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CHAPTER 4

PROGRAMMABLE
MECHANICAL

METAMATERIALS: THE ROLE
OF GEOMETRY

In this chapter, published as an article in Soft Matter [62], we experimen-
tally and numerically study the role of geometry for the mechanics of bi-
holar metamaterials, which are quasi-2D slabs of rubber patterned by cir-
cular holes of two alternating sizes. We recently showed how the response
to uniaxial compression of these metamaterials can be programmed by lat-
eral confinement [57]. In particular, there is a range of confining strains εx
for which the resistance to compression becomes non-trivial - non-monotonic
or hysteretic - in a range of compressive strains εy. Here we show how
the dimensionless geometrical parameters t and χ, which characterize the
wall thickness and size ratio of the holes that pattern these metamateri-
als, can significantly tune these ranges over a wide range. We study the
behavior for the limiting cases where the wall thickness t and size ratio χ
become large, and discuss the new physics that arises there. Away from
these extreme limits, the variation of the strain ranges of interest is smooth
with porosity, but the variation with size ratio evidences a cross-over at
low χ from biholar to monoholar (equal sized holes) behavior, related to
the elastic instabilities in purely monoholar metamaterials [46]. Our study
provides precise guidelines for the rational design of programmable biho-
lar metamaterials, tailored to specific applications, and indicates that the
widest range of programmability arises for moderate values of both t and
χ.
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4.1. INTRODUCTION

4.1 Introduction

A currently emerging theme is the use of frustration to obtain more com-
plex behavior, including multistability [63–65]. We recently showed how
to leverage frustration and pre-stress in soft mechanical metamaterials to
obtain a (re)programmable mechanical response [57]. These metamateri-
als are quasi-2D slabs of rubber, patterned with a square array of circular
holes of alternating sizes D1 and D2 (Fig. 4.1). By contrast with the highly
symmetric monoholar samples (D1 = D2) studied earlier [57], the biholar
samples (D1 6= D2) lose 90◦ rotational symmetry, and, as a consequence,
the deformations patterns corresponding to purely horizontal (x) or ver-
tical (y) compression are distinct. This sets up a competition when the
material first is confined in the lateral x-direction, before uniaxially com-
pressing it in the y-direction with strain εy and corresponding force Fy. In-
deed, we found that the mechanical response Fy(εy) can be tuned qualita-
tively by varying the lateral confinement εx. In particular we showed that
depending on εx, the material could exhibit a non-monotonic response,
where ∂εy Fy < 0 for a range of vertical strains, as well as a hysteretic re-
sponse where Fy(εy) becomes multi-valued [57].
Here we study the generality of these findings by varying the thickness
of the elastic filaments t as well as the degree of biholarity χ, i.e. the
size difference between small and large holes. We start by showing that
fully 3D numerical simulations capture the experimental findings, and al-
low to distinguish multistable and hysteretic behavior from minor visco-
elastic effects inevitably present in the polymer samples. We introduce
order parameters to identify and classify the transitions between mono-
tonic, non-monotonic and hysteretic behavior, and probe their scaling near
the regime transitions. We then scan the design parameter space and
show that programmable behavior persists for a wide range of the geo-
metrical parameters t and χ. Moreover, we formulate design strategies to
strongly tune the range of vertical strains where behavior of interest, i.e.,
non-monotonic or hysteretic response arises. Finally, we explore extreme
limits of these design parameters, and find that most useful behavior oc-
curs for moderate values — the limits of large and small t and χ all lead to
new instabilities or singular behavior that hinder functionality. Our study
thus opens a pathway to the rational, geometrical design of programmable
biholar metamaterials, tailored to exhibit non-monotonic or hysteretic be-
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FIGURE 4.1: (a) Geometry of biholar samples; D1 and D2 denote the hole diam-
eters, p their distance, and t′ the thinnest part of the filaments. The region of
interest is characterized by Lx, Ly1 and Ly2. (b) Horizontally confined sample. Lc
denotes the distance between the confining pins

havior for desired strain ranges.

