for each gene of interest was calculated according to the manufacturer’s 

instructions (Applied Biosystems) as described previously.
35

  

 

CETP mass and activity in plasma
 

Plasma CETP mass was analyzed by ELISA using kit ’CETP ELISA Daiichi’ 

(Daiichi Pure Chemicals Co, Ltd, Tokyo, Japan). Plasma CETP activity was 

measured as the transfer of [
3
H]cholesteryl oleate ([

3
H]CO) from exogenous 
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LDL to HDL as described.
36

 CETP activity was calculated as µmol CE transfer 

per mL plasma per hour.  

 

Biliary lipid secretion 

The common bile duct of anesthetized mice was ligated, the gall bladder was 

cannulated, and bile was collected during 90 minutes.
30

 Cholesterol, PL and 

total bile acids in bile were determined using kits ‘236691’ (Roche Molecular 

Biochemicals, Indianapolis, IN, USA), ‘Phospholipids B’ (Instruchemie, The 

Netherlands) and ‘Total bile acids assay’ (Bio-Stat, UK), respectively. 

 

Fecal excretion of bile acids and neutral sterols 

The mice were housed at 3 mice per cage. Feces produced during 2 subsequent 

periods (48 h each) were separated from the wood shavings by sieving. Aliquots 

of lyophilized feces were used for determination of neutral and acidic sterol 

content by gas-liquid-chromatography procedures as described.
30

 

 

Statistical analysis 

All data are presented as means ± SD unless indicated otherwise. Data were 

analyzed parametrically by 1-way ANOVA followed by Dunnett to correct for 

multiple testing. Probability values less than 0.05 were considered statistically 

significant. SPSS 14.0 was used for statistical analysis. 

 

Results 

 

Niacin decreases plasma lipids in both E3L and E3L.CETP mice, but increases 

HDL only in E3L.CETP mice 

No adverse clinical signs were observed with increasing dosages of niacin as 

indicated by absence of differences in weight gain and plasma ALT levels 

Figure 1. Effect of niacin on lipoprotein profiles. E3L (A) and E3L.CETP (B) mice received 

a Western-type diet without (open circles) or with (closed circles) niacin (118 mg/kg/day) for 

3 weeks. Plasma was pooled per group and the distribution of cholesterol over the individual 

lipoproteins was determined after separation by FPLC.  
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between treatment groups and the control. Treatment of E3L mice with niacin 

(118 mg/kg/day) caused a sustained reduction in plasma TG by -26% (1.4±0.6 

mM vs 1.9±0.6 mM; P<0.05) and in plasma TC by -35% (9.2±3.4 mM vs 

14.2±4.5 mM; P<0.05). Lipoprotein fractionation by FPLC showed that the 

reduction in cholesterol was confined to the apoB-containing lipoproteins 

(V)LDL, whereas HDL-C was not affected (Fig. 1A). An equal dose of niacin 

even more potently reduced plasma TG (-57%, P<0.05) and TC (-44%, 

P<0.01) in E3L.CETP mice. As in E3L mice, the TC-decreasing effect of 

niacin in E3L.CETP mice was caused by a reduction of (V)LDL-C. However, 

whereas niacin did not affect HDL levels in E3L mice, it increased HDL-C in 

E3L.CETP mice (Fig. 1B). In E3L.CETP mice, the effects of niacin on plasma 

TG and TC levels were dose-dependent as shown in figure 2. At the highest 

dose of 1180 mg/kg/day, niacin reduced TG levels by -77% (P<0.001) (Fig. 

2A) and TC levels by -66% (P<0.001) (Fig. 2B). 

 

The HDL-increasing effect of niacin in E3L.CETP mice is dose-dependent 

To investigate whether the HDL-increasing effect of niacin in E3L.CETP mice 

was also dose-dependent, we determined HDL-C concentrations in whole 

plasma after precipitation of apoB-containing lipoproteins by heparin/ MnCl2. 

Indeed, niacin appeared to decrease (V)LDL-C levels up to -79% (P<0.001) 

(Fig. 3A), and to increase HDL-C up to +87% (P<0.001) (Fig. 3B), both in a 

dose-dependent fashion. We next evaluated whether niacin also affects apoAI, 

the main apolipoprotein constituent of HDL. Indeed, niacin dose-dependently 

increased apoAI up to +72% (P<0.001) (Fig. 3C). Whereas niacin thus increases 

both HDL-C and apoAI, the effects on HDL-C at the various doses are 
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Figure 2. Dose-dependent effect of niacin on plasma triglycerides and total cholesterol. 

E3L.CETP mice received a Western-type diet without or supplemented with incremental 

doses of niacin for 3 weeks. Plasma triglycerides (A) and total cholesterol (B) were 

determined. Values are means ± SD (n=8 per group). *P<0.05, **P<0.01, ***P<0.001. 
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somewhat more pronounced than on apoAI,  suggesting that niacin increases the 

lipidation of apoAI. This was reflected by a modest increase of the HDL particle 

size as determined by native PAGE (Fig. 4). Further analyses of the pooled 

HDL fractions showed a decrease in triglycerides (-45%) and an increase in 

cholesteryl ester (+56%) and phospholipids (+66%) (data not shown). Niacin 

did not seem to affect the hepatic synthesis or clearance of HDL, at least judged 

from unchanged hepatic mRNA expression of genes involved in HDL synthesis 

(apoa1, abca1) or clearance (sr-b1; data not shown). Hepatic pltp mRNA 

Figure 3. Dose-dependent effect of niacin 

on (V)LDL-cholesterol, HDL-cholesterol 

and apoAI levels. E3L.CETP mice 

received a Western-type diet without or 

supplemented with incremental doses of 

niacin for 3 weeks. Plasma (V)LDL-C (A), 

HDL-C (B) and apoAI (C) were 

determined. n=8 per group. *P<0.05, 

**P<0.01, ***P<0.001. 
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Figure 4. Dose-dependent effect of niacin 

on the HDL particle size. Total 

lipoproteins from pooled plasma were 

subjected to native 4-20% PAGE, and the 

resulting gel was stained with Coomassie 

Brilliant Blue. 
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expression was slightly increased upon niacin treatment (data not shown). In 

plasma niacin did decrease the HL activity, albeit that the effect was not dose-

dependent (maximal reduction of -47% at 118 mg/kg/day; P<0.05). 

 

Niacin increases the residence time of apoAI in plasma  

To evaluate whether the dose- dependently increased plasma apoAI level as 

induced by niacin-treatment was caused by decreased clearance of apoAI from 

plasma, we determined the effect of niacin on the plasma kinetics of 

intravenously injected 
125

I-apoAI-labeled HDL (Fig. 5). Indeed, niacin dose-

dependently increased the residence of 
125

I-apoAI in plasma (Fig. 5A). From the 

mono-exponential decay curves it was calculated that the plasma half-life of 
125

I-apoAI (3.5±0.1 h) was increased by niacin at 118 mg/kg/day (5.5±1.3 h; 

P<0.01) and 1180 mg/kg/day (6.6±1.3 h; P<0.01). This was accompanied by a 

dose-dependent reduction in the uptake of 
125

I-activity by the liver (up to -50%; 

P<0.05) and the kidneys (up to -90%; P<0.01) (Fig. 5B). For comparison, the 

uptake of [
3
H]cholesteryl oleoyl ether-labeled HDL by the liver was much 

larger (approx. 40% of dose/g wet weight), whereas the uptake by the kidneys 

was undetectable (data not shown). 

 

Niacin reduces the hepatic lipid content  

The effects of niacin on plasma lipid metabolism in E3L.CETP mice are 

consistent with a niacin-induced reduction in CETP activity. Because CETP 

expression is regulated by the hepatic cholesterol content,
28

 we first examined 

effects of niacin on liver lipids (Fig. 6A). Niacin decreased the hepatic TG 

content (-38%, P<0.05). This is consistent with the inhibitory effects of niacin 
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Figure 5. Dose-dependent effect of niacin on plasma apoAI kinetics. Mice were injected with 
125

I-apoAI-HDL, and plasma 
125

I activity was determined at the indicated time points (A). 

Thereafter the mice were euthanized and 
125

I activity was determined in the liver, kidneys, 

skeletal (hindlimb) muscle and white adipose tissue (WAT) (B). n=5 per group. *P<0.05, 

**P<0.01. 
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on HSL in adipose tissue,
13

 thereby reducing the trafficking of FFA to the liver 

for TG synthesis. Niacin also decreased the hepatic TC content (-21%, P<0.01), 

which was mainly attributed to a reduction in hepatic cholesteryl esters (-22%, 

P<0.05). This effect was in line with a compensatory increase in hepatic 

Hmgcoared mRNA expression (+232%, P<0.05; not shown). 

 

Niacin decreases hepatic CETP mRNA expression and plasma CETP levels 

The decrease in hepatic cholesterol was indeed accompanied by a dose-

dependent reduction in hepatic CETP mRNA up to -88% (P<0.01) at 1180 

mg/kg/day (Fig. 6B). To evaluate whether the niacin-induced decreased hepatic 
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Figure 7. Dose-dependent effect of niacin on plasma CETP mass and activity. E3L.CETP 

mice received a Western-type diet without or supplemented with incremental doses of niacin 

for 3 weeks. Plasma CETP mass (A) and CETP activity (B) were determined. Values are 

means ± SD (n=8 per group). *P<0.05, ***P<0.001. 

Figure 6. Effect of niacin on hepatic lipid content and CETP mRNA expression. E3L.CETP 

mice received a Western-type diet without (open bars) or with (closed bars) niacin. Hepatic 

triglycerides (TG), total cholesterol (TC), free cholesterol (FC) and cholesteryl esters (CE) 

quantified (A) and CETP mRNA expression was measured (B). *P<0.05, **P<0.01.  
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CETP mRNA expression was reflected by reduced CETP levels in plasma, we 

determined both CETP mass (Fig. 7A) and activity (Fig. 7B). Indeed, niacin 

dose-dependently decreased plasma CETP mass and CETP activity to a similar 

extent (up to -45% and -52%; P<0.001).  

 
Table 1. Effect of niacin on biliary and fecal lipid output.  

 Control Niacin 118 

mg/kg/d 

Niacin 1180 

mg/kg/d 

 

Bile 

   

Bile flow (µL/min/100g bw) 2.0 ± 0.5 2.0 ± 0.4 2.3 ± 0.7 

Bile acid output (nmol/min/100g bw)   50 ± 14 67 ± 18 65 ± 25 

Cholesterol output (nmol/min/100g bw) 1.1 ± 0.3 1.1 ± 0.2 1.1 ± 0.2 

Phospholipid output (nmol/min/100g bw) 14 ± 3 14 ± 3 16 ± 5 

    

Feces    

Neutral sterols (Fmol/100g bw/d 32.7 ± 2.2 34.8 ± 4.6 36.1 ± 4.5 

Bile acids (Fmol/100g bw/d) 8.6 ± 1.5 8.4 ± 1.6 6.7 ± 0.9* 

Total sterols (Fmol/100g bw/d) 

 

41.3 ± 3.1 43.2 ± 5.1 42.7 ± 4.7 

 

E3L.CETP mice received a western-type diet without or supplemented with niacin for 3 

weeks. The bile bladder was cannulated, and bile flow and composition were measured 

during 90 minutes (n=6-7). Feces were collected per cage (3 mice per cage) in two 

subsequent periods of 48 h each (n=8). Fecal composition was measured by gas-liquid-

chromatography and fecal sterol output was calculated. Data are presented as mean ± SD, 

*P<0.05. 

 

Niacin does not affect biliary and fecal cholesterol output 

To evaluate the consequences of the niacin-induced alterations in lipid 

metabolism on lipid excretion into bile and feces, we determined bile flow, 

biliary lipids and sterols in stool. Niacin did not affect bile flow or the bile 

composition (cholesterol, phospholipids and bile acids). The highest dose of 

niacin (1180 mg/kg/day) did affect the composition of the fecal sterols to some 

extent, as reflected by a slight non-significant increase in neutral sterols and a 

decrease in bile acids (-22%; P<0.05). However, like the dietary input, total 

fecal sterol output was not affected by niacin (Table 1).  

 

Discussion 
 

In this study, we investigated the mechanism(s) underlying the HDL-raising 

effect of niacin. We demonstrated that CETP plays a crucial role in the niacin-

induced increase in plasma HDL-C and apoAI levels in E3L.CETP mice. Niacin 

reduced CETP dependent transfer of cholesterol from HDL to (V)LDL as 

related to lower hepatic CETP expression and a reduced plasma (V)LDL pool. 
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This resulted in an increased lipidation of apoAI, as reflected by an increased 

HDL particle size, and a reduced uptake of apoAI by the kidneys. 

We previously showed that E3L mice are highly susceptible to dietary 

interventions with respect to modulating plasma lipid levels and that these mice 

show a human-like response to drug interventions aimed at treatment of CVD 

(e.g. statins, fibrates, cholesterol uptake inhibitors, calcium channel blockers 

and angiotensin II receptor antagonists)
20-23

 with respect to alterations in the 

lipoprotein profile and/or atherosclerosis development. This is in sheer contrast 

with wild-type C57Bl/6 mice and conventional hyperlipidemic mice, such as 

apoE-deficient or LDL receptor-deficient mice, which show either an adverse 

response or no response to such interventions.
37

 In particular, administration of 

niacin to wild-type mice or apoE-deficient mice did show a transient decrease in 

plasma TG and FFA levels, but failed to increase plasma HDL-C in these 

mice.
13,16

 Likewise, we now showed that niacin lowered TG and cholesterol 

Figure 8. Proposed mechanism underlying the HDL-raising effect of niacin. For explanation 

see text. CE, cholesteryl ester; FA, fatty acids; HSL, hormone sensitive lipase; TC, total 

cholesterol; TG, triglycerides. 
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within apoB-containing lipoproteins in E3L mice, but did not affect HDL-C 

levels. 

Recently, we showed that introduction of the human CETP gene in E3L mice 

results in a mouse model which also shows a human-like response with regard 

to raising HDL-C after treatment with fenofibrate,
25

 atorvastatin
26

 and 

torcetrapib.
27

 Since the introduction of CETP permits cross-talk between 

(V)LDL and HDL metabolism via the exchange of neutral lipids, we reasoned 

that the E3L.CETP mouse would also be an excellent mouse model to study the 

effects of niacin on HDL metabolism. 

First, we observed that niacin dose-dependently reduced VLDL-TG and 

(V)LDL-C levels. The primary action of niacin is inhibition of HSL activity in 

adipose tissue after binding to the GPR109A receptor that is selectively 

expressed by adipocytes. This results in a decreased liberation of FFA from 

adipose tissue, and a decreased flux of albumin-bound FA to the liver, which is 

required for substrate-driven hepatic TG synthesis and VLDL production.
13

 As a 

consequence we thus observed a concentration-dependent drop in VLDL-TG 

and (V)LDL-C levels. In addition, we observed that niacin reduced the hepatic 

cholesterol content. This may be caused by reduced input of cholesterol from 

plasma into the liver, since plasma (V)LDL-C concentrations are reduced and 

cholesterol-enriched HDL is formed from which cholesteryl esters are 

presumably not being delivered efficiently to the liver. The decreased hepatic 

cholesterol content cannot be explained by differences in biliary sterol output, 

since the excretion of bile acids and cholesterol remained unchanged. 

Alternatively, niacin may reduce the endogenous hepatic synthesis of 

cholesterol.  

Second, we showed that niacin dose-dependently raised HDL-C levels in 

E3L.CETP mice, but not in E3L mice, as paralleled by a less pronounced raise 

in apoAI. The presence of CETP thus plays a crucial role in the HDL-raising 

effect of niacin, and we reasoned that niacin may dose-dependently inhibit 

CETP activity. It is well-known that VLDL-TG is a driving force for CETP 

activity, and the relative proportions of VLDL and
 
HDL have been shown to 

play
 
a determinant role in CETP activity. It has been demonstrated that the 

capacity of apoB-containing
 
lipoproteins to accept CE from HDL is closely 

correlated with
 
the relative TG content of the lipoprotein acceptor particles.

38-41
 

By decreasing VLDL levels, niacin may thus reduce CETP activity simply by 

decreasing the availability of VLDL-TG as substrate for CETP.  

Our data corroborate recent observations from Hernandez et al.
15,42

 who showed 

that niacin increased HDL-C levels in CETP mice and APOB.CETP mice, but 

not their CETP-deficient wild-type littermates. In fact, they speculated the 

reduced VLDL levels to be the main mechanism underlying the HDL-raising 

effect of niacin. However, we observed that niacin not only reduced plasma 

CETP activity, but also dose-dependently reduced plasma CETP mass to a 

similar extent, suggesting that niacin reduces the synthesis of CETP leading to 
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less CETP  protein being released in plasma as reflected by similar reductions in 

CETP mass and activity. Indeed, niacin dose-dependently reduced hepatic 

CETP mRNA expression. It has been reported that hepatic cholesterol 

determines the hepatic CETP mRNA expression in CETP transgenic mice,
28

 

presumably via an LXR responsive element in the CETP promoter.
43 

Therefore, 

it is likely that niacin decreases the hepatic CETP mRNA expression as a result 

of the observed decreased cholesterol content of the liver upon niacin treatment. 

Besides increasing HDL-C, niacin also dose-dependently increased plasma 

apoAI levels. Niacin has been shown to inhibit the uptake of HDL-apoAI (but 

not HDL-CE) by cultured hepatocytes,
44

 which we now confirmed in vivo. This 

may partly contribute to the increased apoAI levels. Such a potential effect of 

niacin should be independent of GPR109A, since expression of this receptor has 

not been detected in hepatocytes.
13,45,46

 Together with our observations that 

hepatic mRNA expression of genes involved in HDL synthesis (apoa1, acba1) 

and clearance (sr-b1) were not affected by niacin, and an increase of PLTP 

would rather lead to a decrease in HDL-C levels,
30,47

 it is most likely that the 

raise in apoAI is explained directly by the niacin-induced decreased CETP 

activity, which prevents cholesteryl ester transfer from HDL to (V)LDL. This 

leads to increased lipidation of apoAI, resulting in larger and cholesteryl ester-

enriched HDL particles, and thus decreased glomerular filtration and excretion 

of lipid-poor apoAI via the cubulin/megalin receptor complex.
48

 Indeed, we 

demonstrated a clear dose-dependent reduction in the uptake of 
125

I-apoAI by 

the kidney. 

Based on our collective data, we thus propose the following mechanism by 

which niacin reduces TG and (V)LDL-C and concomitantly raises HDL-C, as 

summarized in figure 8. By inhibiting HSL in adipose tissue upon binding of the 

niacin receptor GPR109A, niacin decreases TG lipolysis and thereby the supply 

of FFA to the liver, required for lipid synthesis. The consequently reduced 

hepatic lipid content results in a lower VLDL production and thus lower 

(V)LDL levels. In addition, reduction in hepatic cholesterol results in reduced 

hepatic expression of CETP, as well as diminished release of CETP into the 

plasma. Additionally, HL activity is reduced which may contribute to reduced 

remodelling of HDL in plasma, resulting in decreased clearance of HDL. The 

HDL particles become CE enriched, and less lipid-poor apoAI is cleared by the 

kidney. Niacin thus increases HDL-C and apoAI levels by 1) reducing levels of 

(V)LDL, the acceptor of CETP-mediated HDL-CE transfer, 2) decreasing CETP 

expression, 3) decreasing HL activity, and 4) decreasing the clearance of apoAI.  

As concluded from a many clinical trials using statins, lowering LDL-C alone is 

not longer regarded to be sufficient to treat CVD. Therefore, comprehensive 

lipid management, in which raising HDL-C is an important target, is becoming 

a new standard.
4,7

 Niacin (at dosages of 2-4 g/day) is unsurpassed in raising 

HDL-C. We show that niacin (in a clinical relevant range if we take into 

account the 5-10 times faster metabolism of mice) significantly improves the 
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plasma lipid levels in E3L.CETP mice, e.g. reduces TG and (V)LDL-C and 

increases HDL-C, albeit that total fecal sterol output is unaffected. Whether this 

will lead to improved HDL function and HDL-related reductions in CVD in the 

clinic still remains to be investigated. 

