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CHAPTER 3

SOFT MECHANISM

The soft mechanism qualitatively describes the mechanics of the confined
biholar sheet well, section 2.6. In this chapter we discuss the biholar mech-
anism in more detail and especially the different bifurcation scenarios that
are responsible for the different mechanical regimes. We start with a one
degree mechanism, section 3.1. Then we add horizontal and linear springs
and calculate the energy for the control parameters εx and εy, and analyze
the stability and bifurcations, section 3.2. Finally, a geometric interpreta-
tion of the four different mechanical regimes is presented in section 3.3,
which can be used as a guideline to rationally design mechanical metama-
terials with confinement controlled response.
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3.1. BIHOLAR MECHANISM

3.1 Biholar Mechanism

To qualitatively understand the mechanics of confined biholar sheets, we
note that when t → 0, the material’s low energy deformations are equiv-
alent to that of a mechanism consisting of rigid rectangles connected by
hinges at their corners, positioned in the center of the thinnest part of the
filament between two neighboring holes (Fig. 3.1).
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FIGURE 3.1: Biholar Mechanism: A collection of rectangles connected with hinges
(gray) represents the biholar sample (pink). The state of this mechanism is de-
scribed by a single degree of freedom, θ, which determines the internal dimen-
sions xi and yi. (a) For θ > π/4, the mechanism is x-polarized. (b) For θ = π/4
the system is in the undeformed configuration. (c) For θ < π/4 the mechanism is
y-polarized.

We define the dimensionless biholarity χ of the mechanism as:

χ =
2(|a− b|)

a + b
, (3.1)

where a ≥ b are the sides of the rectangles (Fig. 3.1b).
There is a one-to-one mapping between the definitions of biholarity for
the mechanism and for the biholar sample. We can write

a = (r1 +
1
2

t)
√

2 (3.2)

b = (r2 +
1
2

t)
√

2, (3.3)
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CHAPTER 3. SOFT MECHANISM

where r1 and r2 are the radii of the big and small holes and t is the thickness
of the most slender part of the filament between these holes. Substituting
these equations into equation (3.1) we obtain

χ =
2|r1 − r2|

p
, (3.4)

which shows the consistency of the definitions of χ for the biholar samples
the mechanism.
The state of this mechanism is described by a single degree of freedom,
θ. To avoid self intersection of the mechanism, 0 ≤ θ ≤ π/2. This simple
one-degree-of-freedom-mechanism captures the pattern transformation as
observed in the biholar sample; for θ > π/4, the mechanism is x-polarized
(Fig. 3.1(a)) and for θ < π/4 the mechanism is y-polarized (Fig. 3.1(c)).
The angle θ also determines the internal dimensions xi and yi:

xi = x1 + x2 = a cos(θ) + b sin(θ) (3.5)
yi = y1 + y2 = a sin(θ) + b cos(θ) (3.6)

For simplicity we will set xi(π/4) = yi(π/4) = 1, so that a + b =
√

2,
equivalent to pitch p = 1. The biholarity is then given as χ = 2 (a−b)

a+b =√
2(a− b) and the allowed range of biholarity is χ ∈ [0, 2].

3.2 Energy, Stability and Bifurcations

To model the storing of elastic energy, we couple the biholar mechanism
to the outside walls of a box, with dimensions 2xo and 2yo, with a set of
linear springs of rest length zero. The box models the lateral confinement
and uniaxial compression.

The potential energy E in the system is written as:

E = 4 · 1
2

kxδl2
x + 4 · 1

2
kyδl2

y (3.7)

where δlx (δly) is the change in length of the horizontal (vertical) springs
with respect to their rest length. As the rest length of the springs is zero,
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3.2. ENERGY, STABILITY AND BIFURCATIONS
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FIGURE 3.2: Soft Biholar Mechanism. The mechanism, with internal dimensions
xi and yi, is placed inside a box, with dimensions 2xo and 2yo, and connected to
the box with linear springs, of lengths δlx and δly.

the in length of the springs is simply given by the difference between the
outside wall and the internal dimensions of the mechanism:

δlx = xo − xi(θ) (3.8)
δly = yo − yi(θ) (3.9)

Similar to experiments, the control parameters εx and εy are used to de-
form the outside walls of the box, such that the dimensions of the box are
2xo = 2− 2εx and 2yo = 2− 2εy. Now, also setting kx = ky = 0.5, the
potential energy can be written as:

