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Abstract 

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by 

progressive muscle wasting. A number of Duchenne patients also present with mental retardation. 

The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex 

(DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the 

peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle 

have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as 

a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC 

roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. 

From these studies, it has become clear that the DGC is important for the maturation of 

neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ 

and central synapses. Furthermore, roles for the DGC have been established in consolidation of 

long-term spatial and recognition memory. The challenges ahead include the integration of the 

behavioral and mechanistic studies and the use of this information to identify therapeutic targets. 

 

Keywords: Dystrophin, DGC, NMJ, CNS, PNS, Retina, Duchenne muscular dystrophy, Mammals, 

Drosophila, C. elegans 
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Introduction 

Duchenne muscular dystrophy (DMD) is a common X-linked, fatal genetic disorder characterized 

by progressive muscle wasting [1]. The disease was named after the French neurologist G.B.A. 

Duchenne who, in the mid-1800s, described patients that suffered not only from muscular dystrophy 

but also from mental retardation [2]. A major advancement in understanding the underlying cause of 

DMD came in 1987, when dystrophin was identified as the protein that is absent in DMD patients 

[3, 4]. Mental retardation occurs in approximately one third of DMD patients and is apparently 

dependent on the specific location of the mutation within the dystrophin gene (in mammals called 

the DMD gene) [5]. Despite more than two decades of intense clinical and basic research into the 

DMD disease process and the interactions and roles of the dystrophin protein, a cure for the disease 

remains elusive and treatments palliative. Thus, much remains to be learned about the basic 

biological roles of the dystrophin protein in the musculature and in the brain. 

The DMD gene is one of the largest genes in the human genome, spanning 2.3 Mb [6]. It has three 

upstream promoters that control expression of full-length dystrophin Dp427 and four internal 

promoters which regulate expression of the short dystrophin isoforms, Dp260, Dp140, Dp116, and 

Dp71 (reviewed at www.dmd.nl; Table 1; Textbox 1 in “Appendix”). The complexity of DMD 

gene expression, which results in multiple transcripts and protein isoforms, has made understanding 

the functions of individual dystrophin protein isoforms difficult. Dp427 has an amino-terminal 

actin-binding domain, and Dp427, Dp260, Dp140, and Dp116 have a variable number of spectrin-

like repeats that are predicted to form triple-helical rod-like structures. Dystrophin proteins 

invariably bear a number of protein–protein interaction domains, some of which are bound by other 

dystrophin-associated glycoprotein complex (DGC) members: a WW domain, a cysteine-rich region 

containing a ZZ domain, and a highly conserved carboxy-terminal region including a coiled-coil 

domain. 

Dystrophin is predominantly expressed in the musculature and the nervous system (Fig. 1, Table 2, 

and references therein). More specifically, the three distinct Dp427 variants that are transcribed 

from different promoters and have distinct first exons are expressed in skeletal muscle (Dp427M), 

throughout the brain (Dp427B) and in Purkinje cells (Dp427P), respectively. Dp260 is expressed in 

the retina, Dp140 in brain and kidney, Dp116 in the peripheral nervous system, and Dp71 is 

uniformly expressed, but most prominently present throughout the mammalian brain (reviewed in 

[7]; Fig. 1; Table 2). In mammals, there are two proteins which are significantly homologous to 

dystrophin, utrophin [8], and the much shorter dystrophin-related protein 2 (DRP2) [9]. Utrophin is 

more ubiquitously expressed compared to dystrophin, hence its name. It is found in developing 

skeletal and smooth muscle, the nervous system, the lung, kidney, liver, spleen, and stomach [10, 

11]. 

Many components of the DGC have been identified, including the dystrobrevins (DB-α and DB-β), 

the syntrophins (α1, β1, β2, γ1, and γ2), dystroglycan (DG-α/β), the sarcoglycans (SG-α, SG-β, SG-

γ, SG-δ, SG-ε, and SG-ζ), and sarcospan [10, 12]. Together with dystrophin, these proteins form a 

large, molecularly heterogeneous cluster [13], known as the DGC, that differs in composition 

depending on the tissue or organs where the components are expressed (reviewed in [10, 14–16]; 

Fig. 1; Table 2).  
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Table 2: Compilation of the known expression domains of DGC components of Human/Mice 

and Drosophila
1 

Species Human/mice Expression domain  Drosophila Expression 

domain  

(embryo) 
DGC member 

Dystrophin  

 

 

 

 

 

 

 

 

 

 

 

Dp427 Muscle (M), Brain (B), Purkinje cells 

(P), Retina 

DLP1 Visceral 

Mesoderm 

Dp260 Retina DLP2 Visceral 

Mesoderm,  

Musculature, 

Mesectoderm 

Dp140 Fetal tissues, Brain, Retina, Kidney DLP3 Adult 

Dp116 Schwann cells (brain and spinal cord) Dp205 Pericardial cells, 

VNC, Visceral 

Mesoderm  

Dp71 Brain (microvascular glial and gyrus 

dentatus cells), retina (ILM, 

perivascular astrocytes), other non-

muscular tissues, Liver 

Dp186 CNS, Midgut 

a-Utrophin Fetal Muscle, muscle, Pia mater, 

Choroid plexus, Astrocytes  

Dp117 Musculature, 

VNC 

 

b-Utrophin Vascular endothelial cells ----- ----- 

g-Utrophin 

(homologue of Dp116) 

Sensory ganglia, Brain  

DRP2 CNS, Schwann cells 

Dystrobrevin α-DB-1/-2 Skeletal Muscle, Brain Dystrobrevin-

like 

Musculature, 

VNC, Brain  
α-DB-3 

 

Skeletal and cardiac muscle, the inner 

layer of plexiform plexus 

β-DB Outer layer of the plexiform plexus 

of retina 

Dystroglycan α-, β-DG mosttissues Dystroglycan Musculature, 

Brain, VNC 

Sarcoglycan α-, β-, γ-, and δ-

sarcoglycan 

 

Skeletal and cardiac muscle  

β-ε sarcoglycan in mouse retina  

Sarcoglycan-

α, -β, -δ 

CNS, Gut, 

musculature 

ε-sarcoglycan Brain, Smooth muscle, Schwann cells 

ζ-sarcoglycan Brain, Muscle, Kidney, Spleen, 

Pancreas 

Sarcospan Long, short isoforms Skeletal and Cardiac Muscle (short 

isoforms also in other tissues) 

--- --- 

Syntrophin α1-, β1-, β2-syntrophin Skeletal and Cardiac Muscle, Brain, 

Retina, Lung, Kidney, Liver, 

Pancreas, Testes 

Syntrophin- 

like-1 

Brain, VNC 

γ1-syntrophin 

 

Brain, General expression Syntrophin-

like-2 

Mesoderm  

1 The data reviewed in this Table is taken from references [1, 7, 10, 14-16, 25, 32, 39, 182]. 
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The proteins of the DGC are highly conserved between species, although there are fewer homologs 

and isoforms in the lower vertebrates, such as zebrafish, and in the invertebrates, Caenorhabditis 

elegans and Drosophila (Table 1). 

Due to the complex and variable composition of the DGC, it is difficult to assign a general function 

to this transmembrane complex. However, in all organisms studied thus far, the different DGCs 

localize to the plasma membrane (reviewed in [12]). In muscle, the DGC has long been thought to 

be required for the stabilization of the plasma membrane by linking the actin cytoskeleton to the 

extracellular matrix [17]. Disruption of the DGC caused by the absence of dystrophin consequently 

renders the sarcolemma susceptible to mechanical damage during contraction and ultimately results 

in muscle degeneration. More recently, it has been established that the DGC also functions as a 

scaffold for proteins involved in signaling, including neuronal nitric oxide synthase (nNOS), 

phosphoinositol triphosphate 2, calmodulin, and growth factor receptor-bound protein 2 (grb2; 

reviewed in [18]). Additional evidence supports the involvement of the DGC in the extracellular 

signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) signaling cascade [19], 

epidermal growth factor receptor-mediated signaling [20], and insulin signaling [21]. Moreover, it 

has been shown that the DGC is required for neurotransmitter receptor and ion channel clustering 

and in maintaining calcium (Ca
2+

) homeostasis [22, 23]. 

Since the 1990s, the role of the DGC in brain function has also become the topic of extensive 

clinical and basic research; however, the mechanisms of action of the different dystrophin isoforms 

in brain are still largely unknown [5]. Interestingly, a patient was recently described carrying a 

mutation in the carboxy-terminal region of the DMD gene, who suffered from a mental disorder but 

showed no signs of muscle weakness [24]. This finding raises the possibility that there may be more 

patients with cognitive impairments caused by alterations in dystrophin expression or function and 

demonstrates the important role for dystrophin and its associated proteins in the brain (reviewed by 

[25]). Moreover, mutations in the gene encoding an enzyme that glycosylates α-dystroglycan, 

protein O-mannosyltransferase (POMT) 1, have been associated with a range of muscular 

dystrophies that are often accompanied by severe mental retardation and ocular abnormalities [26–

28]. In recent years, novel gene therapy strategies, such as antisense oligonucleotide-mediated exon-

skipping, have been directed toward restoring dystrophin expression in muscle fibers of DMD 

patients [29]. Promising results have been obtained in a phase I clinical trial [30]. While the 

application of such approaches in the brain will likely be more challenging, these reports validate 

the need for preclinical studies to establish the agents and means of delivery required for treatment 

of DMD-associated nervous system deficits. 

Mammalian DMD models, such as the mdx mouse, which lacks the three full-length dystrophin 

Dp427 isoforms, have been studied most extensively. However, it is now becoming clear that 

invertebrates such as C. elegans and Drosophila can also serve as models to study the fundamental 

and likely conserved functions of the DGC [31–33]. The reduced functional redundancy of the DGC 

members [31], the genetic tools available, and the ease of transgenic manipulation render these 

invertebrate animal models useful. Both the worm and the fly have only a single 

dystrophin/utrophin ortholog, and their functions may therefore reflect roles played by both 

dystrophin and utrophin in mammals. Drosophila exhibits muscle degeneration and a reduced 

lifespan when the expression of certain DGC members are reduced or absent [21, 34–37]. C. 

elegans lacking DGC components also display severe dystrophy of the musculature, but only in a 

genetically sensitized background where muscle differentiation is impaired [38]. These findings 

illustrate the relevance of these models for DMD. 
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This review focuses on recent insights into the specific roles of the DGC at the synapse gained from 

studies using mouse and invertebrate animal models. First, we summarize what is known about the 

function of the DGC at the neuromuscular synapse with emphasis on results obtained from mouse, 

C. elegans and Drosophila. We then describe the roles of DGC members in central synapses in the 

brain and the retina and how disruption of the complex may cause cognitive impairment. Our focus 

is on the possible signaling pathways interacting with the DGC that may be important for the 

development or maintenance of peripheral and central synapses. 

1.  Roles of the DGC at the Neuromuscular Junction 

In this section the involvement of the DGC at the mammalian neuromuscular junction (NMJ) is 

discussed in receptor clustering, synaptic transmission, and its participation in a number of 

important signaling cascades acting at the NMJ, such as the agrin/muscle-specific kinase 

(MuSK)/rapsyn, nNOS, and Ca
2+

/calmodulin-dependent protein kinase II (CAMKII)-mediated 

signaling pathways. In the following Sections, insights obtained in DGC NMJ function using the C. 

elegans and Drosophila invertebrate model systems which reveal novel roles for dystrophin in 

neurotransmitter clearance and in the regulation of neurotransmitter release, respectively, are 

reviewed. 