Niacin has not been a very successful drug thus far because of its side-effect: 

severe flushing. Niacin is nowadays produced as an extended release (ER) 

compound, which enhances the tolerability. Clinical trails AIM-HIGH
49

 and 

ARBITER-6 (HALTS)
50

 evaluating the secondary prevention of CVD by ER 

niacin treatment are currently running. Post-hoc analysis of a subgroup of 

ARBITER-2, a randomized, placebo-controlled trial, showed increases in HDL-

C upon daily intake of ER niacin (+20%), which were related to reduced 

progression of carotid intima-media thickness in the setting of both normal 

glycemic status and diabetes mellitus.
51,52

 Because the flushing effects of niacin 

appeared to be prostaglandin D2 (PGD2) receptor mediated,
53

 a combination 

therapy is currently being evaluated combining ER niacin and PGD2 receptor 

antagonist laropiprant, which is better tolerated than ER niacin alone.
54

 

Currently one trail evaluating effects of this combination drug on hard clinical 

endpoints, as myocardial infarction, stroke or revascularisation (HPS2-

THRIVE) is underway. 

In conclusion, our results show that niacin increases HDL-C by reducing the 

hepatic CETP expression and plasma CETP protein and CE transfer activity in 

E3L.CETP mice. Therefore, we postulate that reduction of CETP expression 

contributes to the increase in HDL that is found in human subjects treated with 

niacin, which should be subject of further investigation. 
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Abstract 

 

Background: Although CETP inhibition is regarded as a promising strategy to 
reduce atherosclerosis by increasing HDL-cholesterol, the CETP inhibitor 
torcetrapib given on top of atorvastatin had no effect on atherosclerosis and 
even increased cardiovascular death in the recent ILLUMINATE trial. 
Therefore, we evaluated the anti-atherogenic potential and adverse effects of 
torcetrapib in humanized APOE*3-Leiden.CETP (E3L.CETP) mice. 
 

Methods and Results: E3L.CETP mice were fed a cholesterol-rich without drugs 
or with torcetrapib (12 mg/kg/day), atorvastatin (2.8 mg/kg/day) or both for 14 
weeks. Torcetrapib decreased CETP activity both in the absence and presence 
of atorvastatin (-74% and -73% respectively, P<0.001). Torcetrapib decreased 
plasma cholesterol (-20%, P<0.01), albeit to a lesser extent than atorvastatin (-
42%, P<0.001) or the combination of torcetrapib and atorvastatin (-40%, 
P<0.001). Torcetrapib increased HDL-cholesterol in the absence (+30%) and in 
the presence (+34%) of atorvastatin. Torcetrapib and atorvastatin alone both 
reduced atherosclerotic lesion size (-43% and -46%, P<0.05), but combination 
therapy did not reduce atherosclerosis as compared to atorvastatin alone. 
Remarkably, as compared to atorvastatin, torcetrapib induced enhanced 
monocyte recruitment and expression of monocyte chemoattractant protein-1 
and resulted in lesions of a more inflammatory phenotype, as reflected by an 
increased macrophage content and reduced collagen content.   
 

Conclusions: CETP inhibition by torcetrapib per se reduces atherosclerotic 
lesion size but does not enhance the anti-atherogenic potential of atorvastatin. 
However, as compared to atorvastatin, torcetrapib introduces lesions of a less 
stable phenotype. 
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Introduction 
 
The cholesteryl ester transfer protein (CETP) is an important regulator of the 
HDL-C level. CETP is secreted predominantly by the liver and mainly 
associates with HDL in plasma, where it transports cholesteryl esters (CE) from 
HDL to (V)LDL in exchange for triglycerides,1,2 and thus lowers HDL-C. HDL 
is atheroprotective as it mediates reverse cholesterol transport (i.e. transport of 
cholesterol from the vessel wall to the liver) and it has anti-inflammatory, anti-
thrombotic and anti-oxidative properties.3,4 Therefore, CETP inhibition is 
regarded as a promising strategy to increase HDL-C levels and to reduce 
atherosclerosis.2 However, the effect of CETP activity on atherosclerosis in 
humans has not been unequivocally determined. Mutations in the CETP gene 
that reduce CETP mass and activity (e.g. D442G and Int14 G(+1)>A) lead to 
elevated HDL-C levels,5,6 but the effects of these mutations on atherosclerosis 
are still in dispute.7-10 
Torcetrapib, which forms an inactive complex between CETP and HDL2 has 
been the first CETP inhibitor tested in large human trials, in which it was shown 
to increase HDL-C levels by approx. 60%.11-13 The resulting HDL particles 
were able to mediate cellular cholesterol efflux more efficiently.14 However, the 
large scale ILLUMINATE trial was stopped prematurely because of an excess 
of deaths in patients receiving torcetrapib with atorvastatin as compared to those 
receiving atorvastatin alone, mainly related to cardiovascular events.15 In 
addition, the RADIANCE and ILLUSTRATE trials revealed no therapeutic 
benefit of combining torcetrapib with atorvastatin with respect to 
atherosclerosis progression as assessed by coronary intima-media thickness 
(IMT) and intravascular ultrasonography (IVUS) measurements.11-13 
The effect of torcetrapib alone on atherosclerosis, however, has not yet been 
evaluated in humans, and the mechanism underlying the increased death rate 
associated with torcetrapib treatment has not been elucidated as yet. Therefore, 
we now examined the effect of torcetrapib with or without atorvastatin on 
atherosclerosis development in humanized APOE*3-Leiden.CETP (E3L.CETP) 
transgenic mice.16 E3L mice show a human-like response to lipid-lowering 
therapies.17 Cross-breeding with CETP transgenic mice, which express human 
CETP under control of its natural flanking regions, resulted in E3L.CETP mice 
that also respond to HDL-modulating intervention.18,19 
 
Methods 

 

Animals 

Human CETP transgenic mice which express CETP under control of its natural 
flanking regions (strain 5203)20 were obtained from Jackson laboratories (Bar 
Harbor, MC) and crossbred with E3L mice21 to obtain E3L.CETP mice.16 All 
mice used in this study were heterozygous E3L.CETP transgenic females on a 
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C57Bl/6 background. Mice were housed under standard conditions with a 12 h 
light-dark cycle and had free access to food and water unless indicated 
otherwise. Mice were fed regular chow (Ssniff, Soest, Germany) or a diet with 
15% (w/w) cacao butter (diet T, Hope Farms, Woerden, the Netherlands) 
supplemented with 0.1% or 0.25% (w/w) cholesterol (Sigma) with or without 
torcetrapib (2R,4S)-4-[[[3,5bis(trifluoromethyl) phenyl]methyl]-
(methoxycarbonyl)amino]-2-ethyl-3,4-dihydro-6-trifluoromethyl)-3-phenyl-
1(2H)-quinolinecarboxylic acid, ethyl ester (C26H25N2O4F9), (kindly provided 
by Roche, Basel, Switzerland) and/or atorvastatin ([R-(R*,R*)]-2-(4-
fluorophenyl)-beta,delta-dihydroxy-5-(1-methylethyl)-3-phenyl-
4[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid (C33H24FN2O5) 
(Lipitor). Unless indicated otherwise, blood was drawn after 4 h fasting in 
EDTA-containing cups by tail bleeding and plasma was isolated. All animal 
experiments were approved by the institutional ethical committee on animal 
care and experimentation. 
 

Single Torcetrapib Treatment 

To verify that torcetrapib inhibits CETP activity in E3L.CETP mice in vivo, 
mice on a chow diet were given a single intragastric gavage of torcetrapib (0, 1, 
3 and 10 mg/kg) in approx. 200 µL of ethanol: solutol: saline 10:10:80 (v:v:v). 
Blood was drawn before gavage and at 1, 2, 4, 6, 8 and 24 h after gavage. 
During the first 8 h after the gavage mice were fasted. Plasma was assayed for 
total CETP activity as described below. Alternatively, mice were fed a diet 
containing 15% cacao butter with 0.1% or 0.25% cholesterol, and the effect of 
10 mg/kg torcetrapib was determined on plasma CETP activity at 2 h after 
gavage. 
 

Total Plasma CETP Activity, Endogenous CETP Activity and CETP Mass 

Total plasma CETP activity was measured as the transfer of [3H]cholesteryl 
oleate (CO) from LDL to HDL.16 Briefly, 5 µL (diluted) mouse plasma was 
incubated with human [3H]CO-labeled LDL and HDL in sodium phosphate 
buffer containing 5,5′-dithio-bis(2-nitrobenzoic acid) to inhibit lecithin-
cholesterol acyltransferase (LCAT) activity. After overnight incubation, LDL 
was precipitated. The supernatant containing [3H]CO-HDL was counted for 3H 
activity. CETP activity was calculated as nmol CE transfer/ mL plasma/ h. 
Endogenous CETP activity was determined by a fluorescent method using 
donor liposomes enriched with nitrobenzoxadiazole (NBD)-labeled cholesteryl 
esters (RB-CETP, Roar Biomedical, NY, USA), as described.22 CETP mass was 
determined using the DAIICHI CETP ELISA kit according to manufacturer’s 
instructions (Daiichi, Tokyo, Japan). 
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Long-term Torcetrapib Treatment 

To determine the effect of torcetrapib without and with atorvastatin on 
atherosclerosis development and plasma cholesterol, E3L.CETP mice were fed 
a diet containing 0.25% cholesterol to increase plasma cholesterol levels to ~16 
mM. After 4 weeks, mice were randomized into four groups according to their 
plasma cholesterol levels. Mice were fed a control diet, a diet with atorvastatin 
(0.0023% ~ 2.8 mg/kg/day), torcetrapib (0.01% ~ 12 mg/kg/day) or both. Blood 
was drawn one week before randomization and at week 6, 9 and 14 of drug 
treatment, and was assayed for lipids, CETP mass and activity. After 14 weeks, 
mice were euthanized and atherosclerosis development was assessed as 
described below.  
 

Plasma Lipids and Lipoprotein Profiles 

Plasma was assayed for cholesterol and phospholipids (PL) using commercially 
available enzymatic kits according to the manufacturer’s protocols (236691, 
Roche Molecular Biochemicals, Indianapolis IN, USA, and phospholipids B 
Wako Chemicals, Neuss, Germany, respectively). To determine the lipid 
distribution over plasma lipoproteins, lipoproteins were separated using fast 
protein liquid chromatography (FPLC). Plasma was pooled per group and 50 µL 
of each pool was injected onto a Superose 6 HR 10/30 column (Äkta System, 
Amersham Pharmacia Biotech, Piscataway, NJ, USA) and eluted at a constant 
flow rate of 50 µL/min in PBS, 1 mM EDTA, pH 7.4. Fractions of 50 µL were 
collected and assayed for cholesterol and PL as described above.  
 

Atherosclerosis Quantification 

After 14 weeks of drug intervention, mice were sacrificed by CO2 inhalation. 
Blood was drawn via cardiac puncture and hearts were isolated. Hearts were 
fixed in phosphate-buffered 4% formaldehyde, dehydrated, embedded in 
paraffin and were cross-sectioned (5 µm) throughout the aortic root area. Per 
mouse 4 sections with 50 µm intervals were used for atherosclerosis 
measurements. Sections were stained with hematoxylin-phloxin-saffron (HPS) 
for histological analysis. Lesions were categorized for severity according to the 
American Heart system adapted for mice.23,24 Various types of lesions were 
discerned: type 0 (no lesions), type 1-3 (early fatty streak-like lesions containing 
foam cells) and type 4-5 (advanced lesions containing foam cells in the media, 
presence of fibrosis, cholesterol clefts, mineralization and/or necrosis). Lesion 
area was determined using Leica Qwin image analysis software (EIS, Asbury 
NJ). AIA 31240 antiserum (1:3000, Accurate Chemical and Scientific, 
Westbury, NY) was used to quantify the macrophage area and the number of 
monocytes adhering to the endothelium. Sirius Red was used to quantify the 
collagen area, and the antibody M0851 (1:800, DAKO) against smooth muscle 
cell actin to quantify the smooth muscle cell area. Monocyte chemoattractant 
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protein-1 (MCP-1) was detected using goat anti-mouse MCP-1 (M18, 1:300; 
Santa Cruz Biotechnology, Santa Cruz, Calif). 
 
Statistical Analysis 

Data are presented as means ± SD unless indicated otherwise. Statistical 
differences were assessed using the Mann Whitney U test. For lesion typing, 
differences were assessed by the Chi Square test. SPSS 14.0 was used for 
statistical analysis. Values of P<0.05 was regarded as statistically significant.  
 
The authors had full access to and take full responsibility for the integrity of the 
data. All authors have read and agree to the manuscript as written. 
 
Results 

 

Torcetrapib Inhibits CETP Activity in E3L.CETP mice 

To verify that E3L.CETP mice appropriately respond to CETP inhibition, 
E3L.CETP mice on a chow diet received an oral garage of torcetrapib (1, 3 and 
10 mg/kg) or vehicle. As expected, torcetrapib time- and dose-dependently 
reduced plasma CETP activity, reaching a minimum at 2 h after gavage (-
59±8%, -83±4%, and -96±4%; P<0.01). At 3 and 10 mg/kg, significant 
reductions were still observed after 8 h (-45±25% and -45±17% respectively; 
P<0.01) (Fig. 1A). Because cholesterol-feeding of E3L.CETP mice increases 
plasma CETP mass and activity,16 we next measured the inhibitory capacity of 
torcetrapib on plasma CETP activity in mice fed a diet without or with 0.1% 
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Figure 1. A single dose of torcetrapib inhibits CETP in vivo. E3L.CETP mice fed a chow diet 
received the indicated amounts of torcetrapib via intragastric gavage. Blood was drawn at the 
indicated time points and plasma was assayed for CETP activity (A). E3L.CETP mice, fed a 
chow diet or a diet containing 0.1% and 0.25% cholesterol, received torcetrapib (10 mg/kg) 
by intragastric gavage and total CETP activity was measured 2 h after gavage (B). Values are 
means ± SD (n=4-6); *P<0.05, **P<0.01, ***P<0.001 as compared to the control group. 
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(w/w) or 0.25% (w/w) cholesterol, which increased plasma CETP activities 
(3.4-fold and 4.3- fold, respectively). Despite the increase in plasma CETP 
activity, an oral gavage of torcetrapib (10 mg/kg) still profoundly decreased 
CETP activity in the presence of 0.1% (-64±11%; P<0.05) and 0.25% (-
59±13%; P<0.05) cholesterol in the diet (Fig. 1B). 
 
Torcetrapib Reduces Plasma Cholesterol Levels to a Lesser Extent than 

Atorvastatin 

To determine the effect of torcetrapib on plasma lipid levels in the absence or 
presence of atorvastatin, E3L.CETP mice were fed a diet containing 0.25% (w/ 
w) cholesterol without or with torcetrapib and/or atorvastatin. Addition of 
torcetrapib, atorvastatin or both to the diet did not affect food intake or body 
weights of E3L.CETP mice (not shown). The cholesterol-rich diet resulted in a 
plasma cholesterol level of 16.1±3.5 mM in the control group. Torcetrapib 
decreased plasma cholesterol (-20%; P<0.01) to a lesser extent as compared to 
atorvastatin (-42%; P<0.001). The combination of torcetrapib and atorvastatin 
did not decrease plasma cholesterol further as compared to atorvastatin alone (-
40% vs -42%) (Fig. 2A). Since torcetrapib and atorvastatin consistently lowered 
plasma cholesterol throughout the study, they similarly decreased total 
cholesterol exposure (Fig. 2B). Thus, torcetrapib alone reduced total cholesterol 
exposure to a lower extent as compared to atorvastatin and combination therapy 
(Fig. 2B). 

Figure 2. Torcetrapib reduces plasma cholesterol to a lesser extent than atorvastatin. Mice 
were fed a diet containing 0.25% cholesterol without or with torcetrapib (0.01%), atorvastatin 
(0.0023%) or both. After 9 weeks of drug intervention, blood was drawn and plasma was 
assayed for cholesterol (A). Blood was drawn at additional time points (0, 6, 9, and 14 
weeks) and TC was measured. Total cholesterol exposure during the study was calculated 
(B). Values are means ± SD (n=14-15); *P<0.05, **P<0.01, ***P<0.001 as compared to the 
control group. 
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To determine the distribution of lipids over lipoproteins, lipoproteins were 
fractionated by FPLC and cholesterol and PL were measured in the individual 
fractions (Fig. 3). Torcetrapib reduced (V)LDL-C (-26%) (Fig. 3A) to a lesser 
extent than atorvastatin (-42%) (Fig. 3A and 3B), and torcetrapib did not 
enhance the (V)LDL-C reducing effect of atorvastatin (Fig. 3B). In addition, 
torcetrapib increased plasma HDL-C levels by +30% in the absence of 
atorvastatin (Fig. 3A) and by +34% in the presence of atorvastatin, as judged 
from the cholesterol content of the FPLC fractions 17-22 (Fig. 3B). This 
torcetrapib-induced increase in HDL-C was paralleled by an increase in PL in 
the HDL fractions (Fig. 3C and 3D). Despite these increased HDL-C levels, 
apoAI levels were not altered by torcetrapib treatment (not shown). 

Figure 3. Torcetrapib reduces plasma VLDL and increases HDL levels. Mice were fed a diet 
containing 0.25% cholesterol without or with torcetrapib (0.01%), atorvastatin (0.0023%) or 
both. After 14 weeks of drug intervention, blood was drawn and plasma was pooled per 
treatment group (n=14-15). Pooled plasma was fractionated using FPLC on a Superose 6 
column and the individual fractions were assayed for total cholesterol (A, B) and 
phospholipid (C, D). 
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Torcetrapib Reduces CETP Activity and Increases CETP Mass Whereas 

Atorvastatin Decreases Both CETP Activity and Mass  

Torcetrapib decreased CETP activity efficiently both in the absence (-73%; 
P<0.001) and presence of atorvastatin (-74%; P<0.001) (Fig. 4A). Atorvastatin 
alone also decreased CETP activity, but to a lesser extent (-32%; P<0.001). 
Despite the decreased CETP activity, torcetrapib treatment increased CETP 
mass (+33%; P<0.001). On the contrary, atorvastatin decreased CETP mass (-
24%; P<0.001), whereas the combination therapy did not significantly affect 
CETP mass as compared to untreated mice (Fig. 4B). These data are in line with 
previous observations that torcetrapib increases CETP mass in humans despite 
the decrease in CETP activity25 and that atorvastatin decreases CETP levels26,27 
by decreasing CETP expression.19 
 

Torcetrapib Reduces Atherosclerotic Lesion Severity and Lesion Area but Does 

Not Enhance the Anti-Atherogenic Effect of Atorvastatin 

To determine the effect of torcetrapib on atherosclerosis development in the 
absence or in the presence of atorvastatin, the 4 groups of mice were euthanized 
after 14 weeks and atherosclerosis severity and lesion size were measured in the 
aortic root. Representative pictures of each group are shown in Fig. 5A. As 
compared to the control group, mice treated with torcetrapib, atorvastatin or 
both had more lesion-free sections and fewer severe lesions of type 4 to 5. Thus, 
torcetrapib, atorvastatin and the combination of both reduced lesion severity 
similarly (Fig. 5B). Accordingly, torcetrapib and atorvastatin alone induced a 
similar reduction in lesion area (-43% and -46% respectively; P<0.05). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Torcetrapib reduces plasma CETP activity and increases CETP mass. Mice were 
fed a diet containing 0.25% cholesterol without or with torcetrapib (0.01%), atorvastatin 
(0.0023%) or both. After 9 weeks of drug intervention, blood was drawn and plasma was 
assayed endogenous CETP activity (A) and CETP mass (B). Values are means ± SD (n=14-
15); *P<0.05, ***P<0.001 vs the control group. 
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Combination treatment also reduced atherosclerosis as compared to the control 
group (-60%; P<0.001), but did not significantly enhance the atherosclerosis-
reducing potency of atorvastatin alone (Fig. 5C). 
 