E = (1− εx − xi(θ))
2 + (1− εy − yi(θ))

2 (3.10)

For each set of control parameters εx and εy there is an energy landscape
as a function of θ for which we have to find the mechanical equilibrium1,

1In the Appendix A Lagrange multipliers are used to directly find a (implicit) relation
between the force (F(θ)) and deformation (εy)
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CHAPTER 3. SOFT MECHANISM
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FIGURE 3.3: Potential energy as a function of internal degree of freedom θ. (a)
For εx = −0.03 and εy = −0.2 the energy has one global minimum (black dot).
(b) For εx = −0.0355 and εy = 0.2 the energy has three states of mechanical
equilibrium, indicate by the black dot (abolute minimum), black diamond (local
minimum) and open diamond (local maximum).

dE/dθ = 0. The value of θeq at the equilibrium points will be the orienta-
tion of the biholar mechanism, with energy Eeq = E(θeq).
Depending on the values of εx and εy, the energy landscape can have one
or three stable states. Shown in Fig. 3.3 are two examples of the E(θ)-
curves for different values of the control parameters. In Fig. 3.3(a), εx =
−0.03 and εy = −0.2 and the energy landscape has a single minimum,
with one stable equilibrium, indicated by the black dot. For εx = −0.0355
and εy = 0.2 the potential energy obtains a bump, see Fig. refEnergyEx-
amples(b), resulting in 3 states of mechanical equilibrium. Two of these
states are stable, corresponding to the (local) minima (black dot for global
minimum, full diamond for local minima), and one state is unstable, cor-
responding to a local maximum (open diamond).
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3.2. ENERGY, STABILITY AND BIFURCATIONS
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FIGURE 3.4: E(θ)-curves for increasing εy and for four different, but fixed, values
of εx; (a) εx = −0.03, (b) εx = 0.022, (c) εx = 0.0355 and (d) εx = 0.05. Global
minima are indicated with an black dot, local minima with an black diamond,
local maxima with an open diamond.
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CHAPTER 3. SOFT MECHANISM

In the experiments, the horizontal confinement εx is fixed while εy is var-
ied continuously. Presented in Fig. 3.4(a)-(d) are E(θ)-curves for four dif-
ferent values of horizontal confinement, εx = {−0.03, 0.022, 0.0355, 0.05},
for a range of increasing εy. All curves are displayed with an offset for
clarity.
In Fig. 3.4(a), εx = −0.03 and εy is continuously increased from −0.2 to
0.2. All curves have one global minimum that is shifting towards θ = 0
for increasing vertical strain. For higher values of εy the onset of a bump
is emerging in the energy landscape.
For εx = 0.022, Fig. 3.4(b), a similar behavior of the global minimum is
observed, although the most significant change in the position of the lo-
cal minimum gets concentrated between 0.02 < εy < 0.04. Moreover, for
εy = 0.2 a bump is visible in the E(θ)-curve, resulting in a pair of equilib-
rium states, one stable (full diamond) and one unstable (open diamond).
The creation, or annihilation, of two new equilibrium states is associated
with a saddle-node bifurcation.
Increasing the horizontal confinement to εx = 0.0355, the energy initially
has one minimum. However, for εy = 0.04, a pair of local minimum and
maximum is appearing. Next, for εy = 0.06, two equilibrium states move
towards each other and finally annihilate for εy = 0.08. Moreover, for
εy = 0.10, another pair of equilibrium states is created and is still present
for higher values of applied vertical strain.
Finally, increasing the horizontal confinement to εx = 0.05, results in sim-
ilar E(θ)-curves for small εy. However, as εy is increased, the location of
the global minimum is shifting towards higher values of θ. At εy = 0.04 a
pair of a local maximum and minimum is created to the left of the global
minimum, whereas for εy > 0.04 this pair is created to the right of the
global minimum.
As εy is increased from εy = −0.2 to εy = 0.2, the path followed by the
mechanism, traced out by the equilibrium points of the energy, is different
for distinct values of εx. Shown in figure 3.5 are the equilibrium points θeq
((a)-(d)) and Eeq ((e)-(h)) as a function of εy for the different values of εx.
Presented in the last row of figure 3.5 are the corresponding forces directly
computed using F(εy) = −dEeq/dεy.
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3.2. ENERGY, STABILITY AND BIFURCATIONS

regime (i) In Fig. 3.5 (a) (page 52), for εx = −0.03, as the control parameter
εy is increased from εy = −0.2 to εy = 0.2, the mechanism follows a single
stable branch, indicated by A. The corresponding energy Eeq is single val-
ued and is decreasing for εy < 0 and increasing for εy > 0, resulting in a
monotonic force curve, that we classify as regime (i).

