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Introduction
A network of endocrine and paracrine factors regulates the process of chondrocyte proliferation 
and differentiation in the growth plate. One of the key regulators involved in this process is 
Parathyroid Hormone (PTH) related peptide (PTHrP). This has been underlined by several 
studies, in human and mice, in which type 1 PTH/PTHrP receptor (PTHR1) signalling is 
interrupted or augmented(1-11). The exact working mechanism of PTHrP signalling, alone 
or in combination with other growth factors or systemic hormones, in endochondral bone 
formation is not completely understood. In this thesis, we further addressed the actions of 
PTHrP in the complex network of endocrine and paracrine regulation of endochondral bone 
formation. 
The first major result described in this thesis was that the heterogeneity of Blomstrand 
Osteochondrodysplasia (BOCD) is caused by the impact of a mutation in the PTHR1 gene on 
the receptor function. In addition, we demonstrated that the PTHR1 adaptor proteins, Na+/
H+ exchanger regulatory factor 1 (Nherf1) and Nherf2, are expressed during endochondral 
bone formation and that they may play a role in matrix mineralization during osteoblast and 
chondrocyte differentiation. Furthermore, we identified novel early and late PTHrP target 
genes using cDNA microarray and quantitative PCR (qPCR) analysis. Finally, we showed for 
the first time interaction between PTHrP and the janus kinase (Jak)/signal transducer and 
activator of transcription (Stat) pathway. 
In this chapter, these major findings will be summarized and critically reviewed.

Genotype-phenotype correlation in Blomstrand 
Osteochondrodysplasia
BOCD is a lethal osteochondrodysplasia characterized by severe skeletal malformations, 
due to accelerated endochondral bone formation(12-19). It is caused by disruption of PTHR1 
signalling(2;7-9). BOCD can be divided into two types, type I and type II, depending on the 
severity of the skeletal abnormalities, with type I as the most severe phenotype(12). The 
molecular basis for this heterogenic clinical presentation is unknown and, therefore, we have 
addressed the underlying causative factors in chapter 2. For this purpose, we performed 
mutation analysis in 2 families with type I BOCD and in 3 families with the less severe form, 
type II BOCD. The latter included 1 case that has not been described before. 
Theoretically, there are two possible explanations of the variation in severity of the skeletal 
abnormalities. First, it is possible that the milder presentation of type II BOCD patients is 
caused by the genetic background. Support for this explanation comes from two sources. We 
have identified in two of the type II BOCD families the P132L mutation, which has already 
been found before in another family with type II BOCD. These families lived in the same 
region of England and originated from the same ethnic population(7;8). In addition, it has 
been shown that the presentation of the phenotype of PTHR1 knockout mice depends on the 
genetic background(1). For example, C57BL/6 mice die at mid-gestation, while Black Swiss 
mice die perinatally. 
An alternative explanation is that the clinical severity depends on the degree of inactivation 
of the PTHR1. We have presented a novel family of different genetic origin, with another 
PTHR1 mutation causing type II BOCD, providing evidence that type II BOCD does not 
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depend on the genetic composition. Both mutations resulted in partial inactivation of the 
receptor with some residual activity. This is in contrast with the mutations identified in type I 
BOCD. These mutations, including the R104X described in chapter 2, resulted in a complete 
inactivation of the PTHR1(2;9). Therefore, we concluded that type I BOCD resulted from a 
complete inactivation of the PTHR1, whereas a near complete inactivation of the PTHR1, 
resulting in low levels of residual activity, caused the relatively milder presentation observed 
in type II BOCD. 
This phenomenon is not unique for BOCD. Gradations in the severity of a disease are 
also found in another syndrome arising from mutations in the PTHR1, namely Jansen’s 
metaphyseal chondrodysplasia (JMC)(20). This type of osteochondrodysplasia is caused by a 
constitutively activating mutation in the PTHR1 gene(4;6;11;21). The T140P mutation caused the 
classical form of JMC(11). Another mutation at the same amino acid position, T140R, resulted 
in ligand independent cAMP formation, which was less pronounced than observed with the 
T140P mutations(21). This became clinically evident in a less severe presentation of JMC(21). 
Heterogeneity in clinical manifestations due to the nature of the mutation is not only found 
in diseases arising from the PTHR1 gene. Several types of chondrodysplasia, including 
hypochondroplasia, achondrodysplasia and thanatophoric dysplasia (from less severe to most 
severe phenotype) arise from heterozygous mutations in the same gene, namely the Fibroblast 
Growth Factor (FGF) Receptor 3 (FGFR3)(22). In these diseases a strong correlation between 
genotype and phenotype has been found(23). 
Genotype-phenotype correlations have also been reported for campomelic dysplasia, a disease 
characterized by skeletal and also extra-skeletal abnormalities(24). This disease is caused by 
mutations in the Sox9 gene, the main transcription factor for chondrocyte development. 
Both homozygous and heterozygous mutations have been described(25;26). It has been stated 
that mutations, resulting in residual transactivation capacity of the transcription factor, may 
account for a milder phenotype and longer survival of patients(25).
Taken together, these data indicate that the impact of a mutation on the capacity of the receptor 
to activate downstream signalling pathways, critically determines the clinical presentation.