 

1.1 The Involvement of the DGC in AChR Clustering, Synaptic Transmission, and Signaling 

at the Mammalian NMJ 

1.1.1 AChR Density, Junctional Folds, and Transmission Are Reduced at DGC-Deficient NMJs 

The six families of proteins encompassing the DGC can be divided into three subcomplexes: (1) a 

cytoplasmic complex comprised of dystrophin (or utrophin), dystrobrevin and syntrophin, (2) the 

transmembrane dystroglycan complex, and (3) the sarcoglycan–sarcospan complex (reviewed in [1, 

18, 25, 39, and 40]). Dystrophin is expressed at the sarcolemma of mammalian skeletal muscle and 

is also found to accumulate at the troughs of the postsynaptic membrane where it colocalizes with 

voltage-gated sodium channels [41]. Dystrophin is only consistently detected at the mammalian 

NMJ after postnatal day 7 [42]. Utrophin, however, accumulates at the postsynaptic side of the 

neuromuscular junction during early postnatal development as part of a protein complex, the 

utrophin glycoprotein complex (UGC; Fig. 1b), which includes the syntrophins, dystrobrevins, 

sarcoglycans, sarcospan, and dystroglycan [43]. Dystroglycan interacts with the more general 

structural and signaling components of the NMJ, including agrin, laminin, and rapsyn and also 

associates with clusters of acetylcholine receptors (AChRs) at the crests of the junctional folds [41, 

42]. In addition, the adaptor protein ankyrin B is required for localizing the DGC at the mammalian 

postnatal NMJ [44]. 

Much has been learned about the mechanisms that underlie the development and function of the 

vertebrate NMJ (reviewed in [45–47]). A synapse is formed with a highly specialized presynaptic 

membrane, the active zone, opposing a postsynaptic density enriched in AChRs (in vertebrates) in 

the crests of the junctional folds and voltage-gated sodium channels in the troughs. Several 

signaling pathways involved in organizing the initial stages of NMJ formation have been, at least in 

part, elucidated. One such pathway includes agrin, a heparin sulfate proteoglycan that is released 

from the motor neuron to activate the postsynaptic tyrosine kinase receptor, MuSK. Engagement of 

MuSK leads to a second messenger cascade resulting in the clustering of the AChRs, the major 

neurotransmitter receptors present at the NMJ. Recently, it was reported that postsynaptic Lrp4 and 
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MuSK act as coreceptors of agrin [48, 49]. Furthermore, Tid1 was identified as a downstream 

effector of agrin/Lrp4/MuSK-induced AChRs clustering and maintenance, possibly by modulating 

the organization of the subsynaptic cytoskeleton [50]. The pre- and postsynaptic specializations 

required for establishment and maintenance of NMJ synapse function are spatially aligned, at least 

in part, by these interactions. 

Rapsyn, an effector protein of MuSK signaling, is also required for AChR clustering. Rapsyn 

physically links the AChRs to the UGC, and this interaction seems to be required for AChR 

stabilization and maturation of the NMJ (reviewed in [51]). Specifically, when agrin binds to the 

extracellular region of dystroglycan, it localizes to the NMJ, where it participates with other 

proteins to cluster the AChR via its intracellular association with rapsyn. While the UGC complex 

as a whole seems to be required for stabilizing AChR clusters, rather than being responsible for 

their initial formation, several components of the UGC, i.e., α-dystrobrevin and α-syntrophin, are 

also involved in other signaling events at the NMJ (discussed below). 

A clear indication for an involvement of the UGC in NMJ function came from the observation that 

knockout mice of dystroglycan, utrophin, α1-syntrophin, or α-dystrobrevin display reduced AChR 

densities at the NMJ [52–56]. These mice also have a reduction in the number of the junctional 

folds, a morphological defect that might possibly underlie the altered receptor density. The 

reduction of postsynaptic folds and reduced AChR density is further exacerbated in the double 

knockout mdx;utrn mouse which lacks both utrophin and dystrophin, indicating that dystrophin also 

plays an important role at the NMJ [40, 57, 58]. Most of these studies were done in mice older than 

7 days of age at which stage both dystrophin and utrophin can be detected at the NMJ. Mice 

deficient in α-dystrobrevin show a 70% reduction in AChR density, and the remaining receptors are 

irregularly distributed in aggregates as the distinction between crests and troughs of junctional folds 

becomes less apparent [59, 60]. Importantly, the initial formation of the NMJs is normal in these 

mice, but their postnatal maturation is compromised, resulting in the described abnormalities. 

Few electrophysiological studies of the DGC/UGC-deficient NMJs have been reported. However, 

utrn knockout mice exhibit decreased miniature endplate current amplitudes [54], consistent with 

the reduction in postsynaptic acetylcholine (ACh)-dependent neurotransmitter receptor clusters 

observed. Interestingly, miniature endplate potentials were also found to be decreased in mdx mice, 

while these mice display only subtle changes in junctional fold morphology and AChR density [61, 

62]. The structural roles of the UGC and DGC in stabilizing NMJ receptor clusters and junctional 

folds may therefore be independent of their roles in regulating synaptic transmission. 

 

1.1.2 DGC Participation in Signal Transduction Pathways at the Mammalian NMJ 

While the role of the DGC in stabilizing the sarcolemma during repeated cycles of contraction and 

relaxation is well studied, much less is known about the involvement of the complex as a scaffold 

for signaling pathways. α-Dystrobrevin knockout mice were found to exhibit muscle degeneration 

in the absence of apparent structural deficits of the sarcolemma [59], suggesting that dystrobrevin 

may play roles in signaling. Since these mice also show a displacement of nNOS from the 

membrane, it was hypothesized that impaired nitric oxide (NO) signaling likely contributed to the 

observed dystrophy [59]. 

A second clear indication for possible roles of the DGC in signaling was suggested by the observed 

physical association of the DGC with numerous signaling molecules such as calmodulin, CaMKII, 
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protein kinase A (PKA), phosphoinositide 3-kinases (PI3K), grb2, son of sevenless, and Ras in 

addition to nNOS. Thirdly, since several DGC pathway members contain potential phosphorylation 

sites for serine/threonine or tyrosine kinases, DGC function and activation might be regulated by 

phosphorylation. Indeed, dystrophin is a target of CaMKII-, MAPK-, p34-cdc2 kinase-, and casein 

kinase-dependent phosphorylation in vivo (reviewed in [18]). In cell culture, phosphorylation of 

dystrophin has been shown to alter its affinity for actin and syntrophin [18]. 

Direct evidence for a functional role of tyrosine phosphorylation of DGC proteins has only been 

established for dystrobrevin. α-Dystrobrevin mutated at a presumptive tyrosine phosphorylation site 

failed to fully rescue the NMJ defects in the dystrobrevin knockout mouse [63]. Dystrobrevin is also 

a target of the serine/threonine kinase PKA [64], a protein implicated in synaptic plasticity, 

learning, and memory acquisition [65]. Thus, phosphorylation of dystrobrevin at several distinct 

sites likely modulates its activity during synaptic remodeling. 

The DGC actively participates in signaling pathways that are associated with cell survival, cellular 

defense, and cell growth in a variety of tissues mediated by not only the aforementioned molecules 

calmodulin, PI3K, and nNOS but also by MAPK, protein kinase B (Akt), and the insulin receptor 

pathway (reviewed in [18]). Here, two examples of pathways relevant for DGC function in the 

nervous system will be discussed, i.e., DGC participation in nNOS signaling and in Ca
2+ 

mediated 

homeostasis. 

 

nNOS  

NOS, which generates NO, plays roles in a number of cellular signaling pathways which, among 

others, include those involved in apoptosis, in the protection against ischemia, and in regulating 

vascular tone [66]. While these more general cellular functions are relevant for NOS involvement in 

the progression of DMD [67], there is also evidence for a more specialized role of NOS in 

modulating UGC function at the NMJ. NO also acts as both an antero- and retrograde modulator of 

synaptic transmission at central synapses [68]. While the role of NO in the cerebellum and 

hippocampus has been studied in great detail, little is known about its possible interactions with the 

DGC at these synapses.Indications that nNOS and the UGC/DGC play interdependent roles at the 

NMJ are supported by the following observations, (1) nNOS is physically associated with the UGC 

[69], (2) nNOS levels are substantially reduced and nNOS is dislocated from the postsynaptic 

membrane of DMD patients and in mdx and α-syntrophin mutant mice [67, 70] and (3) NMJ 

abnormalities in the mdx mouse (and to a lesser extent in α-syntrophin null mutant mice) can be 

fully rescued upon expression of a nNOS transgene in muscle [71]. However, no such rescue was 

observed in the α-syntrophin/β1-syntrophin double knockout mouse, indicating that syntrophins 

may be responsible for recruiting nNOS to the NMJ [71]. It has been recently established that 

dystrophin itself can also serve as a scaffold for nNOS sarcolemmal targeting [72].How do 

alterations in NO levels result in changes in UGC function? Increased NO levels lead to the 

activation of guanylate cyclase and elevated production of cyclic guanosine monophosphate 

(cGMP) [73], which subsequently affects contractile function, glucose metabolism [74], and Ca
2+

 

mobilization in muscle fibers [75]. nNOS also acts as an effector of agrin-induced postsynaptic 

differentiation at the NMJ (reviewed in [76, 77]). In brief, changes in NO and cGMP levels are 

sufficient to modulate the activity of a number of protein kinases that in turn modify the interaction 

of the UGC with actin, thereby affecting postsynaptic differentiation. The rod-like region of the 

dystrophin and utrophin proteins contain potential protein kinase G (PKG) phosphorylation sites, 
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while potential protein kinase C (PKC) phosphorylation sites are located near the actin-binding sites 

[78]. Depending on which site is phosphorylated, F-actin binding to dystrophin and utrophin is 

promoted (PKG) or inhibited (PKC). According to one proposed model [77], agrin-induced 

increases in NO/cGMP stimulate PKG and inhibit PKC, resulting in increased interaction of 

dystrophin and utrophin with actin which results in stabilization of AChR aggregates at the NMJ. 

Another target of NO, the Src family kinases, then phosphorylates the β-subunit of AChRs, which 

promotes their binding to rapsyn and association with other AChRs [51].Can muscular degeneration 

in DMD patients be explained solely by a reduction in nNOS levels? This is unlikely, since NOS 

knockout mice do not display overt dystrophy [79]. However, since increased NO production results 

in enhanced utrophin expression [80] and treatment of mdx mice with a nNOS substrate, l-arginine, 

also increases utrophin levels and its membrane localization [81], clinical manipulation of nNOS 

levels in the muscle is considered a potential starting point for therapeutic intervention [82]. 