4.2 Samples and Experimental Methods

Because large biholar samples are prone to the formation of inhomogeneities
and grain boundaries, we focus on the smallest experimentally realizable
biholar samples (5 × 5 holes) that capture the essential physical mecha-
nisms. Note that in earlier work [57], we showed that the phenomenology
of such samples is qualitatively similar to that found in numerical simu-
lations of a single unit cell with periodic boundaries, which represents an
infinite, homogeneous system. Hence, such 5× 5 samples are well suited
for studying the geometrical parameter dependence of biholar mechanical
metamaterials. To fabricate biholar metamaterials, we pour a two com-
ponent silicone elastomer (Zhermack Elite Double 8, Young’s Modulus
E ' 220 kPa, Poisson’s ratio ν ' 0.5) in a 120× 65× 35 mm mold, where
cylinders of diameters D1 ≥ D2 are alternately placed in a 5× 5 square
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4.2. SAMPLES AND EXPERIMENTAL METHODS

grid of pitch p = 10 mm (the central cylinder has diameter D1) [57]. To
slow down cross linking, leaving time for the material to degas and fill
every nook and cranny in the mold, we cool down these components to
−18◦C. When the cross-linking process has finished (after approximately
1hr at room temperature) we remove the material from the mold and cut
the lateral sides. We let the sample rest for one week, after which the elas-
tic moduli have stopped aging. This results in samples with a 5× 5 square
array of holes of alternating size, where the central pore is a large hole, as
shown in Fig. 4.1. All experiments are carried out for samples of thickness
d = 35 mm, to avoid out of plane buckling. We characterize our sam-
ples by their biholarity χ := (D1 − D2)/p and dimensionless thickness
t := 1− (D1 + D2)/(2p) = t′/p.
We glue the flat top and bottom parts of the material to two acrylic plates
that facilitate clamping in our uniaxial compression device. Under com-
pression, deformations are concentrated in the central part of the sample.
We focus on this region of interest, and define the compressive vertical
strain as:

εy =
2uy

Ly1 + Ly2 + 2t′
, (4.1)

where (Ly1 + Ly2 + 2t′)/2 is the effective size of the vertical region of in-
terest and uy the imposed deformation (Fig. 4.1a).
To impose lateral confinement, we glue copper rods of diameter 1.2 mm
on the sides of our samples and use laser cut, perforated acrylic clamps
to fix the distance Lc between these rods (Fig. 4.1b). Note that even and
odd rows of our sample have different lateral boundaries, and we only
clamp the 2nd and 4th row (Fig. 4.1b). The global confining strain is
εx = 1 − Lc/Lc0, with Lc0 the distance between the metal rods without
clamps.
In our experiments, we measure the force F as function of the compressive
vertical strain εy. We define a dimensionless effective stress as:

S :=
σy

E
Aeff

A
=

6t′F
dE(Lx + 2t′)2 , (4.2)

where σy = F/A, A = d(Lx + 2t′) denotes the cross section, Lx + 2t′ is
the width of the region of interest, Aeff = 6t′d denotes the effective cross
section, and E the Young’s Modulus.
To characterize the spatial configuration, we fit an ellipse to the shape of
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the central hole, and define its polarization Ω as [57]:

Ω = ±(1− p2/p1) cos 2φ, (4.3)

where p1 and p2 are the major and minor axes of the ellipse, and φ is the
angle between the major and x-axis. We fix the sign of Ω such that it is pos-
itive for samples that are predominantly compressed in the y-direction.
To uniaxially compress the sample while probing its response, we use an
Instron 5965 uniaxial testing device. The device controls the vertical mo-
tion of a horizontal cross bar with a resolution of 4 µm. The sample is
clamped between a ground plate and this moving bar, and we measure
the compressive force F with a 100 N load cell with 5 mN resolution. To
calibrate force F = 0 at εy = 0 and at zero lateral confinement, we attach
the unconfined sample to the top clamps, and then attach bottom and side
clamps.
For each experiment, we perform a strain sweep as follows: we first stretch
the sample to uy = −4 mm, then compress to uy = 8 mm and finally de-
compress to uy = 0 mm to complete the sweep. The deformation rate is
fixed at 0.1 mm per second: at this rate, visco-elastic and creep effects are
minimal (Fig. 2.12(a) and (b)). A high resolution camera (2048× 2048 pix-
els, Basler acA2040-25gm) acquires images of the deformed samples and
tracks the positions and shapes of the holes with a spatial resolution of
0.03 mm in order to determine the polarization and the confining strain
εx. The image acquisition is synchronized with the data acquisition of the
Instron device, running at a rate of 2Hz.