Regulation of PTHR1 signalling
In chapter 2 we showed that either the type or position of mutations in the PTHR1 resulted 
in distinct clinical features, due to complete or partial inactivation of the PTHR1. Partial 
inactivation resulted in residual activity of the PTHR1 and depending on the impact of 
the mutations, this residual activity could vary. This is also pronounced in patients with an 
activating mutation in the FGFR3, which can cause hypochondroplasia, achondrodysplasia 
and thanatophoric dysplasia(11;22). 
Two pathways are activated by FGFR signalling in chondrocytes, the Jak/Stat pathway and 
the extracellular signal regulated kinase (ERK) pathway(27;28). FGF is a potent inhibitor 
of chondrocyte proliferation and hypertrophic differentiation(29). The dominant pathway 
after FGFR signalling influencing chondrocyte proliferation is the Jak/Stat pathway. FGFR 
signalling results in the activation of Stat1. Subsequently, Stat1 induces the expression of the 
cell cycle inhibitor p21waf1/cip1, thereby inhibiting chondrocyte proliferation(29-31). 
The ERK pathway appears to be more important in the inhibition of hypertrophic 
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differentiation. Transgenic mice that express a constitutively active mutant of ERK kinase 
(Mek1) in chondrocytes, displayed incomplete hypertrophy of chondrocytes, but showed 
no effect on chondrocyte proliferation(32). Therefore, it has been hypothesized that FGFR 
signalling inhibits chondrocyte differentiation through the ERK pathway. Thus, the balance 
between the Jak/Stat pathway and the ERK pathway may adjust the effects of FGFR signalling 
on chondrocyte proliferation and differentiation(33). Diverse mutations in the FGFR3 may 
have distinct impacts on the activity of the two main signalling pathways, which may result in 
the heterogeneity of the clinical presentation of chondrodysplasia.
Signalling through two pathways is also important in PTHR1 signalling(3;34). Mouse knockout 
models have been generated to identify the functions of the two pathways that are activated by 
PTHR1 signalling in chondrocyte proliferation and differentiation. The two pathways are the 
adenylate (AC)/protein kinase A (PKA) and the phospholipase C beta (PLCβ)/protein kinase C 
(PKC) signalling pathway(3;34). Recently, it has been shown that chondrocyte specific knockout 
mice, carrying a mutation in the Gαs and thereby disrupting AC/PKA signalling, displayed a 
phenotype comparable to the PTHrP knockout mice(34;35). These mice had severe growth plate 
defects with reduction of the proliferative zone and accelerated chondrocyte differentiation. 
The opposite was demonstrated in mice carrying a mutant form of the PTHR1 (DSEL mice), 
which specifically interrupted signalling via the PLCβ/PKC pathway and signalled normally 
via the AC/PKA pathway(3). These mice showed an increase in chondrocyte proliferation 
and a decrease in chondrocyte differentiation. These results indicated that the AC/PKA is 
the dominant pathway after PTHR1 signalling in stimulating chondrocyte proliferation and 
inhibiting chondrocyte differentiation. In addition, these results showed that chondrocyte 
differentiation is stimulated by the activation of the PLCβ/PKC pathway. Thus, the two 
pathways had opposite effects on chondrocyte proliferation and differentiation. In addition, 
these results showed that a disbalance between these pathways after PTHR1 activation can 
result in altered chondrocyte proliferation and differentiation and can cause heterogeneity of 
diseases, which are caused by mutations in the PTHR1.
The phenotype of the DSEL mice, in which PTHR1 signalling via the PLCβ/PKC pathway 
was specifically interrupted, was remarkably similar to the phenotype displayed by a 
consanguineous family with a rare growth disorder, the Eiken syndrome(3;36). Eiken syndrome 
is caused by a homozygous mutation in the PTHR1 gene, resulting in a truncated PTHR1(5). 
The truncated protein only missed a small part of the C-terminus. Because of the comparable 
phenotype of the mice model, it is hypothesized that PTHR1 signalling through the PLCβ/
PKC pathway is disrupted. Eiken patients were considered normal at birth, but after a few 
months they developed a skeletal dysplasia, characterized by delayed ossification, principally 
of the epiphyses, the pelvis, the hands and the feet. Taken together, this indicates that the 
role of the PLCβ/PKC pathway becomes more pronounced after birth, while the AC/PKA 
pathway is the dominant pathway during prenatal growth, which has also been suggested 
previously(3;34). 
Normal development of the growth plate requires a balanced signalling between the two main 
signalling pathways of PTHR1. This balance could be influenced by adapter proteins, like the 
PDZ domains containing proteins, Nherf1 and Nherf2. Nherf1 and Nherf2 were first found 
in renal tubuli as regulators of ion channels(37). Further experiments revealed that the Nherf 
proteins not only bind to ion channels, but also to transcription factors, signalling molecules, 
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structural proteins and receptors(38;39). The binding of Nherf1 and Nherf2 to the PTHR1 and 
PLCβ is best studied in renal tubuli(38). 
In chapter 3 we showed that both Nherf1 and Nherf2 mRNAs were expressed in several organs 
using in situ hybridizations, which is in line with other studies(40;41). In addition, we demonstrated 
Nherf1 and Nherf2 mRNA expression during endochondral bone formation by growth plate 
chondrocytes and osteoblasts in the bone collar. To establish whether Nherf1 and Nherf2 
play a role in osteoblast and chondrocyte differentiation, Nherf1 and Nherf2 overexpressing 
KS483 cell lines were generated. Nherf1 and Nherf2 overexpression had distinct effects on 
the differentiation of osteoblasts and chondrocytes. While Nherf1 overexpression inhibited 
terminal osteoblast differentiation, Nherf2 overexpression stimulated terminal osteoblast and 
chondrocyte differentiation using matrix mineralization as a read out. The negative actions 
of Nherf1 in bone formation have been shown before in Nherf1 knockout mice(41). Some, but 
not all female Nherf1 knockout mice were dwarfs and they displayed severe osteoporosis and 
bone fractures. This is most likely a secondary effect. Nherf1 regulates phosphate transport by 
binding to the sodium/phosphate co-transporter type IIa (Npt2a)(41). In addition, Nherf1 null 
mice showed mild hypophosphatemia, which probably affected bone formation. However, 
our data suggests that the bone phenotype may also be explained partly by direct effects on 
osteoblastic matrix mineralization. Others have reported distinct functions for Nherf1 and 
Nherf2 in renal tubuli in the regulation of the Npt2(41-43). The different functions for Nherf1 
and Nherf2 might be explained by the recruitment of different molecules to form a membrane/
submembrane bound complex, displaying diverse actions(40;44-46). 
In chapter 3 we also showed that Nherf1 and Nherf2 overexpression did not change the 
actions of PTHR1 signalling on osteoblast en chondrocyte differentiation. We demonstrated, 
however, overexpression of Nherf1 and Nherf2 mRNA and it is likely that the Nherf1 and 
Nherf2 proteins are overexpressed as well, because both overexpressing cell lines displayed 
altered biological responses on osteoblast differentiation. Functional overexpression will 
probably induce a shift in the balance of PTHR1 signalling, since it has previously been 
shown that Nherf redirects PTHR1 signalling from the AC/PKA to PLCβ/PKC pathway in 
renal tubuli(38). An explanation for the fact that we did not demonstrate an effect of Nherf1 
or Nherf2 overexpression on PTHR1 signalling, could be inefficient coupling of Nherf1 and 
Nherf2 to the PTHR1 in osteoblasts and chondrocytes, in contrast to renal kidney cells. 
In addition, levels of PLCβ could be too low to affect the dominant AC/PKA pathway. The 
measurements of the activation of the AC/PKA pathway and the PLCβ/PKC pathway are 
currently underway.

