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1 ATHEROSCLEROSIS 

1.1 GENERAL 

Cardiovascular disease (CVD) is still the number one cause of death in the Western 

world. There are many different clinical manifestations of cardiovascular disease 

such as angina pectoris, cardiomyopathy, endo-myocarditis and aneurysm.  

Atherosclerosis affects the medium and large sized arteries of the heart and 

blood vessels and is the underlying cause of many clinical symptoms of CVD. 

Major risk factors for CVD, such as smoking, obesity and a high fat diet are well 

recognized. In 2004, 45445 people died of the consequences of CVD, accounting for 

33%1 of all reported deaths in the Netherlands, whereas 28% (38824 people) of all 

reported deaths death were related to cancer.2 This states the importance of 

cardiovascular disease in the Dutch society.  

The current treatment of atherosclerosis is mostly aimed at the reduction of 

risk factors by life style advice (stop smoking, more exercise, and lower cholesterol 

intake) and by subscribing drugs, such as statins, that lower plasma cholesterol 

levels. Additionaly drugs that lower blood coagulation and blood pressure are 

prescribed. However, these interventions cannot prevent that CVD is still the 

leading cause of death in the Western world. Therefore, there is an urge to develop 

new therapies targeting the different molecular pathways and stages of 

atherosclerosis. 

 

1.2 PATHOGENESIS OF ATHEROSCLEROSIS 

1.2.1 Initiation of the lesion 

The first stage of atherosclerosis is fatty-streak formation. Fatty streak formation is 

asymptomatic and is already found during the first decades of life in medium and 

large sized arteries, at predisposed sites. The typical atherosclerotic prone sites are 

characterized by low shear stress and high oscillatory shear stress, which increase 

adhesion of leukocytes and the expression of inflammatory genes.3  

Under normal conditions, healthy endothelium is able to respond to 

physical and chemical signals by the production of a wide range of factors that 

regulate vascular tone, cellular adhesion, thrombus resistance, smooth muscle cell 

proliferation, and vessel wall inflammation.4 It is generally accepted that the 

activation of the endothelial cell layer, as a response to modulated gene expression, 

caused by hyperlipidemia, hypertension, diabetes mellitus and smoking, forms the 

first step in atherosclerosis, the fatty-streak formation.5, 6  
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Circulating lipoproteins, in particularly very low-density lipoproteins 

(VLDL) and low-density lipoproteins (LDL) infiltrate into the arterial intima and 

become modified through processes, such as oxidation, glycation, aggregation, 

association with proteoglycans or incorporation into immune complexes.7-10 The 

modified LDL particles are highly immunogenic and activate the endothelial cells. 

Stimulated endothelial cells undergo a switch from a quiescent phenotype 

towards a phenotype that initiates a defense response. Most cardiovascular risk 

factors, such as smoking and high blood pressure, activate the molecular 

machinery in the endothelium, resulting in the expression of chemokines, 

cytokines and adhesion molecules designed to interact with leukocytes and 

platelets and designed to target inflammatory cells to specific tissues to clear 

invading microorganisms or to respond to vascular injury.11 Activated endothelial 

cells express adhesion molecules, like vascular cell adhesion molecule-1 (VCAM-1), 

intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-selectin.3, 12 

Leukocytes (i.e. monocytes and lymphocytes) express counter receptors for these 

adhesion molecules and decelerate via interaction with P- and E-selectin. Once 

slowed down, a more firm adhesion is facilitated via interaction with VCAM-1 and 

ICAM-1 with very late antigen-4 (VLA-4) and lymphocyte function associated 

antigen-1 (LFA-1), respectively, which are expressed on leukocytes.13-15  

 Once a firm adhesion is established, leukocytes migrate through the 

interendothelial junction into the subendothelial space (diapedesis) (Figure 1.2A). 

This process is facilitated by additional adhesion molecules, such as 

platelet/endothelial cell adhesion molecule-1 (PECAM-1) and junctional adhesion 

molecule-1 (JAM-1).16, 17 Furthermore, activated endothelial cells produce several 

chemokines and interleukins (IL), which enhance diapedesis 18 and the recruitment 

of leukocytes into the lesion. CCL2 (MCP-1), produced by vascular endothelial 

cells, is an important chemoattractant for monocytes and T cells. These cells play 

an important role in lesion development.19-22 Activated vascular cells but also 

macrophages within the lesion continue to produce chemokines such as, CCL5 

(RANTES), CXCL10 (IP-10) and CCL11 (eotaxin) to further enhance the immune 

response (Figure 1.2B).23-25 Within the lesion, monocytes differentiate into 

macrophages by stimulation of macrophage-colony-stimulating factor (M-CSF), 

which is produced by endothelial and smooth muscle cells.26 The macrophages 

become activated by the uptake of modified LDL, thereby transforming into lipid 

loaded “foam cells”. This process will be discussed in more detail later on. 

The above-described process will lead to focal fatty streak formation and 

remain asymptomatic for a long time and may even be reversible at this stage. 

However, during the progression of life these fatty streaks may develop into more 

advanced lesions, depending on the exposure to several risk factors. A schematic 

overview of the above-described processes are depicted in figure 1.1A. 
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FIGURE 1.1: DEVELOPMENT OF ATHEROSCLEROSIS.  
A, fatty streak formation: Endothelial cells in lesion prone areas become activated leading to 
permeabilety for lipoproteins, such as LDL. Within the intima, LDL is modified by processes, like 
oxidation and becomes immunogenic. Monocyte derived macrophages migrate into the intima and start 
to phagocytose the modified LDL particles and become activated. Macrophages, trapped in the intima 
and loaded with cholesterol are now called “foam cells”. B, progression of the plaque: vascular smooth 
muscle cells become activated. They migrate and produce extracellular matrix proteins, in particular 
collagen, to form a cap structure to protect the lesion from the blood flow. More leukocytes are recruited 
to the intima, such as T cells and monocytes and these cells enhance the inflammation. To compensate 
for the narrowed lumen, outward remodeling takes place. C, necrotic core and thrombus formation: 
“foam cells” become apoptotic and eventually form a necrotic core, consisting of cellular debris and free 
cholesterol. The necrotic core is highly immunogenic, which results in the recruitment of more 
inflammatory cells to the intima. The fibrous cap formed by the smooth muscle cells protects the lesion 
from the bloodflow, however this may not prevent rupture. When the plaque ruptures, a thrombus will 
form and can cause clinical symptoms, such as acute coronary syndrome. D, obstructive lesion: when 
the plaque does not rupture, the lesion can grow by the ongoing inflammation. When outward 
remodeling is not sufficient, the lesion becomes obstructive and causes clinical symptoms, such as 
angina pectoris. More details are described in the text. (Adapted from Rader and Daugherty).236 

1.2.2 Progression of the lesion  

Atherosclerotic lesion progression is associated with the continuous influx of 

inflammatory cells due to the local production of chemokines in the plaque. T cells 

interact with activated macrophages (“foam cells”), which express class II and class 

I histocompatiblity complexes (MHC II and MHC I) and present antigens to T cells. 

CD4+ and CD8+ T cells are associated with all stages of atherosclerotic lesion 

development and activation of T cells results in a broad range of immune 

responses and the acquisition of many features of a chronic inflammatory state.27 

Activated T cells produce several cytokines such as IFN-γ and TNF-α.28 These 

cytokines activate other cells within the lesion, such as endothelial cells, 

macrophages and smooth muscle cells.  

The next step in atherosclerotic lesion development is the formation of a 

necrotic core. This necrotic core consists of extracellular lipids and cellular debris 

derived from apoptotic cells. This process involves pro- and anti-apoptotic 

proteins, including death receptors, proto-oncogens and tumor suppressor genes. 

Oxidized sterols, present in oxLDL, promote apoptosis and necrosis of foam cells 

in the plaque, thereby releasing oxidized and insoluble lipids within the lesion.29 
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The necrotic core becomes covered by a fibrous cap, which consists of smooth 

muscle cells and extracellular matrix proteins like collagen. The formation of the 

cap structure is facilitated by cytokines and growth factors, which are produced by 

activated macrophages and T cells. The cytokines and growth factors stimulate 

smooth muscle cells to proliferate and migrate to the cap.5, 6Activated smooth 

muscle cells can migrate from the media to the intima, where they are able to 

internalize lipids and transform into smooth muscle cell derived foam cells and can 

produce matrix proteins.30  

In this stage of lesion development, the outward remodeling of the vessel 

takes place to compensate for the increase in lesion size. The process of outward 

remodeling is necessary to prevent severe narrowing of the vessel and to preserve 

blood flow.31 The above-described process is schematically depicted in figure 1.1B 

and C. 

 

 
FIGURE 1.2: THE ROLE OF MACROPHAGES AND T CELLS IN ATHEROSCLEROSIS.  
A, Monocyte and T cells are recruited to the intima of the vessel wall were they become activated via 
different stimuli. Depending on the microenvironment within the intima, the inflammation can be 
enhanced or dampened. B, Within the intima, macrophages take up modified LDL and become 
activated and exert several pro-atherogenic properties. C, Macrophages are able to take up modified 
LDL and present it to T cells, which recognize the antigen and become activated. Depending on the 
microenvironment, T cells can develop into different subtypes of T cells population. B and C, During 
atherosclerosis, T cells and macrophages tightly regulate each others activation and function, which 
make them important immune cells in bridging the innate (macrophages) and adaptive (T cells) 
immune system. 
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1.2.3 Lesion stability and rupture 

When outward remodeling can not compensate for the reduced volume, the 

advanced atherosclerotic lesion leads to insufficient blood flow to distal tissues, 

causing clinical symptoms, such as angina pectoris (Figure 1.1D). However, acute 

cardiovascular events are associated with myocardial infarction and stroke as a 

result of a ruptured plaque and a subsequent thrombotic event (Figure 1.1C).32, 33  

Plaque rupture is the final outcome of plaque destabilization. During 

lesion development activated macrophages, T cells and other immune cells 

accumulate around the necrotic core and in the shoulder regions of the plaque.6, 34 

Furthermore, activated macrophages, T cells, and mast cells have been observed at 

sites of plaque rupture, indicating their potential relation to the rupture process.35-

37 T cells, predominantly of the T helper 1 phenotype, produce high amounts of 

IFN-γ, which inhibit the production of collagen by vascular smooth muscle cells 

and their cell proliferation, thereby negatively influencing plaque stability.28, 38  

Activated macrophages produce several proteases, which destabilize the 

plaque, such as matrix metalloproteinases (MMPs), cysteine proteases, and 

chymases.39-41 Members of these families of enzymes are found in the 

atherosclerotic plaque and can degrade the matrix. Especially MMP-1, MMP-8, 

MMP-9 and MMP-13 may be important.42 In addition, macrophages induce 

apoptosis of vascular smooth muscle cells, thereby negatively influencing the 

collagen production and subsequent plaque stability.43, 44  

Since the weakened cap structure cannot withstand the hemodynamic 

forces, the unstable atherosclerotic lesion may rupture and consequently expose 

thrombogenic plaque material (lipids/necrotic core) to the blood. The subsequent 

aggregation of platelets and coagulation forms a thrombus, which obstructs blood 

flow and results in clinical symptoms such as myocardial infarction and stroke.34 

Plaques that are prone to rupture contain high numbers of activated 

immune cells. Furthermore, patients with acute coronary syndromes (ACS) 

demonstrate signs of inflammation, with elevated levels of circulating cytokines, 

acute phase reactants, and not only activated T cells.45, 46 Therefore the immune 

system and inflammation play an important role throughout atherosclerotic plaque 

development, but are also crucial in the final stage of atherosclerosis.  

 

2 ATHEROSCLEROSIS: AN INFLAMMATORY DISEASE 

During the last years, it has become more clear that atherosclerosis resembles a 

chronic autoimmune-like disease. Inflammation plays a pivotal role in the process 

of atherosclerotic lesion development. As atherosclerosis already starts in early life 

and gradually develops during life, it can be considered a chronic disease. 

Inflammation is tightly regulated by cells involved in the innate and adaptive 
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immune response, both with their specific role in host defense.47,48 This is 

illustrated in different mouse models for atherosclerosis with a specific depletion 

of components of the innate as well as the adaptive immune system.49, 50 For 

example, when LDL receptor deficient mice were cross-bred with lymphocyte-

deficient (RAG1 deficient) mice, a reduction in lesion size was observed.51 

Further evidence supporting the relation between atherosclerosis and 

inflammation is found in gene polymorphisms involved in inflammation, such as 

TLR4 polymorphisms.52-54 There are associations found between an increased risk 

of cardiovascular events and autoimmune diseases, such as rheumatoid arthritis 

and systemic lupus erythematosus.55 However, besides inflammation, 

atherosclerosis is also associated with metabolic and hemodynamic factors, thereby 

placing atherosclerosis as an unique disease. 

Metabolic and hemodynamic factors are likely to play a role in the 

initiation of autoimmunity by activation of endothelial cells and subsequent 

recruitment of immune cells. This process leads to initial atherosclerosis via the 

innate immune system and gradually evolves into a chronic, autoimmune like, 

inflammatory disease via the adaptive immune system. Therefore, the regulation 

and crosstalk between innate and adaptive immune cells is very important in the 

initiation and development of atherosclerosis.  

Although several exogenous stimuli, such as cytomegalovirus (CMV) and 

Chlamydia pneumoniae have been identified in atherosclerosis,56 there is also 

evidence that endogenous stimuli are involved in the process of  

atherosclerosis.57, 58  

 

2.1 INNATE IMMUNE SYSTEM 

The innate immune response is the fist line of defense against pathogenic stimuli 

and is characterized by a natural selection of germline-encoded receptors, which 

focuses on highly conserved motifs in pathogens. It provides the first line of 

defense for the host and is characterized by fast (minutes to hours) and blunt 

(lacking exquisite structural specificity) responses. It is a very conserved system, 

which is already present in many lower organisms. 

Important cells involved in the innate immune response are macrophages, 

neutrophils, mast cells and natural killer (NK) cells. The exact role of neutrophils in 

atherosclerotic lesion initiation is not known yet, but neutrophils are found in 

ruptured or eroded plaques, indicating that they are recruited in a later phase in 

response to injury.59 However, upon endothelial activation, P-selectin and E-

selectin are upregulated, which both bind neutrophils suggesting a non-confirmed 

role in the initial stages of atherosclerosis.60-63 
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Another kind of innate immune cells are mast cells. These cells are present 

in atherosclerotic lesions and are activated at sites of plaque rupture, indicating 

that mast cells are involved in the rupture process of advanced lesions.64 Mast cells 

store granules, which contain growth factors, chymases and pro-inflammatory 

cytokines.65,66 Once stimulated, the mast cells degranulate and exocytose the 

granule-associated effector substances into their microenvironment, thereby 

negatively influencing plaque stability.67, 68 

NK cells are found to play a role in early atherosclerosis.69, 70 Their role 

however, is not yet completely understood. Reduced atherosclerosis was observed 

in LDLr-/- mice after bone marrow transplantation from transgenic mice 

overexpressing the Ly49A receptor, which results in dysfunctional NK cells.70 

Noteworthy, in these transgenic mice, not only NK cells are affected, but also NK T 

cells, CD8+ cytotoxic cells and other lymphocytes expressing granzyme A. 

Therefore, it is difficult to determine the exact role of NK cells in the initiation of 

atherosclerosis.  

The key inflammatory cell during atherosclerotic plaque formation is the 

macrophage. Macrophages are part of the innate immune system and have an 

important “bridge” function between the innate and adaptive immune system by 

presenting innate immune signals to the adaptive immune system. In 

atherosclerosis, macrophages play an important role in the various phases of lesion 

formation and progression.12 Infiltrated monocytes differentiate into macrophages 

and start to express cytokines and receptors71 by stimulation via M-CSF, which is 

produced by endothelial and smooth muscle cells.26 Monocyte-derived 

macrophages express pattern recognition receptors (PRRs), which are involved in 

the innate immune response. PRRs recognize a restricted pattern of ligands called 

pathogen-associated molecular patterns (PAMPs). PAMPS consist of many 

different ligands such as lipopolysaccharides, aldehyde-derivatized proteins, 

bacterial DNAs and denatured DNAs, resulting in endocytoses and lysosomal 

degradation of the ligand72,73 and activation of nuclear factor-κB, resulting in an 

inflammatory response.74 

Two important groups of PRRs are the scavenger receptors (ScRs) and the 

toll-like receptors (TLRs), which are both expressed by macrophages.47, 75 The ScR 

family, which includes CD36, CD68, SR-A and SR-B, mediates the internalization 

of modified lipoproteins (e.g. oxLDL) via endocytosis and contributes to foam cell 

formation, a hallmark of the atherosclerotic lesion.9,76,77 The uptake of modified 

lipoproteins and their constituents via ScRs is important in triggering the 

production of the mediators of innate immunity such as, IL-1β and TNF-α.78 

Additionally, they are important in the activation of the adaptive immune system 

via presentation of internalized material on MHC class II molecules.79  
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The other important pattern recognition receptor family, the TLRs, are 

involved in the activation of macrophages.80 Studies with TLR4 and ApoE double 

knock out mice, demonstrate a reduction in atherosclerotic plaque development, 

thereby further illustrating the importance of the innate immune system in 

atherogenesis.81 Activation of ScRs and TLRs on macrophages within the plaque 

results in a proinflammatory environment capable of activation of other vascular 

and immune cells, thereby enhancing lesion progression.  

 Within the lesion, foam cells contribute to the production of reactive 

oxygen species, cytokines and other molecules, thereby amplifying and sustaining 

the inflammatory response in the plaque.80 Additional cells in the early plaque, 

such as smooth muscle cells and endothelial cells become activated by these 

molecules and start producing interleukins and chemokines, i.e. IL-1β, IL-6, IL-18, 

TNF-α and CCL2.82-84 Besides production of these cytokines, macrophages and 

other vascular cells start to produce T cells attractants, like CCL5, CXCR3, CXCL10 

and CXCL11.24 The pro-atherosclerotic effect of T cells in atherosclerosis is 

demonstrated by blocking for example CCL5 or CXCR3 and thereby attenuating 

atherosclerosis.85,25  

Besides attracting T cells, macrophages also express MHC class II in 

association with a specific epitope. This is a pivotal step in bridging the innate 

immune response to the adaptive immune response. Within the lesion MHC class 

II expressing macrophages (and also dendritic cells, discussed in more detail later 

on) can be detected close to T cells, which suggests that there is an ongoing 

immune activation of the adaptive immune response in the plaque.86-88 

 

2.2 ADAPTIVE IMMUNE SYSTEM 

The adaptive immune system is characterized by a slower response than the innate 

immune system and exerts a high specificity for its target. The high variation of 

antigen specificity of, for example T cell receptors (TCRs) and immunoglobulins, is 

a result of somatic rearrangements in blast cells. When T cells recognize a specific 

antigen, which is presented by an antigen-presenting cell (APC), an adaptive 

immune response against that specific antigen is initiated. Many cells are involved 

in the adaptive immune response, in particular DCs, T cells, B cells and 

macrophages. Upon stimulation, these cells demonstrate versatile effects, for 

instance a helper T cell response, regulatory T cell response, cytotoxic T cell 

response, stimulation of B cells and subsequent antibody production, production 

of chemokines and cytokines, which enhance and regulate the innate and adaptive 

immune cells.  
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The role of the adaptive immune system, especially the T and B cells, is 

nicely demonstrated in studies in which these cells were not functional by for 

example using severe combined immunodeficient (SCID) mice, resulting in 

decreased lesion formation.89  

 

2.3 AUTOANTIGENES 

Many exogenous and endogenous antigens have been suggested to be presented in 

atherosclerosis. As mentioned before, T cells recognize specific antigens presented 

by APCs with their TCR. Upon activation, T cells that recognize a specific antigen 

will start proliferating, resulting in clonal T cell expansion. Clonal T cell expansion 

has been detected in atherosclerotic lesions of mice and humans, suggesting 

specific TCR activation by an (auto) antigen.90-92  

Since inflammation has a prominent role in atherosclerosis, it has been 

suggested that exogenous stimuli may initiate atherosclerotic lesion development. 

Many virus and bacteria related antigens have been identified in atherosclerosis, 

but most extensively studied are the Cytomegalovirus (CMV)93 and Chlamydia 

pneumoniae.94, 95 Both pathogens are associated with aggravating atherosclerosis in 

mice and humans, since antibodies against these pathogens have been correlated 

with the severity of cardiovascular disease in patients.93, 96-98 Furthermore, 

experimental data have shown that infection with Chlamydia pneumoniae enhances 

atherosclerosis.97 However, large clinical trials on the treatment of cardiovascular 

patients with antibiotics directed against Chlamydia pneumoniae did not result in a 

reduction of cardiovascular events in antibiotic treated patients.99, 100 

Another group of antigens is of endogenous origin, but is related to 

exogenous antigens via a process called molecular mimicry.101 An example are the 

heat shock proteins (HSPs), a group of highly conserved proteins. These proteins 

are highly conserved and immune responses induced against bacterial HSP60 may 

cross-react with responses against endogenous hsp60. Endogenous HSP60 is 

induced when cells are exposed to different stress stimuli.102 HSP60 is expressed on 

endothelial cells, vascular smooth muscle cells and mononuclear cells in human 

atherosclerotic plaques.103 Furthermore, circulating antibodies against HSP60 were 

detected in patients with atherosclerosis and HSP60 specific T cells were detected 

within the atherosclerotic plaque.104,105 Therefore an immune response against 

HSP60 may contribute to endothelial damage and subsequent enhancement of 

atherosclerosis.106,107 Interestingly, antibodies against HSP60 and its prokaryote 

homologue HSP65 are also detected in other autoimmune diseases such as 

rheumatoid arthritis.108 In relation to this, patients with rheumatoid arthritis have a 

2- to 5- fold higher risk of cardiovascular morbidity and mortality.109  



  Chapter 1  

 

 

20 

A third group of antigens is derived from endogenous sources. This group 

mainly contains altered self-proteins and the autoimmune response against these 

proteins is directed against the neo-epitopes of the altered proteins. T cells do not 

react with native LDL, as there is immunological tolerance against self-antigens. 

However, modifications of LDL lead to non-self epitopes (neo-epitopes) and 

increased autoreactivity of T cells in mice and human.110, 111 LDL in the 

atherosclerotic lesion can be modified by various processes as described before, 

and are accountable for the development of neo-epitopes.112 An example of a neo-

epitope related to LDL is oxLDL. OxLDL specific T cells are identified in human 

plaques and circulating antibodies against epitopes of oxLDL are detected in 

serum samples of patients with cardiovascular disease.110, 113 Furthermore, lymph 

nodes and spleens of ApoE-deficient mice gave rise to an oxLDL specific T and B 

cell line displaying a strong humoral and cellular immune response against these 

modified lipoproteins, indicating the role of oxLDL in immune activation.114, 115  

 

2.4 DENDRITIC CELLS 

Although activated macrophages effectively present antigens to T cells, dendritic 

cells (DCs) are the most potent APCs of the immune system and are the key 

players in the regulation of the adaptive immune response. 116  

 Immature DCs efficiently take “samples” of their antigenic 

microenvironment through macropinocytoses and receptor mediated endocytosis. 

Depending on the triggered PRRs, DCs present the antigen in context of either 

MHC class I or MHC class II and produce cytokines to evoke an appropriate 

immune response.117 Therefore, DCs are crucial for an adequate clearance of the 

infection, but DCs are also responsible for pathogenic immunological responses. 

Dendritic cells are a component of the vasculature associated lymphoid 

tissue and low numbers are found in the intima of healthy, but susceptible arteries 

before atherosclerotic lesion development is initiated. 118 Furthermore, DCs 

increase in number in the intima during the progression of atherosclerosis.119 This 

indicates a role for DCs in the initiation and regulation of arterial inflammation. 

Immature DCs capture antigens at the site of inflammation and migrate to 

secondary lymphoid organs, such as the spleen and lymph nodes. The migration is 

orchestrated by various chemokines, such as CCR-2, -5, -6, -7 and CXCR1 and 

CXCR2.120, 121 Within the secondary organs the maturated DCs are able to stimulate 

antigen specific T cells, which is further enhanced by the fact that mature DCs 

starts to express co-stimulatory molecules, such as CD40, thereby enabling them to 

interact with CD40L expressing T cells.  

Some macrophages take up antigens in tissues and differentiate into 

migratory cells resembling dendritic cells that emigrate to lymph nodes.122 
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However, in hypercholesterolemic conditions these monocyte derived DCs are 

possibly not able to migrate out of the atherosclerotic lesion to the secondary 

lymph organs, thereby directly activating residential cells in the lesion such as T 

cells, which leads to aggravated atherosclerosis.122-124 

 

2.5 T CELLS  

T cells are activated in the lymphoid organs by APCs by recognizing a specific 

antigen and by costimulatory signals such as CD40L-CD40 and CD80/CD86-CD28 

interactions.125 The microenvironment determines the type of T cell response. For 

example IL-12 production by APCs lead to the development of T helper 1 (Th1) 

cells, which have been shown to aggravate atherosclerosis.126 Activated T cells 

migrate from the lymphoid organs to the site of inflammation e.g. the 

atherosclerotic lesion via chemokine signaling and are reactivated upon 

recognition of the antigen presented by APCs. Interference in T cell migration via 

the inhibition of the CXCR3 and CCL5 pathway, results in reduced Th1 cell influx 

into the lesion and subsequently in reduced atherosclerosis. 85, 127 

Most T cells within the atherosclerotic lesions are CD3+ CD4+ TCR αβ+ 

cells.128, 129 Although CD8+ T cells are also found in atherosclerotic plaques, their 

role in atherosclerosis is not yet clear. Furthermore, CD4- CD8- TCR γδ T cells are 

found in plaques and may play a role in relation to IL-17 production.129 IL-17 will 

be discussed later in more detail.  

In relation to the topic of this thesis, the discussed T cell populations will 

be limited to Th1, T helper 2 (Th2), T helper 17 (Th17) and regulatory T (Treg) cells 

(Figure 1.3). 

 

2.5.1 T helper 1 cells 

Data obtained from patients with CVD illustrated a predominant Th1 pattern 

within atherosclerotic plaques. This is also observed in mouse models for 

atherosclerosis. T cells differentiate into Th1 cells through stimulation of naive T 

cells with Th1 polarizing cytokines, such as IL-12 and IL-18.130, 131 The production 

of interferon (IFN)-γ hallmarks Th1 cells, which has pleiotropic pro-atherosclerotic 

effects. IFN-γ promotes activation of macrophages and endothelial cells to produce 

more adhesion molecules, proinflammtory cytokines and chemokines, which 

results in more T cell recruitment. Furthermore, IFN-γ promotes the production of 

proteases and inhibits collagen production, thereby interfering in plaque 

stability.132 Another Th1 associated cytokine is TNF-α, which also exerts pleiotropic 

pro-atherogenic effects.133 
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The role of Th1 cells in the aggravation of atherosclerosis has already been 

demonstrated. For example, vaccination against IL-12 in LDLr-/- mice results in a 

reduction in IFN-γ expression within the lesion and reduced atherosclerotic lesion 

development.131 Buono et al. demonstrated in LDLr and IFN-γ deficient mice a 75% 

reduction in lesion size, indicating the pro-atherosclerotic nature of Th1 cells.134 

Furthermore, IL-18 deficient ApoE-/- mice also showed reduced atherosclerosis.130 

FIGURE 1.3: DIFFERENTIATION OF T HELPER CELLS.  

Naive T cells differentiate into either Th1, Th2, Th17 or Treg cells upon stimulation with specific 
interleukins. Every Th cell subset has its own specific function in the immune response. However, a 
disproportional proliferation of a Th cell subset may lead to autoimmune diseases or chronic 
inflammation. The role of T helper cells in atherosclerosis is also depicted in this figure. See text for a 
more detailed description of the different Th subsets. (Adapted and modified  from Tato and O´Shea)237 

 

2.5.2 T helper 2 cells 

Traditionally, Th2 cells are considered anti-atherosclerotic due to the production of 

IL-4, IL-5, IL-9, IL-13, IL-10 and IL-3.135 An athero-protective role for these cells is 

suggested since the Th2 interleukins inhibit Th1 cells. Overexpressing IL-10 in 

LDLr-/- mice for example, exerts anti-atherosclerotic effects.136, 137 Furthermore, IL-5 

exerts an indirect anti-atherosclerotic effect by stimulation of B-1 cells. These B-1 

cells produce natural occurring T15/EO6 IgM antibodies directed against oxLDL. 

These natural antibodies can block the uptake of oxLDL by macrophages and 
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thereby attenuate atherosclerosis.138 This effect is nicely illustrated by Binder et al., 

where IL-5 deficient bone marrow is transplanted into a LDLr-/- recipient mice 

leading to aggravated atherosclerosis and a decrease in natural autoantibodies.139  

Conflicting data exist on the role of IL-4 in atherosclerotic plaque 

development. An athero-protective effect on initial plaque development was found 

after injection of IL-4 into mild hypercholesterolemic mice.140 On the other hand IL-

4 deficient ApoE-/- mice demonstrate reduced atherosclerosis, illustrating a pro-

atherosclerotic effect of IL-4.141 Moreover, IL-4 is associated with increasing MMP-1 

production by macrophages and may therefore have negative effects on plaque 

stability.142 

For long, it was thought that a disturbed balance between Th1 and Th2 

cells was causative for many autoimmune diseases, including atherosclerosis. 

However, the aforementioned findings on Th2 cells show that the classical 

Th1/Th2 balance cannot adequately explain the inflammatory process in 

atherosclerosis.  

Recently, two new T cell subsets were identified: the Th17 cell and the Treg 

cell. These cells provide more complexity and may provide an opportunity to 

explain the observed conflicting experimental effects. 

 

2.5.3 Regulatory T cells 

The regulatory T cells (Tregs) are important in maintaining immune homeostasis 

and preventing autoimmunity.143 Tregs develop in the thymus and display a 

diverse TCR repertoire specific for autoantigens. Tregs migrate from the thymus 

into the peripheral tissues and exert their anti-inflammatory response by 

recognition of specific autoantigens.144  

There are various mechanisms of immune suppression by Tregs.182 Firstly, 

the suppression of immune cells by cytolysis, via granzymes and perforins. 

Secondly, suppression by metabolic disruption, via “consuming” IL-2. Thirdly, 

suppression by inhibitory cytokines, such as TGF-β and IL-10. Finally, suppression 

by targeting DCs, via the interference in maturation and function of DCs, for 

example by cell-cell inhibition via CTLA4 (on Tregs) and CD80/CD86 (on 

APCs).146 

Tregs can generally be divided into two groups, the natural occurring Treg 

(nTreg) cells and the inducible T regulatory (iTreg) cells.147, 148 nTreg cells express 

CD4, CD25 (IL-2Rα), cytotoxic T lymphocyte antigen (CTLA)-4 and forkhead box 

P3 (Foxp3).145 nTreg cells exert their immunosupressive action predominantly by 

expressing membrane bound TGF-β, which suppress cells via cell-cell contact in 

paracrine fashion.146, 149 Furthermore, nTreg cells are able to bind to CD80 and/or 

CD86 via CTLA-4, thereby suppressing the immune system.150  
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There are also Foxp3 negative Treg cells leaving the thymus, which can be 

induced in the periphery to become immunosuppressive Treg cells, called 

inducible Tregs (iTregs). Depending on the suppressive action, these cells can be 

divided in Tr1 cells, which predominantly produce IL-10151 and Th3 cells, which 

exert their immunosuppressive function predominantly via TGF-β. Interestingly, 

Th3 cells do transiently express FoxP3.152, 153  

Mallat et al. hypothesized that adaptive or natural regulatory T cells may 

play an important role in the regulation of pathogenic T cells in atherosclerosis. 

There are several studies underlining this hypothesis. Depletion of Treg cells by 

treatment with anti-CD25 antibodies results in aggravated atherosclerosis in ApoE-

/- mice.125 Furthermore, van Puijvelde et al. demonstrated that the induction of Treg 

cells via tolerance induction against oxLDL or HSP60 leads to attenuated 

atherosclerosis.154 Moreover, Foxp3 expression has been detected in human 

atherosclerotic plaques, indicating that Treg cells are present.155 

 

2.5.4 T helper 17 cells 

Th17 cells are a novel T cell subset with a separate lineage. Langrish et al. showed 

that IL-23 selectively induces the proliferation of in vivo-primed IL-17-expressing 

Th cells and that these cells do not produce IL-4 or IFN-γ, indicating a separate Th 

subset.156 Harrington et al. and Park et al. further established the idea of a separated 

lineage of Th cells distinct from the T helper type 1 and 2 lineages. A naive 

precursor T cell is potently inhibited by IFN-γ and IL-4 in differentiation towards 

Th17 cells, whereas committed Th17 cells are resistant to suppression by Th1 or 

Th2 cytokines.157 Together these data provide evidence for a new Th subset, which 

is regulated by cytokines of Th1/Th2 cells and is involved in autoimmunity. 

Hence the name, IL-17 is the most prominent cytokine produced by Th17 

cells. The IL-17 family consists of six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-

17E and IL-17F. IL-17A and F are most related to each other and share a 50% 

homology in protein sequence.158 As IL-17A was the first member of the IL-17 

family which was identified, it is mostly designated as IL-17.  