4.3 Numerical Simulations

In parallel, we have performed a full parametric study of the role of χ and
t using 3D finite element simulations in
ABAQUS/STANDARD (version 6.13). We performed uniaxial compres-
sion simulations on a laterally confined sample with the same geometry,
clamping and dimensions as in experiments using realistic, boundary con-
ditions at the top and bottom of the sample. Namely, we impose vertical
and lateral clamping which closely match that of the experiment: (i) the
vertical boundary conditions are homogeneously imposed displacements
at the top and bottom surfaces of the sample; (ii) the horizontal boundary
conditions consist in inhomogeneous clamping by fixing the x-coordinates
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of an arc of the boundary holes of every even row. A horizontal confin-
ing strain is applied by fixing the x-coordinates of an arc of the boundary
holes of every even row, similar to the experiments. The length of the arc
is set constant at Sc = 1.1 mm, which closely matches experimental con-
ditions. (Note that the arc length has a minor influence on the mechanical
response, but does not affect the overall phenomenology, Fig. B.1)
We model the rubber used in the experiments as a nearly incompressible
neo-Hookean continuum solid [66, 67], with a strain energy density func-
tion [55, 68]:

W =
µ

2

(
det(F)−

2
3 tr(FF†)− 3

)
+

K
2
(det(F)− 1)2 , (4.4)

where µ is the shear modulus, K is the bulk modulus and F = ∂x/∂X is the
deformation gradient tensor, with x and X the deformed and undeformed
coordinates. A strictly incompressible material (ν = 0.5) can not be mod-
eled with
ABAQUS/STANDARD, and we therefore choose ν = 0.4990 and E = 220
kPa, consistent with experiments. We use a 15-node quadratic triangular
prism shape elements (ABAQUS type C3H15H). As we expect and ob-
serve (not shown here) only small deformations in the out-of-plane di-
rections, we use two elements across the depth of the sample. We have
performed a systematic mesh refinement study for the in-plane grid, lead-
ing to an optimal mesh size of t′/2.
We perform uniaxial compression tests on our confined samples. To nu-
merically capture hysteresis, we follow two different paths for compres-
sion and decompression. The compression protocol matches the experi-
mental protocol: First the top and bottom boundaries of the sample are
fixed and the horizontal confining strain εx is applied. Then, an increasing
strain εy is applied. The decompression protocol differs from the exper-
imental protocol to allow the sample to reach to hysteresis related sec-
ond branch. First, the sample is maximally compressed in the y-direction.
Then, the horizontal confining strain εx is applied. Finally, the vertical
strain is lowered. These two distinct protocols allow to accurately capture
the behavior on both branches in the case of hysteresis.
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4.4 Experimental and Numerical Results

We perform uniaxial compression tests on 5× 5 biholar samples — pat-
terned with a square array of holes of alternating size where the central
hole is a large hole — for a range of horizontal confinements. In parallel
we perform 3D realistic numerical simulations using the same geometries,
clamping and boundary conditions. In the following we start by compar-
ing experiments to simulations for a sample with t = 0.15 and χ = 0.2 and
identify four qualitatively different mechanical responses, that we refer to
as type (i)-(iv) [57]. Next, we define order parameters that characterize
these different regimes and allow us to pinpoint their transitions.

