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Abstract

Alterations in signalling via protein kinase B (PKB/Akt) and the mammalian target of
rapamycin (mTOR) frequently occur in type 2 diabetes and various human malignancies.
Proline-rich Akt substrate of 40 kDa (PRAS40) has a regulatory function at the intersection
of these pathways. The interaction of PRAS40 with the mTOR complex 1 (mTORCI)
inhibits the activity of mTORCI1. Phosphorylation of PRAS40 by PKB/Akt and mTORC1
disrupts the binding between mTORC1 and PRAS40, and relieves the inhibitory constraint
of PRAS40 on mTORCI1 activity. This review summarizes the signalling pathways
regulating PRAS40 phosphorylation, as well as the dual function of PRAS40 as substrate
and inhibitor of mMTORCI in the physiological situation, and under pathological conditions,

like insulin resistance and cancer.
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Introduction

Proline-rich PKB/Akt substrate of 40 kDa (PRAS40) is a component of the mammalian
target of rapamycin complex (mTORC) 1 (1-4). The catalytic subunit of mTORCI,
mammalian target of rapamycin (mTOR), is shared with another multimeric protein
complex, termed mTORC?2. In addition to mTOR and PRAS40, mTORCI consists of the
regulatory associated protein of mTOR (raptor), and the mammalian ortholog of yeast
Lethal with Secl3 protein 8 (mLST8, also known as GB1) (5-8). Signalling by mTORCI1 is
sensitive to rapamycin and regulates multiple cellular processes, such as mRNA translation,
ribosome biogenesis, cell cycle progression, hypoxia, autophagy, mitochondrial function,
lipid storage, and chronological lifespan through phosphorylation of multiple substrates (for
review see (9-11)). The growing list of mTORC]1-regulated proteins includes yin yang 1
(YY1), signal transducer and activator of transcription 3 (STAT3), serum- and
glucocorticoid regulated kinase 1 (SGK1), PRAS40, phospholipase D2 (PLD2), hypoxia-
inducible factor la (HIF1a), and Akt substrate of 160 kDa (AS160, also known as TBC1
domain family member D4 (TBC1D4)), in addition to the well characterized substrates,
eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and the p70 S6 kinases
(S6K1 and S6K2) (12-22) (Table 1).

The mTORC2 complex contains mTOR, rapamycin-insensitive companion of mTOR
(rictor), mSinl, mLST8, and proline-rich repeat protein-5 (PRRS, also known as protor) or
PRRS5-like (2;23-29). Active mTORC2 not only regulates actin polymerisation, but also
promotes phosphorylation of the hydrophobic motifs of protein kinase B (PKB/Akt), and
SGK1. Also phosphorylation of both the turn- and hydrophobic motifs within the protein
kinase C (PKC) a isoform, and likely also within the PKC I, BII, v, and € isoforms is
mediated by active mTORC?2 (30-36) (Table 1).
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Table 1. Overview of substrates for mTORC1 and mTORC2

Phosphorylation site TOS motif  RAIP motif

mTORC1-regulated proteins:
4EBP1, 2,3  Thr37, Thr46, Ser65, Thr70 FEMDI RAIP

HIFla FVMVL

PLD2 FEVQV

PRAS40 Ser183, Ser212, Ser221 FVMDE KSLP
S6K1 Thr389 FDIDL

S6K2 Thr388 FDLDL

SGK1 Serd22

STAT3 Ser727 FPMEL RAIL
TBC1D4 Ser666 FEMDI

YY1

mTORC2-regulated proteins:

PKB/Akt Serd73 n.a. n.a
PKCa Thr638, Ser657 n.a n.a
PKCB1 n.a n.a
PKCB2 n.a n.a
PKCy n.a n.a
PKCe n.a n.a
SGK1 Ser422 n.a n.a
mTOR and disease

