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LIST OF ABBREVIATIONS 

 

BSA   bovine serum albumin 

cw  continuous wave 

Cc, CcP cytochrome c, cytochrome c peroxidase 

DEER  double electron-electron resonance 

DTT  dithiothreitol 

EPR   electron paramagnetic resonance 

fdx  flavodoxin 

GuHCl  guanidine hydrochloride 

id/od  inner diameter/outer diameter 

KPPi  potassium pyrophosphate 

MTSL S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)- 

methyl methanesulfonothioate  

NMR  nuclear magnetic resonance 

PCA  principal component analysis 

PDB   Protein Data Bank 

SL  spin label 

TOAC  alpha-amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-  

amino-4-carboxylic acid 

 

A , a  hyperfine tensor, hyperfine-coupling constant 

B , B  magnetic-field vector, magnetic-field magnitude 

1B   microwave-magnetic-field magnitude 

E, E    energy, difference in energy 

    viscosity 

g , g  g tensor, g value 
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H   Hamiltonian 

h  Planck’s constant 

I   nuclear-spin angular-momentum operator 

I  nuclear-spin quantum number  

J  exchange coupling 

Bk    Boltzmann constant 

DK   dissociation constant 

B    Bohr magneton 

    frequency 

S  electron-spin-angular-momentum operator 

S   electron-spin quantum number 

1T , 
2T   longitudinal relaxation time, transverse relaxation time 

r   rotation-correlation time 

Y   peak-to-peak amplitude 

dd   dipole-dipole coupling 

 

ala  A alanine 

arg  R arginine  

cys  C cysteine 

glu  E  glutamic acid 

gly  G glycine 

his H histidine 

ile  I isoleucine 

lys  K lysine 

leu  L leucine 

tyr  Y tyrosine 

trp  W tryptophan 
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1 
INTRODUCTION 

 

 

In 2014, the Protein Data Bank (PDB) reached the milestone of containing 

100,000 biomolecular structures in its data base
[1]

. The fundament for this 

affluence has been laid in the early 1950s, when the first structures of the α-

helix and β-sheet
[2]

, the coiled-coil motif
[3]

, and DNA
[4;5]

 were reported. The 

large majority of the structures in the PDB were elucidated with X-ray 

crystallography, which even today remains the most common tool to determine 

biomolecular structure. This technique allows biomolecules to be studied at 

atomic detail, which has immensely enhanced our understanding of molecular 

biology.  

X-ray crystallography provides only a static picture of the 

biomolecules, whose nature is essentially dynamic, and whose flexibility is 

closely related to their biological function. Think about the dynamics involved 

in processes such as protein folding, enzymatic reactions, or interacting 

proteins that facilitate membrane fusion and electron transfer. Methods other 

than X-ray crystallography are needed to study the dynamics of these 

biomolecules, to obtain information that goes beyond the static picture. 

Electron paramagnetic resonance (EPR) spectroscopy
[6]

 is well suited 

for providing such information and is sufficiently sensitive to characterize large 

biomolecular complexes. Distances of a few nanometres, corresponding to the 
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typical size of biomacromolecules, are accessible and EPR is able to deal with 

complex structures and high molecular weights. Furthermore, the application 

does not require that the molecules of interest are crystallized, which for many 

biomolecules and complexes is not feasible.  

To use EPR, the biomolecule of interest must contain an unpaired 

electron – a requirement that is not met by all molecules. A paramagnetic 

centre, however, can be introduced by a nitroxide spin label. 

 

 

1.1  Spin labelling 

The spin-labelling technique
[7-9]

 allows a spin label to be introduced at a 

particular position in the biomolecule. Figure 1.1 shows the chemical structure 

of the two spin labels used in this work: S-(1-oxyl-2,2,5,5-tetramethyl-2,5-

dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate (MTSL)
[10]

 and the 

alpha-amino acid 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic 

acid (TOAC)
[11]

. 

 

 
 

 

Figure 1.1 The chemical structures of the spin labels S-(1-

oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl 

methanesulfonothioate (MTSL), and alpha-amino acid 

2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic 

acid (TOAC). Both spin labels have an unpaired electron 

(indicated by a dot) located at the N–O bond. 
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Owing to its convenience and chemical stability, the MTSL label has become 

the most widely used spin label for characterizing nanosecond motions
[12]

, for 

determining distances
[13]

, and for mapping protein topology
[14]

. The five-

membered nitroxide ring is covalently coupled via the disulphide bond to a 

cysteine. A great advantage is gained when combined with mutagenesis. This 

allows a cysteine to be introduced at a selected position in a peptide or protein, 

thereby giving numerous possibilities to introduce the MTSL label into the 

biomolecule. This technique,  known as site-directed spin labelling (SDSL)
[15]

, 

has become a powerful tool for probing structure and dynamics of both water-

soluble and membrane proteins of arbitrary molecular weight
[14]

. The five 

bonds that connect the ring of MTSL to the protein backbone are somewhat of 

a disadvantage, because they introduce additional degrees of motional freedom. 

Consequently, translating interspin-distance measurements and spatial-

orientation information into structural constraints is challenging.  

The TOAC label is an unnatural amino acid, which can be incorporated 

into peptides during synthesis. The six-membered nitroxide ring is rigid and 

directly fused to the peptide backbone. Hence, the nanosecond motions 

detected with EPR can be directly related to the peptide mobility. Unlike 

MTSL, the TOAC label cannot be easily incorporated into selected sites of 

proteins. 

 

 

1.2 EPR principles 

The spin of an unpaired electron has two, degenerate states. When an external 

magnetic field B  is applied, the energy levels for these states are split due to 

the interaction of the spin with the field. This is called the Zeeman interaction, 

named after the Nobel laureate Pieter Zeeman. In 1896, he discovered the effect 



10 

 

of a strong magnetic field on the electromagnetic spectrum emitted by 

sodium
[16]

.  

We shall consider an electron spin, which interacts with a magnetic 

field, and has a hyperfine coupling ( hf ) with one neighbouring nuclear spin. 

Then, the spin Hamiltonian is 

 

 B g S S A IZ hf B      H = H H , (1.1) 

 

where B  is the Bohr magneton, g  is the g tensor, S  is the electron spin 

angular momentum operator, A  is the hyperfine tensor, and I  is the nuclear 

spin angular momentum operator. The tensors g  and A  are diagonal in the 

principal-axes system. The principal axes coincide with the molecular axes of 

the spin label as defined in Figure 1.2. For a nitroxide spin label, typical tensors 

are g  = ( , , )xx yy zzg g g  = (2.0088, 2.0061, 2.0027) and A  = ( , , )xx yy zzA A A  = 

(16, 15, 104) MHz. 

 

 

Figure 1.2 The molecular axes of 

the spin label MTSL. Only the 

ring structure including the 

nitroxide is shown. The x-axis 

coincides with the N─O bond, 

the z-axis is perpendicular to the 

ring. 

 

 

To elaborate on the spin Hamiltonian in equation 1.1, two time regimes are 

distinguished: fast and slow molecular tumbling. Molecular tumbling is 

quantified in terms of the rotation-correlation time r , which is the time a 
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molecule takes to rotate over one radian. Whether molecular tumbling is fast or 

slow depends on the value of 
r  with respect to the time scale of the EPR 

experiment.  

 

Solution spectra – fast molecular tumbling 

In the regime of fast tumbling, the molecular reorientations average out the 

anisotropic terms in equation 1.1. With 

 

 1
3
Tr gg    and       1

3
Tr Aa  , (1.2) 

 

the spin Hamiltonian has the isotropic form 

 

 
0 B S S IBg a   H . (1.3) 

 

Let the magnetic field have magnitude B  and be directed along the molecular 

z-axis defined by the g tensor. Omitting the non-secular terms, equation 1.3 

becomes 

 

 0 B z z zS aS Ig B H , (1.4) 

 

where zS  and zI  are the z-components of S  and I , respectively. The 

corresponding energy levels of the electron spin are 

 

 ( , )s i B s s iE m m m am mg B  , (1.5) 
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where sm  is the eigenvalue of 
zS  (for the electron spin: 1

2sm   ) and 
im  is 

the eigenvalue of Iz. A transition between the states occurs through absorption 

of microwaves whose frequency matches the energy difference. Satisfying the 

selection rules 1sm    and 0im  , the resonance condition is met when 

 

 0B ih g B am   , (1.6) 

 

where h  is Planck’s constant and   is the frequency of the microwaves. The 

nitroxide spin labels used in this work (Figure 1.1), have the electron spin 

coupled to the nuclear spin of 
14

N, for which I  = 1, with the corresponding 

eigenvalues 1,  0,  1im    . For the electron spin of a nitroxide, a schematic 

energy diagram is shown in Figure 1.3, with the allowed EPR transitions 

indicated by grey arrows.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic energy diagram of an electron spin 1
2( )S   

interacting with an external magnetic field and with a 
14

N nuclear 

spin ( 1)I  . The grey arrows indicate the transitions between the 

magnetic sublevels, which are induced by microwaves (hν), 

satisfying the selection rules 1sm    and 0im  .  
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Figure 1.4 An example of a three-line EPR spectrum, 

which is typical for a nitroxide measured in cw mode. 

The lines are assigned to 1,  0, 1im    , and are spaced 

by the isotropic hyperfine coupling constant a . 

 

  

 

Figure 1.4 shows an example of a three-line EPR spectrum, which is typical for 

a fast tumbling nitroxide measured in continuous wave (cw). The lines are 

designated with im   1 , 0 , and 1 , corresponding to the 
14

N nuclear spin 

states, which split the electron spin states into three sublevels. As indicated in 

Figure 1.4, the isotropic hyperfine coupling a  can be determined directly from 

the EPR spectrum. 

 

Solution spectra – slow molecular tumbling 

The spin Hamiltonian in equation 1.1 can be considered as the sum of two 

parts: the isotropic 0H  (given in equation 1.3) and a purely anisotropic 1H ,  

which can be written as 
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1 B g' S S A' IB     H . (1.7) 

 

Here, g'  and A'  are traceless tensors. In solution, the molecular motions make 

1H  a random function of time. In spite of the vanishing average value of 
1H , 

broadening of the lines is expected to occur. The variations in linewidths and 

field positions, observed in solution spectra, derive from the fluctuations of the 

anisotropic terms of 1H  by molecular motions.  

The decisive effect of slow molecular tumbling on solution spectra is 

illustrated in Figure 1.5. Here, twelve simulated spectra show the rich variety in 

width and position of lines one would observe for different values of 
r . The 

spectra were simulated at 9.8 GHz, 94 GHz, and 275 GHz, which are the 

experimental EPR frequencies available at Leiden Institute of Physics. In these 

simulations we assume r  to be isotropic, i.e., 
xx yy zz    . The isotropic r -

values were set to 0.2 ns, 1 ns, 3 ns, and 10 ns at each of the microwave 

frequencies. Such simulations show that the anisotropy of g  becomes more 

apparent towards higher frequencies. Figure 1.6 shows that simulations at 94 

GHz are also sensitive to the anisotropy in r .  

 Software programs are available that enable the quantification of r  by 

fitting and/or simulating the cw-EPR spectrum. For example, 

Multicomponent
[17]

 uses the stochastic Liouville approach based on the 

program of Freed et al.
[18]

 for nitroxides in the slow-motion regime. The 

program EasySpin
[19]

 is more elaborate than Multicomponent, for it calculates 

the spin Hamiltonian for a broader range of paramagnetic species and in 

different motional regimes. 
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Figure 1.5 Simulations of EPR spectra in the regime of slow molecular tumbling with 

isotropic values for τr. The spectra show the effect of different values for τr (0.2, 1, 3, 

and 10 ns) on the width and position of lines for three microwave frequencies: 9.8, 

94.0, and 275.7 GHz. All simulations were done using the EasySpin software 

package
[19]

 with the algorithm Chili, using a Lorentzian linewidth of 0.1 mT, a 

hyperfine coupling of [Axx Ayy Azz] = [16.0   15.0  104.1] MHz, and a g tensor of [gxx  

gyy  gzz] = [2.0088   2.0061   2.0027]. 

 

 

 

Figure 1.6 Simulations of EPR 

spectra at 94.0 GHz in the regime 

of slow molecular tumbling with 

anisotropic values for τr. The 

bottom three spectra represent 

results with one fast component 

(0.7 ns) and two slow 

components (2.8 ns). For 

comparison, the top spectrum 

was simulated with an isotropic τr 

of 1.4 ns. The other simulation 

parameters used were as 

mentioned in the caption of 

Figure 1.5. 
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1.3  Relaxation of electron spins  

The population of the levels 1
2sm    and 1

2sm    is governed by the 

Boltzmann distribution. At room temperature, the difference between the 

populations is very small, since the magnetic energy is much smaller than the 

thermal energy. Nevertheless, this difference is responsible for the detection of 

the EPR signal. The absorption of microwaves can equalize the population of 

the magnetic levels, causing the EPR signal to disappear. Relaxation, however, 

brings the system back to the Boltzmann populations and allows for a 

continuous detection of the EPR signal. 

 

Longitudinal and transverse relaxation, 1T  and 2T  

In the presence of an external magnetic field aligned along the z-axis, a 

collection of spins has at thermal equilibrium a bulk magnetization vector M  

directed along the z-axis. When M  is perturbed, longitudinal relaxation causes 

M  to be restored along the z-axis. This process involves a loss of magnetic 

energy, which is dissipated as heat to the environment. The time in which 63% 

1(1 )e  of the z-component of the magnetization is restored is called 1T  and 

can be measured by pulse EPR using the sequence   – t  – ( / 2)  – τ  –  – 

τ  – [echo], where t  is the increment time and τ  is the delay time.  

Transverse relaxation causes the decay of M  in the transversal (xy) 

plane. In contrast to longitudinal relaxation, the transversal relaxation does not 

lead to a loss of magnetic energy of the spins. The time in which the x- (or y-) 

component of the magnetization decays to 37% is called 2T  and can be 

measured by the pulse sequence ( / 2)  – τ  –   – τ  – [echo]. 
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Measurement of T1 and T2 by microwave saturation  

Pulse measurements may not always be feasible to measure the 
1T  and 

2T  of a 

sample. An alternative is offered by microwave saturation, which was 

recognized in early studies by Portis
[20]

 and Castner
[21]

. A saturation curve is 

obtained in cw mode by measuring the amplitude Y  of a first-derivative EPR 

line (Figure 1.7) as a function of the microwave power P . At low microwave 

power Y  increases linearly with P , while Y  decreases for higher microwave 

powers. The loss of amplitude at higher microwave power results from 

saturation. Figure 1.8 shows an example of a saturation curve. The value 1/2P  is 

characteristic for a saturation curve and is defined as the microwave power, at 

which Y  is half of the unsaturated value. The shape of the saturation curve is, 

amongst others, determined by the product 1 2TT
[22]

: 

 

 
 

1

2 2

1 1 21

B
Y

B TT






, (1.8) 

 

where 1B  is the microwave magnetic field, /e Bg  , and ε is a measure for 

the homogeneity of the saturation. For a homogeneously broadened 

(Lorentzian) line, 1.5  . For an inhomogeneously broadened (Gaussian) line,

0.5  . Measurement of the amplitude Y  as a function of microwave power 

2

1( )B  allows the determination of the product of 1T  and 2T . 
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Figure 1.7 First-derivative EPR line 

with a peak-to-peak amplitude Y and 

a peak-to-peak linewidth δ. 

 

 

 

 

 

 

 

Figure 1.8 An example of a saturation curve. At low microwave 

power, Y  increases linearly with P . At higher microwave powers, 

saturation occurs, causing Y  to decrease. The value 
1/ 2

P  is defined as 

the microwave power at which Y  is half of the unsaturated value. 

 

  

 

1.4 Spin-spin interactions 

Spin-spin interactions are detected by EPR, if two unpaired electrons, at sites A 

and B, are sufficiently close. Hence, spin-spin interactions may serve as 

indication for the proximity of the electrons. Two terms in spin-spin 



 

19 
 

interactions are distinguished: exchange interaction and dipole-dipole 

interaction. 

 

Exchange interaction  

Exchange interaction arises from the overlap between electronic 

wavefunctions. The exchange Hamiltonian is  

 

 

where J  is the exchange energy. The eigenfunctions of 
eH  are the S = 0 

(singlet) and S  = 1 (triplet) spin functions, where S  refers to the total spin of 

the two electrons. 