 

Ca
2+

 signaling and homeostasis  

Ca
2+

 levels in dystrophic muscle are thought to be increased due to disruption of the sarcolemma 

and abnormal activation of Ca
2+

 leak channels [83]. It is not clear whether the changes in 

intracellular Ca
2+

 levels and disrupted Ca
2+

 homeostasis observed in dystrophin-deficient muscle are 

a cause or a result of the pathogenic processes, such as apoptosis and oxidative stress, that occur in 

dystrophic muscle [83, 84]. It is generally thought, however, that the elevated Ca
2+

 levels will 

eventually elicit Ca
2+

-dependent proteolysis via the activation of calpains and other Ca
2+

-dependent 

proteases. In this section, Ca
2+

 involvement in apoptosis and necrosis of dystrophic DMD fibers is 

not further discussed. Instead, potential roles for the DGC in the regulation of Ca
2+

 homeostasis in 

muscle and at the NMJ under normal physiological conditions are reviewed. A first insight into a 

role of the DGC in Ca
2+

-mediated signaling came from the findings that two of the DGC proteins, 

i.e., dystrophin and syntrophin, physically interact with calmodulin [85] (reviewed in [18]) and that 

calmodulin activity is reduced in dystrophin-deficient muscle fibers [86]. Calmodulin is a Ca
2+

-

binding protein that regulates the activity of many Ca
2+

-sensitive enzymes and acts as a sensor of 

Ca
2+

 levels in the cell. Calmodulin is likely to regulate binding of dystrophin/utrophin to actin [87], 

while the Ca
2+

/calmodulin dependent kinase, CaMKII, actively phosphorylates both dystrophin and 

syntrophin [88]. Dystrophin’s interaction with syntrophin is inhibited upon phosphorylation [88], 

further indicating the regulatory function that CaMKII exerts on DGC activity. In addition, it has 

been shown that both CaMKII and dystrophin are required for maintaining appropriate levels of 

neurotransmitter release at the NMJ in Drosophila [89, 90], although at present it is not clear 

whether they act in the same or parallel pathways. The DGC also regulates the activity of several 

Ca
2+

 channels. Changes in mechanosensitive Ca
2+

 channel function in mdx muscle fibers, measured 

by cell-attached patch-clamp recordings, revealed that the probability of these channels being open 

was increased, presumably leading to increased Ca
2+

 influx [91]. Changes in ACh neurotransmitter 

receptor aggregation caused by the disorganization of the membrane-associated cytoskeleton have 

been proposed to account for the disturbed Ca
2+

 homeostasis and increased Ca
2+

 leakage into 

dystrophin-deficient muscle [22]. Evidence supporting this hypothesis includes the observations that 

AChR and voltage-gated l-type Ca
2+

 channel aggregates display unusual physical interactions in 

dystrophic muscles, which may result in the abnormal Ca
2+

 influx observed at these sites [22, 92]. 

Since channel activity measurements vary significantly between different reports, possibly 

depending on the tissues used, i.e., cultured myotubes versus muscle fibers, or the type of channels 

studied, a defined role for the DGC in regulating Ca
2+

 channel activity is far from clear. 
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1.2 Dystrophin Regulates Cholinergic Transmission at the C. elegans NMJ 

The highly conserved C. elegans dystrophin ortholog, dys-1, was first identified in 1998 [93]. In 

contrast to mammals, the worm usually has one ortholog for each of the six DGC gene families 

[33]. For example, it has a dystrophin gene, but no utrophin, DRP2, or sarcospan genes, single 

dystrobrevin and dystroglycan genes, and three sarcoglycan and two syntrophin orthologs (Table 1). 

Furthermore, the C. elegans dystrophin gene encodes only one protein isoform [94]. The reduced 

potential for functional redundancy has made C. elegans and other genetically tractable 

invertebrates, such as Drosophila, attractive models to study the individual roles of each DGC 

member. 

The dys-1 loss-of-function mutants display a characteristic behavioral phenotype: They are 

hyperactive, bend their head inappropriately when moving forward, and tend to hypercontract [93]. 

Muscle degeneration is observed only when the dys-1 mutation is placed into sensitized 

backgrounds with reduced expression levels of the worm ortholog of the myogenic factor, MyoD, 

which is required for muscle differentiation, or reduced egl-19 Ca
2+

 channel function [38, 95]. dys-1 

mutants, however, display hypersensitivity to ACh and exhibit reduced ACh-esterase activity, 

indicating a role for dystrophin in cholinergic synaptic transmission at the worm NMJ [93, 96]. The 

loss of other worm DGC members, i.e., dystrobrevin or syntrophin, also gives rise to increased 

cholinergic activity [97]. 

A subsequent report revealed that inactivation of snf-6, a gene encoding a ACh transporter in C. 

elegans, results in an almost identical hyperactivity phenotype to that seen in dys-1 mutants [98]. 

Moreover, snf-6 was found to bind to stn-1, the β1-syntrophin ortholog expressed in the muscle, and 

snf-6 expression is lost from the NMJ of both dys-1 and stn-1 mutants [98]. As observed for dys-1, 

the snf-6 mutation in combination with a mutation of MyoD results in muscle degeneration. Thus, 

inefficient clearing of ACh from the synaptic cleft, due to both a reduction of esterase activity and 

the loss of the ACh transporter at the DGC mutant NMJ, likely accounts for the behavioral 

phenotypes observed. Furthermore, it may also contribute to the muscle degeneration observed in 

DGC sensitized mutant backgrounds. Whether altered cholinergic transmission underlies the 

dystrophic phenotype in DMD patients remains to be investigated, although increased sensitivity to 

ACh has been reported for human cultured myotubes derived from DMD patients [99]. 

 

1.3 Dystrophin Regulates Glutamatergic Transmission at the Drosophila NMJ 

1.3.1 Drosophila Dystrophin Is Required to Maintain Muscle Integrity 

Genomic analyses and expression studies indicate that the Drosophila dystrophin gene encodes 

three full-length (DLP1-3) and three short dystrophin isoforms (Dp186, Dp205, and Dp117) [32, 94, 

100, 101]. DLP2, which is expressed in the musculature throughout development, is most closely 

related to the mammalian Dp427 isoform. Similarly to C. elegans dys-1 mutants, but unlike 

mutations in the human Dp427 isoform, Drosophila DysDLP2 E6 mutants do not display obvious 

muscle degeneration. However, electrophysiological analyses revealed that neurotransmitter release 

is increased at the larval NMJ in these mutants [90]. 

The short Drosophila dystrophin isoform Dp117 is also expressed in the musculature [37]. 

Interestingly, muscle degeneration was observed in larvae, when all dystrophin isoform expression 

levels, or Dp117 specifically, were reduced in muscle by transgenic RNA interference [37]. In adult 

flies, progressive muscle degeneration and impaired climbing ability were observed when 
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dystrophin or dystroglycan expression was reduced [21]. The dystrophin isoform-specific mutant 

studies suggest that the Drosophila DLP2 protein, which accumulates at the postsynaptic side of the 

larval NMJ [90], is likely functionally analogous to utrophin at the mammalian NMJ and required 

for regulating synaptic transmission. The mechanisms by which Dp117 maintains muscle integrity 

are not yet clear as this isoform lacks an apparent actin-binding domain. Generation of classical 

Dp117 mutants and identification of Dp117 protein expression domains should shed further light on 

its roles. 

Further evidence for a role for Drosophila dystrophin in muscle function comes from a study that 

described an age-dependent disruption of the myofibrillar organization of the myocardium in 

dystrophin mutants lacking the large isoforms, accompanied by reduced cardiac performance and 

lifespan [36]. Progressive impairment of locomotive ability, disrupted flight muscles, and reduced 

cardiac function and lifespan were also observed in flies lacking δ-sarcoglycan [34]. Furthermore, 

in larvae that express reduced levels of dystroglycan or lack POMT1 or POMT2, the protein O-

mannosyltransferases required for dystroglycan glycosylation in vivo, abnormalities in muscle 

attachment, muscle contraction, and muscle membrane resistance are reported [35, 102]. In 

summary, the requirements for dystrophin, dystroglycan, POMT, and sarcoglycan in maintaining 

muscle integrity in flies illustrate the usefulness of this invertebrate as a model system for the study 

of muscular dystrophies. 

 

1.3.2 Does a DGC Exist in Drosophila? 

Although in general the orthologs of the mammalian DGC complex are highly conserved in 

Drosophila (Table 1), little is known about whether they form DGC-like complexes. No 

biochemical analyses of dystrophin-containing protein complexes derived from Drosophila tissue 

preparations or transfected cells have been reported to date. Perhaps the strongest evidence for the 

existence of a DGC-like protein complex comes from antibody colabeling experiments for multiple 

members of the DGC at the larval NMJ, the central nervous system (CNS), and the muscle. 

Dystroglycan and laminin colocalize in repeating stripes at sarcomeres [35], suggesting the 

existence of a T-tubule DGC-like complex, similar to that which is present in vertebrate cardiac 

muscle. Similarly, dystrophin and dystrobrevin are expressed in overlapping domains at the larval 

NMJ and in the CNS (S.P., L.G.F., J.N.N, unpublished), while dystrophin and dystroglycan have 

also been shown to colocalize at the postsynaptic side of the NMJ [103]. Genetic experiments have 

further indicated that at the NMJ, dystroglycan controls the synaptic localization of dystrophin and 

laminin [102, 103]. While direct biochemical data are currently lacking, together these data are 

consistent with the existence of DGC-like complexes at the Drosophila NMJ. 

 

1.3.3 The Dystrophin Isoform DLP2 Modulates Neurotransmitter Release at the NMJ 

Drosophila larvae that lack the large DLP2 dystrophin isoform exhibit elevated levels of evoked 

neurotransmitter release at the NMJ [90]. Electrophysiological analyses of DLP2 mutants showed 

that the resting muscle membrane potential in DysE6 DLP2 larvae and the depolarization of the 

muscle caused by spontaneous vesicle release from nerve terminals (miniature amplitude) are 

unaffected [90]. This suggests that the postsynaptic receptor field is not functionally altered in the 

mutant. An insight into dystrophin function at the NMJ was revealed by analysis of the effects of 

evoked stimulation. DLP2 mutants display significantly higher levels of muscle depolarization as 
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compared to control animals indicative of an increased release of presynaptic glutamate. As DLP2 

is expressed and required in the muscle [90], this finding indicates that the absence of a postsynaptic 

dystrophin isoform results in changes in presynaptic function. 

Possible explanations for the observed increased neurotransmitter release at the DLP2 mutant NMJ 

are (a) an increase in probability of release of vesicles or (b) an increase in the available vesicle 

pool. The vesicle pool was shown to be unaltered in DLP2 mutants, but the probability of release, as 

deduced from paired-pulse facilitation (PPF; Textbox 2 in “Appendix”), was elevated. Increased 

numbers of presynaptic active zones with T-bars, specialized structures involved in vesicle docking 

and release, were also observed thus providing a likely structural correlate to the observed altered 

synaptic physiology [90]. Postsynaptic dystrophin may act as a scaffold for signaling molecules 

required for the retrograde control of neurotransmitter release from the presynaptic apparatus. The 

signaling pathways involved in the dystrophin-dependent increase in synaptic vesicle release 

remain, however, to be elucidated. 

In the last decade, it has become clear that both anterograde, nerve to muscle, and retrograde, 

muscle to nerve, signals are required to achieve proper synaptic homeostasis (reviewed in [104]). 