The IL-17R family consists of five members, designated as IL-17RA, IL-

17RB, IL-17RC, IL-17RD and IL-17RE.158 The best-studied IL-17R is IL-17RA, also 

designated as IL-17R, and is expressed ubiquitously through the body, which 

explains the pleiotropic effects of IL-17. The primary source of IL-17A and F are 

Th17 cells.159 However, there are other cells of the innate and adaptive immune 

system which produce IL-17A and F. It has been shown that CD8+ T cells produce 

IL17A and F as well as the γδ T cells.160, 161 In many different cell types, binding of 

IL-17A and/or F to its receptor results in the upregulation of a number of pro-

inflammatory interleukins and chemokines.158, 162-165 IL-17A and F also exert a 
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chemotactic effect in recruiting and activating neutrophils, providing a mechanism 

by which Th17 cells can mediate the crosstalk between innate and adaptive 

immune responses.158,165,166 IL-17 exhibits pleiotropic biological effects on various 

atherosclerotic lesion-associated cell types, such as endothelial cells, vascular 

smooth muscle cells and macrophages.167-169 Upon activation by IL-17 these cells 

produce pro-inflammatory cytokines, chemokines and matrix metalloproteinases 

(MMPs), including IL-6, CXCL8, CCL2 and MMP-9.169, 170 However, the role of IL-

17 in atherosclerosis is not investigated yet. In this thesis, the role of IL-17 and its 

receptor in atherosclerosis will be discussed in chapter 3 and 4. 

Besides IL-17, Th17 cells also produce IL-21, IL-22 and CCL20. IL-21 is 

expressed by Th17 cells171, but also by other cell types, such as IL-6 stimulated T 

cells.172,173 The receptor for IL-21 is expressed only on lymphoid cells and 

predominantly on B cells.174 IL-21 has pleiotropic effects, such as stimulating 

proliferation and differentiation of CD8+ T cells175 and it promotes differentiation 

and isotype switching in B cells.176 IL-21 induces CXCL8 expression in 

macrophages177, which is involved in the recruitment of monocytes to the early 

lesion, thereby aggravating atherosclerosis.178 Furthermore, IL-21 regulates the 

differentiation of CD4+ T cells to Th17 cells in an autocrine manner.171, 179 

IL-22 is a member of the IL-10 family 180 and the IL-22 receptor subunits are 

primarily expressed on epithelial and parenchymal tissues. 181 IL-22 protects 

against liver damage in an acute inflammation model.182 

Finally, Th17 cells produce CCL20.183, 184 Interestingly, its receptor CCR6, is 

also expressed by Th17 cells.183, 185 This may imply an autocrine mechanism to 

regulate its own recruitment in inflamed tissues.The development pathway of the 

Th17 cell lineage is actively investigated. Initially is was thought that IL-23 was the 

driving force behind Th17 development.156  

IL-23 is a heterodimeric interleukin consisting of a p40 and a p19 subunit. 

IL-23 is closely related to IL-12 as they both share the p40 subunit. 186 The receptor 

of IL-23 consists of a heterodimeric complex consisting of  IL-12Rβ1 shared with 

the IL-12 receptor and a unique IL-23R. The IL-23R shares many features with IL-

12Rβ2, which is the other part of the IL-12 receptor. The IL-23R is mainly expressed 

on effector T cells and not on naive T cells, suggesting an important role for IL-23 

in ongoing inflammation.186, 187  

IL-23 is mainly produced by macrophages and dendritic cells. Like the 

subunits of IL-27, EBI3 and p28, p19 must be expressed together with p40 in the 

same cell in order to be functionally excreted as IL-23.186 Recently, it is 

demonstrated that the development of gut inflammation in T-cell-deficient mice 

depends on IL-23, in that the loss of IL-23 but not IL-12 was associated with a 

decrease in gut inflammation. Most striking is the role of IL-23 in autoimmune 

diseases, such as EAE and RA. The role of IL-23 is identified by the observation 
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that IL-23p19-deficient animals do not develop EAE and do not develop IL-17-

producing T cells.188 In patients with Crohn’s disease, a single nucleotide 

polymorphism (SNP) in the coding sequence of IL-23R results in a strong 

protection against this disease, indicating a pathogenic role of IL-23 in chronic 

inflammation. Since IL-23 can expand a population of IL-17-producing pathogenic 

cells, an important role of IL-23 in the development of autoimmune diseases was 

suggested.156 These data imply that IL-23 may be responsible for the differentiation 

of Th17 cells. However, in vivo experiments demonstrated that IL-23 functioned 

more like a maintenance interleukin for the Th17 cell population.189 Therefore, it 

has been proposed that IL-23 may play a role in maintaining or stabilizing the Th17 

cell phenotype, or in the survival of Th17 cells (Figure 1.4).190 

Interestingly, as research continued, two “old” cytokines with opposing 

effects, IL-6 and TGF-β, were associated with Th17 cell differentiation.171, 191 IL-6 is 

a pro-inflammatory cytokine and was shown to aggravate atherosclerosis.192 On 

the other hand, TGF-β is an anti-inflammatory cytokine, which is associated with 

the differentiation of natural Treg cells and attenuation of atherosclerosis.193 194 

Most research on Th17 cells is done in mice. However, there are differences 

observed in Th17 development between mice and humans. Recently, some studies 

showed that also TGF-β, in combination with IL-1β, IL-6 or IL-21 is able to induce 

the differentiation of human Th17 cells,195, 196 indicating some overlap. More 

research has to be performed to further clarify the different aspects of Th17 cell 

development in different organisms. 

FIGURE 1.4: DETAILED OVERVIEW OF TH17 CELL DIFFERENTIATION.  
Since the discovery of Th17 cells many research has been done to elaborate the developmental pathway 
of Th17 cells. The insight in the role of IL-23 in Th17 cell development changed over time and is now 
assigned as a stabilizing factor for Th17 cell differentiation. TFG-β and IL-6 are associated with the 
differentiation of naive T cells to Th17 cells. Furthermore, the recently identified IL-21 is assigned to 
amplify Th17 cell development via an autocrine positive feedback. (Adapted and modified from Bettelli 
and Kuchroo)190 

 

The discovery of Th17 cells has changed the view on initiation and 

development of autoimmune diseases. There is, however, almost no literature 

available which associates Th17 cells with cardiovascular disease, although Cheng 
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et al. recently identified increased Th17 cells in patients with acute coronary 

syndrome.197 

Nevertheless, there are indications that Th17 cells may play an important 

role in atherosclerosis. The prominent effector cytokine, IL-17 is discussed in 

chapter 3 and 4 of this thesis. Furthermore, the fact that IL-23 is involved in several 

autoimmune diseases, together with the finding that IL-23 is involved in the Th17 

pathway, which is likely to be pro-atherosclerotic, indicates a role for IL-23 in 

atherosclerosis. Again, there are hardly any reports addressing IL-23 in 

atherosclerosis. In chapter 5 the role of the IL-23R in atherosclerosis will be 

discussed. Finally, we also studied the role of IL-27, which can suppress the 

development of Th17 cells,198 as is described in chapter 6. 

 

2.5.5 Th17 and Treg cells, two different subsets with a close relationship 

Both, the Th17 lineage as well as the Treg lineage requires TGF-β for their 

development. Therefore, a reciprocal relationship between these two cell 

populations is likely.191 TGF-β is needed for both cell types and IL-6 has a pivotal 

role in shifting the balance toward Th17 cells.171, 191 Furthermore Laurence et al. 

demonstrated that IL-2, which is necessary for Treg cells, inhibits Th17 cells in a 

STAT5 dependent way.189 Interestingly, IL-21 synergizes with TGF-β to promote 

the differentiation of Th17 cells in mice and, as mentioned before, IL-21 has an 

autocrine loop to enhance its own production by inducing proliferation and 

recruitment of Th17 cells. 171, 179 

There is also an interesting relation between Treg cells and Th17 cells on 

the level of transcription factors (Figure 1.5). The Th17 cell specific transcription 

factors, RORγ and RORα, are able to bind and antagonize Foxp3, a Treg 

transcription factor, and vice versa.199, 200 To underline this fact, conditional 

deletion of Foxp3 protein in Treg cells in vivo results in an increase in RORγ and 

subsequent upregulated IL-17 and IL-21 expression.201, 202 These data may be 

interesting for the treatment of chronic inflammation and autoimmunity.  
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FIGURE 1.5: REGULATION OF TH17 AND TREG SPECIFIC TRANSCRIPTION FACTORS.  
The transcription factor STAT3 is crucial for Th17 development. IL-6 and IL-21 activate this pathway, 
however the exact role for TGF-β on transcriptional level remains to be elucidated (black arrow). 
Recently, IL-27 has been shown to inhibit Th17 cells and this process is probably mediated by STAT1 
dependent STAT3 inhibition. Furthermore, IL-2 is able to suppress Th17 development in a STAT1 
dependent way. These data suggest a reciprocal relationship between Th17 and Treg cells. (Adapted 
and modified from Dong)238 
 

2.6 B CELLS 

B cells are also an important cell type of the adaptive immune system and are 

pivotal in the production of antibodies against specific antigens. Depletion of B 

cells results in aggravated atherosclerosis.203, 204 A specific subpopulation of B cells, 

B-1 cells, produce IgM class antibodies (T15/EO6) directed against antigens that 

exert an atheroprotective function.139, 205 Therefore, it is speculated that B cells are 

atheroprotective.206 

However, B cells are also able to present antigens and produce cytokines. 

Positive correlations have been found between atherosclerosis burden in the 

carotid artery and activated B cells in the circulation.207, 208 Furthermore, these B 

cells produce IgG antibodies against autoantigens and are associated with 

aggravating atherosclerosis.209 
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3 COMMUNICATION BETWEEN IMMUNE CELLS, A CRUCIAL 

      STEP  

The immune system is a complex system capable of defending its host against 

many different pathogenic organisms. However, although tightly regulated, the 

immune system can become pathogenic when targeting autoantigens or by 

overexerting the immune response against a certain pathogenic antigen. The 

adaptive immune system depends on signals of the innate immune response to 

adjust and adapt the response against the antigen. However, when this line of 

communication is disturbed or deregulated, it may result in chronic or 

autoimmune diseases.  

Within atherosclerosis, the adaptive and innate immune response have an 

important role in all stages of the disease. The innate immune system initiates 

atherosclerosis and the adaptive immune system is involved in development of the 

lesion. An important way of communication between immune cells and non-

immune cells is done by interleukins. A number of interleukins of special interest 

for this thesis, as they are involved in autoimmune diseases or in the polarization 

of autoimmune associated immune cell population, are discussed below.  

3.1 INTERLEUKIN 15 

Interleukin 15 (IL-15) is a pro-inflammatory cytokine which is first described in 

1994 by Grabstein et al. as a T cell activating factor with structural resemblance to 

IL-2.210 Although, little primary homology on protein level is found, high 

homology on secondary level is observed between IL-15 and IL-2. In addition, IL-

15 is designated as a member of the α-helix bundle cytokine family, which also 

includes IL-2.210  

The IL-15 receptor shares two subunits, the ß and γc subunit, with the IL-2 

receptor. The third subunit is formed by a unique α-chain, IL-15Rα.211 The third 

subunit of the IL-2R is the IL-2Rα (CD25).  

IL-15 is expressed by several immune cells, in particular by monocytes and 

macrophages, but also by some non-lymphoid cells, such as fibroblasts.212 IL-15 is 

also involved in expansion and survival of Natural Killer T (NKT) cells, which 

form an important link between the innate and adaptive immune response and 

enhance atherosclerosis.213 IL-15 is also expressed in a biologically active form in 

association with IL-15Rα on the surface of monocytes and activated macrophages. 

This surface expressed IL-15 is approximately five times more effective than 

soluble IL-15 in the induction of T cell proliferation and is able to signal in a cis and 

trans fashion to neighboring cells.214-216 Since soluble IL-15 is difficult to detect in 

biological fluids, it is suggested that the membrane bound IL-15 exerts a more 

important function in inflammation.217  
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IL-15 is expressed in human and murine atherosclerotic lesions218, 219 and 

may therefore affect T cells within the plaque. Besides activating T cells, IL-15 is a 

strong chemo-attractant for T cells and Natural killer (NK) cells220, 221 and it 

enhances CD44 mediated T cell adhesion to endothelial cells.220, 222 Sanchi et al. 

demonstrated that in the presence of IL-15, activated endothelium at sites of 

chronic inflammation is able to recruit and activate peripheral blood T cells to the 

site of inflammation.223 Furthermore, IL-15 can indirectly aggravate atherosclerosis 

by autocrine regulation of the production of pro-inflammatory cytokines by 

macrophages, such as TNF-α, IL-6 and IL-1β224 and fibroblasts produce matrix 

metalloproteinases upon stimulation by IL-15.225 

 These data suggest a direct and indirect role for IL-15 in atherosclerosis. 

The role of IL-15 in atherosclerosis will be addressed in chapter 2 of this thesis. 

 

3.2 INTERLEUKIN 27  

Recently, a new interleukin was identified with structural resemblance with IL-12 

and IL-23, called IL-27 and is composed of Epstein-Barr virus induced gene 3 

(EBI3) and p28.226  It is produced by activated antigen presenting cells and by 

resident macrophages.227 The IL-27 p28 is poorly secreted unless it is co-expressed 

with its partner EBI3 and thus creating a situation where expression of IL-27 can be 

tightly controlled during an immune response.187 IL-27 is therefore an important 

regulator of the adaptive immune response by interpreting signals of the innate 

immune system.  

The receptor for IL-27 is a heterodimeric complex of gp130 (part of the IL-6 

receptor) and the novel IL-27R (also designated as WSX-1 or TCCR).228 IL-27 

receptor is expressed on lymphocytes, such as B cells and Tregs, but also on natural 

killer (NK) cells, NK T cells, activated endothelial cells, activated epithelial cells, 

activated DCs, monocytes and mast cells.187  

Interestingly, IL-27 is also associated with several autoimmune diseases. 

Initially IL-27 was assigned to have proinflammatory properties, based on early 

reports of the group of Goldberg et al. They illustrated that vaccination against p28 

resulted in the suppression of EAE and adjuvant induced arthritis.229, 230 Recent 

studies showed a more complex dualistic role for IL-27 with anti- and pro-

inflammatory properties.  

IL-27 is able to induce differentiation of naive CD4+ T cells to Th1 cells, but 

is also able to suppress the development of Th17 cells in EAE models thereby 

attenuating the disease.198, 227, 231 Furthermore, IL-27 inhibits the development of 

Tregs and Th2 cells.232, 233 IL-27 has an unexpected activity in the immune system, 

as in some events it has a proinflammatory activity and in other events it shows 

anti-inflammatory activities by suppression of immune hyperactivity. Yoshimura 
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et al. proposed a mechanism where IL-27 stimulates STAT1 and STAT3 in naive Th 

cells, whereas only STAT3 is activated in activated Th cells.234 Thus, IL-27 is 

capable to inhibit or stimulate T cells, depending on the IL-27R expression of the 

target cells and subsequent signal transduction. However, more research needs to 

be done to study the divergent effects of IL-27 on different cell types under 

different conditions.  

The role of IL-27 in atherosclerosis is not yet investigated. The complex 

role of IL-27 in atherosclerosis is studied in this thesis and will be discussed in 

chapter 6. 

 

4 VACCINATION AS RESEARCH AND THERAPEUTIC TOOL 

The current treatment of atherosclerosis is focused on reducing risk factors, such as 

hypercholesterolemia by the administration of statins and a change in life style. 

Since the inflammatory aspects of atherosclerosis are getting more and more 

elucidated, novel strategies may arise as potential therapy, such as vaccination. 

Vaccination is an ideal tool to generate a desired immune response against an 

antigen. In atherosclerosis, vaccinations may be directed against one or several 

autoantigens involved in this disease. This approach is already successfully 

demonstrated by vaccinating mice against oxLDL154 and HSP60235 (chapter 7), 

which resulted in attenuated atherosclerosis. Another possibility is the targeting of 

certain cell types to restore or shift a balance towards a favorable outcome. For 

example, vaccination against IL-12 resulted in a decrease of Th1 cells and 

subsequently in the reduction of atherosclerosis.131  

A relative new development is DNA vaccination and this may prove to be 

a promising strategy in the future. DNA vaccination is based on, hence the name, 

DNA and can be produced at relatively low costs. Furthermore, the manufacturing 

and storage conditions are less stringent compared to protein-based vaccines and 

thereby facilitating a broader distribution and availability of anti-atherosclerotic 

medicine. As atherosclerosis and its related symptoms are getting pandemic 

proportions, these issues may be considered.  

Furthermore, DNA vaccination may provide a good and again relatively 

cheap research tool to investigate the function of certain cell types, by inducing a 

cytotoxic response against these cells. Signaling molecules, such as interleukins, 

can be neutralized by raising a humoral response against them. Additionally, the 

effect of depletion or neutralization of the targets can be studied in different phases 

of the disease. This contributes to a better understanding of the disease and 

ultimately to its cure.  

Detailed information and perspectives about vaccination against 

atherosclerosis is described in chapter 9 of this thesis as a perspective review. 
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5 OUTLINE OF THE THESIS 

In this thesis, the role of several key interleukins and inflammatory cells is studied 

in relation to atherosclerosis.  

In chapter 2 a DNA vaccination strategy is used, which makes use of a 

living carrier, the Salmonella typhimurium to induce a cytotoxic T cell response. In 

this study, we investigated the effect of IL-15 neutralization in atherosclerosis. We 

observed a strong reduction in atherosclerosis, which suggest an important role for 

this cytokine in the initiation of atherosclerosis.  

Another proinflammatory interleukin, IL-17, is studied in chapter 3. In this 

study we made use of a novel vaccination strategy, where we inject a DNA vaccine 

in the muscle. By neutralizing IL-17 in LDLr-/- mice with a HEL-IL-17 DNA 

vaccine, a dramatic decrease in atherosclerotic lesion development was observed.  

In chapter 4 the role of IL-17 signaling is studied by performing a bone 

marrow transplantation of IL-17 receptor deficient bone marrow into LDLr-/- 

recipient mice. This study illustrates an important role for IL-17 signaling in 

atherosclerosis.  

In chapter 5, another bone marrow transplantation is described with p19 (a 

subunit of IL-23) deficient bone marrow to study the contribution of IL-23 

signaling in atherosclerosis. However, there is no change in plaque size observed 

in this experiment. 

In chapter 6, again a DNA vaccination strategy was used, although with 

another immunodominant T helper cell epitope, PADRE, to break the tolerance 

against the p28 subunit of IL-27. In this study, the effect of IL-27 depletion in 

atherosclerosis results in aggravated atherosclerosis, indicating an atherosclerotic 

protective role for IL-27.  

To study whether regulatory T cells can be induced against an 

atherosclerotic related autoantigen, we induced tolerance against HSP60 as 

described in chapter 7. The tolerance induction results in an increased number of 

Treg cells and attenuated atherosclerosis. These results further establish the 

protective role of regulatory T cells in atherosclerosis. 

Dendritic cell based vaccination is described in chapter 8. Here we used a 

novel mRNA based vaccine against the specific regulatory T cell transcription 

factor, Foxp3. Via electroporation, the dendritic cells are “loaded” with the mRNA 

and subsequently injected in LDLr-/- mice. We demonstrate again that regulatory T 

cells have a protective role in atherosclerose, as we observed aggravated 

atherosclerosis in Foxp3 vaccinated mice.  

In chapter 9, a prospective review describes the possibilities of vaccination 

in atherosclerosis. Based on our work and the work of others, we think that 

immunomodulation can provide a very useful approach against atherosclerosis. 
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Furthermore, we discuss, to our opinion, the best approach to vaccinate against 

atherosclerosis.  

Finally, in chapter 10, all results described in this thesis will be discussed in 

relation to the mechanism of atherosclerosis and possible future treatment of this 

disease in patients.  
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ABSTRACT 

Interleukin 15 (IL-15) is a pro-inflammatory cytokine involved in inflammatory 

diseases and IL-15 is expressed in atherosclerotic plaques. 

To establish the role of IL-15 in atherosclerosis we studied the effect of IL-

15 on atherosclerosis associated cells in vitro and in vivo by neutralizing IL-15 using 

a DNA vaccination strategy. 

Upon feeding a Western type diet, LDLr-/- mice do express higher levels of 

IL-15 within the spleen and the number of IL-15 expressing cells among blood 

leukocytes and spleen cells is increased. Addition of IL-15 to macrophages induces 

the expression of TNF-α and CCL-2. After the mice were vaccinated against IL-15, 

we observe a reduction in plaque size of 75%. Unexpectedly, the relative number of 

macrophages within the plaque was 2-fold higher in IL-15 vaccinated mice than 

that in control mice. Vaccination against IL-15 leads to an increased cytotoxicity 

against IL-15 overexpressing target cells, resulting in a reduction in IL-15 

overexpressing cells in the blood and within the spleen.  

Hypercholesterolemia leads to upregulation of IL-15 within the spleen and 

peripheral blood mononuclear cells. DNA vaccination against IL-15 does markedly 

reduce atherosclerotic lesion size, indicating that blockade of IL-15 by vaccination 

may be considered to be a promising strategy in the treatment of atherosclerosis. 
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INTRODUCTION 

Atherosclerosis is characterized as a dyslipidemic induced chronic inflammatory 

disease of the arterial wall.1 During the various stages of lesion development, 

monocytes and T cells are recruited to the arterial wall.2 Already in the early stages 

of atherogenesis, macrophages and T cells are present in the intima of the 

atherosclerotic plaque.3  

Interleukin 15 (IL-15) is a pro-inflammatory cytokine which is expressed by 

different immune cells such as monocytes and macrophages and promotes T cell 

proliferation independently of antigen-specific T cell receptor activation.4 IL-15 is 

also expressed in a biologically active form on the surface of monocytes and 

activated macrophages. This surface expressed IL-15 is approximately 5 times 

more effective than soluble IL-15 in the induction of T cell proliferation.5 IL-15 

expression is associated with chronic inflammatory diseases such as rheumatoid 

arthritis.6 In addition, IL-15 is found to be expressed in human and murine 

atherosclerotic lesions7,8 and may therefore affect T cells within the plaque.  

The IL-15 receptor shares two subunits, the ß and γc subunit, with the IL-2 

receptor, while the third subunit is formed by a unique α-chain, IL-15Rα.9 Because 

the IL-15 and IL-2 receptor share two subunits, IL-15 shares biological activities 

with IL-2, such as the induction of proliferation of T cell subsets. There are 

however opposing effects of IL-2 and IL-15. IL-2 is primarily involved in the 

maintenance of regulatory T cells and IL-15 plays mainly a role in the survival of T 

cells and thus in memory cell formation.10-12 IL-15 not only activates T cells, it is 

also a strong chemoattractant for T cells and Natural killer (NK) cells13, 14 and 

enhances CD44 mediated T cell adhesion to endothelial cells.15 IL-15 is also 

involved in expansion and survival of Natural killer T (NKT) cells, which form an 

important link between the innate and adaptive immune response and enhance 

atherosclerosis.16 IL-15 finally exerts an autocrine regulation of the production of 

pro-inflammatory cytokines by macrophages, such as TNF-α, IL-6 and IL-1β.17  

We studied the role of IL-15 in atherosclerotic lesion formation by applying 

an in vivo blockade of IL-15 using oral vaccination, which resulted in a 75% 

reduction in lesion size, thereby establishing an important role for IL-15 in 

atherogenesis. 
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METHODS 

ANIMALS, MATERIALS, BACTERIAL STRAINS AND CELL LINES 

All animal work was approved by Leiden University and was in compliance with 

the Dutch government guidelines. LDL receptor deficient (LDLr-/-) mice were 

purchased from Jackson Laboratories. The mice were kept under standard 

laboratory conditions and food and water were provided ad libitum. Recombinant 

murine IL-15 was purchased from PeproTech and biotinylated polyclonal mouse 

anti-IL-15 was obtained from R&D systems. The attenuated Salmonella typhimurium 

(Dam-;AroA-,strain:SL7207) was provided by Dr. Kriszitana M. Zsebo (Remedyne 

Corporation,Santa-Barbara,CA). The macrophage cell line (RAW246.7), the 

endothelial cell line (H5V) and mouse fibroblasts were cultured in DMEM with 

10% FCS, 2 mmol/L glutamin, 0.1 U/L penicillin, and 100 mg/L streptomycin. 

Vascular smooth muscle cells were isolated from a murine aorta and cultured as 

described previously.18 

 

IN VITRO ASSESSMENT OF IL-15 

Cells were added to a 24-well plate (2.5x105 RAW cells/ml, 1.0x105 cells for H5V 

and vSMC). Where stated, 100 ng/ml recombinant IL-15 was added to the 

culturing medium and culturing medium alone served as a control. Cells were 

incubated for 24 hours, and thereafter the cells were used for qPCR and the 

supernatant was used for ELISA. All experiments were performed in triplicate. 

 

RNA ISOLATION AND QPCR 

Total RNA was isolated using Trizol (Boehringer Mannheim) and reverse 

transcribed (RevertAidPTMP M-MuLV reverse transcriptase, Fermentas). qPCR was 

analyzed with SYBRgreen mastermix (Perkin&Elmer) and a final concentration of 

300 nM primers (Table 2.1), using acidic ribosomal phosphoproteinP0(36B4) as an 

internal standard. 

 

ELISA 

A mouse TNF-α set (PharMingen) was used to detect TNF-α in culture supernatant 

according to manufacturer’s protocol. 
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CONSTRUCTION OF THE DNA VACCINE 

Murine IL-15 (AI503618) was cloned into the eukaryotic expression plasmid 

pcDNA3.1 (Invitrogen). The 605bp. fragment encoding the entire IL-15 gene was 

amplified using PCR primers: 5’-GAA GCC CAT CGC CAT AGC–3’ and 5’-GAG 

CAG CAG GTG GAG GTA-3’ and subsequent cloned into pcDNA3.1 with EcoRV, 

generating pcDNA3.1-IL-15. Subsequently, S. typhimurium was electroporated with 

pcDNA3.1-IL-15 or an empty pcDNA3.1 plasmid.19 

 
TABLE 2.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR.  

 

VACCINATION AND THE INDUCTION OF ATHEROSCLEROSIS  

Mice were vaccinated prior to the induction of atherosclerosis with 108 cfu S. 

typhimurium transformed with empty pcDNA3.1 (control) or pcDNA3.1-IL-15 as 

previously described.19 Male LDLr-/- mice 10-12 weeks of age were fed a Western-

type diet containing 15% cocoa butter and 0.25% cholesterol two weeks prior to 

collar placement. Atherosclerosis was induced by placement of collars (0.3 mm, 

Dow Corning, Midland, Michigan) around the carotid arteries as previously 

described.20 Hereafter, the mice were fed a Western-type diet for 8 more weeks. 

Total cholesterol levels during the experiment were quantified 

spectrophotometrically using an enzymatic procedure (Roche Diagnostics, 

Germany). Precipath standardized serum (Boehringer, Germany) was used as an 

internal standard. 

 

GENE FORWARD PRIMER REVERSE PRIMER 

IL-15 5’-TGAGGCTGGCATTCATGTCTT-3’ 5’-ATCTATCCAGTTGGCCTCTGTTTT-3’ 

IL-1β 5’-TGGTGTGTGACGTTCCCATTA-3’ 5’-AGGTGGAGAGCTTTCAGCTCATAT-3’ 

IL-10 5’-TCTTACTGACTGGCATGAGGATCA-3’ 5’-GTCCGCAGCTCTAGGAGCAT-3’ 

CXCL1 5’-GGCGCCTATCGCCAATG-3’ 5’-CCTGAGGGCAACACCTTCAA-3’ 

CCL2 5’-GCATCTGCCCTAAGGTCTTCA-3’ 5’-TTCACTGTCACACTGGTCACTCCTA-3’ 

CCR2 5’-CCTTGGGAATGAGTAACTGTGTGA-3’ 5’-TGGAGAGATACCTTCGGAACTTCT-3’ 

36B4 5’-GGACCCGAGAAGACCTCCTT-3’ 5’-GCACATCACTCAGAATTTCAATGG-3’ 
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CYTOTOXICITY ASSAY 

The murine fibroblast cells were used as target cells and were co-transfected with 

pcDNA3.1-IL-15 and pcDNA3.1-eGFP using ExGen500 (Fermentas, Germany) 

according to the manufacturer’s protocol. 24 hours after transfection, 106 spleen 

cells isolated from IL-15 vaccinated or control vaccinated mice were added to the 

target cells. 24 hours later, cells were fixed using FormalFixx (3.7%, Thermo 

Shandon, Pittsburgh, PA ), and the number of GFP-fluorescent cells per well was 

determined. 

 

HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Carotid arteries were removed for analysis as described by Von der Thüsen et al.20 

The arteries were embedded in OCT compound (TissueTek; Sakura Finetek, The 

Netherlands). Cryosections of 5 µm were made proximally of the collar occlusion 

and stained with hematoxylin (Sigma Diagnostics, MO) and eosin (Merck 

Diagnostica, Germany). Corresponding sections on separate slides were stained 

immunohistochemically for macrophages using an antibody against a 

macrophage-specific antigen (MoMa-2, Research Diagnostics Inc.). Quantification 

of the staining was performed by using a Leica DM-RE microscope and Leica Qwin 

Imaging software (Leica Ltd., Germany). 

 

FACS ANALYSIS OF LEUKOCYTES  

Peripheral Blood Mononuclear Cells (PBMC) were isolated after orbital bleeding 

using Lympholyte (Cedarlane, Canada) as described in the manufacturer’s 

protocol. Spleens were dissected and single cell suspension was obtained by 

passing the spleen through a 70 µm cell strainer (Falcon, The Netherlands). 

Leukocytes were purified using Lympholyte. Cells were stained with FITC-

conjugated anti-mouse CD8 (0.125 µg/sample, Pharmingen) and PE-conjugated 

anti-mouse CD69 (0.125 µg/sample, eBioscience). For the staining of surface bound 

IL-15, the leukocytes were stained with biotinylated anti-mouse IL-15 (R&D 

systems) and PE-conjugated streptavidin (BD Pharmingen) and analyzed by 

flowcytometry on a FACSCalibur. All data was analyzed with CELLQuest 

software (BD Bioscience, The Netherlands). 
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STATISTICAL ANALYSIS 

All data are expressed as means ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. When indicated, a Mann-Whitney test 

was used to analyze not normally distributed data. P values of <0.05 were 

considered significant. 

 

RESULTS 

IL-15 IS UPREGULATED IN HYPERCHOLESTEROLEMIC MICE 

The spleens of LDLr-/- mice were collected at different time points after the start of 

the Western-type diet feeding and mRNA expression of IL-15 was quantified. The 

expression of IL-15 mRNA was significantly elevated in the spleen at 6 weeks after 

the start of the diet (Figure 2.1A). Since IL-15 expression is also regulated at a post-

translational level and is mainly membrane bound5, we also determined the cell 

surface expression of IL-15. Spleen cells and PBMCs were isolated from LDLr-/- 

mice which were fed a Western diet or a normal Chow diet for 10 weeks. FACS 

analysis showed that the percentage of IL-15 expressing cells within the spleen and 

PBMCs was elevated after 10 weeks of Western type diet. (Figure 2.1B; 

12.59±0.65%versus 26.07±3.44%, P<0.05 and 0.28±0.06% versus 4.95±0.98%, P<0.05, 

respectively). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
FIGURE 2.1: EXPRESSION OF IL-15 IN HYPERCHOLESTEROLEMIC MICE. 
IL-15 mRNA expression level was determined in spleen cells of LDLr-/- mice at different time points 
after Western-type diet feeding(A). PBMCs and spleen cells were isolated and stained for surface bound 
IL-15(B). The percentages of IL-15 positive cells are determined by FACS analysis after 0 weeks of 
Western type diet (white bars, N=5) and after 10 weeks of Western type diet (black bars, N=5). * P<0.05 
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IL-15 PREDOMINATELY AFFECTS MACROPHAGES IN VITRO 

We determined the effect of IL-15 on cell lines that represent the main cell types in 

the atherosclerotic lesion; macrophages (RAW cells), vascular smooth muscle cells 

(vSMCs) and endothelial cells (H5V cells). The relative expression of IL-15 is 

highest for macrophages (Figure 2.2A), while also for vSMCs and endothelial cells 

a distinct expression is found. Addition of recombinant IL-15 to the various cell 

types leads only for macrophages to increased expression of tumor necrosis factor 

(TNF)-α on protein level (Figure 2.2B). We observed in macrophages a distinct 

increase in the pro-inflammatory cytokine IL-1β, whereas there was no significant 

effect seen on mRNA encoding IL-10 (Figure 2.2C), IFN-γ or IL-12 (p40) (data not 

shown). In addition, IL-15 significantly induced the expression of CXCL1, CCL2 

and CCR2 in macrophages (Figure 2.2D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.2: EFFECT OF IL-15 ON GENE EXPRESSION IN PLAQUE RELATED CELL TYPES.  
IL-15 expression was determined in RAW cells, H5V cells and vSMC (A). IL-15 (black) or no IL-15 
(control; white) was added to different cell types. Cellular activation was measured by TNF-α release 
(B). The expression of several genes was measured in RAW cells after addition of 100 ng/mL IL-15 
(black), or without IL-15 (white) for inflammatory genes (C) and chemotaxic associated genes (D). 
*P<0.05, **P<0.01 and ***P<0.001 
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These results indicate that IL-15 may affect the chemokines induced 

migration of macrophages.21 Endothelial cells did not respond to IL-15 by 

upregulation of CXCL1, CCL2 or CCR2 on mRNA levels. In addition, IL-15 did not 

affect the expression of adhesion molecules such as VCAM-1, ICAM-1, PECAM 

and P-selectin in endothelial cells (data not shown). 

 

VACCINATION AGAINST IL-15 INDUCES AN IL-15 SPECIFIC CYTOTOXIC T CELL 

RESPONSE 

The Western-type diet induced IL-15 expression on spleen cells and PBMCs and 

the IL-15 mediated activation of macrophages stimulated us to analyze the effect of 

IL-15 blockade on atherosclerosis via vaccination. To this end, LDLr-/- mice were 

vaccinated against IL-15 by oral delivery using an attenuated strain of S. 

typhimurium transformed with an IL-15 expression vector (pcDNA3.1-IL-15) or 

with S. typhimurium transformed with an empty vector (pcDNA3.1) as a control. 