We shall consider the regime of fast molecular tumbling. Additionally, 

we take into account the Zeeman interaction and the hyperfine interaction of 

the electron spins with two 
14

N nuclear spins ( I  = 1). The eigenvalues of the 

singlet and the three triplet spin functions are  

 

 
 

 

1 1
A B 4 2

22 21 1 1
A B A B 4 22

22 21 1 1
A B A B 4 22

1 1
A B 4 2

(triplet) β β

(triplet) α β β α

(singlet) α β β α

(triplet) α α

B I

i

i

B I

J g B aM

J a m J

J a m J

J g B aM





 

    

    

 

 (1.10) 

 

with 

 

 A B

I i iM m m       and     A B

i i im m m   . (1.11) 

 

 A B2 S Se J  H , (1.9) 
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The total quantum number 
IM  splits up the state A Bα α  and A Bβ β  into five 

levels ( 2, 1,  0, 1, 2)IM      . The square of the difference in nuclear quantum 

numbers  
2

im  splits up the states 1
A B A B2
α β β α  and 1

A B A B2
α β β α  

into three levels ( 0,  1,  2)im  . With the selection rule 1sm   , the 

allowed transitions are:   

   

 

 

 

 

 

22 21 1 1 1
A B A B A B 2 2 22

22 21 1 1 1
A B A B A B 2 2 22

22 21 1 1 1
A B A B A B 2 2 22

22 21 1 1 1
A B A B A B 2 2 22

α β β α β β

α β β α α α

α β β α β β

α β β α α α

B I i

B I i

B I i

B I i

h J g B aM a m J

h J g B aM a m J

h J g B aM a m J

h J g B aM a m J

 

 

 

 

       

        

       

        

 (1.12) 

 

In the weak exchange regime, i.e., for J a , the four equations in 

equation 1.12 reduce to the form of equation 1.6, which is the resonance 

condition for non-interacting electron spins. A three-line spectrum, such as 

shown in Figure 1.4, results. 

In the strong exchange regime, i.e., for J a , the term 

 
22 21

2 ia m J   in equation 1.12  reduces to 1
2

J . In this regime the singlet-

triplet transitions are forbidden and the allowed triplet-triplet transitions occur 

for 

 

 
1
2B Ih g B aM   . (1.13) 

 

Figure 1.9 shows the energy levels and the triplet-triplet transitions for two 

electron spins in the strong exchange regime. Owing to different combinations 

of A

im  and B

im  the energy levels of states A Bα α  and A Bβ β  are one-, two-, 



 

21 
 

three-, two-, and one-fold degenerate. Therefore, the spectrum contains five 

lines, which have 1:2:3:2:1 relative line amplitudes (Figure 1.10). The spectral 

lines are spaced by 1
2

a .  

More complex spectra are expected for systems in the intermediate 

exchange regime, i.e., for J ~ a . 

 

 

 

 

 

Figure 1.9 Schematic energy diagram of two electron spins (in singlet and triplet state) 

in the strong exchange regime. The degree of coupling between the electron spins is 

given by the exchange energy ( J ). Also, the effect is shown of electron spins 

interacting with an external magnetic field and with a 
14

N nuclear spin ( I = 1). The 

grey arrows indicate the allowed triplet-triplet transitions.  
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Figure 1.10 An example of a cw-EPR 

spectrum containing five lines as a result of 

two interacting electron spins in the strong 

exchange regime, coupled to two I = 1 nuclei. 

The EPR lines have 1:2:3:2:1 relative 

amplitudes and correspond to the transitions 

depicted in the energy diagram of Figure 1.9.  

 

 

 

 

 

Dipole-dipole interaction  

The dipole-dipole coupling dd  between two spins (g values 
1g  and 

2g ) is 

proportional to the inverse cube of the distance r  and is given by
[13]

 

 

   2 31 2

2 3

2 52.04
, (3cos 1) MHz nmdd

e

g g
r

g r


        , (1.14) 

 

where eg  is the g value of the free electron. The angle   is the angle of the 

spin-spin vector and the magnetic field. For distances up to about 2 nm, dipolar 

broadening in cw spectra allows for a distance determination by lineshape 

analysis
[24]

. Pulse EPR-techniques
[23]

 can access distances in the range of 2 – 6 

nm or, in favourable cases, even up to 8 nm
[13;25]

.  

To determine distances larger than 2 nm, the most widely used 

technique is the four-pulse double electron-electron resonance (DEER) 

experiment
[26]

. This experiment consists of the pulse sequence  

 / 2
obs

  – 1τ  –  
obs

  –  1τ t  –  
pump

  –  2τ t  –  
obs

  – 2τ  – [echo], 

where the subscripts obs and pump indicate pulses occurring at the observer 
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and pump frequency. The sequence is illustrated in Figure 1.11a. The measured 

DEER trace (Figure 1.11b) can be analysed with the proper software
[27]

 to 

convert the time-domain signal into a distance distribution (Figure 1.11c).  

 

 

 

Figure 1.11 The DEER experiment and data analysis. a) The DEER experiment is 

achieved by a four-pulse sequence at two frequencies that are ~ 65 MHz apart. Delay 

times τ1 and τ2 are kept fixed, while delay time t  between the unobserved first echo 

(dotted line) and the pump pulse is varied. b) The measured DEER trace is the 

integrated intensity of the observed echo as a function of the dipolar evolution time t. 

The trace contains a modulation, which is the result of the dipolar coupling between 

two electron spins. Once the DEER trace is corrected for the background, c) the 

modulation can be transformed into a distance distribution, which, for this trace, is 

shown in the inset. The modulation depth (  ) is related to the number of spins that 

account for the measured DEER trace. The figures concern an edited version of those in 

reference [25]. 
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1.5 Scope of thesis 

This section gives a brief overview of the subjects studied in this work. 

In Chapter 2, continuous-wave EPR at 9 GHz is used to study the 

complex formation of E and K peptides, which mimic essential parts of 

proteins that facilitate membrane fusion. The spectral changes upon mixing of 

the E and K peptides show that the heterodimer formation can indeed be 

detected by EPR. 

In Chapter 3, all three experimental EPR frequencies available at 

Leiden Institute of Physics (9, 94, and 275 GHz) are used to study the complex 

of cytochrome c peroxidase with spin-labelled cytochrome c. The combination 

of EPR measurements, spectral simulations and principal component analysis 

allows for a quantative analysis of the immobilization of the spin label upon 

complex formation of the proteins.  

In Chapter 4, microwave-power saturation is used to study the 

relaxation behaviour of the paramagnetic centre of TOAC in doubly labelled 

310-helical peptides. This work demonstrates that in the doubly labelled 

peptides the exchange interaction J  causes additional relaxation of the 

paramagnetic centres compared to mono-labelled peptides. 

In Chapter 5, the unfolding of a doubly labelled protein is studied by 

the four-pulse DEER experiment. A folding intermediate is revealed by the 

analysis of the distance distributions. 
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2 
HETERODIMER FORMATION OF MEMBRANE-FUSION  

E/K PEPTIDES STUDIED BY CONTINUOUS-WAVE EPR 

 

 

2.1 Introduction 

Membrane fusion is an essential process in living organisms. In eukaryotic 

cells, the early stage of fusion involves two membranes, each with a 

membrane-anchored SNARE protein
[1]

 (SNARE, soluble NSF attachment 

protein receptor; NSF = N-ethylmaleimide-sensitive factor). The mechanism of 

membrane fusion is still unknown
[2]

. To investigate membrane fusion involving 

SNARE proteins, model systems are synthetically designed, which mimic the 

biological system. The building blocks are biologically inspired modules and 

consist of a membrane anchoring segment, a zipper segment, and a linker that 

connects the two segments (Figure 2.1a). To understand whether the final 

construct will be functional in membrane fusion, it is important to know how 

the components operate by themselves. In this study, we concentrate on the 

zipper segment, i.e., peptides that self-assemble into a coiled-coil
[3]

 complex, 

similarly to the zipper segment of SNARE proteins.  

Inspired by the work of Litowski and Hodges
[4;5]

, we synthesized 

variants of the oligopeptides E and K, listed in Table 2.1. The E and K peptides 

are oppositely charged, due to the abundant glutamic acid (E) and lysine (K) 

residues, respectively. Figure 2.1b shows the ionic and hydrophobic 
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interactions, which are expected to stabilize the heterodimer. A tryptophan (W) 

and a tyrosine (Y) residue were incorporated to facilitate the use of UV-Vis 

spectroscopy to determine the concentration of the peptide. Under 

physiological conditions, peptide E adopts a predominantly random-coil 

conformation, while peptide K is predominantly α-helical
[6]

. When mixed, 

peptides E and K are designed to twist around one another to form a coiled-

coil
[4]

. With only three heptad repeats, they are the shortest known coiled-coil 

pair, which assembles specifically into a stable heterodimer (
DK  ~ 10

-7
 M at 25 

°C)
[4-6]

. For our variants specifically, the E and K peptides form heterodimers in 

parallel fashion, with all of the residues participating in the coiled-coil
[7]

.  

 

 

a          b     

            

     

  

 

 

 

 

Figure 2.1: Schematic representations of: a) a membrane-fusion construct consisting of 

a zipper segment, a linker, and a membrane anchor; b) the K- and E-peptides in a 

helical wheel projection. The peptides propagate into the page from the N-terminus to 

the C-terminus. The repeating leucine (L) and isoleucine (I) residues form a 

hydrophobic face along both peptides
[8]

. Their side chains interact with each other (grey 

arrows) in a “knobs-into-hole”
[5;9]

 manner, forming a continuous hydrophobic core. 

Ionic attractions between glutamic acid (E) and lysine (K) make the interaction 

selective.  
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In the present work we assess to what extent mobility information from room- 

temperature spin-label EPR
[10;11]

 can be used to study dimer formation of the 

E/K peptides. To do so, a cysteine residue was introduced and the peptide was 

coupled to an MTSL label
[12]

 (Figure 2.2). All investigated peptides are listed in 

Table 2.1.  We use the abbreviations SL-K for the K peptide with the spin label 

(SL) attached at the N-terminus, and E-SL and K-SL for the E and K peptides, 

respectively, when the spin label is attached at the C-terminus. An 

accompanying study shows that the spin label does not change the secondary 

structure of the peptides, nor that it disturbs the self-assembly of the E/K 

peptide pair
[7]

. Advantages of spin-label EPR are that heterodimer formation 

can be detected in situ and in the presence of membranes. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Chemical structure of  

the spin-label MTSL attached to 

a cysteine residue in a peptide. 

 

 

In this study we use two approaches. We mix the spin-labeled peptide with its 

unlabeled partner peptide (e.g. E-SL with K), expecting a mobility decrease 

upon heterodimer formation. As a control, we mix the spin-labeled peptide with 

its unlabeled twin peptide (e.g. E-SL with E). Any mobility change due to 

unspecific interaction or viscosity changes should be revealed by the latter 
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experiment. In the second approach, we investigate samples in which both 

partners are labeled, to detect potential spin-spin interaction owing to the close 

approach of the spin labels. 

We show that heterodimer formation can be detected by the mobility 

change in EPR. The absence of spin-spin interaction in the SL-K:E-SL pair and 

E-SL:K-SL pair puts a structural constraint on the heterodimer: a minimal 

distance of 0.8 nm between the two electron spins. The present work paves the 

road for future EPR studies on the peptides E and K integrated into more 

complex systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

2.2 Material and methods 

The synthesis of the peptides listed in Table 2.1 was done by Tingting Zheng 

(Supramolecular & Biomaterials Chemistry group at Leiden Institute of 

Chemistry) and has been described elsewhere
[7]

. 

 

EPR measurements 

The cw-EPR measurements were performed at 9.8 GHz using an ELEXSYS E 

680 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped 

with a rectangular cavity. All spectra were recorded at a microwave power of 

0.63 mW with a field sweep of 15 mT and 2048 field points. Field modulation 

at a frequency of 100 kHz was employed with an amplitude of 0.04 mT. The 

measurement time was 20 minutes per sample. The time constant was 2.56 ms 

with a conversion time of 5.12 ms. The temperature was 293 ± 1 K. 

 Solutions were contained in 50 μL micropipettes (BLAUBRAND
®
 

intraMARK) with an inner/outer diameter of 0.80/1.50 mm. Samples were 

prepared in phosphate buffered saline (PBS), pH 7.4. The measurements done 

are summarized in three categories: a sample of (i) labeled peptide, 150 µM, 

and mixtures of (ii) labeled peptide with non-labeled peptide, both 100 µM, and 

(iii) labeled peptide with labeled peptide, both 100 µM. Peptide concentrations 

for category (i) and (ii) were based on UV-Vis absorption. For category (iii) 

spin concentrations were used (see below). A quantitative analysis of the spin-

label concentration was made by double integration of the EPR spectrum and 

comparison to the spectrum of a reference sample with known spin 

concentration. Based on this analysis, we found that more than 80% of the 

peptides E-SL, K-SL, and SL-K gave an EPR signal, i.e., were effectively spin 

labeled.   

 To check whether the peptide influences the solution viscosity, we also 

measured a sample of the spin label (MTSL) alone and in the presence of 200 
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µM of peptide E. Similarly, peptide E-SL was measured at concentrations 

between 100 µM and 200 µM in increments of 25 µM. 

 

Simulation of EPR spectra 

Simulations of cw-EPR spectra were done with EasySpin
[13]

, a software 

package for MATLAB (The Mathworks, Natick, MA, USA). The function 

Garlic was combined with the isotropic rotation model. The spin system was 

defined by tensors g  = [gxx gyy gzz] = [2.0078 2.0058 2.0023] and AN
 = [Axx 

Ayy Azz] = [5.99 5.99 36.38] MHz. The hyperfine tensor AN
 derives from the 

interaction of the electron spin with the 
14

N (I = 1) nucleus. A second 

component was added (5%) to account for the satellite lines due to coupling of 

the electron spin with 
13

C (I = ½) nuclei in natural abundance. For this fraction 

AC
 = [Axx Ayy Azz] = [6.63 6.63 6.63] MHz was used. Within a series of 

simulations concerning one particular labeled peptide (e.g. E-SL, E-SL:E, or E-

SL:K), the lineshape parameters were kept constant. The simulated spectrum 

was adjusted to the experimental one varying the rotation-correlation time. We 

used visual inspection to make the simulated spectrum resemble the 

experimental spectrum.  

 

Rotation-correlation time 

We assume that the line shape of the EPR spectrum, described by the rotation-

correlation time r  derives from a combination of the local mobility of the spin 

label ( ,localr ) and overall peptide motion ,peptider  

 

 
,peptide ,local

1 1 1

r r r  
   (2.1) 
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To calculate the rotation-correlation time of the peptide ,peptider , the Stokes-

Einstein equation 

 

 ,peptider

B

V

k T


   (2.2) 

       

is used, where   is the solution viscosity, for water 1.00 mP·s, Bk  is the 

Boltzmann constant, and T  is the temperature, in this work: 293 ± 1 K. The 

volume V of the E and K peptides is described by cylinders with a length of 3.9 

nm and a diameter of 1.1 nm. The volumes are 3.7 nm
3
 for the monomeric 

peptide and 7.4 nm
3
 for the heterodimer. From equation 2.2, ,peptider   0.92 ns 

for a monomeric peptide and ,peptider   1.83 ns for a heterodimer are obtained.  

 

 

Averaging of dipole-dipole interaction 

For a system containing two unpaired electron spins, the dipole-dipole 

interaction is averaged by molecular tumbling if  

 

 
2

dd

r





 . (2.3) 

 

The dipole-dipole coupling between two spins is proportional to the inverse 

cube of the distance
[14]

 

 

   2 31 2
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, (3cos 1) MHz nmdd
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g g
r

g r
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        . (2.4) 
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See Section 1.4 for the clarification of the symbols used in equation 2.4.  

For 1.83r   ns an upper limit of 
6546 10dd    rad/s results, which 

corresponds to a distance of 0.8 nm. 
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2.3 Results 

Figure 2.3 shows the EPR spectrum of E-SL:E superimposed on the spectrum 

of E-SL:K. The spectra are superimposed such that the middle one of the three 

EPR lines overlaps optimally. The high-field line in the spectrum of E-SL:K is 

broadened compared to E-SL:E. A similar feature is observed in the spectra of 

the samples in which K-SL or SL-K are mixed with their partner peptides (data 

not shown). 