regime (ii) Shown in Fig. 3.5 (b), the mechanism follows a stable branch
A for uniaxial compression. Only now, most of the change in θeq gets fo-
cused around εy = 0.00. Moreover, for high values of εy and θeq, a stable
branch B (black) and an unstable branch C (dashed gray) appear through
a saddle-node bifurcation. Since these new branches are not connected to
branch A, the sample can not reach these states when subjected to a simple
uniaxial deformation.
In Fig. 3.5 (f), around εy = 0.00, a bump is emerging in the energy curve,
leading to a region of negative incremental stiffness in the accompanying
force curve, Fig. 3.5 (j). Hence, the system is in regime (ii). Moreover, for
high values of εy the energy and the force curves becomes multivalued
due to branches B and C; a local minimum (black) and maximum (dashed
gray) appear at high energies.

regime (iii) For εx = 0.0335, Fig. 3.5 (c), branch A has become S-shaped
and is split into two stable branches, A (black) and A′′ (gray), connected
by an unstable branch A′ (dashed gray), via two saddle-node-bifurcations.
This entire branch exhibits hysteretic behavior and bistability. Monoton-
ically increasing εy, starting from εy = −0.2, θeq jumps from the stable
branch A to stable branch A′′ at the location indicated by the black arrow.
Monotonically decreasing the system from εy = 0.2 and low θ, we move
along branch A′′ and jump to branch A at a different value of εy. For all
values of εy in the region enclosed by the two arrows there are two stable
states, i.e. the system is bistable.
The energy for a biholar mechanisme in regime iii, Fig. 3.5(c) takes a more
complicated shape and forms a loop around εy = 0.1, see inset, consist-
ing of two segments of local minima connected by an unstable segment of
local maxima. Depending on the path followed, the energy jumps from a
high value to a low value at different locations, indicated by the gray and
black arrow. Note that the energy jump from the black curve to the gray
curve (compressing) is much higher than from gray to black (decompress-
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CHAPTER 3. SOFT MECHANISM

ing).
The hysteretic region is also clearly present in the F(εy)-curve, Fig. 3.5 (k),
as the force follows different paths for compression and decompression,
indicated by the black and gray arrows. Note that branches B and C come
close to the point where branch A and A′ meet, and will eventually cross
to form a transcritical bifurcation at the transition from regime iii to iv .

regime (iv) For εx = 0.05, Fig. 3.5 (d), we observe the outcome of a sys-
tem that has moved away from the transcritical bifurcation. At the iii-iv-
transition, stable branches A and B and unstable branches A′ and C, as
present in Fig. 3.5 (c), meet in one limit point, a transcritical bifurcation,
and exchange stability. As εx is increased from εxiii−iv , the value of εx at the
iii-iv-transition, to εx = 0.05, branch A and B get connected and separated
from the second branches A′′ and C + A′. When εy is increased, starting
from εy = −0.2, θeq, follows stable branch A+ B and, in contrast to Fig. 3.5
(a)-(c), is monotonically increasing. Hence, the system is in regime (iv).
The energy equilibria are split into two seperate curves, Fig. 3.5 (h), the
black curve belonging to trajectory A + B and a gray curve belonging two
A′′ and C + A′. Although these two distinct energy curves cross, see inset,
the trajectories in θeq are separated and the system does not minimize its
energy by jumping to a lower energy branch. The force, Fig. 3.5 (l), derived
from Eeq, is monotonic again for monotonically increasing εy, starting from
εy < 0.
As shown in Fig. 3.5, the soft biholar mechanism captures the phenomenol-
ogy found in the experimental biholar sheets very well. Moreover, Fig. 3.5
(a)-(d) gives deep inside in the different bifurcation scenarios leading to
the four different mechanical regimes.
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FIGURE 3.5: (a)-(d) Equilibrium angles as a function of uniaxial deformation εy,
showing that the trajectories followed by the soft biholar mechanism in regimes
i-iv (different values of εx). (e)-(h) Equilibrium energy as a function of εy. (i)-(l)
Forces derived from equilibrium energies as function of εy (dashed for unstable
states).
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CHAPTER 3. SOFT MECHANISM

3.3 Geometrical Interpretation
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FIGURE 3.6: (a) The M-curve for a biholar mechanism, shown here for χ = 0.3, is
part of an ellipse, that is rotated by π/4 with respect to the origin. (b) M-curves
for different values of χ with a + b =

√
2 and θ ∈ [0, π/2].