4.4.1 Phenomenology

In Fig. 4.2 we present the stress-strain curves, S(εy), and polarization-
strain curves, Ω(εy), for a biholar sample with χ = 0.2 and t = 0.15 at four
different values of the horizontal confining strain. We observe a close cor-
respondence between the numerical and experimental data, without any
adjustable parameters. We distinguish four qualitatively different types of
mechanical response:

(i) For small confinement, both the rescaled stress S and polarization Ω
increase monotonically with strain. In experiments, both the stress and
polarization exhibit a tiny amount of hysteresis. We have determined the
experimental rate dependence of this hysteresis, and found that it reaches
a broad minimum for the moderate rates used in the experiments, but that
it increases for both very fast runs and very slow runs — we attribute the
former to viscoelastic effects, and the latter to creep. Indeed, this resid-
ual hysteresis occurs mainly when the pattern changes rapidly, Fig. 2.12(c)
and (d), and hysteresis is absent in our purely elastic numerical simula-
tions. We conclude that non-elastic effects lead to a small hysteresis, and
have adjusted our experimental rate to minimize hysteresis.
(ii) For moderate confinement, the rescaled stress S exhibits a non-mono-
tonic increase with εy, thus featuring a range with negative incremental
stiffness. The creep-induced hysteresis in experimental data is more pro-
nounced than in regime (i), but again is absent in numerical simulations
(black dashed line). The polarization remains monotonic in εy, with most
of its variation focused in the strain-range of negative incremental stiff-
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FIGURE 4.2: (a) Stress-strain curves S(εy) for samples with 5× 5 holes, χ = 0.2
and t = 0.15 (curves are offset for clarity). The horizontal confining strain εx in
curves (i)-(iv) equals εx = 0.000, 0.158, 0.178 and 0.218. Experimental errorbars
on εx are estimated to be 0.0025 and are mainly caused by the manual application
of the clamps. Experimental data is in magenta, and numerical data in black. (b)
Corresponding plots of the polarizations Ω(εy) (curves are offset for clarity).

ness.
(iii) For large confining strains, both the stress-strain curve and the pola-
rization-strain curve exhibit a clear hysteretic transition. Away from this
true hysteresis loop, the up and down sweeps are identical in simulations
but differ slightly in experiments, due to the same visco-elastic effects dis-
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cussed above. We note that in the numerics, the hysteretic jump between
different branches is very sharp (dotted line in Fig. 4.2), whereas in the
experiments this jump is smeared out. In the numerics, the location of the
jump reproduces well, but in experiments we observe appreciable scatter
between subsequent runs. We suggest that close to the jump, the system is
very sensitive to imperfections, and have confirmed, by simulations, that
slight geometric perturbations cause similar scatter (not shown).

(iv) For very large confinements, the stress increases monotonically with
εy, similar to regime (i). However, the polarization is decreasing mono-
tonically with εy, in contrast to regime (i), and Ω becomes increasingly
x-polarized under compression. The two branches that are connected by
the hysteresis loop in regime (iii) are no longer connected in regime (iv):
the system follows a single stable path, up and down sweeps are identi-
cal, and there is no hysteresis observable for curves in regime (iv). Ad-
ditional experiments reveal that initial compression in the y-direction fol-
lowed by x-confinement brings the material to a strongly y-polarized state
(not shown). Hence, for strong biaxial confinement there are two stable
states, the order of applying x-confinement and y-compression matters,
and once in the x-polarized state, y-compression is not sufficient to push
the system to the y-polarized state.
We thus observe four distinct mechanical responses in a single biholar
sample, depending on the amount of lateral confinement. In addition,
we find very good agreement between experiments and simulations, and
in the following, we focus exclusively on numerical data, as simulations
do not suffer from creep and allow for high precision and a wide range of
parameters.
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4.4.2 Order Parameters

To study whether the same scenario involving regimes (i− iv) is also ob-
served for different geometries, and to investigate how the transitions be-
tween these regimes vary with t and χ, we introduce three order parame-
ters that allow the detection of these regimes and their transitions.