Torcetrapib Induces Monocyte Recruitment and Results in a More Pro-

Inflammatory Lesion Phenotype as Compared to Atorvastatin 

We next evaluated the effect of torcetrapib, atorvastatin and the combination of 
both on monocyte recruitment and lesion composition with respect to the 
macrophage area, smooth muscle cell area and collagen area. Torcetrapib alone 
and in combination with atorvastatin increased the adherence of monocytes to 
the vessel wall as compared to the control and atorvastatin-treated group (Fig 
6A). Although torcetrapib did not significantly raise MCP-1 as compared to the 
control group, torcetrapib significantly increased MCP-1 as compared to 

Figure 5. Torcetrapib reduces 
atherosclerosis development but does not 
enhance the atherosclerosis reducing 
effect of atorvastatin. Mice were fed a 
diet containing 0.25% cholesterol without 
or with torcetrapib (0.01%), atorvastatin 
(0.0023%) or both. After 14 weeks of 
drug intervention, hearts were isolated, 
fixed, dehydrated and embedded in 
paraffin and representative HPS stained 
pictures of each group are shown (A). 
Four sections per mouse with 50 µm 
intervals were typed and categorized 
according to lesion severity (B), and total 
lesion area was calculated (C). Values are 
means ± SEM (n=14-15) *P<0.05, 
**P<0.01, ***P<0.001 as compared to 
the control group 
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atorvastatin (+99%; P<0.05) (Fig. 6B). The increase in adhering monocytes as 
induced by torcetrapib was accompanied by an increased area of macrophages 
in the intima (Fig. 6C). Although torcetrapib did not appear to affect the smooth 
muscle cell content (Fig. 6D), torcetrapib alone and in combination with 

Figure 6. Torcetrapib unfavorably 
alters plaque composition as compared 
to atorvastatin. In the sections obtained 
as described in Figure 5, the adhesion 
of monocytes to the lesions was 
determined (A), as well as the MCP-1 
content (B) and macrophage content 
(C) of the lesions. In addition, the SMC 
content (D) and collagen content (E) of 
the lesions were quantified. Values are 
means ± SEM (n=14-15); *P<0.05, 
**P<0.01 as compared to the control 
group. 
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atorvastatin tended to decrease the area of collagen (P=0.14 and P=0.13, resp.) 
(Fig. 6E). Thus, whereas atorvastatin reduces lesion size without affecting 
lesion composition as compared to untreated mice, torcetrapib reduces lesion 
size accompanied by a more pro-inflammatory lesion phenotype, reflected by an 
increased macrophage-to-collagen ratio, as compared to control-treated mice 
(+75%) and atorvastatin-treated mice (+67%). 
 
Discussion 

 
Torcetrapib has been shown to markedly raise HDL-C and was, therefore, 
expected to reduce atherosclerosis in humans. Despite this, the recent 
RADIANCE, ILLUSTRATE AND ILLUMINATE trials have concluded that 
torcetrapib was ineffective in reducing atherosclerosis11-13 and increased clinical 
event rate.15 However, it should be realized that the effectiveness of torcetrapib 
has only been assessed in dyslipidemic patients who also received atorvastatin. 
Therefore, in the present study we examined the effect of torcetrapib per se on 
atherosclerosis development. In our study we show that torcetrapib alone 
reduces the progression of atherosclerosis, but does not enhance the anti-
atherosclerotic potency of atorvastatin and that torcetrapib results in a more pro-
inflammatory lesion phenotype as compared to atorvastatin. 
Torcetrapib reduced total cholesterol exposure to a lesser extent (-17%) as 
compared to atorvastatin (-41%), whereas torcetrapib and atorvastatin equally 
reduced atherosclerotic lesion size (both ~-45%). Previous diet-induced 
atherosclerosis studies in mice have consistently demonstrated that 
atherosclerotic lesion area could generally be reliably predicted from cholesterol 
exposure (H.M.G. Princen PhD and P.C.N. Rensen PhD, unpublished data, 
2007). Therefore, torcetrapib decreased atherosclerosis development more 
drastically than could be expected based merely on the observed reduction in 
cholesterol exposure. Since torcetrapib treatment results in increased HDL 
levels, it is likely that HDL is involved in the atheroprotective effect of 
torcetrapib. In line with this hypothesis, we have observed previously that 
E3L.CETP mice show a 7-fold increased atherosclerotic lesion area as 
compared to E3L only mice, which was much more than could be expected 
based on a modest increase in total plasma cholesterol per se. In fact, we 
showed that plasma from E3L.CETP mice was less effective in mediating SR-
BI-dependent cholesterol efflux than plasma from E3L mice, as accompanied by 
a large reduction in HDL-1.16 In the present study, we did not detect an effect of 
torcetrapib on either SR-BI or ABCA1-mediated cholesterol efflux (not shown), 
possibly related to the relatively mild effect of torcetrapib on the HDL level as 
compared to total CETP deficiency. We therefore speculate that effects of 
torcetrapib on other properties of HDL, including its anti-inflammatory, anti-
oxidative and/or anti-thrombotic properties may have resulted in the more 
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prominent reduction in atherosclerotic lesion size than could be expected merely 
on the basis of a reduction in total cholesterol. 
The fact that torcetrapib alone reduced atherosclerosis development is in line 
with a previous study showing that torcetrapib treatment alone reduces 
atherosclerosis in rabbits.28 However, we also show that torcetrapib did not 
significantly enhance the anti-atherogenic potential of atorvastatin. We have 
evaluated the effects of torcetrapib and atorvastatin in E3L.CETP mice with a 
relatively high plasma cholesterol level of approx. 16 mM, to avoid the 
possibility that the combined cholesterol-lowering actions of atorvastatin and 
torcetrapib would result in a plasma cholesterol level below that required for 
atherosclerosis development in E3L.CETP mice (i.e. 6-8 mM). Despite this 
limitation, torcetrapib per se (i.e. without concomitant administration of 
atorvastatin) may thus have an anti-atherosclerotic effect in humans as well.  
From the recent clinical trials, it has become clear that torcetrapib has several 
adverse effects. The ILLUMINATE trial showed that torcetrapib elevated blood 
pressure, increased cardiovascular events and increased death rate, mainly 
related to cardiovascular causes.15 However, the mechanisms underlying these 
unexpected adverse effects have not completely been elucidated yet. In the 
present study, we did not detect a significant effect of torcetrapib on blood 
pressure, probably because of small experimental groups (data not shown). 
However, compared with atorvastatin, torcetrapib enhanced monocyte 
adherence to the vessel wall, enhanced vascular MCP-1 expression, and 
increased the macrophage area within the lesions. Torcetrapib thus appears to 
enhance the recruitment of monocytes to the endothelium and transmigration of 
the monocytes into the intima resulting in an enhanced macrophage content of 
the plaque, compared with similarly sized lesions resulting from atorvastatin 
treatment. The observation that torcetrapib tended to reduce the collagen 
content of the plaque independent of the smooth muscle cell content can be 
explained by induction of collagen breakdown by macrophages, (e.g., via 
secretion of metalloproteinases). Although plaque rupture is a rare phenomenon 
in mice, such inflammatory lesions with a high macrophage to collagen ratio are 
more unstable and may well have caused an increased incidence of plaque 
rupture in humans, thereby explaining increased cardiovascular death. It would 
be interesting to evaluate in future studies whether these effects of torcetrapib 
are compound-specific or related to its effect on lipoprotein metabolism, by 
comparison with other CETP inhibitors that are currently under development 
(e.g. JTT-705 and anacetrapib). 
Interestingly, recent data from the ILLUMINATE trial indicate that torcetrapib 
increased plasma aldosterone levels via an as yet unknown mechanism.15 In 
addition to increasing blood pressure,29 aldosterone increases atherosclerosis 
development in mice.30-32 This is related to its pro-inflammatory properties 
including increased MCP-1 expression, increased monocyte infiltration into the 
coronary artery, increased lipid loading of macrophages, and increased 
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expression of matrix metalloproteinases.29,30 Preliminary data on aldosterone 
levels in pooled plasma of the various mouse groups indicated that the average 
aldosterone level is higher in the torcetrapib-treated group (+15%) and 
combination-treated group (+48%) than in the atorvastatin-treated group. This 
suggests that the torcetrapib-induced increase in aldosterone levels may causally 
increase the inflammatory plaque phenotype in mice. 
In conclusion, torcetrapib inhibits the progression of atherosclerosis, but does 
not enhance the anti-atherosclerotic potency of atorvastatin. In addition, as 
compared to atorvastatin, torcetrapib causes a more pro-inflammatory and 
unstable lesion phenotype. 
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Abstract 

 

Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in 
both the synthesis and catabolism of HDL, but its integrated effect on HDL 
metabolism in vivo remains unclear. The aim of this study was to evaluate the 
net effect of PXR agonism on HDL metabolism in APOE*3-Leiden (E3L) and 
E3L.CETP mice, well-established models for human-like lipoprotein 
metabolism. Female mice were fed a diet with increasing amounts of the potent 
PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and 
E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and 
triglycerides. However, whereas PCN increased cholesterol contained in large 
HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol 
in E3L.CETP mice, indicating that CETP expression dominates the effect of 
PCN on HDL metabolism. Analysis of the hepatic expression of genes involved 
in HDL metabolism showed that PCN decreased expression of genes involved 
in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-
b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused 
by a marked decrease in hepatic SR-BI protein expression, and completely 
reversed by CETP expression. We conclude that chronic PXR agonism dose-
dependently reduces plasma HDL-cholesterol in the presence of CETP. 
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Introduction  

 

Since low HDL-cholesterol is a strong and independent risk factor for 
cardiovascular disease,1 pharmacological approaches aimed at raising HDL are 
generally seen as a novel therapeutic strategy to reduce atherosclerosis. 
However, the recent large phase III trials assessing the effect of the CETP 
inhibitor torcetrapib in combination with atorvastatin failed, despite achieving a 
60% increase in HDL-cholesterol.2-4 Torcetrapib not only failed to reduce 
atherosclerosis, as assessed by coronary intima-media thickness (IMT) and 
intravascular ultrasonography (IVUS) measurements,2-4 but also increased the 
risk of cardiovascular events and death rate.5 Although these data question the 
therapeutic significance of raising HDL, the adverse effects of torcetrapib may 
well be compound-specific and related to increased inflammation.6 Therefore, 
the search for additional strategies aimed at raising HDL, e.g. via increasing the 
expression of apoAI, is warranted. 
The pregnane X receptor (PXR) may be a novel suitable target to raise HDL. 
PXR agonism has been shown to increase plasma apoAI and HDL-cholesterol 
in wild-type mice, but not in PXR-knockout mice, suggesting that PXR agonism 
may be a new strategy to increase HDL by enhancing apoAI expression.7 In 
addition, PXR expression in mice antagonizes the cholic acid-mediated 
downregulation of plasma HDL-cholesterol and apoAI.8 PXR activation may 
also increase HDL formation by the intestine by increasing ABCA1 and 
ABCG1 expression and protein levels in intestinal cells, which results in an 
increased cholesterol efflux from intestinal cells to apoAI and HDL in vitro.9 
PXR activation also decreased SR-BI expression in HepG2 cells and primary rat 
hepatocytes in vitro,10 which may add to a potential HDL-increasing effect in 
vivo. 
However, some data indicate that PXR agonism may also negatively affect 
HDL levels. For example, PXR activation decreases the expression of ABCA1 
in hepatocytes in vitro,10 which would reduce HDL formation in an in vivo 
setting. PXR also increases lipogenesis in the liver leading to an increased 
hepatic triglyceride (TG) content and increased plasma VLDL-TG levels,11,12 
which may result in reduced HDL-cholesterol levels via CETP-mediated 
exchange of neutral lipids. An increased hepatic lipid content may increase 
CETP expression, and increased VLDL-TG will result in a higher rate of 
cholesteryl ester transfer from HDL to VLDL with a higher reciprocal rate of 
TG transfer from VLDL to HDL, resulting in a relatively TG-rich HDL that is 
more rapidly remodeled and cleared via hepatic lipase.13 
In this study we aimed to examine the integrated effect of PXR agonism by the 
established PXR agonist PCN14,15 on HDL metabolism in vivo. Hereto, we used 
the APOE*3-Leiden (E3L) mouse, a well-established model for human-like 
lipoprotein metabolism.16 In addition, we used the E3L.CETP mouse6,17-19 to 
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assess the specific contribution of CETP in the PXR-mediated effects on HDL 
metabolism. 
 

Materials and Methods 

 

Animals and diets 

Female APOE*3-Leiden (E3L) and E3L.CETP transgenic mice that express 
human CETP under control of its natural flanking regions17 were housed under 
standard conditions with access to water and food ad libitum. Mice were fed a 
diet enriched with 15% cacao butter (Diet T; AB Diet Services, Woerden, The 
Netherlands) for 3 weeks to increase plasma cholesterol levels from 2 mM to ~6 
mM. Blood was collected after a 4 h fast from the tail vein into EDTA-
containing cups, and both E3L and E3L.CETP mice were randomized according 
to their plasma total cholesterol, TG and HDL-cholesterol. Subsequently, mice 
were fed control diet (diet T) or the same diet with 5-pregnen-3β-ol-20-one-
16α-carbonitrile (PCN; Sigma) at increasing doses of 0.01%, 0.03% and 0.1% 
(corresponding with 11, 33 and 110 mg/kg/day) for three weeks each. After 
each treatment period, blood was drawn after 4 h of fasting into EDTA-
containing cups via tail bleeding. After the last treatment period with the highest 
dosage, mice were sacrificed and livers were isolated. All experiments were 
approved by the Institutional Committee on Animal Care and Experimentation. 
 
Plasma lipids and lipoprotein profiles 
Plasma total cholesterol and triglycerides (TG) were measured using 
commercially available enzymatic kits (236691 and 1488872, respectively, 
Roche Molecular Biochemicals, Indianapolis IN, USA) according to the 
manufacturer’s instructions. Phospholipids were determined using an enzymatic 
Phospholipids kit (Spinreact, Sant Esteve de Bas, Spain). To determine the lipid 
distribution over plasma lipoproteins, lipoproteins were separated using FPLC. 
Plasma was pooled per group, and 50 µL of each pool was injected onto a 
Superose 6 HR 10/30 column (Äkta System, Amersham Pharmacia Biotech, 
Piscataway, NJ, USA) and eluted at a constant flow rate of 50 µL/min in PBS, 1 
mM EDTA, pH 7.4. Fractions of 50 µL were collected and assayed for 
cholesterol as described above. In E3L.CETP mice, plasma HDL-cholesterol 
was measured after precipitation of the apoB-containing lipoproteins from 20 
µL EDTA plasma by adding 10 µL heparin (LEO Pharma, The Netherlands; 
500 U/mL) and 10 µL 0.2 M MnCl2. Mixtures were incubated during 20 min at 
room temperature and centrifuged for 15 min at 13,000 rpm at 4°C. In the 
supernatant HDL-C was measured. 
 
Hepatic lipid levels 

Liver samples (~50 mg) were vigorously shaken (20 sec at 4800 rpm) in ice-
cold methanol (10 µL/mg tissue) using a Mini Bead Beater (BioSpec Products, 
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Bartlesville, USA). Tissue homogenates (45 µL~4.5 mg tissue) were diluted 
with ice-cold methanol (450 µL) and ice-cold chloroform (1350 µL), and 
further shaken (20 sec at 4800 rpm) to extract lipids from the tissue samples. 
Mixtures were centrifuged (15 min at 14,000 rpm; 4°C) and supernatant was 
transferred into a new tube, dried under nitrogen gas. Lipids were dissolved in 
100 µL 2% Triton-X100. Total cholesterol, TG and phospholipid levels were 
assayed as described above.  
 
Plasma CETP activity 

Total (lipoprotein-independent) CETP activity was measured as the transfer of 
[3H]cholesteryl oleate (CO) from LDL to HD,20 exactly as described.6 
Endogenous (lipoprotein-dependent) CETP activity was determined by a 
fluorescent method using donor liposomes enriched with nitrobenzoxadiazole-
labeled cholesteryl esters (RB-CETP, Roar Biomedical, New York),6 as 
described.21 
 
Table 1. Primers used for rtPCR 
Gene Forward primer Reverse primer 
Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG 
Apoa1 GGAGCTGCAAGGGAGACTGT TGCGCAGAGAGTCTACGTGTGT 
CETP CAGATCAGCCACTTGTCCAT CAGCTGTGTGTTGATCTGGA 
Cyp3A11 CTTTCCTTCACCCTGCATTCC CTCATCCTGCAGTTTTTTCTGGAT 
Cyp7a1 CAGGGAGATGCTCTGTGTTCA AGGCATACATCCCTTCCGTGA 
Gapdh TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 
Hl CAGCCTGGGAGCGCAC CAATCTTGTTCTTCCCGTCCA 
Hprt TTGCTCGAGATGTCATGAAGGA AGCAGGTCAGCAAAGAACTTATAG 
Lcat GGCAAGACCGAATCTGTTGAG ACCAGATTCTGCACCAGTGTGT 
Cyclo CAAATGCTGGACCAAACACAA GCCATCCAGCCATTCAGTCT 
Pltp TCAGTCTGCGCTGGAGTCTCT AAGGCATCACTCCGATTTGC 
Sr-b1 GTTGGTCACCATGGGCCA CGTAGCCCCACAGGATCTCA 
 
Abca1, ATP-binding cassette transporter A1; Apoa1, apolipoprotein AI; CETP, human 
cholesteryl ester transfer protein; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Hl, 
hepatic lipase; Hprt, hypoxanthine-guanine phosphoribosyl transferase; Lcat, lecithin: 
cholesterol acyltransferase; Cyclo, cyclophilin; Pltp, phospholipid transfer protein; Sr-b1, 
scavenger receptor class B type I. 

 

Hepatic mRNA expression 

Total mRNA extraction from liver tissue samples was performed using TRIzol 
(Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. 
mRNA quality was confirmed with lab-on-a-chip (Bio-Rad Laboratories, 
Hercules, CA, USA), and mRNA was converted to single-stranded cDNA using 
the RevertAid First Strand cDNA Synthesis Kit (Fermentas, Ontario, Canada). 
RT-PCR was performed using the IQ5 multicolor real-time PCR detection 
system using the SYBR Green RT-PCR mix (Bio-Rad Laboratories, Hercules, 
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CA, USA). mRNA levels were normalized to mRNA levels of hypoxanthine-
guanine phosphoribosyl transferase (HPRT), cyclophilin and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Primers are listed in Table 1.  
 

HDL apolipoprotein composition 

Plasma was pooled per group and lipoproteins were separated using FPLC. 
HDL fractions (7.5 µL) were run on a 4-20% SDS-PAGE gel (Bio-Rad 
Laboratories, Hercules CA, USA). Gels were stained with Coomassie brilliant 
blue. 
 
Hepatic ABCA1 and SR-BI protein 

Immunoblot analysis of hepatic ABCA1 and SR-BI was performed as 
described.22 In short, liver samples were lysed, cell debris was removed, and 
protein concentration was determined. Equal amounts of protein (20 µg) were 
separated on 7.5% SDS-PAGE gels and transferred to nitrocellulose membrane. 
Loading of equal amounts of cell protein was confirmed with Ponceau S 
staining of the resulting blots. Immunolabeling was performed using murine 
monoclonal αABCA1 (AC-10) or rabbit polyclonal αSRBI (anti-BI495) as 
primary antibody and goat-anti-mouse IgG and goat-anti-rabbit IgG, 
respectively, as secondary antibodies. Immunolabeling was detected by 
enhanced chemiluminescence. 
 
Statistical analysis 

Data are presented as means ± SD. Statistical differences were assessed using 
the Student T Test (hepatic mRNA expression) or the Mann Whitney U test (all 
other analyses). SPSS 14.0 was used for statistical analysis and p<0.05 was 
regarded as statistically significant.  
 

Results 

 
PXR agonism affects plasma lipid levels 

E3L and E3L.CETP mice were fed a control diet or a diet with increasing doses 
of the PXR agonist PCN (0, 0.01, 0.03 and 0.1%), and plasma TG and 
cholesterol were determined (Fig. 1). PCN dose-dependently increased plasma 
TG in both E3L mice (up to + 218%; p<0.01) (Fig. 1A) and E3L.CETP mice 
(up to + 185%; p<0.05) (Fig. 1B), indicating that the effect of PCN on plasma 
TG is independent of CETP expression. However, whereas PCN significantly 
increased plasma cholesterol in E3L mice (up to +19%; p<0.01) (Fig. 1C), PCN 
only tended to increase plasma cholesterol in E3L.CETP mice (Fig. 1D). 
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Figure 1. PXR agonism dose-dependently increases plasma cholesterol and triglycerides. 
APOE*3-Leiden (E3L) mice (A, C) and E3L.CETP mice (B, D) were fed a control diet 
(time-matched control group) or a diet with increasing doses of 5-pregnen-3β-ol-20-one-16α-
carbonitrile (PCN) (0, 0.01, 0.03, and 0.10%) for three weeks each. Before treatment and at 
the end of the 3 week periods, blood was drawn from both PCN-treated and time-matched 
control mice and plasma was assayed for triglycerides (A, B) and cholesterol (C, D). Values 
are means ± SD (n= 6-7 per group); * p<0.05, ** p<0.01 versus control group. 
 