This vaccination strategy leads to the induction of CD8+ cytotoxic T cells that 

specifically lyse those cells that overexpress IL-15 and present IL-15 peptides via 

MHC class I. 19 This protocol was recently used to study the role of VEGFR2 and 

CD99 in atherosclerosis.19, 22, 23 Following vaccination, mice were fed a Western-

type diet for 2 weeks and collars were placed around the carotid arteries which 

results in flow-induced atherosclerotic lesion formation.20 We established the 

activation state of the CD8+ T cell population. Spleen cells were isolated and 

stained for CD8 and CD69, an early T cell activation marker, and analyzed by 

FACS analysis. The percentage of CD8+CD69+ double positive cells was increased 

significantly upon vaccination against IL-15 compared to the control vaccination 

(Figure 2.3A; 16.0±2.1% versus 10.4±0.1%, P<0.05). In order to study the specificity 

of CD8+ cytotoxic T cells, spleen cells from vaccinated and control mice were co-

cultured with murine fibroblasts that were co-transfected with pcDNA3.1-IL-15 

and pcDNA3.1-GFP. The number of surviving IL-15 expressing target cells was 

determined by counting GFP positive cells. The number of IL-15 expressing target 

cells was reduced by 50% after incubation with spleen cells from IL-15 vaccinated 

mice, whereas spleen cells from control vaccinated mice, did not significantly lyse 

IL-15 expressing cells (Figure 2.3B; 49±1% in vaccinated group versus 81±4% in 

control group, P<0.01).  

 

VACCINATION AGAINST IL-15 REDUCES ATHEROSCLEROTIC LESION SIZE IN 

HYPERCHOLESTEROLEMIC LDLR-/- MICE  

Atherosclerosis was determined 6 weeks after collar placement. During the 

experiment blood samples were obtained and plasma cholesterol concentration 



  Chapter 2  

 

56 

was determined. IL-15 vaccination did not affect plasma cholesterol levels during 

the experiment (Figure 2.3C). Hematoxylin-Eosin (HE) staining of the 

atherosclerotic plaque was performed and plaque sizes were quantified. 

Vaccination against IL-15 resulted in a 75% decrease in lesion size as compared to 

the control group (Figure 2.4A, B and C; 13722±3116 µm2 versus 53977±15332 µm2, 

P<0.05). Immunohistochemical staining for macrophages showed a significant 

change in plaque composition (Figure 2.4F). The relative number of macrophages 

per plaque area was 2-fold higher in IL-15 vaccinated mice (Figure 2.4E) than that 

in control vaccinated mice (Figure 2.4D), indicative for a less advanced state of the 

lesions in the vaccinated mice. 

 
FIGURE 2.3: IN VIVO EFFECT OF THE VACCINATION AGAINST IL-15.  
The percentage of double positive cells (CD8+CD69+ cells) was determined in a single cell suspension of 
the spleen cells in vaccinated and control mice (A, N=5). The induction of specific cytotoxic CD8+ T cells 
against IL-15 expressing cells was determined by incubating spleen cells from vaccinated mice (black), 
control mice (white) or without spleen cells (grey) with fibroblast transfected with an IL-15 and GFP 
expression plasmid (B, N=5). Blood was taken from vaccinated and control mice at the indicated times 
and total cholesterol level was determined in serum (C, N=9). *P<0.05 and **P<0.01 
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FIGURE 2.4: THE EFFECTS OF VACCINATION ON ATHEROSCLEROTIC LESION DEVELOPMENT IN LDLR-/- 
MICE. 
5 µm cross sections of the carotid artery of the control group (A) and the vaccinated group (B) were 
made and subsequently stained for HE and quantified (C, N=8). To determine macrophage content, 
cross sections were made and stained with MoMa-2 (D and E) and the ratio of macrophage count and 
plaque area was determined (F, N=8). *P<0.05 
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SURFACE EXPRESSION OF IL-15 ON SPLEEN CELLS AND PBMC IS REDUCED AFTER 

VACCINATION 

As hypercholesterolemia induced surface expression of IL-15 on PBMCs and 

spleen cells (Figure 2.1B), we evaluated the effect of IL-15 vaccination on IL-15 

positive cells within the spleen and PBMCs. Spleen cells and PBMCs were stained 

for IL-15 and analyzed by FACS. Upon IL-15 vaccination, the surface expression of 

IL-15 on spleen cells was almost completely reduced to a similar level as found in 

mice before the start of the Western-type diet (Figure 2.5A, P<0.05). Within the 

PBMC population IL-15 surface expression was also decreased (Figure 2.5A, 

P<0.05). This indicates a systemic reduction of IL-15 expressing cells upon 

vaccination.  

FIGURE 2.5: LEUKOCYTE IL-15 EXPRESSION IN VACCINATED AND CONTROL LDLR-/- MICE.  
After vaccination and collar placement, PBMCs and spleen cells were isolated and stained for IL-15. The 
percentage of IL-15 positive cells is determined by FACS analysis, after control vaccination and 10 
weeks of diet (white, N=6) and after IL-15 vaccination and 10 weeks of diet (black, N=6) *P<0.05 
 

DISCUSSION 

Atherosclerosis is considered a dyslipidemic induced chronic inflammatory 

disease of the arterial wall. During atherosclerotic lesion formation, monocytes and 

subsequently T cells infiltrate the arterial wall.1 DNA vaccination against IL-15 

leads in LDLr-/- mice to a greatly blocked atherosclerotic lesion development, 

indicating that IL-15 accelerates lesion formation. 

Upon the start of a hypercholesterolemic diet in LDLr-/- mice the mRNA 
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expressed by macrophages and to a lesser extend by endothelial cells and vSMCs. 

After stimulation of macrophages with IL-15, the mRNA levels of several pro-

inflammatory cytokines, such as TNF-α and IL-1β are upregulated, while the 

secretion of TNF-α is also increased by IL-15. Important proteins in the 

chemoattraction of macrophages, CXCL1, CCL2 and CCR2, are also upregulated 

after incubation with IL-15. These latter effects are also seen on human monocytes 

when stimulated with IL-15.24  

Vaccination against IL-15 was accomplished by oral administration of a 

live attenuated Salmonella typhimurium bacteria, transformed with an eukaryotic 

expression vector encoding IL-15. This vaccination method induces a strong, IL-15 

specific, cytotoxic immune response, resulting in the killing of cells overexpressing 

IL-15. This is a similar mechanism as achieved by the oral vaccination against FLK-

1 as described by Niethammer et al.19 and by Hauer et al.22 and vaccination against 

CD99 described by van Wanrooij et al.23 These vaccination procedures resulted in a 

cytotoxic T cell-mediated killing of cells expressing FLK-1 and CD99, respectively. 

The reduction in IL-15 expressing cells within the spleen and blood upon 

vaccination was accompanied by a 75% reduction in atherosclerotic lesion size. 

During the experiment no difference was detected in total cholesterol levels in the 

serum between the groups, indicating that IL-15 does not affect lipid-metabolism 

and the reduction in plaque is more likely due to changes in the inflammatory 

status of the mice. The reduced plaque size was accompanied by a two-fold 

increase in the relative amount of macrophages. As macrophage infiltration is a 

feature of early vascular lesion formation25, it may be speculated that plaque 

formation and progression is strongly retarded but not prevented due to the 

blocking of IL-15.  

Although IL-15 is involved in the expression of important 

chemoattractants for macrophages, it is likely that there are additional sources for 

these chemokines within the plaque, for example endothelial cells or vSMCs. We 

can also speculate that the recruited macrophages within the plaque do not, or to a 

lesser extent, express IL-15/IL15Rα as is demonstrated by the reduction of the 

surface expression of IL-15 on cells within spleen and PBMCs. Macrophages 

express IL-15/IL15Rα complexes on their surface upon activation and are able to 

activate T cells in an antigen-independent way. Membrane bound IL-15 is not only 

5-times more effective in inducing T cell proliferation than soluble IL-15, it also 

signals through different effectors and can therefore exert distinct biological 

responses. Membrane bound IL-15, expressed on macrophages can participate in 

reverse signaling between the IL-15Rα on T cells, whereas soluble IL-15 modulates 

cellular function in both a paracrine and autocrine fashion.17, 26 Macrophages which 

lack IL-15/IL15Rα complex on the surface are not able to sustain a full immune 
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response within the plaque and thereby are less capable to recruit inflammatory 

cells into the plaque.  

We suggest that the development of the lesion is arrested in the fatty streak 

stadium. This may provide an explanation for the increased number of 

macrophages in the vessel wall and the smaller lesion size, since mainly the innate 

immune response is activated and adaptive immune response is likely impaired. 

However, IL-15 expressing cells are activated inflammatory cells, which are also 

able to express other inflammatory mediators. Therefore it should be taken into 

account that the effect we observe may also be due to the absence of other 

mediators. The vaccination method used in this study may lead to the initiation of 

new therapies, which block the action of IL-15. There are some promising results 

with phase I/II clinical trails with an anti-IL-15 antibody treatment in patients with 

rheumatoid arthritis,27 which might be extended to cardiovascular patients. 

The vaccination strategy used in this study successfully evoked a cytotoxic 

response targeting IL-15 expressing cells. This resulted in a vast reduction in 

atherosclerosis, thereby providing new insights in the process of atherosclerosis 

and the contribution of IL-15 in this process. These new insights may contribute to 

a future immunomodulating treatment of patients with cardiovascular diseases.  
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ABSTRACT 

Interleukin-17 (IL-17) is a T cell-derived pro-inflammatory cytokine that is linked 

to autoimmune diseases. IL-17 exhibits pleiotropic effects on atheroma-associated 

cell types and induces the secretion of pro-inflammatory cytokines and 

chemokines.  

In this study, we investigated the effect of IL-17 blockade on the initiation 

of atherosclerosis by vaccination against IL-17. A plasmid (pcDNA3.1) encoding 

IL-17 and the dominant T helper cell HEL epitope was used to vaccinate LDL 

receptor deficient (LDLr-/-) mice prior to induction of atherosclerosis by feeding a 

Western-type diet and collar placement.  

Functional blockade of IL-17 upon vaccination was demonstrated by a 

reduced induction of serum IL-6 levels after administration of IL-17. DNA 

vaccination with the HEL-IL-17 plasmid resulted in a 90.2% reduction in lesion size 

in the carotid artery (P<0.01) and 59% reduction in the aortic root (P<0.05). This 

reduction was dependent on the HEL sequence to break tolerance against 

endogenous IL-17 during vaccination.  

Neutralizing the IL-17 production by vaccination forms a promising 

approach to inhibit atherosclerotic lesion development. 
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INTRODUCTION 

Cardiovascular disease (CVD), with atherosclerosis as the main underlying 

pathology is the leading cause of death in the Western world and atherosclerotic 

lesion initiation and progression has been shown to be associated with a chronic 

inflammatory response.1 Macrophages and T cells are present within the intima in 

early stages of atherogenesis and play a crucial role in the initiation and 

subsequently in the progression of the atherosclerotic plaque.1, 2 CD4+ effector T 

cells are the major T cell subset in atherosclerotic lesions and T cells are involved in 

atherosclerotic lesion formation.3  

Traditionally, it was postulated that activated T cells differentiate into 

either T helper 1 (Th1) or Th2 cells. Th1 cells produce mainly pro-inflammatory 

cytokines, such as interferon-γ (IFN-γ) and tumor necrosis factor (TNF)-α, whereas 

Th2 cells predominantly produce anti-inflammatory cytokines, such as IL-4, IL-5 

and IL-10.4 A disturbed balance between Th1 and Th2 cells is thought to be 

responsible for the immunopathological conditions in several autoimmune 

diseases, such as atherosclerosis.5  

More recently, a new subset of T helper cells with a T memory cell 

phenotype has been identified, the T helper 17 (Th17) cell and this cell type is 

associated with several (auto)immune diseases.6 Although the loss of IFN-γ 

receptor appears to be protective in atherosclerosis7, this newly identified Th cell 

may also be involved in the development of atherosclerosis.  

The differentiation of Th17 cells is subject to debate. TGF-β, IL-1β and IL-6 

in the presence of the appropriate antigen are ascribed to participate in the 

differentiation and initiation of Th17 cells.8, 9 Th1 and Th2 cytokines, such as IFN-γ 
and IL-4 may antagonize the Th17 development, but fully differentiated Th17 are 

unresponsive to these cytokines.10 IL-17 production is the hallmark of the Th17 cell 

and IL-17 has been identified in several autoimmune diseases, such as 

Experimental Autoimmune Encephalomyelitis (EAE) and rheumatoid arthritis to 

have a negative effect on disease progression.11, 12 IL-17 exhibits pleiotropic 

biological effects on various cell types , such as endothelial cells, vascular smooth 

muscle cells, and macrophages that are associated with atherosclerosis.13, 14 In these 

cells IL-17 can induce a number of pro-inflammatory cytokines, chemokines and 

matrix metalloproteinases (MMPs), including IL-6, IL-8, monocyte chemoattractant 

protein 1 (MCP-1) and MMP-9.15, 16 

However, the role of IL-17 is not yet established in atherosclerosis. 

Therefore, we vaccinated mice against endogenous IL-17 via DNA vaccination in 

order to neutralize endogenous IL-17. To break T cell tolerance for IL-17, a specific 

T helper cell epitope (HEL) was coupled to IL-17.17 Vaccination against HEL-IL-17 

established a strong protection against atherosclerosis, which may indicate that IL-
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17 is important in atherosclerosis and therapies to neutralize the action of IL-17 

may provide a new approach to treat atherosclerosis. 

 

METHODS 

ANIMALS 

All animal work was approved by Leiden University and was in compliance with 

the Dutch government guidelines. LDLr-/- mice on a C57/Bl6 background were 

from Jacksons Laboratory and were kept under standard laboratory conditions and 

food and water were administered ad libitum. 

 

VACCINE PREPARATION  

Genes coding for the antigen were cloned into pcDNA3.1(-) (Invitrogen, The 

Netherlands). cDNA coding for murine IL-17 was obtained by PCR on stimulated 

murine spleen cells. The following primers were used: IL-17, 5’- GAT CAG GAC 

GCG CAA ACA- 3’ (forward) and IL-17, 5’- GGG TTT CTT AGG GGT CAG- 3’ 

(reverse). The IL-17 PCR product was cloned into a pcDNA3.1(-) plasmid. The HEL 

sequence was derived from the amino acid sequence 81-95 of hen egg-white 

lysozyme and was cloned upstream of IL-17 with XbaI.21 The following HEL 

sequence was used: 5'- CTA GAA TGT CAG CCC TGC TGA GCT CAG ACA TAA 

CAG CGA GCG TGA ACT GCG CGC CT- 3'.  

 

TESTING THE CONSTRUCT 

Expression of constructs was tested by transient transfection of COS7 cells with the 

plasmid. COS7 cells were transfected with pcDNA3.1-HEL-IL-17 and pcDNA3.1 

using Exgen500 according to manufacturer’s protocol (Fermentas, Germany). 

Supernatant was collected 24 and 48 hours after transfection. Expression of IL-17 

was determined with a specific murine IL-17 ELISA according to manufacturer’s 

protocol (BD Bioscience, The Netherlands). To confirm the functional blockade of 

IL-17 after vaccination we performed an experiment in which we made use of the 

fact that IL-17 is able to induce IL-6 production. In a separate experiment LDLr-/- 

mice were vaccinated against IL-17 or control vaccinated. Three days after the last 

vaccination, 0.2 µg of murine IL-17 (1 µg/ml) was injected intravenously. Four 

hours after the injection of IL-17, blood was collected and serum IL-6 levels were 

quantified with a mouse IL-6 ELISA (eBioscience, Belgium). 
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CELL CULTURE 

The murine monocyte/macrophage cell line (RAW 246.7) and an endothelial cell 

line (H5V) were cultured in DMEM supplemented with 10% FCS, 2 mmol/L 

glutamin, 0.1 U/L penicillin, and 100 mg/L streptomycin. Primary vascular 

smooth muscle cells were isolated from murine aorta and cultured as described 

previously.22  

 

IN VITRO ASSESSMENT OF IL-17 

0.5 ml of cells were added to a 24-wells plate (2.5x105 RAW cells/ml, 1.0x105 cells 

for H5V and vSMC). Unless stated otherwise, 100 ng/ml recombinant IL-17 was 

added to the culture medium and culture medium alone served as a control. Cells 

were incubated for 24 hours, and thereafter the supernatant was used for ELISA. 

All experiments were performed in triplicate. Where indicated cells were used for 

qPCR. 

 

QUANTATIVE PCR ASSAYS 

Total RNA was isolated using guanidium isothiocyanate (GTC) method and 

reverse transcribed to cDNA (RevertAidTM M-MuLV reverse transcriptase, 

Fermentas). Gene expression was analyzed with an ABI PRISM 7700 (Applied 

Biosystems, Foster city, CA) using SYBR Green technology. Primer pairs as 

described in table 3.1 were used to quantify IL-17, ADAM-15 and MMP-9 gene 

expression. As a reference gene hypoxanthine phosphoribosyl transferase (HPRT) 

was used. The relative gene expression was calculated by subtracting the threshold 

of the target gene from the reference gene and raising 2 to the power of this 

difference. 

 

TABLE 3.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR.  

 

GENE FORWARD PRIMER REVERSE PRIMER 

IL-17 5’-CCAGGGAGAGCTTCATCTGTGT-3’ 5’-AAGTCCTTGGCCTCAGTGTTTG-3’ 

ADAM-15 5’-TGTGGCTTCCCAGATGAATG-3’ 5’-GTTTTGACAACAGGGTCCATCA-3’ 

MMP-9 5’-CTGGCGTGTGAGTTTCCAAAAT-3’ 5’-TGCACGGTTGAAGCAAAGAA-3’ 

HPRT 5’-TTG CTCGAGATGTCATGAAGGA-3’ 5’-AGCAGGTCAGCAAAGAACTTATAG-3’ 
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VACCINATION AND INDUCTION OF ATHEROSCLEROSIS 

The DNA vaccine was isolated with an Endofree plasmid Giga kit (Qiagen, The 

Netherlands). Male low-density lipoprotein receptor deficient (LDLr-/-) mice, 10-12 

weeks old, were used for the i.m. vaccination. Three days prior to the first 

vaccination, mice received an i.m. bilateral Cardiotoxin I (Sigma, USA) injection, 10 

µM, 50 µl per muscle. Mice were vaccinated by a total of three bilateral i.m. 

injections of 100 µg plasmid in 100 µl PBS, 50 µl per muscle, with two-week 

intervals (N=15 each group). Immediately after the last vaccination, mice were put 

on a Western type diet, containing 0.25% cholesterol and 15% cocoa butter (Special 

Diet Services, UK). After two weeks of Western type diet feeding, atherosclerosis 

was induced within the carotid arteries by bilateral perivascular collar placement, 

as described previously.23 During the experiment, plasma samples were obtained 

by tail vein bleeding. Total cholesterol levels were quantified during the 

experiment using an enzymatic procedure (Roche Diagnostics, Germany) using 

Precipath as an internal standard.  

 

TISSUE HARVESTING 

Six weeks after collar placement, carotid arteries were obtained after in situ 

perfusion for 15 minutes with Formalfixx. Carotids were embedded in OCT 

compound (Sakura Finetek, The Netherlands), snap-frozen in liquid nitrogen and 

stored at -20°C until further use. Transverse 5 µm cryosections were prepared in a 

proximal direction from the carotid bifurcation and were mounted on a parallel 

series of slides. For analysis of atherosclerosis at the site of the aortic semilunar 

valves, 10 µm transverse cryosections were made of the aortic root as previously 

described.23, 24 

 

HISTOLOGICAL ANALYSIS AND MORPHOMETRY 

Cryosections were routinely stained with hematoxylin (Sigma Aldrich, 

Zwijndrecht, The Netherlands) and eosin (Merck Diagnostica, Germany). 

Corresponding sections were stained for lipids by Oil red O staining. Hematoxylin-

eosin stained sections of carotid arteries were used for morphometric analysis of 

atherosclerotic lesions. Each vessel was assessed ~0.5 mm proximal to the collar, 

and the site of maximal stenosis was used for morphometric assessment. 

Atherosclerosis in the aortic root was quantified with Oil red O stained sections of 

plaques developed in the region of the aortic semilunar valves, as previously 

described.24 
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STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. Mann-Witney test was applied to 

compare not normally distributed values. P values of <0.05 were considered 

significant. 

 

RESULTS 

EVALUATING THE EXPRESSION OF IL-17 IN ATHEROSCLEROSIS  

To define the role of IL-17 in atherosclerosis we determined the expression of IL-17 

in atherosclerosis prone mice, fed a Western type diet (WTD, 0.25% cholesterol). 

Starting from three weeks after the start of the Western type diet we observed a 

significant 2-fold increase in the IL-17 gene expression in the spleen (Figure 3.1; 1 ± 

0.22 versus 2.20 ± 0.32, P<0.05). Subsequently, the expression of IL-17 steadily 

increased, leading to a more than 3-fold increase at week 6 of Western type diet 

feeding (Figure 3.1; 3.18 ± 0.30, P<0.01). 

 
FIGURE 3.1: MRNA EXPRESSION OF IL-17 IN RESPONSE TO A WESTERN-TYPE DIET.  
At different time points spleen samples were obtained and mRNA was isolated using the guanidium-
isothiocyanate method and IL-17 expression was determined. Expression of IL-17 is expressed relative 
to HPRT and subsequently related to the expression of mice on chow diet. * P< 0.05, ** P<0.001 
 

Thereafter, the expression of IL-17 rapidly decreased and declined to basal levels at 

12 weeks of Western-type diet, indicating specifically the induction of IL-17 during 

the initiation of atherosclerosis. Next, we studied the effect of IL-17 on different 

athero-associated cell types in vitro. A macrophage cell line (RAW264.7), an 
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RAW cells responded with a strong increase in TNF-α production (Figure 3.2A; 81 

± 10 pg/ml versus 372 ± 49 pg/ml, P<0.01), whereas H5V did not respond to IL-17 

(data not shown). Isolated VSMC responded to IL-17 with a significant increase in 

IL-6 production (Figure 3.2B; 65.6 ± 4.1 pg/ml versus 293.4 ± 7.9 pg/ml, P<0.001). 

 
FIGURE 3.2: STIMULATION OF RAW AND VSMCS WITH IL-17.  
RAW and vSMCs were stimulated with 100 ng/ml IL-17 and after 24 hours the supernatant was 
collected and analyzed with a TNF-α (A) or IL-6 (B) ELISA. **P<0.01, ***P<0.001 

 

Since, VSMC play an important role in the production of MMPs,25, 26 thereby 

contributing to remodeling and stability of the plaque, we measured the expression 

of MMP-9 and ADAM metallopeptidase domain 15 (ADAM-15) by VSMCs. IL-17 

specifically enhanced MMP-9 expression in vSMCs significantly but did not affect 

ADAM15 expression (Figure 3.3).  
 

 
FIGURE 3.3: EFFECT OF IL-17 ON METALLOPROTEINASE EXPRESSION IN VSMCS.  
vSMCs were stimulated with 100 ng/ml IL-17 and incubated for 24 hours. mRNA was isolated using 
the guanidium-isothiocyanate method. Expression of MMP-9 and ADAM15 are shown relative to 
HPRT. * P< 0.05 

Control +IL-17 

B A 

0 

100 

200 

300 

400 
 ** 

T
N
F
-α
 (
p
g
/m
l)
 

RAW 

Control +IL-17 
0 

100 

200 

300 

400 

 
  *** 

vSMC 

IL
-6
 (
p
g
/m
l)
 

ADAM15 
0.00 

0.01 

0.02 

0.03 
control 

+IL-17 

* 
* 

R
e
la
ti
v
e
 e
x
p
re
ss
io
n
 

MMP-9 



                                          Vaccination against IL-17 attenuates atherosclerosis in LDLr-/- mice 
 

 

71 

3 

CONSTRUCTION OF A HEL-IL-17 DNA VACCINE 

We cloned the IL-17 coding sequence of murine IL-17A into the eukaryotic 

expression vector, pcDNA3.1. The coding sequence is preceded by the Th cell 

epitope HEL, to enhance the breaking of tolerance against endogenous IL-17 as has 

been shown before for vaccination against several self antigens such as TNF-

alpha.17 In vitro experiments were performed to determine the expression and 

functionality of the used construct. COS7 cells were transfected with the HEL-IL-17 

plasmid and the supernatant was collected after 24 and 48 hours of incubation. We 

assessed the supernatant for IL-17 expression with a mouse specific IL-17 ELISA. 

24 hours after transfection the HEL-IL-17 protein was detectable in the supernatant 

of the COS7 cells using an IL-17 ELISA. At 48 hours the concentration of HEL-IL-17 

protein in the supernatant was almost doubled (Figure 3.4), indicating that IL-17 

together with the HEL epitope is translated and excreted into the medium. Cells 

transfected with the empty pcDNA3.1 plasmid or non-transfected cells showed no 

expression of IL-17 (Figure 3.4). 
 

 
FIGURE 3.4: EXPRESSION OF THE VACCINE IN AN EUKARYOTIC EXPRESSION SYSTEM.  
Expression of IL-17 was determined by transfection the plasmid to COS7 cells. Culture supernatant was 
collected 24 or 48 hours after transfecting with either HEL-IL-17 construct, an empty plasmid or PBS. IL-
17 production was determined using a mouse IL-17 specific ELISA. The optical density was measured 
at a wavelength of 450 nm. *P< 0.05; **P<0.01 
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IMPAIRED IL-17 SIGNALING IN IL-17 VACCINATED MICE 

To determine whether a functional blockade of IL-17 was established by 

vaccination, male LDLr-/- mice received a triple vaccination either with a plasmid 

encoding HEL-IL-17 or with an empty plasmid, both after pre-treatment of the 

mice with cardiotoxin I (CTX-I) at the site of vaccination to enhance the vaccination 

efficacy. Three days after the last i.m. vaccination, IL-17 was injected intravenously 

and 4 hours thereafter blood was collected to quantify the IL-17 response in terms 

of IL-6 production. Injection of IL-17 led to a significant 31% reduction in serum 

concentration of IL-6 in mice vaccinated against IL-17 as compared to control 

vaccinated mice (Figure 3.5; 7.87 pg/ml versus 11.44 pg/ml, P<0.05), indicating 

that the anti-IL-17 vaccination induced at least a partially blockade of the function 

of IL-17.  

 
FIGURE 3.5: DETERMINATION OF NEUTRALIZING ACTIVITY OF THE VACCINE. Serum IL-6 concentration 
was determined with an ELISA 4 hours after administration of IL-17 to mice that were either vaccinated 
against IL-17 or control vaccinated. *P<0.05 
 

EFFECT OF IL-17 VACCINATION ON ATHEROGENESIS 

As the vaccine proved to effectively reduce IL-17 signaling, we studied the effect of 

anti-IL-17 vaccination on de novo plaque formation in male LDLr-/- mice using the 

i.m. IL-17-HEL vaccine. Following the last DNA vaccination LDLr-/- mice were put 

on a Western-type diet to induce hypercholesterolemia. Two weeks later, 

perivascular carotid collars were placed to induce atherosclerosis within the 

carotid arteries. During the experiment, we did not detect any difference in 

cholesterol levels between the anti-IL-17 vaccinated group and the control 

vaccinated group (Figure 3.6A). Six weeks after collar placement mice were 

sacrificed and the plaque size proximal to the collar was quantified. Vaccination 

with the HEL-IL-17 plasmid significantly reduced the formation of atherosclerotic 

lesions by 90.2% (Figure 3.6 B-D; 5654 ± 2099 µm2 versus 57702 ± 14120 µm2, 
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P<0.01), indicating that the initiation of atherosclerosis was largely blocked in the 

IL-17 vaccinated group. Furthermore, a beneficial 87.5% reduction in intima/media 

ratio (Figure 3.6E; 0.13 ± 0.033 versus 1.00 ± 0.27, P<0.01) and a 79.6% reduction in 

intima/lumen ratio (Figure 3.6F; 0.14 ± 0.043 versus 0.70 ± 0.087, P<0.05) were 

observed, which indicates reduced stenosis in mice vaccinated with HEL-IL-17. We 

determined plaque development also at another site in the vascular bed, the aortic 

valve region. In mice vaccinated with HEL-IL-17 (Figure 3.7A) a significant 59% 

reduction in plaque size (Figure 3.7C; 126691 ± 20739 µm2 versus 310170 ± 78706 

µm2 P<0.05) was observed compared to the control group (Figure 3.7B). We 

assessed plaque composition in the lesions in terms of collagen and macrophage 

composition but detected no differences between the control group and vaccinated 

groups (data not shown). 

 

DISCUSSION 

Already in 1986 Mosmann et al. described two distinct Th subsets, Th1 and Th2 

cells, with their own specific production of cytokines.4 An exaggerated pro-

inflammatory response due to an overexpression of Th1 associated cytokines such 

as IL-12 and IFN-γ enhances atherosclerosis.24 Blockade of pro-inflammatory 

cytokines or cytokines involved in Th1 differentiation may introduce a new 

therapy for atherosclerosis. We previously demonstrated that vaccination against 

IL-12, a prominent Th1 cytokine, reduces atherosclerosis in LDLr-/- mice.25 

However, some experimental results with respect to the role of IL-4 in 

atherosclerosis can not be explained by the classical Th1/Th2 model.26-28 These 

observations may indicate that other T helper subsets are involved in 

atherosclerosis and we focused in our present work on the role of IL-17 a main 

product of the pro-inflammatory T helper cell subset, the Th17 cells.6, 10, 27, 29, 30 

Th17 cells and IL-17 have been identified in various autoimmune disease29, 

31  and may also play a role in atherosclerosis, which is also recognized as an 

autoimmune disease.32-34 IL-17 may have pleiotropic effects on the various cell 

types within the atherosclerotic lesion and may thereby stimulate a pro-

inflammatory environment, which aggravates atherosclerosis.14, 15, 29, 35-37 

To address the role of IL-17 in atherosclerosis we first examined the effect of 

hypercholesterolemia on the expression of IL-17 within the spleen by feeding 

LDLr-/- mice a Western-type diet. 6 weeks after starting Western-type diet feeding, 

the IL-17 expression was more than 3-fold increased compared to the level before 

the diet. This may indicate a relation between the initiation of the inflammatory 

response during atherosclerosis and IL-17 expression. 
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FIGURE 3.6: INITIAL ATHEROSCLEROTIC LESION FORMATION IN VACCINATED MICE. Mice were vaccinated 
by intramuscular (i.m.) injection of HEL-IL-17 plasmid or empty plasmid. Subsequently mice were put 
on a Western type diet and two weeks later equipped with a perivascular collar. At the indicated time 
points, cholesterol levels were determined in the various groups of mice (A).  Six weeks after collar 
placement mice were sacrificed and the carotid arteries of control mice (B) and vaccinated mice (C) were 
sectioned and stained with hematoxylin-eaosin. Lesion size from all mice(D) as well as intima/media 
ratio (E) and intima/lumen ratio (F) were determined by computer-assisted morphometric analysis to 
asses the degree of atherosclerosis. *P<0.05, **P<0.01 

 
FIGURE 3.7: EFFECT OF IL-17 VACCINATION ON PLAQUE FORMATION IN THE AORTIC ROOT. Mice were i.m. 
vaccinated with an empty plasmid (A) or with a HEL-IL-17 plasmid (B). Subsequently mice were put on 
a Western type diet and 8 weeks later the mice were scarified and sections of the aortic root were 
stained with Oil-red-O and hematoxylin. Plaque size was determined by computer assisted analysis (C). 
*P<0.05 
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For the vaccination against IL-17, murine IL-17 was cloned into a 

pcDNA3.1 plasmid preceded by the specific immunodominant T-helper epitope 

HEL to break T cell tolerance. In this study we used a specific part of the HEL 

sequence which binds with high affinity to MHC class II and is able to activate T 

cells, which can subsequently provide the necessary stimuli to break the tolerance 

against self-antigens and help B cells to produce antibodies against IL-17.17, 38 This 

approach is in line with data from Dalum et al.  who used a HEL-TNF-α to 

vaccinate atherosclerosis prone apoE-/- mice against TNF-α.17, 38 We detected high 

concentrations of IL-17 in the supernatant of cells transfected with HEL-IL-17, 

which indicates that the HEL peptide did not alter the conformation of IL-17 and 

did not interfere with the excretion of the protein into the medium, which is 

important for successful vaccination. To study the role of IL-17 in the process of 

atherogenesis we vaccinated LDLr-/- mice against HEL-IL-17 and vaccination was 

preceded by treatment of the hind leg muscles with Cardiotoxin I, which improves 

the outcome of DNA vaccinations.39  

In the present study, we show that the function of IL-17 is partially blocked 

by vaccination against IL-17. Intravenous administration of recombinant IL-17 after 

anti-IL-17 vaccination resulted in a significant reduction in serum IL-6 levels. This 

indicates that vaccination against IL-17 induced a partial and functional blockade 

of IL-17 in vivo. In the HEL-IL-17 vaccinated mice we observed a highly significant 

reduction of 90.2% in plaque size in the carotid artery and a 59.0% reduction in the 

aortic valve region. Furthermore, the beneficial effect on lesion initiation is 

illustrated by an 87.5% reduction in intima/media ratio and a 79.6% reduction in 

intima/lumen ratio. Interestingly, unpublished data from our lab show that i.m. 

vaccination with an IL-17 plasmid lacking the HEL sequence did not have any 

effect on atherosclerosis, which clearly indicates that the HEL sequence in the 

vaccine is essential for a functional blockade of IL-17 (data not shown). In line with 

the findings on vaccination against Il-17, we have observed that transplantation of 

IL-17 receptor deficient bone marrow into LDLr-/- mice inhibits atherosclerosis by 

almost 50% (Van Es et al. unpublished results, chapter 4). It should be kept in mind 

that Th17 cells do not form the only source of IL-17, since more cell types such as 

γδT cells and NKT-like cells are able to produce IL-17.40 Additional research is 

therefore needed to assess the role of these different cell types to IL-17 production 

and their individual role in atherosclerosis. 
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In conclusion, in this study we describe a prominent role for IL-17 in 

atherosclerosis: IL-17 is upregulated in hypercholesterolemic LDLr-/- mice upon 

Western-type diet feeding and neutralization of IL-17 by vaccination, using a novel 

DNA vaccination strategy, attenuates atherosclerotic lesion formation. Therefore 

interfering in the IL-17 pathway will be an interesting target for therapeutic 

intervention in cardiovascular disease. 
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ABSTRACT 

Atherosclerosis is an inflammatory disease, which is illustrated by the influx of 

macrophages and T cells in the sub-endothelial layer. IL-17 is an important 

cytokine, which bridges the innate and adaptive immune response and moreover 

IL-17 is involved in the transition from an acute into a chronic inflammation.  