(i-ii)-transition

Depicted in Fig. 4.3a is a series of S(εy)-curves illustrating the transition
between monotonic and non-monotonic behavior. In principle the sign of
the incremental stiffness ∂S/∂εy distinguishes between these, but as the
incremental stiffness is a differential quantity, a more robust measure is
produced by the (existence of) local maxima and minima, which we use to
determine the difference in stress, ∆S, and strain, εw (see Fig. 4.3a).
In Fig. 4.3b we present ∆S as a function of the confining strain εx. Notice
that ∆S rapidly increases with εx in regime (ii) (and (iii)). The variation of
S(εy) with εx suggest that near the transition, S(εy, εx) can be expanded
as: S(εy) ≈ α(εx − εxi−ii)εy + βε3

y, where εxi−ii is the critical horizontal
strain at the (i-ii)-transition and α and β are constants. We therefore ex-
pect that ∆S ≈ (εx − εxi−ii)

3/2, which is consistent with the data when we
take εxi−ii = 0.143 (Fig. 4.3b).
In Fig. 4.3c we show the strain range of negative incremental stiffness, εw,
as a function of confining strain εx. Like ∆S, εw is undefined for mono-
tonic curves, and increases rapidly with εx. As expected from our ex-
pansion of S(εy), close to the (i-ii)-transition, we find power law scaling:
εw ≈ (εx− εxi−ii)

1/2, with the same estimate for εxi−ii as before, see Fig. 4.3c.
For larger εx, εw is decreasing and eventually becomes negative, which sig-
nals the approach to the hysteretic regime.
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FIGURE 4.3: (a) Numerically obtained S(εy)-curves illustrating the monotonic to
non-monotonic (i-ii)-transition, for a sample with χ = 0.2 and t = 0.15 (curves
offset for clarity). (b) ∆S clearly shows power law behavior, and can be fitted as
∆S ≈ λ(εx − εxi−ii )

3/2, where λ ≈ 0.117 and εxi−ii ≈ 0.143. (c) In regime ii, εw

is initially rapidly increasing and then reaches a maximum around εx = 0.155.
Close to the the (i-ii)-transition, εw shows square root behavior: εw ≈ γ(εx −
εxi−ii )

1/2, with γ ≈ 0.128 and εxi−ii ≈ 0.143.
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(ii-iii)-transition

We present in Fig. 4.4a a number of S(εy)-curves to illustrate the transition
from nonmonotonic to hysteretic behavior. As discussed above, to numer-
ically capture the hysteresis, we use two distinct protocols for compression
and decompression. We quantify the amount of hysteresis by H, the area
of the hysteresis loop. As shown in Fig. 4.4b, H increases rapidly with
the confining strain, which allows us to accurately determine the onset of
hysteresis, the first non zero value for H, as εxii−iii ≈ 0.163.

(iii-iv)-transition

As shown in Fig. 4.5a, we are unable to observe the iii-iv-transition from
the S(εy)-curves. Therefore, we focus on the polarization Ω of the central
hole of the sample, see Fig. 4.5b. We define the transition between regime
(iii) and (iv) to occur when the polarization for small strain εy has a neg-
ative slope (Ω′ < 0), see Fig. 4.5c. Using a linear fit we find εxiii−iv ≈ 0.180.
As the (iii-iv)-transition is not associated with any significant change in
S(εy), in the remainder we focus on the transitions to nonmonotic and
hysteretic behavior.
Using the order parameters ∆S, εw, H and Ω′, we are now in a position
to identify the nature of the mechanical response; monotonic (i), non-
monotonic (ii), hysteretic (iii) or monotonic with decreasing polarization
(iv).
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FIGURE 4.4: (a) Numerically obtained S(εy)-curves illustrating the non-
monotonic to hysteretic ii-iii-transition, for a sample with χ = 0.2 and t = 0.15
(curves offset for clarity). In regime (iii) the S(εy)-curve follow a different path
for compression and decompression. The hysteresis is the area between these two
paths, in the region of overlap. (b) Past the ii-iii-transition H increases rapidly,
with εx = 0.163 being the first nonzero value for the hysteresis, thus indicating
the ii− iii-transition.
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FIGURE 4.5: (a) A series of S(εy)-curves across the hysteretic to monotonic (iii-
iv)-transition, for a sample with χ = 0.2 and t = 0.15 (curves offset for clarity). (b)
The series of corresponding Ω(εy)-curves, illustrating the iii-iv-transition. High-
lighted in red the linear fit used to calculate the slope Ω′. (c) Across the (iii-iv)-
transition Ω′ is linearly decreasing from positive values to negative values. By
fitting a linear function we find, rounded off at 3 decimal digits, εxiii−iv = 0.180.
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4.5 Parametric Study