PXR agonism increases hepatic lipid levels  

Since the effects of the PXR agonist on plasma lipids may be caused by an 
altered hepatic lipid homeostasis, the effect of PCN on hepatic lipid 
composition was determined (Fig. 2). In E3L mice, PCN increased the levels of 
TG (+342%; p<0.01), total cholesterol (+159%; p<0.01) and phospholipids 
(+100%; p<0.01) (Fig. 2A). Similar effects of PCN were observed in 
E3L.CETP mice (Fig. 2B), indicating that the effect of PCN on hepatic lipid 
levels is also independent from CETP expression.  
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Figure 2. PXR agonism increases hepatic lipid levels. E3L mice (A) and E3L.CETP mice (B) 
were fed a control diet (time-matched control group) or a diet with increasing doses of PCN 
for three weeks each. After the last treatment period (0.10% PCN and time-matched control), 
mice were sacrificed and livers were isolated. Liver were homogenized, lipids were extracted, 
and triglycerides (TG), total cholesterol (TC) and phospholipids (PL) were quantified. Values 
are means ± SD (n= 6-7 per group); ** p<0.01 versus control group. 
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Figure 3. PXR agonism oppositely affects 
plasma HDL in E3L and E3L.CETP mice. 
E3L mice (A, C) and E3L.CETP mice (B) 
were fed a control diet (time-matched 
control group) or a diet with increasing 
doses of PCN for three weeks each. Plasma 
obtained after the last treatment period 
(0.10% PCN and time-matched control) was 
pooled per group and lipoproteins were 
separated using FPLC. Fractions were 
collected and assayed for total cholesterol 
(A, B) and apolipoprotein composition (C). 
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PXR agonism decreases plasma HDL levels in presence of CETP 

We next investigated the effect of PCN on the cholesterol distribution over 
lipoproteins after separation by FPLC (Fig. 3). In both E3L and E3L.CETP 
mice, PCN increased the amount of cholesterol in VLDL. HDL-cholesterol 
contained in large HDL particles increased in E3L mice (Fig. 3A). On the other 
hand, HDL-cholesterol of all sizes was markedly decreased in E3L.CETP mice 
upon PCN treatment (Fig. 3B). Analysis of the apolipoprotein composition of 
FPLC fractions 16 and 20 of plasma from E3L mice, showed that PCN induces 
the appearance of large apoE-rich HDL-1 as apparent from a high ratio of apoE 
to apoAI (fraction 16), and that PCN treatment reduced the amount of apoAI in 
HDL of regular size (fraction 20) (Fig. 3C). Analysis of HDL-cholesterol in 
plasma after precipitation of apoB-containing lipoproteins showed that the 
HDL-decreasing effect of PCN in E3L.CETP mice was dose-dependent (Fig. 4). 

Figure 4. PXR agonism dose-
dependently decreases plasma HDL in 
E3L.CETP mice. E3L.CETP mice were 
fed a control diet (time-matched control 
group) or a diet with increasing doses of 
PCN for 3 weeks each. After the last 
treatment period (0.10% PCN and time-
matched control), blood was drawn and 
plasma was assayed for HDL-cholesterol 
after precipitation of apoB-containing 
lipoproteins. Values are means ± SD (n= 
6-7 per group); ** p<0.01 versus control 
group. 
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Figure 5. PXR agonism does not affect plasma CETP activity in E3L.CETP mice. 
E3L.CETP mice were fed a control diet (time-matched control group) or a diet with 
increasing doses of PCN for three weeks each. After the last treatment period (0.10% PCN 
and time-matched control), blood was drawn and plasma was assayed for total CETP activity 
(A) and endogenous CETP activity (B). Values are means ± SD (n= 6-7 per group); * 
p<0.05, ** p<0.01 versus control group. 
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PXR agonism does not affect plasma CETP activity 
We have previously observed that a decrease in the hepatic cholesterol content 
of E3L.CETP mice e.g. by treatment with fenofibrate 18 or atorvastatin 19 
decreases both the hepatic expression of CETP and the activity of CETP in 
plasma. Since PXR agonism strongly increases hepatic cholesterol content, we 
questioned whether the reduction in plasma HDL in E3L.CETP mice may be 
related to increased plasma CETP activity. Therefore, the effect of PCN was 
determined on hepatic CETP expression as well as on total and endogenous 
CETP activity in plasma of E3L.CETP mice (Fig. 5). Albeit that a small effect 
was observed on total plasma CETP activity at the highest dose, PCN in general 
did not affect either the total CETP activity (Fig. 5A) or endogenous (Fig. 5B) 
CETP activity, which is in line with an unaltered hepatic gene expression (Table 
1). The reduction of HDL in E3L.CETP mice can thus not be explained by 
increased CETP activity. 
 
Table 2. PXR agonism affects hepatic gene expression. 
 
A. PXR targets 
  E3L E3L.CETP 
  control  PCN control  PCN 
Cyp3a11 1.00 ± 0.35 12.74 ± 5.05*** 1.00 ± 0.38 13.37 ± 2.76*** 
Cyp7a1 1.00 ± 0.53 0.32 ± 0.15** 1.00 ± 0.41 0.59 ± 0.34 
 

B. HDL metabolism 
  E3L E3L.CETP 
  Control  PCN control  PCN 
Abca1 1.00 ± 0.24 0.76 ± 0.23 1.00 ± 0.16 0.81 ± 0.31 
Apoa1 1.00 ± 0.33 0.60 ± 0.20* 1.00 ± 0.38 0.50 ± 0.10* 
Hl 1.00 ± 0.17 0.67 ± 0.16** 1.00 ± 0.28 0.73 ± 0.17 
Lcat 1.00 ± 0.48 0.80 ± 0.18 1.00 ± 0.23 0.68 ± 0.13* 
Pltp 1.00 ± 0.22 0.45 ± 0.12*** 1.00 ± 0.29 0.54 ± 0.18** 
Sr-b1 1.00 ± 0.16 0.45 ± 0.09*** 1.00 ± 0.28 0.61 ± 0.16* 
CETP n.d. n.d. 1.00 ± 0.53 1.77 ± 0.80 
 

E3L and E3L.CETP mice were fed a control diet or a diet with increasing doses of PCN. 
After the last treatment period (0.10% PCN or time-matched control), mice were sacrificed 
and livers were isolated. mRNA was isolated and mRNA expression of the indicated genes 
was quantified by RT-PCR. Genes are grouped as established PXR targets (A) and genes 
involved in HDL metabolism (B). Data are calculated as fold difference as compared to the 
control group. Values are means ± SD (n= 6-7 per group). * p<0.05, ** p<0.01, *** p<0.001 
versus control group. N.d., not detected. 
 
PXR agonism affects hepatic expression of genes involved in HDL metabolism 

To get further insight into the mechanism(s) underlying the effects of PCN on 
HDL metabolism, we evaluated the hepatic expression of genes involved in 
HDL metabolism (Table 2). 
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As a control for PXR agonism, we determined the effects of PCN on the 
expression of Cyp3a11, which is an important target gene of PXR,23,24 and 
Cyp7a1, which is negatively regulated by PXR.25 PCN strongly upregulated 
Cyp3a11 (13-14-fold) and down-regulated Cyp7a1 (-60 -70%) in E3L mice and 
E3L.CETP mice, which confirms that PCN is a potent PXR agonist in these 
mouse models. 
PCN had similar effects on the hepatic expression of the various genes involved 
in HDL metabolism in E3L and E3L.CETP mice. PCN decreased proteins 
involved in HDL assembly including Abca1 (~20%, n.s.) and Apoa1 (~40-50%; 
p<0.05). In addition, PCN decreased the expression of genes involved in HDL 
maturation such as Lcat (~20-30%), Hl (~30%) and Pltp (~50%), as well as the 
gene involved in hepatic clearance of HDL-cholesterol, Sr-b1 (~40-50%). 
 
PXR agonism decreases hepatic SR-BI protein levels 

Since a decrease in SR-BI can explain the increase in HDL-cholesterol 
contained in large HDL-1 particles in E3L mice, we determined whether the 
relatively large effect of PCN on the hepatic expression of Sr-b1 was reflected 
by reduced hepatic protein levels. Western blot analysis of hepatic homogenates 
of E3L.CETP mice indicated that PCN did not substantially reduce hepatic 
ABCA1 protein (-21%, n.s.), which is in line with Abca1 expression analysis, 
but substantially reduced SR-BI protein (-77%, p<0.05) (Fig. 6). Similar results 
were obtained for E3L mice (data not shown). 
 
Discussion 

 
Studies on the effect of PXR activation on HDL metabolism have generated 
conflicting data with respect to their net effect on HDL levels. However, these 
data have been derived either from in vitro studies of from in vivo studies in 
wild-type mice that naturally have very low (V)LDL and high HDL levels, and 
do not express CETP. Therefore, we have evaluated the effect of PXR agonism 
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Figure 6. PXR agonism reduces hepatic SR-BI 
protein. E3L.CETP mice were fed a control 
diet (time-matched control group) or a diet 
with increasing doses of PCN for three weeks 
each. After the last treatment period (0.10% 
PCN and time-matched control), mice were 
sacrificed and livers were isolated. Livers were 
homogenized and equal amounts of hepatic 
proteins were separated by SDS-PAGE and 
transferred to nitrocellulose membrane. 
ABCA1 (A) and SR-BI (B) were visualized by 
immunolabeling. Results of 4 individual mice 
per group are shown.  
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on HDL metabolism in E3L mice, which have a more favorable ratio of 
(V)LDL to HDL and is a well-established model for human-like lipoprotein 
metabolism, as well as E3L.CETP mice. 
We have demonstrated that E3L and E3L.CETP mice respond well to PXR 
agonism. PCN not only considerably increased hepatic Cyp3a11 expression and 
reduced Cyp7a1 expression, but also induced fatty livers as judged from an 
increased liver weight, increased levels of hepatic TG, total cholesterol and 
phospholipid, as well as formation of lipid droplets (not shown). Hepatic 
steatosis appears to be a common effect of PXR agonism, since 1) expression of 
activated PXR in the livers of transgenic mice increases hepatic TG levels,12 2) 
PXR agonism in mice expressing the human PXR gene increases hepatic TG 
levels,12 and 3) PCN increases hepatic TG levels in wild-type mice, but not in 
PXR knockout mice.11 
We showed that PCN markedly increased plasma TG accompanied by a modest 
increase in plasma cholesterol, as reflected by increased (V)LDL levels. This is 
most probably a consequence of the increased hepatic lipid levels, which may 
result in an increased substrate-driven hepatic VLDL production.  
The effect of PXR agonism on plasma HDL levels appeared more complex. In 
E3L mice, PCN increased cholesterol contained in large HDL-1. Accumulation 
of apoE-rich large HDL-1 is a common characteristic of SR-BI deficient mice, 
since SR-BI appears solely responsible for the selective clearance of HDL-
cholesteryl esters in mice.26 Indeed, we observed that PCN largely decreased the 
hepatic expression of Sr-b1 as well as hepatic SR-BI protein in both E3L and 
E3L.CETP mice. This strongly suggests that the decrease in hepatic SR-BI may 
be a causal factor for the increase in large HDL. Based on these data we 
speculate that a decrease in hepatic SR-BI may also contribute to the increase in 
HDL-cholesterol and apoAI in wild-type mice as previously observed by 
Bachman et al.7 In contrast, PXR agonism by PCN failed to increase cholesterol 
within large HDL-1 in E3L.CETP mice. This can be explained by the fact that 
large HDL-1 is a preferred substrate for CETP, since CETP expression in SR-
BI-deficient mice normalized both the particle size and plasma levels of HDL.27 
PXR agonism not only failed to increase the HDL particle size in E3L.CETP 
mice as compared to E3L mice, but even dose-dependently decreased the HDL-
cholesterol level. We have previously shown that fenofibrate18 and atorvastatin19 
increase HDL-cholesterol levels by decreasing hepatic CETP expression related 
to lower liver lipid levels, suggesting that the PXR-induced increased liver lipid 
levels may conversely reduce HDL levels by increased CETP expression. 
However, PCN did not affect hepatic CETP expression or total CETP activity in 
plasma in E3L.CETP mice. One could argue that the PCN-induced increase in 
VLDL-TG levels may result in a substrate-driven increase in CETP activity, 
resulting in a relatively TG-rich HDL that would be more rapidly remodeled 
and cleared via hepatic lipase.13 However, such a mechanism is less plausible 
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since we were also unable to detect an increase in the endogenous (lipoprotein-
dependent) CETP activity. 
Albeit that CETP expression per se seems to be the main contributor to the 
PXR-induced decrease in HDL-cholesterol in E3L.CETP mice, other players 
involved in HDL metabolism may contribute as well. Previous studies showed 
that PXR agonism decreased ABCA1 expression in hepatocytes,10 but we only 
observed a tendency towards reduced hepatic Abca1 mRNA (~20%) and protein 
(~20%). However, PCN markedly reduced hepatic Apoa1 mRNA (~40-50%). 
Given the fact that both apoAI and ABCA1 are important for the generation of 
discoidal HDL precursors (i.e. apoAI) and their subsequent lipidation (i.e. 
ABCA1), genetic deficiency for either apoAI28 or ABCA129 dramatically 
decreases HDL levels. Therefore, a potential modest reduction of ABCA1 
accompanied by the large reduction in apoAI may well have synergistically 
contributed to the dose-dependent marked decrease in HDL in our in vivo study 
in mice, but only in the mice that express CETP. In addition, PCN decreased the 
expression of genes involved in HDL maturation such as Hl (~30%), Lcat (~20-
30%) and Pltp (~50%). Although HL-deficiency mildly increases HDL,30 
LCAT-deficiency31 and PLTP-deficiency32 both reduce plasma HDL levels. 
Therefore, the effects of PXR agonism on the hepatic expression of Lcat and 
Pltp, but not Hl, may also have contributed to some extent to the observed 
reduction in HDL.  
Together, our data show that PXR agonism increases cholesterol contained in 
large HDL-1 particles in E3L mice, as related to decreased hepatic SR-BI 
levels, and decreases HDL-cholesterol in E3L.CETP mice primarily resulting 
from CETP expression per se. Since the E3L.CETP mouse has proven a 
valuable model to predict drug-induced responses in humans with respect to 
HDL metabolism6,18,19 we anticipate that PXR agonism is not a valid strategy to 
raise HDL. 
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Abstract 

 
Apolipoprotein CI (apoCI) has been suggested to influence HDL metabolism by 
activation of LCAT and inhibition of HL and CETP. However, the effect of 
apoCI on scavenger receptor BI (SR-BI)-mediated uptake of HDL-cholesteryl 
esters (CE), as well as the net effect of apoCI on HDL metabolism in vivo is 
unknown. Therefore, we evaluated the effect of apoCI on the SR-BI-mediated 
uptake of HDL-CE in vitro and determined the net effect of apoCI on HDL 
metabolism in mice. Enrichment of HDL with apoCI dose-dependently 
decreased the SR-BI-dependent association of [3H]CE-labeled HDL with 
primary murine hepatocytes, similar to the established SR-BI-inhibitors apoCIII 
and oxLDL. ApoCI-deficiency in mice gene dose-dependently decreased HDL-
cholesterol levels. Adenovirus-mediated expression of human apoCI in mice 
increased HDL levels at a low dose and increased the HDL particle size at 
higher doses. We conclude that apoCI is a novel inhibitor of SR-BI in vitro and 
increases HDL levels in vivo. 
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Introduction 

 
Apolipoprotein CI (ApoCI) is a 6.6 kDa protein that is mainly synthesized by 
the liver, and also by other tissues such as lung, spleen, intestine, brain and 
adipose tissue. After secretion by the liver, apoCI associates with chylomicrons, 
VLDL and HDL and is exchangeable between these lipoproteins.1 ApoCI is 
highly positively charged, and is present in a relatively high plasma 
concentration of about 10 mg/dL.1 
Several functions of apoCI in lipoprotein metabolism have been described. 
ApoCI affects the metabolism of apoB-containing lipoproteins. Using apoCI-
deficient and apoCI-overexpressing mice, it has been shown that apoCI 
attenuates the clearance of VLDL by inhibition of the lipolytic conversion of 
VLDL by lipoprotein lipase (LPL), either directly2 or indirectly via product 
inhibition due to its fatty acid-binding properties.3 In addition, apoCI decreases 
the clearance of VLDL by inhibition of the binding and uptake of VLDL by the 
classical apoE-recognizing receptors, including the LDL receptor (LDLr)4 and 
LDLr-related protein (LRP)5 on the liver, as well as the VLDL receptor 
(VLDLr)6 that is mainly present on peripheral tissues. ApoCI has also been 
shown to increase the production of VLDL.7 By these combined actions, apoCI 
thus increases the plasma levels of VLDL-associated triglyceride (TG) and 
cholesterol (C) in mice.1,2 
ApoCI has also been suggested to be involved in HDL metabolism, although 
such a role has only been derived from in vitro observations. ApoCI is involved 
in HDL remodeling by activation of lecithin: cholesterol acyltransferase 
(LCAT) that esterifies cholesterol in HDL and, therefore, increases HDL-C 
levels and HDL particle size,8,9 and by inhibition of hepatic lipase (HL) that 
lipolyzes TG and phospholipids (PL) in HDL.10,11 However, the in vivo 
relevance of these actions of apoCI is unknown, but it is conceivable that apoCI 
increases the plasma levels and/or the particle size of HDL. ApoCI has also 
been identified as an inhibitor of the activity of cholesteryl ester (CE) transfer 
protein (CETP),12 which may add to a potential HDL-raising effect of apoCI, at 
least in CETP-expressing species. 
ApoCI may also affect the uptake of HDL-CE via SR-BI, as two homologues of 
apoCI (i.e. apoCII and apoCIII) have recently been demonstrated to inhibit SR-
BI.13 Although such an effect of apoCI has not been reported before, SR-BI 
inhibition would add to a potential HDL-raising effect of apoCI in vivo, since 
SR-BI is solely responsible for the selective hepatic uptake of HDL-CE in 
mice.14 
Therefore, in the present study we evaluated whether apoCI would represent a 
novel modulator of SR-BI by evaluating the effect of apoCI on the uptake of 
HDL-CE by freshly isolated mouse hepatocytes. In addition, we examined the 
in vivo relevance of the combined effects of apoCI on HDL metabolism using 
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apoCI-deficient mice and mice that overexpress apoCI using adenoviral 
expression.  
 

Methods 

 

Mice 

Heterozygous apoCI knockout (apoc1-/-) mice15 were crossbred to obtain wild-
type (WT), apoc1+/- and apoc1-/- littermates (C57Bl/6 background). 
Overexpression of apoCI was achieved via injection of a recombinant 
adenovirus that expresses human apoCI as described.16 
MX1Cre:LRPlox/lox.LDLr-/-.VLDLr-/- mice (C57Bl/6 background), that are 
deficient for the LDLr, VLDLr and hepatic LRP after three intraperitoneal 
injections of polyinosinic: polycytidylic ribonucleic acid (pI:pC), have been 
generated as described previously.17 Mice had access to regular chow and water 
ad libitum. When indicated, blood was drawn via the tail vein into paraoxon-
coated capillaries after 4 h fasting at 13.00 h and plasma was collected after 
centrifugation. 
 

Radiolabeling of HDL 

HDL was isolated from human plasma by density gradient ultracentrifugation 
and labeled with [3H]cholesteryl oleoyl ether (COEth) as described previously.18 
 

In vitro hepatocyte studies 

Hepatocytes were isolated from anesthetized WT and LRP-.LDLr-/-.VLDLr-/- 
mice by perfusion of the liver with collagenase.19 Freshly isolated cells 
(1x106/mL) were incubated (3h at 37°C) in DMEM + 2% BSA with 
[3H]COEth-labeled HDL (20 µg protein/mL) in the absence or presence of 
apoCI (Protein Chemistry Technology Center, Dallas TX, USA), apoCIII 
(Biodesign International, Saco, ME, USA), or oxidized (oxLDL) (100 µg 
protein/mL) under gentle shaking. After incubation, cells were pelleted by 
centrifugation and unbound label was removed by repeated washing with Tris-
buffered saline. The pellet was lysed in 0.1 M NaOH and cell-associated 
radioactivity and protein content were measured. [3H]COEth association was 
calculated as dpm/mg cell protein.  
 
Biochemical analysis 

Plasma cholesterol levels were measured with a commercially available 
enzymatic kit (236691, Roche Molecular Biochemicals, Indianapolis IN, USA). 
Plasma apoCI was measured by ELISA2 and apoAI was measured by western 
blotting.20 Lipoproteins were fractionated using fast performance liquid 
chromatography (FPLC). Hereto, plasma was pooled per group and 50 µL of 
each pool was injected onto a Superose 6 HR 10/30 column (Äkta System, 
Amersham Pharmacia Biotech, Piscataway, NJ, USA) and eluted at a constant 



ApoCI inhibits SR-BI 

 135 

flow rate of 50 µL/min in PBS, 1 mM EDTA, pH 7.4. Fractions of 50 µL were 
collected and assayed for cholesterol as described above. 
 