In this study we investigated the role of IL-17 receptor signaling in 

atherosclerosis. We therefore performed a bone marrow transplantation with IL-17 

receptor deficient donor bone marrow into LDL receptor deficient recipient mice. 

After full bone marrow reconstitution a Western-type diet feeding was started and 

atherosclerotic lesions were quantified after 12 weeks.  

A 46% reduction in lesion size in the aortic root was observed (P<0.05). 

Furthermore, a decrease in auto-antibodies against oxLDL was detected. The 

inflammatory status of IL-17 deficient bone marrow recipients was changed as 

indicated by the reduced IL-6 production by the spleen and increased IL-10 

production within the HLN and PBMCs. 

 In conclusion, the IL-17 signaling is involved in the aggravation of 

atherosclerosis. This is probably mediated by a decrease in IgG anti-oxLDL 

antibodies and a change in the inflammatory status. Therefore, interfering in the 

IL-17 receptor pathway could provide a new therapeutic approach for inhibiting 

atherosclerosis lesion development. 
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INTRODUCTION 

Atherosclerosis is an inflammatory disease, which involves both components of the 

immune system, the adaptive and innate immune system1. The inflammatory 

response is tightly regulated by several mechanisms for example via interleukins 

(IL).  

IL-17 is involved in the early activation of the immune system and plays an 

important role in bridging the innate immune response with the adaptive immune 

response.2 IL-17 is mainly produced by T cells, especially CD4+ effector memory T 

cells and has more recently been linked to a new class of T helper cells, the Th17 

cells.3, 4 IL-17 has a protective role, since IL-17 protects against infectious 

microorganisms such as Klebsiella pneumoniae , Candida albicans and Toxoplasma 

gondii.5,6 On the other hand an elevated concentration of IL-17 is associated with 

different autoimmune diseases such as, rheumatoid arthritis and multiple sclerosis, 

where IL-17 plays a pathogenic role. 7, 8 

The IL-17 family comprises six members (IL-17A, B, C, D, E and F) and the 

best characterized member is IL-17A, which is also designated as IL-17 as it is the 

founding member of the IL-17 family. The receptor for IL-17 (IL-17R) is a type I 

transmembrane protein consisting of a 293 amino acids long extracellular domain 

and a relatively long intra cellular domain consisting of 525 amino acids.9, 10 The IL-

17 receptor is widely expressed with a prominent mRNA  expression in lung, 

kidney, liver, spleen and also in isolated fibroblasts, endothelial cells, mesothelial 

cells and myeloid cells from mice.9 This wide expression is also seen in humans, 

were the IL-17R for example is found on peripheral blood T cells and vascular 

endothelial cells. 11,12 The pathogenic role of IL-17 in autoimmunity and the parallel 

in function with proinflammatory cytokines, such as tumor necrosis factor (TNF)-α 

and IL-1β makes IL-17 an interesting target for studying its role in 

atherosclerosis.13 

IL-17 induces the expression of a wide range of proinflammatory cytokines 

and chemokines in various cell types as a consequence of the broad expression of 

IL-17R.14 IL-17 stimulates the expression of IL-6 and CXCL8 (IL-8) by stromal cells 

and ICAM-1 by fibroblasts and keratinocytes.9, 10, 15 Even more interesting is the 

effect of IL-17 on macrophages, which produce IL-1β, IL-1Ra, IL-6, IL-10, TNF-α 

and prostaglandin E2 (PGE2) in response to IL-17. Matrix metalloproteinase (MMP)-

3 and MMP-9 are also induced by IL-17.16, 17 These proteinases and 

proinflammatory interleukins and chemokines have already been implicated in 

atherosclerotic lesion growth and destabilization of the plaque.18-20  

The role of the IL-17R signaling pathway, although extensively studied in 

other autoimmune diseases, is not yet established in the process of atherosclerosis. 

Therefore we transplanted bone marrow of IL-17R-/- mice to LDLr-/- mice, which 



   Chapter 4    
 

 

84

resulted in a 46% reduction in atherosclerotic lesion size. These data indicate an 

aggravating role of IL-17 in the process of atherosclerosis and establish a new 

target to beneficially influence atherosclerosis lesion development. 

  

METHODS 

ANIMALS 

All animal work was approved by Leiden University and was in compliance with 

the Dutch government guidelines. LDL receptor deficient (LDLr-/-) mice were 

purchased from Jackson Laboratories. IL-17 receptor knockout mice were a kind 

gift from J. Peschon (Amgen, Seattle, WA) and created as described by Ye et al.6 

The mice were kept under standard laboratory conditions and food and water 

were provided ad libitum. 

 

BONE MARROW TRANSPLANTATION (BMT) AND INDUCTION OF HYPER-

CHOLESTEROLEMIA 

To induce bone marrow aplasia, male LDLr–/– mice were exposed to a single dose 

of 9 Gy (0.19 Gy/min, 200 kV, 4 mA) total body irradiation, using an Andrex Smart 

225 Röntgen source (YXLON Int, Copenhagen, Denmark) with a 6-mm aluminum 

filter. Bone marrow was isolated by flushing the femurs and tibias from mice with 

phosphate-buffered saline (PBS). Single-cell suspensions were prepared by passing 

the cells through a 30 µm nylon gauze. Irradiated recipients received 0.5x107 bone 

marrow cells by intravenous injection into the tail vein. After a recovery of 8 weeks 

animals received a Western-type diet ad libitum containing 15% cocoa butter and 

0.25% cholesterol (Special Diet Services, Witham, Essex, UK) for 12 weeks. During 

the experiment the mice were weighted every week and checked for well-being. 

 

SERUM LIPID LEVELS 

Every 3 weeks the serum cholesterol levels were determined to assess the effect of 

the Western-type diet. Blood samples were collected by tail bleeding from non-

fasting animals. Total cholesterol levels were quantified spectrophotometrically 

using an enzymatic procedure (Roche Diagnostics, Germany). Precipath 

standardized serum (Boehringer, Germany) was used as an internal standard. 
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HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Mice were anaesthetized with ketamine-hypnorm and perfused with PBS and 

subsequently with FormalFixx. The heart and complete aorta were removed. The 

heart was embedded in OCT compound (TissueTek; Sakura Finetek, The 

Netherlands) and cryosections of 10 µm were made of the aortic root containing 

the aortic valves. Cryosections were routinely stained with Oil-Red-O and 

hematoxylin (Sigma Diagnostics, MO). Corresponding sections on separate slides 

were stained immunohistochemically for macrophages using an antibody against a 

macrophage-specific antigen (MoMa-2, Research Diagnostics Inc.) and for collagen 

using Masson trichrome staining according to manufacturer's protocol (Sigma 

Diagnostics). Neutrophils were stained by specific esterase staining (Naphthol AS-

D chloroacetate, Sigma). Mast cells were stained by Toluidin Blue Staining (Sigma). 

The different histological stains were quantified using a Leica DM-RE microscope 

and Leica Qwin Imaging software (Leica Ltd., Germany).  

 

FACS ANALYSIS OF LEUKOCYTES  

Peripheral Blood Mononuclear Cells (PBMC) were isolated via orbital bleeding and 

erythrocytes were removed by incubating the cells with erythrocyte lysis buffer 

(0.15 M NH4Cl, 10 mN NaHCO3, 0.1 mM EDTA, pH 7.3). Spleens, Heart lymph 

nodes (HLN) and Mesenteric lymph nodes (MNL) were dissected from the mice 

and single cell suspension was obtained by passing the organs through a 70 µm cell 

strainer (Falcon, The Netherlands). Cells were stained with surface markers (0.20 

µg antibody/300.000 cells) and subsequently analyzed by flow cytometric analysis. 

The F4/80-FITC and CD19-FITC antibody were used for the detection of 

macrophages and B cells, respectively (Immunosource, Belgium). The unlabeled 

antibody for IL-17R was purchased from R & D systems and as a secondary 

antibody anti goat-IgG-PE (Abcam, UK) was used according manufacturers 

protocol. All data were acquired on a FACScalibur and analyzed with CELLQuest 

software (BD Biosciences, The Netherlands). 

 

OXLDL ANTIBODY DETECTION 

Cu-oxLDL was synthesized as described previously 21, 22. Antibodies against Cu-

oxLDL were determined according to Damoiseaux et al.23 MaxiSorp 96 wells plates 

(Nunc, Roskilde, Denmark) were coated overnight with 100 µg oxLDL in coating 

buffer (50mM NaHCO3, 50mM Na2CO3, pH=9.6) at 4 0C. IgM, IgG2a and IgG1 

antibodies directed against oxLDL were detected with an isotype Ig detection kit 

according manufacturer’s protocol (Zymed lab. Inc., CA). 
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CYTOKINE PRODUCTION 

Peripheral Blood Mononuclear Cells (PBMC), spleens, heart lymph nodes (HLN) 

and mesenteric lymph nodes (MNL) were dissected and a single cell suspension 

was made as described above. Subsequently the cells were cultured in a 96-wells 

round bottom plate which was coated with α-CD28 and α-CD3 (0.25 µg/well) at a 

cell density of 2.105 cells per well. Cells were cultured in RPMI 1640 (with L-

Glutamine) supplemented with 10 % FCS, 100 U/ml penicillin and 100 µg/ml 

streptomycin (all from BioWhittaker Europe). Supernatant was used for IL-10 and 

IL-6 ELISA’s according to manufacturer’s protocol (both from eBioscience, 

Belgium). 

 

STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. When indicated, a Mann-Whitney test 

was used to analyze not normally distributed data. P values of <0.05 were 

considered significant. 

 

RESULTS 

EFFICACY OF IL-17R-/- BONE MARROW TRANSPLANTATION 

To asses the efficacy of IL-17R-/- BMT, we determined the IL-17R expression by 

FACS analysis. 20 weeks after BMT the IL-17R expressing cells in different organs 

were analyzed. The number of IL-17R expressing cells was significantly reduced 

with 85% within the blood (Figure 4.1A, P<0.01). Furthermore, the IL-17R 

expression on circulating macrophages was analyzed. We observed a strong 

reduction of 84% in IL-17R expressing macrophages in IL-17R-/- transplanted mice 

(Figure 4.1B). Within the spleen of IL-17R-/- transplanted mice the expression of IL-

17R on mRNA level was also stongely reduced (Figure 4.1C). These data 

demonstrate an effective replacement of acceptor bone marrow by IL-17R-/- donor 

bone marrow. 
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FIGURE 4.1: IL-17 RECEPTOR EXPRESSING CELLS OF PBMCS IN IL17R-/- BM RECIPIENT AND CONTROL 

MICE. After sacrificing the mice, PBMCs were stained with an antibody directed against IL-17R and 
F4/80 or IL-17R alone and analyzed with a FACS machine. The expression of the IL-17R was significant 
lower within IL-17R-/- transplanted mice (A). Within the macrophage population of the PBMCs IL-17R 
was also significant lower in IL-17R-/- transplanted mice (B). Total RNA was isolated from the spleen 
cells and the expression of the IL-17R was assessed by qPCR analysis, illustrating almost complete 
abolishment of IL-17R expression IL-17R-/- transplanted mice (C). Control mice (N=5) and IL-17R-/- BM 
recipients (N=5). *P< 0.05, **P<0.01  

EFFECT OF IL-17R-/- BMT IN ATHEROSCLEROSIS 

Next we determined the effect on IL-17R-/- BMT in atherosclerosis whereby the 

mice were fed a Western-type diet for 12 weeks. The mice were subsequently 

sacrificed and the aorta and the aortic root were analyzed for the atherosclerotic 

burden. Atherosclerotic lesions were quantified in the aortic root of IL-17R-/- BM 

recipients (Figure 4.2B) and control transplanted mice (Figure 4.2A). In the  

IL-17R-/- BM recipients a significant reduction of 46% in plaque size was observed 

compared to the control group (Figure 4.2C; 245,000 ± 43,700 versus 454,000 ± 

91,200; P<0.05).  

 
FIGURE 4.2: IL-17R-/- BM RECIPIENTS DEMONSTRATE REDUCED LESION SIZE AT THE AORTIC ROOT. After 
BMT the mice were fed a Western-type diet for 12 weeks and were sacrificed. Cryosections of the aortic 
root of the control group (A) and the IL-17R-/- BM recipients (B) were made and subsequently stained 
for lipid with Oil-red-O. Within the IL-17R-/- BM recipients (open bar, N=10) there is a reduction of 46% 
in lesion size when compared to the control mice (closed bar, N=8) (C). *P<0.05 
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EFFECT OF IL-17R DEFICIENCY ON CHOLESTEROL LEVELS 

After the BMT we observed no difference in bodyweight between the IL-17R-/- BM 

recipients and control group (Figure 4.4A). The drop in weight during the first 

week is characteristic for bone marrow transplantation. In week 9 both groups of 

mice were put on a Western-type diet (0.25% cholesterol) to initiate atherosclerosis. 

During Western-type diet feeding serum cholesterol levels were determined and 

no significant difference was observed between mice which received IL-17R-/- and 

wild-type bone marrow (Figure 4.4B). 

 

FIGURE 4.4: BODYWEIGHT AND CHOLESTEROL LEVELS IN IL-17R-/- AND CONTROL BMT MICE. During the 
experiment the animal were weighted to study well being (A).  The mice were fed a Western-type diet 
and every three weeks blood samples were taken and cholesterol levels in the serum were determined 
(B). 

PLAQUE COMPOSITION IS ALTERED AFTER IL-17R-/- BMT 

IL-17R signaling is involved in the regulation of different MMP's24 and recruitment 

of polymorphonuclear leukocytes.25 Therefore we assessed whether a bone marrow 

transplantation with IL-17R-/- BM affected morphological parameters and 

composition within the lesions in the aortic root. To assess the collagen content and 

thus stability of the plaque, a Masson trichrome staining was performed. The 

collagen content within the lesion was not altered in IL-17R-/- BM recipient mice 

compared to control mice, indicating that the plaque stability is not affected 
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(Figure 4.5A; 0.12 ± 0.04 versus 0.14 ± 0.03, P=0.63). To examine the number of 

macrophages in the lesion, a MoMa-2 staining was performed. Interestingly, we 

observed a 25 % increase in macrophage content within the plaque of mice which 

received IL-17R-/- BM compared to control mice (Figure 4.5B; 0.32 ± 0.02 versus 0.43 

± 0.03, P=0.01). There was no significant difference in neutrophils content between 

the control group and the IL-17R-/- BM recipients (Figure 4.5C; 2.14 ± 0.63 versus 

1.14 ± 0.36, P=0.29). Interestingly, IL-17R-/- BM recipients demonstrated a 43.8% 

reduction in the number of mast cells as determined by toluidin blue staining in 

the aortic root section when compared to controls (Figure 4.5D; 4.18 ± 0.96 versus 

7.45 ± 1.20, P<0.05) 

 
FIGURE 4.5: COMPOSITION OF PLAQUE IN THE AORTIC ROOT IN IL-17R-/- BM RECIPIENT AND CONTROL 

MICE. Cryosections of the aortic root of control mice (open bars) and IL-17R-/- BM recipients (closed 
bars) were stained. There is no difference in collagen content within the plaque (A). The relative 
macrophage within the intima is significantly increased in the IL-17R-/- BM recipients (B). The amount 
of neutrophils within the plaque does not change in the IL-17R-/- BM recipient mice (C). Mast cells were 
significantly reduced in the IL-17R-/- BM recipient mice (D). *P<0.05  

REDUCTION OF IL-17R+ B CELLS AND REDUCED LEVELS OF AUTOANTIBODIES IN  

IL-17R-/- BM RECIPIENTS 

Recently, the role of IL-17R expressing B cells is described in relation to germinal 

center (GC) activity and spontaneous development of antibody mediated 

autoimmunity.26 As the IL-17R-/- BM recipients have reduced IL-17R expressing B 
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cells in the lymphoid organs (Figure 4.6A-C), we studied the effect thereof on the 

formation of oxLDL specific autoantibodies. We observed a significant reduction of 

33% in IgG antibodies directed against oxLDL in serum of mice that had received 

bone marrow from IL-17R deficient donors (Figure 4.6B, P<0.05). 

 

 

 
 
FIGURE 4.6: REDUCED IL-17R+ B CELLS AND REDUCED AUTOANTIBODIES AGAINST OXLDL IN IL-17R-/- BM 

RECIPIENT MICE. Single cell suspensions of lymphoid organs of control mice (white bars) and IL-17R-/- 
BM recipient mice (black bars ) was obtained and stained for CD19 and IL17R and subsequent analyzed 
with a FACS machine. Within the spleen (A), MLN (B) and HLN (C) there is a significant decrease in IL-
17R expressing B cells. The serum of control mice (open bars) and IL-17R-/- BM recipient mice (closed 
bars) was used for detection of antibodies directed against oxLDL (D). The level of total IgG 
autoantigens was significant lower in IL-17R-/- BM recipient mice. *P<0.05 
 

DOWNSTREAM SIGNALING OF IL-17 IS IMPAIRED IN IL-17R-/- BM  

IL-17 is involved in the activation of the immune system and therefore we wanted 

to study the effect of IL-17R deficiency on the production of interleukins by 

lymphoid cells. First we studied IL-6, a prominent downstream effector product of 

IL-17 signaling.9 We assessed IL-6 production with an ELISA on supernatant of α-

CD28 and α-CD3 activated cells from several lymphoid organs. The IL-6 

production dropped 66% in the spleen of IL-17R-/- BM recipients compared to 

control (Figure 4.7A; 215.17 ± 114.60 versus 635.5 ± 148.22 pg/ml, P<0.05), whereas 

there was no significant change detected in the MLN, HLN and PBMCs. 
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FIGURE 4.7: CYTOKINE PROFILE IS CHANGED IN IL-17R-/- RECIPIENT MICE. The spleen, HLN, MLN and 
PBMCs of control mice (open bars) and IL-17R-/- BM recipient mice (closed bars) were removed. Ex vivo 
stimulated lymphoid cells were used to analyze the cytokine production with an ELISA. The IL-6 
expression is decreased in spleen cells of IL-17R-/- recipient mice (A). IL-10 was significant induced in 
HLN and PBMCs of IL-17R-/- recipient mice(B) *P<0.05, **P<0.01 

 

Furthermore, we determined IL-10 production with an ELISA on activated 

lymphoid cells from different lymphoid organs. Interestingly, we observed a very 

significant increase in IL-10 expression of 24.61% in HLN and an increase of 28.28% 

in PBMCs in IL-17R-/- BM recipients (Figure 4.7B: HLN, 449.33 ± 15.20 versus 

596.00 ± 10.54, P<0.01; PBMCs, 473.33 ± 16.14 versus 660.00 ± 50.71, P<0.01). 

However, within the spleen and MLN IL-10 production was not changed. 

 

DISCUSSION 

The receptor for IL-17 (IL-17R) is a type I transmembrane protein that is 

ubiquitously expressed in the body.9 IL-17 exhibits pleiotropic biological actions on 

various atheroma-associated cell types, such as endothelial cells, vascular smooth 

muscle cells and macrophages.16, 17, 24 Upon activation by IL-17 these cells produce 

pro-inflammatory cytokines, chemokines and matrix metalloproteinases (MMPs), 

including TNF-α, IL-1β, IL-6, CXCL8, CCL2 and MMP-9.18-20, 24 Although, IL-17 is 
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considered to be an important interleukin in several autoimmune diseases, 

research on the role of IL-17 in atherosclerosis is limited.  

To investigate the role of IL-17 signaling in atherosclerosis, we performed a 

BMT with IL-17R-/- donor bone marrow into LDLr-/- recipients and evaluated the 

effect thereof on atherosclerosis after 12 weeks of Western-type diet. First, we 

verified whether the BMT was successful in replacing BM cells. We therefore 

analyzed the expression of IL-17R in the spleen with qPCR and observed a large 

reduction in IL-17R expression in IL-17R-/- transplanted mice. Furthermore, we 

analysed IL-17R expression with FACS analysis in PBMCs. We observed a large 

reduction of 85% in IL-17R expressing cells in the PBMCs, indicating that the BMT 

with IL-17R-/- bone marrow was successful and cells were effectively replaced by 

donor IL-17R-/- bone marrow. The reduction in IL-17R was further specified to 

macrophages, were we observed a reduction of 84% in the expression of the IL-

17R. This finding is in line with previous bone marrow transplantation 

experiments in our laboratory, for example with CCR2 deficient bone marrow. 27 

Next, we studied the effect of IL-17R deficiency on atherosclerosis. We 

observed a striking reduction in plaque size within the aortic valve region. This 

effect was independent of cholesterol levels and bodyweight as these parameters 

were unchanged between the IL-17R-/- transplanted and control transplanted mice. 

IL-17 signaling is involved in the regulation of different MMPs.24 Therefore we 

studied plaque stability, since MMPs, such as MMP-9, are well-known for their 

plaque destabilizing potential.19 We did however not detect any changes in 

collagen content, a marker for plaque stability, within the lesion. It should be noted 

that MMPs are also produced by smooth muscle cells and these cells are not 

(effectively) replaced by IL-17R-/- deficient bone marrow cells. Therefore, smooth 

muscle cells still expres the IL-17R and are thus responsive to IL-17 within the 

lesion.  

Interestingly, we observed an increase in relative macrophage content 

within the plaque of IL-17R-/- transplanted mice, which is in agreement with the 

decreased lesion size, as more initial plaques show a higher proportion of 

macrophages.28 The macrophages within the plaque are likely to be IL-17R 

deficient and thus not, or to a lesser extent, responding to IL-17 within the plaque. 

This impaired IL-17 signaling pathway may lead to a diminished production of 

pro-inflammatory interleukins, chemokines and proteinases, which have been 

implicated in lesion growth and destabilization. Furthermore, we observed a 

significant reduction in mast cells within the lesion of the IL-17R-/- BM recipients. 

Mast cells are more prominent in advanced stages of atherosclerotic plaque 

development, so their reduced presence do agree with the less advanced stage of 

lesion formation in the IL-17R-/- BM recipients.29,30, 31 IL-17 is able to induce the 

production of eotoxin-1 (CCL11), which is an important chemoattractant for mast 
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cells and is detected in atherosclerotic lesions.32, 33 IL-17R-/- BM recipients have an 

impaired IL-17 signaling and thus the eotoxin signaling may also be impaired, 

leading to the decreased number of mast cells within the atherosclerotic plaque in 

the IL-17R-/- transplanted mice. In contrast to the mast cells, we did not observe 

any change in neutrophil count within the plaque of IL-17R-/- BM recipients. This is 

surprising as IL-17 is involved in CXCL-1 mediated neutrophil recruitment.34 

However, neutrophils are normally observed in very low numbers within the 

atherosclerotic lesion in the aortic valve.  

Impairment in IL-17 signaling may also affect the general inflammatory 

status, since IL-17 is involved in bridging the innate and adaptive immune 

response.2, 35 We determined the expression of IL-6 and IL-10. IL-6 is a 

proinflammatory cytokine that provokes a broad range of cellular and 

physiological responses and was one of the earliest defined IL-17 induced target 

genes.3, 9 Indeed, within the spleens of IL-17R-/- BM recipients we observed a lower 

expression of IL-6. Interestingly, IL-10 expression is significantly increased in IL-

17R-/- BM recipients. IL-10 is known to reduce atherosclerosis in LDLr-/- mice upon 

overexpression.36-38  

Recently, Hsu et al suggested that IL-17 may result in spontaneous 

generation of autoreactive GCs as IL-17 increases the retention of B cells within the 

GCs through modulation of the activity of the Regulators of G-protein signaling 

(RGS) genes.26 In the spleens of mice transplanted with IL-17R-/- bone marrow, a 

reduction in IL-17R ecpressing B cells paralleled a reduction in anti-oxLDL IgG 

antibodies which is in line with the hypothesis of Hsu et al. Increased IgG 

autoantibodies against oxLDL are associated with a larger atherosclerotic burden, 

therefore this may provide an additional explanation for the reduced lesion size in 

the IL-17R-/- BM recipients.  

The IL-17R signaling is an interesting target for clinical applications to 

modulate the immune response in atherosclerosis. IL-17 forms a bridge between 

the innate and adaptive immune response and plays a crucial role in the 

progression from acute to chronic inflammation.2 In our laboratory we blocked IL-

17 via DNA vaccination, which resulted in a decreased atherogenesis in LDLr-/- 

mice.39 Furthermore, Th17 cells, profound producers of IL-17, have been identified 

in patients with acute coronary syndrome, underlining the potential role of IL-17 in 

atherosclerosis.40  

In conclusion, we demonstrate that an impaired IL-17R signaling results in 

less atherosclerosis, indicating an aggravating role for IL-17 in this disease. 

Therapies interfering in the IL-17 pathway may provide a newly explored 

treatment against atherosclerosis.  
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ABSTRACT 

Interleukin 23 (IL-23) has been associated with several autoimmune diseases. IL-23 

is a heterodimeric interleukin consisting of a p19 subunit and a p40 subunit, which 

is shared with IL-12. Previous studies in which p40 was neutralized indicate a 

possible role for IL-23 in atherosclerosis. 

To study the role of IL-23 in atherosclerosis, a bone marrow 

transplantation with p19 deficient bone marrow into LDL receptor deficient mice 

was performed and atherosclerosis was assessed after feeding a cholesterol rich 

diet. 

The degree of atherosclerosis was similar in mice transplanted with p19 

deficient bone marrow compared to mice receiving wild-type bone marrow. 

Furthermore, no change in IL-17 producing T cells and Tregs was observed. The 

expression of p40, p35 and p19 was not changed in the spleen of p19 deficient bone 

marrow transplanted mice, although bone marrow transplantation was successful.  

A bone marrow transplantation with p19 deficient bone marrow in LDL 

receptor deficient mice does not affect atherosclerotic lesion formation, possibly 

because of the contribution of non-bone marrow derived cells to the production of 

IL-23.  
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INTRODUCTION 

Since atherosclerosis is considered as an inflammatory disease, much research has 

been done to illuminate the contribution of different components of the immune 

system in atherosclerosis. In atherosclerosis, T cells and macrophages play an 

important role in bridging the innate and adaptive immune response and are able 

to exert pro- and anti-atherosclerotic properties.1-3 Within the atherosclerotic lesion 

and lymph nodes that drain from the lesions, macrophages and dendritic cells are 

capable to present antigens to T cells, thereby inducing an adaptive immune 

response. These antigen presenting cells have a pivotal role in immune regulation 

as they produce several cytokines and chemokines to “direct” the immune system 

to the appropriate immune response. An important cytokine in this process is 

interleukin (IL)-23, which is a heterodimeric interleukin consisting of a p40 and a 

p19 subunit. IL-23 is a close family member of IL-12 as they both share the p40 

subunit.4 

The receptor of IL-23 consists of a heterodimeric complex consisting of IL-

12Rβ1, which is shared with the IL-12 receptor and a unique IL-23R. The IL-23R 

shares many features with IL-12Rβ2, which is the other part of the IL-12 receptor. 

However, IL-23 induces a strong phosphorylation of Stat3 and a weak activation of 

Stat4, as for IL-12 the opposite is true, thereby explaining the different effect of 

these cytokines.4, 5 Furthermore, the IL-23R is mainly expressed on effector T cells 

and not on naive T cells, suggesting an important role of IL-23 in ongoing 

inflammation.4, 6 The expression of the IL-23R is also detected in human NK cells, 

murine bone marrow derived DCs and activated macrophages.4, 6 

IL-23 is mainly expressed by macrophages and dendritic cells and p19 is 

dependent on the expression of p40 in the same cell in order to be functionally 

excreted as IL-23.4 An important function for IL-23 was recently discovered by 

Langrish et al., where IL-23 is associated with the expansion of the IL-17-producing 

Th17 cells.7 Furthermore, p19-deficient animals do not develop IL-17-producing T 

cells and are protected from EAE.8 Moreover, in patients with Crohn’s disease a 

single nucleotide polymorphism (SNP) in the coding sequence of IL-23R results in 

a strong protection against this disease, indicating a pathogenic role of IL-23 in 

chronic inflammation.9 Besides the effect of IL-23 on Th17 cells, IL-23 also induces 

the production of IL-1β and TNFα by peritoneal macrophages, which occurred 

even in the presence of neutralizing antibodies to IFN-γ, thereby suggesting that 

these effects are independent from Th1 cells.8  

In our laboratory, we already demonstrated that vaccination against p40 

(IL-12/IL-23) results in a reduction of almost 70% in atherosclerotic lesion 

formation.10 However, p40 is shared by both IL-12 and IL-23 and consequently, it is 

not possible to elucidate the relative contribution of IL-12 and IL-23 in 
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atherosclerosis. Since IL-23 is involved in the development of Th17 cells and IL-17 

has been associated with aggravated atherosclerosis (van Es et al., unpublished 

results), studies into the role of IL-23 in atherosclerosis are of even more interest. 

We now show that a bone marrow transplantation with p19 deficient bone 

marrow into LDL receptor deficient mice did not affect lesion formation. More 

research should be performed with LDLr and p19 double knock outs to exclude the 

p19 expression by radiant resistant cells to  further elucidate the role of IL-23 in 

atherosclerosis. 

 

METHODS 

ANIMALS 

All animal work was approved by Leiden University and was in compliance with 

the Dutch government guidelines. LDL receptor deficient (LDLr-/-) mice were 

purchased from Jackson Laboratories. IL-23-p19 knockout mice were a kind gift 

from E. Lubberts and were created by Ghilardi et al. 11 The mice were kept under 

standard laboratory conditions and food and water were provided ad libitum. 

 

BONE MARROW TRANSPLANTATION AND INDUCTION OF HYPERCHOLESTEROLEMIA 

Male LDLr–/– mice were lethally irradiated by a single dose of 9 Gy (0.19 Gy/min, 

200 kV, 4 mA) total body irradiation, using an Andrex Smart 225 Röntgen source 

(YXLON Int, Copenhagen, Denmark) with a 6-mm aluminium filter. Bone marrow 

was isolated by flushing the femurs and tibias from mice with phosphate-buffered 

saline (PBS). Single-cell suspensions were prepared by passing the cells through a 

30-µm nylon gauze. Irradiated recipients received 0.5x107 bone marrow cells by 

intravenous injection into the tail vein. Some bone marrow was stored at -80 oC, 

which was used for genotyping as described later on. After a recovery of 8 weeks 

animals received a Western-type diet ad libitum containing 15% cocoa butter and 

0.25% cholesterol (Special Diet Services, Witham, Essex, UK) for 12 weeks. During 

the experiment the mice were weighted every week and checked for well-being 

and every 3 weeks the serum cholesterol levels were determined to assess the effect 

of the Western-type diet. Blood samples were collected by tail bleeding from non-

fasting animals. Total cholesterol levels were quantified spectrophotometrically 

using an enzymatic procedure (Roche Diagnostics, Germany). Precipath 

standardized serum (Boehringer, Germany) was used as an internal standard. 
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GENOTYPING THE BONE MARROW AFTER BONE MARROW TRANSPLANTATION 

After sacrificing the donor animals the bone marrow was isolated by flushing the 

femurs from mice with PBS. Genomic DNA was isolated by incubating with lysis 

buffer (25 mm NaOH, 0.2 mM EDTA, pH=12) for 20 minutes at 99°C. Subsequently 

100 µl neutralization buffer (40 mM TRIS HCl, pH=5) was added. A PCR was 

performed with the following primers: antisense primer (5'-GCC TGG GCT CAC 

TTT TTC TG-3'), wild type-specific (5'-GCG TGA AGG GCA AGG ACA CC-3') and 

knockout-specific (5'-AGG GGG AGG ATT GGG AAG AC-3') sense primers. This 

primer-triplet amplifies a 210-bp fragment for the wild-type allele and a 289-bp 

fragment for the mutant allele. 

 

HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Mice were anaesthetized with ketamine-hypnorm and perfused with PBS and 

subsequently with FormalFixx. The heart and complete aorta were removed. The 

heart was embedded in OCT compound (TissueTek, Sakura Finetek, The 

Netherlands) and cryosections of 10 µm were made of the aortic root containing 

the aortic valves. Cryosections were routinely stained with Oil-Red-O and 

hematoxylin (Sigma Diagnostics, MO). Corresponding sections on separate slides 

were stained immunohistochemically for macrophages using an antibody against a 

macrophage-specific antigen (MoMa-2, Research Diagnostics Inc.) and for collagen 

using Masson trichrome staining according to manufacturers protocol (Sigma 

Diagnostics. The different histological stainings were quantified using a Leica DM-

RE microscope and Leica Qwin Imaging software (Leica Ltd., Germany). The 

complete aorta was longitudinally cut open and subsequently stained for lipids 

with Oil-Red-O. The aortas were en face fixated and high resolution pictures were 

taken and the plaque was quantified using Leica Qwin imaging software (Leica 

Ltd., Germany). 