In the following we study how the vertical and horizontal strains where
nonmonotonic and hysteretic behavior occurs vary with the geometrical
design parameters χ and t. For each value of these parameters, we can
in principle obtain S(εy, εx) and Ω(εy, εx), from which we then can deter-
mine the strain-ranges corresponding to regime (i − iv) using the order
parameters defined above. We study this parameter space systematically
using a large number of simulations. To do so, we have systematically
scrutinized the full (εx, εy) parameter space for 7 values of t in the range
0.025 < t < 0.175 keeping χ = 0.2 and 7 values of χ within the range
0.125 < χ < 0.6 keeping t = 0.15. For each set of parameters (t,χ), we have
determined the relevant range of strains, and performed simulations for
typically 50 values of both εx and εy, leading to a total number of 3× 104

nonlinear simulations. Note that we have explored many more values of t
and χ, in order to identify the boundary of the parameter space for which
the regimes (i)-(iv) occur. The snapshots A-D (Fig. 4.6) correspond to ex-
amples of new behaviors that escape the scenario (i)-(iv) and occur for
values of the parameters (t,χ) outside this boundary.
Moreover, for the most interesting regimes (ii − iii) we can calculate the
range of vertical strains‡ εy where the non-monotonic respectively hys-
teretic behavior takes place. However, the resulting deluge of data is dif-
ficult to visualize or interpret. In Fig. 4.6 we show a simple representation
which captures the main features of the strain ranges of regime (ii − iii),
here for fixed χ and t. From S(εy, εx), we determine εmax

y , εmin
y , and H as a

function of εx, and plot εmax
y (open symbols) and εmin

y (closed symbols) as
a function of εx and we use H to distinguish data points in regime (ii) and
(iii), and the polarization Ω to detect regime (iv).In regime (i), εmax

y and
εmin

y are not defined. The transition to regime (ii) corresponds to the ’nose’
(red dot) of these curves (Fig. 4.6).
The representation in Fig. 4.6 clearly shows the increase of the non-mono-
tonic range as εx is increased deeper into regime (ii). Note that εmax

y and

‡ For each geometry, the resolution in εy is set as follows. We first identify the minimal range
of εy required to observe the extrema of the S(εy, εx)-curves. This range is then divided into at
least of 20 incremental static steps with additional refinements near the extrema. We then use qubic
spline interpolation on each S(εy, εx)-curve to measure the location of the maximum and minimum
with a resolution better than 2 · 10−4 of the selected strain range.
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εmin
y cross eventually somewhere in regime (iii), see also Fig. 4.3. As we

will show, the overall trends in εmin
y and εmax

y as function of εx are robust,
with χ and t setting the “size” and “location” of these fish-shaped curves.
In the remainder of this chapter, we focus on regime (ii), and in particu-
lar on the onset of the non-monotonic behavior as well as the maximum of
εw. Note that all of this information can conveniently be related to the data
shown in Fig. 4.6 — the onset of non-monotonic behavior corresponds to
the “the nose of the fish” at (εn

x = εxi−ii , εn
y), whereas the maximum non-

monotonic range is given by εwm, “the belly of the fish”, at εwm
x .
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FIGURE 4.6: Representation of the characteristic strains for a sample with χ = 0.2
and t = 0.15. The red circle indicates the ’nose’, (εn