Little is known about the molecular mechanisms required for retrograde control at the NMJ, but one 

pathway identified as playing roles in this process is the bone morphogenetic protein (BMP) 

pathway (reviewed in [105]). The secreted BMP pathway member, glass bottom boat, is believed to 

mediate a signal emanating from the muscle by binding to the presynaptic Wishful Thinking 

receptor. Interestingly, a genetic interaction was observed with DLP2 and Wishful Thinking at the 

NMJ, suggesting that dystrophin functions in a BMP-dependent pathway to control homeostatic 

plasticity [90]. Dystrophin also interacts with BMP signaling pathways in the Drosophila wing 

where their interplay is required for proper vein formation [106]. 

What roles do other members of the putative Drosophila DGC play at the synapse? Thus far, only 

dystroglycan has been examined. Intriguingly, the lack of dystroglycan or the enzyme required for 

its glycosylation, dPOMT1, both cause a phenotype that is opposite to the DLP2 dystrophin 

phenotype. Loss of postsynaptic dystroglycan or POMT leads to a decrease in the number of 

transmitter quanta released from the presynaptic terminal and a concomitant decrease in the efficacy 

of synaptic transmission [102, 103]. The probability of release is decreased in these mutants, while 

the number of release sites is not altered. In addition, while the overall morphology of the NMJ is 

intact, the ratio of glutamate receptor subunits is altered in dystroglycan and POMT mutants 

because the levels of the DGluRIIB subunit are reduced. 

In Drosophila, the best studied postsynaptic glutamate receptors are GluRIIA and GluRIIB 

(reviewed in [107]). The subunit composition of the postsynaptic glutamate receptors determines 

their function and trafficking. Furthermore, the regulation of glutamate receptor subunit ratios may 

underlie aspects of synaptic homeostasis and plasticity. How these changes would result in 

alterations in presynaptic release is not known. Nevertheless, changes in postsynaptic subunit 

composition are also important for the maturation of mouse cholinergic endplates and glutamatergic 

central synapses [108]. 

How might the seemingly differential roles of dystrophin and dystroglycan at the Drosophila NMJ 

be explained? The single mutant analyses have clearly indicated that each of the two proteins 

function at the neuromuscular synapse, but, surprisingly, in distinct and even opposite ways. Since 

the phenotypes of dystrophin/dystroglycan double mutant flies have not yet been reported, the 

epistatic relationship between dystroglycan and dystrophin at the NMJ remains unclear. Dystrophin 
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likely modulates a retrograde signal that limits transmitter release by, at least in part, inhibiting the 

formation of T-bars. Dystroglycan likely acts via a different mechanism since no alterations in T-

bar numbers were observed in the dystroglycan mutant [103]. It is also not yet clear whether the 

change in glutamate receptor composition observed in dystroglycan mutants reflects a direct role of 

dystroglycan in receptor clustering, as has been shown for the vertebrate dystroglycan protein in 

AChR clustering [109]. Further studies are required in order to understand these dramatically 

different roles of dystrophin and dystroglycan at the NMJ. 

The increased synaptic efficacy at the Drosophila DLP2-deficient NMJ is reminiscent of the 

elevated levels of cholinergic neurotransmission observed in C. elegans dys-1 mutants. However, as 

discussed above, the increased depolarization observed in mutant worm muscle is most likely due to 

the delocalization of the Snf-6 ACh transporter which results in the inappropriate per durance of 

ACh in the synaptic cleft. A similar role of a Drosophila dystrophin-interacting glutamate 

transporter at the NMJ cannot be ruled out. 
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Figure. 1 Differential DGC complex composition at mammalian muscle, NMJ, CNS, and retina. The compositions 

of the different DGC/UGC complexes that have been reported [1, 7, 10, 14–16, 25, 32, 39, 182] to be present in 

vertebrate muscle (a), at the NMJ (b), in brain (c), and at the retina (d) are shown. a In skeletal muscle, the N-terminal 

actin-binding domain and specific spectrin repeats in the central rod of dystrophin bind to costameric F-actin. The 

cysteine-rich region and the C terminus of dystrophin establish the link with the DGC through binding to β-

dystroglycan [183] and α-dystrobrevin2, respectively [184, 185]. β-Dystroglycan is linked to the extracellular α-

dystroglycan, which, depending on the tissue, links laminin α2 along the sarcolemma. In addition, β-dystroglycan 

associates with δ-sarcoglycan by which the sarcoglycan–sarcospan complex is stabilized at the sarcolemma [186]. The 

DGC can bind four syntrophins (α1 and/or β1), which in turn recruit sodium channels and signaling molecules, such as 

nNOS, via their PDZ domains. nNOS can also associate with dystrophin directly via its spectrin-like repeats [72]. b At 

the NMJ, a similar complex, the UGC, is formed, in which dystrophin can be replaced by A-utrophin and α-

dystrobrevin1 replaces α-dystrobrevin2 [185, 187]. After postnatal day 7, dystrophin can be detected at the rat NMJ, and 

therefore, a DGC can also be formed. These proteins bind α-syntrophin, which is present at crests and troughs of the 

junctional folds. β2-Syntrophin is mainly localized to the troughs. α-Dystroglycan not only binds the laminins β2, α4, 
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and α5 but also the proteoglycans agrin and perlecan. Perlecan is necessary for synaptic localization of acetylcholine 

esterase, which is involved in termination of cholinergic neurotransmission [188]. The synaptic localization of β-

dystroglycan is dependent on the presence of rapsyn [189, 190], which is important for stabilization of AChR clusters 

and linkage of these clusters to the UGC at the crests of the junctional folds (reviewed in [51]). β-Dystroglycan binds to 

utrophin. c In the brain, the DGC consists of at least four main components, dystrophin or utrophin, dystroglycan, 

dystrobrevin, and syntrophin, with variations in the isoforms present depending on the cell type. The composition of the 

sarcoglycan–sarcospan complex is not known for this tissue, but δ- and ε-sarcoglycan are detected in brain samples. The 

neuronal DGC consists of a full-length dystrophin isoform (Dp427) bound to β-dystrobrevin and dystroglycan, which in 

turn associates with presynaptic neurexin-α. The complex also contains α1- and γ1-syntrophin. d In the retina (reviewed 

in [155]), different dystrophin isoforms are expressed; Dp427, Dp260, Dp140, and Dp 71. Dp260 is highly specific in 

the photoreceptor terminals of retina [119]. Utrophin is present in the end-feet fraction of Müller glial cells [166]. Dp71 

and/or utrophin and α-dystroglycan from Müller cells bind actin and laminin, respectively [191]. The sarcoglycan 

complex which is composed of δ-, γ- [191], β-, and ε-sarcoglycan, and sarcospan [182] is bound to β-dystroglycan and 

dystrobrevin. β-Dystrobrevin is expressed at the outer plexiform layer (OPL) of the retina, while α-dystrobrevin1 is 

located at the inner limiting membrane (ILM) [134]. Syntrophins, α1 and β1, interact with the carboxy-terminus of 

dystrophin [192]. 

 

2. Roles of the DGC at Central Synapses 

We now focus on the roles of dystrophin in the CNS. The first section describes what has been 

learned about dystrophin function in cognitive studies and behavioral assays which reveal DGC 

roles in long-term spatial and nonspatial memory consolidation and emotion, respectively. The 

following section discusses new mechanistic insights into requirement for dystrophin in receptor 

clustering and synaptic plasticity in the mammalian hippocampus and cerebellum gained, in part, 

through electrophysiological analyses. The subject of the last section is the recently revealed role of 

dystrophin in regulating neurotransmitter release at a defined cholinergic central synapse in 

Drosophila. 

Reports that describe dystrophins’ involvement in metabolic pathways in the nervous system, such 

as the altered glucose metabolism in the brains of DMD patients and mdx mice, and those that 

examine the defects in the establishment of the blood–brain barrier in these mice fall outside the 

scope of this review. These subjects are reviewed in [5, 25]. 

 

2.1 Roles for Dystrophin in Behavior  

2.1.1 DMD Is Associated with Mental Retardation 

Cognitive impairments occur in approximately one third of Duchenne patients, highlighting a role 

for dystrophin in the nervous system (reviewed in [5, 7, 25]). The average IQ of boys diagnosed 

with DMD is 85, while 30% have an IQ less than 70 (reviewed in [5]). These mental deficits appear 

to be nonprogressive and unrelated to the severity of the muscular dystrophy. Their causes remain 

unknown. Moreover, morphological abnormalities in the brains of postmortem DMD patient are 

highly variable, ranging from no abnormalities [110–112] to slight and severe abnormalities, such 

as partial cerebral atrophy, neuronal loss and gliosis, and abnormal arborization and dendritic 

branching of cortical pyramidal neurons [111, 113–115]. 

There are various neuropsychiatric complications associated with DMD, such as autism, attention 

deficit hyperactivity disorder, obsessive–compulsive disorder, epilepsy, and febrile convulsion 

[116]. Mutations in the human fukutin-related protein gene and POMT1/2 genes, which affect the 

glycosylation of α-dystroglycan, also result in syndromes associated with severe mental retardation 

http://www.ncbi.nlm.nih.gov/pubmed/11834588
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(Fukuyama congenital muscular dystrophy and Walker–Warburg syndrome), further indicating 

roles for the DGC in the development of circuitry required for cognition [26]. Lastly, mutations in 

ε-sarcoglycan are implicated in myoclonus–dystonia syndrome, a disease characterized by dystonia 

and psychiatric complications, including anxiety and obsessive–compulsive disorder [117]. 

The brain-specific DGC(s) consists predominantly of four components, dystrophin (or utrophin), 

dystroglycan, dystrobrevin, and syntrophin (Fig. 1), with variations in the isoforms present, 

depending on the specific cell type being examined. Some neuronal cell types also express the ε- 

and ζ-sarcoglycans, but sarcoglycans are more predominantly expressed in muscle. Dystrophin 

isoforms are differentially expressed in subsets of neurons and glia: Dp427 is present in the cerebral 

cortex, the limbic system, including the areas CA1-CA3 of the hippocampus, the basolateral 

nucleus, and the lateral nucleus of amygdala, and cerebellar Purkinje cells [118]. Dp260 is present 

in the retina [119], Dp140 in the microvasculature and throughout the brain [120], Dp116 in 

Schwann cells of the peripheral nervous system [121], while Dp71 is highly abundant in most, if not 

all, brain areas examined [122]. It is not evident that the lack of one particular dystrophin isoform is 

solely responsible for the neurological disorders associated with DMD, but mutations in the 3′ end 

of the gene affecting all isoforms are most frequently linked to lower IQ scores [123]. Furthermore, 

most DMD patients, who exhibit neurological complications, have a genetic deficiency or 

duplication distal to exon 44 which most likely alters expression of Dp140, Dp116, and/or Dp71 

[116]. Expression of the Dp140 isoform, whose promoter and first exon lie in the large intron 

between exons 44 and 45 [124], is likely to be affected by these deletions [125, 126]. 