 

QPCR ON SPLEEN SAMPLES 

Total RNA was isolated using guanidium isothiocyanate (GTC) method and 

reverse transcribed to cDNA (RevertAidTM M-MuLV reverse transcriptase, 

Fermentas). Gene expression was analyzed with an ABI PRISM 7700 (Applied 

Biosystems, Foster city, CA) using SYBR Green technology and a final primer 

concentration of 300 nM. Primer pairs as described in table 5.1 were used to 

quantify IL-17, IL-10, IL-6 and IL-4 gene expression. As an internal standard 

Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was used. The samples 

were analyzed on an ABI Prism® 7700 sequence detector (Applied Biosystems). 
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TABLE 5.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR.  

 

STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. When indicated the data was analyzed 

with linear mixed model analysis. P values of <0.05 were considered significant. 

 

RESULTS  

BONE MARROW OF RECIPIENTS IS REPLACED WITH DONOR BONE MARROW 

The mice were sacrificed after 12 weeks of feeding a Western-type diet and a PCR 

on genomic DNA of the BM of the recipients was performed. We also analyzed the 

donor BM, which served as a positive control (Figure 5.1, lane 6 and 12). In the 

p19-/- BM recipients we observed a PCR fragment corresponding with the knock 

out genotype (Figure 5.1 , lane 7-11). PCR on the mice that received wild-type BM 

resulted in a smaller fragment, corresponding with the wild-type p19 genotype 

(Figure 5.1 A, lane 1-5), indicating that the BMT was successful. 

 

SERUM CHOLESTEROL LEVELS ARE INCREASED IN P19-/- BM RECIPIENTS 

During the experiment the mice were weighted. There was no difference observed 

between the p19-/- transplanted mice and control (Figure 5.2A). During Western-

type diet feeding serum cholesterol was determined and we observed a significant 

higher level in total serum cholesterol level in p19-/- BM recipients during the 

experiment (Figure 5.2B; 48% on week 3, 23% on week 6, 33% on week 9 and 44 % 

on week 12 on Western-type diet. P<0.01). 

 

GENE FORWARD PRIMER REVERSE PRIMER 

IL-17 5’-GAAACATGGTTGATGACTCCAAA-3’ 5’-CTCCACAGAGGGGGTGGT-3’ 

IL-10 5’-TCCCCTGTGAAAATAAGAGCA-3’ 5’-ATGCAGTTGATGAAGATGTCAAA-3’ 

IL-6 5’-GAAGAATTTCTAAAAGTCACTTTGAGATCTAC-3’ 5’-CACAGTGAGGAATGTCCACAAAC-3’ 

IL-4 5’-ACTTGAGAGAGATCATCGGCATTT-3’ 5’-AGCACCTTGGAAGCCCTACAG-3’ 

HPRT 5’-TTGCTCGAGATGTCATGAAGGA-3’ 5’-AGCAGGTCAGCAAAGAACTTATAG-3’ 
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FIGURE 5.1: BONE MARROW OF RECIPIENTS IS REPLACED WITH DONOR BONE MARROW. After the mice 
were sacrificed, the bone marrow was flushed out of the femurs and genomic DNA of control mice 
(lanes 1-5) and p19-/- BM recipients (lanes 7-11) was isolated and a PCR was performed to amplify the 
wild type or p19-/- gene. In lane 6 and 12 Genomic DNA was isolated from BM of wild type (lane 6) and 
p19-/- donor mice (lane 12) and served as a positive control.  
 

 
 
Figure 5.2: Bodyweight and serum cholesterol levels in p19-/- BM recipients. During the experiment 
the mice were weighted every week to determine the well-being of the mice (A, N=13-15). Every three 
weeks, blood was taken via tail vein bleeding and the serum cholesterol levels were determined using 
an enzymatic procedure (B, N=13-15). A linear mixed model analysis was used to analyze the results. 
*P<0.05 

PLAQUE SIZE AND STABILITY IS NOT CHANGED IN P19-/- BM RECIPIENT MICE 

To determine the effect of p19-/- BMT in atherosclerosis, the mice were fed a 

Western-type diet for 12 weeks after recovery from BMT. The level of 

atherosclerosis in the aortic root within the control group was not significantly 

different from the p19-/- BM recipients (Figure 5.3 A-C, P=0.28). In addition, we 

observed no difference in plaque size in the entire aorta between wild type and 

p19-/- BM transplanted mice (Figure 5.3 D-F, P=0.11). Furthermore, we analyzed 

plaque stability in the aortic root by determining the collagen content of the 
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plaque. However, we did not observe any difference between the control mice and 

p19-/- BM recipients (Figure 5.4 A-C, P=0.55). 

 

EXPRESSION OF P40, P35 AND P19 IS NOT CHANGED WITHIN THE SPLEEN 

To study whether the expression of the subunits of IL-12 and IL-23 was affected by 

the bone marrow transplantation, a qPCR analysis was performed on mRNA for 

the various subunits in spleen cells. The expression of the IL-23 subunit p19 was 

determined (Figure 5.5A) and surprisingly, we did not observe any difference in 

p19 expression between the groups. Furthermore, when we analyzed the 

expression of p40, a subunit shared with IL-12, and p35, the other subunit of IL-12, 

there were no differences observed. The mRNA expression of IL-10, IL-17, IL-6 and 

IL-4 was also determined in the spleen (Figure 5.5B). The expression of IL-10 was 

76% decreased, IL-17 was 66% decreased, IL-6 was 87% decreased and IL-4 was 

64% decreased in the p19-/- transplanted mice, indicating a change in the 

inflammatory status in these mice. 

 

 
 
Figure 5.3: Plaque size is not changed in p19-/- BM recipient mice. After the mice were sacrificed hearts 
were removed and cryosections of the aortic root were made of the control mice (A, N=13) and the p19-
/- BM recipients (B, N=12) and subsequently stained for Oil-red-O and the lesions were quantified (C). 
The aorta was also removed from control mice (D, N=13) and p19-/- BM recipients (E, N=12) and stained 
with Oil-Red-O staining and quantified (F).  
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Figure 5.4: Collagen content of the atherosclerotic lesion is not changed.  After the mice were 
sacrificed hearts were removed and cryosections of the aortic root were made. For collagen detection, 
cryosections of the aortic root of the control mice (A, N=12) and p19-/- BM recipient mice (B, N=12) were 
stained with a Masson’s trichrome staining and the relative collagen amount in the plaque was 
quantified (C). 
 

 
Figure 5.5: Effect of p19-/- BMT on the expression of interleukins in the spleen. Spleens were 
dissected and mRNA was isolated and subsequently reverse transcribed into cDNA. Expression of p40, 
p35 and p19 was determined with qPCR (A, N=9-13). Furthermore, the expression of IL-10, IL-17, IL-6 
and IL-4 was also assed within the spleen with qPCR and are depicted relative to the expression in the 
control mice. (B, N=9-13) *P<0.05, **P<0.01 

 

DISCUSSION 

IL-23 has been associated with several autoimmune diseases.7, 8, 12 

Immunization against p40, which is shared by both IL-12 and IL-23, resulted in a 

reduction of almost 70% in atherosclerotic lesion formation.10 Together with the 

relation between IL-23 and the development of Th17 cells, this interleukin is an 

interesting subject to study in relation to autoimmune diseases, such as 

atherosclerosis.7 Therefore we performed a BMT with BM of p19 deficient mice 

into LDLr deficient mice to study the role of IL-23 in atherosclerosis.  

To determine the efficacy of the BMT, a genotyping was performed on the 

BM in p19-/-  BM and wild type BM transplanted mice. Within the wild type 

R
e
la
ti
v
e
  e
x
p
re
ss
io
n
 

B 

IL-10 IL-17 IL-6 IL-4 
0.0 

0.5 

1.0 

1.5 

2.0 
control 

p19 -/- 

* 

* 

** 

* 

Control p19-/- 
0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 
p19 

p40 

p35 

R
e
la
ti
v
e
 e
x
p
re
ss
io
n
 

A 

A B 

Control p19 

C 

0.000 

0.025 

0.050 

0.075 

0.100 

0.125 

0.150 

0.175 

C
o
ll
a
g
e
n
 /
 p
la
q
u
e
 r
a
ti
o
 



   Chapter 5 

 

    106 

recipients we detected the wild type p19 gene and the p19-/- recipients 

demonstrated a knockout fragment. This indicates after irradiation and subsequent 

BMT, the BM is replaced with the donor BM.  

Surprisingly, already after 3 weeks of Western-type (11 weeks after the 

BMT) diet the serum cholesterol levels were 48% increased in the p19-/- recipient 

group and remained significantly higher throughout the experiment. However, 

little is known about IL-23 in relation with cholesterol metabolism and this remains 

to be investigated.  

Since the dramatic reduction in lesion size upon IL-12 vaccination we 

expected a reduction in lesion size upon p19-/- BMT. However, we did not observe 

any difference in atherosclerotic lesion size between p19-/- BM recipient and 

control mice. Dubin et al. demonstrated that p19-/- mice have reduced matrix 

metalloproteinase-9 (MMP-9).13 MMP-9 is associated with atherosclerotic plaque 

stability14 and therefore the collagen content was assessed as a marker for plaque 

stability. However there was no difference in collagen content detected between 

the groups, which indicate that p19 deficiency does not affect plaque stability. 

These data are surprising, since Hauer et al. demonstrated that vaccination against 

p40 (IL-12/IL-23) resulted in a reduction of almost 70% in atherosclerotic lesion 

formation.10 Furthermore, Hauer et al. also demonstrated an increase in plaque 

stability.10 Neither of these events is observed in p19-/- BM recipients. This may 

suggest that IL-23 is not involved in initial atherosclerosis and that the reduction 

seen with p40 vaccination is mediated via a reduction in IL-12.  

Within the spleen we determined the expression of the subunits p40, p35 

and p19. Interestingly, none of the subunits displayed an altered expression level 

after p19-/- BMT, indicating that the spleen is still capable of expressing IL-12 and 

IL-23. This may suggest another source of p19, besides bone marrow derived cells. 

An unpublished report of S. Pflanz and R.A. Kastelein demonstrates a heterodimer 

consisting of p19 and EBI3 in vitro.6 Whether these heterodimers may be formed in 

vivo and what function this new interleukin has and by which cell type(s) it is 

expressed remains to be elucidated. 

Together with the observation that T cells are able to express p19 (E. 

Lubberts, personal communication) it may be suggested that not only bone 

marrow derived antigen presenting cells express p19 to form IL-23. Furthermore 

p19 may also be expressed by radiant resistant cells (including T cells) within the 

spleen. Whether this resulted in functional IL-23 remains to be determined using 

intracellular FACS analysis. These data may explain the fact that we do not observe 

any change in atherosclerotic parameters. 

However, when we assessed the expression of IL-6, IL-17, IL-10 and IL-4 

expression we observed a reduction in gene expression in p19-/- BM recipient mice. 

This indicated that there is a change in the inflammatory status of p19-/- BM 
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recipient mice. A decrease in IL-10 may be causative for the elevated serum 

cholesterol level in p19-/- BM recipients, since it has been demonstrated that IL-10 

may reduce cholesterol levels.15  

Although atherosclerosis is considered an autoimmune disease with many 

similarities with other autoimmune diseases, there may be differences in the 

involvement of the immune system in the pathogenesis of different autoimmune 

diseases. Recently, Mangino et al. demonstrated that there is no relation between 

several polymorphisms of p19 and IL-23R genes and a myocardial infarction.16 

This study indicates that the role of IL-23 in atherosclerosis may be distinct from 

other autoimmune diseases. 

In conclusion, we demonstrate that a BMT with p19-/- BM in LDLr deficient 

mice does not result in an alteration in atherosclerosis. Conclusions on the role of 

IL-23 are however hard to draw since we still observed p19 expression in the 

spleens of mice receiving p19-/- bone marrow, indicating that non-bone marrow 

derived cells contribute in vivo to the production of IL-23. To definitively 

determine the role of IL-23 in atherosclerosis, we will have to generate p19 and 

LDL receptor double knockout mice and investigate the effects on atherosclerosis. 
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ABSTRACT 

Interleukin 27 (IL-27) is a heterodimeric cytokine consisting of p28 and EBI3. It has 

opposing effects on a number of lymphoid and non-lymphoid cell types and is 

related to the IL-12, IL-23 and IL-6 family, which are associated with 

atherosclerosis. We now studied the expression of both the subunits of IL-27, p28 

and EBI3, during atherosclerosis and studied the role of IL-27 in atherosclerosis by 

vaccinating LDLr-/- mice against the p28 subunit of IL-27 using a DNA vaccine.  

During atherosclerosis, we observed an increase in the expression of both 

subunits of IL-27 in the atherosclerotic lesion. Vaccination against the p28 subunit 

of IL-27 led to a significant increase in lesions size in the carotid artery and in the 

aorta as assessed by en face staining, but did not significantly affect lesion size in 

the aortic root. Atherosclerotic plaque composition within carotid artery and the 

aortic root was not affected by vaccination against p28. FACS analysis of the spleen 

demonstrated an increase in the Th17 population and a decreased Treg population. 

Furthermore, a significant reduction in B cells was observed within the spleen.  

We conclude that both subunits of IL-27 are upregulated in initial 

atherosclerosis and the results on vaccination against IL-27 suggest that IL-27 has 

anti-atherosclerotic properties. From this data we propose that IL-27 may be used 

as therapeuticum to treat atherosclerosis. 
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INTRODUCTION 

Atherosclerosis is an inflammatory disease of the vessel wall, which progresses in 

the context of high plasma cholesterol levels.1 Accumulation of inflammatory cells 

within the lesion results in a complex auto-immune like disease, which results in a 

destabilized and ultimately ruptured lesion, leading to cardiovascular 

complications.2 The innate immune response and the subsequent adaptive immune 

response, illustrated by the differentiation of naïve T cells into effector T cells plays 

an important role in the process of atherosclerosis.2  

The recently discovered interleukin IL-27 is a cytokine that shows 

structural resemblance with IL-12 and IL-23 and IL-27 affects T cell function and 

cytokine production.3 IL-27 is a heterodimeric cytokine composed of Epstein-Barr 

virus induced gene 3 (EBI3) and p28. IL-27 is produced by activated antigen 

presenting cells (APCs), as well as resident macrophages, early in the immune 

response against pathogens such as, Mycobacteria tuberculosis, Trichuris muris, and 

Toxoplasma gondi.4-6 The IL-27 subunit p28 is poorly secreted unless it is co-

expressed with its partner EBI3, thus creating a situation where expression of IL-27 

can be tightly controlled during an immune response by regulating the 

transcription of both subunits.4 IL-27 exerts its effects via the IL-27 receptor, a 

complex of gp130 and the novel IL-27R (also designated as WSX-1 or TCCR) and 

the heterodimeric IL-27 receptor is mainly expressed by lymphocytes but 

expression on monocytes is also reported.7 

Initially, IL-27 was assigned to have proinflammatory properties, 

illustrated by studies performed in the group of Goldberg et al. They demonstrate 

that vaccination against p28 suppresses experimental autoimmune 

encephalomyelitis (EAE) and adjuvant induced arthritis, suggesting a 

proinflammatory role for IL-27 in these autoimmune diseases.8, 9 However, recent 

studies show a more complex role for IL-27. For example, IL-27 suppresses the 

development of the pro-inflammatory T helper cell, the Th17 cell, in EAE models 

and thereby attenuates the disease.4, 10, 11 Furthermore, IL-27 also inhibits the 

development of regulatory T (Treg) cells and Th2 cells.12, 13 This divergent effect of 

IL-27 on T cell populations was explained by Yoshimura et al., who proposed that 

IL-27 stimulates Signal Transducers and Activator of Transcription (STAT)1 and 

STAT3 in naive Th cells and only STAT3 in activated Th cells, thereby enabling IL-

27 to exert a stimulating effect on naive cells and an inhibiting effect on  

effector T cells.14 
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The role of IL-27 in atherosclerosis is to our knowledge not yet 

investigated. Since IL-27 affects T cell development and may specifically affect 

regulatory T cell function, we vaccinated LDLr-/- mice against the p28 subunit of 

IL-27. We observed a strong increase in atherosclerosis, which may suggest a 

protective role for IL-27 in the context of atherosclerosis. 

 

MATERIAL AND METHODS 

ANIMALS 

All animal work was approved by Leiden University and was in compliance with 

the Dutch government guidelines. Low-density lipoprotein receptor deficient 

(LDLr-/-) mice were purchased from Jackson Laboratories. The mice were kept 

under standard laboratory conditions and food and water were provided ad 

libitum. 

 

IN VITRO CYTOKINE PROFILE 

A spleen was dissected from a LDLr-/- mouse and a single cell suspension was 

obtained by passing the spleen through a 70 µm cell strainer (Falcon, The 

Netherlands). Spleen cells were subsequently incubated with erythrocyte lysis 

buffer (0.15 M NH4Cl, 10 mM NaHCO3, 0.1 mM EDTA, pH 7.3). Spleen cells were 

cultured in a 96-wells round bottom plate (2x105 cells per well), coated with anti-

CD28 and anti-CD3 (0.25 µg/well). Cells were cultured in RPMI supplemented 

with 10% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (all from 

BioWhittaker Europe). Where indicated cells were incubated with either: 0, 2.5 or 5 

ng/ml IL-27 (R&D sytems) for 48 hours. Supernatant of the cells was used for an 

IL-17 (OptEIA kit, PharMingen), IL-6 (eBioscience, Belgium), TGF-β1 (eBioscience, 

Belgium) and an IL-2 ELISA (ebioscience, Belgium) all according to manufacturer’s 

protocol. 

  

EXPRESSION OF P28 AND EBI3 IN ATHEROSCLEROSIS 

LDLr-/- mice were fed a Western-type diet, containing 0.25% cholesterol and 15% 

cocoa butter (Special Diet Services, UK) and after two weeks collars were placed 

around both carotid arteries and continued for 10 more weeks on Western-type 

diet. Mice were sacrificed at several time points on Western-type diet and at 

several times after collar placement. The carotid arteries were removed and total 

RNA was isolated and reversed transcribed as is described later on. Subsequently, 
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the expression of EBI3, p28 and CD86 was determined with qPCR relative to HPRT 

as described later on. Sequences of used primers are described in table 6.1.  

 

TABLE 6.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR. 

  

CLONING OF THE PADRE-P28 VACCINE 

The amino acid sequence of PADRE was derived from the protein sequence: 

aKXVAAWTLKAAC (X=cyclohexylamin, a=R-Alanin) Cyclohexylamin was 

replaced with phenylalanine, which has the most resemblance. The R-Alanine was 

replaced with L-Alanine. The following nucleotide sequence was used for PADRE: 

5’-ATG GCT AAA TTT GTG GCT GCT TGG ACA CTT AAA GCT GCT GCT-3’ 

and subsequently cloned into the pcDNA3.1 with Nhe I and BamH I. The p28 

subunit of IL-27 (NM_145636) was amplified with a primer set with an additional 

BamH I recognition site at the N-terminus (5’-ATA TAT GGA TCC GGC CAG GTG 

ACA GGA GAC CT-3’) and an Acc65I recognition site at the C-terminus (5’-ATA 

TAT GGT ACC TTA GGA ATC CCA GGC TGA GC-3’, Genomic, Oligo-

eurogentech). The construct was used for transfection into DH5α (Invitrogen) 

according to the manufacturers protocol. The amplified plasmid was isolated with 

a Quickclean miniprep kit (Genescript Corp., USA) and sequenced. All sequences 

were analyzed with a BigDye terminator v3.1 cycle sequencing kit (Applied 

Bioscience) according to the manufacturer’s protocol and analyzed on an ABI-

Prism® 3100 Avant Genetic Analyzer (Applied Biosystems).  

Subsequently, COS7 cells were transfected with pcDNA3.1-PADRE-p28 

construct and pcDNA3.1-PADRE using Exgen500 according to manufacturer's 

protocol (Fermentas, Germany). Total RNA was isolated using guanidium 

isothiocyanate (GTC) method and reverse transcribed to cDNA (RevertAidTM M-

MuLV reverse transcriptase, Fermentas). P28 expression was analyzed with an ABI 

Gene Forward primer Reverse primer 

P28 5’-CACAGGCACCTCCGCTTT-3’ 5’-TTGGGATGACACCTGATTGG-3’ 

EBI3 5’-CCCGGACATCTTCTCTCTCA-3’ 5’-CAATACTTGGCATGGGGTTT-3’ 

CD68 5’-CCTCCACCCTCGCCTAGTC-3’ 5’-TTGGGTATAGGATTCGGATTTGA-3’ 

HPRT 5’-TTGCTCGAGATGTCATGAAGGA-3’ 5’-AGCAGGTCAGCAAAGAACTTATAG-3’ 
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PRISM 7700 (Applied Biosystems, Foster city, CA) using SYBR Green technology 

and a final primer concentration of 300 nM. 

 

VACCINATION AND INDUCTION OF ATHEROSCLEROSIS  

The DNA vaccine was isolated with an Endofree plasmid Giga kit (Qiagen, The 

Netherlands) from transfected DH5-α. Three days prior to the first vaccination, 

male LDLr-/- mice, 10-12 weeks old, received an intra muscular (i.m.) bilateral 

Cardiotoxin I (Sigma, USA) injection (10 µM, 50 µl per muscle). Mice were 

vaccinated by a total of three bilateral i.m. injections of 100 µg plasmid in 100 µl 

PBS, 50 µl per muscle, with two-week intervals. After the last vaccination mice 

were fed a Western-type diet. After two weeks of diet feeding, local atherosclerosis 

was induced within the carotid arteries by bilateral perivascular collar placement, 

as described previously.15 During the experiment plasma samples were obtained 

by tail vein bleeding for cholesterol measurements. Total cholesterol levels were 

quantified during the experiment using an enzymatic procedure (Roche 

Diagnostics, Germany) using Precipath as an internal standard.  

 

FACS ANALYSIS OF SPLEEN CELLS 

Spleens were dissected from the mice and single cell suspension was obtained by 

passing the spleen through a 70 µm cell strainer (Falcon, The Netherlands). Cells 

were stained with surface markers (0.20 µg antibody/300.000 cells) and 

subsequently analyzed by flow cytometric analysis. The following antibodies were 

used: CD4-FITC, CD25-APC, Foxp3-PE, CD19-FITC, CD62L-APC and IL-17-PE. All 

antibodies were purchased from eBioscience (Immunosource, Belgium). For the 

Th17 cell FACS analysis, the cells were incubated with Golgiplug (BD Bioscience) 

for 4 hours before the staining. All data were acquired on a FACScalibur and 

analyzed with CELLQuest software (BD Biosciences, The Netherlands). 

 

TISSUE HARVESTING 

Eight weeks after collar placement mice were sacrificed and carotid arteries were 

obtained after in situ perfusion for 15 minutes with Formalfixx. Carotid arteries 

were embedded in OCT compound (TissueTek, Sakura Finetek, The Netherlands), 

snap-frozen in liquid nitrogen and stored at -20 °C until further use. Transverse 5 

µm cryosections were prepared in a proximal direction from the carotid bifurcation 

and were mounted on a parallel series of slides. The heart was embedded in OCT 

compound (TissueTek; Sakura Finetek, The Netherlands) and cryosection of 10 µm 
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were made of the aortic root containing the aortic valves. The complete aorta was 

removed for en face analysis. 

 

HISTOLOGICAL ANALYSIS AND MORPHOMETRY 

Cryosections were routinely stained with hematoxylin (Sigma Aldrich, 

Zwijndrecht, The Netherlands) and eosin (Merck Diagnostica, Germany). 

Corresponding sections were stained for lipids by Oil-red-O staining. 

Hematoxylin-eosin. Corresponding sections on separate slides were stained 

immunohistochemically for macrophages using a macrophage-specific antigen 

(MoMa-2, Research Diagnostics Inc.) Collagen was stained with Masson’s 

trichrome staining according to manufacturer’s protocol (Sigma Diagnostics). 

Atherosclerosis in the aortic root was quantified with Oil-red-O stained sections of 

plaques developed in the region of the aortic semilunar valves. The complete aorta 

was longitudinally cut open and subsequently stained for lipids with Oil-Red-O. 

The aortas were en face fixated and high resolution pictures were taken and the 

lipid rich areas were quantified. All sections and images were analyzed with Leica 

Qwin software using a Leica DM-RE microscope.  

 

OXLDL ANTIBODY DETECTION 

Cu-oxLDL was synthesized as described previousely 16, 17. Antibodies against Cu-

oxLDL were determined according to Damoiseaux et al.18 MaxiSorp 96 wells plates 

(Nunc, Roskilde, Denmark) were coated overnight with 100 µg oxLDL in coating 

buffer (50 mM NaHCO3, 50 mM Na2CO3, pH=9.6) at 4 0C. IgM, IgG2a, IgG2b and 

IgG1 antibodies directed against oxLDL were detected with an isotype Ig detection 

kit according manufacturer’s protocol (Zymed lab. Inc., CA). 

 

STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. When indicated, a Mann-Whitney test 

was used to analyze not normally distributed data. P values of <0.05 were 

considered significant.  

 



  Chapter 6 

 

   116 

RESULTS  

IL-27 INHIBITS THE EXPRESSION OF SEVERAL CYTOKINES IN ACTIVATED SPLEEN CELLS. 

We determined the effect of IL-27 on the cytokine production in spleen cell cultures 

from LDLr-/- mice. A commonly used bioassay for IL-27 is its ability to inhibit IL-2 

production by activated T cells within the spleen.19 To that end, we used anti-CD3 

and anti-CD28 activated T cells from the spleen. We observed a rapid decline in IL-

2 expression when IL-27 was added and a low dose of IL-27 already optimally 

inhibited IL-2 production, confirming the results of Villarino et al.19 (Figure 6.1 A).  

IL-27 is recently associated with the regulation of Treg and Th17 cells.11, 12 

To study these T cell populations indirectly, we measured the production of IL-6 

(involved in Th17 proliferation, figure 6.1 B), IL-17 (the product of Th17 cells, 

figure 6.1 C) and TGF-β (a product of Tregs, figure 6.1 D). IL-17 and TGF-β showed 

a similar pattern as IL-2, as they were already effectively inhibited by low doses of 

IL-27. IL-6 production displays a different kinetic response to IL-27, as only the 

highest concentration IL-27 (5 ng/ml) resulted in a significant decline in IL-6 

production. 

EXPRESSION OF P28 AND EBI3 IS UPREGULATED IN ATHEROSCLEROTIC PLAQUES  

To determine whether the two subunits of IL-27 are induced in atherosclerotic 

lesions, we assessed the mRNA expression of the IL-27 subunits in the carotid 

artery. CD68 mRNA expression was performed to determine the macrophage 

content of the lesion. 

First, the effect of Western-type diet feeding alone was studied to 

determine diet-induced effects on IL-27 expression in the arterial wall without 

atherosclerotic lesions. No effect of the Western-type diet on the expression of both 

subunits of IL-27 in the arterial wall was observed, indicating that IL-27 is not 

induced upon hypercholesterolemia in the healthy vessel wall (Figure 6.2 A). 

Secondly, we studied the expression of IL-27 in carotid artery lesions. CD68 

expression increased after 2 weeks of collar placement, indicating the presence of 

macrophages in the carotid artery and thus of initial lesion formation (Figure 6.2 

B). The expression of p28 and EBI3 was significantly increased at 2 and 4 weeks 

after the induction of lesion formation, indicating a possible role for IL-27 in the 

initiation of atherosclerosis (Figure 6.2 B). These data demonstrate that p28 and 

EBI3 were both upregulated at the same time, indicating that EBI3 can form a 

hetero dimer with p28 leading to secretion of functional IL-27. 
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FIGURE 6.1: EFFECTS OF IL-27 ON CYTOKINE PRODUCTION OF ACTIVATED SPLEEN CELLS. Spleen cells were 
activated by plate-bound anti-CD3 and anti-CD28. Spleen cells were exposed to increasing levels of IL-
27 and incubated for 48 hours. Supernatant was analyzed for the expression of IL-2 (A, N=3), IL-6 (B, 
N=4), IL-17 (C, N=4) and TGF-β (D, N=3). **P<0.01, ***P<0.001 

 

CONSTRUCTION OF THE PADRE-P28 VACCINE 

Since both subunits of IL-27 are upregulated in early phases of atherosclerosis, we 

aimed to study the effect of IL-27 in vivo. Therefore we constructed a DNA vaccine 

against the p28 subunit in order to block the function of IL-27. The coding 

sequence of the p28 subunit was cloned into pcDNA3.1, an eukaryotic expression 

vector. The coding sequence was preceded by the sequence coding for a dominant 

Th cell epitope, PADRE, to break tolerance against the self-antigen p28.  
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FIGURE 6.2: EXPRESSION OF P28 AND EBI3 IN COLLAR INDUCED ATHEROSCLEROSIS. LDLr-/- mice were fed 
a Western type diet (WTD) and at the indicate time points carotid artery was removed and analyzed for 
gene expression of the indicated genes (A, N=2-4). After two weeks of Western-type diet, collars were 
placed around both carotid arteries and diet feeding was continued. Mice were sacrificed at the 
indicated time points as indicated on x-axis. mRNA was isolated and subsequently reverse transcribed 
into cDNA and the expression of the indicated genes was analyzed by qPCR (B, N=2-4). All genes are 
depicted relative to HPRT. *P<0.05 

 
FIGURE 6.3: PADRE-P28 EXPRESSION IN COS7 CELLS. COS7 cells were transfected with PBS, pcDNA3.1-
PADRE or pcDNA3.1-PADRE-p28 (N=3) and incubated 24 or 48 hour. mRNA was isolated and reverse 
transcribed into cDNA, subsequently, the expression of p28 was determined relative to HPRT. *P<0.05, 
**P<0.01. 
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Expression of the vaccine was assessed in vitro by transfecting COS7 cells 

with the PADRE-p28 plasmid. Cells were harvested after 24 or 48 hours of 

incubation and total RNA was isolated. Expression was determined using qPCR. 

At 24 hours a significant increase in p28 expression is observed, which continued 

to augment until 48 hours after transfection, whereas the PBS and control 

transfected cells do not express p28 at the indicated time points (Figure 6.3) 

VACCINATION AGAINST P28 AGGRAVATES ATHEROSCLEROSIS 

We studied the effect of p28 vaccination on de novo plaque formation in male  

LDLr-/- mice using a DNA vaccination strategy. Mice were vaccinated three times 

i.m. at a two-week interval with the PADRE-p28 or control (same plasmid without 

the p28 encoding region). After the third vaccination, the LDLr-/- mice were put on 

a Western type diet (0.25% cholesterol) to induce hypercholesterolemia. Two 

weeks later this was followed by collar placement around the carotid arteries. To 

study the consequence of p28 vaccination on serum cholesterol levels, we 

determined serum cholesterol levels after vaccination, but we did not observe any 

difference between PADRE-p28 vaccinated mice and control vaccinated mice (data 

not shown). 

Six weeks after collar placement mice were sacrificed and the plaque size 

in the carotid artery of control mice (Figure 6.4A) and p28 vaccinated mice (Figure 

6.4B) was quantified. Vaccination against p28 resulted in a significant 74.57% 

increase in atherosclerotic lesion size compared to control vaccination (Figure 6.4C; 

36,610±8,568 µm2 (control vaccinated) versus 63,910±8,541 µm2 (p28 vaccinated), 

P<0.05).  

FIGURE 6.4: EFFECT OF P28 VACCINATION ON PLAQUE SIZE IN THE CAROTID ARTERY.  LDLr-/- mice were 
vaccinated and 6 weeks after collar placement (8 weeks Western-type diet) the carotid arteries were 
removed. Plaque size was quantified in HE stained cryosections of the carotid artery in control mice (A, 
N=8) and in PADRE-p28 vaccinated mice (B, N=9) (C). *P<0.05 
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To study atherosclerotic lesion formation along the aorta, the aortas from control 
mice (Figure 6.5A) and vaccinated mice (Figure 6.5B) were dissected and stained en 
face for lipids. We observed a significant 69.18% increase in the atherosclerotic 
burden in the PADRE-p28 vaccinated mice (Figure 6.5 C: 8.89±1.19% (control 
vaccinated) versus 15.04±1.78% (p28 vaccinated); P<0.05). Furthermore, we studied 
the atherosclerotic lesion formation in the aortic root, and observed a non-
significant 30% increase in lesion size after vaccination against p28 (Figure 6.6A-C, 
P=0.08).  

 
FIGURE 6.5: INCREASED ATHEROSCLEROTIC BURDEN IN THE AORTA IN P28 VACCINATED MICE. The aorta 
was removed after 8 weeks of Western type diet and stained with O-Red-O staining. The plaque (red 
staining) of PADRE vaccinated mice (A, N=7) and PADRE-p28 vaccinated mice (B, N=9) was 
quantified, subsequently the percentage of plaque was calculated(C). *P<0.05 

 
 
FIGURE 6.6: PLAQUE SIZE IN THE AORTIC ROOT UPON P28 VACCINATION. After 8 weeks of Western type 
diet the hearts were dissected and cryosections of the aortic root were made of the PADRE vaccinated 
mice (A, N=9) and the PADRE-p28 vaccinated mice (B, N=9) and subsequently stained for Oil-red-O 
and the lesions were quantified (C). 
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content in the p28 vaccinated group compared to the control group (Figure 6.7A-

C). To assess whether IL-27 is involved in plaque stability, we studied the collagen 

content within the intima. Blocking of IL-27 did not result in a difference in relative 

collagen staining between the p28 vaccinated mice and control vaccinated mice 

(Figure 6.7D-F). 