Type 2 diabetes. Clinical insulin resistance of peripheral target tissues for insulin action,
like the liver, skeletal muscle and adipose tissue, in combination with insufficient
compensatory insulin secretion by the B-cells in the islets of Langerhans characterizes type
2 diabetes (T2D) (37). At the molecular level, both insulin resistance and T2D are often
associated with an impaired activation of phosphatidylinositol 3’-kinase (PI3K) and its
substrate PKB/Akt after insulin stimulation (38). In the liver, skeletal muscle, heart, and
adipose tissue, the PI3K-PKB/Akt pathway regulates glucose metabolism (39;40). In the
pancreas, the PI3K-PKB/Akt pathway promotes B-cell growth, proliferation, and survival
(41). Activation of the PI3K-PKB/Akt pathway by insulin is mediated by recruitement of
PI3K to the tyrosine phosphorylated insulin receptor substrates (IRS) 1 and 2 (42;43).
Conversely, the induction of tyrosine phosphorylation of IRS1/2 is blunted upon serine
phosphorylation of IRS1/2 (44-49). Serine phosphorylation of the IRS-proteins not only
reduces the activation of the PI3K-PKB/Akt pathway by insulin, but also leads to
proteasome-mediated protein degradation of IRS1/2 through interaction with 14-3-3
proteins (50-53).

Several studies on high-fat diet fat rodents show elevated activity of the mTORCI
signalling pathway (54-57). The sustained activity of S6K1 may abrogate insulin-mediated
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activation of the PI3K-PKB/Akt pathway by inducing inhibitory serine phosphorylations on
the insulin receptor and IRS1/2 (58-62). Accordingly, genetic ablation of S6K1 (63), or
lowering mTORCI activity with rapamycin (64) or chronic exercise (65) reduces IRS1
serine phosphorylation and reverses the inhibition of the PI3K-PKB/Akt pathway in the
liver, skeletal muscle, and adipose tissue. In contrast, rapamycin treatment does not
improve insulin sensitivity in ob/ob mice (66), indicating that rapamycin-insensitive protein
kinases, such as c-jun N terminal kinase, inhibitor of kappa B kinase and PKC isoforms,
might contribute to inhibition of insulin signalling (67). Alternatively, mTORCI action
may differ between tissues. For example, mTORCI1 regulates mitochondrial function via
the transcriptional regulators YY1 and PGCla in skeletal muscle (68), and is crucial for -
cell survival and insulin biosynthesis in the pancreas (69-74). Recently, the tissue-specific
regulation of metabolic control by mTORCI has been reviewed extensively (75;76).

Cancer. Multiple human malignancies and inherited hamartoma syndromes show increased
activity of mTOR (77-79). As will be described in more detail under “Regulation of
mTORCI activity”, the tuberous sclerosis complex (TSC), a GTPase activating protein
complex consisting of two subunits, TSC1 (also known as hamartin) and TSC2 (also known
as tuberin) is a key upstream regulator of mTORCI (reviewed by (80)). Various protein
kinases, including PKB/Akt, AMP-activated kinase (AMPK), and extracellular-signal
regulated kinase (ERK), affect the activity of TSC via phosphorylation of the TSC2 (81-
84). In particular, hyperactivation of PKB/Akt is a common characteristic of human
malignancies (85;86). Since PKB/Akt activates mTORC1 by phosphorylating TSC2 and
mTORC?2 acts a upstream activator of PKB/Akt, mTOR may function both upstream and
downstream of PKB/Akt in the pathogenesis of human cancer as has been extensively
reviewed by others (87-91).

The hamartoma syndrome tuberous sclerosis is characterized by inactivating mutations in
TSC1 (92) or TSC2 (93). Other hamartoma syndromes have been linked to loss of function
of tumour suppressors that regulate TSC activity (94;95). The Cowden syndrome can be
ascribed to a loss of function of phosphatase and tensin homolog (PTEN), a phosphatase
inactivating PI3K, the upstream regulator of PKB/Akt (for review see (96)). Inactivating
mutations in LKB1, the upstream regulator of AMPK, underlie the Peutz-Jeghers syndrome
(97;98). Finally, mutations in the neurofibromanin gene which encodes a GTPase activating
protein for Ras, cause neurofibromatosis type 1 (99). The NF1 mutation results in high
intracellular levels of active Ras that inactivate TSC2 through sustained activation of two
Ras-effector pathways, the Raf-MEK-ERK- and the PI3K-PKB/Akt-pathway (100).
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Regulation of mTORCI1 activity