Statistical analysis 

Data were analyzed using the Mann-Whitney nonparametric test. Analyses were 
performed with SPSS 14.0 (SPSS inc, Chicago, USA).  
 

Results 

 

ApoCI inhibits the association of [
3
H]COEth-labeled HDL with hepatocytes 

To examine whether apoCI affects the SR-BI-mediated uptake of HDL-CE, we 
evaluated the effect of apoCI on the association [3H]COEth-labeled HDL with 
primary hepatocytes from WT mice. Enrichment of HDL (20 µg protein/mL) 

Figure 1. ApoCI dose dependently inhibits SR-BI in vitro. Primary hepatocytes were isolated 
from WT mice (A, B) and LRP-.LDLr-/-.VLDLr-/- mice (C, D) and incubated (3 h at 37°C) 
with [3H]COEth-HDL (20 µg/mL) enriched with apoCIII (20 µg/mL) or apoCI (20 µg/mL) 
(A, C). In a separate experiment, cells were incubated with apoCI (5 and 20 µg/mL) or 
oxLDL (100 µg/mL) (B, D). Cell-associated radioactivity was expressed as dpm/mg cell 
protein. Values represent means ± SD (n=3). *P<0.05, **P<0.01, ***P<0.001. 
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with the established SR-BI inhibitor apoCIII (20 µg/mL) inhibited HDL-CE 
association with WT hepatocytes (-37%; P<0.001), which is in line with the 
findings of Huard et al.13 ApoCI, at the same concentration, inhibited HDL-CE 
association even more effic iently than apoCIII (-57%; P<0.001) (Fig. 1A). In a 
second experiment, we showed that the inhibition of HDL-CE association by 
apoCI is dose-dependent (-19% at 5 µg/mL; P<0.05 and -53% at 20 µg/mL; 
P<0.001), and that the highest apoCI concentration was equally effective as the 
established SR-BI inhibitor oxLDL (-57% at 100 µg/mL; P<0.001) (Fig. 1B). 
As apoCI is also an inhibitor of the classical apoE recognizing receptors (i.e. 
LRP, LDLr and VLDLr), we repeated this experiment with hepatocytes from 
LRP, LDLr and VLDLr triple-knockout mice. ApoCI affected the association of 
HDL-CE with LRP-.LDLr-/-.VLDLr-/- hepatocytes (Fig. 1C and D) similarly as 
with WT cells (Fig. 1A and B). This shows that the inhibitory effect of apoCI 
on HDL-CE association with hepatocytes is independent of the apoE-
recognizing receptors, and confirms that HDL-CE association with hepatocytes 
is strictly dependent on SR-BI.14 
 
ApoCI deficiency decreases plasma HDL levels in mice 

Previous in vitro studies have demonstrated that apoCI activates LCAT8,9 and 
inhibits HL 10,11 and we thus now show that apoCI additionally inhibits SR-BI. 
To evaluate the consequences of these combined effects for HDL-C metabolism 
in vivo, we first examined the effect of genetic apoCI-deficiency in mice on 
HDL-C levels. Hereto, blood was drawn from 4 hours fasted WT, apoc1+/- and 
apoc1-/- littermates. ApoCI-deficiency resulted in a gene dose-dependent 
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Figure 2. ApoCI deficiency in mice decreases HDL in vivo. Blood was drawn from WT, 
apoc1+/- and apoc1-/- littermate mice after 4 h fasting, and plasma was assayed for total 
cholesterol (A). Values represent means ± SD (n=12). **P<0.01. Plasma was pooled per 
group (n=12), lipoproteins were fractionated by FPLC and cholesterol in fractions was 
measured (B).  
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decrease in plasma cholesterol up to -32% (P<0.01) upon homozygous apoCI 
deficiency (Fig. 2A). Separation of the various lipoprotein fractions from 
plasma by FPLC showed that the decrease in plasma cholesterol was mainly 
confined to the HDL fraction. A gene dose-dependent decrease in HDL-C was 
observed up to -29% in apoc1-/- mice (Fig. 2B). In contrast, apoCI deficiency 
did not affect plasma apoAI levels (not shown). 
 
ApoCI overexpression increases plasma HDL levels and enlarges HDL 

To examine the effect of apoCI overexpression on HDL-C levels and HDL size, 
WT mice were injected with a recombinant adenovirus expressing human apoCI 
(0.1, 0.3, 1, and 3.3 x109 pfu/mouse).16 This resulted in a virus dose-dependent 
increase in plasma levels of apoCI (0, 12, 23 and 33 mg/dL) and cholesterol (up 
to +48%; P<0.001) (Fig. 3A). Fractionation of lipoproteins by FPLC indicated 
that overexpression of apoCI led to a dose-dependent increase in VLDL, which 
is explained by the well-known attenuation of the catabolism of apoB-
containing lipoproteins. Interestingly, overexpression of a low dose of apoCI led 
to an increase of the normal sized HDL (+15%), whereas higher doses rather led 
to an increase of HDL particle size as shown by the appearance of HDL-1 (Fig. 
3B).  
 
Discussion 

 

The aim of our study was to determine the effect of apoCI on HDL metabolism, 
by addressing the effect of apoCI on the hepatic HDL receptor SR-BI in vitro 

Figure 3. ApoCI overexpression in mice increases HDL in vivo. WT mice were injected with 
a recombinant adenovirus expressing human apoCI to dose-dependently increase apoCI 
plasma levels. After 5 days, blood was drawn after a 4 h fast, and plasma total cholesterol 
was measured (A). Values represent means ± SD (n=5). *P<0.05, **P<0.01, ***P<0.001. 
Plasma was pooled per group (n=5), lipoproteins were fractionated by FPLC and cholesterol 
in fractions was measured (B). 
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and by evaluating the net effect of apoCI on plasma HDL in vivo. We showed 
that apoCI inhibits the SR-BI-mediated association of HDL-CE with primary 
murine hepatocytes. Furthermore, we showed in mice that apoCI-deficiency 
reduces HDL levels and, conversely, that modest and high apoCI 
overexpression increases and enlarges HDL, respectively. 
Previous in vitro studies have suggested that apoCI may be involved in HDL 
metabolism by stimulation of LCAT,8,9 inhibition of HL10,11 and inhibition of 
CETP,12 which are all involved in the remodeling of HDL in the circulation. 
Based on the structural homology of apoCI with apoCII and apoCIII, which 
have been shown to inhibit the of SR-BI-mediated selective uptake of HDL-CE 
by HepG2 cells,13 we postulated that apoCI may also inhibit SR-BI. Indeed, 
apoCI appeared even more effective in inhibiting the SR-BI-mediated uptake of 
HDL-CE by primary mouse hepatocytes than apoCIII. 
It is interesting to speculate how apoCI affects SR-BI function. As compared to 
apoCII and apoCIII, apoCI is unusually rich in positively-charged lysine 
residues, which is important for both its lipopolysaccharide-binding21 and 
CETP-inhibiting22 properties. The fact that apoCI, apoCII and apoCIII all 
inhibit SR-BI suggests that the high positive charge of apoCI is not essential for 
this effect. The mechanism by which apoCII and apoCIII inhibit SR-BI, has not 
yet been resolved.13 SR-BI binds HDL via multiple binding sites23 and 
subsequently mediates selective CE uptake from this particle.24 Therefore, 
apoCI, apoCII and apoCIII may interfere with this process by 1) modifying 
HDL particles in a way that binding of SR-BI to HDL is reduced, 2) stabilizing 
HDL particles in a way that CE can not easily be removed, and/or 3) interacting 
directly with SR-BI, thereby preventing binding to HDL.  
Interestingly, the effects of apoCI on the various HDL-modulating proteins, 
including activation of LCAT, inhibition of HL, and inhibition of SR-BI, should 
theoretically all lead to an increase in HDL levels and/or particle size. First, 
overexpression of LCAT, an HDL-associated plasma enzyme that is responsible 
for cholesterol esterification in HDL,25-27 increases both HDL-C and HDL 
size.28 Second, homozygous deficiency for HL, a plasma enzyme that degrades 
TG and PL within HDL,29 does not have a large impact on HDL-C, but does 
result in accumulation of large HDL-1 particles.30 Third, heterozygous SR-BI 
deficiency primarily results in an increase in HDL-C, whereas homozygous SR-
BI deficiency leads to accumulation of large HDL-1.31 Therefore, we postulated 
that apoCI expression would positively correlate with HDL-C levels and HDL 
size. Indeed, we showed that apoCI deficiency reduced HDL-C. Conversely, 
overexpression of increasing amounts of apoCI increased HDL-C at moderate 
expression and gradually increased the formation of large HDL-1 at higher 
apoCI expression levels. These effects are thus all consistent with the expected 
effects of apoCI on LCAT, HL and SR-BI, albeit that it is not feasible to 
quantify the relative contribution of the individual pathways. 



ApoCI inhibits SR-BI 

 139 

Regarding the current interest in raising HDL as a novel strategy to reduce 
cardiovascular risk, apoCI may be an exciting new lead. It is interesting to note 
that, in addition to its effect on LCAT, HL and SR-BI, apoCI is also the main 
endogenous protein inhibitor of CETP.12 CETP  is absent in mice but present in 
plasma of humans and may therefore also add to the HDL-raising effect of 
apoCI in humans. Although a causal effect of apoCI on determining HDL levels 
in humans would be difficult to study, more than 90% of plasma apoCI appears 
to be associated with HDL in normolipidemic subjects32 and we recently 
demonstrated a positive correlation between plasma apoCI and HDL.33 Of 
course, since levels of HDL do not always reflect the atheroprotective properties 
of HDL (i.e. its role in reverse cholesterol transport, its anti-inflammatory and 
antioxidative properties), studies on the effect of apoCI on HDL functionality 
are still warranted. 
A drawback of apoCI as a lead in HDL-raising therapy would be that apoCI not 
only increases HDL levels, but also increases VLDL levels mainly by inhibition 
of LPL activity.2 This appeared the predominant reason why apoCI 
overexpression on a hyperlipidemic apoE-deficient background aggravated 
atherosclerosis,11 whereas apoCI-deficiency attenuated atherosclerosis.34 
Furthermore, SR-BI has recently been described to facilitate the hepatic uptake 
of VLDL and chylomicrons.35,36 These effects may thus add to some extent to 
the VLDL-raising effect of apoCI. Therefore, it would be interesting to perform 
in vitro structure-and-function studies to determine the minimal domain of 
apoCI that targets subsets of HDL-modulating proteins, including preferentially 
LCAT, HL and CETP, without adversely affecting VLDL metabolism via LPL 
and potentially SR-BI. 
In conclusion, we have demonstrated that apoCI is a novel inhibitor of the SR-
BI-mediated uptake of HDL-CE by hepatocytes, and that apoCI is a determinant 
for the plasma levels and size of HDL in vivo.  
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Abstract 
 
Apolipoprotein CI (apoCI) is a highly positively charged plasma apolipoprotein 
of 57 amino acids and has a dual role in plasma lipoprotein metabolism and 
atherosclerosis. On one hand, apoCI inhibits the cholesteryl ester transfer 
protein (CETP), which increases the plasma level of anti-atherogenic high 
density lipoproteins (HDL). On the other hand, apoCI inhibits lipoprotein lipase 
(LPL), which increases proatherogenic (very) low density lipoproteins 
((V)LDL). In this study, we show that the CETP-inhibitory function of apoCI 
resides in the C-terminal domain, whereas the C terminus of apoCI is not 
sufficient for the LPL-inhibitory function of apoCI. The C-terminal peptide 
apoCI32-57 potently inhibited CETP activity, mainly caused by positively 
charged amino acids, with a negligible effect on LPL activity. Therefore, 
apoCI32-57 may be an interesting lead in the search for novel CETP inhibitors as 
a new strategy to increase HDL thereby reducing cardiovascular risk. 
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Introduction 
 
Apolipoprotein CI (apoCI) is the smallest known apolipoprotein. ApoCI 
consists of only 57 amino acids, arranged in two amphipathic helices connected 
by a flexible hinge region, and is unusually rich in positively charged lysine (K) 
and arginine (R) residues (21 mol%). ApoCI is mainly produced by hepatocytes 
and secreted into plasma, where it associates with predominantly anti-
atherogenic high density lipoproteins (HDL), but also with atherogenic very 
low density lipoproteins (VLDL).

1
  

ApoCI has various functions in lipoprotein metabolism. ApoCI has been 
identified as the main endogenous HDL-associated inhibitor of cholesteryl ester 
transfer protein (CETP) activity,

2
 probably because of its large amount of 

positively charged amino acids,
3
 which is regarded as an anti-atherogenic 

property. CETP is responsible for the transfer of cholesteryl esters (CE) from 
HDL to low density lipoproteins (LDL) and VLDL in plasma. In this way, 
CETP lowers HDL-cholesterol (C) and at the same time increases (V)LDL-C, 
thereby unfavourably modifying two risk factors for atherosclerosis. CETP 
inhibition is generally regarded as an effective new therapeutic strategy to 
increase HDL-C levels and reduce cardiovascular disease (CVD) risk.

4,5
 In fact, 

apoCI-deficiency in human CETP transgenic mice increases CETP activity and 
lowers HDL-C levels.

6
 Conversely, human apoCI overexpressing (APOC1) 

transgenic mice have reduced specific CETP activity.
7
 ApoCI could therefore 

be an interesting lead for a new generation of CETP inhibitors. 
However, apoCI is also a major inhibitor of lipoprotein lipase (LPL),

8
 which is 

a pro-atherogenic property. LPL hydrolyses triglycerides (TG) within TG-rich 
lipoproteins such as VLDL, resulting in the liberation of fatty acids (FA) that 
can be stored in adipose tissue or used as energy supply for skeletal muscle and 
heart. Therefore, apoCI-deficient mice on a hyperlipidemic apoE-deficient 
background have decreased VLDL levels

9
 and decreased atherosclerosis.

10
 

Conversely, APOC1 transgenic mice have severely increased plasma VLDL 
levels,

8
 and APOC1 mice on a hyperlipidemic apoE-deficient background have 

increased atherosclerosis.
11,12

 Because of apoCI-induced LPL inhibition, human 
apoCI overexpression in CETP transgenic mice not only reduces specific CETP 
activity, but also largely increases VLDL levels. The increase in VLDL levels 
consequently increases hepatic CETP gene expression, which precludes an 
increase in HDL-C resulting from CETP inhibition only.

7
  

To investigate whether apoCI may represent a suitable lead for novel CETP 
inhibitors, we aimed in this study to identify by structure-function analysis the 
minimal CETP-inhibitory domain of apoCI without LPL-inhibitory activity. 
Studies in baboons with high HDL have identified the N-terminal domain 
apoCI1-38 as the CETP inhibitor,

13,14
 whereas studies on the interaction of human 

apoCI with human CETP indicated that the C-terminal domain apoCI34-54, rather 
than the N-terminal domain apoCI4-25, inhibited CETP.

3
 Therefore, we 
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generated full-length apoCI as well as an array of N-terminal and C-terminal 
apoCI-derived peptides by solid-phase synthesis, and determined their effect on 
the activity of CETP as well as of LPL. To get more insight into the mechanism 
by which apoCI inhibits CETP activity, we also evaluated the contribution of 
the positively charged amino acids by replacing K and R residues by 
electroneutral alanine (A) residues. 
 

Materials and Methods 

 
ApoCI and apoCI peptides. 
Full-length human apoCI (apoCI1-57; purity >95%) was synthesized by the 
Protein Chemistry Technology Center (UT Southwestern Medical Center, 
Dallas, TX). ApoCI-derived peptides, without or with replacement of positively 
charged K and R by electroneutral A, were synthesized by the Peptide Synthesis 
Facility of the Department of Immunohematology and Blood Transfusion at the 
Leiden University Medical Center (Leiden, The Netherlands) by solid phase 
peptide synthesis on a TentagelS-AC (Rap, Tübingen, Germany) using 9-
fluorenylmethoxycarbonyl/t-Bu chemistry, benzotriazole-1-yl-oxy-tris-
pyrrolidino-phosphonium hexafluorophosphate/N-methylmorpholine for 
activation and 20% piperidine in N-methylpyrrolidone for 
fluorenylmethoxycarbonyl removal.

15
 The peptides were cleaved from the resin, 

deprotected with trifluoroacetic acid/water, and purified on Vydac C18. The 
purified peptides were analyzed by reverse-phase HPLC and their molecular 
masses were confirmed by MALDI-TOF mass spectrometry (purity >95%). The 
primary sequences of apoCI and apoCI-derived peptides are shown in Table 1. 
 
 
Table 1. Primary sequences and isoelectric points (pI) of full-length human apoCI (apoCI1-57) 
and apoCI-derived peptides. 

ApoCI 
peptides 

pI Primary sequence 

1-57 7.93 TPDVSSALDKLKEFGNTLEDKARELISRIKQSELSAKMREWFSETFQKVKEKLKIDS 

1-20 4.27 TPDVSSALDKLKEFGNTLED 

1-23 4.86 TPDVSSALDKLKEFGNTLEDKAR 

1-30 5.98 TPDVSSALDKLKEFGNTLEDKARELISRIK 

1-38 6.02 TPDVSSALDKLKEFGNTLEDKARELISRIKQSELSAKM 

46-57 9.53 FQKVKEKLKIDS 

35-57 9.40 SAKMREWFSETFQKVKEKLKIDS 

32-57 8.11 SELSAKMREWFSETFQKVKEKLKIDS 

32-57 A 5.00 SELSAAMAEWFSETFQKVKEKLKIDS 

32-57 B 4.25 SELSAKMREWFSETFQAVAEALAIDS 

32-57 C 3.45 SELSAAMAEWFSETFQAVAEALAIDS 

 
The positively charged basic amino acids Lys (K) and Arg (R) are represented in boldface. 
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CETP activity.  
The effect of apoCI and apoCI-derived peptides on the CETP-mediated transfer 
of [

3
H]cholesteryl oleate (CO) from LDL to HDL was determined essentially as 

described.
16

 HDL, LDL and lipoprotein deficient serum (LPDS) were isolated 
from human plasma by ultracentrifugation, and  LDL was radiolabelled by 
incubation with [

3
H]CO (Amersham Biosciences, Buckinghamshire, UK)-

containing phosphatidylcholine vesicles in the presence of LPDS exactly as 
described.

16
 ApoCI and apoCI-derived peptides were incubated (6 h at 37°C) 

with [
3
H]CO-LDL (31.25 nmol total cholesterol) and HDL (12.5 nmol total 

cholesterol) in a total volume of 175 µL 0.1 M phosphate buffer, pH 7.4, in the 
presence of the 10 µL LPDS as CETP source and 8 mM of the lecithin-
cholesterol acyltransferase (LCAT) inhibitor 5,5'-dithiobis-(2-nitrobenzoic acid) 
(DTNB) (Sigma). After incubation, LDL was precipitated with 75 µL 0.1 M 
phosphate buffer and 25 µL 0.167 mM manganese chloride, and the supernatant 
was counted for HDL-associated [

3
H]CO in Ultima Gold (Perkin Elmer, 

Boston, MA, USA). CETP activity was calculated as nmol CE transfer/ mL/ 
min and expressed as % of control.  
 
LPL activity assay. 
The effect of apoCI and apoCI peptides on the triacylglycerol hydrolase activity 
of LPL was assessed by determining their effect on the LPL-mediated 
hydrolysis of TG within VLDL-like

 
emulsion particles,

8
 using either soluble 

LPL as described
17

 or heparan sulfate proteoglycan (HSPG)-bound LPL. 
Hereto, 0.25 µg/well HSPG (Sigma) was bound to 96-wells plates by overnight 
incubation at 4°C. Wells were blocked (1 h at 37°C) with 1% BSA in 0.1 M 
Tris.HCl pH 8.5, Bovine LPL (0.2 U/well; Sigma) was attached to HSPG by 
incubation (2 h at 37°C) in 12% BSA in 0.1 M Tris.HCl, pH 8.5. After washing, 
[

3
H]TO-labelled VLDL-like emulsion particles (0.5 mg TG/mL), pre-incubated 

with apoCI
 
(30 min at 37°C), were added in the presence of essentially fatty

 

acid-free BSA (60 mg/mL, Sigma) and the LPL-cofactor apoCII (2.5 µg/mL) in 
0.1 M Tris.HCl, pH 8.5. After incubation (20 min at 37°C) the reaction was 
stopped by placing plates on ice and 20 µL

 
sample was added

 
to 1.5 mL of 

methanol: chloroform: hexane: oleic acid (1,410: 1,250: 1,000: 1,
 
v/v/v/v) and 

0.5 mL of 0.1 N NaOH was added. To quantify the [
3
H]oleate generated, 0.5

 
mL 

of the aqueous phase obtained after vigorous mixing (15 sec)
 
and centrifugation 

(15 min at 3,600 rpm) was counted in Ultima Gold. 
 