Microarray and qPCR analysis
In chapter 4 and 5 we identified PTHrP target genes by performing microarray analysis. The 
microarrays, on which the NIA 15k mouse cDNA clone set(47) was spotted, were custom-
made. The quality of the spots of the cDNA microarray was low, due to heterogeneous spot 
morphologies (“doughnuts”), deposition inconsistencies, and oversized spots. In addition, the 
quality control of cDNA microarrays is a well-known problem(48;49). 
Halgren et al. reported a very high error rate of nearly 38% in the spots on cDNA microarrays(50). 
The spots did not contain the cDNAs expected, because of contamination. Also in our study, 
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all spots containing the regulated cDNAs were sequenced and even a larger error rate was 
found. Approximately 55% of the cDNAs were not the cDNAs expected (unpublished data). 
The contamination is most likely introduced during multiple rounds of replication of the 
bank by PCR, as previously suggested(50;51). Because of the uncertainty of the identity of the 
spots cDNA microarray analysis is not the ideal technique for pathway screening or genome 
wide analysis. For this purpose, commercially available oligonucleotide microarrays are much 
more reliable. cDNA microarray analysis is, however, a suitable technique for the identification 
of a subset of target genes, but only by applying very stringent selection criteria, by sequencing 
the regulated cDNAs, and by validation of regulated genes. 
Since the cDNA microarray is used extensively in nearly all areas of biomedical research, 
investigators should always be aware of any indications that there may be serious unreliability 
in the microarray data. In addition, a major focus of microarray data appears to be centred 
on the statistical treatment of microarray data, such as image analysis, normalization, and 
background subtraction. However, more attention should be given to artefacts generated by 
amplification of the cDNAs and investigators should be especially cautious when interpreting 
data obtained from cDNA microarrays. 
Microarray data, especially derived from cDNA microarrays, should be validated before 
jumping to conclusions. Bio-informatic analysis and techniques like Northern blot and qPCR 
analysis are mainly used for this purpose(52;53). In our study we used bio-informatic analysis 
and qPCR analysis in different cell models and we thereby showed the validity of a part of the 
microarray data. However, due to the distinct methodologies and the relative poor quality of 
the custom cDNA microarrays, the overlap was not 100%, which is in line with other studies(52-