x, εn
y), which signals the onset

of regime (ii). Non monotonic behavior in regime (ii) occurs for strains between
εmin

y (closed diamonds) and εmax
y (open diamonds). We extend these minimum

and maximum into regime (iii) (circles) and regime (iv) (squares). The width
between the two branches εmax

y and εmin
y determines the order parameter εw. The

transitions between (ii)- (iii) and (iii) - (iv) cannot be detected from εmin
y and εmax

y
alone and we use H to detect the onset of regime (iii) and Ω to detect the onset of
regime (iv).
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4.6 Variation of strain ranges with geometric param-
eters

We have determined εmax
y and εmin

y for fixed χ = 0.2 and a range of thick-
nesses t, as well as for fixed t = 0.15 and a range of biholarities χ, as shown
in Fig. 4.7. In both cases, we can discern clear trends, as well as interesting
limiting cases for large and small t or χ - see Fig. 4.7
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FIGURE 4.7: Strain at the local maximum εmax
y (circles) and local minimum εmin

y
(diamonds) for data obtained in regime (ii) as a function of horizontal confine-
ment εx for a samples with different geometries. The red dot indicates the ’nose’
of the curves. The nearly horizontal red dots correspond to χ = 0.2 and (from
left to right) t = 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175, whereas the di-
agonally order range of red dots correspond to t = 0.15 and (top to bottom)
χ = 0.6, 0.5, 0.4, 0.3, 0.2, 0.15 and 0.125. The labels A−D indicate to large or small
t or χ limits where new behavior sets in as shown to the right. For large χ (A,
t = 0.15, χ = .8), the deformation patterns become irregular; shown here are
the outcome of simulations for εx = 0 and εy = 0, and εx = 0.126 and εy = 0,
0.062 and 0.126. For small χ (B, t = 0.15, χ = 0.1, εx = 0.216, εy = 0), and for
large t (C, t = 0.2, χ = 0.2, εx = 0.206, εy = 0), the confining strains required to
obtain non-monotonic behavior become so large, that deformations become lo-
calized near the boundary and sulcii develop. Finally, for small t (D, t = 0.025,
χ = 0.2, εx = 0.020, εy = 0), the characteristic strains and strain ranges become
vanishingly small.
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As we vary the thickness, we observe that εn
x and εn

y smoothly decrease to-
wards zero, whereas εwm stays finite. Hence, the characteristic strains vary
with t, but the size of the strain intervals where non-monotonic behavior
occurs remains finite for small t. These trends are illustrated in Fig. 4.8,
where we show the variation of εn

x, εn
y, εwm and εwm

x with t. In good ap-
proximation, εn

x and εn
y vanish linearly with t. As shown in Fig. 4.8c, even

though εwm
x also varies strongly with t, it appears to reach a finite limit for

t→ 0, as further illustrated in the inset which shows how εwm
x − εn

x reaches
a finite value at t = 0. Consistent with this, εwm approaches a finite value
for t→ 0.
The variation with biholarity is more significant and less simple. First,
we observe that for increasing biholarity, both the vertical and horizontal
strain ranges increase significantly. Second, their typical values have op-
posite trends; whereas εmin

y and εmax
y strongly increase, εn and εw

x decrease.
Hence, tuning the biholarity can be used to favor non-monotonic behav-
ior for small εx or for small εy — including at negative vertical stresses for
small values of χ. Third, the range of the non-monotonic regime increases
strongly with χ. These trends are illustrated in Fig. 4.9, where we show
the variation of εn

x, εn
y, εwm and εwm

x with χ. This data strongly suggests that
there are two distinct regimes, with a smooth crossover around χ ≈ 0.15.
We speculate that the value of this crossover is related to t. Moreover, we
suggest that in the small χ regime, the materials mechanics crosses over
to that of a monoholar system [42,44–47], where εx and εy no longer are in
competition and the materials behavior is difficult to program, consistent
with a very small non-monotonic strain range.