 Control experiments show that the spectrum of the free spin label is not 

influenced by the presence of different concentrations of peptide (see Material 

and methods). Also, the spectral lineshape of peptide E-SL does not change 

within the signal-to-noise ratio for samples where the concentration of E or E-

SL is varied.  

 

 

 

Figure 2.3: The room temperature cw-EPR spectrum of E-SL:E (in black) 

superimposed on E-SL:K (in red). 
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In total nine combinations of peptides were measured (see Table 2.2).  

Simulations were performed with a model of isotropic rotation. The simulated 

spectra agree well with the experimental spectra, i.e., within the noise 

amplitude. The exception is the simulated spectrum of SL-K:E. Here the 

amplitude of the low-field line even in the best-matched simulation was 7% 

larger and the high-field line was 28% broader than the experimental spectrum. 

The parameters obtained by the simulations are the rotation-correlation times 

( )r  and linewidths given in Table 2.2. 

 

 

 

Considering the three samples with E-SL, the r  values of E-SL and E-SL:E 

agree within the experimental error, whereas the r  of E-SL:K is significantly 

larger. The same is true for samples containing K-SL and SL-K. The increase 

in r  is largest for E-SL, i.e., from 158 (E-SL) to 307 ps (E-SL:K), and 
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smallest for K-SL. Amongst the heterodimers, 
r  is largest for E-SL:K (307 ps) 

and smallest for K-SL:E (236 ps).  

 Figure 2.4 shows the overlay of the spectrum of E-SL:K-SL and the 

suitable reference spectrum. Similarly for E-SL:SL-K (Figure 2.5). The spectra 

of samples in which both partners are labeled are identical within the noise to 

their respective reference spectra. 

 

 

 

Figure 2.4: The spectrum of E-SL:K-SL (in black) superimposed 

on the sum of the spectra of E-SL:K and SL-K:E (in red). 

 

 

 

 Figure 2.5: The spectrum of E-SL:SL-K (in black) superimposed 

on the sum of the spectra of E-SL:K and SL-K:E (in red). 
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2.4 Discussion 

To investigate heterodimer formation in the E/K peptides we determined the 

mobility of the spin label in a set of combinations of these peptides (Table 2.2). 

In almost all cases, an isotropic rotational model was sufficient to simulate the 

mobility of the spin label showing that neither monomers nor dimers have 

preferential axes of rotation. A significant increase of r  is found in all cases 

where the heterodimers are formed, irrespective of the position of spin-label 

attachment (N- or C-terminus, E or K peptide), showing that mobility 

measurements by cw-EPR provides a valid method to detect dimer formation in 

the E/K peptides. A set of control experiments shows that the peptides do not 

significantly influence the r  via viscosity changes of the solution. Significant 

changes in r  between a spin labeled peptide in the absence and presence of a 

non-labeled peptide are therefore considered to be caused by peptide-peptide 

interaction. 

How do the observed r  values relate to the rotation of the peptide? 

The measured r  values are significantly smaller than those expected for the 

rotation of the peptide itself, i.e., 0.92 ns for peptide K and 1.83 ns for the 

heterodimer (see Material and methods). Using equation 2.1, the contribution 

of peptide rotation ( ,peptider ) to r  is in the order of 20%, revealing that r  is 

largely determined by local mobility, i.e., rotation of the nitroxide about the 

single bonds joining it to the peptide and/or the mobility in the peptide 

backbone (Figure 2.2). 

Consequently, the r  changes reveal that the local mobility decreases 

when heterodimers are formed. The local-mobility change is largest for the C-

terminus of the E peptide, and also somewhat larger for the N-terminus of the 

K peptide than for the C-terminus of K. A possible explanation for the larger r  
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change in the E peptide compared to the K peptide is that the E peptide, which 

is partially random coil in solution, has to convert to an α-helix conformation 

when the heterodimer is formed. The partial random-coil conformation of the E 

peptide could offer more flexibility to the nitroxide before heterodimer 

formation, making the total change in r  larger than for the K-peptide.  

For none of the combinations of spin-labeled peptides (Figures 2.4 and 

2.5) spin-spin interactions were observed, showing that spin labels are too far 

apart to have either exchange or dipolar interaction. Exchange interaction (J) 

manifests itself as line broadening or in the occurrence of extra lines in the EPR 

spectrum if J ≥ AN/2, in our case at distances < 0.5 nm. Dipolar interaction 

could be observed if the dipolar interaction dd  is sufficiently large not to be 

averaged by molecular tumbling, which for our labels is at distances < 0.8 nm. 

The absence of any such effect on the spectra of the peptide partners, where 

both C-termini are labeled (E-SL:K-SL) or where the E-C-terminus and K-N-

terminus (E-SL:SL-K) are labeled, shows that the spin labels are separated by 

more 0.8 nm. 

 In a parallel dimer, the shortest distance is expected for the E-SL:K-SL 

pair, in which both spin labels are at the C-terminus. However, even in this 

situation the distance could be substantial. The helical-wheel projection shows 

that if the C-terminal residues that follow the third heptad repeat (K-SL: -

GWC-SL) complete a full turn, the cysteine residue would position at the site 

of the first alanine residue (A1
) of the K peptide (Figure 2.1b), respectively the 

E peptide, i.e., at opposite faces of the helix. Assuming a helix diameter of 1.1 

nm and a linker length of 0.5 nm, a distance of ~ 3.2 nm results, which is 

significantly larger than the distance to which the liquid-solution measurements 

we performed are sensitive. Therefore, the absence of spin-spin interaction is 

consistent with the model shown in Figure 2.1b. The present results do not 

enable us to exclude an anti-parallel arrangement of the heterodimer. 
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Paramagnetic NMR and Förster resonance energy transfer experiments do 

provide such evidence
[7]

. 

We can exclude that oligomers are formed in which peptides cover the 

termini of their partners. Such an arrangement would block spin label motion 

and lead to correlation times in the order of oligomer rotation. 

In conclusion, we find small but significant changes in the mobility of 

the spin label under conditions where heterodimers are formed. These in situ 

measurements confirm heterodimer formation in solution, showing that the E/K 

peptides form a complex. The same approach can be applied to the full 

construct in a vesicle environment enabling the detection of complex formation 

in the fully assembled fusion construct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

41 
 

References 
 

[1] T. Weber, B.V. Zemelman, J.A. Mcnew, B. Westermann, M. Gmachl, F. Parlati, T.H. 

Sollner, J.E. Rothman, SNAREpins: Minimal machinery for membrane fusion. Cell 92 

(1998) 759-772. 

[2] R. Jahn, Some classic papers in the field of membrane fusion - a personal view. Nature 

Structural & Molecular Biology 15 (2008) 655-657. 

[3] P. Burkhard, J. Stetefeld, S.V. Strelkov, Coiled coils: a highly versatile protein folding 

motif. Trends in Cell Biology 11 (2001) 82-88. 

[4] J.R. Litowski, R.S. Hodges, Designing heterodimeric two-stranded alpha-helical 

coiled-coils - Effects of hydrophobicity and alpha-helical propensity on protein folding, 

stability, and specificity. Journal of Biological Chemistry 277 (2002) 37272-37279. 

[5] D.A. Lindhout, J.R. Litowski, P. Mercier, R.S. Hodges, B.D. Sykes, NMR solution 

structure of a highly stable de novo heterodimeric coiled-coil. Biopolymers 75 (2004) 

367-375. 

[6] H.R. Marsden, A.V. Korobko, E.N.M. van Leeuwen, E.M. Pouget, S.J. Veen, N.A.J.M. 

Sommerdijk, A. Kros, Noncovalent triblock copolymers based on a coiled-coil peptide 

motif. Journal of the American Chemical Society 130 (2008) 9386-9393. 

[7] T. Zheng. Dissertation, Leiden University, to be published.  

[8] J.M. Mason, K.M. Arndt, Coiled coil domains: Stability, specificity, and biological 

implications. Chembiochem 5 (2004) 170-176. 

[9] F.H.C. Crick, The Packing of Alpha-Helices - Simple Coiled-Coils. Acta 

Crystallographica 6 (1953) 689-697. 

[10] L.J. Berliner, Spin labeling: Theory and Applications, Academic Press, New York, 

1976. 

[11] N.M. Atherton, Principles of electron spin resonance, Ellis Horwood, Chichester, 1993. 

[12] L.J. Berliner, J. Grunwald, H.O. Hankovszky, K. Hideg, A Novel Reversible Thiol-

Specific Spin Label - Papain Active-Site Labeling and Inhibition. Analytical 

Biochemistry 119 (1982) 450-455. 

[13] S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral 

simulation and analysis in EPR. Journal of Magnetic Resonance 178 (2006) 42-55. 

[14] G. Jeschke, Distance measurements in the nanometer range by pulse EPR. 

Chemphyschem 3 (2002) 927-932. 

 

 

 

 

 

 

 

 

 

 

 



42 

 

 

 

 

 

 



 

43 
 

3 
THE COMPLEX OF CYTOCHROME C WITH CYTOCHROME C 

PEROXIDASE STUDIED BY SPIN-LABEL, MULTI-FREQUENCY 

ELECTRON PARAMAGNETIC RESONANCE 

 

 

3.1 Introduction 

Transient protein-protein complexes are important in biochemical processes, 

where they often participate in electron transfer. They are designed to provide 

fast turnover in the crowded cellular environment
[1]

. The formation of transient 

complexes has been demonstrated to involve an encounter complex, in which 

the proteins are loosely bound such that they are free to sample their respective 

surfaces
[2]

, as well as the more tightly bound, stereo-specific complex, which is 

capable of electron transfer
[3;4]

. The process of complex formation is 

schematically shown in Figure 3.1. Methods are sought to investigate the 

encounter complex, which is dynamic
[5]

 and could be decisive in making 

protein encounters specific. The formation of the encounter complex seems to 

be governed by long-range electrostatic interactions
[6;7]

 and in some cases by 

hydrophobic interactions
[8]

. 

Here we investigate the complex of yeast mitochondrial iso-1-

cytochrome c (Cc) with cytochrome c peroxidase (CcP), which in yeast is 

relevant for the removal of hydrogen peroxide. Previously, the interaction of Cc 

with CcP has been studied by paramagnetic NMR, revealing that the interaction 
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of both proteins is best described by an encounter complex that is populated 

30% of the time and a stereo-specific complex that is competent for electron 

transfer and has a 70% occupancy
[3-5;8;10;11]

.  

 

 

 

 

 

 

Figure 3.1 A schematic model for the formation of a protein complex. Free partner 

proteins (A) associate to form an encounter complex (B), in which the proteins are 

loosely bound such that they are free to sample their respective surfaces. The encounter 

complex is in equilibrium with a tightly bound stereo-specific complex (C). The figure 

concerns an edited version of that in reference [9]. 

 

 

We use multi-frequency electron paramagnetic resonance (EPR) at room 

temperature, where the proteins are in their physiological state, to probe 

complex formation. The sensitivity of continuous-wave (cw) EPR to the 

nanosecond motion of a nitroxide spin label covalently attached to the unique 

cysteine in the A81C mutant of Cc (Cc-SL) enables us to probe the local 

environment of this residue. 

Previously, cw-EPR has been used to study the high-affinity protein-

protein complex of barnase with barstar
[12]

. The cw-EPR spectrum of the spin-

labelled barnase-barstar complex depends on viscosity, i.e., broad outer peaks 

of the spin-label signal become more dominant as the viscosity increases
[12]

. 

The combination of cw-EPR
[13;14]

 and saturation recovery EPR
[13]

 was applied 

to the complex of cytochrome bc1 and spin-labelled cytochrome c. For this 

complex formation, it is shown that altering the NaCl concentration in the 
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buffer affects the cw-EPR spectra, i.e., the width of the outer peaks of the spin-

label signal depends on the ionic strength
[13]

. 

We present a systematic approach to analyse a series of EPR spectra 

obtained at different ratios of the complex partners to determine the 

dissociation constant. We show how to obtain the spectra of the spin label in 

the fully-bound state. This is not trivial because the EPR spectra of samples in 

which both partners are present always contain a fraction in which the spin-

labelled partner is not in the complex (free Cc-SL), even at a large excess of the 

complex partner (CcP). Since the EPR spectra of free Cc-SL and bound Cc-SL 

have significant overlap and cannot be described by a simple lineshape function 

(Gaussian or Lorentzian), deconvolution is needed.  

By monitoring the complex with a spin label attached to the smaller 

protein of the complex, the changes in rotation-correlation time upon complex 

formation are maximized. We show that spectra obtained by conventional X-

band (9 GHz) EPR are analysed preferably using principal component analysis 

(PCA)
[15]

, an approach that is not suited for the high-field, W-band (94 GHz) 

EPR spectra. To increase spectral resolution even further, EPR at 275 GHz is 

employed.  

We find that the spin label in the A81C-variant of Cc becomes 

immobilized upon complex formation. Two fractions with different mobility of 

the spin label are observed, which could correspond to the encounter and 

specific complex, respectively.  High-field EPR reveals differences between the 

free and the fully bound state in the anisotropy of the rotation-correlation time 

of the spin-label motion. Furthermore, the potential of 275 GHz EPR to 

increase sensitivity to anisotropic motion is addressed.  
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3.2 Material and methods 

 

Expression and purification of CcP C128A 

The expression and purification of CcP C128A was done by Jesika Schilder 

(Protein Chemistry group at Leiden Institute of Chemistry), who used a 

procedure previously described
[16]

. The concentration of CcP was determined 

with UV-Vis spectroscopy: ε408nm = 98 mM
-1

 cm
-1

 
[17]

.  

 

Expression and purification of Cc A81C  

Chemically competent E. coli JM109 cells were freshly transformed with pUC 

cc A81C plasmid, a pUC18 based plasmid coding for saccharomyces 

cerevisiae Cc A81C. A single colony was used to inoculate 3 ml of 2×YT 

medium containing 50 μg/ml ampicillin and 1 mM KNO3, and incubated at 37 

°C, 250 rpm until turbidity was evident (3 – 4 hours). One mL of the pre-

culture was used to inoculate 1.7 L of 2×YT medium containing 50 μg/mL 

ampicillin and 1 mM KNO3 in a 2 L Erlenmeyer flask and incubated at 37°C, 

160 rpm for 24 hours. The cells were harvested by centrifugation at 4 °C, 6400 

× g for 15 minutes. The pink pellet was re-suspended in a minimum volume of 

lysis buffer (50 mM Tris-HCl, 1 mM EDTA), flash-frozen in liquid N2 and 

stored at –80 ºC. After thawing the cells, 3.8 mg DNAse and a few milligrams 

of lysozyme and PMSF were added. The suspension was stirred for 30 minutes 

at 4°C and twice lysed by a pressure cell homogenizer (FPG12800, Stansted 

Fluid Power Ltd., Harlow, U.K.). Per mL of solution, 326 mg of (NH4)2SO4 

was added. The solution was stirred at 4°C for 30 minutes. Precipitate was 

removed by centrifugation at 4°C, 9600 × g for 30 min. The supernatant was 

dialyzed overnight against 5 L of 46 mM NaPi, pH 6.8. The dialyzed solution 

was centrifuged at 4°C, 6200 × g for 15 minutes and loaded on a CM column 

(80 mL) equilibrated with 46 mM NaPi, pH 6.8 at 2 mL/min. The column was 
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washed with 46 mM NaPi, pH 6.8, and with 46 mM NaPi pH 6.8, 70 mM NaCl 

for two column volumes. Cc A81C was eluted from the column with 46 mM 

NaPi, pH 6.8, 400 mM NaCl, fractions of 2 mL were collected. The fractions 

showing an absorbance at 550 nm were combined and concentrated to a volume 

of 2 mL. Dithiothreitol (DTT) was added to the solution to a final concentration 

of 5 mM. The solution was incubated on ice for 1 hour and run over a Superdex 

75 (~ 120 mL) column, pre-equilibrated in 20 mM NaPi, pH 6.0, 100 mM 

NaCl, 1 mM DTT, with a flow rate of 1 mL/min, collecting fractions of 1 mL 

while monitoring the absorption at 280 nm and 550 nm. Fractions with a 

significant 550 nm signal were combined and concentrated.  