As summarized in Figure 1, activation of mMTORCI in response to anabolic stimuli, such as
insulin and nutrients, like amino acids and glucose, involves the integration of multiple
signalling pathways at the level of mTORCI1 (101;102). Activation of the mTOR protein
kinase occurs via binding of the GTP-bound form of the small GTP-binding protein Ras
homolog-enriched in brain (Rheb) (103). To bring mTORCI in the proximity of Rheb,
amino acids are required (104). Amino acids increase the intracellular RagA- and RagB-
GTP levels, thereby stimulating the binding of these small GTPases to raptor (105;106).
The binding of the Rags serves to relocate mTORCI to Rheb-containing peri-nuclear
vesicular structures, thus allowing mTOR to interact with Rheb (107). The levels of GTP-
bound Rheb are regulated by TSC, which acts as a GTPase activating protein on Rheb
(108). Insulin inhibits TSC activity through PKB/Akt-mediated phosphorylation of TSC2
(109;110). As a result, Rheb is relieved from the inhibitory GTPase activity, thus allowing
Rheb-GTP to bind and activate mTORCI1. Glucose activates mTORCI1 by inhibiting
AMPK (111-113). AMPK, when activated such as in response to energy deprivation,
activates TSC2 (114), thus promoting the hydrolysis of Rheb-GTP and inhibition of

mTORCI.
Figure 1. Regulation of mTORCI activity
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PRAS40

Identification of PRAS40. PRAS40 was originally described as a 40 kDa protein that binds
to 14-3-3 proteins in lysates from insulin-treated hepatoma cells (115). PRAS40 is probably
identical to the p39 protein that is phosphorylated in PC12 cells in response to nerve growth
factor or epidermal growth factor (116). Finally, PRAS40 has been described as Aktl
substrate 1 (Akt1S1), a phosphoprotein identified from nuclear extracts from Hela cells
117).

PRAS40 was recognized as component of the mTORCI complex following mass
spectrometry analysis of mTOR immunoprecipitates (2;118-120). Subsequent western blot
studies showed that PRAS40 preferentially interacts with raptor, but that it also binds to the
kinase domain of mTOR (2;121-123). Compared to intact mTOR, PRAS40-binding to a
kinase-dead mutant of mTOR is reduced (2). PRAS40 has not been found in rictor
immunoprecipitates, indicating that PRAS40 is a component of mTORCI, and not of
mTORC2 (2;124-126).

Structure and post-translational modification of PRAS40. The gene for PRAS40 is
located on human chromosome 19q13.33 and encodes 3 transcript variants that differ in
their 5’-UTR but result in the same 256 amino acid protein. Analysis of human, rat and
mouse tissues demonstrates a ubiquitous expression of both PRAS40 mRNA and protein,
with highest transcript levels found in human liver and heart (127;128). As shown in Figure
2A, the PRAS40 protein consists of two proline-enriched stretches at the aminoterminus
with an as yet unknown function (129), but containing sequences that have the potential to
bind proteins containing SH3- and/or WW-domains (130). The proline-rich region is
followed by two short sequences that have been implicated mTORCI-binding and
phosphorylation of mTORCI substrates, i.e. an mTOR signalling- (TOS) and a potential
RAIP-motif (131-133). The TOS motif is located between amino acids 129 and 133 (134-
136), and is a common feature shared with multiple other mTORCI substrates (Table 1).
The Lys-Ser-Leu-Pro sequence located between amino acids 182 and 185 is similar to the
RAIP-motif, which has been named after a short amino acid sequence identified in 4EBP1,
Arg-Ala-lle-Pro (137;138) (Table 1). The carboxyterminus of PRAS40 contains a sequence
that matches the consensus for a leucine-enriched nuclear export sequence (NES), Leu-
xx(x)-[Leu,lle,Val,Phe,Met]-xx(x)-Leu-x-[Leu,lle] (139). Finally, multiple residues within
PRAS40 can become phosphorylated, including Ser183, Ser202, Ser203, Ser212, Ser221,
and Thr246 (140-142) (Figure 2A).