 

2.1.2 Requirements for the DGC in Memory Acquisition and in Defense and Motor Behavior 

Conflicting reports exist concerning possible roles for dystrophin in learning and memory that have 

been established using mouse models. The discrepancies are likely the result of the use of different 

behavioral paradigms that test distinct learning tasks of dystrophin-deficient mice [127–129]. In 

addition, it has become apparent that results obtained from tests employing the mdx mouse (which 

only lacks full-length dystrophin isoform Dp427) likely differ from those using the mdx3cv mouse 

(which lacks all dystrophin isoforms). Together, the results suggest that the full-length isoform is 

essential for the function of dystrophin in cognition and memory involving hippocampal and 

forebrain function (reviewed in [25]). The specific roles for the smaller isoforms in cognition are 

not yet clearly defined. Since mdx mice do not exhibit any significant signs of muscular dystrophy 

during the first 6 months of postnatal life, possibly due to sufficient regeneration of muscle, 

behavior of mdx mice can be studied in the absence of extensive muscle degeneration. 

Recently, Vaillend and colleagues addressed memory impairment in mdx mice using spatially and 

nonspatially defined tasks that can be rapidly learned [130]. The use of these behavioral paradigms 

reduces the possibility that extended training procedures would inadvertently improve memory 

function and mask memory deficits [131, 132]. The tests were based on (1) object recognition and 

(2) spatial learning in a water maze. Naturally occurring novelty-seeking behavior was not altered in 

the mdx mouse confronted with new objects. Both mdx and control mice spent longer times 

exploring a novel object when it was copresented with a familiar object to which they had been 

exposed 10 min prior. However, when the time between exposure and the test was prolonged to 24 

h, the mdx group would explore both objects equally, whereas the control group would still prefer a 

novel object. This observation is consistent with the mdx mice exhibiting long-term recognition 

memory impairments. Similar results were obtained when mice were trained to find a submerged 
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platform in a water bath. Mice of the control group would still be able to efficiently locate the 

platform 24 h after training, as measured by the time spent in the target area, whereas the mdx mice 

would not show a preference for the area where the platform was located. Thus, apparently, 

consolidation or expression of long-term memory is impaired in mdx mice [130]. 

The lack of the large dystrophin isoforms in mdx mice also impacts on emotional behavior and fear 

memory, which reflects amygdala transmission. Mdx mice have an increased defensive freezing 

response to restraint compared to control mice [133]. This behavior can be partially rescued by 

oligonucleotide-mediated exon skipping that facilitates expression of a truncated dystrophin in the 

brain, not in the muscle [133]. These data support the hypothesis that dystrophin is required for 

wild-type emotional behavior. Behavioral tests have also been performed on double knockout α- 

and β-dystrobrevin mice [134]. These mice exhibit abnormal sensorimotor behaviors that reflect 

cerebellar dysfunction, while the single dystrobrevin knockout mice apparently behave normally. 

In the next two sections, electrophysiological studies that examine the roles of the different DGC 

members at mammalian central synapses are discussed. Furthermore, studies are reviewed that 

indicate that a number of the DGC members (dystrophin, dystrobrevin, syntrophin, and 

dystroglycan) are present at the postsynaptic side of mammalian inhibitory GABAergic synapses in 

the hippocampus and in cerebellar Purkinje cells [135], where they are required for synapse 

function and plasticity. Lack of expression of dystrophin at these sites might contribute to the 

behavioral defects observed in mdx mice and the mental retardation displayed by DMD patients. 

 

2.2 Dystrophin Function in Receptor Clustering and Synaptic Plasticity of Mammalian 

Hippocampal and Cerebellar GABAergic Synapses 

In the mammalian brain, full-length dystrophin, Dp427 is expressed at the postsynaptic membranes 

of hippocampal pyramidal neurons, neocortical pyramidal neurons [136], amygdala, and cerebellar 

Purkinje cells [133] where it colocalizes with inhibitory GABAA receptor clusters [133, 137]. No 

gross changes in morphology or increased apoptosis were apparent in the mdx mouse hippocampal 

CA1 area [138]. However, in other areas of the mdx brain, for example in the spinal trigeminal 

nucleus, the number of neurons is almost 50% decreased compared to wild-type mice [139]. 

Interestingly, in these same mice, α1- and α2-GABAA clusters are significantly reduced in number 

[133, 137, 140]. Dystrophin colocalizes with other DGC proteins such as dystrobrevin, the 

syntrophins, and β-dystroglycan to inhibitory GABAergic synapses [25, 141]. Furthermore, in 

dystroglycan conditional knockout mice, these synapses no longer contain dystrophin [142]. α- and 

β-Dystrobrevin double knockout mice have lost dystrophin, and mdx mice have lost dystrobrevin 

localization from the cerebellar GABAA clusters [134] and exhibit a decrease in the size and 

numbers of α1 subunit GABAA receptor clusters. Together, these data suggest that the DGC 

proteins are, at least partially, interdependent for their targeting to GABAergic synapses and that the 

DGC likely stabilizes GABAA receptor clusters at these synapses. 

There is ample evidence that the DGC members also modulate synapse function at inhibitory 

GABAergic synapses in the cerebellum [140], the amygdala [133], and the hippocampus (reviewed 

in [25]). In the mdx cerebellar Purkinje cells, there are significant reductions in both the frequency 

and amplitude of spontaneous inhibitory postsynaptic currents (mIPSP; Textbox 2 in “Appendix”), 

consistent with the reduction in the number and size of GABAA receptor clusters at postsynaptic 

densities [140]. A reduction in inhibitory input in these cells was also recorded when GABAergic 

signaling was blocked resulting in a smaller increase in the amplitude of evoked postsynaptic 
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potentials (EPSPs; Textbox 2 in “Appendix”), compared to wild-type controls [143]. Furthermore, 

decreased long-term depression (LTD; Textbox 2 in “Appendix”) was observed in mdx Purkinje 

cells, which possibly leads to a disruption of cerebellar long-term plasticity [144]. These results 

may, at least in part, explain some of the behavioral problems and cognitive impairments reported in 

mdx mice and DMD patients [140]. 

In the hippocampus, loss of Dp427 in mdx mice does not affect inhibitory postsynaptic currents 

(IPSCs; Textbox 2 in “Appendix”) evoked in the pyramidal cell layer [145]. However, a lack of 

facilitation was shown by PPF analysis, which suggests that the probability of inhibitory synaptic 

release is higher in mdx mice compared to control mice at this particular synapse. This effect 

correlates with an observed increased mIPSC frequency, contrary to what is observed at the 

cerebellar Purkinje cell synapses discussed above [145]. Several studies by Vaillend and colleagues 

[129, 130, 146] demonstrated, again in mdx mice, an increase in neuronal facilitation, a sustained 

effect leading to enhancement of the maintenance phase of hippocampal long-term potentiation 

(LTP; Textbox 2 in “Appendix”), as well as an enhancement of short-term potentiation (STP; 

Textbox 2 in “Appendix”) and depression (Textbox 2 in “Appendix”). The enhanced STP and STD 

were prevented when the GABAA receptor antagonist, bicuculline, was applied [130, 146]. 

Collectively, these data point toward the dystrophin Dp427 deficiency being associated with a 

sustained increase in synaptic efficacy and excitability of CA1 hippocampal neurons. Moreover, 

dystroglycan conditional knockout mice that lack dystroglycan in brain also exhibit deficits in 

hippocampal LTP [147]. 

The above-mentioned studies, while showing different electrical responses to dystrophin deficiency 

in the cerebellum versus the hippocampus, suggest that the alteration of inhibitory synaptic 

transmission may contribute to memory deficits evident in mdx mice. Similar memory impairments 

correlating with enhanced synaptic efficacy and LTP have been observed in other mouse models, 

including a model for Alzheimer’s disease, and mice with disrupted genes encoding PSD-95 or a 

subunit of the ionotropic glutamate receptor [148–151]. 

Finally, the effects of the loss of the Dp71 isoform on mouse brain function employing 

electrophysiology and behavioral studies were recently reported [152]. Interestingly, glutamatergic 

transmission is enhanced and synaptic plasticity reduced in Dp71-deficient CA1 hippocampal 

neurons. Furthermore, Dp71 knockout mice display reduced exploratory and novelty seeking 

behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and 

memory acquisition [152]. Together, the studies described above highlight the different roles that 

distinct dystrophin isoforms play at central synapses. 

 

2.3 Drosophila Dystrophin Modulates Neurotransmitter Release of Cholinergic Central 

Synapses 

Similarly to its mammalian counterpart, the Drosophila dystrophin gene also encodes several short 

isoforms. One of these, Dp186, is expressed predominantly, if not exclusively, in the CNS [32]. 

Dp186 has been localized, in particular, to cholinergic synapses between interneurons and 

motoneurons. Whole-cell voltage clamp recordings from identified motoneurons, in the larval CNS, 

show that excitatory synaptic currents are significantly increased in the absence of Dp186 compared 

to those measured in controls [153]. Recordings were also performed in the presence of 

tetrodotoxin, which blocks evoked transmitter release, allowing measurement of only spontaneous 

miniature synaptic currents. The amplitudes of these miniature synaptic currents were not altered in 
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the mutants, indicating that the postsynaptic AChR field was not affected by the absence of Dp186. 

However, although amplitude was normal, the frequency of the miniature synaptic currents was 

significantly increased in the mutants compared to wild types. Together, these data indicate that 

lack of Dp186 in the CNS results in an increased probability of presynaptic (ACh) neurotransmitter 

release. This mutant phenotype could be fully rescued only when a wild-type Dp186 transgene was 

expressed postsynaptically, but not presynaptically, demonstrating that Dp186 exerts a role 

consistent with retrograde signaling at interneuronal CNS synapses. Based on similarity of effect, 

this role likely is similar to that of the large Drosophila DLP2 isoform at the NMJ [90]. 

3 Roles of the DGC in the Retina 

One of the earliest described nervous system-related clinical features of DMD patients affects the 

visual system [154, 155]. While DMD patients have generally normal vision, they do exhibit altered 

responses to certain light/dark stimuli as measured by electroretinography. Here, recent findings are 

reviewed that shed light onto DGC function at retinal synapses gained from the use of 

electrophysiological approaches in animal models. 

 

3.1 The DGC Is Required for Correct Electrical Activity and Formation of the Mammalian 

Retina 

Several dystrophin isoforms are differentially expressed in the murine retina [6, 156]. Based on a 

number of studies, in which different dystrophin isoforms have been localized to specific regions 

within the retina, it is proposed that each isoform likely contributes a unique function [157]. For 

example, Dp427 and Dp260 are located in the outer plexiform layer (OPL), where photoreceptors 

form synapses with horizontal and bipolar cells. Dp71 is detected in the inner limiting membrane, 

the Müller glia, and the perivascular astrocytes, while Dp140 is also present at perivascular 

astrocytes [158, 159]. A special type of synapse at the OPL, called the ribbon synapse, connects 

axons of photoreceptor cells to bipolar cell dendrites. Visual information is transmitted from the 

photoreceptor cell to the ganglia cell via the bipolar cells. At the ribbon synapse, Dp260, Dp140, 

and Dp71, as well as β-dystroglycan, are expressed presynaptically, in contrast to the postsynaptic 

expression of DGC members in other parts of the brain and NMJ [51, 160–163]. 