This procedure was largely inspired on the procedures described in 

references [18;19]. 

 

Cc A81C spin labelling 

Cc A81C (1 mL of 822 µM) was reduced with 5 mM DTT at 4 °C for 60 

minutes. DTT was removed with a 5 mL desalting column (GE Healthcare) 

equilibrated in 100 mM NaPi, pH 7.2, 100 mM NaCl (argon bubbled to remove 

oxygen). Immediately after elution, Cc A81C was added to a solution of 20 mL 

100 mM NaPi pH 7.2, 100 mM NaCl, 2.2 mM MTSL. This solution was kept at 

4 °C for 1 hour while bubbling with argon. The total volume of 23 mL was 

concentrated to 0.85 mL and kept overnight at 4 °C. Free MTSL was removed 

by a Superdex 75 gel filtration column (GE Healthcare) equilibrated in 100 mM 

NaPi pH 7.2, 100 mM NaCl, The absorption was monitored at 280, 410, and 

550 nm and fractions of 1 mL were collected. Fractions with an A550/A280 ratio 

larger than 0.80 were combined and concentrated to 0.7 mL. EPR experiments 

showed that the spin-labelling efficiency was approximately 93 %. To the 

protein solution 5 mM K3[Fe3(CN)6] was added. After incubation of 60 

minutes, the oxidizing agent was removed by a PD10 column. The protein 
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solution was concentrated to 0.6 mL. UV-Vis spectroscopy was used to 

determine the protein concentration of 562 μM (ε410nm = 106.1 mM
-1

 cm
-1

 
[19]

) 

and to verify that the protein was oxidized. The protein solution was flash 

frozen in liquid N2 and stored at –80 °C.  

Important contributions to this procedure were made by Anneloes Blok 

(Protein Chemistry group at Leiden Institute of Chemistry). 

 

EPR-sample preparation  

All EPR samples were prepared in 20 mM NaPi, 100 mM NaCl, pH 6.0, with 

protein concentrations based on UV-Vis absorption. For X-band measurements 

the samples with 100 μM Cc and varying concentrations of CcP were 

transferred into 50 μL micropipettes (BLAUBRAND
®
 intraMARK) with an 

inner/outer diameter (id/od) of 0.80/1.50 mm. For W-band measurements at 

room temperature the concentration of spin-labelled Cc was 0.4 mM and 

samples were placed in suprasil quartz capillaries (Wilmad-Labglass, Buena, 

NJ, USA) with an id/od of 0.1 mm/0.5 mm. This capillary was put into a 

suprasil quartz capillary (VitroCom, Mountain Lakes, NJ, USA) with an id/od 

of 0.60 mm/0.84 mm. At both ends the capillaries were sealed with X-Sealant
®
. 

For W-band measurements at 80 K the concentration of spin-labelled Cc (Cc-

SL) was 0.4 mM and samples were placed in suprasil quartz capillaries 

(VitroCom, Mountain Lakes, NJ, USA) with an id/od of 0.60 mm/0.84 mm. 

Both ends were sealed with an epoxy polymer. For the room-temperature 

measurement at 275 GHz the concentration of Cc-SL was 3 mM and the 

sample was measured in a locally made quartz capillary with an id/od of 50 

μm/250 μm. 
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X-band EPR measurements 

Measurements at X-band were performed using an ELEXSYS E 680 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a 

rectangular cavity. Spectra were recorded at 0.63 mW microwave power with a 

modulation amplitude/frequency of 0.2 mT/100 kHz. A 15 mT field sweep of 

2048 points was used with a time constant of 10 ms. The total measurement 

time for a spectrum varied between 35 and 80 minutes. A gentle stream of N2 

was blown through the cavity. A chrome/alumel thermocouple was installed 

close to the sample to monitor the temperature with a readability of 0.1 K. The 

temperature during the X-band measurements was 292.6 ± 0.1 K. The buffer in 

all measurements was 20 mM NaPi, pH 6.0. This buffer had 100 mM NaCl, 

unless stated otherwise. 

  

EPR measurements at 94 and 275 GHz 

For W-band measurements at room temperature and 80 K a locally developed 

probe head was used combined with a Bruker Elexsys 680 (Bruker BioSpin 

GmbH, Rheinstetten, Germany) spectrometer. The room-temperature 

measurement at 275 GHz was done on a locally developed spectrometer 

[20;21]. Measurements were performed with a modulation amplitude of 0.3 mT 

(94 GHz, RT), 0.2 mT (94 GHz, 80 K) and 0.6 mT (275 GHz, RT) and a 

modulation frequency of 10 kHz (94 GHz, RT and 80 K) and 1.7 kHz (275 

GHz, RT). The time constant was 82 ms (94 GHz, RT), 41 ms (94 GHz, 80 K) 

and 1 s (275 GHz, RT). Spectra were recorded with a 30 mT field sweep of 

4096 points (94 GHz, RT), a 40 mT field sweep of 4096 points (94 GHz, 80 K), 

and a 60 mT field sweep of 1051 points (275 GHz, RT). The total measurement 

time for a recorded spectrum was 120 minutes (94 GHz, RT), 10 minutes (94 

GHz, 80 K) and 8 hours (275 GHz, RT). The measurement of Cc-SL at 275 



50 

 

GHz was done by Peter Gast (Molecular Nano-Optics and Spins group at 

Leiden Institute of Physics). 

 

Equations to calculate DK  from the fraction of bound complex c  

Complex formation and dissociation are described by the equilibrium reaction 

 

 LP L P , (3.1) 

   

where L  and P  are the complex partners. The dissociation constant DK  is 

defined as 

 

 
  
 D

L P
K

LP
 , (3.2) 

 

where  L  is the concentration of L . Equation 3.2 is rewritten using the total 

concentrations  
0

L  and  
0

P : 

 

 
      

 
0 0 0

0

(1 )
D

c L P c L
K

c L

 
 , (3.3) 

 

where c  is the fraction of L  that is bound to P . In the case that c  is unknown, 

equation 3.3 is more conveniently written as 

 

                
21 2

0 0 0 0 0 0 0
0.5 2D D Dc L K L P K K L P L P

  
        

 
. (3.4) 
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Principal component analysis 

Principal component analysis (PCA) is used to decompose a set of spectra into 

linearly uncorrelated components [22] and was first applied to EPR spectra by 

Steinbock et al.
[15]

. To apply PCA to the X-band EPR spectra in this work, a 

script was created in MATLAB (The Mathworks, Natick, MA, USA), which 

carries out a procedure that is identical to the one given in reference [15]. A set 

of n experimental EPR spectra are integrated to obtain the corresponding 

absorption spectra. The spectra are then normalized and imported into the script 

as vectors, 
1 2 3E E ,  E ,  E ,  ... , Ei n . Any negative values that are due to noise 

are set to zero. The vectors, each consisting of m points, are stacked to form 

matrix C  consisting of n rows and m columns. Next, matrix M  is obtained by 

 

 TM = C C . (3.5) 

 

Diagonalization of  M  is achieved with the MATLAB function [V,D] = 

eig(M). The diagonal matrix D  contains the eigenvalues 

,  ,  ,  ... ,  j m       , which are associated with the orthonormal 

eigenvectors V V , V ,  V ,  ... ,  Vj m   , respectively, contained in V . The 

eigenvalues are sorted in order of decreasing magnitude so that   has the 

largest value,   has the second largest value, etc. A non-zero eigenvalue is 

significant and associated with an eigenvector that is a principal component of 

the spectrum. Eigenvalues that are zero are associated with eigenvectors that 

contain only noise. The PCA components can be used in linear combination to 

reconstruct any of the experimental spectra: 

 E Vi i j j

j

c . (3.6) 
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For the normalized eigenvectors V j
 

 

 E Vi j i jc   . (3.7) 

 

For a two component system, i.e., only λα and λβ are non-zero, the two 

coefficients are linearly dependant: 

 

 i ic ac b    . (3.8) 

 

Along this line, any spectrum k  can be constructed from the eigenvectors V  

and V
 for the points ( , )k kc c 

 on the line defined by equation 3.8: 

 

 V Vk k kc c      . (3.9) 

 

The spectra of the pure components correspond to separate points located on 

the line defined by equation 3.8. Criteria to determine the location of these 

points have been described in reference [15].  

Experimentally measured spectra are decomposed into ‘fraction bound’ 

and ‘fraction free’ by first locating their position, subsequently referred to as 

‘point’, on the line defined by equation 3.9. The difference between the 

coordinates of the point that defines the position of the experimental spectrum 

and the point that defines the totally bound spectrum divided by the separation 

of the fully bound to the fully free spectrum is the ‘fraction of bound spectrum’ 

present in the experimental spectrum. For the fraction of the free protein the 

equivalent procedure is used, only then with respect to the point of the free 

spectrum. 
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Linear decomposition 

The experimental spectrum E  is composed of the free spectrum F  and the 

bound spectrum B  

 

 E F B f b , (3.10) 

 

where f  is the fraction of Cc-SL that is free and b  is the fraction bound, i.e., 

Cc-SL in complex with CcP. Thus, we can use equation 3.10 to obtain the 

bound spectrum from the experimental spectrum. For this procedure, the EPR 

spectra are required to be normalized and superimposed such that the central 

lines overlap.  

 

Simulation of EPR spectra   

The cw-EPR spectra were simulated with EasySpin
[23]

, a software package for 

MATLAB (The Mathworks, Natick, MA, USA). We manually adjusted the 

parameters to maximize the similarity between the simulated and the 

experimental spectrum.  

The algorithm Pepper was used for the simulation of the W-band 

spectrum of free Cc-SL in frozen solution, recorded at 80 K. From this 

simulation the following spin parameters were obtained: AN
 = [Axx   Ayy   Azz] = 

[16.0   15.0   104.1] MHz, g  = [gxx   gyy   gzz] = [2.0088   2.0066   2.0028]. 

These values were then used for all other simulations. 

The algorithm Garlic was used for the solution spectra recorded at 

room temperature. This algorithm allows for the adjustment of the rotation-

correlation time, r  = [τxx   τyy   τzz]. We found that the solution spectra are best 

simulated with two components – one component that represents a fast 

mobility, the other a slow mobility. We used two restrictions in our approach to 
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simulate the spectra of free Cc-SL: i) the r  and the ratio of two components 

were taken equal for the spectra in X-band and W-band; ii) the fast and slow 

component were given an anisotropic and isotropic rotation, respectively. The 

same approach was used in the simulation of the X-band and W-band spectra of 

bound Cc-SL.   

 

The protein rotation-correlation time 

For a globular protein with radius r , the rotation-correlation time is calculated 

using the Stokes-Einstein relation 

 

 

34

3
r

B

r

k T

 
  , (3.11) 

 

where   is the viscosity of water (1.00 mP·s), Bk  the Boltzmann constant, and 

T  is the temperature, in this work: 293 ± 1 K. We used distance measurements 

in the crystal structure of Cc:CcP (PDB entry 2PCC
[24]

) to estimate the radius 

of Cc and that of the complex. A hydration radius of 0.24 nm was taken into 

account. 

Calculation with HYDRONMR
[25]

 based on PDB entry 2PCC
[24]

 was 

used as an alternative route to calculate the isotropic r  of Cc and the complex. 
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3.3 Results 

Figure 3.2 shows a series of X-band EPR spectra of spin-labelled cytochrome c 

(Cc-SL) measured in the presence of increasing concentrations of cytochrome c 

peroxidase (CcP). The spectrum in Figure 3.2a is that of free Cc-SL and shows 

three lines. With CcP added, additional features appear (indicated by arrows in 

Figure 3.2b to g). With increasing CcP concentration, the intensity of these 

features increases and the signal intensity of free Cc-SL decreases. A control 

experiment with Cc-SL in a 1:3 ratio with CcP at high salt concentration is 

shown in yellow in Figure 3.2a. This spectrum is identical to that of free Cc-

SL, indicating that a high ionic strength prevents complex formation. 

 

 

Figure 3.2 The X-band 

room-temperature EPR 

spectra of spin-labelled 

cytochrome c (Cc-SL) with 

different concentrations of 

CcP added. (a) 100 μM Cc-

SL without CcP, (b) 100 μM 

with 50 μM CcP, (c) with 75 

μM CcP, (d) with 100 μM 

CcP, (e) with 133 μM CcP, 

(f) with 200 μM CcP, and (g) 

with 400 μM CcP. The 

arrows indicate lines in 

spectra (b) to (g) that are not 

present in spectrum (a). 

Spectrum (a) is overlaid with 

the spectrum of 135 μM Cc-

SL, 388 μM CcP with 556 

mM NaCl (in yellow). 
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Figure 3.3 The X-band 

room-temperature EPR 

spectra of Cc-SL with 

bovine serum albumin 

(BSA). In black: 161 μM 

Cc-SL; in red: 161 μM 

Cc-SL with 161 μM BSA; 

in blue: 161 μM Cc-SL 

with 430 μM BSA. 

 

 

In Figure 3.3, the X-band EPR spectra are shown of Cc-SL measured with 

bovine serum albumin (BSA), a protein that should not bind Cc specifically and 

is therefore suitable as a control. The figure shows the spectrum of Cc-SL 

alone, in 1:1 and 1:2.7 mixture with BSA. The three spectra are not identical; 

with increasing concentration of BSA a subtle line broadening is detected 

compared to the spectrum of Cc-SL alone, suggesting a very weak, non-

specific interaction between the proteins. Nonetheless, the spectral changes 

detected in the spectra of Cc-SL with BSA are much smaller than in spectra of 

samples in which CcP is added (Figure 3.2). 

Figure 3.4 shows the W-band EPR spectra of Cc-SL measured with 

different concentrations of CcP. With CcP added, features are visible (indicated 

by arrows in Figure 3.4b to d) that correspond to a signal with broader lines 

than the free Cc-SL (Figure 3.4a), particularly in the high-field region. In 

Figure 3.4a and b the asterisks indicate a background signal that was also 

encountered when an empty quartz capillary is measured (data not shown). The 

asterisks in Figure 3.4c indicate the sharp lines that likely originate from a 

manganese impurity. 

The frozen-solution spectra of Cc-SL (Figure 3.4e) and Cc-SL:CcP 1:1 

(Figure 3.4f) have singularities at identical field positions revealing that the g  
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and AN
 parameters of free Cc-SL and the bound form do not differ 

significantly in the frozen state. Therefore, g  and AN
 parameters for the 

simulation of the solution spectra were derived from the simulation of the 

spectrum in Figure 3.4e.  

 

 

Figure 3.4 The W-band EPR spectra of Cc-SL with different concentrations of CcP at 

room temperature (RT) and at 80 K. 400 μM Cc-SL (a) without CcP (RT), (b) with 100 

μM CcP (RT), (c) with 200 μM CcP (RT), (d) 414 μM Cc-SL with 400 μM CcP (RT), 

(e) 482 μM Cc-SL without CcP (80 K), and (f) 371 μM Cc-SL with 373 μM CcP (80 

K). In the room-temperature spectra, the arrows indicate lines that are more pronounced 

than in the spectrum shown in (a). The asterisk in (a) and (b) indicates a background 

signal. The asterisks in (c) indicate sharp lines that likely originate from a manganese 

impurity. The spectrum of free Cc-SL recorded at 80 K, shown in (e), was used for 

simulation (in cyan) to obtain the tensors g  and A
N

 given in Material and Methods. 
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Figure 3.5 displays the room-temperature EPR spectrum of free Cc-SL 

recorded at 275 GHz. A sharp line, indicated by an asterisk, is attributed to a 

manganese impurity. The spectrum spreads over 50 mT, whereas the W-band 

spectrum has a spread of less than 20 mT, showing the higher resolving power 

of 275 GHz EPR. The 275 GHz spectrum has features at the field values 

marked gxx, gyy and a broad, low intensity band around the field value marked 

gzz.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The room-temperature EPR spectrum of free Cc-SL recorded at 275 GHz. 

The experimental spectrum (shown in black) contains an underlying powder spectrum, 

which is revealed by the pronounced feature at gxx. A mix of a solution spectrum (70%) 

and a powder spectrum (30%) was used to obtain the simulation (shown in red). We 

used the g and AN tensor values as given in Material and methods. Furthermore, we 

used the rotation-correlation times and fraction ratios of the free Cc-SL (see Table 3.1) 

and a combination of a Gaussian and Lorentzian lineshape (0.2 mT and 0.4 mT 

linewidth, respectively). The powder spectrum was obtained with the algorithm Pepper. 