The internal dimension of the soft mechanism are given by equations
3.5 and 3.6. Now, using (xi + yi)/(a + b) = cos(θ) + sin(θ) and (xi −
yi)/(a− b) = cos(θ)− sin(θ), these equations are rewritten to obtain:

(
xi + yi

2

)2

+

(
xi − yi

χ

)2

= 1 (3.11)

So the relation between the internal dimensions yi and xi for a non-inter-
secting biholar mechanism, the M-curve, describes part of an ellipse (Fig. 3.6a)
that is rotated by π/4 with respect to the origin. The major axis of the el-
lipse is fixed and given by

√
2 and the minor axis depends on biholarity

and is given by χ/
√

2. So, as we increase the biholarity, the minor axis of
the ellipse will increase from zero to

√
2, see Fig. 3.6b.

A geometric interpretation of the various equilibria and their bifurcations,
as εx and εy are varied, provides much insight. As illustrated in Fig. 3.6,
the relation between the xi and yi can be represented as a smooth curve,
which we refer to as M (for mechanism). For given dimensions of the
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FIGURE 3.7: (a) The envelope of all curves normal to M mark the evolute Σ of
M. (e) M-Curve and evolute, dashed lines indicate non-physical solutions where
θ /∈ {0, π/2}. (b)-(d) Depending if (xo, yo) is outside, precisely at, or inside Σ,
one, two or three vectors from (xo, yo) normal to M can be drawn. (f)-(h) The
normal vectors are associated with the equilibria of the system. The length of the
normal vectors gives the square root of the equilibrium energy, the intersection
of the normal vector with M marks the equilibrium state θeq of the mechanism.

bounding box (xo, yo), the distance from (xo, yo) to M is

d =
√
(xo − xi(θ))2 + (yo − yi(θ))2 =

√
E(θ), (3.12)

for kx = ky = 0.5.
As extrema of d =

√
E(θ) are also extrema of E(θ), we can find equilib-

ria of E(θ) by searching for points (xi(θeq), yi(θeq)) on M that minimize
or maximize the distance d between (xo, yo) and M. This implies finding
lines that are normal to M and intersect (xo, yo). In other words, stable
(unstable) equilibria of E thus correspond to points (xi(θeq), yi(θeq)) on M,
tangent to circles centered at (xo, yo) with radius E1/2.
Shown in Fig. 3.7(a) are a selection of lines that are normal to M. The enve-
lope of all curves normal to M mark the evolute Σ, the locus of all centers
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CHAPTER 3. SOFT MECHANISM

of curvature of M. For a point (xo, yo) outside the evolute, one vector2 of
length

√
Eeq, normal to M can be drawn (Fig. 3.7(b)). As shown in figures

3.7(e) and (f), the intersection of the black normal vector with M corre-
sponds to a state (xi(θeq), yi(θeq)) that is a global minimum (black dot) of d
and therefore E.
For a point (xo, yo) exactly at Σ, two normal vectors can be drawn (Fig. 3.7(c).
The intersection of the gray normal vector with M corresponds to a state
(xi(θeq), yi(θeq)) that is a global minimum, see Fig. 3.7(g), while the inter-
section of black-gray dashed normal vector with M corresponds to a flat
region in E(θ).
For a point (xo, yo) inside the evolute, three vectors normal to M can be
drawn (Fig. 3.7(d)). The gray normal vector corresponds to a global min-
imum (black dot), the dashed gray normal vector to a local maximum
(open diamond) and the black vector to a local minimum (black diamond).
In summary, depending if (xo, yo) is outside, precisely at, or inside Σ, one,
two or three vectors from (xo, yo) normal to M can be drawn. Each normal
vector is associated with an equilibrium state of the soft mechanism, as it
minimizes or maximizes the distance d(θ), and hence E(θ). The location of
the intersection of the normal vector with M, gives the equilibrium state
(xi(θeq), yi(θeq)), with equilibrium energy Eeq, the square of the length of
the normal vector.