54). In our study the overlap in expression pattern between microarray and qPCR analysis was 
57%. The expression pattern of the remaining genes differed only slightly between microarray 
analysis and qPCR analysis. In contrast to the expression patterns between microarray and 
qPCR analysis, which were comparable, the fold changes were dissimilar. A decrease, as well 
as an increase in fold change were demonstrated, which has also been reported by others(52-54). 
cDNA microarray analysis is not a quantitative method in contrast to qPCR and Northern 
blot. Therefore, direction of changes, but not fold changes, can be determined with cDNA 
microarray analysis. 
While the technical approach of qPCR is straightforward, the statistical analysis of qPCR 
data is less clear. A model providing computations for expression ratios and p-values in 
experiments in which all samples are run in triplicate in a single qPCR experiment, well 
organized in a single spreadsheet, is not available. For this purpose, we generated the double 
delta model (DDM), which is described in chapter 6. This model is derived from the 2-∆∆Ct 
method and the variance of the gene of interest as well as the variance of the reference is taken 
into account(55). The DDM is particularly useful when working with many samples, because 
the calculations of the ratios and the calculations of the p-values are well organized in a single 
spreadsheet. Because the DDM does not include corrections for qPCR efficiency, it can only 
be used when the amplification efficiencies of the target and reference gene are close to 1. The 
DDM may also be applied to other data sets, in which experimental values are correlated with 
reference values.
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PTHrP target genes
To unravel how PTHrP exerts its effects on growth plate chondrocytes, we have identified 
early and late PTHrP target genes, using cDNA microarray analysis. By applying very 
stringent criteria for data generation and by performing validation studies we have produced 
a small list of early (12) and late (9) PTHrP response genes. The list of early PTHrP response 
genes included 7 upregulated (RGS2, SGK, Upar, IER3, Ptp4a1, Stat3, and Csrp2) and 5 
downregulated (Sf3a2, Gab1, DYM, LamRI and Acvr2b) genes and the list of late response 
genes included 3 upregulated (IGFBP4, Csrp2, and Ecm1) and 6 downregulated (Col9a1, 
Col2a1, Agc, Hmgn2, Calm1, and Mxd4) genes. The majority of the early PTHrP response 
genes, 83%, were involved in signal transduction and regulation, compared to only 44% of the 
late PTHrP target genes. In addition, none of the early PTHrP response genes were structural 
proteins, compared to 44% of the late target genes. This is in agreement with the notion that 
the majority of early target genes are implicated in signal transduction and regulation and 
that most of late response genes code for structural proteins belonging to the extracellular 
matrix(54;56).
In chapter 4 we showed that the majority of early PTHrP effects were part of a more generalized 
response, not only restricted to chondrocytes, but also present in osteoblasts. In chapter 5 we 
demonstrated that the expression of most of the late response genes showed temporal and 
directional changes between the different cell models. This indicates that for studying the 
actions of PTHrP, the early response genes are most relevant. The late targets of PTHrP are 
not only manipulated by PTHrP treatment, but have also endured other influences, which 
are dependent of the cell type and environmental effects. This suggest that between early and 
late effects mechanisms must be operational that translate the PTHrP responses from a more 
generalized effect into a cell type and cellular context dependent effect. Results of other studies 
also indicate such a mechanism(54;56). The factors involved in this process are not known.