As indicated above, general eye exams of DMD patients indicate normal visual abilities and no 

gross abnormalities nor evidence of night blindness. However, DMD patients present with abnormal 

electroretinograms (ERG; [155]; Textbox 3 in “Appendix”). When measured in a dark-adapted 

(scotopic) retina, the ERG shows a reduced amplitude of the b-wave response in the majority of 

DMD patients. Further analyses of these ERG waveforms suggest that aberrant dystrophin 

expression impairs synaptic transmission specifically between the rod and cone photoreceptor cells 

and their postsynaptic targets, the bipolar ON cells in the OPL [164]. Consistent with these findings, 

dystrophin expression is observed at these synapses. 

Although mdx mice, lacking Dp427, display normal ERG [154], mdx
CV3

 mice, lacking all 

dystrophin isoforms, show a decreased b-wave response [165]. Mice that only lack Dp71 [166] have 

normal ERGs with no significant changes of the b-wave amplitude and kinetics [167]. Based on 

these results and the above-mentioned expression analyses, the Dp260 isoform is thought to be the 

isoform likely required for proper b-wave formation and timing. Collaborating evidence for this 

hypothesis has been obtained from clinical studies of DMD patients. A subset of DMD patients with 

deletions downstream of exon 30, affecting the splicing and transcription of Dp260, exhibit a red–
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green color vision defect, while DMD patients, who have dystrophin mutations upstream of exon 30 

(solely affecting Dp427) have seemingly normal color vision. Thus, this color vision defect may be 

caused by a loss of the dystrophin isoform Dp260 [159, 168]. 

Little is known about the involvement of other DGC members in retinal function. While β-

dystrobrevin colocalizes with dystrophin and β-dystroglycan at photoreceptor cell termini in the 

OPL, dystrobrevin null mutant mice display normal ERGs [134]. The localization of dystrophin in 

the retina is, moreover, not dependent on dystrobrevin expression, unlike their interdependence at 

inhibitory cellebellar Purkinje synapses. Interestingly, a novel dystroglycan ligand, called 

pikachurin, has been recently identified which presynaptically colocalizes with dystrophin and 

dystroglycan at the photoreceptor ribbon synapse [169]. Pikachurin null mice have improper 

apposition of bipolar dendritic tips to the photoreceptor ribbon synapse, leading to prolonged retinal 

synaptic transmission from photoreceptors to bipolars. Pikachurin is therefore important for both the 

development and function of the ribbon synapse; synapses are formed in Pikachurin null mutants, 

but the subsequent invagination of the photoreceptor axon surrounding the dendrites of bipolar cells 

is abnormal, affecting the physiology of visual perception [169]. These animal studies might further 

our understanding of the exact nature of the defects in vision of DMD patients. 

 

3.2 Drosophila DGC Is Required for Axon Guidance of Photoreceptor Neurons 

Studies of the Drosophila optic system recently demonstrated that dystroglycan and dystrophin are 

required during axon pathfinding of both photoreceptor neurons and their supporting glial cells 

present in the lamina plexus of the larval brain [21]. Lack of either dystroglycan or dystrophin 

results in similarly aberrant axon projection patterns: clumping photoreceptor axons at the lamina 

that are irregularly distributed at the termination zone of the lamina plexus. These abnormalities 

were also observed when expression of dystroglycan or different isoforms of dystrophin (all 

isoforms, DLP1-3, or the smaller isoforms only) were reduced by RNA interference either in the 

photoreceptor axons or the glia, suggesting that both cell types are required for wild-type axon 

patterning. The observed axon pathfinding phenotypes are reminiscent of phenotypes observed in 

flies deficient for genes encoding the adaptor protein dock [170] and the insulin receptor (InR) 

[171]. Genetic interaction studies showed that dystroglycan indeed strongly interacts with dock and 

InR, whereas dystrophin does not. From these observations, a model was proposed in which 

dystroglycan may selectively interact with either dystrophin or InR and dock, thereby modulating 

the cytoskeletal rearrangements in the photoreceptor neurons required for appropriate axonal 

projections in the retina [21]. 

 

Concluding Remarks and Future Perspectives 

Major advances have been made in the clinical assessment of the cognitive and neuropsychiatric 

impairments of DMD patients and toward the development of animal models to investigate DGC 

function. However, despite these advances, our understanding of the roles of the complex remains 

incomplete. A primary challenge ahead for elucidating DGC function in the nervous system is to 

comprehend how the absence of the complex leads to the observed defects in synaptic plasticity, 

behavioral abnormalities, and visual impairments. At the mechanistic level, it is clear that both at 

the NMJ and at central synapses, the DGC is required for clustering of major neurotransmitter 

receptors, such as the AChRs at the NMJ and inhibitory GABAA receptor clusters in the 

http://www.ncbi.nlm.nih.gov/pubmed/10480348
http://www.ncbi.nlm.nih.gov/pubmed/17503325
http://www.ncbi.nlm.nih.gov/pubmed/16540561
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http://www.ncbi.nlm.nih.gov/pubmed/17215867
http://www.ncbi.nlm.nih.gov/pubmed/8646773
http://www.ncbi.nlm.nih.gov/pubmed/12702880
http://www.ncbi.nlm.nih.gov/pubmed/17215867
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hippocampus, the cerebellum, and the amygdala. For a number of these synapses, it has been 

established that the absence of dystrophin results in aberrant synapse maturation and 

neurotransmission. Interestingly, DGC/UGC function is apparently not neurotransmitter specific, 

since the complex is required for appropriate regulation of glutamatergic (Drosophila NMJ and 

mammalian brain), GABAergic (mammalian brain), and cholinergic (the mammalian and C. 

elegans NMJ and the Drosophila central synapse) transmission. Furthermore, it functions at 

inhibitory (GABAergic) and excitatory (glutamatergic and cholinergic) synapses. 

The definition of the precise synaptic roles of the DGC is complicated by the findings that the 

effects of DGC deficiency clearly differ depending on the particular synapse studied. In the DGC 

mutant hippocampus, no gross structural changes in neuronal fate or axon outgrowth were observed. 

Clear abnormalities in synaptic plasticity and LTP, correlating with alterations in receptor clustering 

and enhanced synaptic transmission, were, however, evident. In mdx cerebellar Purkinje cells, a 

reduction in the number of postsynaptically localized GABAA clusters has been associated with a 

decreased amplitude and frequency of spontaneous inhibitory postsynaptic currents and reduction in 

LTD. These defects may underlie the cognitive impairments these mice exhibit in learning and 

memory behavioral paradigms. In the coming years, it will hopefully be feasible to directly 

correlate the mechanistic defects in mdx mice GABAA receptor function in the hippocampus and 

the cerebellum with the observed abnormalities in synaptic plasticity and behavior. 

While studies on DGC function in the brain and at the NMJ point toward a mainly postsynaptic 

role, the complex accumulates at the presynaptic side of the ribbon synapse in the visual system. 

Here, it is required not only for correct (light-induced) synaptic transmission but also for the 

structural development of this synapse. In contrast, a role in the stabilization and maturation of the 

postsynaptically localized neurotransmitter receptor clusters and synaptic folds is evident at the 

mammalian NMJ, but early morphological development of the NMJ seems to be unaffected in DGC 

mutants. 

Invertebrate organisms, particularly the worm and the fruit fly, have also proven useful for 

investigating DGC function at the synapse. The fruit fly larval NMJ and central synapses are highly 

amenable to electrophysiological analysis and specific roles for individual dystrophin isoforms have 

been identified. Thus, it has been shown that the large dystrophin isoform DLP2 at the 

glutamatergic NMJ and the smaller Dp186 isoform at cholinergic central synapses, both 

postsynaptically localized, are required for wild-type levels of presynaptic neurotransmitter release. 

At the NMJ, at least, this function likely requires BMP signal transduction. Future studies using 

these invertebrate models, where electrophysiology can be combined with genetic manipulation of 

single identified cells, should continue to reveal the molecules with which dystrophin interacts at 

the synapse. Invertebrate animals might also be employed for the large scale screening of 

potentially therapeutically useful compounds that target DGC function. 

Mammalian dystrophin isoforms may also play roles in the regulation of presynaptic 

neurotransmitter release as has been observed in Drosophila. First, the lack of the Dp71 isoform in 

the mouse hippocampus leads to alterations in PPF suggesting an increase in presynaptic glutamate 

release. Secondly, increased mIPSC frequency and reduced PPF of the eIPSCs are observed in the 

Dp427-deficient hippocampus also indicating increased probability of release. However, the 

mechanisms underlying these effects on transmitter release remain unknown. 

While Drosophila models of dystrophin dysfunction are being increasingly employed, it is currently 

difficult to precisely determine which of the various fly and mammalian isoforms are functional 
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orthologs. This is for two main reasons: (1) the primary amino acid sequences of the isoform-

specific amino-termini differ significantly between Drosophila and mammals (Textbox 1 in 

“Appendix”) and there are no conserved motifs evident and (b) mutants of many of the small 

isoforms in both species have yet to be examined; thus, their functions are unknown. It remains 

possible, however, that apparently divergent dystrophin amino-termini play analogous roles in 

different species. Even if certain aspects of dystrophin function prove, however, to be different 

between species, studying its roles at various types of synapses in multiple species should help to 

reveal the biological strategies that have evolved to wire a complex nervous system. This 

information will aid in the development of novel therapeutic interventions for neurological 

disorders. 
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Appendix 

Textbox 1: Dystrophin Isoforms in Mammals, Drosophila, and Worms and Their Mutants  

Mammals  

The human/mouse DMD gene has seven promoters driving the expression of mRNAs encoding the 

isoforms, Dp427 (B), Dp427 (M), Dp427 (P), Dp260, Dp140, Dp116, and Dp71. Three promoters 

drive expression of the brain- (B), muscle- (M), and Purkinje cell (P)-specific large Dp427 isoforms 

which differ in their 5′ untranslated and first codon exons which are spliced to a common exon 2. 

All three large isoforms bear an actin-binding domain, four hinge domains interrupted by 24 

spectrin-like repeats that form triple-helical coiled-coils (CC) and a C-terminal region that contains 

domains involved in protein–protein interactions, including a WW domain, a ZZ domain within a 

cysteine-rich region and a CC domain near the carboxy-terminus. The smaller isoforms have the 

common carboxy-terminal region, no apparent actin-binding domains, and a variable number of 

spectrin-like repeats (Dp260 has 15, Dp140 has 5, Dp116 has 2, and Dp71 has none). Unlike 

Drosophila and C. elegans, mammals also have an utrophin gene whose encoded protein is highly 

similar to dystrophin with respect to sequence and domain structure, particularly in the carboxy-

terminal domain. 

Drosophila  

Drosophila’s dystrophin gene contains six identified promoters driving the expression of the 

following isoforms: DLP1, DLP2, DLP3, Dp186, Dp205, and Dp117. Similar to the large 

mammalian isoforms, Drosophila DLP1, 2, 3 differ only in their untranslated and first coding 

exons, but all contain the other conserved protein domain domains described for the mammalian 

Dp427 isoforms, including 22 spectrin-like repeats [101]. The smaller fly isoforms do not contain 

conserved actin-binding domains, but Dp186, Dp205, and Dp117 contain unique amino-terminal 

domains conserved with other Drosophila species and the carboxy-terminal domains including 

WW, ZZ, and CC domains that are present in the mammalian dystrophin protein isoforms. Dp186, 

Dp205, and Dp117 contain 4, 2 and no spectrin-like repeats, respectively [101]. 