The experimental protocol varies yo at fixed xo. Hence, the experimental
protocol follows vertical lines in the xi-y− i-plots, see Fig. 3.8. We imme-
diately see that, depending on the choice of xo, these trajectories cross or
do not cross M and Σ. Repeating the geometric construction as discussed
above provides the corresponding stable and unstable equilibria along the
trajectory. When the vertical lines crosses Σ, saddle-node bifurcations oc-
cur, as a pair of local maxima and minima emerges.
We now explore this model to understand the transition A from mono-
tonic to non-monotonic force curves, the transition B that leads to hystere-
sis, and the transition C where the differently polarized branches become
separated. In Fig. 3.8 we indicate the four trajectories corresponding to

2In general, depending if (xo, yo) is outside, at or inside Σ there are two, three or four
vectors normal to an ellipse. However, since we restrict the M-curve to represent only
physical states, θ ∈ [0, π/2], there are one, two or three vectors normal to M.
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3.3. GEOMETRICAL INTERPRETATION

the four different mechanical regimes (i)-(iv), as well as three trajectories
labeled A, B and C that correspond to marginal curves which separate sce-
narios (i)-(iv).
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FIGURE 3.8: The experimental protocol, varying yo while keeping xo fixed, is
visible as vertical lines in the xi-yi-plots. Depending on the choice of xo, these
trajectories cross or do not cross the M-curve and/or the Σ-curve, which identifies
regime (i)-(iv). The marginal trajectories (A, B and C), are precisely located at the
transitions between the regimes.
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FIGURE 3.9: (a) Equilibrium energy of the vertical trajectory for a biholar mecha-
nism with χ = 0.3 and xo = 1.0300 (εx = −0.0300). (b)-(e) Four different points
at the trajectory with their corresponding equilibrium energy circles that are tan-
gential to M. The equilibrium state (xo(θ), yo(θ)) is the point where the energy
circle meets the M-curve (gray diamond).

Regime (i) The value of xo is chosen such, εy = 1 − xo = −0.0300, that
the trajectory of yo is outside of M and Σ, Fig. 3.9. Shown in Fig. 3.9(a) is
the equilibrium energy of this trajectory. Presented in figures 3.9(b)-(e) are
four different points along the trajectory. For each point the circle centered
at xo, yo tangent to M with radius

√
Eeq is drawn, giving the equilibrium

state and energy. As we move along the vertical trajectory, the radius of the
tangent circle is first decreasing and then increasing, resulting in a energy
landscape that we recognize as corresponding to regime (i), Section 3.2.
Moreover, the equilibrium state of the system, the point (gray diamond)
where the energy circle and the M curve meet, smoothly travels along the
M curve.
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FIGURE 3.10: (a) Equilibrium energy of the vertical trajectory for a biholar mech-
anism with χ = 0.3 and xo = 0.978 (ε = 0.0220), which we associate with regime
(ii). (b)-(e) Four different points at the trajectory with their corresponding equilib-
rium energy circles that are tangential to M. The equilibrium state (xo(θ), yo(θ))
is the point where the energy circle meets the M-curve (gray diamond).

Regime (ii) The value of xo is chosen such that the trajectory is inside the
M-curve but outside the evolute Σ, Fig. 3.10. As the line is outside Σ, only
one equilibrium is present for each point on the trajectory. Moreover, as
the trajectory crosses the M-curve twice, the radius of the tangential en-
ergy circle is first decreasing to zero (b)-(c) as it crosses the M-curve, then
increasing (c)-(d) and decreasing again (e) as it crosses the M-curve for the
second time. We recognize the corresponding equilibrium energy curve
along this trajectory as fitting to regime (ii). Notice that the equilibrium
state, indicated by the gray diamond, first stays roughly at the same lo-
cation (b)-(c) on M and then rapidly, after the trajectory has crossed the
M-curve for the first time, rapidly co moves along M. For lower values of
yo, higher values of εy, the trajectory will cross the M-curve, leading to two
new energy equilibria, emerging from a saddle-note bifurcation, which are
visible for high values of εy and Eeq in Fig. 3.10.
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FIGURE 3.11: (a) Equilibrium energy of the vertical trajectory for a biholar mech-
anism with χ = 0.3 and xo = 0.9665 (εx = 0.0335), which we associate with
regime (iii).(b)-(e) Four different points at the trajectory with their correspond-
ing equilibrium energy circles that are tangential to M. The equilibrium states
(xo(θ), yo(θ)) are the points where the energy circles meets the M-curve. (c) For
points inside Σ, three equilibria are present. Black points correspond to a global
minimum, black diamond to a local minimum, open black diamond to a local
maximum. The colors of the energy circles match the colors for the different en-
ergy branches in figure (a). Dashed lines represent local maxima, full lines local
minima, the coloring scheme matches that of Fig. 3.5.