Statistical analysis. Data were analyzed using the Mann-Whitney 
nonparametric test. Analyses were performed with SPSS 14.0 (SPSS Inc, 
Chicago, USA).  
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Results 
 
ApoCI dose-dependently inhibits CETP activity. 
To confirm the previously reported CETP-inhibitory effect of full-length human 
apoCI, we determined the dose-dependent effect of apoCI1-57 on the transfer of 
[

3
H]CO from human LDL to human HDL in the presence of LPDS as source of 

CETP (Fig. 1). Indeed, apoCI dose-dependently inhibited CETP activity, with 
an IC50 of approx. 4 µM, and nearly completely inhibited CETP activity at 16 
µM (-91%; P<0.05).  
 
The CETP-inhibitory property of apoCI is confined to its C-terminal domain.  
Since the CETP-inhibitory effect of apoCI has been attributed to either its N-
terminus

13,14
 or C-terminus,

3
 we generated an array of N-terminal and C-

terminal apoCI-derived peptides by solid-phase synthesis (shown in Table 1), 
and determined their effect on CETP activity (Fig. 2). The N-terminal peptides 
apoCI1-20 to apoCI1-38 did not affect CETP activity at 16 µM, and only 
marginally decreased CETP activity at 64 µM in a length-dependent way (-19% 
for apoCI1-38; P<0.05) (Fig. 2A). In contrast, the C-terminal peptides apoCI35-57 
and apoCI32-57 already affected CETP at 16 µM (-37% for apoCI32-57; P<0.05), 
and largely decreased CETP activity at 64 µM, again in a length-dependent way 
(-100% for apoCI32-57; P<0.05) (Fig. 2B). 
 
The CETP-inhibitory property of apoCI32-57 depends on positively charged 
amino acids. 
It has been shown that the ability of apoCI to inhibit CETP activity could be 
explained by reduction of the electronegative surface charge of HDL.

3
 Since 

apoCI is unusually rich in electropositive K and R residues, we thus determined 
the contribution of these residues to the CETP-inhibitory effect of apoCI32-57 by 
site-specific replacement into A residues that are electroneutral and do not 
affect the overall peptide structure (Fig. 3). At a concentration of 16 µM, 
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Figure 1. ApoCI dose-dependently 
inhibits CETP activity. Full-length 
apoCI (apoCI1-57; 0-16 µM) was 
incubated (6 h at 37°C) with [3H]CO-
LDL and HDL in PBS in the presence 
of LPDS as source of CETP. The 
amount of [

3
H]CO transferred from 

LDL to HDL was determined by 
counting [

3
H]CO-HDL after 

precipitation of LDL. CETP activity 
was calculated relatively to control 
incubations without apoCI. Values 
are means ±SD, n=3, * P<0.05, as 
compared to control without peptides 
added.  
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wild-type apoCI32-57 decreased CETP activity appreciably (-37%; P<0.05). 
Neutralization of positively charged residues, within either the KMR cluster at 
the N-terminal end or within the KVKEKLK cluster at the C-terminal end, 
reduced CETP inhibition partially (-22% and -21%; P<0.05), whereas 
neutralization of all positively charged amino acids completely abolished the 
CETP-inhibitory property of apoCI32-57. A similar pattern was observed at 64 
µM, albeit that the peptide in which all K and R residues have been replaced by 
A still inhibit CETP activity to some extent (-31%; P<0.05). 

Figure 2. The CETP-inhibitory property of apoCI is confined to its C-terminal domain. 
ApoCI peptides derived from the N-terminal domain (A) or C-terminal domain (B) were 
incubated (6 h at 37°C) at concentrations of 16 µM and 64 µM with [

3
H]CO-LDL and HDL 

in PBS in the presence of LPDS as source of CETP. CETP activity was calculated relatively 
to control incubations without apoCI. Values are means ±SD, n=3, * P<0.05, as compared to 
control without peptides added.  
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ApoCI32-57 does not inhibit LPL activity as compared to full-length apoCI1-57. 
ApoCI32-57, which is the minimal apoCI peptide that results in maximum CETP 
inhibition, may have therapeutic value provided that it selectively inhibits the 
activity of CETP as compared to LPL. Therefore, we next determined the effect 
of full-length apoCI1-57 and of apoCI32-57 on LPL activity by incubation with 
glycerol tri[

3
H]oleate-labeled VLDL-like emulsion particles and HSPG-bound 

LPL (Fig. 4). Indeed, whereas apoCI1-57 dose-dependently decreased LPL 
activity (-90% at 16 µM; P<0.05), LPL activity was not significantly affected 
by apoCI32-57.  
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Figure 3. The CETP-inhibitory property of apoCI32-57 depends on positively charged amino 
acids. ApoCI32-57 or apoCI32-57 in which positively charged K and R are replaced at the N-
terminal end (A), C-terminal end (B), or both ends (C) were incubated (6 h at 37°C) at 
concentrations of 16 µM and 64 µM with [

3
H]CO-LDL and HDL in PBS in the presence of 

LPDS as source of CETP. CETP activity was calculated relatively to control incubations 
without apoCI. Values are means ±SD, n=3, * P<0.05, as compared to control without 
peptides added.  

Figure 4. Full-length apoCI, but not 
apoCI32-57, inhibits LPL activity. 
ApoCI1-57 (A) and apoCI32-57 (B) 
were incubated (20 min at 37°C) at 
concentrations of 4 µM and 16 µM 
with glycerol tri[

3
H]oleate-labeled 

VLDL-like emulsion particles and 
HSPG-bound LPL. Generated 
[

3
H]oleate was separated from 

glycerol tri[3H]oleate by extraction 
and quantified. LPL activity was 
determined as the percentage of 
fatty acids (FA) generated per 
minute. Values are means ±SD, n=3, 
* P<0.05, as compared to control 
without peptides added. 
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Discussion 
 
Using an array of apoCI-derived peptides, we demonstrated that the CETP-
inhibitory property of apoCI is restricted to the C-terminal domain of apoCI. 
We identified apoCI32-57 as a minimal CETP inhibitory sequence that does not 
inhibit LPL activity, and showed that the positively charged amino acids K and 
R are largely responsible for the CETP-inhibitory effect. 
First, we thus demonstrated that the CETP-inhibitory property of apoCI resides 
in its C-terminal domain. This observation is consistent with a previous study 
comparing the CETP-inhibitory effect of apoCI34-54 and apoCI4-25.

3
 By direct 

comparison, we showed that apoCI32-57 is more effective in CETP inhibition 
than apoCI34-54 (not shown). However, our data contradict earlier findings in a 
strain of baboons with high HDL in which apoCI1-38 was identified as the 
naturally occurring CETP inhibitor in plasma.

13
 Notably, human apoCI1-38 also 

inhibits baboon CETP.
14

 It is therefore likely that the discrepancy between the 
various studies is explained by species differences on the level of CETP: the N-
terminus of apoCI affects baboon CETP whereas the C-terminus of apoCI 
affects human CETP. It should be noted that we did show a modest effect of 
apoCI1-38 on CETP activity (Fig. 2A), and the studies on baboon CETP did not 
compare apoCI1-38 with a C-terminal peptide.

14
 Therefore, it is still possible that 

the baboon CETP activity assay is more sensitive than the human CETP activity 
assay, and thus detects a larger CETP-inhibitory effect of apoCI1-38, without 
ruling out that apoCI32-57 is even more effective.  
It has been shown that the ability of apoCI to inhibit CETP activity could be 
explained by reduction of the electronegative surface charge of HDL,

3
 thereby 

inhibiting the physical association of CETP with HDL. Therefore, we evaluated 
the contribution of the positively charged amino acids within apoCI32-57 to its 
CETP-inhibitory effect by replacement of K and R residues in the KMR cluster 
at the N-terminal end or within the KVKEKLK cluster at the C-terminal end by 
electroneutral A. This is a small amino acid that does not affect the overall 
peptide structure as predicted from secondary structure analysis using Peptide 
Companion software (not shown). We demonstrated that replacement of 
positively charged amino acids in either the KMR or KVKEKLK motif both 
reduced the CETP inhibitory effect of apoCI32-57. In addition, despite the 
presence of positively charged amino acids in both the N-terminus and C-
terminus of apoCI, the C-terminal peptide apoCI32-57 had a higher isoelectric 
point (pI = 8.11) than apoCI1-38 (pI = 6.02). These observations thus confirm the 
hypothesis that the CETP-inhibitory property of apoCI is dependent on its 
overall positive charge rather than on specific electropositive residues. 
In addition to electropositive charge, other structural properties of apoCI likely 
contribute to inhibition of CETP activity. First, apoCI32-57 appeared to be a 
stronger CETP inhibitor than apoCI35-57 whereas there is no difference in the 
amount of positively charged residues. Second, apoCI46-57 has a higher 
isoelectric point (pI = 9.53) as compared to apoCI32-57 (pI = 8.11), but is a less 
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efficient CETP inhibitor. Third, replacement of all K and R residues in apoCI32-

57 did not completely abrogate its CETP-inhibitory effect. It is thus conceivable 
that, in addition to the importance of the peptide charge, the peptide length 
positively influences the α-helical conformation of the peptides and the binding 
affinity of the peptide for HDL. 
Whereas full-length apoCI is an effective inhibitor of LPL activity, apoCI32-57 
did not affect LPL activity. In fact, none of the applied apoCI-derived peptides 
were able to inhibit LPL activity (not shown). The mechanism by which apoCI 
inhibits LPL activity has not been fully elucidated. ApoCI may directly interact 
with LPL and/or interfere with other apolipoproteins that modulate LPL activity 
such as the LPL co-activator apoCII or apoCIII or apoAV.

8
 Alternatively, apoCI 

may affect LPL activity by product inhibition, since apoCI effectively binds 
free fatty acids.

18
 The lack of an LPL-inhibiting effect of the truncated apoCI 

peptides could thus result from reduced interference with any of these three 
processes. The fact that C-terminal peptides inhibit the activity of CETP, but 
not that of LPL, suggests that these peptides may still bind avidly with HDL 
(thereby interfering with CETP activity), but weakly with VLDL (thereby 
precluding interference with LPL activity). Since the anti-apoCI antibody that 
we used in our ELISA does not react with apoCI-peptides even after minimal 
truncation of apoCI, such a hypothesis is difficult to test by routine techniques. 
In our study, we focused on the most prominent features of apoCI in lipid 
metabolism, i.e. CETP inhibition and LPL inhibition. ApoCI  has also been 
described to stimulate LCAT,

19,20
 inhibit HL

11,12
 and inhibit the HDL receptor 

scavenger receptor class B type I (SR-BI),
21

 which may contribute to HDL 
increase. In addition, apoCI inhibits (V)LDL clearance via apoE-recognizing 
receptors,

22,23
 which may contribute to hyperlipidemia. Therefore, in vivo 

studies using CETP transgenic mice and wild-type mice are needed to evaluate 
whether apoCI32-57 is capable to increase HDL without inducing hyperlipidemia 
and whether such an effect can be ascribed to CETP inhibition only. 
The fact that apoCI32-57 inhibits CETP activity without affecting LPL activity 
suggests that apoCI32-57 is a valuable lead for a new anti-atherogenic therapy, as 
raising HDL by inhibiting CETP is generally seen as a protective lipoprotein in 
atherosclerosis development. This is especially relevant considering the recent 
clinical failure of the CETP inhibitor torcetrapib.

24
 Despite evoking a large 

increase in HDL-cholesterol levels, torcetrapib did not potentiate the anti-
atherogenic potency of atorvastatin as judged from coronary intima-media 
thickness (IMT) and intravascular ultrasonography (IVUS) measurements.

25-27
 

In fact, torcetrapib increased overall mortality and the amount of non fatal 
cardiovascular events.

24
 These disappointing results are probably explained by 

compound-specific off target toxic effects of torcetrapib, including hypertension 
and hyperaldosteronism.

28
 Being derived from an endogenous protein, apoCI32-

57 is not expected to induce such side effects. Also, whereas torcetrapib forms 
an inactive complex between HDL and CETP, thereby resulting in an 
accumulation of CETP protein in plasma,

29
 apoCI is not expected to result in 
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accumulated CETP in plasma as its proposed working mechanism (i.e. 
reduction of the interaction between HDL and CETP) is different from that of 
torcetrapib. 
In conclusion, we identified apoCI32-57 as the minimal domain in apoCI that 
inhibits CETP activity without affecting LPL activity. Therefore, future studies 
are warranted to evaluate whether apoCI32-57 will raise HDL without inducing 
hyperlipidemia and may be a valuable lead in the search for new CETP 
inhibitors that aim at raising HDL and reducing atherosclerosis.  
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Cardiovascular disease (CVD) is a major cause of morbidity and mortality in 

the western world, and is mainly caused by atherosclerosis. In the Netherlands, 

about one third of all deaths are due to CVD. Dyslipidemia (i.e. high plasma 

(V)LDL-cholesterol (C), high triglycerides and low HDL-C) is a major risk 

factor for atherosclerosis development and cardiovascular disease. Patients with 

dyslipidemia are usually treated with cholesterol lowering drugs including 

statins
1
 and fibrates.

2
 These drugs lower plasma cholesterol very efficiently (up 

to 40%),
1,2

 however, they prevent only a fraction (about 30%) of cardiovascular 

events. Therefore new therapeutic strategies to reduce CVD risk more 

efficiently are necessary. Since HDL is clearly inversely correlated with CVD 

risk, and has been attributed multiple protective effects in atherosclerosis by its 

role in reverse cholesterol transport (RCT) and its anti-inflammatory, anti-

oxidative and anti-thrombotic properties, HDL-raising therapy is currently 

considered as a promising strategy to further reduce CVD risk.
3,4

 

The research described in this thesis was performed to elucidate the mechanisms 

underlying the HDL-C raising effects of classic lipid-lowering drugs 

(fenofibrate, atorvastatin, niacin) as well as an experimental HDL-raising 

compound (torcetrapib), and to evaluate the HDL-raising potential of novel 

strategies (PXR agonism, apoCI). The major conclusions and implications of 

our findings and future perspectives will be discussed here.  

 

HDL modulation by classical lipid lowering drugs 

 

The classical lipid-lowering drugs statins, fibrates and niacin have been shown 

to modestly raise HDL-C levels in humans up to 10, 15, and 30%, respectively.
5
 

Interestingly, these drugs failed to show human-like HDL-increasing effects in 

either normolipidemic or classical hyperlipidemic mice (i.e. LDL receptor-

knockout and apoE-knockout mice). Although fenofibrate has been shown to 

increase HDL in wild-type mice, the raised HDL had an increased particle size, 

as opposed to the raised HDL in humans. Likewise, although these drugs did 

evoke human-like lipid-lowering effects in ApoE*3Leiden transgenic (E3L) 

mice
6
 with respect to dose-dependent decreases of (V)LDL-C and triglycerides, 

they generally failed to raise HDL-C in E3L mice.
7
  

As mice naturally lack the cholesteryl ester transfer protein (CETP), which is an 

important determinant of HDL metabolism in humans, we reasoned that the 

HDL-raising effect of the classical lipid-lowering drugs may relate to the 

presence of CETP. Therefore, we crossbred E3L mice with CETP mice to 

generate the novel E3L.CETP mouse model.
8
 In this thesis we show that 

E3L.CETP mice indeed respond with an increase in HDL besides a decrease in 

(V)LDL to both a fibrate (fenofibrate; chapter 2), a statin (atorvastatin; chapter 

3) and niacin (chapter 4). This indicates not only that the E3L.CETP mouse is a 

valuable model to study the effect of HDL modulating drugs on lipid 
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metabolism, but also that CETP plays an essential role in the HDL increase 

observed with these drugs. 

It is interesting to note that these various classes of drugs have a similar HDL-

increasing effect, as dependent on CETP expression, whereas they evoke their 

lipid-lowering effects through different mechanisms. Statins, fibrates and niacin 

reduce plasma lipids by primarily by inhibition of the de novo hepatic 

cholesterol synthesis,
9,10

 stimulation of triglyceride hydrolysis in plasma,
11-13

 

and inhibition of lipolysis in adipocytes,
14

 respectively. Despite these different 

primary actions on lipid metabolism, our studies demonstrated that they all 

reduce the activity and mass of CETP in plasma. In fact, we showed that 

atorvastatin, fenofibrate and niacin all reduced the hepatic mRNA expression of 

CETP, which is likely the main causal factor for the reduction in plasma CETP. 

In line with this hypothesis, increasing the hepatic cholesterol content of CETP 

transgenic mice by cholesterol feeding increases hepatic CETP expression via 

LXR-dependent mechanisms as well as plasma CETP mass.
15,16

 The three 

classes of lipid-lowering drugs not only decrease CETP expression, but also 

decrease (V)LDL levels. Since (V)LDL is an acceptor of HDL-derived 

cholesteryl esters and, therefore, also a driving force for CETP activity, the 

decrease in (V)LDL adds to the drug-induced reduction in CETP activity.  

Based on our observations, we speculate that lipid-lowering drugs in general 

will thus all increase HDL-C to a certain extent by reducing plasma CETP 

activity, as a result of a reduction in both hepatic CETP expression and plasma 

(V)LDL. In fact, observations in human subjects indeed showed that statins and 

fibrates both reduce CETP mass and activity.
17-21

 The effect of niacin on plasma 

CETP in humans has not been reported as yet, but niacin will thus probably also 

reduce CETP mass and activity. Interestingly, hyperlipidemic patients carrying 

the CETP TaqIB1 polymorphism, who have therefore higher plasma CETP 

levels than people with the TaqIB2 variant, benefit more from statin treatment 

with respect to the development of coronary atherosclerosis, 
22

 suggesting that 

the reduction of CETP activity is indeed a relevant contributor to the protective 

effects of lipid-lowering drugs in atherosclerosis. 

The apparent robust causal relation between hepatic lipid content and hepatic 

CETP expression raises the question whether the pathological condition of 

hepatic steatosis would be a causal factor for reducing HDL-levels by increasing 

CETP expression. Interestingly, a recent study in obese subjects showed that 

liver fat indeed inversely correlated with HDL levels.
23

 However, since (V)LDL 

levels are also increased in patients with a fatty liver,
23

 more research is needed 

to confirm the hypothesis that hepatic steatosis results in increased plasma 

CETP levels thereby decreasing HDL.  
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HDL modulation by CETP inhibition 
 

CETP inhibition has been regarded as a novel promising HDL-C raising 

strategy to reduce atherosclerosis and cardiovascular disease. Large clinical 

studies with the CETP inhibitor torcetrapib have been performed to evaluate 

whether CETP inhibition is able to increase HDL levels and reduce 

atherosclerosis. Torcetrapib indeed increased HDL-C to a marked extent (+60% 

at 60 mg/day), but did not reduce atherosclerosis as measured by Intima Media 

Thickness (IMT) and Intravascular Ultrasound (IVUS)
24-26

 and had unwanted 

effects including increased overall mortality as well as fatal and non fatal 

cardiovascular events.
27

 

There are several possible explanations for the disappointing results of the 

torcetrapib studies, related to 1) inclusion criteria of the patients, 2) combination 

therapy with atorvastatin, 3) properties of the newly formed HDL, or 4) 

compound specific effects.  