Highly conserved homologues of PRAS40 have been identified down through Danio rerio.
PRAS40 homologues almost identical to the human protein have been found in Bos taurus,
Mus musculus, and Rattus norvegicus. The homologues from Xenopus laevis and Danio
rerio completely lack the proline-enriched stretches at the aminoterminus, but are 60% and
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44% identical to the carboxyterminal part of the human protein (143), and show
conservation of the TOS, RAIP, and NES-motifs as well as the phosphorylation sites on
Ser183, Ser221, and Thr246 (Figure 2B). The carboxyterminal part of PRAS40 also shows
58% and 46% similarity with the carboxyterminal part of the Lobe proteins from Apis
mellifera and Drosophila melanogaster (144). The Lobe proteins lack the TOS motif and
show less conservation of the NES. However, the RAIP motif as well as the equivalents of
Ser183, Ser221, and Thr246 are preserved (Figure 2B). Human PRAS40 also has been
reported to share some similarity with dauer or aging overexpression family member 5
(dao-5) from Caenorhabditis elegans and Caenorhabditis briggsae (145). However, dao-5
seems to lack preservation of the important regulatory motifs found in PRAS40 from higher
organisms. Therefore, it remains unclear whether PRAS40 is also found in these lower

eukaryotes.

Interaction with raptor. PRAS40 binds to the mTORCI1 complex predominantly through
interaction with raptor, and dissociates in response to the addition of insulin or amino acids
(146-150). The interaction of PRAS40 with raptor requires an intact TOS-motif, as
mutation of Phel29 to Ala greatly reduces the binding of PRAS40 to raptor (151-153). In
addition to the TOS-motif, the binding of PRAS40 to raptor was found to require a
sequence located between amino acids 150 and 234 of PRAS40 (154). Some studies have
proposed a regulatory role for the RAIP motif of PRAS40. Mutation of Ser183 or Pro185 to
Ala reduced the PRAS40-raptor complex formation (155), and substitution of Ser183 by
Asp completely abrogated the interaction between PRAS40 and raptor (156). In 4EBP1, the
RAIP-motif not only directs interaction with raptor, but also is critical for mTORCI1-
dependent phosphorylation of the protein (157-159). However, insulin and amino acids
failed to promote phosphorylation of a mutant 4EBP1 in which the RAIP motif was
replaced by the Lys-Ser-Leu-Pro sequence of PRAS40 (160). Thus, whereas
phosphorylation of Ser183 seems to contribute disruption of the PRAS40-raptor complex
(161;162), the function of the RAIP motif in the binding of PRAS40 to raptor still requires
further analysis .
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Figure 2. A. Primary structure
A of the human PRAS40 protein.
PRAS40 consists two proline-