 

 

The PCA analysis of the X-band EPR spectra from Figure 3.2 yielded two 

eigenvalues that were non-zero: λα = 1.875 and λβ = 0.019. Consequently, the 
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EPR spectra derive from a two-component system. Figure 3.6 shows the result 

of the PCA analysis on the X-band spectra. The values for ic   and ic  , obtained 

from equation 3.7, are plotted in Figure 3.6a. A linear fit through the points 

yields the relation 

 

 1.55 3.00 i ic c   . (3.12) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Result of the PCA analysis of the X-band spectra of Cc-SL:CcP (see Figure 

3.2). a) Black dots: ( , )
i i

c c
 

 points of the experimental spectra. The trend line (in red) is 

obtained by a linear fit through the seven points. The blue dot marks the position of the 

fully bound spectrum, point ( , )
i i

c c
 

 = (0.491, 0.077). Inset: eigenvectors V
 (in blue) 

and V
 (in red). b) The bound fractions of Cc-SL versus the concentration of CcP in 

the seven X-band EPR measurements obtained by PCA (in black) and obtained by 

linear decomposition (in grey). The horizontal error bars represent the uncertainty in 

the CcP concentrations due to multiple dilution steps in the preparation of the EPR 

samples. The vertical error bars represent the uncertainty in determining the fraction of 

bound Cc-SL and is mainly caused by the noise level in the EPR spectra. The 

dissociation constant, 
D

K  = 17 ± 3 μM, was determined by a fit (red line) with equation 

3.4. 
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The eigenvectors V  and V
 that resulted from the PCA analysis are shown as 

an inset in Figure 3.6a. With these eigenvectors and equations 3.9 and 3.12, 

several spectra were inspected in the range 0.480 0.500ic   to determine the 

bound spectrum. The spectrum selected as the most bound spectrum is shown 

in Figure 3.7c. This point is ( , )i ic c   = (0.491, 0.077) and is shown in Figure 

3.6a as a blue dot. From the PCA analysis, the fraction of bound Cc-SL ( b ) for 

each measurement was determined by the following equation: 

 

 
(measurement) (free)

(bound) (free)

i i

i i

c c

c c

 

 




b = . (3.13) 

 

To determine DK , in Figure 3.6b the fraction of bound Cc-SL derived from the 

PCA analysis is plotted versus the concentration of CcP in the seven 

measurements (see Figure 3.2). The dissociation constant that best fits this data 

(equation 3.4) is DK  = 17 ± 3 μM.  

Linear decomposition resulted in a DK  that is identical within the error 

margins. The W-band EPR spectra showed four principal components in PCA, 

rather than the two components expected from the results of the X-band EPR 

spectra. We attribute the additional components to spurious signals and 

baseline instabilities, which are more pronounced in the W-band than in the X-

band EPR spectra, and therefore abandoned PCA on the W-band EPR spectra. 

Analysis by linear decomposition works better. To extract the fully 

bound spectrum, a fraction of the free spectrum of Cc-SL (Figure 3.4a) was 

subtracted from the spectrum in Figure 3.4d. The amount of free spectrum was 

varied in the range of 10% to 50% and the value of 20% was selected by visual 

inspection resulting in the spectrum shown in Figure 3.7d. 
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Rotation-correlation times of the spin label were determined by 

simulations of the spectra of free Cc-SL and of Cc-SL fully bound to CcP (Cc-

SL:CcP, Figure 3.7). To satisfactorily simulate the X-band and the W-band 

spectra, two components were used, one of which had a rhombic rotation 

tensor. Models including an ordering potential
[26]

 were not tried. In free Cc-SL, 

a majority fraction (60%) of the spin label rotates with a r  that is anisotropic 

and overall smaller than the r  of the protein (Table 3.1). The second fraction 

is isotropic and has a r  close to that of the protein. The simulation parameters 

are also compatible with the 275 GHz EPR spectrum of free Cc-SL (Figure 

3.5). 
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Figure 3.7 The free and bound spectra of Cc-SL in solution at X-band and W-band. 

The experimental and simulated data are shown in black and red, respectively. The 

experimental data in a) and b) are spectra directly obtained from measurement. The 

experimental data in c) was obtained via PCA (see Material and methods) applied to the 

spectra shown in Figure 3.2. The experimental data in d) was obtained via linear 

decomposition (see Material and methods) of the spectra shown in Figures 3.4a and d. 

The simulations were obtained with the parameters listed in Table 3.1. Note: for the 

spectra in a) and c) an up-field shift of 1.1 mT was applied compared to the spectra in 

Figure 3.2. 

 

 

 

Figure 3.8 Simulations of the fully bound spectrum showing the effect of the fast 

component on the spectra. Simulations (red) of X-band (a) and W-band (b) spectrum 

without the fast component, i.e., using only an isotropic rotation-correlation time of 8 

ns. The experimental spectra are identical to the spectra in Figures 3.7c and d. 
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In the fully-bound state, the rotation is slower than for free Cc-SL. The larger 

fraction (80%) has an isotropic rotation with a r  of 8 ns, and the smaller 

fraction has an anisotropic rotation, with an average r  that is about twice as 

long as that of the fast fraction in the free Cc-SL. The anisotropic rotation has 

the smallest component along the y-axis of the nitroxide in the simulations of 

both spectra. Simulation parameters may not be unique, and, in particular, 

several solutions for the anisotropy of the rotation were found, which agree 

with the data. Figure 3.8 shows the same experimental spectra as in Figures 

3.7c and d and simulations of the spectra, which were obtained with an 

isotropic r  of 8 ns, i.e., in which for the smaller, fast component in Table 3.1 

is omitted. The simulations in Figures 3.8a and b agree less with the 

experimental spectra than in Figures 3.7c and d, which illustrates that the 

smaller fraction is essential for a satisfactory interpretation of the bound 

spectra.  

The parameter set given in Table 3.1 fits best to the X- and the W-band 

spectra simultaneously. We have not systematically investigated whether there 

are correlations between different simulation parameters, e.g. the contribution 

of components and r , such as described earlier
[26]

. The overall rotation of the 

free Cc-SL is faster than for Cc-SL in the complex with CcP. 
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3.4 Discussion 

We show an approach to locally map the environment at the interface of a 

transient complex. To do so, a set of EPR spectra of samples with different 

ratios of complex-binding partners has been analysed. The fully overlapping 

spectra were disentangled to obtain DK  and the spectra of the free and fully 

bound states. We employ the sensitivity of multi-frequency EPR to nanosecond 

motion of a spin label and determine the change in the rotation-correlation time 

of the spin label as the complex is formed. 

Systematic changes in motion of the spin label attached to Cc (Cc-SL) 

occur, when Cc-SL is in the presence of the complex-binding partner (CcP), 

Figures 3.2 and 3.4. At salt concentrations known to disrupt the complex, these 

changes disappear (Figure 3.2a). The spectral changes, therefore, are due to 

complex formation and not caused by an increase of the solution viscosity due 

to the presence of the complex partner. The small spectral changes observed 

when adding BSA, a protein we used as a negative control (Figure 3.3), must 

be due to unspecific binding. Having thus established that the spectra monitor 

complex formation, we proceed to further characterize the spectra. 

To map the change in spin-label motion in the free and fully bound 

state of Cc-SL, spectral analysis is performed. Particularly, the spectrum of Cc-

SL in complex with CcP needs attention, because mixtures of Cc-SL and CcP 

always contain a fraction of free Cc-SL, even at a large excess of CcP. A 

contribution of free Cc-SL in the order of 5% remains and since the spectrum 

of free Cc-SL has narrower lines than that of Cc-SL in complex with CcP (see 

below), the free Cc-SL contribution disturbs the lineshape. We used PCA and 

linear decomposition to determine the EPR spectrum of bound Cc-SL and the 

fraction by which this spectrum contributes to the experimental spectra of 

mixtures of Cc-SL with different ratios of CcP. The fraction of bound Cc-SL 

serves to determine the DK  value (see Results). The DK  thus obtained (17 ± 3 
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μM) agrees well with the results of recent NMR experiments: DK  = 19 ± 4 

μM
[27]

, which were performed on the protein construct A81C linked with a 

diamagnetic variant of the spin label, showing that EPR and NMR monitor the 

same state of the complex. Spin-label dynamics of free Cc-SL and fully bound 

Cc-SL differ considerably. The free Cc-SL contains a large fraction of a mobile 

component. Since the rotation-correlation time is smaller than that of the 

protein, local mobility, i.e., rotation about the single bonds linking the spin 

label to the protein backbone is dominant in that fraction. The local motion is 

frozen out in the second fraction, and the nitroxide must be locked to the 

protein. The spin label is either completely immobilized at the protein surface, 

or, if it has residual motion, the correlation time of this motion must be larger 

than 5.6 ns, the r  of the protein. 

When Cc-SL is in complex with CcP, the local mobility of the spin 

label is reduced, leading to larger r  values and a smaller fraction of the mobile 

form (20% compared to 60% in the free form). To demonstrate the validity of 

the interpretation of two fractions, in Fig. 3.8 we compare the fully bound 

spectrum with simulations in which the mobile fraction is omitted. Notably, the 

simulation of the X-band spectrum is still acceptable, but the W-band spectrum 

is not compatible with that interpretation. This demonstrates that by high-field 

EPR, previously inaccessible detail of complex formation can be determined. In 

Fig. 3.5, we show that this limit can be pushed even further. The spectrum at 

275 GHz, measured on the free Cc-SL at 3 mM concentration shows that a 

sufficiently high signal-to-noise ratio can be achieved to perform lineshape 

analysis in the future. 

According to NMR studies, in the wild-type Cc:CcP about 30% of the 

complex is in the dynamic, encounter state, while the rest is in the productive, 

specific complex, suitable for electron transfer
[10]

. One could speculate that the 
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20% fraction observed by EPR is due to proteins in the encounter complex, 

whereas the slower fraction is the protein in the stereo-specific complex. Under 

these assumptions, the spin label in the stereo-specific complex would be 

pinned to the interaction surface of both proteins. Residual mobility could still 

be present, because the r  of this fraction is smaller than the r  calculated for 

the protein complex. Consequently, the more mobile fraction would be due to 

the encounter complex and the spin-label mobility would reflect the dynamics 

and local structure of the encounter complex. In our simulations, the additional 

mobility component manifests itself in a faster rotation about the spin-label gyy-

axis (see Figure 1.2), suggesting that in the encounter complex the spin label is 

more free to rotate about this axis. Additional simulations are needed to prove 

this anisotropic rotation model, simulations that would be aided by 275 GHz 

experiments to be performed in the future. 

Immobilization upon complex formation has been found before for the 

complex of Cc with cytochrome bc1 by Sarewicz et al.
[28]

. Novel in the present 

study is the possibility to discriminate between two fractions in the EPR 

spectra, potentially related to the encounter and the stereospecific complex (fast 

and mobile fractions). 
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4 
SPIN-SPIN INTERACTION IN RIGID 310-HELICAL PEPTIDES WITH 

TOAC SPIN LABELS: AN EPR POWER-SATURATION STUDY 

 

 

4.1 Introduction 

Electron paramagnetic resonance has become a powerful technique in 

biological structure determination. Most commonly, structure determination 

relies on measuring distances between paramagnetic centres, often spin labels, 

attached to specific positions in the biomacromolecules of interest. The most 

powerful techniques to measure such distances by EPR are limited in two 

aspects: they work for frozen solutions at low temperatures
[1;2]

 and distance 

ranges between 0.8 – 1.5 nm are difficult to address
[3]

. Physiological 

conditions, such as liquid solutions at room temperature, pose additional 

challenges. The dipolar interaction between spins, so far the most reliable 

indicator for distance, can be partially averaged in liquid solution, and the 

isotropic exchange interaction J  is a short-range interaction (several tenths of 

nanometres) and is difficult to interpret in terms of distance between spins. 

Also, in liquid solution, the spin-spin interaction is extracted from lineshape. 

Particularly, the difference in the spectra of the system of interest in the 

absence and the presence of the spin-spin interaction is evaluated, and therefore 

small spin-spin interactions and longer distances are difficult to measure. Here 

we show that for nitroxides, in the distance regime of 0.8 – 1.5 nm electron 
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spin-spin relaxation could be used as an indicator for distance, expanding the 

tools available to EPR so far even further towards biologically relevant 

conditions. 

In this study, we determine the relaxation parameters by power-

saturation experiments. We investigate a series of four rigid bi-radical peptides 

and corresponding size-matched mono-radical peptides described before
[4]

. The 

peptides consist of the non-coded, host -amino acid -aminoisobutyric acid 

(Aib), combined with one or two 4-amino-1-oxyl-2,2,6,6-tetramethyl- 

piperidine-4-carboxylic acid (TOAC) guest residues. The series consists of the 

bi-radicals HEPTA3,6, HEXA1,5, OCTA2,7, NONA2,8, and the mono-radicals 

HEPTA6, OCTA7, NONA2, where the subscript indicates the TOAC positions. 

Exact sequences are given in Table 1 in reference [4]. In the previous study, the 

peptides where classified according to the magnitude of the exchange 

interaction: HEPTA3,6 and HEXA1,5 with a large exchange interaction and five-

line EPR spectra as class I and OCTA2,7 and NONA2,8, with a small exchange 

interaction and three-line EPR spectra, as class II
[4]

. 

We demonstrate that in all cases the relaxation parameters of the bi-

radicals differ significantly from the mono-radicals, showing that an additional 

relaxation mechanism operates in the bi-radicals. We attribute the additional 

relaxation to the spin-spin interaction in the bi-radicals and posit that it could 

be used as a tool for distance determination. 
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4.2 Material and methods 

The synthesis of the peptides has been described previously, for NONA9 and 

NONA2,8 in reference [5], for HEPTA3,6 in reference [6], for HEPTA6, 

HEXA1,5, OCTA2,7, and OCTA7 in reference [4]. The details about the sample 

preparation of the peptides are given in reference [4]. 

 

EPR measurements 

The series of microwave-power saturation experiments were done at 9.7 GHz 

using an ELEXSYS E 680 spectrometer (Bruker BioSpin GmbH, Rheinstetten, 

Germany) equipped with a dielectric cavity. The peptides were measured over a 

range of 0.2 W to 0.2 mW of microwave power, in steps of 1dB attenuation. 

The measurements were done with a field sweep of 15 mT, 2048 field points, a 

time constant of 5.12 ms, and a conversion time of 5.12 ms. The modulation 

frequency was 100 kHz. The modulation amplitude was 0.05 mT for HEXA1,5, 

0.10 mT for HEPTA3,6, and 0.03 mT for the other peptides. Only one scan was 

needed per level of power attenuation, except for the peptides HEXA1,5 and 

HEPTA3,6, for which up to 36 scans per level of power attenuation were done to 

increase the signal-to-noise ratio. To monitor the temperature in the dielectric 

cavity, a chromel/alumel thermocouple with a readability of 0.1 K was used. A 

constant stream of N2 was sent through the cavity to maintain a temperature of 

293 K.  

 

Theoretical aspects 

A saturation curve is obtained in cw mode by measuring the amplitude Y  of a 

first-derivative EPR line (see Figure 4.1) as a function of the microwave power 

P . The shape of the saturation curve is, amongst others, determined by the 

product 1 2TT [7]
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where 1B  is the microwave magnetic field, /e Bg  , and   is a measure 

for the homogeneity of the saturation. For a homogeneously broadened 

(Lorentzian) line, 1.5  . For an inhomogeneously broadened (Gaussian) line, 

0.5  . In order to determine 1 2TT  form the saturation curve, the amplitudes 

are fitted to
[8]
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where I is a scaling factor. The combination of equations 4.1 and 4.2 gives  
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4.3 Results 

The cw spectra of peptides OCTA7 and HEPTA3,6 are shown in Figure 4.1 and 

are representative for three-line spectra of class II and five-line spectra of class 

I peptides, respectively. The lines are referred to with 1,  0,  1im     and 

2,  1,  0,  1,  2IM      . The cw-EPR spectra of all peptides in this study 

are shown and analysed in reference [4]. For power saturation measurements, 

the complete spectra were measured at 31 power settings. Care was taken to 

measure each compound under comparable conditions (see Material and 

methods). The line intensities were obtained as shown by the red arrows in 

Figure 4.1 and plotted as a function of √P (Figure 4.2).   