Transcription factor binding sites in promoters of PTHrP target 
genes
To identify common conserved regulatory elements involved in the expression regulation of 
early PTHrP target genes, we analyzed their promoter regions. We found several conserved 
transcription factor binding sites in various early target genes. Among these transcription 
factor binding sites were cAMP response elements (CRE) and AP-1 response elements. CREs 
can be bound by CRE binding proteins (CREB). CREB and AP-1 are the main transcription 
factors activated by the AC/PKA pathway after PTHR1 signalling(3;57). Remarkably, 6 out 7 of 
the upregulated genes in chondrocytes contained CREB transcription factor binding sites, 4 
times in combination with an AP-1 response element, and only 2 out of 5 of the down regulated 
genes in chondrocytes contained CREB transcription factor binding sites. In addition, these 
2 downregulated target genes were upregulated in osteoblasts. Comparable to our study 
were the predictions of CREB and AP-1 transcription factor binding sites predominantly 
in upregulated genes in a study by Qin et al.(58). They used a statistical approach to identify 
transcription factor binding sites used by PTH-signalling in osteoblasts instead of enrichment 
for evolutionary conserved binding sites applied in this paper. This suggests that CREB and 
AP-1 are predominantly involved in upregulation of transcription of PTHrP target genes. 
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Among downregulated genes by CREB after PTHR1 signalling is the transcription factor 
for osteoblast differentiation and hypertrophic chondrocyte differentiation, the runt related 
transcription factor 2 (Runx2)(59;60). The suppression of Runx2 transcription is primarily 
regulated through the AC/PKA signalling pathway(61). This effect is only partially mediated via 
CREB, suggesting that other transcription factors are involved in the negative regulation of 
Runx2 transcription and probably also in the transcription of other downregulated genes(61).