Pro-rich Pro-rich TOS RAIP NES .
PRAS40 N- = — = = =—cC rich stretches followed by a
1 35 43 77 96 129 133 182,185 218, 227 , 256 TOS—mOtlf a RAIP—motifand a
T T T T nuclear export sequence. The
phosphorylafion sites: S183 520213 S212 S221 T246 arrows indicate the sites in
1 PRAS40 that can be modified
mToRC1 | PrB/AK: | .
through  phosphorylation by
PKB/Akt, mTORCI, and as yet
B . . L
unidentified protein kinases. B.
H.sapiens EDNEEDEDEP-TETETSGEQLGI SDNGGLEFVMDEDATLODLPPFC 149 ClustalW  alignment of the
B.taurus EEDEEDEDEP-TETETSGERLGVSDNGGLEFVMDEDT TLQDLPPFC 149
M.musculus EDEEEDEDEP-TETE TS GERLGGSDNGGLEMMDE DATLODLP PFC 150 carboxyterminal part ()f the
R.norvegicus EEDEEDEDEP-TETETSGERLGGSDNGGLFMMDEDATLQODLPPFC: 150 . .
X.laevis APDEEDYDDYNKHLEKTAEHT P- SDATGLEFVMDEDSNSQDCE PFF* 182 human PRAS40 proteln (aml}’lo
D.rerio DLEEEDEDDE--EEDLDGRRRNLNE SAGVFSMDEDS LSRDCEPFF: 243 .
A.mellifera ANSNVKHETGAKY SSNPLINGSIDKKDRIYIYTKEPTSFDTEALFPLEGMEDTLNADQVQ 301 aCZdS 101—256' NP 115751
> _
D.melanogaster DADDCLFDLEDVDAPVPVQSVPVPSYTRSLI YQQOPQHNPFQQLSQONGLRSVLDDEAAD 463 .
with the PRAS40 homologues of
H.sapiens STDDGSLSEETPAGPP--TCSVPPASALPTQQYAKSLPVSVPVWGFKEKRTEARSSDEEN 207
B.taurus STDDGSLSEETPAGPP--AYSVPPASALPTQOYAKSLPVSVPVWAFKEKRTEARSSDEEN 207 Bos taurus (NP_001076903),
M.musculus STDDGST‘SF“F“TPAGFT**ACPQPPA'T‘AT.PTQQ‘(Al(SLPVSVPVWAF‘KF‘.KRTF‘.AREDFF‘.N 208
R.norvegicus STDDGST‘SF“F“TPAGFP**AVPKT‘PA'T‘AT.PTQQ‘(Al(SLPVSVPVWAF‘KF‘.KRTF‘.AREDFF‘.N 208 Mus musculus (NP_080546)’
X.laevis STDDGSLTDDLPG-—-———~- HLPPQRNY——QQYAKSLPVTVPVWSFKEKRQQNKCENDET 233 R 1t .
D.rerio ESTDGSLSEEAPPPPRGMAMGHLASRSSNPMSMARSLPVSVPVWGYRNNHAPQGDEHSGE 303 attus norveglcus
A.mellifera SSEEGSDTDDSGQDEG---IHMPRGORGGHPTLAKSLPVSVPSFPSFVRRTVQ-DQDDDQ 357
D.melanogaster EAEDALDPDSSISIPVR---GGGRPSHAQLMNFARSLPIEIANTTLAERAAVANNNNFGQ 520 (NP—001099729)’ Xenopus
H.sapiens GPPSEPDLDRIMSMRALVLREAED—TQVFGDLPRPRLNZSDFQKLKRKY 256 lae‘}ls (NP—001084778)’ Danlo
B.taurus GPPSEPDLDRIAASMRALVLREAED—TQVFGDLPRPRLNESDFQKLKRKY 256 rerio (XP 6925]]) ApiS
M.musculus GPPSEPDLDRIAASMRALVLREAED—TQVFGDLPRPRLNZSDFQKLKRKY 257 - ’
R.norvegicus GPPSSPDLDRIAASMRALVLREAED-NQVFGDLPRPRLNT SDFQKLKRKY 257 mellifera (XP 623909) and
X.laevis SKFPSPDLDRIAASMRALTIDHS -~ --QPFGDLPRPRLNTGDFQTKYRKY 279 : -
D.rerio ~RVGCADLDHIAASMKALLVPGATDGTEMFGALPRPRLNTGDFS LKH- - 349 Drosophila melanogaster
A.mellifera LSRDPHDFHNIRASIKALAKSVHGD**T\/F‘GDT.PRPRF‘SEQT*** - 397
D.melanogaster GCEEGMDNIDIAASIQALTRS VHGE-~AVFGDLPRPRLRSQIEG—————— 562 (NP _524787). The amino acids

comprising the TOS-motif, the
RAIP-motif, the NES and the
phosphorylation  sites  are
depicted in bold and underlined.

Subcellular localization of PRAS40. Although PRAS40 is part of the mTORC1 complex,
which exerts its action predominantly in the cytosol, multiple components and regulators of
mTORCI signalling, including PI3K, Akt, TSC2, mTOR, raptor, and S6K, are found both
in the cytoplasm and the nucleus (163-168). The presence of a NES in PRAS40 (Figure 2)
suggests that shuttling of the protein may occur between the cytosolic compartment and the
nucleus. Indeed, multiple studies report a nuclear localization of the protein. Notably,
PRAS40 has been purified as nuclear phosphoprotein from Hela cells (169). Furthermore,
staining A 14 fibroblasts and E2 H9¢2 cardiomyocytes with antibodies recognizing PRAS40
phosphorylated on Thr246 demonstrate a nuclear immunoreactivity that is promoted by
insulin (170). Finally, immunohistochemistry studies on rat liver and heart, and mouse
brain also demonstrate a predominant nuclear localization of Thr246-phosphorylated
PRAS40 (171-173).
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Regulation of PRAS40 phosphorylation

PRAS40 is phosphorylated on multiple sites in response to treatment of cells with growth
factors like platelet-derived growth factor (PDGF), nerve growth factor (NGF), and insulin,
as well as nutrients, such as glucose and amino acids (174-178). In vivo studies confirm
PRASA40 as a physiological target for insulin action in human skeletal muscle and various
rodent tissues, including skeletal muscle, adipose tissue, the liver, the heart and the arcuate
nucleus (179;180) (EBMN and DMO, unpublished observations). Phosphorylation of
PRAS40 induces 14-3-3 binding (181;182), and disrupts the interaction between raptor and
PRAS40 (183-185).