C. elegans  

C. elegans’ dystrophin gene, dys1, encodes a single large isoform which bears an actin-binding 

domain, seven spectrin-like repeats, and the conserved carboxy-terminal domain containing the 

WW, ZZ, and CC domains. 

Dystrophin Isoforms Affected in Human DMD Patients and Model Organisms  

Approximately two thirds of all DMD patients have large deletions in the dystrophin gene, mostly 

located at two hot spots that result in the truncation of all protein isoforms and the loss of their 

common C-terminal domains. The remainder of DMD patients has small deletions or point 

mutations that introduce stop codons and other mutations that lead to (partial or full) loss of 

dystrophin protein isoform production or decreased protein stability. Mouse studies discussed in this 

review employ three different dystrophin-deficient mouse strains, mdx (lacking only the large 

Dp427 isoforms), mdx
3Cv

 (lacking all isoforms), and Dp71-specific knockout mice. An additional 

mouse model, mdx
52

, lacking the Dp427, Dp260, and Dp140 isoforms has been generated, but no 

nervous system phenotypes have been reported. The various mammalian models of DMD have been 

recently reviewed [172]. 

http://www.ncbi.nlm.nih.gov/pubmed/16198353
http://www.ncbi.nlm.nih.gov/pubmed/16198353
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The Drosophila mutants described here include mutants lacking only the large DLP2 or CNS-

specific Dp186 isoforms or with Dp117 or all dystrophin isoform expression levels reduced by 

transgenic RNA interference. The C. elegans dys1 mutant lacks the sole dystrophin isoform. 

Dystrophin isoform expression domains are presented in Table 2. 

Textbox 2: Electrophysiological Terminology  

EPSP is a transient depolarization of the postsynaptic membrane caused by the flow of positively 

charged ions (usually Na
+
) into the postsynaptic cell as a result of the opening of ligand-gated 

channels. Depolarization increases the chance of the occurrence of an action potential as the 

membrane is pushed toward a threshold for the opening of voltage-gated cation channels (Na
+
 

and/or Ca
2+

). In contrast, IPSPs (or IPSCs) are mediated by ligand-gated anion channels (Cl
−
) and 

their activation hyperpolarizes the membrane, decreasing the chance of firing action potentials. The 

spontaneous release of single neurotransmitter quanta from the presynaptic excitatory neuron 

generates mEPSPs, while the mIPSPs (or mIPSCs) are generated by the release of single quanta at 

inhibitory synapses [173]. 

PPF can be described as a short-term form of synaptic plasticity. PPF is the short-lasting (<1 s) 

increase in postsynaptic potential evoked by a second impulse. It results in an increase in the 

probability of transmitter release by residual Ca
2+

 only when the probability of synaptic vesicle 

release is low [174]. 

Another physiological feature in the hippocampus is LTP, first described by Bliss and Lomo [175]. 

LTP has been defined as a long-lasting increase in synaptic efficacy, meaning that a presynaptic 

neuron gains an increased ability to fire an action potential as a result of brief high-frequency 

stimulation. LTP can be induced in three major interconnected synaptic circuits of the hippocampus 

from the dentate gyrus via the CA3 to the CA1 pyramidal neurons. LTP is measured as the 

percentage increase in the slope of the EPSP relative to the baseline EPSP slope before high-

frequency stimulation. LTD is the opposite process, a decrease in neuronal synapse efficacy which 

can be long lasting, from an hour to days. It is thought to result from changes in postsynaptic 

receptor density, although changes in presynaptic release may also play a role. LTD is involved in 

learning and memory processing mediated by the hippocampus and may be important for the 

clearing of old memory traces [176]. In the cerebellum, LTD has been hypothesized to be important 

for motor learning. The changes in synaptic strength may be either transient (short term) or 

persistent (long term). STP refers to synaptic enhancement that can be induced rapidly but 

maintained only for up to 20 min [177], while STD results from an activity-dependent reduction in 

neurotransmitter release [178]. 

Textbox 3: Electroretinography  

Electroretinography is used to measure the activity of groups of retinal neurons in response to light 

stimulation, including the photoreceptors (rods and cones) and the ganglion cells. Essentially, the 

technique records the alterations in the extracellular ion concentration surrounding neurons that 

changes during action potential firing. If the ERG is performed on a dark-adapted eye (scotopic), it 

reflects the rod system, and the ERG performed on a light-adapted eye (photopic) shows the 

response for the cone system. There are two ERG waves: a-waves which are initial negative waves, 

followed by positive b-waves. The a-wave and b-wave are responsible for a hyperpolarization of 

rod cells and the summation of the depolarization of ON-bipolar cells, respectively. There are two 

types of bipolar cells, ON (depolarizing)-bipolar cells which activate the ganglion cells in response 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840664/table/Tab2/
http://www.ncbi.nlm.nih.gov/pubmed/9276176
http://www.ncbi.nlm.nih.gov/pubmed/11826273
http://www.ncbi.nlm.nih.gov/pubmed/4727084
http://www.ncbi.nlm.nih.gov/pubmed/8833450
http://www.ncbi.nlm.nih.gov/pubmed/10805656
http://www.ncbi.nlm.nih.gov/pubmed/15845998
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to an increased brightness, or OFF (hyperpolarizing)-bipolar cells that activate after decreased 

brightness [179]. 

http://www.ncbi.nlm.nih.gov/pubmed/3748169
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Chapter 1 (Part 2): General Introduction to the use of Drosophila  

 

1. Drosophila melanogaster as an animal model   

Drosophila, often called fruit flies, are frequently employed as an animal model for studying 

numerous human disease genes for a number of reasons, chief among them, their short life cycle 

(Fig.1), the availability of powerful genetic tools such as UAS-GAL4 system and their relatively 

simple body plan (reviewed in [1]). Moreover, the frequently similar basic cellular defects observed 

in diseased humans and flies mutant for conserved disease genes make Drosophila an attractive 

model for further studies on clarifying the cellular and molecular roles of these genes. 

Approximately 80 % of human disease genes can be identified in highly conserved form in the fruit 

fly. Unlike mammals, there are generally fewer likely redundant gene family members encoded in 

the fly genome; therefore, it is often less complicated to explore the function of a gene. 

 

 
Figure1. The life cycle of Drosophila usually takes around 15 days at 25°c. The embryo first transforms into larvae in about 24 hours. The larval 

form has three phases (first instar, second and third instars larva) before it turn to pre-pupa, pupa and finally ecloses as an adult fly. This picture was 

downloaded from http://www.hoxfulmonsters.com/2008/05/drosophila 

 

2. Formation of Drosophila motoneuronal synapses 

The Drosophila NMJ is a glutamatergic synapse as are vertebrate central synapses. Glutamate 

receptors at the Drosophila NMJ are composed of five different subunits; GluRIIA, GluRIIB, 

GluRIID, GluRIIE and GluRIII (GluRIIC). The glutamate receptor is formed by four essential 

glutamate receptor subunits: GluRIIC, GluRIID, and GluRIIE together with either GluRIIA or 

GluRIIB [2]. The Drosophila NMJ forms boutons in the embryo and grows by sprouting new 

boutons throughout larval life. In Drosophila embryo and larva, each hemisegment contains a 
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stereotyped pattern of 30 muscles [3]. These muscles are innervated by approximately 40 motor 

axons that make specific connections with particular muscles. Drosophila motoneurons are 

unipolar. Only one primary neurite exits the cell body, which in the neuropile divides into a 

dendritic tree making contact with its innervating interneurons and one axon that travels out of the 

CNS into the periphery to find its targets. Its cell bodies are located in the CNS cortex in the ventral 

ganglion [4]. Motor axons project into the muscle field via two main nerves, the intersegmental 

(ISN) and the segmental nerve (SN). The transverse nerve (TN), a minor nerve, has few motor 

axons and runs along the segment border to innervate the external set of muscles. One of the two 

motoneurons exiting in the TN contacts the lateral bipolar neuron (LBD) which innervates the 

dorsal muscle (Fig.2). 

 

 

 

Figure2. Simplified scheme of wild-type motoneuron pattern and their muscle targets in the Drosophila embryo. Three 

main motor axons are the intersegmental (ISN), the segmental nerve (SN in red) and the transverse nerve (TN). TN 

contacts lateral bipolar neuron (LBD, in black line) which innervates the dorsal muscle. The ventral nerve cord is to the 

left, the dorsal part is to the right. This picture was taken from the website: 

http://dev.biologists.org/content/131/21/5429/F5.large.jpg   

 

The muscle of third instar larvae (Fig 3) are innervated by synaptic terminals of two major types; 

type I (large boutons, 2-5 μm diameter) and type II (smaller boutons, 1μm diameter). Muscle 4 and 

muscle 6/7 (Fig. 3B) have only type I terminals. Boutons containing active zones and T-bars are 

observed in the late stage 17 embryo, just prior to larval hatching. The growth cone contacts its 

target muscles, transforms into an initial protosynapse, and subsequently the synapse matures into 

distinct boutons with active zones and T-bars (Fig. 3C). After synapse formation, the hemophilic 

cell adhesion molecule Fasciclin II (FasII) becomes localized both pre- and postsynaptically where 

it controls synapse stabilization and synaptic growth. Various FasII mutant alleles display either an 

increase or decrease in bouton sprouting depending upon the level of FasII [5]. 

http://dev.biologists.org/content/131/21/5429/F5.large.jpg
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Figure 3. The Drosophila NMJ. 

(A) The third instar larva body 

wall (anterior to the left, dorsal up) 

was dissected and fixed with 

Bouin’s fixation for 15 min. 

Individual muscles and synapses 

can be easily identified. The third 

abdominal segment of muscle is 

shown as A2-A5. Scale bar = 500 

µm (B) High magnification view 

of the synapse on muscles six and 

seven [frame in (A)]. The synaptic 

terminals labeled with anti-HRP-

FITC. Scale bar = 50 µm. (C) 

Transmission electron micrograph 

of a type Ib synaptic bouton 

[frame in (B)]. Note that the 

electron dense active zones, some 

of them contain T-bars 

(arrowheads). Mitochondria (m) 

and synaptic vesicles are clearly 

visible (s). Note that the presence 

of subsynaptic reticulum (SSR) 

membrane folds (*) surrounding 

the bouton. Scale bar = 1 µm. 

 

3. Wing vein formation  

The Drosophila wing is characterized by a stereotypical pattern of five longitudinal veins (L1–L5) 

and two crossveins, the anterior crossvein (ACV) and the posterior crossvein (PCV) (Fig. 4). The 

development of veins in the wing imaginal discs has been well characterized (reviewed in [6-8]). 

Four different signaling pathways have been identified acting during wing morphogenesis: the 

Epidermal Growth Factor Receptor (EGFR) pathway, the Bone Morphogenetic Protein (BMP) 

pathway, the Notch pathway, and a pathway involving Rho-GTPases [9]. The Dystrophin DLP2 

null mutant (Dys 
E6

) exhibits the crossvein defect. In this mutant, the early BMP signaling that 

initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to 

the longitudinal veins. This is resulted in the incomplete production of a crossvein fragment in the 

intervein between the two longitudinal veins, L4 and L5 [10]. We used the visual wing vein 

phenotypes to find Dystrophin interactors that either increase or decrease the wing vein phenotype 

[11].   
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Figure4. The wild type wing has 5 longitudinal veins (L1–L5). The anterior cross vein (ACV) forms between L3 and 

L4 and the posterior cross vein (PCV) forms between L4 and L5. Scale bar = 200 µm. 