First, in the torcetrapib studies, patients were included who had undergone 

cardiac catheterization
26

 or have (familial)
 

dyslipidemia.
24,25

 These broad 

inclusion criteria led to the inclusion of a very heterogeneous patient group that 

may not all benefit from CETP inhibition, as the metabolic context, including 

baseline CETP activity, HDL-C levels and TG levels, is likely to be an 

important determinant of the effect of CETP inhibition on atherosclerosis 

development and CVD risk. The view that the metabolic context is important in 

the effect of CETP inhibition on atherosclerosis is supported by mouse studies, 

which in general show that CETP expression is atheroprotective in mice with 

increased HDL levels while CETP expression is atherogenic in mice with 

elevated (V)LDL levels. CETP expression in mice with high HDL because of 

LCAT overexpression or SR-BI deficiency reduces atherosclerosis.
28,29

 In line 

with these mouse data, it has been shown that subjects with highly elevated 

HDL-C levels which were mainly associated with CETP mutations, have higher 

prevalence of ischemic ECG changes.
30

 CETP inhibition in subjects who have 

already high HDL may, therefore, not lead to protection against atherosclerosis 

and CVD. These findings may also suggest that HDL elevation by CETP 

inhibition is only protective when this normalizes or elevates HDL mildly 

compared to normolipidemic subjects and CETP inhibitors should not be used 

to further increase HDL in subjects who have cardiovascular risk factors but 

normal or elevated HDL levels. In contrast, CETP is a clear atherogenic factor 

in hyperlipidemic mouse models with impaired (V)LDL clearance, including 

apoE knockout,
31

 LDL receptor knockout
31

 and E3L mice.
8
 When translated to 

humans, dyslipidemic subjects with high plasma TG may therefore benefit from 

CETP inhibition since CETP transfers HDL-CE to (V)LDL that is inefficiently 

cleared from plasma as indicated by high TG. This suggests that CETP 

inhibition could be particularly promising in those dyslipidemic patients, who 

besides elevated (V)LDL also have low HDL and/or high CETP activity. 
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Further subgroup analyses should be performed in the recent torcetrapib studies 

to study whether patients with low HDL, high CETP activity and/or high TG at 

baseline benefit from torcetrapib with respect to atherosclerosis development. 

Second, the clinical studies with torcetrapib were all performed in combination 

with atorvastatin,
24-26

 which by itself reduces CETP activity in plasma.
17-20,32,33

 

By investigating the effect of torcetrapib on atherosclerosis development in 

E3L.CETP mice, either in combination with atorvastatin or alone (chapter 5), 

we showed that torcetrapib per se did in fact reduce atherosclerosis while 

torcetrapib did not reduce atherosclerosis in mice that were also treated with 

atorvastatin, indicating that combination treatment with atorvastatin and other 

lipid lowering drugs may attenuate or mask the effect of torcetrapib on 

atherosclerosis. 

Third, it is not clear whether the increased HDL as induced by CETP inhibition 

by torcetrapib is atheroprotective or not. HDL is thought to be protective in 

atherosclerosis via mediating RCT and by its proposed anti-inflammatory, anti-

oxidative and anti-thrombotic properties. Torcetrapib alters HDL by increasing 

its size, by the formation of a torcetrapib/CETP complex that associates with 

HDL, and torcetrapib may alter the protein composition of HDL which may 

alter HDL functionality. In addition, torcetrapib may reduce HDL-CE clearance 

as it has been described that in humans, the majority of HDL-CE reaches the 

liver via (V)LDL after CETP-mediated transfer of HDL-CE from HDL to 

(V)LDL, and this pathway is blocked by torcetrapib.
34,35

 

Fourth, torcetrapib may have had compound-specific adverse side effects with 

respect to increased mortality and increased cardiovascular events, and 

compound-specific side effects may explain why torcetrapib did not add to the 

atherosclerosis-reducing effect of atorvastatin. Torcetrapib has been found to 

increase blood pressure by approx. 5 mm Hg,
24-26,36

 which is not observed with 

novel CETP inhibitors including anacetrapib and JTT-705. This mild increase in 

blood pressure is unlikely to completely have counteracted potential protective 

effects of the HDL increase and is unlikely to have caused increased mortality, 

but it may be indicative for other underlying adverse effects. Analysis of plasma 

samples from patients treated with torcetrapib showed an increase in sodium, 

bicarbonate and aldosterone levels.
27

 Torcetrapib also increased plasma plasma 

aldosterone in E3L.CETP mice (chapter 5). The raise in aldosterone may not 

only explain the increase in blood pressure, but animal studies have also shown 

that aldosterone causally increases atherosclerosis, inflammation and oxidative 

stress,
37-40

 indicating that the increase in aldosterone may have counteracted 

potentially atheroprotective effects of the torcetrapib-induced increase in HDL. 

We have demonstrated that torcetrapib increases the macrophage to collagen 

ratio within atherosclerotic plaques in E3L.CETP mice (chapter 5). Whereas 

plaques of mice do not easily rupture spontaneously, such a phenotype is 

considered more prone to spontaneous rupture in humans. Extrapolation of our 

data to humans may thus suggest that the increase in cardiovascular events and 
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death may have been caused, at least partly, by increased incidence of plaque 

rupture. As aldosterone is associated with more inflammation and increased 

activity of matrix metalloproteinases (MMP),
39,41

 which cause breakdown of 

collagen, it can be reasoned that the increased aldosterone levels may have 

contributed to the plaque phenotype. However, this hypothesis should be 

underscored by experimental studies. The effects of torcetrapib on aldosterone 

and blood pressure are compound-specific and independent of CETP, as 

torcetrapib induced these effects in both humans, CETP transgenic mice and 

non-transgenic mice.
42

 In contrast, anacetrapib does not increase blood pressure 

and aldosterone levels.
42,43

 The effect of novel CETP inhibitors on plaque 

composition and cardiovascular events is thus eagerly awaited. 

 

In addition to chemical CETP inhibitors, endogenous CETP inhibitors have also 

been described. Whereas the lipid transfer inhibitor protein (LTIP) as present on 

LDL inhibits CETP activity,
44

 apoCI is the major endogenous CETP inhibitor 

present on HDL.
45

 being an endogenous protein, apoCI may be a lead for novel 

safe CETP inhibitors. However, apoCI is also an inhibitor of LPL.
46

 Because of 

apoCI-induced LPL inhibition, human apoCI overexpression in CETP 

transgenic mice not only reduces specific CETP activity, but also largely 

increases VLDL levels. The increase in VLDL levels consequently increases 

hepatic CETP gene expression, which precludes an increase in HDL-C resulting 

from CETP inhibition only.
47

  

To find an apoCI derived CETP inhibitor without LPL inhibitory properties, we 

performed structure-function analysis using an array of apoCI derived peptides. 

ApoCI32-57 was the most efficient CETP inhibitory peptide tested, and this 

peptide had only minimal effects on LPL. Therefore we expect that this peptide 

should be able to increase HDL without inducing hyperlipidemia. Pilot 

experiments showed that intravenous injections with apoCI and apoCI32-57 were 

unable to modulate lipid levels in vivo in CETP transgenic mice (unpublished 

data), which may relate to dosing and/or adverse pharmacokinetics of the 

peptides. Short-term elevation of plasma levels of apoCI and apoCI32-57, e.g. by 

using recombinant adenoviruses that induce a relatively high hepatic protein 

expression of apoCI and apoCI32-57 in CETP expressing mice could therefore be 

useful as a tool to show the potential of apoCI32-57 to increase HDL levels 

without affecting plasma TG. If so, apoCI32-57 mimicking agents could be 

developed that can be used orally. 

In addition to CETP, apoCI also affects other HDL modifying enzymes, 

including LCAT
48,49

 HL
50,51

 and SR-BI (chapter 7). These combined actions 

increase HDL in naturally CETP-deficient wild-type mice (chapter 7), but 

functionality of the increased HDL is unknown. It is also unknown how 

apoCI32-57 would act on these various proteins involved in HDL metabolism. 

Therefore, additional in vitro and in vivo experiments in wild-type mice should 

be performed to show whether potential HDL-increasing effects of apoCI32-57 
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are CETP dependent. In addition, studies in E3L.CETP mice will be useful to 

reveal whether apoCI32-57 will reduce atherosclerosis. It would be interesting to 

study the effect of apoCI32-57 on the plaque phenotype as well as to evaluate 

whether the effect of torcetrapib on plaque composition was indeed compound 

specific, especially because apoCI has a different mechanism to inhibit CETP as 

compared to torcetrapib, i.e. reduction of affinity of CETP with HDL
52

 versus 

formation of an inactive HDL/CETP complex.
53

 

 

Novel strategies to reduce cardiovascular disease 
 

Cholesterol lowering is a proven effective strategy to reduce cardiovascular 

disease. Therefore a large number of new drugs to reduce plasma lipid levels is 

under development, including microsomal triglyceride transfer protein (MTP) 

inhibitors, squalene synthase inhibitors, and apoB expression inhibitors that are 

all aimed at reducing lipid production by the liver.
54-58

 However, as statins 

already efficiently reduce plasma (V)LDL-C levels without severe side effects, 

and additional safe (V)LDL-C lowering agents to treat patients that do not 

respond well to statins are available (e.g. cholesterol binding resins) it will be 

difficult to develop novel lipid lowering drugs that lead to more clinical benefit 

with respect to protection against cardiovascular disease.  

After the disappointing results from the torcetrapib studies, it is difficult to 

predict whether novel HDL raising agents will prevent CVD in the future. 

Despite that there is no direct evidence for the protective effect of HDL in 

atherosclerosis, HDL is thought to play a role in RCT, and is thought to be anti-

inflammatory, anti-oxidative and anti-thrombotic. HDL raising my be achieved 

by 1) reducing HDL clearance, 2) increasing HDL maturation and modification 

of HDL metabolism or 3) enhancing HDL production. 

In mice, clearance of HDL-C is almost exclusively mediated via SR-BI. In 

humans, Cla-1 (i.e. the human orthologue of SR-BI) is thought to play a less 

important role, since HDL-CE is mainly cleared from plasma after CETP-

mediated transfer to (V)LDL.
34

 Albeit that raising HDL by reducing its 

clearance may increase the anti-inflammatory and anti-oxidative properties of 

HDL, the role of HDL in RCT (i.e. transfer of cholesterol to the liver, followed 

by excretion via the feces) is possibly the most important protective function of 

HDL. Together with the fact that SR-BI-deficiency in mice aggravates 

atherosclerosis, reducing HDL clearance may probably not be the most valid 

HDL-raising strategy.  

LCAT plays an important role in the maturation of HDL as this enzyme 

esterifies HDL-associated cholesterol into CE. Mutations in LCAT which lower 

LCAT activity reduce HDL-C levels and mildly enhance atherosclerosis 

development (as measured by IMT).
59

 However, since overexpression of LCAT 

in mice increases atherosclerosis, LCAT-targeted interventions to raise HDL 

should be pursued with care. As niacin increases HDL via CETP reduction 
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(chapter 4) niacin can also be considered as a compound that increases HDL via 

HDL modulation. Niacin is however not well tolerated because it induces severe 

flushing. A recent study shows that addition of the prostaglandin D2 receptor 1 

blocker laropiprant reduces niacin mediated flushing which may increase niacin 

use.
60

 In addition novel compounds targeting the niacin receptor GRP109A are 

under development.
61

 However, it is uncertain whether the protective effects of 

niacin on IMT progression and mortality are mediated via its HDL raising or via 

its (V)LDL reducing properties 
62,63

 

HDL production is presumably mainly initiated by the synthesis and secretion 

of apoAI by the liver and intestine, and lipidation of apoAI in plasma via 

ABCA1. Indeed, apoAI-deficiency and ABCA1-deficiency in mice largely 

decrease HDL-C. Interestingly, humans carrying mutations in ABCAI and 

apoAI
59

 have a more severe increase in atherosclerosis (as measured by IMT) as 

compared to carriers of CETP or LCAT mutations, suggesting that enhancing 

HDL production would be the most promising strategy in the prevention of 

atherosclerosis and CVD. Upregulation of ABCA1 in macrophages can be 

achieved with compounds like LXR agonists.
64

 However, these compounds will 

also induce the expression of lipogenic genes in the liver which counteract 

potential protective effects of ABCAI upregulation in atherosclerosis. In 

addition, LXR activation will result in upregulation of multiple proteins 

involved in cholesterol efflux, including apoE, which hampers evaluation of the 

effect of upregulation of ABCA1 only. Therefore, compounds that specifically 

upregulate ABCA1 expression in macrophages, preferably in the atherosclerotic 

vessel wall, should be developed. Increase of apoAI can be achieved via 

administration of apoAI or apoAI mimicking compounds, or via upregulation of 

apoAI expression. ApoAI, infused either as a lipid-free protein or contained in 

recombinant HDL, increases HDL levels. Clinical studies show that short-term 

apoAI infusion lead to a quick reduction of atheroma volumes in patients with 

acute coronary syndrome.
65

 However, a drawback of apoAI infusion is that 

treatment is invasive and very expensive, and that long term effects are still 

unknown.
66

 Alternatively, apoAI mimicking agents have been developed which 

can be given orally.
67

 Agents that increase apoAI production would also be 

promising to increase endogenous HDL production. It has been suggested from 

studies in wild-type mice that PXR agonism would increase apoAI production 

and raise HDL levels.
68

 However, we observed in our more human-like 

E3L.CETP mice that PXR agonists reduced HDL of all sizes concomitant with 

a reduction (rather than an increase) in apoAI expression (chapter 6). This study 

thus indicates that PXR agonism is likely also unable to raise apoAI and HDL in 

humans. Recently, rvx-208 has been developed to induce apoAI expression and 

raise HDL levels, as shown in mice and non-human primates. Provided that this 

compound is specific for apoAI, it would be promising new lead in the ongoing 

search for HDL-raising strategies to prevent CVD.
69
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Concluding remarks 

 

Besides a large number of new lipid-lowering agents, drugs that are aimed to 

specifically raise HDL are currently under development. The therapeutic value 

of such HDL-raising therapies, however, is still unclear, especially since the 

first HDL-raising strategy by torcetrapib failed in large human trials. The 

question whether raising HDL will add to the atheroprotective effect of lipid-

lowering therapy is thus still unanswered. Albeit that high HDL-C is clearly 

associated with reduced CVD risk, high HDL-C is also associated with low 

(V)LDL-C and TG, a balance that is probably dictated by bidirectional transfer 

of neutral lipids by CETP. Therefore, it is difficult to predict the importance of 

HDL independent of other risk factors, and virtually no direct evidence is 

currently available to show that HDL per se is protective in atherosclerosis 

development. Therefore, other therapeutic strategies such as inhibition of 

inflammation, which besides dyslipidemia is also a driving force for 

atherosclerosis, should not be overlooked.  

The torcetrapib trials taught us that care should be taken in selecting appropriate 

subjects in human studies that are expected to benefit most from a novel 

experimental approach to reduce CVD. Future studies will show which of these 

new strategies will eventually be used in the future therapy of those patients that 

are prone to develop CVD. Moreover, our studies indicate the importance of 

testing effects of experimental drugs on lipid metabolism, atherosclerosis and 

plaque composition in appropriate animal models. We expect that our newly 

developed E3L.CETP mouse model with a human-like lipoprotein metabolism 

will largely contribute to the development of such compounds by reliably 

predicting human responses to experimental drugs and revealing underlying 

mechanisms.  
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Summary  

 

Cardiovascular disease (CVD) is a major cause of mortality and morbidity in 

the Western world. CVD is mainly caused by atherosclerosis, for which 

dyslipidemia, characterized by high a plasma level of (very) low density 

lipoprotein ((V)LDL) and a low plasma level of high density lipoprotein (HDL), 

is a major risk factor. To reduce the risk to develop CVD, drugs aimed at 

correcting dyslipidemia by lowering (V)LDL are currently the first choice of 

treatment. Albeit that these drugs lower (V)LDL-C very efficiently (up to 

~40%), and generally result in a slight increase in HDL-C, they only prevent a 

fraction of all cardiovascular events (~30%). Therefore new therapeutic 

strategies to reduce cardiovascular events more efficiently are necessary. Since 

HDL is has been attributed multiple protective effects in atherosclerosis by its 

role in reverse cholesterol transport and its anti-inflammatory and anti-oxidative 

properties, HDL-raising therapy is currently considered as a promising strategy 

to further reduce CVD risk. In this thesis, the mechanisms underlying the HDL-

raising effects of the classical lipid-lowering drugs fenofibrate, atorvastatin and 

niacin were elucidated. Furthermore, the effects of potential novel HDL-raising 

strategies, including torcetrapib, PXR agonism and apoCI, on HDL metabolism 

were addressed. For these studies, we used the APOE*3-Leiden.CETP 

(E3L.CETP) transgenic mouse, a valuable model for human-like lipoprotein 

metabolism. 

 

The lipid-lowering drugs fibrates and statins efficiently reduce plasma 

cholesterol and triglycerides (TG) in dyslipidemic subjects. In addition, they 

also increase HDL-C to some extent (~5-15%), but the mechanism underlying 

the increase in HDL-C was unclear. Since both fibrates and statins 1) reduce the 

concentration of cholesteryl ester transfer protein (CETP) in human plasma, and 

2) do not increase HDL-C in naturally CETP-deficient mice, we reasoned that 

CETP plays a dominant role in the HDL-increasing effect of both fibrates and 

statins. To evaluate the role of CETP in the HDL-C increase as seen in humans, 

we used E3L mice that have been shown to respond in a human-like manner 

with respect to the lipid-lowering effects of fibrates and statins, and E3L.CETP 

littermates. In chapter 2, E3L and E3L.CETP mice were fed a Western-type 

diet with or without fenofibrate. Fenofibrate decreased (V)LDL-TG and 

(V)LDL-C in both E3L and E3L.CETP mice, but fenofibrate increased HDL-C 

only in E3L.CETP mice. Fenofibrate did not affect the turnover of HDL-CE, 

indicating that fenofibrate causes a higher steady-state HDL-C level without 

altering the HDL-C flux through plasma. Analysis of the hepatic gene 

expression profile showed that fenofibrate did not differentially affect the main 

players in HDL metabolism, including phospholipid transfer protein (Pltp), 

ATP-binding cassette transporter A1 (Abca1), scavenger receptor class B type I 

(Sr-b1), and apolipoprotein AI (Apoa1), in E3L.CETP mice as compared to E3L 
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mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA 

as well as the CE transfer activity in plasma. In chapter 3, a similar approach 

was used to evaluate whether atorvastatin increases HDL-C via CETP 

modulation. Atorvastatin reduced plasma cholesterol in both E3L and 

E3L.CETP mice, which was specific for (V)LDL, but atorvastatin increased 

HDL-C only in E3L.CETP mice. Hepatic mRNA expression levels of genes 

involved in HDL metabolism, including Pltp, Abca1, Sr-b1 and Apoa1, were 

not differently affected by atorvastatin in E3L.CETP mice as compared to E3L 

mice. However, in E3L.CETP mice, atorvastatin down-regulated the hepatic 

CETP mRNA expression as well as the total CETP level and cholesteryl ester 

(CE) transfer activity in plasma. Therefore, we concluded that both fenofibrate 

and atorvastatin increase HDL-C by reducing the CETP-dependent transfer of 

cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression 

and a reduced plasma (V)LDL pool. 

The most potent HDL-raising drug currently available is niacin, but the 

mechanism underlying the effects of niacin on HDL metabolism is still 

unknown. In chapter 4, E3L and E3L.CETP mice on a western-type diet were 

treated with niacin. In E3L.CETP mice, niacin dose-dependently decreased 

plasma cholesterol and TG and dose-dependently increased HDL-C, plasma 

apoAI as well as the HDL particle size. In E3L mice, niacin also reduced 

plasma cholesterol and TG, but had no effect on HDL. In E3L.CETP mice, 

niacin dose-dependently decreased the hepatic expression of CETP as well as 

plasma CETP mass and CETP activity. Additionally, niacin dose-dependently 

decreased the clearance of apoAI from plasma and reduced the uptake of apoAI 

by the kidneys. Therefore, we concluded that niacin markedly increases HDL-C 

in E3L.CETP mice by reducing CETP activity, as related to lower hepatic 

CETP expression and a reduced plasma (V)LDL pool, and increases HDL-

apoAI by decreasing the clearance of apoAI from plasma. 

 

Torcetrapib is the first compound designed specifically to increase HDL-C 

levels via inhibition of CETP activity. In large clinical trials, torcetrapib 

increases HDL-C by about 60%, but did not potentiate the effect of atorvastatin 

on atherosclerosis, as determined by measurement of intima-media thickness 

(IMT) and intravascular ultrasound (IVUS). The effect of torcetrapib alone is 

unknown. Moreover, torcetrapib treatment led to adverse effects including an 

increase in cardiovascular events and increased death rate. In chapter 5 we 

aimed to study the effects of torcetrapib with and without atorvastatin on the 

development of atherosclerosis and to study the adverse effects of torcetrapib. 