Regulation of PRAS40-Thr246 phosphorylation. Thr246 of PRAS40 is embedded in a
perfect and highly conserved consensus sequence for phosphorylation by PKB/Akt, i.e.
Arg-x-Arg-xx-[pSer,pThr] (186) (Figure 1B). Indeed, incubation of PRAS40 with
recombinant PKB/Akt promotes phosphorylation of Thr246 (187). Furthermore, activation
of PKB/Akt alone is sufficient to induce Thr246 phosphorylation in NIH3T3 fibroblasts
(188), whereas treatment of BT474 tumour cells with the PKB/Akt-inhibitor GSK690693
lowers phosphorylation of Thr246 (189). The amino acid context of Thr246 also displays
similarities with the optimal phosphorylation site for the oncogene-encoded protein kinase
PIM1 (190), and very recently PIM1 has been shown to phosphorylate Thr246 in in vitro
kinase assays and following enforced expression of PIM1 in murine myeloid FDCP1 cells
(191).

Studies in cultured cell lines show that Thr246 phosphorylation is promoted by insulin,
NGF, and PDGF, and abrogated by the PI3K-inhibitors wortmannin and LY294002 (192-
194). Furthermore, PDGF-mediated Thr246 phosphorylation is almost completely
abrogated in embryonic fibroblasts derived from mice lacking both Aktl and Akt2
(195;196).

The regulation of PRAS40-Thr246 phosphorylation by PKB/Akt seems dependent on
phosphorylation of Ser473 of PKB/Akt by the mTORC2-complex. Inhibition of mTORC2
activity, either pharmacologically or by silencing of rictor, reduces Thr246-phosphorylation
of PRAS40 (2;197). Finally, some studies show a partial inhibition of PRAS40-Thr246
phosphorylation by rapamycin (198-200). Although mTORC2 has been reported to be
insensitive to rapamycin, prolonged exposure to rapamycin has been shown to inhibit
mTORC2 activity in certain eukaryotic cell types (201;202). Alternatively, efficient
phosphorylation of Thr246 by the PI3K-PKB/Akt-mTORC2 pathway may require
phosphorylation of PRAS40 on other residues by mTORCI1 (203;204).
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Phosphorylation of PRAS40 by mTORCI. The observation that the interaction of PRAS40
with 14-3-3 proteins is completely dependent on the presence of amino acids, whereas the
PKB/Akt-dependent phosphorylation of PRAS40 on Thr246 is only partially abrogated by
amino acid deprivation, suggests that additional mTORCI1-mediated phosphorylations are
required for 14-3-3 binding to PRAS40 (205;206). Indeed, in vitro kinase assays on
mTORC1 immunoprecipitates identified additional phosphorylation sites on Serl83,
Ser202/Ser203, Ser212, and Ser221 in PRAS40 (207;208). In cultured cells, Ser183 is
promoted by amino acids and insulin, and blunted by rapamycin, glucose withdrawal and
amino acid starvation, thus providing further support that Ser183 is phosphorylated by
mTORC1 (209;210). Although insulin was found to promote phosphorylation of
Ser202/Ser203, Ser212, and Ser221 in HEK293 cells in vivo, only phosphorylation of
Ser221 was sensitive to rapamycin (211). Therefore, the phosphorylation of Ser202/203 and
Ser212 is probably mediated by as yet unknown protein kinases other than mTORCI.