 

VACCINATION AGAINST P28 ALTERS THE BALANCE BETWEEN TH17 CELLS AND TREGS 

Since IL-27 has an inhibiting effect on Treg development12 and is also able to 

suppress the development of Th17 cells,4, 10, 11 we analyzed these T cell populations 

within the spleen of p28 and control vaccinated mice. We observed a significant 

increase of 28.6% in IL-17 expressing cells within the CD4+CD62Lhigh cells in the 

spleen upon vaccination against p28 (Figure 6.8A: 21.51±1.58% versus 29.81±1.39% 

; P<0.01). Next we studied the Tregs and in the PADRE-p28 vaccinated mice we 

observed a significant reduction of 18.5% in Foxp3+ CD4+CD25+ cells within the 

spleen compared to control vaccinated mice (Figure 6.8A: 54.49±3.019% (control) 

versus 44.39±2.739% (p28 vaccinated); P<0.05). 

 
FIGURE 6.7: PLAQUE COMPOSITION IN THE CAROTID ARTERY IS NOT ALTERED UPON VACCINATION 

AGAINST P28. Cryosections were made of the carotid arteries after 8 weeks of Western type diet. PADRE 
vaccinated mice (A, N=8) and PADRE-p28 vaccinated mice (B, N=9) were stained with MoMa-2 and 
quantified (C). For the collagen detection the cryosections of PADRE vaccinated mice (D, N=8) and 
PADRE-p28 vaccinated mice (E, N=9) were stained with a Masson’s trichrome staining and the relative 
collagen amount in the plaque was quantified(C).  
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B CELL POPULATION DECLINED WITHIN THE SPLEEN OF P28 VACCINATED MICE 

Little is known about the effect of IL-27 on B cells, however there is some evidence 

that IL-27 plays a role in different stages of B cell development.20 To study the 

effect of p28 vaccination on the B cell population, we stained the spleen cells for 

CD19. Vaccination against p28 resulted in a highly significant 20.1% decrease in 

the number of CD19+ cells within the spleen compared to the control mice (Figure 

6.8C: 37.55±0.28% versus 47.02±0.95%; P<0.001). Since the B cell population is 

declined in p28 vaccinated mice we determined the level of IgG auto-antibodies 

against oxLDL in the circulation. Despite the decline in B cells, there was no 

difference in the level of anti-OxLDL auto-antibodies (Figure 6.8D). 

 
FIGURE 6.8: EFFECT OF P28 VACCINATION ON TH17 CELLS, REGULATORY T CELLS AND B CELLS. Spleens 
were removed after 8 weeks of Western type diet and a single cell suspension was made and 
subsequently stained for Th17 cells (A, N=6) , Treg cells (B, N=6) and B cells (C, N=6) and analyzed 
with a FACScalibur. The serum of control mice and p28 vaccinated mice was used for detection of 
antibodies directed against oxLDL. The autoantibody levels of IgM, IgG1, IgG2a and IgG2b were not 
changed in p28 vaccinated mice (D, N=9). *P<0.05, **P<0.01, ***P<0.001 
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DISCUSSION 

In this study, we demonstrate that IL-27 acts as an anti-atherogenic cytokine 

during the initiation of atherosclerosis. Vaccination against the p28 subunit of IL-27 

aggravates atherosclerosis and this effect may be explained by an altered balance 

between Th17 cells and Treg cells favoring the Th17 cells.  

IL-27 has pleiotropic effects on the various T cell subsets. Therefore we 

assessed the effect of IL-27 on activated T cells within the spleen of LDLr-/- mice 

and studied the cytokine profile. A decrease in IL-2, IL-6, TGF-β and IL-17 

production by activated spleen cells was observed in vitro, when exposed to IL-27. 

Decreased levels of IL-6, IL-2 and IL-17 may result in attenuated atherosclerosis as 

they are associated with aggravation of atherosclerosis 21,22 (van Es et al., 

unpublished results) and this suggests an anti-atherosclerotic role for IL-27. On the 

other hand a reduced level of TGF-β as induced by IL-27 may suggest that IL-27 

has a pro-atherosclerotic role as TGF-β has shown to be atheroprotective.23-25 We 

therefore wanted to know what the in vivo effect of IL-27 on atherosclerosis was 

since, to our knowledge, IL-27 has not been studied in the context of 

atherosclerosis.  

To determine whether IL-27 plays a role in atherosclerotic lesion 

development, expression of the separate sub-units of IL-27 was determined in the 

carotid artery. We observed an increase in p28 and EBI3 gene expression in initial 

atherosclerotic lesion in the carotid artery. This induction of both subunits at the 

same time indicates that EBI3 can form a heterodimer with p28 to facilitate its 

secretion.4 The upregulation of p28 and EBI3 expression was accompanied by an 

increase in the expression of the macrophage marker (CD68), indicating an influx 

of macrophages into the intima and this suggests that macrophages may be 

responsible for the IL-27 expression. 

The fact that IL-27 is upregulated in atherosclerotic lesions, led to an 

investigation of the role of IL-27 on atherosclerotic lesion development in vivo. 

Therefore, we developed a vaccine against p28 and vaccinated LDLr-/- mice. The 

DNA sequence of p28 was preceded by the DNA sequence of a specific 

immunodominant T-helper epitope to overcome T cell tolerance. In this study we 

used PADRE, which binds with high affinity to MHC class II and is able to activate 

helper T cells, thereby providing the necessary stimuli to break tolerance.26  

During the experiment we analyzed blood samples for the presence of 

antibodies against p28. However we were not able to obtain a positive read-out. 

This may be due to the low concentrations of anti-p28 antibodies that may not 

exceed the threshold of the developed assay. Despite the lack of detection of 

antibodies directed towards p28, the vaccination against p28 resulted in a clear 

change in T cell populations. Since IL-27 has been shown to affect Th17 cells and 

Tregs11, 12, we investigated whether these T cell populations were altered upon p28 



  Chapter 6 

 

   124 

vaccination. Vaccination against p28 resulted in a reduction in Treg cells within the 

spleen. Furthermore, we studied the Th17 cell population within the spleen of 

vaccinated mice and observed an increase in the Th17 cell population compared to 

the control group. An explanation may be that IL-27 is a strong inhibitor of TGF-β 

and IL-6, as we have demonstrated in this study in vitro. TGF-β is needed for both 

Th17 cells and Tregs, whereas IL-6 has a pivotal role in shifting the balance 

towards Th17 cells.27, 28 Another explanation for the increased Th17 cell population 

may be that IL-27 is able to stimulate the expression of suppressor of cytokine 

signaling (SOCS) and thereby inhibit STAT3 activation, which is crucial for Th17 

cells development.29 More so, IL-27 can also directly inhibit STAT3 as described by 

Huber et al.30, 31 Therefore it is likely that vaccination against p28 results in more 

Th17 cells and reduced numbers of Treg cells by increased STAT3 signaling and 

thereby shifting the balance towards Th17 cells.  

Next we studied the effect of p28 vaccination in atherosclerosis. We 

observed a 74.5% increase in plaque size in the carotid artery of p28 vaccinated 

mice. Furthermore, we observed an increase of 70% in plaque burden in the aorta 

after p28 vaccination. The serum cholesterol level did not change in p28 vaccinated 

mice versus control treated mice. The increased plaque size is therefore likely due 

to changes in the inflammatory status of the vaccinated mice and is not related to 

serum cholesterol levels. These results demonstrate an anti-atherosclerotic function 

of IL-27. 

This anti-atherosclerotic function of IL-27 is probably mediated by the 

altered balance between Treg and Th17 cells, as mentioned before. Tregs are 

associated with the protection against atherosclerosis23,25,32-34 and therefore, the 

reduction in Treg cells within the spleen of p28 vaccinated mice may be an 

explanation for the aggravated atherosclerotic lesions. 

Although the role of Th17 cells is not directly associated with 

atherosclerosis yet, the main product, IL-17, is associated with aggravated 

atherosclerosis (van Es et al. unpublished results). The suppressing effect of IL-27 

on Th17 cells is further supported by observation of Stumhofer et al., where they 

observed enhanced inflammation during chronic inflammation of the central 

nervous system in IL-27 receptor deficient mice, which was a result of increased 

Th17 cell population.39  

The effect of vaccination against p28 on plaque composition was studied 

by determining the macrophage and collagen content. However, we did not 

observe any effect on relative macrophage content, indicating that IL-27 is not 

involved in the influx of macrophages into the lesion. Furthermore, the collagen 

content remained the same in the p28 vaccinated and control mice. This suggests 

that IL-27 does not affect plaque stability in this stage of atherosclerosis. 
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IL-27 also has an effect on B cells by promoting proliferation of naive cells, 

which express the IL-27 receptor.35 Interestingly, we observe a 20% reduction in B 

cell content in the p28 vaccinated mice. IL-27 plays a role in the induction of T-bet 

expression and IgG2a class switching.35 IgG2a (IgG2c in the case of C57BI/6 mice) 

class auto-antibodies are associated with aggravating atherosclerosis.36 However, 

we did not detect any difference in auto-antibodies directed against oxLDL 

between the vaccinated and control mice, which indicates that p28 vaccination did 

not interfere with antibody class switching.  

Recently, a novel property of IL-27 is described by several groups. They 

demonstrated that IL-27 is able to induce IL-10 in CD4+ and CD8+ T cells.37-39 These 

new insights provide a new pathway that leads to the production of this key 

inhibitor of inflammation, which is demonstrated to be athero-protective.40-43  

In conclusion, both subunits of IL-27 are upregulated in atherosclerotic 

lesions. We demonstrated, via vaccination against the p28 subunit of IL-27, that IL-

27 has a protective role in atherosclerosis. Vaccination resulted in an increase of 

Th17 cells and a decrease in Treg cells, thereby, partly, explaining the aggravated 

atherosclerosis. Based on these results, overexpression or administration of IL-27 

may be a potential therapeutic application to treat atherosclerosis in the future. 

However, based on the pleiotropic nature of IL-27, more research is necessary to 

unravel the IL-27 signaling mechanism and effects. 
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ABSTRACT 

HSP60-specific T cells contribute to the development of the immune responses in 

atherosclerosis. This can be dampened by regulatory T cells activated via oral 

tolerance induction and we explored the effect of oral tolerance induction to HSP60 

and the peptide HSP60(253-268) on atherosclerosis.  

 HSP60 and HSP60(253-268) were administered orally to LDLr-/- mice prior 

to induction of atherosclerosis and resulted in a significant 80% reduction in 

plaque size in the carotid arteries and in a 27% reduction in plaque size at the 

aortic root. Reduction in plaque size correlated with an increase in 

CD4+CD25+Foxp3+ regulatory T cells in several organs and in an increased 

expression of Foxp3, CD25 and CTLA-4 in atherosclerotic lesions of HSP60-treated 

mice. The production of IL-10 and TGF-β by lymph node cells in response to 

HSP60 was observed after tolerance induction.  

 Oral tolerance induction to HSP60 and a small HSP60-peptide leads to an 

increase in the number of CD4+CD25+Foxp3+ regulatory T cells, resulting in a 

decrease in plaque size as a consequence of increased production of IL-10 and TGF-

β. We conclude that these beneficial results of oral tolerance induction to HSP60 

and HSP60(253-268) may provide new therapeutic approaches for the treatment of 

atherosclerosis.  
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INTRODUCTION 

Heat shock proteins (HSPs) are a family of highly conserved proteins with various 

functions in normal and stressful situations. Expression of HSPs on endothelial 

cells and macrophages1, 2 can be induced by fluid shear stress,3 oxidized 

lipoproteins4 and cytokines.2 Under these circumstances, HSPs repair or prevent 

degradation of denaturated proteins and increase the cell’s ability to survive 

stressful stimuli.5, 6 HSPs such as HSP60 are also involved in inflammatory 

diseases, probably resulting from their raised expression in cells exposed to pro-

inflammatory mediators.7, 8 In human atherosclerotic lesions,9 enhanced HSP60 

expression has been detected. In addition, patients with atherosclerosis show an 

elevated concentration of HSP60-specific antibodies in serum,2 and T cell clones 

with self-HSP60 reactivity have been detected within the atherosclerotic plaques.10 

This may be related to initial immune responses against bacterial HSPs which are 

highly homologous to HSPs in various other species including men, rats and 

mice.11 HSP60-specific antibodies may contribute to endothelial damage and the 

inflammatory response in the vessel wall accelerating atherosclerosis.12  

The autoimmune process in atherosclerosis is characterized by a T cell 

response to different autoantigens, e.g. oxidized LDL13, glycoproteins14 and HSPs15. 

HSP60-specific T cells are mainly of a Th1 phenotype, producing pro-atherogenic 

cytokines, such as IFN-γ, IL-12 and TNF-α and causing a disturbed balance 
between Th1 and Th2 cytokines.16, 17 For a long time, this disturbed balance was 

regarded as the cause of the ongoing inflammation in atherosclerosis. Recent 

publications however suggest that regulatory T cells (Tregs) play an important role 

in prevention of Th1 mediated autoimmune diseases such as multiple sclerosis,18 

diabetes mellitus19 and atherosclerosis.20 Mallat et al. hypothesized that in 

atherosclerosis an imbalance exists between pathogenic T cells (Th1 and Th2) and 

Tregs specific for ‘altered’ self and non-self antigens (e.g. oxidized phospholipids, 

heat shock proteins).21   

One way to increase the number of antigen specific Tregs is “low dose” 

oral tolerance induction. This method is already used as a treatment in animal 

models for Th1 mediated autoimmune diseases such as multiple sclerosis,22 

rheumatoid arthritis23 and type I diabetes.24 Initial studies also show that oral 

tolerance induction to β2-glycoprotein I25 and HSP6526, 27 results in the suppression 

of early atherosclerosis. However, these studies do not show the involvement of 

Tregs. We describe in a recent study an increase in the number of 

CD4+CD25+Foxp3+ cells after oral tolerance induction to oxidized LDL (oxLDL)28 

and a subsequent reduction in plaque size. These CD4+CD25+Foxp3+ cells form a 

class of Tregs that may either be natural Tregs which act via cell-cell contact via 
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surface-bound TGF-β29 or cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)30 

or adaptive Tregs operating via the secretion of TGF-β.31 
The present study shows that induction of oral tolerance to HSP60 and a 

highly conserved sequence of HSP60 (HSP60(253-268)) attenuates atherosclerosis. 

The effect on atherosclerosis is explained by an increased number of 

CD4+CD25+Foxp3+ Tregs in both lymphoid organs and the atherosclerotic lesion. 

This is accompanied by an increase in HSP60-specific TGF-β and IL-10 production 

in mesenteric lymph node cells. 

  

METHODS 

ANIMALS 

All animal work was approved by the regulatory authority of Leiden University 

and carried out in compliance with the Dutch government guidelines. Male LDLr-/- 

mice were obtained from the Jacksons Laboratory. Mice were kept under standard 

laboratory conditions and were fed a normal chow diet or a ‘Western-type’ diet 

containing 0.25% cholesterol and 15% cocoa butter (Special Diet Services, Witham, 

Essex, UK). All mice used were 10-12 weeks of age. Diet and water were 

administered ad libitum. 

 

ANTIGENS AND ADJUVANT 

Dimethyl dioctadecyl ammonium bromide (DDA; Sigma Diagnostics, MO), used 

as adjuvant, was dissolved in phosphate buffered saline (PBS) and 100 µg was 

mixed with 100 µg of the antigen (HSP60, HSP60(253-268) or HSP70(111-125)) 

before immunization. Purified recombinant HSP60 of Mycobacterium bovis bacillus 

Calmette-Guérin was kindly provided by J.D.A. van Embden (National Institute of 

Public Health and Environmental Hygiene, Bilthoven, The Netherlands). 

HSP60(253-268) based on the sequence of mycobacterial HSP60 aa 253-268 (NH2-

EGEALSTLVVNKIRGT-amide), was made by regular peptide synthesis (FMOC 

protection). Another peptide HSP70(111-125) was based on a partially conserved 

(human, rat, mouse) sequence of the HSP70 peptide aa 111-125 (NH2-

ITDAVITTPAYFNDA-amide).32 
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IMMUNIZATIONS  

LDLr-/- mice were immunized via one i.p. injection with PBS or 100 µg of HSP60, 

HSP60(253-268) or HSP70(111-125). The antigens were dissolved in 200 µl of PBS 
containing 100 µg DDA. After 14 days the spleens were dissected and used in the 

proliferation assay described below. 

 

SPLEEN CELL PROLIFERATION ASSAY 

Spleens from either naive (n=3), immunized (n=3) or oral treated mice which were 

immunized subsequently (n=12 per group) were dissected and squeezed through a 

70 µm cell strainer (Falcon, The Netherlands). The erythrocytes were eliminated by 

incubating the cells with erythrocyte lysis buffer (0.15 M NH4Cl, 10 mM NaHCO3, 

0.1 mM EDTA, pH 7.3). The splenocytes were cultured for 48 hours in triplicate at 

2⋅105 cells per well of a 96-wells round-bottom plate in the presence or absence of 

different concentrations of HSP60, HSP60(253-268) or HSP70(111-125). RPMI 1640 

(with L-Glutamine, 10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 µg/ml 

streptomycin (all from BioWhittaker Europe)) was used as culture medium. 

Concanavalin A (Con A; Sigma-Diagnostics, MO) (2 µg/ml) was used as a positive 

control. Cultures were pulsed for an additional 16 hours with [6-3H]-thymidine (1 

µCi/well, sp. act. 24 Ci/mmol; Amersham Biosciences, The Netherlands). The 

amount of [6-3H]-thymidine incorporation was measured using a liquid 

scintillation analyzer (Tri-Carb 2900R). The magnitude of the proliferative response 

is expressed as stimulation index (SI) defined as the ratio of the mean counts per 

minute of triplicate cultures with antigen to the mean counts per minute in culture 

medium without antigen.   

 

INDUCTION OF ATHEROSCLEROSIS 

To determine the effect of oral tolerance induction on the initiation of 

atherosclerosis, atherosclerosis was induced in LDLr-/- mice. The mice were put on 

a Western-type diet three weeks prior to surgery. Atherosclerosis was induced by 

placement of perivascular collars, prepared from elastic tubing (0.3 mm inside 

diameter; Dow Corning, Midland, Michigan), around both carotid arteries (method 

described by von der Thüsen et al.33). During the experiment, the diet response was 

followed by measuring the cholesterol and triglyceride levels in serum of these 

mice. Total cholesterol levels were quantified spectrophotometrically using an 

enzymatic procedure (Roche Diagnostics, Germany). Precipath standardized 

serum (Boehringer, Germany) was used as an internal standard.  
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ORAL TOLERANCE INDUCTION  

After one week of Western-type diet and two weeks prior to collar placement, the 

LDLr-/- mice were treated 4 times over a period of 8 days with intragastrically 

administered antigens. Before each intragastrical administration, the animals were 

deprived of food but not water for 16 hours. To prevent degradation of the 

administered antigen, 2 mg of soybean trypsin inhibitor (STI, Sigma-Diagnostics, 

MO) was administered intragastrically. Ten minutes after the STI administration, 

the control group received 100 µl of PBS (n=7). The other mice received 30 µg of 
HSP70(111-125) (n=6), HSP60 (n=6) or HSP60(253-268) (n=7). All antigens and STI 

were diluted and dissolved in physiological saline (0.9% NaCl) prior to injection. 

After administering the antigens intragastrically, the mice were kept on Western-

type diet for another week before collars were placed. 

 

PLAQUE ANALYSIS 

Six weeks after collar placement the mice were euthanized and exsanguinated by 

femoral artery transsection. The mice were perfused and fixated through the left 

cardiac ventricle with PBS and FormalFixx (Thermo Shandon, Pittsburgh, PA) for 

30 min. Common carotid arteries and the heart with the aortic root were removed 

for analysis as described by von der Thüsen et al.33 The arteries were embedded in 

OCT compound (TissueTek; Sakura Finetek, The Netherlands) and proximally of 

the place of collar occlusion 5 µm sections were made on a Leica CM 3050S 

Cryostat (Leica Instruments, UK). These cryosections were stained with 

hematoxylin (Sigma Diagnostics, MO) and eosin (Merck Diagnostica, Germany). 10 

µm section were made of the aortic root and these sections were stained with Oil-

red-O and hematoxylin. Plaque areas and intima/lumen ratios were measured 

using a Leica DM-RE microscope and LeicaQwin software (Leica Imaging Systems, 

UK).  

 

SPLENOCYTE PROLIFERATION AFTER TOLERANCE INDUCTION 

To test the effect of tolerance induction to HSP60 on the proliferation of 

splenocytes, mice were treated orally with PBS or HSP60 as described. 

Subsequently, all mice were immunized with HSP60 and two weeks thereafter, 

splenocytes of these mice were re-stimulated in vitro with HSP60. The proliferation 

was measured as described above.  
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FLOW CYTOMETRIC ANALYSIS 

For the detection of CD4+CD25+Foxp3+ T cells, a three color flow cytometry was 

performed. 4 and 14 days after oral treatment with HSP60, spleen, mesenteric 

lymph nodes, Peyer’s patches, and blood were isolated from HSP60-treated and 

untreated mice (n=5). Mononuclear cells were isolated using Lympholyte 

(Cedarlane, Ontario, Canada) conform the manufacturers protocol. Cells were 

subsequently stained with FITC-conjugated anti-CD4 (0.125 µg/sample) and APC-

conjugated anti-CD25 (0.06 µg/sample) mAb (eBioscience, Belgium) for 30 min. 

Cells were then fixed and permeabilized for 16 hrs with Fixation/Permeabilization 

solution according to the suggested protocol (eBioscience, Belgium). Subsequently, 

the cells were stained with PE-conjugated anti-Foxp3 (0.2 µg/sample) (eBioscience, 

Belgium) for 30 min. Cells were analyzed immediately by flow cytometry on a 

FACSCalibur. All data were analyzed with CELLQuest software (BD Biosciences, 

The Netherlands). 

 

CYTOKINE ASSAYS 

Mesenteric lymph nodes were isolated from untreated and HSP60-treated mice 

(n=5) 14 days after oral treatment with HSP60. The lymph nodes were squeezed 

through a cell strainer and the cells were cultured at 1⋅106 cells per well of a 24-

wells plate in the presence or absence of 20 µg/ml HSP60. Culture supernatants 

were harvested after 48 hours of incubation. IL-10, IFN-γ (both from eBioscience, 

Belgium) and TGF-β (Bender MedSystems, Austria) concentrations were 

determined by enzyme-linked immunosorbent assays (ELISA) according to the 

manufacturers suggestions. 

 

REAL-TIME PCR ASSAYS 

Carotid arteries from control and HSP60-treated mice were isolated and mRNA 

was extracted using the guanidium isothiocyanate (GTC) method and reverse 

transcribed (RevertAid M-MuLV reverse transcriptase). Quantitative gene 

expression analysis was performed on an ABI PRISM 7700 sequence detector 

(Applied Biosystems, CA) using SYBR green technology. Primer pairs as described 

in table 8.1 were used to quantify Foxp3, CD25, CTLA4 gene expression. Acidic 

ribosomal phosphoprotein PO (36B4) was used as the endogenous reference gene.  

 

 

 



  Chapter 7    

 

    136 

TABLE 7.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR.  

DETECTION OF ANTI-HSP60 ANTIBODIES 

HSP60 (10 µg/ml) dissolved in a NaHCO3/Na2CO3 buffer (pH 9.0) was coated. 

Measurement of IgG1, IgG2a and IgM levels in serum was performed using an 

ELISA Ig detection kit (Zymed Laboratories, CA) conform the manufacturer’s 

protocol and appropriate controls were performed. 

 

STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The Mann-Whitney test was used to 

compare the data. When required  an ANOVA test (Kruskal-Wallis test with post-

test) was used.  P-values less than 0.05 are considered to be statistically significant.  

  

RESULTS 

T CELLS SPECIFIC FOR HSP60 AND HSP60(253-268) EPITOPES ARE PRESENT IN LDLR-/- 

MICE 

Because of the important role of HSP60-specific T cells in atherosclerosis, we first 

investigated the presence of T cells specific for HSP60, HSP60(253-268) or 

HSP70(111-125) epitopes in the LDLr-/- mice. HSP60 is homologue in bacteria, 

mice, rats and human and therefore mycobacterial HSP60 was used in this study. 

The peptide (HSP60(253-268)) was used because this peptide is present in all 

species. Splenocytes were isolated out of naive LDLr-/- mice and were incubated 

with several concentrations of the HSP epitopes. Incubation with 5 µg/ml HSP60 

or HSP60(253-268) had no effect on naive splenocytes while incubation with 20 

µg/ml HSP60 or HSP60(253-268) resulted in a 2.70±0.42 and 2.04±0.35 fold increase 
in proliferation, respectively (Figure 7.1A and B; P<0.05). HSP70(111-125) did not 

stimulate proliferation of the splenocytes (data not shown). In all experiments 2 

µg/ml ConA, a general pan T cell mitogen, was used as a positive control, which 

resulted in a more than 50-fold increase in proliferation (data not shown).  

GENE FORWARD PRIMER REVERSE PRIMER 

FOXP3 5’-GGAGCCGCAAGCTAAAAGC-3’ 5’-TGCCTTCGTGCCCACTGT-3’ 

CD25 5’-CTTATATTGCAAATGTGGCACAATC-3’ 5’-ATCAATCATCAGTGGGACAATCTG-3’ 

CTLA4 5’-CGAGGTCCTGCACCAACTG-3’ 5’-TCCATCACCATCGGTTTATGC-3’ 

36B4 5’-GGACCCGAGAAGACCTCCTT-3’ 5’-GCACATCACTCAGAATTTCAATGG-3’ 
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To determine whether the T cell response to HSP-epitopes can be induced 

in vivo we immunized LDLr-/- mice by an intraperitoneal injection of 100 µg of 

HSP60, HSP60(253-268) or HSP70(111-125) using DDA as adjuvant. After two 

weeks mice were killed, and isolated splenocytes from HSP60-immunized mice 

incubated with 5 and 20 µg/ml of HSP60 showed a 7.40±1.29 (P<0.05) and 

12.71±2.30 (P<0.05) fold increase in proliferation, respectively (Figure 7.1C). 

Incubation of splenocytes from HSP60(253-268)-immunized mice with 5 and 20 

µg/ml HSP60(253-268) resulted in a 7.29±2.32 (P<0.05) and 9.26±2.58 (P<0.05) fold 

increase, respectively (Figure 7.1D). Incubation of splenocytes from HSP70(111-

125)-immunized mice with HSP70(111-125) did not result in a significant effect on 

proliferation (Figure 7.1E). 

 
FIGURE 7.1: SPLEEN CELL PROLIFERATION IN RESPONSE TO HSP60 AND HSP60(253-268).  
Splenocytes were isolated from naïve LDLr-/- mice (A and B) and mice immunized via one i.p. injection 

with 100 µg of HSP60, HSP60(253-268) or HSP70(111-125) (C,D and E). The naive and primed 
splenocytes were re-stimulated in vitro with HSP60 (A and C), HSP60(253-268) (B and D) or HSP70(111-
125) (E) for 48 hours. Proliferation was measured by incorporation of 3H-thymidine. Data are shown as 
the stimulation index (S.I.) ± SEM. The S.I. is the ratio of the mean cpm of cultures with antigen to the 
mean cpm of cultures without antigen. *P<0.05. 
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EFFECT OF ORAL TOLERANCE INDUCTION TO HSP60, HSP60(253-268) AND 

HSP70(111-125) ON ATHEROSCLEROSIS 

Next we investigated the immunomodulatory effect of oral tolerance induction to 

these compounds on atherosclerosis. LDLr-/- mice were put on a Western-type diet 

for one week prior to oral administration of PBS (n=7) or 30 µg of HSP60 (n=7), 

HSP60(253-268) (n=6) or HSP70(111-125) (n=6). The oral treatment was given 4 

times in total, every other day. Subsequently, mice were equipped with collars 

around both common carotid arteries and fed a Western-type diet. Six weeks 

thereafter, atherosclerotic plaque formation was analyzed. Representative 

hematoxylin-eosin stained cryosections of the carotid arteries of PBS, HSP70(111-

125), HSP60, and HSP60(253-268)-treated mice are shown in figure 7.2A-D.  

 

 
FIGURE 7.2: ORAL TOLERANCE INDUCTION TO HSP60 AND HSP60(253-268) ATTENUATES PLAQUE 
FORMATION IN COLLAR INDUCED ATHEROSCLEROSIS IN LDLR-/- MICE.  
LDLr-/- mice were treated intragastrically with PBS, HSP70(111-125), HSP60 or HSP60(253-268) four 
times before induction of atherosclerosis and six weeks thereafter mice were sacrificed and the carotid 
arteries of PBS-treated (A), HSP70(111-125)-treated (B), HSP60-treated (C) and HSP60(253-268)-treated 
(D) mice were sectioned and stained with hematoxylin-eosin. Lesions were quantified by computer-
assisted morphometric analysis and plaque size (E) and intima/lumen ratio (F) were determined. 
During the experiment plasma cholesterol levels of PBS-treated (closed squares), HSP70(111-125)-
treated (closed triangles), HSP60-treated (open squares) and HSP60(253-268)-treated (open triangles) 
mice were monitored (G). *P<0.05 
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No significant difference in plaque size was observed in mice fed HSP70(111-125) 

(21181±5273 µm2) compared to PBS-treated mice (20471±5273 µm2). Oral 

administration of HSP60 (3959±582 µm2) resulted in a significant 80.7% (P<0.05) 

reduction in plaque size when compared to PBS-treated mice. Oral tolerance 

induction to HSP60(253-268) (3419±460 µm2) resulted in an 83.3% (P<0.05) 

reduction in plaque size (Figure 7.2E).  

Furthermore, the intima/lumen ratio was reduced significantly with 68.8% 

in the HSP60 treated mice (P<0.05; 0.082±0.007) and with 74.3% in the HSP60(253-

268)-treated mice (P<0.05; 0.067±0.010) when compared to the PBS-treated mice 

(0.261±0.074) (Figure 7.2F). During the experiment no significant differences in 

total plasma cholesterol levels were detected between the different groups (Figure 

7.2G). In addition, a 27.4% reduction in plaque size at the aortic root was observed 

in HSP60-treated mice (377000±37200 µm2) when compared with PBS-treated mice 

(Figure 7.3 A-C; 519000±44600 µm2; P<0.05). Immunohistochemical analysis of all 

plaques showed that oral tolerance induction to HSP60 and HSP60(253-268) had no 

effect on the relative macrophage and smooth muscle cell content (data not 

shown). 

 

 

 

 

 

 

 

 
FIGURE 7.3: ORAL TOLERANCE INDUCTION TO HSP60 REDUCES PLAQUE FORMATION AT THE AORTIC ROOT 

IN LDLR-/- MICE. 
LDLr-/- mice were fed a Western-type diet and were treated intragastrically four times with PBS or 
HSP60 as in figure 7.2. After 8 weeks, sections of the aortic root of PBS-treated (A) and HSP60-treated 
(B) mice were stained with Oil-red-O and hematoxylin and subsequently lesions were quantified and 

plaque size was determined (C). Values are mean lesion size ± SEM. *P<0.05 

EFFECT OF ORAL TOLERANCE INDUCTION TO HSP60 ON CD4+CD25+FOXP3+ TREGS 

To evaluate whether oral tolerance induction to HSP60 was associated with an 

effect on Tregs, flow cytometry analysis was performed. HSP60-treated LDLr-/- 

mice were sacrificed 4 and 14 days after the last oral treatment. In untreated 

control mice, CD4+CD25+Foxp3+ T cells are present in low numbers in Peyer’s 

patches (0.79±0.16%), blood (2.21±0.12%), spleen (0.80±0.07%) and mesenteric 

lymph nodes (3.82±0.25%).  
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FIGURE 7.4: ORAL TOLERANCE INDUCTION TO HSP60 LEADS TO AN INCREASED AMOUNT OF 

CD4+CD25+FOXP3+ CELLS.  
LDLr-/- mice were fed HSP60 four times and killed 4 and 14 days after oral treatment. As a control, 
untreated animals were used. The dot plots show representative examples of lymphoid cells isolated 
from Peyer’s patches, blood, spleen and mesenteric lymph nodes stained for CD4 and CD25 (left panel). 
The right panels show the percentage of Foxp3+ cells within the CD4+CD25+ population. 
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The dot-plots in figure 7.4 represent examples of FACS analysis on CD4+CD25+ 

cells (left panels) and Foxp3+ cells within the CD4+CD25+ population (right panels) 

in Peyer’s patches, blood, spleen and mesenteric lymph nodes, respectively. 4 days 

after oral treatment with HSP60, the number of CD4+CD25+Foxp3+ T cells in the 

Peyer’s patches and blood was increased significantly to 1.73±0.30% (P<0.05) and 

2.86±0.21% (P<0.01), respectively, when compared to untreated mice. No 

significant change was seen in the spleen (0.85±0.06%) and mesenteric lymph 

nodes (4.67±0.41%). 14 days after oral treatment, the number of CD4+CD25+Foxp3+ 

T cells decreased again to 1.07±0.08% in the Peyer’s patches and was not 

significantly different from untreated mice whereas the number of 

CD4+CD25+Foxp3+ T cells in blood was still enhanced (2.81±0.20%, P<0.01). In the 

spleen and mesenteric lymph nodes a significant increase to 1.24±0.11% (P<0.01) 

and 5.36±0.10% (P<0.01) was observed when compared with the situation without 

treatment (Figure 7.5). 