Regime (iii) In Fig. 3.11, the value of xo is chosen such that the trajectory
crosses the M-curve once and the evolute Σ three times. Each crossing of
the trajectory with the evolute is associated with the appearance or dis-
appearance of a pair of local minima and maxima, i.e. saddle-node bi-
furcations. In Fig. 3.11(b) we show one circle with radius

√
Eeq that is

tangential to M, corresponding to small vertical compression. For larger
compressions, (xo, yo) crosses the evolute and is now to the left of Σ, there
are three circles that are tangent to M centered at (xo, yo), as shown in
Fig. 3.11(c) (note that two of these are nearly identical). The tangent points
correspond to the three equilibrium states of the mechanism, and are indi-
cated by a black dot (global minimum), black diamond (local minimum)
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and an open diamond (local maximum). The open diamond represents
an unstable state. As indicated in Fig. 3.11(a), going from state (b)-(c), the
system first follows a global minimum (black dot), which becomes a local
minimum (black diamond) in figure 3.11(c), as a pair of local maxima and
minima have appeared with a lower minimum energy. If (xo, yo) crosses
the evolute again (Fig. 3.11(d)), a pair of energy minima and maxima an-
nihilate in a reverse saddle-node bifurcation, and we are left with a single
stable equilibrium state. This state is not smoothly connected to the stable
state in Fig. 3.11(b) and (c), an the mechanism thus discontinuously jumps
from the black branch to the gray branch (Fig. 3.11(a)). As (xo, yo) crosses
Σ for the third time, and now is again inside the evolute (Fig. 3.11(e)), a
forward saddle-node bifurcation occurs, leading to a pair of local max-
ima and minima (dotted gray and black lines in Fig. 3.11(a)), represented
by dotted gray and black circles in Fig. 3.11(e). The preferred state of the
system is still represented by the black dot on the M-curve as this is the
minimum energy state and comoves along M by further increasing yo.

Regime (iv) Finally, we increase the value of xo such that the trajectory
crosses both the evolute and M-curve once. In Figs. 3.12(b)-(c), (xo, yo)
is outside the evolute, hence there is one (black) circle tangent to M cen-
tered at (xo, yo), corresponding to a single equilibrium state of the system
(black dot). In Fig. 3.12(d), (xo, yo) is precisely at the evolute, resulting in
two circles that are tangent to M corresponding to two equilibrium states
of the mechanism, of which one is the minimum energy equilibrium state
(black circle) and the other corresponds a local minimum and maximum
(flat region in the E(θ)-curve) that, as yo is decreased furthermore, will
segregate into two separate equilibrium states.
As yo is decreased further, (xo, yo) crosses the evolute, and three lines tan-
gent to M intersecting (xo, yo) can be drawn. Note that the state describing
the system (black diamond) is not the minimum equilibrium energy state
anymore, so that the mechanism is trapped in a local minimum. More-
over, as shown in Figs. 3.12(b)-(e), in contrast to the other three regimes,
the marker describing the state of the system has moved towards higher
values of θ (counter clockwise) on the M-curve when yo is lowered.
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FIGURE 3.12: (a) Equilibrium energy of the vertical trajectory for a biholar mecha-
nism with χ = 0.3 and xo = 0.9500 (εx = 0.0500), which we associate with regime
(iv). (b)-(e) Four different points at the trajectory with their corresponding equi-
librium energy circles that are tangent to M. (d) Precisely at Σ, two equilibria
are present, of which one corresponds to a flat region in E(θ). Black points cor-
respond to a global minimum, black diamondto a local minimum, open black
diamond to a local maximum. The (dashed and full) colors of the energy circles
match the colors for the different energy branches in figure (a), that matches the
different bifurcation paths presented in Fig. 3.5.