Binding of PRAS40 with 14-3-3 protein. The binding of 14-3-3 proteins to PRAS40 is
prevented by inhibition of PI3K-activity and amino acid deprivation (212-214).
Accordingly, substitution of Ser221 or Thr246 by Ala in PRAS40 almost completely
abolished the insulin-induced binding of 14-3-3 proteins to PRAS40 (215;216).
Interestingly, mutations of Phel129 in the TOS-motif, or Ser183 or Prol85 in the potential
RAIP-motif all prevented 14-3-3 binding and reduced Thr246 phosphorylation (217;218).
Thus, although the binding of 14-3-3 proteins is clearly dependent on both PKB/Akt- and
mTORC1-mediated phosphorylation of PRAS40, the precise contribution of the mTORC1-
regulated sites requires further studies, such as analysis of Ser183 phosphorylation in
PRAS40 mutants with a substitution of Ser221 or Thr246.

It has been proposed that 14-3-3 binding is important for mTORCI activation by
sequestering PRAS40 away from mTORCI, and thereby relieving any inhibitory action that
PRAS40 has on mTORCI. Indeed co-expression of 14-3-3 enhances the phosphorylation of
S6K1 induced by a constitutively active mutant of PKB/Akt (219). However, the inhibition
of mTORCI in vitro kinase activity, or mTORCI signalling by PRAS40, was independent
of the presence of or the ability to interact with 14-3-3 proteins (220;221). It is currently
unknown whether 14-3-3 binding may serve to alter the subcellular localization of
PRASA40. Therefore, the physiological significance of 14-3-3 binding to PRAS40 remains
as yet unclear.

Cellular functions of PRAS40

Regulation of mTORCI activity and cell growth. In addition to being a substrate for
mTORCI1, multiple studies also identify PRAS40 as a negative regulator of mTORCI1
activity and cell growth. The presence of recombinant PRAS40 in in vitro kinase assays
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inhibits both mTORCI1 autophorylation and the induction of 4EBP1 and S6Kl1
phosphorylation (2;222;223). Accordingly, overexpression of PRAS40 lowered basal
phosphorylation S6K1 and 4EBP1 in multiple cell lines (224-227). These initial reports
suggest that PRAS40 functions as substrate inhibitor of mMTORC], and that phosphorylation
of PRAS40, which results in dissociation of PRAS40 from mTORCI, relieves the
inhibitory constraint on mTORCI1. Indeed, silencing of PRAS40 increased basal S6K1
phosphorylation (228). A similar effect on S6K from Drosophila melanogaster was
observed upon silencing of Lobe (229). Consistent with a role for PRAS40 as negative
regulator of mTORCI, overexpression of PRAS40 led to a significant reduction in cell size
(230;231). Reciprocally, silencing of Lobe in insect cells increased cell size (232).
However, phorbol esters activate mTORC1 without affecting PRAS40 phosphorylation
(233), leaving the possibility that the regulation of mMTORCI activity is stimulus-specific.
The inhibitory effect of PRAS40 on mTORCI activity seems to require the interaction with
raptor, as a PRAS40 mutant with Phe129 replaced by Ala, which cannot bind raptor, does
not affect 4EBP1 phosphorylation in vitro and S6K1 phosphorylation in vivo (234). Also
overexpression of another raptor-binding mutant, Ser183Asp PRAS40, had no inhibitory
effect on S6K1 phosphorylation (235). Based on these findings, it has been proposed that
PRAS40 functions as an inhibitor of substrate binding on raptor. Silencing of PRAS40 was
found to enhance 4EBP1 binding to raptor, whereas recombinant wild type, but not
Phe129Ala-PRAS40, competed with 4EBP1 binding to raptor (236). In line with this,
overexpression of either 4EBP1 or S6K1 lowered the binding of PRAS40 to raptor and
reduced mTORC1-mediated phosphorylation of PRAS40 on Ser183 (237). Another report,
however, does not support a requirement for raptor-binding as the Phel29Ala PRAS40
mutant inhibited insulin-mediated 4EBP1 phosphorylation to a similar extent as wild type
PRASA40 (238). The reason for this discrepancy is as yet unclear.

Strikingly, whereas silencing of PRAS40 has been found to enhance amino acid induced
phosphorylation of 4EBP1 and S6K1 in one study (239), other reports show that both
amino acid- and insulin-induced phosphorylation of 4EBP1 and S6K1 are reduced in the
absence of PRAS40 (240-243). The requirement of PRAS40 for the phosphorylation of
mTORCI1 substrates, therefore, also suggests a role for PRAS40 in the assembly or
integrity of the mTORCI complex. Clearly, more studies are required to explain the
discrepancies in literature and further detail the function of PRAS40 in the regulation of
mTORCI.