 

4. The Olfactory system of Drosophila  

For most animals, included Drosophila, smell is a primal sense that affords the ability to detect 

food, predators and mates. The olfactory system of Drosophila is an attractive model system to 

understand mechanism underlying synaptic transmission for many reasons. First, the fly’s olfactory 

system is organizationally similar to that of the human but much simpler (Fig. 5). Second, the 

olfactory sensory genes encoding the odorant receptors have been completely mapped [13-15]. 

Third, morphological, functional and behavioral studies can be readily performed using the fly’s 

olfactory system. 

 

          

 

Figure5. Drosophila head showing the primary scent organ, the antennae (left) (from http://www.rochester.edu/ 

news/photos/hi_res/Jaenike-Wolbachia/origs/Drosophila_head1.jpg). A cartoon of Drosophila olfactory system is 

shown on the right panel. The olfactory receptor neurons (ORN) are located in sensillae on the antennae. After the 

odorant binds to the ORNs, the signal will be transfer red via the ORN nerve to the antennal lobe (AL). A= antenna, E= 

complex eye, AL= antennal lobe, OL=optic lobe, P= proboscis, PN= projection neuron. 
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Figure6. Comparison of the olfactory systems of mammals and insects. This picture was taken from Vosshall, L. 

and Stocker, R. [16]. ORNs are activated by specific odor and transmit the information through the antennal lobes to the 

higher brain centra. 

 

Drosophila has two olfactory organs, the antenna and maxillary palp, which contain~1200 and 120 

olfactory receptor neurons (ORNs), respectively [17]. ORNs are compartmentalized into sensillae, 

which can be subdivided into three major morphological types: basiconic, coeloconic and trichoid. 

These ORNs can be subdivided into distinct functional classes on the basis of their odor response 

spectra [18, 19]. Odor information is first received by olfactory receptor neurons (ORNs), located in 

the sensillae of the antenna (Fig. 6). ORNs respond to odors with a sequence of action potentials 

that reflects the quality, intensity and temporal structure of the odor stimulus. The generation of 

action potentials by ORNs leads to the activation of second-order neurons in the brain, called 

glomeruli or antennal lobes. The axons of ORNs expressing the same gene converge onto one or a 

few glomeruli. Recent studies have essentially completed the OR-to-glomerulus map [20, 21]. The 

action potentials from the glomeruli are transmitted to projection neurons and then onto higher brain 

centra, the mushroom body and the lateral horn.  

 

5. Electrophysiology in Drosophila  

5.1. Electrophysiology at the NMJ  

The Drosophila NMJ has been extensively used as a model to study the molecular mechanisms 

underlying synaptic transmission. The Drosophila NMJ is relatively simple in structure. The 

glutamate receptors are located in the postsynaptic membrane called the subsynaptic reticulum 

(SSR) and opposite the vesicle release sites which are known as active zones. When glutamate 

binds its receptor, the receptors allow Ca
2+

 to enter the muscle leading to muscle depolarization. 

The absence of an action potential in the Drosophila muscle is one of the reasons why it is a 

desirable model for NMJ study. In mice, the action potential has to be prevented by blocking Na+ 

channels in order to be able to measure the endplate potential, but in Drosophila, the muscle 
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depolarization can be directly measured. Furthermore, the Drosophila third instar larval NMJ can be 

recorded at room temperature and its electrical properties can be maintained for many hours.  

  

Figure 7. The equipment used in performing electrophysiology measurements. The stimulation electrode is 

connected to pulse generator and used to stimulate the motoneuron. Muscle depolarization is monitored by a recording 

electrode. The signal is sent to an amplifier to make the signal visible on the oscilloscope. The digitizer also receives the 

signal and converts it from an analog signal to a digital signal. The computer records the signal for subsequent analysis.  

 

Electrophysiological recordings are often used to study the function of the Drosophila NMJ. In 

order to record from the muscle, a glass electrode filled with 3M KCl is inserted in the abdominal 

muscle cell (segments A2-A4) of muscle 6. The motoneuron nerve is cut at the distal end of 

neuropile and taken up by a suction electrode which connected to a pulse generator (Fig. 7). Two 

types of signals can be recorded from a muscle in this way; the first is those corresponding to 

spontaneous muscle depolarizations and called miniature excitatory junction potentials (mEJPs). 

They are thought to represent muscle depolarization from a single vesicle release or quanta from the 

motoneuron, therefore are also called the quantal size. The second type of signal that can be 

recorded is the evoked response muscle depolarization also known as the excitatory junction 

potentials (EJPs). These depolarizations occur when the motoneuron is triggered by stimulus. 

Therefore, it represents the response to the contents of many vesicles released from the motoneuron. 

These two measurements can be used to calculate the quantal content, which is the amount of 

vesicles released upon stimulation of the motoneuron. The quantal content (QC) is calculated by 

dividing the mean amplitude of the EJPs by the mean amplitude of the mEJPs (amount of vesicles 

released = amount of depolarization by multiple vesicles/amount of depolarization by one vesicle). 

To calculate the QC at each NMJ the following formulas are used: 

First the amplitudes are adjusted to a standard resting potential of -60 (Vstd) in Drosophila 

               mEJPn =[ mEJPm * Vstd] / Vm 

               mEJPn =  normalized amplitude  

               mEJPm = the amplitude as measured 

          Vstd = standard resting potential (= -60) 

          Vm = the resting membrane potential as measured  
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Since the measurements are done in a current clamp mode, meaning that the amount of current 

flowing through the recording electrode is held constant, we have to add a correction to the 

calculation to compensate for non-linear summation. This is based on the study of McLachlan and 

Martin, 1981 that the voltage – current relation is not linear for the junction potential above 10 mV 

[22-23]. The rate of increase of junction potential become progressively smaller as the current 

increased. In order to correct for this underestimation of the total amount of vesicles released, the 

following formula was generated for the mouse NMJ and adapted by B.A. Stewart (personal 

communication) for the Drosophila NMJ.  

Formula: EJPc = EJPn / [1-f*(EJPn / Vd)] 

                        = EJPn / [1- 0.4 *(EJPn / 50)] 

EJPc = the corrected EJP amplitude for nonlinear summation  

EJPn = the normalized EJP amplitude as calculated by EJPn = [ EJPm * Vstd] / Vm 

EJPm = the average EJP as measured 

Vstd = standard resting potential (= -60) 

Vd = the driving force (difference between resting membrane potential and reversal potential; Vr – 

Vstd = -10 – (-60) = 50) 

Vm = the resting membrane potential as measured  

Vr = the reversal potential = - 10 mV [24] 

f = the membrane capacitance factor (dependent on the duration of transmitter action relative to the 

membrane time constant ([22-23] and adapted by personal communication with B.A. Stewart). This 

number is 0.4 in Drosophila.   

 

5.2 Electrophysiological recordings in the Drosophila antennae Electroantennogram (EAG)  

 

 

Figure 8. Diagram showing the general settings of EAG measurements. The recording electrode was inserted at the 

proximal part of the antenna and connected to the amplifier. Another electrode, the reference electrode, was placed at 
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the eye and was grounded to the table. The stimulation flow controller is connected to the glass tube through the water 

flask for giving continuous flow and is controlled by a foot paddle. Different odorants were used to stimulate the 

olfactory receptor neurons in the antenna. The computer records the signal for subsequent analyses.  

 

We performed this technique for studying the electrical function of the overall olfactory receptor 

neuron field present in the Drosophila antennae. A glass electrode, filled with a physiologic buffer 

solution in inserted in the eyes to serve as a reference electrode (Fig. 8). Extracellular recording 

(recording electrode) at the proximal funiculus has been used to describe the electrical responses of 

the whole Drosophila antenna to different odorants. Qualitative differences in responses to various 

odorants and quantitative differences in amplitude of the EAG in response to different 

concentrations have been reported [25].
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Chapter 1 (Part 3): Outline of the thesis 

In this thesis, my findings on the roles of the DGC proteins in maintaining wild type synaptic 

function at the neuromuscular junction are presented. I reviewed the literature pertaining to general 

roles of the DGC in the muscle and discussed recent advances in understanding the DGC roles at 

various types of synapses in both vertebrate and invertebrate model systems (Chapter 1).  

Previously, our lab has shown that Dystrophin is required for appropriate retrograde control of 

neurotransmitter release. We set out to identify signaling molecules that interact with Dystrophin by 

using a wing vein genetic interaction screen and subsequently evaluated mutant NMJ physiology of 

candidate dystrophin interacting molecules. We demonstrated that Dystrophin interacts with the 

Rho-GAP Crossveinless-c in a pathway targeting the Rho GTPase, Cdc42, to regulate presynaptic 

neurotransmitter release (Chapter 2). 

To evaluate the role of another DGC member, Dystrobrevin, at the NMJ we first made a knock-out 

null allele of the Dystrobrevin gene by performing homologous recombination, a relatively new 

technique in Drosophila. I present our finding that Dystrobrevin is delocalized from the synapse in 

the Dystrophin mutant background and that this delocalization likely accounts for the Dystrophin 

mutant phenotype. Furthermore, I demonstrated that Dystrobrevin acts through the same Rho-GAP 

and Rho-GTPase as Dystrophin, thus firmly placing Dystrobrevin in this pathway. Finally, I 

demonstrate that the Ca
2+

/calmodulin-dependent kinase II (CaMKII) is a likely postsynaptic target 

downstream of Cdc42 (Chapter 3.1).  

Our initial studies on Dystrobrevin indicated that it likely has additional role at the presynaptic side. 

Indeed, we find that the regulatory subunits of Protein Kinase-A (PKA-R1/R2), the highly 

conserved mammalian orthologs of which were recently shown to bind Dystrobrevin, also interact 

genetically and physically with Dystrobrevin in Drosophila (Chapter 3.2). Further experiments 

exploring the functions of Dystroglycan, yet another DGC member, at the synapse are also 

presented (Chapter 4).  

Chapters 2 to 4 are focused on the functional roles of the DGC at a peripheral synapse, the NMJ. 

However, possible roles for the DGC at central synapses have been inferred from studies in 

mammals and clinical evaluations of Duchenne patients who frequently present with mental 

retardation which is not correlated with decreased muscle strength. Previously, we identified roles 

for the Drosophila Dystrophin brain-specific isoform, Dp186, in regulating homeostasis at an 

identified interneuronal synapse. Here, I present my findings, employing both electrophysiological 

and behavioral experiments, describing a role for Dp186 in the olfactory system neural circuit. Its 

absence leads to decreased output by primary olfactory receptor neurons and also apparently 

decreases the efficacy of downstream synaptic transmission (Chapter 5).   

Finally in the last chapter (Chapter 6), my studies are summarized and integrated to generate a 

model for DGC function at the synapse. I also discuss possible future extensions to the studies 

presented in this thesis.  
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