We can now also identify four limiting cases. For large χ, (case A in
Fig. 4.7) we note that the small holes appear to become irrelevant, so that
we approach a monoholar system rotated by 45◦. In this limit, where verti-
cal strains are large, sulcii [69,70] as well as localization bands appear [71].
In the limit of vanishing χ (case B) the material approaches a monoholar
material [44–46], and our data suggests that these are difficult to program,
with matching small non-monotonic behavior — consistent with the ab-
sence of the broken 90◦ symmetry that underlies the programmability of
biholar systems [57]. For small but finite χ, the horizontal strains again
become very large and similar as for large t, sulcii develop. For large t
(case C), new behavior must occur — at some point the filaments become
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so wide that global buckling of the material occurs before any apprecia-
ble changes in the local pattern [67]. What we observe is that for large
t the strains needed to reach non-monotonic behavior become so large,
that some of the filaments develop sulcii, so that strain localization starts
to dominate the behavior — for our systems and χ = 0.2, this occurs for
t > 0.175. This limits the usefulness of large t systems [46]. Finally, in the
limit of vanishing t (case D), the mechanics of our system are expected to
be close to the simple mechanism introduced in [57], our numerical sim-
ulations closely match those of calculations in this model [72]. However,
here both the typical strains and strain ranges corresponding to nontrivial
behavior vanish. Hence, none of these limits are particularly useful from
a practical or programmability point of view.
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FIGURE 4.8: For fixed χ = 0.2, we show the variation with χ of (a)-(b) the lo-
cation εn

x and εn
y of the nose which signals the transition to regime (ii), and (c-d)

the x-location and value of the maximum difference between εmax
y and εmin

y which
indicates the non-monotonic range. Black datapoints are theoretical results cal-
culated from a biholar mechanism with χ = 0.2.
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FIGURE 4.9: For fixed t = 0.15, we show the variation with χ of (a)-(b) the location
εn

x and εn
y of the nose which signals the transition to regime (ii), and (c-d) the

x-location and value of the maximum difference between εmax
y and εmin

y which
indicates the non-monotonic range.
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4.7 Conclusion

In this chapter we have presented a systematic overview of the role of the
geometrical design of biholar metamaterials for obtaining reprogrammable
mechanics. First, we have shown that the four qualitatively different me-
chanical responses (i − iv) are a robust feature, and happen for a wide
range of values of the design parameters χ and t. Second, we have iden-
tified four distinct asymptotic cases, where additional instabilities arise.
Hence, programmability is optimal for moderate values of t and χ. Our
study opens a pathway to the rational, geometrical design of programmable
biholar metamaterials, tailored to exhibit non-monotonic or hysteretic be-
havior for desired strain ranges. Important research questions for future
work are the role of inhomogeneities, grain boundaries and finite size ef-
fects. To leverage the phenomenology observed here in larger systems,
we rather imagine coupling multiple smaller systems together. In addi-
tion, open questions for future work are to extend this frustration based
strategy for the programmability of other mechanical parameters (e.g.,
Poissons function) [73] and functionalities such as tuneable damping, to
smaller length scales, and to three dimensions [49].
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APPENDIX B

ROLE OF CLAMP SIZE

In the numerical simulations we apply horizontal confining strains to our
samples by fixing the x-coordinates of a segment of the boundary holes of
every even row. In Fig. B.1, we show the effect of the arc length,Sc, of this
segment. Increasing the arc length of the segment shifts the various regime
transitions to lower values of εx. By a comparison to our experimental
data, we find that an arc length of 1.1 mm (as used subsequently) gives
the best fit, close to the actual dimension of the clamping rods used in the
experiments, which have a diameter of 1.2 mm.
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FIGURE B.1: Numerically simulated S(εy)-curves for a biholar sample with χ =
0.2 and t = 0.15 with fixed εx = 0.1584. The arc length Sc of the segment of the
boundary holes used to confine the sample is varied; Sc = 1.10, 1.20, 1.30, 1.40,
1.88, 3.00.

87



88