 

 

 

Figure 4.1 Typical cw-EPR spectra of the peptides investigated here. The top 

spectrum, of OCTA7, is typical for mono-radicals and class II bi-radicals 

(conditions: one scan at 63.3 mW). The bottom spectrum, of HEPTA3,6, is typical 

for class I bi-radicals (conditions: 25 scans accumulated at 25.2 mW). The 

indexes 1,  0,  1
i

m     and 2,  1,  0,  1,  2
I

M       are used to refer to the three 

and five spectral lines, respectively. The red arrows show how the first-derivative 

amplitudes of the spectral lines were measured in the respective spectra. 

 

 



74 

 

     

 

 

 

Figure 4.2 Examples of saturation curves for mono-radical and class I peptides 

(NONA2,8) and the two class II peptides (HEXA1,5 and HEPTA3,6) with the first-

derivative amplitudes plotted against √P. Note that because of the definition of the 

amplitude (Figure 4.1), the amplitude of the 0IM   component is twice that of the 

remaining components. For each amplitude, the error bar is taken as twice the 

amplitude of the noise. The saturation curves that could be fitted to equation 4.2 are 

shown as grey lines. 
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The fits according to equation 4.2 (shown in Figure 4.2 as grey lines) yield the 

characteristic powers of half-saturation ( ½P ) and parameters  , which are 

listed in Table 4.1. The powers ½P , which we discuss first,  reflect the ease of 

saturation. For peptides NONA9, NONA2,8, HEPTA6, OCTA2,7, and OCTA7, ½P  

increases in the order of decreasing 
im , similar to the trend in increasing 

linewidths
[4]

. In the saturation curves for the HEXA1,5 (Figure 4.2b), the 

2IM    and 0 components saturate differently than the 1IM    components. 

The initial linear part of the curve is steeper, for 2IM    and 0, and the 

maximum of the amplitude is reached at lower powers than for the 1IM    

component. The saturation behaviour of the 1IM    component is fitted by 

equation 4.2, yielding the parameters given in Table 4.1. For the 2IM    and 

0 components the curves cannot be fitted with meaningful values. Also, fitting 

with two components did not yield unique solutions. Therefore, only values for 

the 1IM    components can be determined. Also, for this peptide no 

significant difference is observed between the ½P  values of the 1IM    and 

1IM    lines.  For peptide HEPTA3,6, the maximally available power of the 

instrument was not sufficient to reach full saturation (Figure 4.2c), therefore 

only a lower limit for ½P  can be determined: ½P  > 200 mW. 

The   values, which reflect whether the line is Lorentzian (  = 1.5) or 

Gaussian (  = 0.5), for most compounds are in the range for mixtures of these 

two fundamental lineshapes, showing that the lines are partially 

inhomogeneously broadened, presumably on account of hyperfine broadening. 

Only HEXA1,5 has an   value (  = 1.5) appropriate for a purely Lorentzian 

line, showing that the lineshape for this bi-radical is determined by a process, 
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which is so fast that it dominates the lineshape. For none of the compounds a 

purely Gaussian saturation behaviour (  = 0.5) is seen. 

 

 

 

With values for ½P  and  , we can in principle use equation 4.3 to calculate the 

product 1 2TT  of the peptides. However, the resonator efficiency Λ of the 

dielectric cavity has to be determined first. Finding Λ is presently under study. 

For now, we shall analyse the data in terms of ½P , which is the difference 

between the ½P  values of the mono- and bi-radicals: 

 

 ½ ½ biradical ½ monoradicalP P P   . (4.5) 
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The resulting ½P  values are listed in Table 4.1. Notably, for peptides 

NONA2,8, and OCTA2,7 the ½P  values do not differ significantly with respect 

to 
im . 
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4.4 Discussion 

Reliable power-saturation curves have been obtained for all species 

investigated in this study. By excluding oxygen from the samples, Heisenberg 

exchange by oxygen as an additional relaxation source is avoided.  

Saturation behaviour is expressed in the parameters   and ½P . We first 

discuss the   parameters of all compounds. The   values agree with the 

results of the lineshape simulations performed previously, with the exception of 

HEXA1,5. The latter bi-radical saturates as a pure Lorentzian (  = 1.5), 

whereas the lineshape was simulated with a mixture of Gaussian and 

Lorentzian lines. The origin of this discrepancy may be the two-component 

nature of the cw-EPR spectrum (see below). The fast relaxation in HEPTA3,6  

prevents the determination of  . 

Equation 4.3 shows that ½P  is inversely proportional to the product 

1 2TT , therefore, large ½P  values are identified with fast relaxation and, unless 

specified otherwise, we refer to relaxation as the product of the two relaxation 

times.  

The parameters obtained for ½P  show systematic trends. For the mono-

radicals and the class II bi-radicals, the ½P  values decrease with increasing im , 

suggesting a spin-spin relaxation process, because, for nitroxides, the spin-spin 

relaxation time T2 is im  dependent
[10-13]

 which is not the case for T1, see for 

example
[14]

. In particular, T2 increases with increasing im , and since T2 is 

inversely proportional to ½P , a decrease in ½P  with increasing im  is fully 

consistent with a T2 process.  

To compare the mono- and bi-radical relaxation we use the difference 

of ½P  values ( ½P , equation 4.5). To avoid interference from different 
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relaxation mechanisms, ½P
 
values are given for the same im  – transitions as 

much as possible.  

The two class I bi-radicals HEPTA3,6 and HEXA1,5  are in the regime of 

strong exchange interaction
[4]

 and, considering their ½P
 
values (Table 4.1), 

relax significantly faster than their mono-radical reference HEPTA6 and the 

class II bi-radicals. For HEPTA3,6 this relaxation is even so fast that only a 

lower limit for ½P  can be given. The saturation of three of the five lines of the 

HEXA1,5  bi-radical (components IM  =  2 and 0) could not be fitted to 

equation 4.2, whereas the IM  = 1 components could. Previously, the EPR 

spectra of this bi-radical were shown to consist of two species, one that has a 

five-line spectrum and one with a three-line spectrum, the three lines of which 

overlap with the IM  =  2 and 0 lines of the five-line spectrum. The two 

species were speculated to derive from two conformations of the bi-radical, a 

majority-fraction with a high J  value and a minority-fraction of low J [4]
. The 

presence of two species with presumably different relaxation behaviour that 

contribute to the IM  =  2 and 0 components will produce power saturation 

curves that consist of a superposition of curves with different ½P  and   values. 

We could not find models that consistently describe these curves, presumably 

due to the large number of parameters that have to be fit. The ½P  values given 

for HEXA1,5 derive from the IM  = 1 components of the bi-radical and the im  

= 1 of the mono-radical. The IM  = 1 line connects im  = 0 and im  = 1 

transitions, and therefore, the ½P  value can contain a contribution, which is 

im  dependent.  

The ½P  values of class II bi-radicals, similar to the class I bi-radicals, 

are larger than their mono-radical references. The ½P  values hardly depend on 
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im , an indication that mono- and bi-radical have similar T2 values. This is 

expected, because the spin-spin relaxation time T2 is associated with the 

rotation-correlation time of the peptides, and mono- and bi-radical peptides are 

size-matched and therefore should have very similar rotation-correlation times. 

This also shows that the additional relaxation mechanism operating in the bi-

radicals is most likely a T1-process. So we speculate that the spin-spin 

interaction in the bi-radicals opens another channel for T1 relaxation. 

In all four bi-radicals an additional relaxation process must be 

operative, and for the class II bi-radicals we show evidence that it is likely to be 

a T1 process. For class I bi-radicals the additional relaxation process is stronger, 

leading to larger ½P  values than in class II bi-radicals. A quantitative 

comparison for class I bi-radicals is not straightforward. The ½P values of one 

of these bi-radicals (HEXA1,5) contains a contribution from different im  

transitions, and in that case we cannot exclude that also T2 affects the ½P  

values. For the second one of the class I bi-radicals, HEPTA3,6, only a lower 

limit for ½P  and therefore ½P  could be given. Qualitatively, the bi-radical 

with the shortest distance between the nitroxides, HEPTA3,6, has the fastest 

relaxation.  

Within the class II bi-radicals, the ½P  value is larger for NONA2,8 

than for OCTA2,7, although for the latter peptide the TOAC residues are closer 

in the sequence. The through-space distance between the nitroxides in NONA2,8 

(1.26 nm) is shorter than for OCTA2,7 (1.46 nm), showing that the mechanism 

causing the additional relaxation in class II bi-radicals is related to through-

space interactions, rather than through-bond interactions.  

Spin-spin interaction can enhance relaxation via the dipole-dipole 

interaction or via the exchange interaction J . The dipole-dipole interaction 
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depends only on the distance between the spins, whereas J , generally thought 

to depend exponentially on distance, also can have a substantial through-bond 

component. The difference in relaxation of NONA2,8 and OCTA2,7 cannot be 

due to a through-bond exchange mechanism, because that would cause faster 

relaxation in OCTA2,7 opposite to what we observe. Also a through-space J  

interaction mediated process is not likely, because the distances between the 

spins in both bi-radicals seem too long given the exponential decay of J  with 

distance. Therefore, the dipolar interaction is the most likely candidate. To 

properly assess this point detailed quantum-mechanical calculations are needed, 

which we are starting off.  

In summary, the important finding is that by power saturation we can 

discriminate between two bi-radicals, NONA2,8 and OCTA2,7. These peptides 

have distances between the spin labels (1.26 nm and 1.46 nm, respectively) in a 

region that is difficult to address, and have almost identical cw-EPR spectra.  
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4.5 Conclusions 

We show that meaningful power-saturation curves can be obtained at room 

temperature and at concentrations relevant for biological samples. The signal-

to-noise ratio is sufficient to extract the relaxation parameters. We show that 

two bi-radical peptides, whose cw-EPR spectra are almost identical to those of 

their related mono-radicals, can be distinguished by their relaxation behaviour, 

showing that relaxation could be a monitor for distances of about 1.3 and 1.5 

nm, right in the range that is difficult to assess for EPR distance determination.   
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5 
EQUILIBRIUM UNFOLDING OF FLAVODOXIN FROM DOUBLE  

ELECTRON-ELECTRON RESONANCE DISTANCE CONSTRAINTS  

 

 

5.1 Introduction 

Protein folding is one of the most fascinating aspects of protein biochemistry. 

Insight into the process requires structural information on the protein chain at 

different folding states. Novel methods are sought to obtain experimental data 

on the folding process. Electron-paramagnetic-resonance techniques are well 

suited to follow the folding process, because they can determine distances and 

dynamics. Several EPR studies targeting folding of proteins have been 

reported, either based on steady-state
[1;2]

 or flow methods
[3-7]

.  

Here we describe double electron-electron spin resonance (DEER) 

experiments performed under equilibrium unfolding conditions. The goal is to 

directly monitor local structure of the protein during unfolding by monitoring 

the distance between spin labels. Previous studies employing EPR were 

focused on local mobility changes, for example
[1;3]

, or distance measurements 

by EPR-line broadening
[4]

.  

The present study describes the unfolding of holo-flavodoxin with 

guanidine hydrochloride (GuHCl)
[8]

 as unfolding agent. Flavodoxin folding has 

been the subject of several studies
[8-14]

. The native-state structure of holo-

flavodoxin is shown in Figure 5.1. Site-directed, spin-label mutagenesis was 
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performed to replace the native residue at position 131 by a cysteine. The 

native cysteine at position 69 serves as the second site for spin labelling with 

the nitroxide spin label MTSL. In the following we refer to the spin-labelled 

protein as fdx-SL. By DEER, we measure the distance between the two spin-

label nitroxide groups. We interpret the distance in the native state, i.e., in the 

absence of GuHCl and the development of the distance distribution as a 

function of GuHCl concentration.  

We demonstrate that we can follow the unfolding by DEER and detect 

changes in local structure upon unfolding. The distance distributions reveal the 

presence of proteins in conformations that are different from the native state 

and have well defined structure, indicative of folding intermediates.  

 

 

 

Figure 5.1 The structure of flavodoxin (fdx) based on the crystal structure (PDB entry 

1YOB) with the flavine cofactor (in yellow). The blue spheres show representative 

locations of the nitroxide of the spin label, which is attached at positions 69 and 131 in 

the protein, as derived from the MMM simulation of protein A in the crystallographic 

unit cell. b) Normalized equilibrium population of holo-fdx (thin solid line), native apo-

fdx (dots), off-pathway molten globule (short dashes) and unfolded protein (long 

dashes) as determined in reference [9]. The thick solid line represents the fraction of 

non-native molecules (i.e., the sum of off-pathway intermediate and unfolded protein).  
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5.2 Material and methods 

 

Purification and spin labelling of flavodoxin D131C  

The apo-fdx mutant D131C was generated and purified as described 

elsewhere
[8]

. This variant contains the wild-type cysteine residue at position 69 

as well as a cysteine residue at position 131. Prior to labelling of the protein 

with spin-label MTSL (Toronto Research Chemicals), the protein was unfolded 

in 5 M GuHCl, and incubated with dithiothreitol DTT to reduce the thiol-

groups of the cysteines. The reductant DTT was removed by gel filtration with 

a P6-DG column (Bio-Rad), which was equilibrated with 5 M GuHCl (Fluka) 

in 50mM potassium phosphate (Sigma-Aldrich) buffer at pH 7.5. Labelling 

with MTSL was carried out during 16 hours at 4 ˚C, using a 20-fold molar 

excess of spin label over protein. The resulting doubly spin-labelled protein 

was purified from excess spin label and GuHCl by gel filtration on a Superdex 

75 10/30 HR column (Pharmacia), which was equilibrated in 100 mM 

potassium pyrophosphate (Sigma-Aldrich) at pH 6.0. The apo-fdx thus 

obtained was incubated with an excess of flavin mononucleotide (FMN) to 

reconstitute the holoprotein. Free FMN was separated from holo-fdx by gel 

filtration on a Superdex 75 10/30 HR column.  

The purification and spin labelling of flavodoxin was done by Simon 

Lindhoud (Laboratory of Biochemistry at Wageningen University and Research 

Centre). 

 

Sample preparation 

Guanidine hydrochloride (GuHCl) was used as a denaturant for the folding 

study. Due to the hygroscopy of GuHCl, it was not possible to use conventional 

means to prepare solutions with this compound in accurate concentrations. 
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Instead, we made a stock solution with an accurate concentration of GuHCl by 

measuring the refractive index of this solution and by using the relation  

 

    
2 3

57.147 38.68 91.60Z N N N      , (5.1) 

 

where Z  is the concentration of GuHCl in M and N  is the difference 

between the refractive indices of the buffer solution with and without 

GuHCl
[15]

. The final concentrations of GuHCl used in the DEER measurements 

are mentioned in Table 5.1. 

In each of the measurements, the protein concentration was about 0.1 

mM. The buffer was 100 mM potassium pyrophosphate (KPPi), pH 6.0, with 

20% glycerol. The protein solutions were placed in quartz tubes with an id/od 

of 2.3 mm/3.0 mm. The samples that contained GuHCl were incubated at room 

temperature and in the dark for 12 hours.  

A quantitative analysis of the spin-label concentration was made by 

double integration of the 80 K cw-EPR spectrum and comparison to the 

spectrum of MTSL with known spin concentration. Based on this analysis, we 

found that at least 83% of the fdx cysteines were spin labelled. The cw-EPR 

spectrum of a doubly labelled species is expected to show line broadening 

compared to the spectrum of a monoradical reference, when measured under 

the same conditions, if the spin labels are separated by less than 2 nm
[16]

. 

 

Continuous wave EPR-measurements 

The cw-EPR measurements were performed at 9.8 GHz using an ELEXSYS E 

680 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped 

with a rectangular cavity and a cryostat. A flow of liquid helium was directed 

through the cavity to maintain a temperature of 80 K. The spectra were 

recorded at a microwave power of 0.16 mW with a field sweep of 20 mT and 
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2048 field points. Field modulation at a frequency of 100 kHz was employed 

with an amplitude of 0.2 mT. The time constant was 41 ms with a conversion 

time of 41 ms. The measurement time was 15 to 30 minutes per sample. 