E3L.CETP mice on a western-type diet were treated with torcetrapib, 

atorvastatin or both, and atherosclerosis development was determined in the 

aortic root. Torcetrapib decreased plasma cholesterol, albeit to a lesser extent 

than atorvastatin or the combination of torcetrapib and atorvastatin. Torcetrapib 

increased HDL-C in the absence and presence of atorvastatin. Torcetrapib and 
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atorvastatin alone both reduced atherosclerotic lesion size to a similar extent, 

but combination therapy did not reduce atherosclerosis as compared to 

atorvastatin alone. Remarkably, as compared to atorvastatin, torcetrapib induced 

enhanced monocyte recruitment and expression of monocyte chemoattractant 

protein-1 (MCP-1) and resulted in lesions of a more inflammatory phenotype, as 

reflected by an increased macrophage content and reduced collagen content. We 

thus concluded that CETP inhibition by torcetrapib per se reduces 

atherosclerotic lesion size but does not enhance the anti-atherogenic potential of 

atorvastatin. In addition, as compared to atorvastatin, torcetrapib introduces 

lesions of a less stable phenotype. 

 

Pregnane X receptor (PXR) agonism has been suggested to increase HDL levels 

in wild-type mice, but its effect on integrated HDL metabolism in a model with 

human-like lipoprotein metabolism was still unknown. In chapter 6, we treated 

E3L and E3L.CETP mice with the PXR agonist pregnenolone-16α-carbonitrile 

(PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as 

plasma cholesterol and TG. Whereas PCN increased HDL-C, especially within 

large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-C in 

E3L.CETP mice. PCN decreased expression of genes involved in HDL 

synthesis (Abca1, Apoa1), maturation (lecithin: cholesterol acyltransferase 

(Lcat), Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, 

observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI 

protein expression, and is completely reversed by CETP expression. We 

concluded, therefore, that chronic PXR agonism dose-dependently reduces 

plasma HDL-C in the presence of CETP and is thus not a relevant target for the 

development of HDL raising therapy. 

 

Apolipoprotein CI (apoCI) has been suggested to influence HDL metabolism by 

activation of LCAT and inhibition of HL and CETP. However, the effect of 

apoCI on SR-BI, as well as the net effect of apoCI on HDL metabolism in vivo 

is unknown. Therefore, we evaluated in chapter 7 the effect of apoCI on the 

SR-BI-mediated uptake of HDL-CE in vitro and determined the net effect of 

apoCI on HDL metabolism in mice. We demonstrated that apoCI dose-

dependently decreased the SR-BI-dependent association of HDL-CE with 

primary murine hepatocytes in vitro. Subsequent in vivo studies showed that 

apoCI-deficiency in mice gene dose-dependently decreased HDL-C levels, and 

adenovirus-mediated expression of human apoCI in mice increased HDL levels 

at a low dose and increased the HDL particle size at higher doses. Therefore, we 

concluded that apoCI is a novel inhibitor of SR-BI in vitro and increases HDL 

levels in vivo. 

Since apoCI is the main endogenous HDL-associated CETP inhibitor, it can be 

a lead for the development of a new generation CETP inhibitors aimed at 

increasing HDL levels and reducing CVD risk. However, apoCI also inhibits 
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LPL activity which leads to hypertriglyceridemia, a risk factor for CVD. 

Therefore, in chapter 8 we aimed to identify the minimal CETP-inhibitory 

domain of apoCI without LPL-inhibitory activity. We show that the CETP-

inhibitory function of apoCI resides in the C-terminal helix, whereas the C 

terminus is not sufficient for the LPL-inhibitory function of apoCI. The C-

terminal peptide apoCI32-57 potently inhibited CETP activity, mainly caused by 

positively charged amino acids, with a negligible effect on LPL activity. 

Therefore, we concluded that apoCI32-57 may be an interesting lead in the search 

for novel CETP inhibitors as a new strategy to increase HDL thereby reducing 

cardiovascular risk. 

 

Taken together, the studies described in this thesis contribute to the 

understanding of the mechanisms underlying HDL-modulating strategies. We 

demonstrated that the HDL-raising effect of classical lipid-lowering drugs 

depends on the presence of CETP. We also showed that CETP inhibition may 

still be a potential atherogenic strategy, provided that CETP inhibitors do not 

adversely affect lesion composition. In addition, we identified the minimal 

CETP-inhibitory domain within apoCI that may provide a lead towards a new 

generation of safe CETP inhibitors.  
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Samenvatting  

 

Hart- en vaatziekten vormen een belangrijke oorzaak van mortaliteit en 

morbiditeit in de westerse wereld, en worden voornamelijk veroorzaakt door 

atherosclerose. Een belangrijke risicofactor voor atherosclerose is dyslipidemie, 

die gekarakteriseerd wordt door een hoog plasmaniveau van het lage dichtheids 

lipoproteïne ((V)LDL) en een laag plasmaniveau van het hoge dichtheid 

lipoproteïne (HDL). Dyslipidemie wordt voornamelijk behandeld met 

lipidenverlagende medicijnen. Deze medicijnen verlagen de plasmaniveaus van 

(V)LDL-C zeer efficiënt (~40%) en geven tevens een milde verhoging van 

HDL, maar desondanks voorkomen zij slechts een fractie van alle hart- en 

vaatziekten (~30%). Daarom zijn nieuwe therapeutische strategieën om hart- en 

vaatziekten verder terug te dingen noodzakelijk. Omdat HDL op verschillende 

manieren kan beschermen tegen atherosclerose, namelijk door zijn rol in het 

reverse cholesterol transport en/of door middel zijn van anti-inflammatoire en 

anti-oxidatieve eigenschappen, wordt HDL verhoging gezien als een 

veelbelovende nieuwe manier om hart- en vaatziekten te voorkomen. In dit 

proefschrift werden de mechanismen onderzocht die aan de HDL-verhogende 

werking van de klassieke lipidenverlagende middelen atorvastatine, fenofibraat 

en niacine ten grondslag liggen. Daarnaast werden de effecten van potentiële 

nieuwe HDL verhogende strategieën, inclusief het experimentele geneesmiddel 

torcetrapib, en de lichaamseigen eiwitten pregnaan X receptor (PXR) en 

apolipoproteïne CI (apoCI), op het HDL metabolisme onderzocht. Voor deze 

studies maakten we gebruik van APOE*3-Leiden.CETP (E3L.CETP) transgene 

muizen, een waardevol nieuw muismodel voor het menselijke lipoproteïnen 

metabolisme.  

 

Fibraten en statines verlagen plasmaniveaus van cholesterol en triglyceriden 

efficiënt in dyslipidemische patiënten. Daarnaast laten deze middelen een milde 

verhoging van het cholesterol in HDL (5-15%) zien terwijl het mechanisme dat 

hieraan ten grondslag ligt onduidelijk is. Omdat fibraten en statines de 

concentratie van het cholesteryl ester transfer proteïne (CETP) in het plasma 

verlagen, en omdat fibraten en statines HDL niet verhogen in muizen die van 

nature geen CETP tot expressie brengen, onderzochten wij de hypothese dat 

CETP een essentiële rol speelt bij het HDL-verhogende effect van zowel 

fibraten als statines. Hiervoor werd gebruik gemaakt van E3L en E3L.CETP 

transgene muizen die hetzelfde als de mens reageren op klassieke 

lipidenverlagende medicijnen zoals statines en fibrates met betrekking tot 

verlaging van lipiden in het plasma. In hoofdstuk 2 werden E3L en E3L.CETP 

muizen gevoed met een vetrijk dieet in aan- en afwezigheid van fenofibraat. 

Fenofibraat verlaagde plasma (V)LDL-cholesterol (C) en (V)LDL-triglyceriden 

(TG) in zowel E3L als E3L.CETP muizen, maar verhoogde HDL-C alleen in 

E3L.CETP muizen. Fenofibraat beïnvloedde de klaring van HDL-cholesteryl 
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esters (CE) uit het plasma niet, wat erop wijst dat fenofibraat een hoger 

plasmaniveau van HDL-C veroorzaakt zonder de flux van het HDL-C te 

veranderen. Analyse van de expressie van genen in de lever die betrokken zijn 

bij het HDL metabolisme toonde aan dat fenofibraat de belangrijkste spelers in 

het HDL metabolisme, waaronder het fosfolipiden transport proteïne (Pltp), de 

ATP-bindende cassette transporter A1 (Abca1), de scavenger receptor B type I 

(SR-B1), en het apolipoproteïne AI (Apoa1)) niet verschillend beïnvloedde in 

E3L.CETP en E3L muizen. In E3L.CETP muizen verminderde fenofibraat wel 

de genexpressie van CETP evenals de overdracht van CE tussen lipoproteïnen 

in plasma. In hoofdstuk 3 gebruikten we een vergelijkbare aanpak om te 

evalueren of atorvastatine HDL-C ook zou verhogen via CETP modulatie. 

Atorvastatine verlaagde plasma (V)LDL-C niveaus in zowel E3L als E3L.CETP 

muizen, maar verhoogde HDL-C uitsluitend in E3L.CETP muizen. Expressie 

van genen in de lever die betrokken zijn bij het HDL metabolisme (Pltp, Abca1, 

Sr-b1 en Apoa1) werden niet verschillend beïnvloed door atorvastatine in 

E3L.CETP en E3L muizen. In E3L.CETP muizen verlaagde atorvastatine echter 

wel de genexpressie van het CETP evenals het niveau van CETP en de activiteit 

van CETP in plasma. Daarom concludeerden wij dat zowel fenofibraat als 

atorvastatine HDL-C verhogen door de CETP-afhankelijke overdracht van CE 

van HDL naar (V)LDL te verlagen. Dit wordt veroorzaakt door een lagere 

hepatische CETP expressie en een lagere hoeveelheid (V)LDL in het plasma.  

Het meest krachtige medicijn wat momenteel beschikbaar is om HDL te 

verhogen is niacine. Het mechanisme dat aan de verhoging van HDL ten 

grondslag ligt is echter nog onbekend. In hoofdstuk 4 voerden wij E3L en 

E3L.CETP muizen een vet rijk dieet met of zonder niacine. In E3L.CETP 

muizen verlaagde niacine het plasma cholesterol en TG op een 

dosisafhankelijke wijze. Niacine verhoogde het HDL-C niveau ook op een 

dosisafhankelijke manier, net als het plasmaniveau van apoAI en de 

deeltjesgrootte van het HDL. In E3L muizen verlaagde niacine het 

plasmaniveau van cholesterol en TG terwijl de verhoging van HDL-C niet werd 

waargenomen. In E3L.CETP muizen verminderde niacine dosisafhankelijk de 

hepatische expressie van CETP evenals de massa en activiteit van CETP in 

plasma. Bovendien reduceerde niacine op een dosisafhankelijke manier de 

opname van apoAI vanuit het plasma door de nieren. Daarom concludeerden 

wij dat niacine het HDL-C in E3L.CETP muizen verhoogt door de CETP 

activiteit te verlagen, als gevolg van zowel een verlaagde CETP expressie als 

een verminderde hoeveelheid (V)LDL in het plasma. Daarnaast verhoogt 

niacine apoAI door de klaring van apoAI uit plasma te verminderen. 

 

Torcetrapib is het eerste medicijn dat specifiek is ontworpen om HDL te 

verhogen, namelijk door de activiteit van CETP in het plasma te remmen. In 

grote klinische studies bleek torcetrapib inderdaad in staat het HDL met 

ongeveer 60% verhogen. Ondanks deze forse HDL verhoging werd in patiënten 
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die met atorvastatine en torcetrapib werden behandeld echter geen vermindering 

van atherosclerose gevonden in vergelijking met patiënten die alleen met 

atorvastatine werden behandeld. Het effect van torcetrapib zonder atorvastatine 

was vooralsnog onbekend. Daarnaast leidde de behandeling met torcetrapib tot 

ongunstige bijwerkingen zoals een verhoging van cardiovasculaire 

gebeurtenissen en een verhoogd sterftecijfer. In hoofdstuk 5 werd het effect van 

torcetrapib met en zonder atorvastatine in muizen bestudeerd om meer inzicht te 

krijgen in de potentiële anti-atherogene werking en de bijwerkingen van 

torcetrapib. E3L.CETP muizen werden gevoerd met een vetrijk dieet waaraan 

torcetrapib, atorvastatine of beide werden toegevoegd, en de ontwikkeling van 

atherosclerose werd vervolgens na 14 weken beoordeeld in het kleppengebied 

van het hart. Torcetrapib verminderde het plasmaniveau van cholesterol, hoewel 

in mindere mate dan atorvastatine en combinatie van torcetrapib en 

atorvastatine. Daarnaast verhoogde torcetrapib het HDL-C. Zowel torcetrapib 

als atorvastatine verminderden atherosclerose, en wel in gelijke mate, maar de 

combinatie van beide middelen had geen additionele anti-atherogene werking. 

Vergeleken met atorvastatine veroorzaakte torcetrapib een verhoogde binding 

van monocyten aan het vaatendotheel, wat gepaard ging met een verhoogde 

hoeveelheid van het monocyt chemoattractant proteïne-1 (MCP-1) in de 

atherosclerotische plaques. Dit resulteerde in laesies met meer macrofagen en 

minder collageen, die in de mens minder stabiel zijn en kunnen scheuren. Wij 

concludeerden daarom dat remming van CETP door torcetrapib op zich 

atherosclerose kan verminderen. Echter, net zoals in de mens is torcetrapib niet 

in staat het anti-atherogene effect van atorvastatine te versterken. Bovendien 

introduceert torcetrapib laesies van een minder stabiel fenotype vergeleken met 

atorvastatine. 

 

Er is in de literatuur gesuggereerd dat agonisten van de pregnaan X receptor 

(PXR) het HDL kunnen verhogen. Deze suggestie hebben wij onderzocht in ons 

muismodel met een menselijk lipoproteïnen metabolisme. In hoofdstuk 6 

behandelden wij E3L en E3L.CETP muizen met de PXR agonist pregnenolon-

16α-carbonitril (PCN). In E3L en E3L.CETP muizen verhoogde PCN lipiden in 

de lever evenals cholesterol en TG in plasma, terwijl PCN in E3L muizen het 

cholesterol specifiek in HDL verhoogde, vooral in grote HDL-1 deeltjes. In 

E3L.CETP muizen gaf PCN een dosisafhankelijke verlaging van het HDL. PCN 

verminderde de expressie van genen in de lever betrokken bij de synthese 

(Abca1, Apoa1), maturatie (lecithin: cholesterol acyltransferase (Lcat), Pltp) en 

klaring (SR-B1) van het HDL. Het HDL-verhogende effect van PCN, dat in 

E3L muizen werd waargenomen, wordt waarschijnlijk veroorzaakt door een 

daling van de HDL receptor SR-BI in de lever. Deze HDL verhoging wordt 

echter door CETP expressie volledig tenietgedaan. Wij concludeerden daarom 

dat chronisch PXR agonisme in de aanwezigheid van CETP het HDL-C 
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dosisafhankelijk verlaagt en daarom geen relevante strategie is voor de 

ontwikkeling van HDL-verhogende medicijnen. 

 

Er is aangetoond dat het plasma eiwit apoCI het HDL metabolisme zou kunnen 

beïnvloeden door activatie van LCAT, en remming van HL en CETP. Het effect 

van apoCI op SR-BI en het netto effect van apoCI op HDL niveaus was echter 

nog onbekend. In hoofdstuk 7 werd daarom het effect van apoCI op de SR-BI-

gemedieerde opname van HDL-CE in vitro geëvalueerd en het netto effect van 

apoCI op het HDL metabolisme in muizen bepaald. Wij toonden aan dat apoCI 

de SR-BI-afhankelijke associatie van HDL-CE met muizenhepatocyten 

vermindert. Daarnaast verminderde apoCI-deficiëntie in muizen op een 

dosisafhankelijk wijze het HDL-C niveau. Een matige overexpressie van apoCI 

in muizen leidde tot een verhoogd HDL-C niveau, en een hogere overexpressie 

van apoCI leidde tot een vergroting van de HDL deeltjes. Daarom 

concludeerden wij dat apoCI een nieuwe remmer is van SR-BI in vitro en dat 

apoCI het HDL niveau verhoogt in vivo. 

Omdat apoCI de belangrijkste fysiologische HDL-geassocieerde CETP remmer 

is kan apoCI een basis vormen voor de ontwikkeling van nieuwe CETP 

remmers om HDL te verhogen en het risico op hart- en vaatziekten te 

verminderen. ApoCI remt echter ook de activiteit van LPL wat leidt tot 

hypertriglyceridemia, en dus een atherogene eigenschap is. Daarom was het 

doel in hoofdstuk 8 om het minimale CETP remmende domein van apoCI 

zonder LPL remmende eigenschappen te identificeren. Wij toonden aan dat de 

CETP remmende functie van apoCI zich vooral bevindt in het C-terminale 

domein van apoCI, en dat de C terminus niet voldoende is voor de LPL 

remmende functie van apoCI. ApoCI32-57 remde de activiteit van CETP krachtig, 

hoofdzakelijk gemedieerd door positief geladen aminozuren, terwijl apoCI32-57 

LPL niet remde. Daarom concludeerden wij dat apoCI32-57 een interessante basis 

kan zijn in de zoektocht naar nieuwe CETP remmers om HDL te verhogen en 

het risico op hart- en vaatziekten te verlagen. 

 

Samengenomen dragen de studies die in dit proefschrift worden beschreven bij 

tot het begrip van de mechanismen die aan HDL modulerende strategieën ten 

grondslag liggen. Wij toonden aan dat het HDL verhogende effect van klassieke 

lipidenverlagende middelen afhankelijk is van de aanwezigheid van CETP. 

Daarnaast toonden wij aan dat de remming van CETP nog steeds een potentiële 

anti-atherogene strategie kan zijn, met als voorwaarde dat nieuwe CETP 

remmers de laesie samenstelling niet ongunstig beïnvloeden. Bovendien 

identificeerden wij het minimale CETP remmende domein binnen apoCI dat een 

basis voor een nieuwe generatie van veilige CETP remmers kan vormen. 
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List of abbreviations 

 

aa   amino acid 

ABCA1/G1/G4 adenosine triphosphate-binding cassette transporter  

   A1/G1/G4      

AcLDL  acetylated LDL 

AdAPOC1  adenovirus expressing human APOC1 

AdLacZ   adenovirus expressing ß-galactosidase 

APOC1  human apoCI expressing mice 

Apo   apolipoprotein 

Bp   base pair 

BSA   bovine serum albumin 

C   cholesterol 

CE    cholesteryl ester 

CETP   cholesteryl ester transfer protein 

CM   chylomicron 

CO   cholesteryl oleate 

COEth  cholesteryl oleoyl ether 

CVD   cardiovascular disease 

DNA   deoxyribonucleic acid 

EDTA  ethylenediaminetetraacetic acid 

ELISA   enzyme-linked immunosorbent assay 

E3L   APOE*3-Leiden 

FC   free cholesterol 

FCR   fractional catabolic rate 

FFA   free fatty acids 

FPLC   fast-performance liquid chromatography 

HDL   high density lipoprotein 

HL   hepatic lipase 

HMG-CoA  3-hydroxy-3-methylglutaryl coenzyme A 

HPRT   hypoxanthine phosphoribosyltransferase 

HRP   horse radish peroxidase 

HSL   hormone sensitive triglyceride lipase 

HSPG   heparin sulfate proteoglycans 

IDL   intermediate density lipoprotein 

IMT   intima-media thickness 

IVUS   intravascular ultrasonography 

LCAT  lecithin:cholesterol acyl transferase 

LDL   low density cholesterol 

LDLr    LDL receptor 

LPL   lipoprotein lipase 

LPS   lipopolysaccharide 

LRP   LDL receptor related protein 
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LXR   liver X receptor 

MCP1  monocyte chemotactic protein-1 

MTP   microsomal triglyceride transfer protein 

mRNA  messenger RNA 

PBS   phosphate buffered phosphate 

PCN   pregnenolone-16α-carbonitrile 

PCR   polymerase chain reaction 

Pfu   plaque forming unit 

PL   phospholipid 

PLTP   phospholipid transfer protein 

PPARα  peroxisome proliferator-activated receptor α 

PPRE   peroxisome proliferator response element 

PXR   pregnane X receptor 

RCT   reverse cholesterol transport 

RNA   ribonucleic acid 

RXR   retinoid X receptor 

SD   standard deviation 

SEM   standard error of the mean 

SRA   scavenger receptor class A 

SR-BI   scavenger receptor class B type I 

TC   total cholesterol 

TG   triglyceride 

VLDL  very low density lipoprotein 

VLDLr  VLDL receptor 

WAT   white adipose tissue  

WT   wild type 
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