 
FIGURE 7.5: ORAL TOLERANCE INDUCTION TO HSP60 LEADS TO AN INCREASED AMOUNT OF 

CD4+CD25+FOXP3+ CELLS.  
LDLr-/- mice were treated intragastrically four times with HSP60 and killed 4 and 14 days after the last 
oral treatment. As a control, untreated animals were used. The graphs represent the amount of 

CD4+CD25+Foxp3+ cells in the different organs measured via FACS analysis (mean±SEM). *P<0.05, 
**P<0.01 
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REGULATORY T CELL MARKERS IN ATHEROSCLEROTIC PLAQUES 

After tolerance induction to HSP60 and the induction of atherosclerosis, carotid 

arteries were dissected and mRNA was isolated. Subsequently, the expression of 

different Treg markers (CD25, CTLA-4 and Foxp3) in the atherosclerotic plaques in 

the carotid arteries was determined. After oral treatment with HSP60 (n=5) and 8 

weeks of Western-type diet feeding, the mRNA expression of CD25, CTLA-4 and 

Foxp3 was significantly upregulated in the atherosclerotic plaque when compared 

with control mice (n=9). CD25 showed a 4.9-fold increase (P<0.05), CTLA-4 a 4.1-

fold increase (P=0.068) and Foxp3 a 6.4-fold increase (P<0.05) (Figure 7.6).  

 
 
FIGURE 7.6: INCREASED EXPRESSION OF TREG MARKERS IS OBSERVED WITHIN LESIONS OF HSP60-
TREATED LDLR-/- MICE. 
To investigate the presence of Tregs within atherosclerotic lesions, mRNA was isolated from carotid 
arteries of PBS (n=9) and HSP60-treated (n=5) mice and the mRNA expression of CD25, CTLA-4 and 
Foxp3 was quantitatively determined and expressed relative to 36B4. *P<0.05 
 

EFFECT OF TOLERANCE INDUCTION ON CYTOKINE PRODUCTION 

Furthermore, we investigated whether the increased number of CD4+CD25+Foxp3+ 

T cells also demonstrated a change in the production of cytokines in response to 

stimulation with HSP60. Mesenteric lymph node cells, isolated 14 days after the 

oral treatment with HSP60, were stimulated in vitro in presence or absence of 20 

µg/ml of HSP60. Incubation with HSP60 resulted in a significant larger production 

of TGF-β (1.86±0.22 versus 0.93±0.15 ng/ml; P<0.05) and IL-10 (19.52±5.51 versus 

6.41±1.72 pg/ml; P<0.05) when compared with mesenteric lymph node cells 

cultured without HSP60 (Figure 7.7A-B). Furthermore, HSP60-stimulated 

mesenteric lymph node cells isolated from HSP60-treated mice (14 days after 

treatment) produced significantly more TGF-β than HSP60-stimulated mesenteric 

lymph node cells isolated from untreated mice (1.86±0.22 ng/ml versus 0.96±0.22 

ng/ml; P<0.05; data not shown). In all cases IFN-γ levels were below the detection 

threshold. 
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FIGURE 7.7: ORAL TOLERANCE INDUCTION TO HSP60 INDUCES ANTI-ATHEROGENIC CYTOKINE 

PRODUCTION BY MESENTERIC LYMPH NODE CELLS. 
LDLr-/- mice were treated intragastrically four times with HSP60. 14 days after the treatment, 
mesenteric lymph nodes were isolated from HSP60-treated mice and the lymphocytes were cultured in 
vitro with or without HSP60 for 48 hours. The production of TGF-β (A) and IL-10 (B) was monitored 

using ELISA. Data are mean±SEM. *P<0.05. 
 

ORAL TOLERANCE INDUCTION TO HSP60 REDUCES THE PROLIFERATIVE RESPONSE OF 

SPLENOCYTES TO HSP60 

To determine the effect of tolerance induction to HSP60 on the HSP60-specific 

proliferation, LDLr-/- mice were treated orally with PBS or HSP60. After oral 

treatment all mice were immunized with HSP60 and two weeks later splenocytes 

were isolated and cultured with or without 5 and 20 µg/ml of HSP60. Splenocytes 

from PBS-treated mice respond to HSP60 with an increased proliferation; a 

stimulation index of 4.4±0.7 and 10.4±2.5 when incubated with 5 and 20 µg/ml of 

HSP60, respectively. Mice orally treated with HSP60 showed a 56.8% and 68.2% 

reduction in the proliferative response to 5 and 20 µg/ml of HSP60, respectively 

(Figure 7.8; 1.9±0.2 and 3.3±0.4; P<0.05). 
 
FIGURE 7.8: ORAL TOLERANCE INDUCTION TO HSP60 

REDUCES THE PROLIFERATIVE RESPONSE OF 

SPLENOCYTES TO HSP60. 
LDLr-/- mice were treated 4 times intragastrically 
with PBS or HSP60. Subsequently, all mice were 
immunized with HSP60 and after two weeks the 
mice were sacrificed and splenocytes were isolated. 
Splenocytes of PBS-treated mice (white bars) and 
HSP60-treated mice (black bars) were cultured with 

or without 5 and 20 µg/ml of HSP60. The extent of 
proliferation is shown as stimulation index after 
incorporation of 3H-thymidine. Values are 

mean±SEM. *P<0.05 
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EFFECT OF ORAL TOLERANCE TO HSP60 ON HSP60-SPECIFIC ANTIBODIES 

After oral treatment with HSP60 and the induction of atherosclerosis, HSP60-

specific IgG1, IgG2a and IgM levels in serum were determined. No detectable 

differences in HSP60-specific IgG1, IgG2a and IgM levels were observed  

(Figure 7.9) 

 
FIGURE 7.9: EFFECT OF TOLERANCE INDUCTION TO HSP60 ON HSP60-SPECIFIC ANTIBODY-LEVELS. 
LDLr-/- mice in which atherosclerosis was induced by a combination of Western-type diet feeding and 
collar placement around both carotid arteries were treated 4 times intragastrically with PBS or HSP60 
and serum levels of HSP60-specific IgG1, IgG2a and IgM were measured using a capture enzyme-linked 

immunosorbent assay. Values are mean OD(405) values ± SEM. 
 

DISCUSSION 

Previous studies have demonstrated the importance of HSPs in the pathology of 

atherosclerosis. HSP70 is expressed in atherosclerotic lesions34 and oxLDL 

enhances the expression of HSP70.35, 36 Autoantibodies to HSP60 causing 

endothelial damage12 and macrophage lysis37, are associated with an increase in 

susceptibility in atherosclerosis. T cells reactive to HSP60 are found to correlate 

with early atherosclerotic events38 and are found in atherosclerotic plaques in 

rabbits39 and humans.40 Furthermore, Chlamydia pneumoniae, can induce an 

immune response because of its HSP60 expression, which is highly homologous to 

human and mouse HSP60.  

We now show that LDLr-/- mice contain T cells specific for HSP60 and for 

the small peptide HSP60(253-268), but no T cells with any reactivity against the 

HSP70(111-125) peptide. HSP60 was derived from Mycobacterium bovis bacillus, but 

due to the high degree of amino acid sequence homology between different 

species, T cells specific for this HSP60 were found to be cross reactive against self-

HSP6041. A spleen cell proliferation assay demonstrated a 2-3-fold increase in T cell 

proliferation in response to HSP60 or HSP60(253-268). Immunization of LDLr-/- 

mice with HSP60 or HSP60(253-268) and a subsequent proliferation assay with 

HSP60 or HSP60(253-268) resulted in a 13- and 9-fold increase in proliferation, 
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respectively. These data confirm that HSP60 but also the small HSP60-peptide can 

induce a T cell response in LDLr-/- mice, while the small HSP70-peptide was not 

effective.  

Intervention in the anti-HSP60 autoimmune response could be beneficial 

for atherosclerosis. Many strategies are used to interrupt autoimmune responses 

directed towards autoantigens and one of these strategies is mucosal tolerance 

induction. Mucosal tolerance induction, can lead to a deletion of Th1 and Th2 cells 

or to an activation of Tregs depending on the administered dose of the antigen. 

Tregs, induced by low doses of the antigen, are known for the production of TGF-β 

and IL-10, which both have anti-atherogenic properties. Recently, Mallat et al. 

hypothesized that in atherosclerosis an imbalance exists between pathogenic T 

cells (Th1 and/or Th2) and Tregs specific for ‘altered’ self and non-self antigens.21 

Tregs play an important role in controlling the development of atherosclerosis in 

mice20 and a transfer of HSP60-specific Tregs to RAG1-/-LDLr-/- mice reduced the 

development of atherosclerotic lesions.42 Consequently, mucosal tolerance 

induction and the subsequent activation of Tregs may be a useful strategy to 

ameliorate atherosclerosis. It was already shown that oral tolerance induction to 

β2-glycoprotein I,25 HSP6526, 27 and oxLDL28 reduced early atherosclerosis. 

However, the studies on β2-glycoprotein I and HSP65 do not give a clear 

explanation for the observed reduction in atherosclerosis and they do not show 

whether Tregs are involved in this process. Oral administration of HSP60 

suppresses adjuvant arthritis due to an expansion of T cells specific for HSP60 

producing IL-1043. We showed that an induction of Tregs after oral administration 

of oxLDL was observed and these oxLDL specific Tregs were found to be 

responsible for the reduction in atherosclerotic plaque formation.28 

We now show that oral tolerance induction to HSP60 and HSP60(253-268) 

attenuates atherosclerosis. A relatively low dose of HSP60 significantly reduced 

early atherosclerotic lesion formation by 80.7%. We now propose that an 

immunogenic peptide present in HSP60 (aa 253-268) can also induce regulatory T 

cells and reduces plaque size by 83.3%. The specificity of the response is reflected 

by the finding that HSP70(111-125), a peptide based on a conserved sequence 

found in the HSP70 protein of men, rats, and mice, was not effective in reducing 

atherosclerosis. The experimental setup of our current study is comparable with 

two previous studies on oral tolerance induction to HSP65/HSP60.26, 27 Both Harats 

et al.26 and Maron et al.27 show a decreased proliferation of splenocytes after oral 

treatment but no effects on Tregs were described. Maron et al.27 observed a 

decreased IFN-γ and an increased IL-10 production by lymphocytes after oral 

treatment with HSP65. This could indicate an activation of Tr1 cells, a subset of 

adaptive Tregs, particularly producing IL-10.28 In our current study low doses of 

HSP60 and HSP60(253-268) were administered and therefore we investigated the 



  Chapter 7    

 

    146 

possible activation of Tregs. Four days after the oral HSP60-treatment, the number 

of CD4+CD25+Foxp3+ Tregs was significantly increased in Peyer’s patches and 

blood. After two weeks, the number of CD4+CD25+Foxp3+ T cells was significantly 

increased in blood, mesenteric lymph nodes and spleen. In the Peyer’s patches, the 

first site of activation, the number of Tregs decreased after two weeks, which may 

be attributed to the migration of the activated CD4+CD25+Foxp3+ T cells to 

peripheral lymphoid organs and the site of inflammation (atherosclerotic lesions) 

where they may recognize self-HSP60. We also investigated the mRNA-expression 

of markers for Tregs within the lesions and we observed an increased expression of 

CD25, CTLA-4 and Foxp3. In addition, oral treatment with HSP60 reduced the 

proliferative response of splenocytes to HSP60 which is in line with the studies by 

Maron et al. and Harats et al.26, 27 Furthermore, mesenteric lymph node cells of 

HSP60-treated mice also produced increased levels of TGF-β and IL-10 after in vitro 

re-stimulation with HSP60. All these data suggest that oral administration of 

HSP60 induced Tregs, which were may be able to dampen the immune response to 

HSP60 in atherosclerosis prone mice.  

Natural Tregs, which are CD4+CD25+Foxp3+ T cells can display their 

specific immunosuppressive effects via cell contact. TGF-β on their surface may 

bind to TβRII expressed on T cells specific for the same antigen. This TGF-β-TβRII 
interaction leads to the activation of a Smad-dependent pathway, resulting in a 

blockade of IL-2 production and a reduced proliferation of antigen-specific T cells. 

CTLA-4 is also important in the cell-cell interaction between Tregs and other T 

cells. It is however more likely that adaptive Tregs (Th3 and Tr1 cells) are involved 

in oral tolerance induction31. Th3 cells are known for the production of anti-

inflammatory TGF-β and upon activation they may express Foxp3.44, 45 Tr1 cells, 

which can also be activated in the periphery, produce particularly anti-

inflammatory IL-10 but whether these Tregs express Foxp3 is still not clear. 

Therefore we assume that oral tolerance induction led to an increase in Foxp3-

expressing natural Tregs or Th3 cells, producing excessive amounts of TGF-β but 
also IL-10. IL-10 may also be produced by activated Tr1 cells, which however do 

not contribute to the increase in Foxp3+ Tregs. To definitively prove that the 

protection against atherosclerosis after oral administration of bacterial HSP60 is 

due to the induction of Tregs specific for murine HSP60 additional experiments are 

required, for example by deletion of Tregs after tolerance induction or transfer of 

the Tregs. 

In conclusion, we describe that LDLr-/- mice can be tolerized to HSP60 and 

a HSP60 peptide (HSP60(253-268)) which results in an attenuation of early 

atherosclerotic lesions. The mechanism underlying this effect can be attributed to 

the induction of CD4+CD25+Foxp3+ Tregs, which may produce TGF-β and IL-10 in 

atherosclerotic lesions. In this way they may down-regulate the inflammatory 
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response locally. Altogether, these beneficial results of oral tolerance induction to 

HSP60 and HSP60(253-268) on atherosclerosis may provide new therapeutic 

approaches for the treatment of atherosclerosis. 
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ABSTRACT 

Regulatory T cells are crucial for immune homeostasis and an impaired regulatory 

T cell function results in many pathological conditions, such as atherosclerosis. 

Regulatory T cells can be divided in adaptive regulatory T cells and natural 

regulatory T cells, the latter expressing the transcription factor Foxp3. Regulatory T 

cells have already been described to be protective in atherosclerosis. However the 

exact contribution of Foxp3 expressing regulatory T cells in atherosclerosis has not 

been elucidated yet. In this study we vaccinated LDL receptor deficient mice 

with dendritic cells which are transfected with Foxp3 encoding mRNA and studied 

the effect on initial and advanced atherosclerosis. 

Vaccination against Foxp3 resulted in a reduction of Foxp3 expressing cells 

and an increase in both initial and advanced atherosclerotic lesion formation. 

Furthermore we observed an increase in plaque cellularity and increased T cell 

proliferation in the Foxp3 vaccinated mice. 

In conclusion, in this study we further establish the protective role of Tregs 

in atherosclerosis. The results illustrate the important role for Foxp3 expressing 

regulatory T cells in atherosclerosis, thereby providing a potential opportunity for 

therapeutic intervention against this disease. 
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INTRODUCTION  

Atherosclerosis is an autoimmune like disease, in which both innate and adaptive 

immune responses are involved.1 T helper (Th) cells are crucial for an adequate 

immune response and can be divided in Th1 (cell mediated immunity) and Th2 

(humoral immunity) cells. Several studies show that inflammatory processes in 

atherosclerosis are associated with a Th1-driven immune response (IFN-γ, IL-12), 

while the Th2 cells (IL-5 and IL-13) exert an anti-atherogenic role.2, 3 It was 

postulated that an imbalance between Th1 and Th2 cells was, at least partially, 

responsible for the development of atherosclerotic lesions. However, more 

recently, IL-4, a Th2-cytokine, was found to be pro-atherogenic in early lesion 

formation.4, 5 This finding, together with studies establishing an anti-atherogenic 

role for regulatory T cells (Tregs), suggested another mechanism of immune 

regulation in atherosclerosis, where T cells (both Th1 and Th2) are suppressed by 

regulatory T cells (Tregs). 

Tregs are characterized by the expression of both CD4 and CD25 and are 

subdivided in adaptive Tregs and natural Tregs. Adaptive Tregs develop form 

naive T cells in the periphery and can produce IL-10 (Tr1 cells) and TGF-β (Th3 

cells). Natural Tregs originate from the thymus as CD4+CD25+ cells and exert their 

suppressive function especially via cell-cell contact and membrane bound TGF-β 

and CTLA-4. Forkhead box protein P3 (Foxp3) is characteristically expressed in 

this subclass of Tregs and this transcription factor is necessary for the development 

of Tregs. Deficiency in Foxp3 leads to a lack of Tregs and severe auto-immune 

disorders.6-9  

Recently, we showed that oral administration of atherosclerosis-related 

antigens (HSP60 and oxLDL) increases the number of Foxp3-expressing Tregs in 

several organs, which leads to a decrease in development of atherosclerotic lesions 

in LDLr-/- mice.10, 11 These results are in line with studies on the role of Tregs in 

atherosclerosis after oral and nasal tolerance induction12,13, 14 but our studies 

specifically demonstrate the contribution of Foxp3+ Tregs. Furthermore, a study 

showed that a transfer of Tregs selected on basis of CD4 and CD25 expression 

reduced lesion formation in ApoE-/- mice15, while another study showed that 

treatment of ApoE-/- mice with a CD25-specific antibody (PC61) which depletes 

CD25 positive T cells, results in an increase in lesion size. Additionally, bone 

marrow transplantation of CD80-/-CD86-/- bone marrow into LDLr-/- mice results in 

a decrease in the number of Tregs and an increase in lesion size again indicating an 

inverse relationship between the presence of Tregs and atherosclerotic lesion 

development.15 

However, these studies do not directly demonstrate the role of Foxp3 

expressing cells in atherosclerosis. This can be achieved via vaccination against 
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Foxp3 using DCs expressing Foxp3 as described by Nair et al. Vaccination with 

these DCs results in a decline in the number of intratumoral Tregs due to an 

induction of a cytotoxic T lymphocyte response against Foxp3 and subsequently in 

an enhanced antitumor immunity.16  

To specifically establish the role of Foxp3-expressing Tregs, we targeted 

Foxp3 expressing cells using DCs electroporated with mRNA encoding for Foxp3. 

Vaccination against Foxp3 results in a reduction of Foxp3+ Tregs and a subsequent 

increase in both initial and advanced atherosclerotic lesion formation, thereby 

establishing a prominent role for Foxp3+ Tregs in these processes. 

  

MATERIAL AND METHODS 

ANIMALS 

All animal work was approved by the regulatory authority of Leiden University 

and carried out in compliance with the Dutch government guidelines. Female 

LDLr-/- mice were obtained from the Jacksons Laboratory. Male C57BL/6J mice 

were from Charles river Laboratories. All mice were kept under standard 

laboratory conditions and were fed a normal chow diet or a ‘Western-type’ diet 

containing 0.25% cholesterol and 15% cocoa butter (Special Diet Services, Witham, 

Essex, UK). All mice used were 10-12 weeks of age. Diet and water were 

administered ad libitum. 

 

SYNTHESIS OF FOXP3 AND GFP MRNA 

The pSP73-Spf/Foxp3/A64 construct was kindly provided by E. Gilbao (Duke 

University Medical Center, Durham, NC, USA)16. As a control we created a pSP73-

Spf/eGFP/A64 construct. The pSP73-Spf/Foxp3/A64 and pSP73-Spf/eGFP/A64 

constructs were used as a DNA template in a T7 mMessage mMachine® (Ambion, 

Austin, TX) reaction to produce large amounts of capped Foxp3 and GFP in vitro 

transcribed mRNA. To eliminate excessive DNA the reaction, a TurboDNase® 

(Ambion, Austin, TX) treatment was performed. The Megaclear Kit® (Ambion, 

Austin, TX) was used for purifying mRNA from the in vitro transcription 

reactions. All reactions were performed according to the manufacturer’s protocol.  

 

GENERATION AND ASSESSMENT OF THE DC BASED VACCINE  

Bone marrow cells were isolated from the tibia and femora of C57BL/6J mice. Cells 

were pooled and cultured for 10 days in IMDM supplemented with 8% fetal calf 

serum (FCS, PAA), 100 U/ml streptomycin/penicillin (PAA), 2 mM glutamax 
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(Invitrogen, The Netherlands) and 20 µM β-mercaptoethanol, in the presence of 

granulocyte-macrophage colony-stimulating factor (GM-CSF). Hereafter, the DCs 

were harvested, washed, and resuspended in Opti-MEM (GIBCO, Grand Island, 

NY). The used DC culture media were saved as conditioned media for later use. 5 x 

106 DCs in 200 µL Opti-MEM were electroporated with either GFP or Foxp3 mRNA 

as described by Nair etal.17 After electroporation the DCs were transferred to 

culture petridishes containing GM-CSF and a 1:1 combination of conditioned DC 

growth media and fresh media. Transfected DCs were incubated at 37 °C, 5% CO2 

overnight, washed 2 times in PBS, for vaccination. To assess the maturation profile 

the electroporated DCs were stained against surface markers: CD80-FITC, CD86-

PE and CD40-PE. To detect surface bound and intracellular Foxp3 expression in 

the electroporated DCs, the cells were stained with Foxp3-APC. For intracellular 

staining of Foxp3, DCs were fixated and permeabilized overnight and subsequent 

stained against Foxp3. All FACS antibodies were purchased from eBioscience 

(Belgium) and used according manufacturer’s protocol. DCs were analyzed by 

flow cytometry on a FACSCalibur (Becton Dickinson, Mountain View, CA). Data 

were analyzed using Cell Quest software (BD Biosciences, The Netherlands). Total 

RNA was isolated from the electroporated DCs using the GTC method.18 cDNA 

synthesis was performed using Revert AidTM M-MuZV Reverse Transcriptase 

(Fermentas Life Science). Quantitative gene expression analysis was performed on 

a 7500 fast Real-Time PCR System (Applied Biosystem) using SYBR Green 

technology. Acidic ribosomal phosphoprotein PO (36B4) and hypoxanthine 

phosphoribosyl transferase (HPRT) were used as reference genes. Primer pairs as 

described in table 8.1 were used to quantify Foxp3 gene expression. 

 

TABLE 8.1: SEQUENCE OF PRIMERS. Primer sequences for the genes analyzed with qPCR. 

 

GENE FORWARD PRIMER REVERSE PRIMER 

FOXP3 5’-GGAGCCGCAAGCTAAAAGC-3’ 5’- TGCCTTCGTGCCCACTGT-3’ 

36B4 5’-GGACCCGAGAAGACCTCCTT-3’ 5’-GCACATCACTCAGAATTTCAATGG-3’ 

HPRT 5’-TTGCTCGAGATGTCATGAAGGA-3’ 5’-AGCAGGTCAGCAAAGAACTTATAG-3’ 
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VACCINATION AND THE INDUCTION OF ATHEROSCLEROSIS 

Mice (GFP N=15, Foxp3 N=16) were vaccinated with 5x105 DCs in 100 µl per 

mouse subcutaneously at the base of the ear pinna at day 0. Mice of the control 

group (N=15) were injected with 100 µl PBS. After vaccination, the mice were 

directly fed a Western-type diet (0.25% cholesterol and 15% cocoa butter) to induce 

hypercholesterolemia and atherosclerosis. For the advanced atherosclerosis study, 

mice were fed a Western-type diet for 10 weeks and were subsequently vaccinated 

against GFP (N=15) Foxp3 (N=16) or sham vaccinated with PBS (N=15). After 

vaccination the mice were fed a Western-type diet for 12 more weeks before they 

were sacrificed. During both experiment blood samples were obtained by tail vein 

bleeding. The concentrations of serum cholesterol were determined using an 

enzymatic colorimetric procedure (Roche/Hitachi). Precipath (Roche/Hitachi, 

Mannheim, Germany) was used as an internal standard. Blood samples of week 5 

were also used to determine the percentage Tregs. 8 weeks after vaccination, the 

mice were sacrificed and tissues were harvested after in situ perfusion using PBS 

and subsequent perfusion with Zinc Formal-Fixx (Shandon Inc. Pittsburg, USA). 

Tissues were snap-frozen in nitrogen and stored at –80 °C until further use.  

 

FLOW CYTOMETRY 

Peripheral Blood Mononuclear Cells (PBMC) were isolated via orbital bleeding and 

erythrocytes were removed by incubating the cells with erythrocyte lysis buffer 

(0.15 M NH4Cl, 10 mN NaHCO3, 0.1 mM EDTA, pH 7.3; N=5 each group). Spleens, 

heart lymph nodes (HLN) and mesenteric lymph nodes (MLN) were dissected 

from the mice and single cell suspension was obtained by passing the organs 

through a 70 µm cell strainer (Falcon, The Netherlands; N=5 each group). Cells 

were stained with surface markers (0.20 µg antibody/300.000 cells) and 

subsequently analyzed by flow cytometric analysis. For the detection of 

CD4+CD25+Foxp3+ T cells, the spleen, blood, MLN and HLN were stained with 

CD4-FITC and CD25-PE and subsequently with an intracellular Foxp3 staining as 

described above. All antibodies were purchased from eBioscience (Immunosource, 

Belgium). All data were acquired on a FACScalibur (Becton Dickinson, Mountain 

View, CA) and analyzed with CELLQuest software (BD Biosciences, The 

Netherlands).  

 

SPLEEN CELL PROLIFERATION 

The splenocytes (N=5 per group) were cultured for 48 hours in triplicate in a 96-

wells round-bottom plate (2 x 105 cells/well) in RPMI 1640 supplemented with L-
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Glutamine, 10% FCS and 100 U/ml streptomycin/penicillin. As a positive control 

cells were stimulated with Concanavalin A (2 µg/ml, Con A, Sigma Diagnostics, 

MO). Proliferation was measured by addition of 3H-thymidine (0.5 µCi/well, 

Amersham Biosciences, The Netherlands) after 16 hours. The amount of 3H-

thymidine incorporation was measured using a liquid scintillation analyzer (Tri-

Carb 2900R). The proliferation is expressed in disintegration per minute (dpm).  

 

HISTOLOGICAL ANALYSIS 

The heart was embedded in OCT compound (TissueTek; Sakura Finetek, The 

Netherlands) and cryosections (10 µm) of the aortic root containing the three aortic 

valves were made. Cryosections were routinely stained with Oil-Red-O and 

hematoxylin (Sigma Diagnostics, MO). Corresponding sections on separate slides 

were also stained for collagen using Masson trichrome staining according to 

manufacturers protocol (Sigma Diagnostics). For the cellularity assessment a 

hematoxylin staining was performed. The different histological stainings were 

quantified using a Leica DM-RE microscope and Leica Qwin Imaging software 

(Leica Ltd., Germany).  

 

STATISTICAL ANALYSIS 

All data are expressed as mean ± SEM. The two-tailed student’s t-test was used to 

compare individual groups of mice or cells. When indicated, a Mann-Whitney test 

was used to analyze not normally distributed data. The frequency of thickened cap 

structure was analyzed by a Fisher’s exact test. P values of <0.05 were considered 

significant. 

 

RESULTS 

ELECTROPORATION OF DCS WITH MRNA RESULTS IN AN ACTIVATED PHENOTYPE 

To test whether a reduction in Foxp3-expressing Tregs affects atherosclerosis, 

LDLr-/- mice were vaccinated with DCs transfected with mRNA encoding for 

Foxp3. A significant increase in the surface expression of the co-stimulatory 

molecules, CD80, CD86 and CD40 was observed in DCs that were electroporated 

with mRNA encoding Foxp3 or GFP, when compared with electroporation without 

mRNA (Control) (Figure 8.1).  
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FIGURE 8.1: EXPRESSION OF SURFACE MARKERS ON ELECTROPORATED DCS. After electroporation with 
either PBS (control, N=3), GFP mRNA (N=3) or Foxp3 mRNA (N=3) the DCs were cultured o/n. DCs 
were also stimulated with LPS as a positive control for maturation (mDCs). Unstimulated DCs (imDCs) 
were used as a negative control for maturation. DCs were subsequently stained for CD80, CD86 and 
CD40 and analyzed by FACS. ***P<0.001 
 

The increase upon transformation with mRNA is comparable to the LPS induced 

TLR4 dependent maturation of DCs (mDCs). Interestingly, no upregulation was 

observed in DCs electroporated without mRNA. These DCs had the same 

expression level of the activation markers as immature DCs (imDCs), indicating 

that exposure of DCs to electroporation conditions alone did not result in the 

maturation of DCs (Figure 8.1A).  

 

ELECTROPORATION WITH MRNA ENCODING FOR FOXP3 RESULTS IN THE EXPRESSION 

OF FOXP3 

After electroporation with mRNA encoding for Foxp3 a strong increase in Foxp3 

expression was observed on mRNA level, which indicated a successful transfection 

of the DCs (Figure 8.2A). To determine the intracellular protein expression of 

Foxp3, an intracellular Foxp3 FACS staining was performed (Figure 8.2B and C). 

Foxp3 transfected DCs expressed 6.3 fold more intracellular Foxp3 compared to 

GFP transfected DC, which expressed no Foxp3.  
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FIGURE 8.2: DETECTION OF FOXP3 SPECIFIC MRNA WITH QPCR AND SUBSEQUENT EXPRESSION BY FACS 
ANALYSIS. 
After electroporation total RNA was isolated and cDNA was synthesized. Subsequently the amount of 
mRNA was detected with Foxp3 specific qPCR primers (A). The expression is relative to HPRT and 
36B4. Next we determined, with FACS analysis, the intracellular expression of Foxp3 in PBS (green), 
GFP (blue) and Foxp3 (pink) electroporated DCs. DCs were cultured o/n after electroporation and 
stained intracellularily for Foxp3 and analyzed by FACS. A representative histogram (B) and percentage 
of intracellular Foxp3 expression is depicted (C).  

EFFECT OF VACCINATION AGAINST FOXP3 ON FOXP3 EXPRESSING T CELLS 

To asses the efficacy of the Foxp3 vaccine, LDLr-/- mice were vaccinated with 

Foxp3 electroporated DCs. As a control, mice were vaccinated with DCs 

electroporated with mRNA encoding for GFP. Five weeks after vaccination, the 

number of Foxp3+ Tregs in blood was analyzed. A 34% reduction in the number of 

Foxp3+ Tregs in Foxp3 vaccinated mice was observed, compared to GFP vaccinated 

mice (Figure 8.3A; 0.773±0.032% versus 1.175±0.065%; P<0.001). Eight weeks after 

vaccination, mice were sacrificed and blood, spleen, mesenteric lymph nodes 

(MLN) and mediastinal lymph nodes draining from the aorta (HLN) were isolated 

to determine the percentage of Tregs. Vaccination with Foxp3 transfected DCs 

resulted in a 27-30% decrease in Foxp3+ Tregs in blood (0.67±0.045% versus 

0.92±0.096%, P<0.05), spleen (2.88±0.24% versus 3.94±0.34%, P<0.05), MLN 

(3.59±0.10% versus 5.01±0.45%, P<0.05) and HLN (3.68±0.08% versus 5.50±0.46%, 

P<0.01), when compared to mice vaccinated with DCs electroporated with mRNA 

encoding for GFP (Figure 8.3B). As a control for the DC vaccination, one group of 

mice was treated with PBS. We observed no differences in the numbers of Foxp3+ 

Tregs in lymphoid organs and blood between mice treated with PBS alone and 

mice vaccinated with DCs electroporated with mRNA encoding for GFP (data not 

shown).  
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FIGURE 8.3: EFFECT OF FOXP3 VACCINATION ON THE PERCENTAGE OF TREGS IN THE LYMPHOID ORGANS. 5 
weeks after vaccination blood was taken from the mice vaccinated with either GFP (N=5, white bar) or 
Foxp3 (A, N=5, black bar) and we stained for CD4+CD25+Foxp3+ cells and subsequently performed a 
FACS analysis. 8 weeks after vaccination the mice vaccinated with either GFP (B, N=5, white bar) or 
Foxp3 (B, N=5, black bar) were sacrificed. Blood, spleen, MLN and HLN, were isolated and stained for 
CD4+CD25+Foxp3+ cells and analyzed. *P<0.05, **P<0.01, ***P<0.001 
 

VACCINATION AGAINST FOXP3 INCREASES PLAQUE FORMATION IN LDLR-/- MICE IN 

BOTH INITIAL AND ADVANCED ATHEROSCLEROSIS 

Eight weeks after vaccination and Western-type diet feeding the plaque size at the 

aortic root was analyzed. Representative slides of the aortic root of GFP and Foxp3 

vaccinated mice are shown in Figure 8.4A and B. Mice vaccinated against Foxp3 

showed a significant 34% increase in plaque size compared to the GFP vaccinated 

mice (Figure 8.4C; 538.932±46.043 µm2 versus 382.865±29.044 µm2, P<0.01). During 

the experiment, all mice developed hypercholesterolemia, however no significant 

differences in serum cholesterol levels (Figure 8.4D) and body weight (data not 

shown) were observed between the different groups of mice. Again, no differences 

in plaque size were observed between PBS treated mice and mice vaccinated 

against GFP (data not shown).  

In an advanced atherosclerosis study, LDLr-/- mice were vaccinated against 

GFP and Foxp3 while they were on a Western-type diet for already 10 weeks. 12 

weeks after vaccination and continuous Western-type diet feeding, mice were 

sacrificed and lesions at the aortic root were investigated. Representative slides of 

the aortic root of GFP and Foxp3 vaccinated mice are shown in Figure 8.5A and B. 

A 14% increase in lesion size, although not significant, was observed between 

Foxp3 vaccinated mice and GFP vaccinated mice (Figure 8.5C; 993.620±44.946 µm2 

versus 869.165±46.884 µm2; P=0.07). However, during analysis we observed an 

increased diameter of the hearts and therefore we calculated the ratio between the 

intima and the luminal space. We observed an increase of 28% in intima/lumen 

ratio, indicating aggravated atherosclerosis (Figure 8.5D; 0.37±0.015 versus 

0.473556±0.028, P<0.01). These effects are unrelated to serum cholesterol levels, 

GFP FoxP3 

%
 C
D
4
+
C
D
2
5
+
F
o
x
P
3
+
 c
e
ll
s 

*** 

A 

  
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

%
 C
D
4
+
C
D
2
5
+
F
o
x
P
3
+
  
ce
ll
s 

* 

* 
* ** 

B 

Blood Spleen MLN HLN 
0 

1 

2 

3 

4 

5 

6 

7 



                                                      Vaccination against Foxp3+ regulatory T cells aggravates atherosclerosis 

 

161 

8 

since there were no differences observed in cholesterol levels between the two 

groups (data not shown). Again, no difference in lesion size was observed between 

PBS treated mice and GFP vaccinated mice (data not shown). 