PTHrP and the interactions with other paracrine and endocrine 
signals
Endochondral bone formation is under the control of endocrine (systemic hormones) 
and paracrine (growth factors) factors(29;62-64). From the systemic hormones, the dominant 
regulator of endochondral bone formation is Growth Hormone (GH)(65). GH can act directly 
on the growth plate, via its receptor, which is expressed by growth plate chondrocytes(66). 
In addition, GH influences chondrocyte proliferation and differentiation indirectly via the 
induction of Insulin-like Growth Factor 1 (IGF-1)(67-69). It is likely that GH also controls the 
expression of other locally produced growth factors, for instance components of the Indian 
Hedgehog (IHh)/PTHrP negative feedback loop(62). In this thesis we provide evidence for the 
opposite, namely, the regulation of GH actions by PTHrP. Thus, the interaction between GH 
and PTHrP might be reciprocal. 
Besides GH, another important regulator of chondrocyte differentiation in the postnatal 
growth plate is estrogen. Its main actions are inducing the growth spurt at the beginning 
of puberty and stimulation of growth plate fusion at the end of puberty(70;71). While we 
demonstrated possible interactions between PTHrP and GH, no indications for interactions 
between PTHrP and estrogens were found in our limited data set.
In chapter 4 we demonstrated for the first time a crosstalk between PTHrP and members of 
the Jak/Stat family. PTHrP induced the mRNA expression of Stat3, Stat5a, Stat5b, and Csrp2. 
Csrp2 is a binding partner of PIAS1, which is an inhibitor of Stat1(72). In addition, several 
conserved Stat transcription factor binding sites were predicted in the early PTHrP response 
genes. Furthermore, PTHrP influenced posttranslational activation of Stat3, Stat5a, and Stat5b. 
Interestingly, activation of Stat3 was increased, while the activation of Stat5a and Stat5b was 
decreased. Both the increased activity of Stat3 and the decreased activity of Stat5a and Stat5b 
after AC\PKA signalling have already been demonstrated before in other cell types(73;74). 
Stat5b is the most important Stat protein in GH signalling, with respect to longitudinal 
growth(75;76). GH induces IGF-1 expression through Stat5b and IGF-1 stimulates chondrocyte 
proliferation and differentiation(69;77). By inhibiting Stat5b activity, PTHrP may diminish the 
positive actions of GH on chondrocyte proliferation and differentiation. Thus, we found that 
paracrine factors, in our study PTHrP, may influence the actions of endocrine signals, in 
our study GH. Our experiments were not set up to investigate whether endocrine signals 
influenced the actions of paracrine factors. This suggests that if indeed endocrine signals exert 
their effects by modulating paracrine factors, like PTHrP, it is not a one-way direction, but a 
reciprocal interaction.
Most Stat proteins are also involved in FGFR signalling. The negative regulation of 
chondrocyte proliferation by FGFR signalling is mediated through Stat1, by inducing the 
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expression of cell cycle inhibitor p21waf1/cip1(30;31). Stat1 activation is inhibited by PIAS1, which 
is a binding partner of Csrp2(72). By inducing the expression of Csrp2 (chapter 4 and 5), 
PTHrP could alleviate the inhibitory actions of PIAS1 on Stat1 and thereby increasing the 
negative regulation of chondrocyte proliferation. The inhibitory actions of FGFR signalling 
on chondrocyte differentiation is mediated through the ERK pathway(32). No indications for 
interactions between PTHrP and the ERK pathway were found in our limited data set.
The role of PTHrP in the growth plate is regulating the transition of proliferating into 
hypertrophic chondrocytes and thereby keeping the chondrocytes in a proliferative competent 
stage(78). It has been shown that p57, a member of the CIP/KIP family of inhibitors of cyclin-
dependent kinases, is one of the major mechanism used by PTHrP to maintain chondrocyte 
proliferating and delay their differentiation(79;80). Studies with transgenic mice demonstrated 
that the level of PTHrP is very important in normal endochondral bone formation. Both mice 
with ablation of the PTHrP gene or ectopic expression of PTHrP showed severe dwarfism(35;81). 
The expression of PTHrP is tightly controlled. This is accomplished by IHh(62).
In this study we provide evidence that the biological actions of PTHrP might also be controlled 
by other regulators of endochondral bone formation. PTHrP may influence the signalling 
pathways of FGF and GH, thereby probably counteracting its positive effect on chondrocyte 
proliferation, but possibly enhancing its negative effect on chondrocyte differentiation (fig. 
1). PTHrP might affect the actions of FGF signalling on chondrocyte proliferation and the 
actions of GH signalling on both chondrocyte proliferation and differentiation, through 
influencing Jak/Stat signalling. Through inhibition of the activity of Stat5b by PTHrP, IGF-1 
expression may be diminished, presumably resulting in a decrease of chondrocyte proliferation 
and differentiation. In addition, by inducing Csrp2 expression, PTHrP is potentially able to 
alleviate the inhibition of PIAS1 on Stat1 activity. This may result in a decrease of chondrocyte 
proliferation. Experiments to establish whether Stat1 is directly activated by PTHR1 signalling 
are currently underway. In addition, conflicting data have been reported about Stat3 
phosphorylation after FGF activation. Hart et al. found that FGFR signalling could activate 
Stat3 in the fibroblast cell line NIH3T3, however, another study using rat chondrosarcoma cells 
(RCS), revealed that FGF treatment had no effect on Stat3 phosphorylation(30;82). Therefore, 
the role of Stat3 after FGF activation in this model is unclear.
The transition of proliferating chondrocytes into hypertrophic chondrocytes is under the 
control of the IHh/PTHrP negative feedback loop(62). It has been proposed that FGF and BMP 
signalling affects the negative feedback loop. They show opposite effects on the expression 
of IHh, on chondrocyte proliferation and on terminal differentiation(29;63). These actions are 
believed to be independent of the IHh/PTHrP pathway(29). By showing that PTHrP influenced 
the Jak/Stat pathway, which signalling molecules are intracellular mediators of FGF signalling, 
we provide evidence that a cross talk between PTHrP and FGF signalling may exist. 