Returning to Fig. 3.8, we can now summarize all our findings with a clear
geometric interpretation of the three transitions. Curve A is tangent to M,
so that here the energy is purely quartic in yo, and ∂yFy = 0. Curve A thus
separates (i) monotonic force curves at larger x0 from (ii) non-monotonic
force curves for smaller x0. Curve B intersects the cusp of Σ, leading to a
pair of saddle-node bifurcations which become separated for smaller xo,
and thus spawn a hysteresis loop. Curve B thus separates case (ii) and
(iii). Finally, curve C is tangent to Σ, which corresponds to a transcriti-
cal bifurcation where two solutions cross and exchange stability. As a re-
sult, for smaller xo, the differently polarized branches decouple (Fig. 3.12).
Curve C thus separates (iii) and (iv). For movies illustrating the geomet-
rical construction for cases (i)-(iv) as well as cases A-C, see Supplemental
Information of [57].
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3.4 Conclusions

We have demonstrated that the pattern transformations observed in a bi-
holar sample can be mapped onto a single-degree-of-freedom mechanism
consisting of rectangles connected by hinges at their corners. The state of
this mechanism is described by a single parameter, θ.
In section 3.2 we have introduced the soft mechanism, a rigid mechanism
coupled through a set of linear springs to the outside walls of a surround-
ing box, modeling the lateral and uniaxial confinement. The soft mecha-
nism describes the mechanics of a laterally confined biholar sample under
uniaxial loading well and gives insight in the different bifurcation scenar-
ios leading to the four different mechanical regimes observed.
Additionally, by plotting the M-curve, which describes the state of the
mechanism, the various transitions between the four regimes can also be
explained by crossings of the experimental path, visible as vertical lines
in this representation, with the M-curve and its evolute Σ. Each time the
experimental path crosses the M-curve, there is a zero energy equilibrium
state, while each time the experimental curve crosses the evolute, a saddle-
node bifurcation occurs.
This geometrical interpretation suggests how to rationally design mechan-
ical metamaterials with confinement controlled response: First, establish
the required bifurcation scenario when εx is varied. Second, construct an
evolute Σ that is consistent with the associated sequence of bifurcations.
The M-curve can then explicitly be constructed as the involute of Σ [59].
Third, design a physical mechanism that possesses this M-curve; in prin-
ciple any M-curve is encodable in a mechanism [60]. Finally, translate the
rigid mechanism and hinges to a soft metamaterial with slender elements.
Important work for the future is to explicitly demonstrate the feasibility of
this design strategy [61].
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APPENDIX A

DERIVATION OF THE
MECHANICS OF THE BIHOLAR

SOFT MECHANISM USING
LAGRANGE MULTIPLIERS

Using Lagrange multipliers we can directly find an implicit relation be-
tween the force and deformation of the biholar soft mechanism. The La-
grangian is solely given by the potential energy:

L = −2kxδl2
x − 2kyδl2

y (A.1)

To find the equilibrium forces we minimize the Lagrangian subjected to
two equations of constraints (Eq. 3.8 and Eq. 3.9):

L̃ = −2kxδl2
x − 2kyδl2

y + Fx(δlx − xo + xi(θ)) + Fy(δly − yo + yi(θ)), (A.2)

where Fx and Fy are the Lagrangian multipliers that represent the forces in
the x- and y-direction. Minimizing L̃ with respect to the variables δlx, δly
and θ results in the following set of equations:

∂L̃
∂δlx

= −4kxδlx + Fx = 0 (A.3)

∂L̃
∂δly

= −4kyδly + Fy = 0 (A.4)

∂L̃
∂θ

= Fx
∂xi(θ)

∂θ
+ Fy

∂yi(θ)

∂θ
= 0 (A.5)
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After substituting Eq. A.3 into Eq. A.5 we find two expressions for λy:

λy = −4kyδly (A.6)

λy = −4kxδlx
∂xi(θ)/∂θ

∂yi(θ)/∂θ
(A.7)

We solve these two relations numerically to obtain a relation between force
and deformation, F(εy).

First the force F(θ) for every angle is calculated (Eq. A.7):

F(θ) = −2kx(xo − xi(θ))
b cos(θ)− a sin(θ)
a cos(θ)− b sin(θ)

(A.8)

Then we use Eq. A.6 to calculate δly for every angle θ:

δly = −F/4ky (A.9)

and finally we calculate the strain using:

εy = 1− (yi(θ)− δly). (A.10)
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