DEER measurements and data analysis 

The four-pulse DEER experiments were performed at 9.3 GHz using an 

ELEXSYS E 680 spectrometer (Bruker BioSpin GmbH, Rheinstetten, 

Germany) equipped with a split-ring cavity and a cryostat, Oxford model CF 

935. A flow of liquid helium was directed through the cavity to maintain a 

temperature of 40 K. The DEER sequence is described in section 1.4. The 

separation between the frequencies was about 65 MHz. The observer pulses 

had lengths of 16 and 32 ns, the pump pulse had a length of 16 ns. The delay 

times were 1τ  = 140 ns and 2τ  = 3.6 μs. The total time of a DEER 

measurement was about 15 hours. 

Each of the DEER measurements was directly followed by a reference 

measurement. The sample for these reference measurements was a solution of a 

rigid biphenyl bi-radical in methyl tetrahydrofuran, contained in a quartz tube 

with an id/od of 2.3 mm/3.0 mm. Oxygen had been removed from the solution 

by four repeated freeze-thaw cycles, followed by flame sealing to close the 

tube. 

The DEER data was analysed and fit with the DeerAnalysis2011 

program
[17]

. We assumed a homogenous three-dimensional background. The 

validation option within the software was used to find a consistent background 

start, resulting in 600 ns for the protein solutions with low denaturant 

concentrations (0, 0.3 M, 0.8 M, and 2.3 M) and 1720 ns for the high 

concentrations (3.5 M and 4.5 M).  
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5.3 Results 

We study the unfolding of the doubly spin-labelled fdx mutant 131C (fdx-SL), 

which contains a native cysteine at position 69 and an engineered cysteine at 

position 131. The protein used is 85% spin labelled (see Materials and 

methods) and the sample did not contain free spin label, as determined by cw 

EPR experiments at room temperature (data not shown). 

 

 

 

Figure 5.2 The cw-EPR spectra recorded at 80 K of MTSL (black), native 

fdx-SL (red), fdx-SL + 2.3 M GuHCl (pink), and fdx-SL + 4.5 M GuHCl 

(blue). The spectra are shifted vertically for better viewing. 

 

 

 

The results of frozen solution cw EPR are shown in Figure 5.2. Regarding the 

lineshape, the cw-EPR spectra of the protein in frozen solution are identical to 

the spectra of a monomeric reference, thus no line broadening was detected. In 

Figure 5.3, all DEER-time traces are collected. Figure 5.3a shows the raw time 

traces and the background, and Figure 5.3b the background corrected traces. 

First, we will describe the results obtained on fdx-SL in the native state, i.e., in 
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the absence of GuHCl, and then we will describe the results of the series of 

DEER experiments performed on fdx-SL at different GuHCl concentrations.  

The DEER-time trace of fdx-SL in the absence of GuHCl, shown in 

Figure 5.3a, has an initial decay and hardly any structure, i.e., visible 

modulation. The modulation depth corresponds to that expected for two 

coupled spins, which shows that the entire protein population contributes to the 

distance distribution shown in Figure 5.4. The distribution has two peaks with 

maxima at 3.77 nm and 4.62 nm, i.e., separated by 0.85 nm and widths (full 

width at half maximum - fwhm) of 0.37 nm and 0.39 nm, respectively. The 

peak at 3.77 nm has a shoulder at shorter distances indicating a third distance 

component.  

 

 

      

 

Figure 5.3 The DEER traces for fdx-SL measured at different concentrations of 

GuHCl. a) The traces obtained from the DEER measurements are shown with 

their optimal background fit (in grey). Individual traces are normalized and 

shifted vertically for better viewing. b) The traces obtained after division by the 

background fit. In b) the fitted traces (in grey) correspond to distance 

distributions (  = 100) that are shown in Figure 5.4 and 5.5b. 
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The measured distances are between the nitroxide groups of the two spin labels. 

Each nitroxide group is separated from the protein backbone by the spin-label 

linker, which has a length of about 0.5 nm. Therefore, the spin-label linker has 

to be taken into account to relate the distance measured by DEER to the protein 

structure. Spin-label-linker conformations were calculated by the rotamer-

library based method MMM
[18]

 with the X-ray structure of holo-fdx as input 

(PDB entry 1YOB
[19]

). The X-ray structure of fdx contains two proteins in the 

asymmetric unit of the crystal (monomer A and monomer B). The distance 

distributions calculated for the two proteins in the asymmetric unit are shown in 

Figure 5.4. The MMM distance distributions of both monomers, A and B, each 

have two peaks, which are separated by 0.38 nm (monomer A) and 0.40 nm 

(monomer B). The two peaks derive from two families of linker conformations, 

since, in the X-ray structure, the protein backbone has a unique conformation. 

In Figure 5.1 selected locations of the nitroxide are shown as spheres. 

Particularly, the spin label at position 69 has only few accessible 

conformations, whereas the spin label at 131 has an extensive cloud of 

nitroxide positions, suggesting that the two families derive from two sets of 

conformations of the spin label at position 69. The centres of the distributions 

of monomer A and B differ by 0.15 nm. Figure 5.4 further shows that the 

distributions derived from the X-ray structure are centred at shorter distances 

than those obtained from the DEER measurement at 0.3 M GuHCl. The 

distance distribution at 0.3 M GuHCl (Figure 5.5), differs from that of fdx-SL 

in the absence of GuHCl (Figure 5.4), although for both samples the protein 

should still be fully folded
[8]

. 
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Figure 5.4 Distance distribution of native fdx-SL with regularization 

parameter 100 (black) and those derived by simulation with MMM 

from the crystal structure of fdx (blue, purple). Crystal structure: PDB 

entry 1YOB, using monomers A and B in the crystallographic unit cell. 

 

 

 

Figure 5.5a and b show distance distributions obtained at different GuHCl 

concentrations. Data from two regularization parameters
[20]

 are shown: a) 

appropriate for the distributions at GuHCl concentrations ≤ 2.3 M and b) for > 

2.3 M. To monitor the unfolding we use the distance distribution of 0.3 M 

GuHCl as a reference. With respect to the modulation depth (Figure 5.3b), the 

DEER data fall into two regimes: from 0.3 M to 2.3 M GuHCl, the modulation 

depth accounts for > 94% of the protein population. From 2.3 to 3.5 M GuHCl 

the protein population that contributes to the distance distribution halves (Table 

5.1), showing that at 3.5 M GuHCl a large fraction of the protein is in 

conformations where the spin-spin distance of the two nitroxides is outside the 

measurement range of the DEER experiment, i.e., smaller than 2 nm and/or 
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larger than 6 nm. Given the low modulation depth, and the smooth decay of the 

DEER time trace, the exact shape of the distance distribution is less certain than 

the distribution for the lower GuHCl concentrations. A higher regularization 

parameter, i.e.,  = 100 has to be used to describe the distributions at 3.5 and 

4.5 M properly, as will be discussed below.  

 

 

 

To describe the distance distributions in Figure 5.5a, Gaussian bands are fitted 

to the most intense peaks (Figure 5.5c). Several smaller, less intense peaks, 

marked by an asterisk, were shown not to be significant by the suppression tool 

in DEER analysis, meaning that their contribution to the DEER time-trace does 

not cause a significant deviation, given the noise of the curve. The distributions 

at 0.3 M and 0.8 M GuHCl are well described by three Gaussians (labelled N1 – 

N3 in Table 5.2) with slightly different parameters for these two GuHCl 

concentrations. As an illustration, from 0.3 to 0.8 M GuHCl, the peak N1 shifts 

by 0.16 nm to lower distances and all widths increase; the largest increase in 
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width is observed for the peak N3, which increases by 0.09 nm. The distribution 

at 2.3 M GuHCl requires five Gaussians. Three of them (N1 – N3) are similar to 

those observed at lower GuHCl concentrations. A new peak appears at 3 nm 

(MG1) and a shoulder at peak N2 shows an underlying additional peak (MG2). 

The area under the MG1 and MG2 peaks accounts for in total 17% of the five 

Gaussians in the distribution. 
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Figure 5.5 Effect of GuHCl concentration on distance distributions of fdx-SL. The 

distance distributions were obtained with the regularization parameter of a) α = 10 and 

b) α = 100, and c) fits of Gaussians to the top three distance distributions in a).  
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The mean distance of the distribution r   and the width, given as the 

standard deviation  , reveal the overall features of the distance distributions 

for all GuHCl concentrations (Table 5.1). The mean distance remains almost 

constant between 0.3 and 2.3 M GuHCl and increases by 1 nm at 3.5 and 4.5 M 

GuHCl, with concomitant tripling of the standard deviation. Figure 5.6 is a 

graphical representation of the data in Table 5.1.  

 

 

       

Figure 5.6 Representations of the unfolding of fdx-SL as a function of the 

concentration of GuHCl through three observables derived from the EPR experiments: 

a) the number of spins, b) the mean distance r   for   = 100, and c) the standard 

deviation   for   = 100. The red lines merely serve as a guide to the eye. The figures 

are graphical representations of the data in Table 5.1. 

 

 

 

 

 

 

 

 

 

  



98 

 

5.4 Discussion 

We have investigated the unfolding of fdx in the presence of different amounts 

of the unfolding agent GuHCl. Before describing the changes in protein 

structure under the influence of the unfolding agent, the distance distribution of 

the native fdx is discussed in terms of what is known about the structure of fdx 

in the folded state.  

 

The native state of holo-fdx 

In the folded, native state, fdx is a globular protein with a well-defined, single 

structure. Nevertheless, there are two peaks in the distance distribution of the 

native protein (Figure 5.4), the widths of which are typical of the intrinsic 

flexibility of the spin-label side chain attached to a well-structured protein
[22]

. 

Modelling the spin-label side-chain conformation with MMM also yields two-

peaked distance distributions, albeit at shorter distances than observed 

experimentally, showing that the two distances observed in the measured 

distance distribution stem from two families of spin-label linker conformations. 

The overall longer distances measured could derive from a more extended 

conformation of the loop between residues 126 to 148, which contains one of 

the spin-label sites, residue 131. Changes in the conformation of the loop will 

affect the mutual distance between the spin labels at position 131 and 69. The 

second factor is the protein structure around the cysteine at position 69. In the 

native protein, the cysteine at this position points to the interior of the protein. 

In the spin-labelled state, this cysteine is more likely to switch to a 

conformation that projects the spin-label side chain to the exterior of the 

protein, thereby increasing the distance between the nitroxides of the two spin 

labels. Such a change in the side-chain and backbone conformation is not 

accounted for in MMM, explaining the difference between the MMM and the 

DEER-derived distances of the native protein. The distance distribution 
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observed by DEER, therefore, is compatible with what is known about the 

native structure of fdx. At a GuHCl concentration of 0.3 M, the protein is in the 

fully folded state
[8]

, however, the distance and distance distribution differs 

slightly from that of fdx in the absence of GuHCl:  The peak at 3.8 nm splits 

into two, leading to a three-peaked distance distribution described by the 

Gaussian peaks N1 – N3. We attribute these changes to a local influence of 

GuHCl on the spin-label conformation.  

 

Unfolding of fdx followed by DEER 

Similarly to previous EPR studies on other proteins
[1;3]

, also for fdx we find 

systematic changes of the EPR parameters with respect to the GuHCl 

concentration, showing that DEER provides a method to follow protein 

unfolding. To analyse the changes in detail, we use the distance distribution of 

0.3 M GuHCl as a reference to ensure that the effects of GuHCl derive from the 

unfolding of the protein and not from a local influence of GuHCl on the spin-

label conformation.  

According to the DEER results, the most remarkable change in the 

structure of fdx during unfolding occurs between 2.3 and 3.5 M GuHCl. Up to 

a concentration of 2.3 M GuHCl, the distance distributions account for almost 

the entire protein population and the shape of the distance distribution is that of 

a structured protein. At 3.5 and 4.5 M GuHCl, the distance distributions 

become broader and the average distance r   becomes larger with increasing 

GuHCl concentrations (Table 5.1). A larger fraction of fdx-SL has distances 

that are outside the DEER observation window, i.e., below 2 nm or above 6.5 

nm. Distances below 2 nm can be excluded, because they would give rise to a 

dipolar broadening in the frozen solution cw EPR spectra, which does not occur 

(see Results). In summary, the protein goes from a state with a limited number 

of conformations and a relative compact structure at lower GuHCl 
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concentrations to a large number of conformations and a more extended state at 

GuHCl concentrations of 3.5 M and above, in keeping with a largely unfolded 

state. In the following we take a closer look at the lower GuHCl concentrations. 

At concentrations of 2.3 M GuHCl and below, the protein has all 

characteristics of a structured protein. To interpret the results at these lower 

GuHCl concentrations, we take the three-peak distance distribution (N1 – N3, 

Table 5.2) in Figure 5.5a, 0.3 M GuHCl, as the signature of natively folded 

protein. Thus, at 0.8 M GuHCl, the protein is predominantly in the native 

conformation. There are small differences between the parameters of N1 – N3 at 

0.3 and 0.8 M GuHCl, which we interpret as changes in the local spin-label 

environment by GuHCl (Table 5.2).  

At 2.3 M GuHCl, additional distance peaks (MG1 and MG2, Figure 

5.5a and c, Table 5.2) appear. The widths of these peaks are in the order of the 

widths of the native state peaks, showing that in the corresponding state the 

protein has a well-defined structure. To estimate the populations of the different 

states of the protein at 2.3 M GuHCl, not only the relative contribution of the 

distance peaks MG1 and MG2 to the remaining peaks N1 – N3, but also the 15% 

of protein with distances outside the DEER range are taken into account. Total 

populations of 72% native, 14% folding intermediate, and 15% unfolded 

protein result. In this interpretation we count the entire population under the 

peaks N1 – N3 as native protein, however, this need not be. The relative 

intensities of the peaks N1, N2 and N3 at 2.3 M GuHCl are not identical to those 

at lower GuHCl concentrations. The deviation is largest for N1, which has an 

intensity that is 11% smaller than in the native protein (0.3 M GuHCl). A 

folding intermediate that accidentally has a distance similar to one of the native 

ones, or, perhaps more likely, an underlying broader distance distribution, 

could change the apparent relative intensities of the peaks N1 – N3. We, 

therefore, consider the native state population of 72% as an upper limit. 
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Counting, somewhat arbitrarily, the entire loss of intensity at N1 as population 

of folding intermediate would result in 61% native and 25% folding 

intermediate, which we estimate to be lower limits of native-state population, 

and upper limits of folding-intermediate population, respectively.  

Therefore, we postulate that between 14% and 25% of the protein at 

2.3 M GuHCl are in a folding-intermediate state, characterized by distance 

contributions MG1 and MG2. Given that the MG1 and MG2 distances differ by 

1.24 nm, MG1 and MG2 presumably reflect proteins in different conformations, 

rather than a single backbone conformation with different families of nitroxide 

side-chain orientations. Consequently, a certain population of the protein 

attains a fold, in which residues 69 and 131 are closer to each other than in the 

native state (MG1), and one in which the distance is intermediate amongst the 

distances seen in the native state (MG2).  

The presence of a folding intermediate was also suggested by recent 

single-molecule Förster resonance energy-transfer (FRET) experiments, which 

targeted the distance between the same two positions
[23]

. Below about 1.5 M 

GuHCl, this intermediate has a shorter inter-dye distance than the native 

protein.  At higher GuHCl concentrations, this intermediate gradually unfolds 

into a less well-structured state, characterized by longer distances than in the 

native protein. The coexistence of the intermediate with the native-like protein 

seemed to occur at overall lower GuHCl concentrations than in the present EPR 

study. This is reasonable, given that in the optical study apo-fdx was 

investigated, which has a lower stability and therefore unfolds at lower GuHCl 

concentrations than the holo-fdx we study here. Furthermore, differences are to 

be expected because the labels are different. For EPR nitroxide spin labels are 

used, whereas the labels used in the FRET-experiments are more bulky and 

could additionally destabilize the folding intermediate. Further differences 
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could arise from the different intervals between the GuHCl concentrations in 

both studies.  