Apoptosis. PRAS40 has been linked to the regulation of cell survival and apoptosis.
Overexpression of PRAS40 protects neurons from apoptotic cell death transient focal
cerebral ischemia or spinal cord injury (244;245). It has been proposed that ischemia and
reperfusion-mediated PRAS40-Thr246 phosphorylation and subsequent 14-3-3 binding
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play a critical role in the protection of neuronal cells from apoptosis induced by ischemia in
vivo (246;247). Also Lobe has been implicated in the regulation of cell survival during eye
development in Drosophila melanogaster (248). Conversely, lowering PRAS40 expression
has been found to protect against the induction of apoptosis by tumour necrosis factor o or
cyclohexamide (2). As rapamycin fails to mimic the pro-apoptotic effect of PRAS40
silencing, it was suggested that PRAS40 may regulate apoptosis independent of mTORCI.
The role of mTORCI1 signaling has not been determined in the other studies on the role of
PRAS40 in apoptosis. Given the observed differences of the impact of PRAS40 silencing
on mTORCI signaling (249-253), the role of mTORCI in the regulation of apoptosis by
PRASA40 therefore requires further studies.

Deregulation of PRAS40 in disease

Insulin resistance. The induction of PRAS40-Thr246 phosphorylation by insulin in vivo is
reduced in skeletal muscle, heart, liver, and adipose tissue from insulin-resistant high-fat
diet fed rats, and skeletal muscle from ob/ob mice (254-256). Also incubation of rat soleus
muscle with palmitate lowers the induction of PRAS40-Thr246 phosphorylation by insulin
(257). Improving insulin sensitivity by weight loss improved the induction of PRAS40-
Thr246 in human skeletal muscle response to hyperinsulinemia (258).

It is unclear whether the reduction in insulin-mediated PRAS40-Thr246 phosphorylation
affects the activity of mTORCI, or results from hyperactivation of the mTORC1 pathway.
It has been proposed that the increase in basal S6K1 phosphorylation caused by silencing of
PRAS40 induces degradation of IRSI, which on its turn reduces insulin-induced
phosphorylation of PKB/Akt (259). However, other studies could not demonstrate an affect
of either silencing or overexpression of PRAS40 on PKB/Akt phosphorylation (260;261).
Also acute treatment of ob/ob mice with rapamycin did not improve insulin sensitivity in
ob/ob mice despite elevated activity of mTORCI in skeletal muscle (262). A limitation of
this study, however, is that the phosphorylation of IRS1, PKB/Akt and PRAS40 was not
assessed after rapamycin treatment. Therefore, further studies, including the effects of
alterations in insulin sensitivity on the other PRAS40 phosphorylation sites, are required to
determine the physiological consequences of a reduced PRAS40-Thr246 phosphorylation in
insulin resistance.

Cancer. Both the expression and Thr246-phosphorylation of PRAS40 are elevated in pre-
malignant and malignant breast and lung cancer cell lines (263). Furthermore, levels of
Thr246-phosphorylated PRAS40 were increased in meningiomas, and malignant
melanomas (264;265). The increase in PRAS40 phosphorylation in during melanoma
tumour progression was paralleled by increased Akt3 activity (266). However, also other
oncogenic protein kinases, like PIM1 (267), may contribute to enhanced PRAS40-Thr246
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phosphorylation as PRAS40-Thr246 phosphorylation in tumour was only lowered by
incubation with wortmannin (268). Interestingly, lowering PRAS40-Thr246
phosphorylation associates with an increased sensitivity of tumour cells to pro-apoptotic
stimuli (269), suggesting the PRAS40 plays a critical role in tumour cell survival.

Conclusions and perspectives

The identification of PRAS40 as regulator and substrate of both mTORCI1 and PKB/Akt
has added to the complexity of mTORCI signalling. Future challenges lie in further
detailing the impact of the alterations in PRAS40 phosphorylation, as observed in insulin
resistance and cancer, on mTORCI-activity and insulin signalling through the IRSI-
PKB/Akt pathway. Furthermore, it would be interesting whether PRAS40 also affects the
activity of the growing list of substrates of mTORCI, and other mTORCI-regulated
signalling pathways.
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