Final remarks
PTHrP is an essential growth factor in the regulation of growth plate chondrocyte development. 
It works, however, in a complex environment of other growth factors and endocrine signals, 
which can influence either their own or each others expression and activity. Thus, the overall 
effect of the actions of systemic hormones and locally acting growth factors on chondrocyte 
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proliferation and differentiation is the result of the activation of signalling pathways and the 
interactions between them. The occurrence and intensity of specific signalling responses 
depend upon many factors that may be controlled directly or indirectly by the environment 
of the chondrocyte. These may include the level of receptor expression, the abundance 
of adaptor or scaffolding proteins, for instance Nherf, or the expression and activity of 
downstream kinases and their substrates. In addition, interactions with adjacent cells or with 
the extracellular matrix could also influence the response to systemic hormones or growth 
factors.
In the past, most studies have focussed on the actions of a single gene. With the rapid 
advancements in technology, a growing number of studies are using techniques to determine 
a wide range of target genes. Among these techniques is genome wide analysis, but another 
increasing field of interest is the field of bioinformatics and the use of computer models. By 
using these techniques, the connections between the target genes will lead to new insights. 

FGFs PTHrP GH

Stat1 Pias1 Csrp2 Stat5b

IGF1p57p21

Chondrocyte 
proliferation
Chondrocyte 
differentiation

- -
--

+

1

Figure 1: positive and negative actions of PTHrP on chondrocyte proliferation and differentiation. 
PTHrP exerts its positive effects on chondrocyte proliferation through the suppression of p57 expression. We hypothesize that PTHrP 
may also have negative effects on chondrocyte proliferation, through influencing the signalling pathways of FGF and GH and may 
enhance its negative effect on chondrocyte differentiation, through influencing the GH signalling pathway. PTHrP is potentially able 
to alleviate the inhibition of PIAS1 on Stat1 activity by inducing the expression of Csrp2. The negative actions of Stat1 on chondrocyte 
proliferation after FGF activation may be enhanced through inhibition of p21. GH induces IGF-1 expression through Stat5b activa-
tion. PTHrP decreases posttranslational activation of Stat5b, thereby probably inhibiting the positive actions of IGF-1 on chondrocyte 
proliferation and differentiation.
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