We show that by DEER local structure in the unfolding protein can be 

measured and present evidence for a folding intermediate that is locally more 

compact than the native state and is in coexistence with a folding intermediate 

that has a distance between residues 69 and 131 that is similar to the native 

state. The DEER method provides distance distributions. Their widths give 

information about the degree of structure of a particular state and thereby 

enable us to discriminate between unfolded states and folding intermediates.  
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SUMMARY 

 

This thesis describes four studies of the structure and dynamics of biomolecules 

by electron paramagnetic resonance (EPR). In Chapter 1, the principles of this 

magnetic resonance are introduced. 

 

Membrane fusion, the merging of one membrane vesicle with another, is an 

essential biomolecular process in eukaryotes. The mechanistic details of this 

fusion remain to be unravelled. Within this framework, Chapter 2 presents a 

study on the interaction of two types of small biomolecules, the peptides E and 

K. The peptides are designed such that they form a heterodimer when mixed in 

solution, i.e., one type of peptide forms a dimer with the other type, but not 

with the same type of peptide. We have investigated the peptides by means of 

paramagnetic resonance and concluded that heterodimer formation is detectable 

by this technique. Next, we intend to couple the peptides to membrane vesicles. 

The model constructs created this way are expected to be capable of membrane 

fusion. Our ultimate goal is to apply EPR on the model constructs in order to 

reveal structural information of the constructs during membrane fusion.   

 

Numerous types of protein-protein interactions are involved in cell metabolism, 

muscle contraction, and signal transduction. These interactions range from 

static to transient. Chapter 3 reports on the investigation of the transient 

interaction between the proteins cytochrome c (Cc) and cytochrome c 

peroxidase (CcP). A spin label was placed at the surface of Cc. Conventional 

EPR (9 GHz) was applied to Cc mixed with different concentrations of CcP. 

The spectra show that the spin label becomes immobilized upon complex 

formation. Principal component analysis (PCA) was used to disentangle the 

EPR spectra. The analysis yielded two pure-component spectra, which 
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correspond to a slow fraction and a fast fraction of the spin label. The findings 

are in agreement with previous studies, which shows that the interaction of Cc 

and CcP involves a static, stereo-specific complex and a more dynamic, loosely 

bound encounter complex. The PCA analysis proved to be effective and – in 

combination with EPR – can be considered an excellent tool to study protein-

protein interactions.  

 

A useful way to obtain structural information of a biomolecule is by measuring 

the distance between two points, e.g. between two paramagnetic centres. 

Distances in the range of 1.5 nm to 6.0 nm are detectable by pulse EPR 

techniques. Distances shorter than 1.5 nm are more challenging to access. 

Chapter 4 explores the possibility of relating the exchange interaction (J 

coupling) between two spins to short-range distances. We have investigated 

four peptides that each contain two spin labels, separated by two, three, four, or 

five amino acids. Previously, a continuous-wave EPR study had shown that in 

two of these peptides the J coupling is significantly larger than in the other two 

peptides. In the present study, power-saturation experiments were applied to the 

peptides to obtain spin-relaxation parameters. We observed that the rate of 

relaxation increases strongly when the spin labels are closer together. We 

attribute this to a correspondingly higher J coupling. This makes it possible to 

discriminate between pairs of spin labels at different positions in the peptides. 

We posit that power saturation experiments could be used as a tool for short-

range distance determination. In contrast to pulse EPR to determine distances, 

power-saturation experiments can be done in liquid solution and at room 

temperature, both biologically relevant conditions. 

 

Protein folding is a crucial process in every living cell. Correct protein folding 

generates a three-dimensional structure that is capable of carrying out a 
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biological function. Incorrect protein folding is thought to be the cause of 

certain diseases, such as cystic fibrosis and Alzheimer’s disease. Chapter 5 

describes a novel method to obtain experimental data on the folding process. 

Two spin labels were placed at different positions in the protein flavodoxin. 

With double electron-electron spin resonance (DEER) we measured the 

distance between the spin labels on flavodoxin in different concentrations of 

denaturant. The distance distributions obtained by DEER show that local 

structure in the unfolding protein can be measured and present evidence for a 

folding intermediate that is locally more compact than the protein in its native 

state. We demonstrate that we can follow the unfolding of flavodoxin by DEER 

and detect changes in local structure upon unfolding. 
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SAMENVATTING 

 

Dit proefschrift beschrijft vier onderzoeken aan de structuur en dynamica van 

biomoleculen met behulp van elektron paramagnetisch resonantie (EPR). In 

Hoofdstuk 1 worden de principes van deze magnetische resonantietechniek 

geïntroduceerd.  

 

Membraanfusie, het samengaan van twee membranen tot één, is in eukaryoten 

een essentieel biomoleculair proces. De details van het mechanisme van 

membraanfusie moeten nog worden ontrafeld. In dit kader beschrijft Hoofdstuk 

2 een studie van de interactie tussen twee typen van kleine biomoleculen, de 

peptiden E en K. De peptiden zijn zodanig ontworpen dat zij een heterodimeer 

vormen wanneer zij in oplossing gemengd worden, d.w.z. een type peptide 

vormt een dimeer met het andere type, maar niet met hetzelfde type peptide. 

We hebben de peptiden met EPR onderzocht en geconcludeerd dat de vorming 

van het heterodimeer gedetecteerd kan worden met deze techniek. In de 

volgende fase zijn wij van plan om de peptiden te koppelen aan 

membraanvesikels. Wij vermoeden dat de modelconstructen die zo ontstaan in 

staat zijn om membraanfusie te ondergaan. Ons uiteindelijke doel is om EPR 

toe te passen op de modelconstructen om informatie te verkrijgen over hun 

structuur tijdens membraanfusie.  

 

Talloze vormen van eiwit-eiwit-interacties zijn betrokken bij celmetabolisme, 

spiercontractie en signaaloverdracht. Deze interacties variëren van statisch tot 

dynamisch. Hoofdstuk 3 rapporteert over een studie naar de dynamische 

interactie tussen de eiwitten cytochroom c (Cc) and cytochroom c peroxidase 

(CcP). Een spinlabel werd op het oppervlak van Cc geplaatst. Conventionele 

EPR (9 GHz) werd toegepast op Cc in mengsels met verschillende 
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concentraties van CcP. De spectra laten zien dat het spinlabel geïmmobiliseerd 

wordt ten gevolge van complexvorming. Principal component analysis (PCA) 

werd gebruikt om de spectra te ontrafelen. De analyse leverde de spectra van 

twee zuivere componenten op die overeenkomen met een langzame fractie en 

een snelle fractie van het spinlabel. De bevindingen stemmen overeen met de 

resultaten van eerdere studies, wat aantoont dat zowel een statisch, 

stereospecifiek complex als een dynamischer, los gebonden encounter complex 

betrokken zijn bij de interactie tussen Cc en CcP. De PCA-analyse bleek 

effectief te zijn en kan – in combinatie met EPR – worden beschouwd als een 

uitstekend gereedschap om eiwit-eiwit-interacties te bestuderen. 

 

Een nuttige manier om informatie te verkrijgen over de structuur van een 

biomolecuul is door de afstand tussen twee punten te meten, bijvoorbeeld 

tussen twee paramagnetische centra. Afstanden in het bereik van 1.5 nm tot 6.0 

nm zijn goed waarneembaar met gepulste EPR-technieken. Afstanden kleiner 

dan 1.5 nm zijn moeilijker te meten. Hoofdstuk 4 verkent de mogelijkheid om 

de J–koppeling (exchange interaction) tussen twee spins te relateren aan hun 

afstand. We hebben vier peptiden onderzocht, elk met twee spinlabels die 

gescheiden zijn door twee, drie, vier respectievelijk vijf aminozuren. Een 

voorafgaande continuous-wave EPR-studie heeft laten zien dat in twee van 

deze peptiden de J–koppeling significant groter is dan in de andere twee 

peptiden. In de huidige studie werden verzadigingsexperimenten toegepast op 

de peptiden om relaxatieparameters van de elektronspins te verkrijgen. We 

hebben gezien dat naarmate de spinlabels dichter bij elkaar zijn, de relaxatie 

sneller is, wat wij toeschrijven aan een navenant hogere J–koppeling. Dit maakt 

het mogelijk om onderscheid te maken tussen paren van spinlabels op 

verschillende posities in de peptiden. Wij concluderen dat 

verzadigingsexperimenten gebruikt kunnen worden voor het bepalen van korte 
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afstanden. In tegenstelling tot gepulste EPR-technieken om afstanden te 

bepalen, kunnen verzadigingsexperimenten worden uitgevoerd onder 

biologisch relevante condities, namelijk in oplossing en bij kamertemperatuur. 

 

Eiwitvouwing is in iedere levende cel een cruciaal proces. Correcte vouwing 

van het eiwit leidt tot een driedimensionale structuur die in staat is om een 

biologische functie uit te voeren. Foutieve vouwing van het eiwit wordt als de 

oorzaak gezien van aandoeningen als taaislijmziekte en de ziekte van 

Alzheimer. Hoofdstuk 5 beschrijft een nieuwe methode om experimentele 

gegevens over het vouwingsproces te verkrijgen. Twee spinlabels werden op 

verschillende plekken van het eiwit flavodoxine geplaatst. Met double electron-

electron resonance (DEER) hebben we de afstand gemeten tussen de spinlabels 

op flavodoxine in verschillende concentraties denaturant. De met DEER 

verkregen afstandsverdelingen laten zien dat de lokale structuur in het 

ontvouwende eiwit kan worden gemeten en levert bewijs voor een 

vouwingsintermediair dat lokaal compacter is dan het eiwit in de natieve 

conformatie. We tonen aan dat we de ontvouwing van flavodoxine met DEER 

kunnen volgen en veranderingen in de lokale structuur kunnen meten die 

samengaan met ontvouwing. 

 

  

 

 

 

 

 

 



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 
 

CURRICULUM VITAE 

 

Martin van Son was born on 9 January 1982 in Rotterdam, the Netherlands. 

After attending the Erasmiaans Gymnasium in Rotterdam, he studied chemistry 

at Leiden University. He completed research projects in coordination 

chemistry, solid-state chemistry, biophysical chemistry, and analytical 

chemistry, and graduated in August 2009. During his studies, he worked as a 

data processor at Fugro Aerial Mapping, which he continued afterwards. In 

May 2010, he started his doctorate research at the MoNOS group, Leiden 

Institute of Physics, under the supervision of dr. M. Huber and prof. dr. E.J.J. 

Groenen. His research was on protein interactions studied by electron-

paramagnetic-resonance spectroscopy, the results of which are presented in this 

thesis. 

As of August 2014, he is a lecturer in chemistry at the University of 

Applied Sciences in Leiden. 

 

 

 

 

 

 

 

 

 

 

 

 



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 
 

LIST OF PUBLICATIONS 

 

H. Kooijman, M. van Son, S. Tanase, E. Bouwman, J. Reedijk, A.L. Spek: mu-oxo-

bis{chloro[N-(2-methoxyethyl)-N,N-bis(pyridin-2-ylmethyl)amine-kappa (4)-

N,N',N'',O]iron(III}bis(trifluoromethanesulfonate) acetonitrile disolvate. Acta 

Crystallographica Section E-Structure Reports Online 61 (2005) M1042-M1044. 

 

S. Tanase, M. van Son, G.A. van Albada, R. de Gelder, E. Bouwman, J. Reedijk: Self-

assembly of extended structures through non-coordination intermolecular forces: 

Synthesis, crystal structures, and properties of metal complexes with 5-methyl-2-

pyrazinecarboxylate. Polyhedron 25 (2006) 2967-2975. 

 

G.J. Janssen, E. Daviso, M. van Son, H.J.M. de Groot, A. Alia, J. Matysik: Observation 

of the solid-state photo-CIDNP effect in entire cells of cyanobacteria synechocystis. 

Photosynthesis Research 104 (2010) 275-282. 

 

M.H. Shabestari, M. van Son, A. Moretto, M. Crisma, C. Toniolo, M. Huber: 

Conformation and EPR characterization of rigid, 3(10)-helical peptides with TOAC 

spin labels: Models for Short Distances. Biopolymers 102 (2014) 244-251. 

M. van Son, T.T. Zheng, P. Kumar, D. Valdink, J. Raap, A. Kros, M. Huber: Towards 

artificial membrane fusion: EK-peptides, the coiled-coil zipper. Biophysical Journal 

106 (2014) 506A. 

 

M. van Son, S. Lindhoud, C.P.M. van Mierlo, M. Huber: Equilibrium unfolding of 

flavodoxin from double electron-electron resonance distance constraints. To be 

published. 

 

M. van Son, J. Schilder, P. Gast, A. Blok, M. Ubbink, M. Huber: The complex of 

cytochrome c with cytochrome c peroxidase studied by spin-label, multi-frequency 

electron paramagnetic resonance. To be published. 

 

M. van Son, T.T. Zheng, P. Kumar, D. Valdink, J. Raap, A. Kros, M. Huber: 

Heterodimer formation of membrane fusion E/K-peptides studied by continuous-wave 

EPR. To be published. 

 

 

 

 



116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 
 

ACKNOWLEDGEMENTS 

 

Many people have contributed to the work that is presented in this booklet. I 

gladly mention them here. 

I am most grateful to my doctoral supervisors, Martina Huber and 

Edgar Groenen, who allowed me to work and learn in the MoNOS group. They 

have taught me much about science, writing, and presenting. I carry their 

valuable lessons with me, whichever paths I shall tread in the future.  

I wish to express my gratitude to the graduate students in the MoNOS 

group during the years that I was there: Maryam Hashemi Shabestari, Pravin 

Kumar, Faezeh Nami, and Gabriele Panarelli. I appreciated the experimental 

work we jointly performed, our discussions about EPR, and the laughter we 

shared. I was very fortunate that Silvia Sottini and Mykhailo Azarkh were 

working as postdocs in the group. Many times I knocked on their doors to ask 

them questions about EPR and other subjects. They were always prepared to 

share their knowledge with me. Big thanks to Matthijs van der Wild, who 

completed his bachelor’s project in the MoNOS group. Matthijs performed the 

larger part of the DEER measurements that are shown in Chapter 5. I thank 

Henriette van Leeuwen and everybody else who has contributed his or her bit 

to the MoNOS group.  

In 2011, Jos Disselhorst, Jan Schmidt, Huib Blok, Bert Crama, and 

Peter Gast joined forces to develop a new insert for the W-band spectrometer in 

order to improve its performance. The actual design and manufacturing of the 

insert was done by Harmen van der Meer. In December 2012, when the first 

tests were done, it became clear that the newly built insert outperformed the 

‘old’ Bruker insert in all aspects. All of the W-band spectra presented in 

Chapter 3 were recorded with this new insert. I have greatly benefited from the 

development that was achieved by these experts.  



118 

 

I am thankful to Alexander Kros, Jan Raap, Tingting Zheng, Martin 

Rabe and Dayenne Valdink for their collaboration in the work of Chapter 2. I 

thank Marcellus Ubbink for allowing me to use the biochemical facilities of the 

Protein Chemistry group and for his collaboration in the work of Chapter 3. 

The biochemical work was uncharted territory when I started it. Luckily, I was 

aided by Marcellus’s students: Qamar Bashir, Bharat Somireddy Venkata, 

Sandra Scanu, Jia-Ying Guan, Yoshitaka Hiruma, Wei-Min Liu, Jesika 

Schilder, Monika Timmer, and Simon Skinner. Special thanks to Anneloes 

Blok, whose constant support eventually led to a satisfactory labelling degree 

of cytochrome c. I thank Claudio Toniolo for his collaboration in the work of 

Chapter 4. Carlo van Mierlo and Simon Lindhoud are acknowledged for their 

collaboration in the work of Chapter 5. 

It was a privilege to have the support of several technical departments. 

Hans van Kuyk is greatly acknowledged for supplying the liquid helium and 

nitrogen that I needed to do measurements at low temperatures. Gert Koning 

installed a new water pump needed to cool the EPR equipment. Ruud 

Kuyvenhoven and Arno van Amersfoort supported me whenever I needed help 

with computers. Frans Folst and Tom Jansen, the glassblowers at the Leidse 

instrumentmakers School, helped me with customized quartz tubes on 

numerous occasions. 

 

It has been a joy to work with so many people within the Leiden 

Institute of Physics and the Leiden Institute of Chemistry. I am privileged to 

have met people from a large variety of cultures and I feel blessed that many of 

them have become my friends.  

 