 

 
FIGURE 8.4: EFFECT OF FOXP3 VACCINATION ON INITIAL LESION SIZE. After 8 weeks of vaccination and 
Western type diet feeding the LDLr-/- mice were sacrificed and the heart of GFP treated (A) and Foxp3 
treated (B) mice were sectioned and stained with Oil-red-O and hematoxylin. The lesions were 
quantified and the plaque size was determined (C). During the experiment, blood was taken by tail vein 
bleeding and total cholesterol concentration was determined within the serum (D). **P<0.01 
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FIGURE 8.5: THE EFFECT OF FOXP3 VACCINATION ON ADVANCED LESION SIZE. After 22 weeks on Western 
type diet feeding and 12 weeks after vaccination the LDLr-/- mice were sacrificed and the heart of GFP 
treated (A) and Foxp3 treated (B) mice were sectioned and stained with Oil-red-O and hematoxylin. The 
lesions were quantified and the plaque size was determined (C). Additionally, the ratio between intima 
and luminal space was calculated (D). **P<0.01 
 

VACCINATION AGAINST FOXP3 RESULTS IN INCREASED PLAQUE CELLULARITY  

To investigate whether there is a change in plaque composition in the enlarged 

initial plaques of the Foxp3 vaccinated mice we quantified the number of cells 

within the lesions. The plaques of Foxp3 vaccinated mice showed a 27% increase in 

cellularity compared to GFP vaccinated mice (Figure 8.6; 3.84x10-3±0.19x10-3 

cells/µm2 versus 2.81x10-3±0.79x10-3 cells/µm2; P<0.01). Increased cellularity may 

indicate an increased level of inflammation within the plaque. Therefore we 

determined the plaque stability by measuring both the amount of collagen within 

the plaque and the fibrous cap thickness. The collagen content of the plaque was 

not significantly changed between the Foxp3 and GFP vaccinated mice (Figure 8.7, 

9.0±1.1% versus 6.5±1.9%). Additionally, we noticed that the lesions in 9 of the 13 

Foxp3-vaccinated mice displayed significant characteristic changes in morphology. 

These lesions are characterized by a thickened structure in the fibrous cap (Figure 

8.8, arrowhead). When compared with GFP vaccinated mice in which 2 out of 14 
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mice showed these thick structures, a significant difference is observed when a 

Fisher’s exact test is performed (Figure 8.8, P<0.01). Overall there was no 

significant difference between the cap thickness in the different groups (data not 

shown).  

 
FIGURE 8.6: EFFECT OF FOXP3 VACCINATION ON PLAQUE CELLULARITY. After 8 weeks of vaccination and 
Western type diet feeding the LDLr-/- mice were sacrificed and the heart of GFP treated (A) and Foxp3 
treated (B) mice were sectioned and stained with hematoxylin to stain the nucleus of the cells within the 
lesion. The number of nuclei was quantified (C). **P<0.01 

 
FIGURE 8.7: EFFECT OF FOXP3 VACCINATION ON COLLAGEN CONTENT WITHIN THE LESION AT THE AORTIC 

ROOT. After 8 weeks of vaccination and Western-type diet feeding the LDLr-/- mice were sacrificed and 
the heart of GFP treated (A) and Foxp3 treated (B) mice were sectioned and stained with Masson’s 
Trichrome staining which stains collagen blue. The percentage of collagen relative to the lesion size was 
determined (C).  

INCREASED SPLEEN CELL PROLIFERATION IN FOXP3 VACCINATED MICE 

The regulatory function of Tregs is partly mediated by cell-cell contact and surface-

bound TGF-β and CTLA-4.19 Since we observed an increased cellularity within the 

lesions of Foxp3 vaccinated mice, we hypothesized that vaccination against Foxp3 

results in less suppression of T cell proliferation. Therefore we studied the 

proliferation of the spleen cells from the vaccinated mice. We observed a 

significant 1.9-fold increase compared to the GFP vaccinated mice (Figure 8.9: 

4,148.5±941.4 dpm versus 8,230.5±1 542.5 dpm P<0.05). 
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FIGURE 8.8: THICKENED CAP STRUCTURE IN FOXP3 VACCINATED MICE. After 8 weeks of vaccination and 
Western type diet feeding the LDLr-/- mice were sacrificed. Within the Foxp3 vaccinated group we 
observed more thickened structures in the fibrous cap (arrow), compared to the control. Frequency of 
thickened structure between control and vaccinated mice is depicted in the table. A Fisher’s exact test 
was used (P<0.01). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8.9: EX VIVO SPLEEN CELL PROLIFERATION IN VACCINATED MICE. 8 weeks after vaccination, the 
mice vaccinated with either GFP (N=5, white bar) or Foxp3 (N=5, black bar) were sacrificed. The spleen 
was dissected and cultured ex vivo. Proliferation was assessed by the amount of 3H incorporation in 
dividing cells. The amount of 3H-thymidine incorporation was measured using a liquid scintillation 
analyzer (Tri-Carb 2900R). The proliferation is expressed in disintegrations per minute (dpm). *P<0.05 

 

9 4 Vaccinated 

2 12 Control 

Thickened cap No thickened cap 

Foxp3 

Control 

GFP FoxP3 

M
e
a
n
 d
p
m
  

* 

  

0 

2000 

4000 

6000 

8000 

10000 



                                                      Vaccination against Foxp3+ regulatory T cells aggravates atherosclerosis 

 

165 

8 

DISCUSSION 

In this study we demonstrate that vaccination against Foxp3+ Tregs aggravates 

atherosclerotic lesion formation, thereby directly establishing the protective role of 

Tregs in atherosclerosis. The beneficial role of Tregs in atherosclerosis is already 

indicated in a number of publications.15, 20 We showed before that induction of 

Foxp3 positive Tregs via oral tolerance induction against HSP60 and oxLDL 

reduces atherosclerotic lesion formation.10, 11 Furthermore, it had been 

demonstrated that a deficiency in co-stimulatory molecules promotes 

atherosclerosis because of a decrease in the number of Tregs15 and Ait-Oufella and 

colleagues showed that a depletion of CD25+ cells using anti-CD25 antibodies 

increased lesion formation.15 However, the final proof for the involvement of 

Foxp3 expressing T cells in atherosclerosis has not been provided since CD25 is not 

exclusive for Tregs. CD25 is for example also expressed on other cell types such as 

activated T cells21, NK cells22 and myeloid DCs.23  

To specifically study the role of Foxp3 positive Tregs in atherosclerosis we 

vaccinated atherosclerosis prone mice against Foxp3 using a DC vaccination 

strategy. DCs are electroporated with mRNA encoding for Foxp3 and this 

approach, described by Nair et al, results in a cytotoxic T lymphocyte (CTL) 

response against Foxp3 and a subsequent depletion of Foxp3+ Tregs.16 As a control, 

mRNA encoding for GFP was used to exclude that mRNA electroporation into 

DCs activates the DCs leading to immune modulatory effects. In all the 

experiments, the treatment with GFP electroporated DCs was compared with PBS 

treatment alone and no differences were observed between both treatments. After 

electroporation of DCs with mRNA, either with GFP or with Foxp3, an activated 

phenotype of DCs was observed. This was not observed when DCs were 

electroporated without mRNA. It is known that single stranded RNA (ssRNA), 

such as mRNA is a natural ligand for Toll like receptors 7 and 8,24,25 which may 

explain the activated phenotype of the DCs after electroporation with mRNA.  

We successfully demonstrated that the DCs were transfected with the 

mRNA coding for Foxp3 via qPCR and a FACS analysis. Foxp3 is a nuclear 

product and is not expressed on the cell surface. However, we use a truncated 

Foxp3 in which the nuclear localization sequence is removed. This results in 

relatively high concentration of cytosolic Foxp3 protein and therefore may results 

in the cross-presentation of Foxp3-peptides on MHC class I. Furthermore, mRNA 

may act as a natural agonist of TLR7/8 and thereby even further enhance cross-

presentation, which is already described by other groups.24-27 This may lead to the 

triggering of CD8+ T cells, which subsequently target Foxp3 expressing cells. 

Our present data show a significant reduction in Foxp3+ Tregs in blood 

five weeks after vaccination. This may be an indication for the induction of Foxp3-
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specific cytotoxic CD8+ T cells. A similar reduction in Foxp3+ Tregs was observed 

within the blood, HLN, MLN and spleen, 8 weeks after vaccination, indicating a 

systemic reduction in Foxp3+ Tregs and a persistent effect of the vaccination. The 

reduction in Foxp3+ Tregs resulted in a 34% increase in initial lesion size and 

additionally 14% increase in advanced lesion size. The increase in atherosclerosis is 

not related to a change in total cholesterol serum levels since there is no significant 

difference in cholesterol levels between the different groups. 

Besides an increase in lesion size, vaccination against Foxp3 also induced a 

30% increase in cellularity of the initial lesions. The increased cellularity may 

indicate an increase in inflammation within the lesion, which may be caused by an 

increase in proliferation of inflammatory cells or by an increase in influx of 

inflammatory cells. Which cells are responsible for this increase needs to be 

determined, but we suggest that at least a part of these cells are T cells, since a 

reduction in Foxp3+ Tregs may result in more proliferation of effector T cells (Th1 

and Th2).28 This is in line with the observed increase in proliferation of spleen cells 

isolated from Foxp3 vaccinated mice as compared with both control groups. This 

may illustrate that a lowered number of Foxp3+ Tregs led to a less suppression of 

Th1 and Th2 cells and thereby led to an increased proliferation of effector T cells. 

In addition to plaque cellularity, we checked plaque stability but the collagen 

content was not changed. In spite of the fact that the fibrous cap thickness was not 

changed between vaccinated and control mice, we observed significant more 

thickened cap structures in the fibrous cap of the Foxp3 vaccinated mice. The 

composition of this thickening and whether this thickened structure results in a 

more stable plaque phenotype remains to be determined. 

The results in this study are in line with the observations that the induction 

of Tregs exert an atheroprotective effect. The increase in lesion size is comparable 

with the decrease of initial lesion size upon the induction of Tregs via oral 

administration of oxLDL (30.0%) or HSP60 (27.5%).10, 11 Oral tolerance induction 

against oxLDL also resulted in a decrease in advanced lesion size, which is 

comparable with the increase in advanced lesion size in this study.10 

In conclusion, we confirmed the protective role of Foxp3+ Tregs in 

atherosclerosis by vaccinating LDLr-/- mice using a DC based Foxp3 vaccination 

strategy. The results illustrate an important role for Foxp3+ Tregs in 

atherosclerosis, thereby providing a potential opportunity for therapeutic 

intervention against atherosclerosis. 
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ABSTRACT 

Atherosclerosis is a chronic inflammatory disease that develops in the context of 

enhanced serum lipid levels. Nowadays, many studies focus on the modulation of 

inflammatory responses to reduce atherosclerosis. The most powerful strategy to 

achieve this is vaccination. In several immune diseases vaccination is shown to be 

very effective, resulting in a drastic decline in the incidence of the disease. But is 

vaccination also realistic in atherosclerosis?  

In this article, several approaches to vaccinate against atherosclerosis are 

described. Vaccination (based on protein or DNA) against bioactive molecules and 

disease-related proteins successfully reduces experimental atherosclerosis. In 

addition, passive immunization with antibodies against atherosclerosis-specific 

antigens and tolerance induction, in which antigen-specific regulatory T cells are 

elicited, are described.  

In the near future, we expect an increased interest in vaccination against 

atherosclerosis and, maybe, the myth may become reality when the first clinical 

trials are performed. 
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INTRODUCTION 

Atherosclerosis, the main underlying pathology of cardiovascular disease, is a 

multifactorial, chronic, autoimmune-like disease initiated by both lipid 

accumulation and inflammatory processes.1–3 Both the innate immune response, 

represented by monocytes and macrophages, and adaptive immune responses, 

represented by T and B cells, are important in the onset and progression of 

atherosclerosis.  

The modification of lipoproteins and the subsequent activation of 

endothelial cells results in an increased expression of chemokines and adhesion 

molecules, leading to the attraction of monocytes and subsequent diapedesis into 

the vessel wall. The monocytes ingest the modified lipoproteins and differentiate 

into foam cells. These foam cells produce chemokines and cytokines that enhance 

the recruitment of more monocytes and also T cells, thereby aggravating 

atherosclerosis.  

Dendritic cells are pivotal in bridging the innate and the adaptive immune 

responses, and the switch towards an adaptive immune response is considered to 

be of utmost importance in the development of autoimmune diseases. Locally 

(within the lesion), but also systemically (periphery), dendritic cells ingest 

autoantigens such as oxidatively modified-LDL (ox-LDL) and heat-shock proteins 

(HSPs), and migrate to secondary lymphoid organs – the spleen and draining 

lymph nodes – where they will activate both naive and antigen-specific T cells.  

Subsequently, the T cells migrate towards the atherosclerotic lesion.  

These effector T cells mainly produce T helper (Th)1-associated cytokines 

such as IL-12, IFN-γ, IL-6 and IL-1β within the lesion, which are pro-atherogenic 

and lead to enhanced activation and recruitment of T cells, macrophages and 

dentric cells in the plaque. A disturbed balance between Th-1 and -2 cytokines has 

long been suggested as the underlying cause of the auto-inflammatory pathology 

in atherosclerosis. Th2 cytokines such as IL-5 and -10 are anti-atherogenic and may 

counteract the Th1 cytokines.1–3 During recent years, this theory has been 

challenged by a new hypothesis in which regulatory T cells (Tregs) play a pivotal 

role, since they can dampen inflammatory responses in several autoimmune 

diseases. Therefore, Tregs may hold promise in the future treatment of 

atherosclerosis.3,4 

 

CURRENT TREATMENT OF ATHEROSCLEROSIS 

Currently, the treatment of atherosclerosis is mainly based on reducing risk factors 

such as high circulating cholesterol levels and hypertension. Statins are currently 

the most prescribed drug and exert their effect largely by lowering plasma 
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cholesterol levels. In addition, statins may improve endothelial function, modulate 

inflammatory responses, maintain plaque stability and prevent thrombus 

formation. Other less frequently prescribed medications to reduce cardiovascular 

diseases are anti-platelet therapies and anti-inflammatory aspirin. Although statins 

produced a decline in the incidence of atherosclerosis, cardiovascular diseases are 

still the leading cause of death in the Western world.  

The role of inflammation in atherosclerosis has been demonstrated 

extensively in experimental studies, but no treatment that directly modulates the 

inflammatory response has reached the clinic as yet. At the moment, a number of 

attractive approaches are available to interfere in the autoimmune reactions. 

Suppressing the function or expression of pro-atherogenic cytokines and/or 

stimulating the function and expression of anti-atherogenic cytokines are the most 

described techniques in atherosclerosis research. However, intervention in 

cytokine pathways may have a disadvantage, since some pro-inflammatory 

cytokines, such as IL-12 and IFN-γ, are crucial for an efficient immune response 

against pathogens. 

 

VACCINATION 

For many diseases, vaccination is used as a preventive therapy. Traditional 

vaccination protocols use weakened or dead pathogens or purified components 

from these pathogens, for example, proteins, to induce immunity. It is an effective, 

relatively easy way to protect against diseases caused by viruses or bacteria such as 

smallpox, polio, measles and rubella. 

 Nowadays, vaccination against nonpathogenic particles such as cytokines 

and immunogenic antigens is also a commonly used strategy to prevent 

autoimmune diseases in animal models. In our opinion, the terminology of 

vaccination and immunization is somewhat unclear. In this perspective review we 

use the term vaccination as a treatment that results in immunization. 

Immunization is the induction of immune resistance to a specific disease in 

humans (or other mammals) by exposing the individual to a disease-related 

antigen in order to raise antibodies and/or other immune reactions towards that 

antigen (e.g., tolerance induction). Although passive immunization is not strictly 

believed to be a vaccination strategy, we include this technique as an 

immunomodulating tool for treatment of autoimmune diseases, such as 

atherosclerosis, in the scope of this review. 
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In different autoimmune diseases, vaccination has already proved to be an 

effective strategy to attenuate disease pathology.5–7 However, the complication in 

atherosclerosis is that it is a multifactorial disease. Many studies suggest that 

several pathogens influence the inflammatory responses towards a more pro-

atherosclerotic condition, probably by cross-reacting with homologous ‘self’ 

proteins in a form of ‘molecular mimicry’. Pathogens such as Chlamydia 

pneumoniae and cytomegalovirus are related to atherosclerosis, but their role is 

still unclear.8–10 As in other autoimmune diseases, autoantigens play an important 

role in the initiation and aggravation of the disease.  

In patients with manifestations of atherosclerosis, several autoantigens can 

be identified, such as modified lipoproteins (ox-LDL, malondialdehyde [MDA]-

modified-LDL), HSPs (HSP60 and HSP70), ApoB100 peptides and β2 glycoprotein 

I. The immunogenecity of these autoantigens is reflected in the levels of 

autoantibody levels against epitopes of ox-LDL and HSPs, since they are 

significantly increased in patients with atherosclerosis. In addition, T cells 

specifically responding to these auto antigens have been detected within 

atherosclerotic plaques.11,12 Considering atherosclerosis as an autoimmune disease, 

vaccination can provide an alternative treatment for atherosclerosis.  

Many of the vaccination strategies mentioned in this article are successfully 

performed in other autoimmune diseases, such as collagen-induced arthritis and 

experimental autoimmune encephalitis (EAE),13,14 but it should be taken into 

account that atherosclerosis is, in some aspects, different from other autoimmune 

diseases. Atherosclerosis is a disease that slowly progresses with age, and the onset 

of lesion formation begins at a very young age (<20 years). Furthermore, 

atherosclerosis is a multifactorial disease in which inflammation and an altered 

lipid metabolism play essential roles, resulting in a more complex pathogenesis. 

Removal or blockade of proatherogenic factors in childhood could be very effective 

in the prevention of lesion formation, and the interesting question is whether 

vaccination is a realistic goal in the treatment of atherosclerosis? We will further 

discuss different ways of vaccination that could become potential treatments for 

atherosclerosis. 

 

PROTEIN VACCINATION: ELIMINATION/BLOCKADE OF BIOACTIVE 

MOLECULES 

Most traditional vaccination strategies use adjuvants to enhance and modulate the 

immune response. Commonly used adjuvants are Freund’s adjuvant and 

aluminium salts adjuvant. The choice of the adjuvant together with the target 

determines the outcome of the vaccination. This approach has been used in other 
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autoimmune diseases, such as vaccination against IL-17A in EAE15 and vaccination 

against TNF-α in experimental arthritis.6 

In a previous study we performed a protein vaccination against IL-12 with 

MPL/QS21 adjuvant. To break tolerance against self-antigens, we coupled IL-12 to 

an immunodominant Th epitope, termed PADRE. Functional antibodies were 

detected and IL-12 was successfully neutralized. In addition, the downstream 

pathway of IL-12 was blocked as was seen in reduced IFN-γ levels. With this 

approach, a 60% smaller sized and more stable plaque was formed.16 Another 

possible target for vaccinating against atherosclerosis is cholesteryl ester transfer 

protein (CETP). CETP transfers cholesteryl esters from anti-atherogenic HDLs to 

pro-atherogenic ApoB-containing lipoproteins, including VLDLs and LDLs. 

Studies show that anti-CETP antibodies can inhibit CETP activity, increase plasma 

HDL-C and attenuate atherosclerosis.17,18 As a next step, a vaccine was developed 

to induce antibodies that continuously inhibit CETP activity for a long time in vivo. 

A chimeric protein containing CETP and a helper T-cell epitope consisting of 

residues of tetanus toxin was constructed. The T-cell epitope from tetanus toxin 

was selected on the basis of its ability to bind many MHC haplotypes. New 

Zealand white rabbits were vaccinated with the chimeric enzyme and CETP-

neutralizing antibodies were formed. There was an increase in plasma HDL-C, a 

decrease in plasma LDL-C and an attenuation in the development of 

atherosclerosis in vivo.18 

Both vaccinations result in the formation of specific antibodies and 

attenuation of atherosclerosis. Despite the successful results in animals, protein 

vaccination has some drawbacks. Large quantities of protein (antigen) have to be 

synthesized or isolated, and its storage and production are rather expensive 

processes. Furthermore, immunomodulatory components need to be added, such 

as adjuvants and immune dominant T-cell epitopes, in order to break tolerance and 

to get an appropriate immune response. The addition of these immunomodulatory 

components might induce a risk for side effects. In our opinion, methods without 

adjuvant addition are, therefore, more favorable in the clinic as very few 

traditional adjuvants are approved by the US FDA for human use.19,20  

Besides these considerations, there is also the risk of side effects related to 

blocking the bioactive molecules. For example, blocking CETP may increase HDL 

levels and a clinical trial demonstrates that this may cause serious problems, 

resulting in high blood pressure and increased deaths and cardiovascular events.21 

Even more riskful is the neutralization of immunoregulatory molecules, such as IL-

12. Blocking IL-12 will impair a proper host defense against several pathogens not 

related to  atherosclerosis. 
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PROTEIN VACCINATION: ELIMINATION/BLOCKADE OF DISEASE-

RELATED PROTEINS 

The most preferred vaccination strategy is to develop a vaccine that induces a 

protective immune response against disease-specific autoantigens. Vaccination 

against a glycosylated collagen type II peptide reduces active arthritis,22 and 

epicutaneous immunization with type II collagen inhibits collagen-induced 

arthritis.23 Furthermore, vaccination against an Alzheimer-specific peptide (Aβ1–

11) protects against Alzheimers disease24 and epicutaneous immunization with 

myelin basic protein protects against EAE.25  

In atherosclerosis, many different antigens and epitopes that induce the 

immune response are known. Interesting candidates are indicated by the presence 

of naturally occurring antibodies against ox-LDL or HSPs in patients with 

cardiovascular diseases or suffering a carotid artery occlusion. 26,27 Vaccination 

against these more disease-specific molecules is often called immunization (active 

immunization).  

Immunization against HSP65 resulted in an enhanced fatty-streak 

formation in C57BL/6 mice and it promoted early atherosclerosis in LDLr-/- mice. 

In both cases, an increase in anti- HSP65 antibodies was found and it was, 

therefore, suggested that these antibodies are pro-atherogenic.28,29 By contrast, 

immunization against modified LDL induced a protective antibody response (both 

IgM and IgG). IgM antibodies are shown to be protective by blocking the uptake of 

ox-LDL via scavenger receptor CD36, thereby reducing foam-cell formation. The 

role of specific IgG antibodies against ox-LDL is, however, still not understood.30 

Lopes-Virella et al. showed a correlation between increased ox-LDL-specific IgG 

levels and the development of coronary artery disease.31 Fredrikson et al., 

however, showed that activation of Th2-specific antibodies (IgG1) as a result of 

immunization with MDA-modified ApoB100 peptide sequences protects against 

atherosclerosis.32,33 Binder et al. showed that active immunization of 

atherosclerosis-prone mice against Streptococcus pneumoniae led to a high level of 

IgM antibodies against phosphorylcholine (PC), owing to molecular mimicry and a 

reduction in the degree of atherosclerosis.34 Subsequently, atherosclerosis-prone 

mice immunized with PC displayed smaller atherosclerotic lesions and an increase 

in serum titers of anti-PC IgG and IgM. In this study, it is again suggested that 

anti-PC antibodies, at least partially, blocked ox-LDL uptake by macrophages. So 

the decline in foam-cell formation may contribute to the reduction in 

atherosclerotic lesion development.35 More research must be performed to 

determine the exact mechanism of action of these autoantibodies.  

Although very effective, immunization against disease-specific antigens 

has a disadvantage owing to the use of adjuvants. Therefore, as stated above, 

strategies without adjuvant addition are more favorable. It would be an 
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improvement when the immunization results in long-term protection. Then you 

would only need one injection, taken once within a certain period, for example 10 

years, as is the case with several general vaccination protocols. This will further 

reduce the incidence of the negative side effects.  

 

DNA VACCINATION  

To overcome the obstacles with protein vaccination, a new approach has been 

used, DNA vaccination. This method uses a eukaryotic expression vector that 

encodes the antigen of interest. In accordance with protein vaccination, an 

immunomodulatory component must be added to enhance the immunogenecity. 

Therefore, the DNA of the antigen is altered or coupled to bacterial motifs, coding 

regions for interleukins, or costimulatory molecules. Furthermore, the plasmid can 

be transfected to an attenuated pathogen and subsequently be administered to the 

patient. This approach induces an enhanced immune response and, thus, functions 

both as an adjuvant and a carrier at the same time.  

The DNA-vaccination technique is already applied in mice models for 

other autoimmune diseases. Vaccination with DNA constructs encoding MOG and 

PLP resulted in a reduction of EAE in mice,36 while vaccination with plasmids 

containing human TNF-α DNA elicits the production of protective antibodies 

against TNF-α  and prevents collagen-induced arthritis in mice.37 We recently used 

a DNA-vaccination strategy in which an attenuated Salmonella typhimurium 

containing a VEGF-receptor (VEGFR) 2-encoding plasmid is administered orally to 

induce a cytotoxic CD8+ T-cell response against this molecule. The specific CD8+ T 

cells target activated endothelial cells within the damaged endothelial lining, 

which results in the subsequent removal of these cells and in a reduction in 

atherosclerotic lesion formation.38 DNA-vaccination techniques are very 

promising, but again, many of the side effects against self antigens seen with 

protein vaccination occurs with DNA vaccination. For example, blocking VEGFRs 

might impair angiogenesis and vasculogenesis, which causes bleedings and 

abnormalities to the vasculature.  

It should be taken into account that with DNA vaccination, some 

posttranslational modifications might be different when compared with the native 

protein expression. In addition, the epitopes may be altered and the specific 

recognition may be ameliorated. However, the main advantage of DNA 

vaccination is that it is relatively fast and easy to develop the vaccine as compared 

with the labor-intensive isolation of proteins and antibodies.  
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PASSIVE IMMUNIZATION 

Another vaccination strategy is passive immunization, in which specific antibodies 

are injected. This approach has already been applied in the clinic as treatment for 

rheumatoid arthritis.39 Treatment with anti-PC IgM antibodies inhibited 

accelerated atherosclerosis in a vein graft in atherosclerosis-prone ApoE-/- mice.40 

A human IgG1 antibody against a MDA-modified ApoB100 peptide is protective 

against atherosclerosis an ApoE-/- mice. Low numbers of the MDA-ApoB100 

peptide were found in plaques of the treated mice and it is suggested that the 

injected IgG antibodies inhibited the uptake of ox-LDL in the lesion and/or 

facilitated the removal of ox-LDL from the circulation or plaques.41  

Passive immunization may be a safer and more controllable treatment 

compared with active immunization (DNA and protein). Furthermore 

immunocompromised patients may benefit from passive immunization. A 

disadvantage is that the treatment is quite expensive and labor-intensive. 

Humanized antibodies are needed before patients can be treated with these 

antibodies.  

 

TOLERANCE INDUCTION  

The last method of vaccination discussed here is tolerance induction. Tolerance 

induction is a relatively new vaccination strategy in which the vaccine is 

administered orally or nasally without the addition of adjuvants or other 

immunomodulatory components. Tolerance can be induced against several 

autoantigens, such as type II collagen peptide 250–270, which protects against 

collagen-induced arthritis via the induction of specific cellular and humoral 

immune responses.42 Low-dose oral tolerance can also be induced against a MOG 

peptide, resulting in decreased EAE in mice.43 Several years ago, oral and nasal 

tolerance against HSP60/65 was shown to successfully suppress early 

atherosclerosis.44,45 Some years later, oral-tolerance induction against β2-

glycoprotein I also proved to be protective against atherosclerosis.46 In all these 

studies, an increased production of anti-atherogenic cytokines was observed, but 

the underlying mechanism remained to be clarified.  

Recently, we performed two studies in which we demonstrated that oral 

administration of HSP60, a small HSP60 peptide (253–268) and ox-LDL resulted in 

a reduction in atherosclerosis.47,48 These are the first studies on oral vaccination that 

demonstrate the suppression of atherosclerosis is due to the induction of Tregs. In 

both cases, we found an initial increase in numbers of Tregs in the Peyer’s patches. 

Subsequently, an increase in Treg numbers is observed in blood, mesenteric lymph 

nodes and spleen 2 weeks after oral vaccination. We now suggest that the Tregs 

migrate from the Peyer’s patches via blood to the secondary lymphoid organs. In 
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addition, an increase in Tregs is observed within the atherosclerotic lesion, and 

mesenteric lymph node cells produced more IL-10 and TGF-β upon restimulation 

with the antigen.  

Oral, but also nasal vaccination in the context of tolerance induction may 

be very effective in reducing atherosclerosis. Recently, it was shown that injections 

with anti-CD25 antibodies, thereby depleting Tregs, resulted in an increased lesion 

size in ApoE-/- mice.49 Depletion of costimulatory molecules such as CD-28, -80 

and -86, also resulted in a reduction in the number and function of Tregs and 

subsequently in higher atherosclerosis susceptibility.49. On the other hand, 

treatment of LDLr-/- mice with anti-CD3 antibodies, stimulating the activation 

and proliferation of Tregs, reduced the development and progression of 

atherosclerotic lesions.50 Furthermore, a transfer of antigen-specific Tr1 cells, a 

subset of Tregs, elevated IL-10 levels in ApoE-/- mice and reduced lesion 

formation.51 In addition, injection of in vitro-generated HSP60-specific Tregs 

prevented atherosclerotic lesion development.52  

However, some important questions remain unanswered. What is the exact 

mechanism involved in Treg suppression of pro-atherogenic immune responses? 

Do Tregs act via cell–cell contact, do they act cytokine-dependently or a 

combination of these two pathways? Do these Tregs suppress the immune 

responses within the lymphoid organs such as lymph nodes and spleen or do they 

act within the lesion? Finally, the opportunity to manipulate Treg responses as a 

treatment for atherosclerosis requires a better characterization of the antigens that 

pro-atherogenic T cells recognize. In addition, the antigens that cause activation 

and proliferation of Tregs that migrate into atherosclerotic lesions or draining 

lymphoid tissues need to be characterized.  

 

CONCLUSION 

In summary, a number of different vaccination strategies have been applied in 

atherosclerosis research during the last 10 years (Table 1). One of the first strategies 

was the targeting of pro-atherogenic interleukins that play an important role in a 

normal host defense, such as IL-12. This strategy can be subdivided into protein 

and DNA vaccinations, and it has been demonstrated to be successful in 

experimental autoimmune encephalomyelitis and may, therefore, also be 

successful in atherosclerosis.5  
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TABLE 9.1: AN OVERVIEW OF THE DIFFERENT VACCINATION STRATEGIES THAT HAVE BEEN APPLIED 

IN ATHEROSCLEROSIS RESEARCH DURING THE LAST 10 YEARS. 

 

Passive immunization uses (humanized) antibodies to block the pro-

inflammatory action of specific cytokines or antigens. However, selection and 

production of these specific humanized antibodies or the production of proteins 

for protein vaccination is very labor intensive and expensive as compared with 

DNA vaccination. It is challenging for the industry to synthesize humanized 

antibodies that are appropriate for administration to patients in, for example, 4-

week intervals that can modulate the function of the pro-inflammatory cytokines 

or antigens.  

We conclude that the optimal approach to introduce a vaccine against 

atherosclerosis is to focus on atherosclerosis-specific components. This can be 

achieved by either immunization, resulting in the production of protective 

antigenspecific antibodies, or by mucosal tolerance induction, resulting in the 

induction of antigenspecific Tregs. Atherosclerosis is a complex disease in which 

several antigens – many of which are not yet characterized – play an important 

role. A vaccination that results in the generation of antibodies that are limited in 

time in their functioning and in which a cocktail of the different antigens is 

administered may be an attractive approach. This cocktail can either be injected 
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intravenously or intraperitoneally to immunize against the antigens, or it can be 

administered orally or nasally to induce protective Tregs against these antigens.  

A major consideration when developing a new therapeutic treatment is the 

inconvenience for the patient. Repeated injections and invasive treatment and, 

thus, repeated visits to the clinic are not favorable, but may not form a major 

problem. A better, more promising approach may be to supplement the vaccine to 

the individual’s diet. This is convenient for the patient and easy to apply every day 

or once a week. The best vaccination strategy will be one that results in plaque 

stabilization in addition to reducing plaque development. Since atherosclerosis 

prevails at a very young age but only manifests itself later in life, the majority of 

patients will not benefit from strategies that focus on early plaque development, 

but will benefit from a vaccination strategy early in life that prevents the 

development of lesions.  

 

FUTURE PERSPECTIVE 

A number of different strategies can be developed to protect people against 

atherosclerosis or to treat patients with clinical symptoms thereof. In our opinion, 

DNA and protein vaccination in experimental models for atherosclerosis will form 

the initial strategy to investigate the possibility of whether vaccination against the 

target protects against atherosclerosis. The studies described in this article 

investigated the effect of vaccination and immunomodulation on the development 

of atherosclerosis. It would be favorable for the clinical application that a 

vaccination against a specific molecule increases the plaque stability, and we 

foresee that this can be achieved by short-term vaccination with proteins or DNA 

or a short-term treatment with humanized antibodies. In the next 5–10 years, we 

expect to see an increase in studies using protein and DNA vaccination as a 

strategy to investigate the blockade of the molecule of interest in experimental 

models for atherosclerosis, with specific interest in pro-atherosclerotic cytokines.  

Treatment with protective antibodies is a very powerful strategy and a 

may form a good achievable alternative for protein or DNA vaccination. This 

technique is nonpermanent, controllable and side effects may be limited. Because 

the antibodies have a defined half-life once injected, one can determine the exact 

administration protocol and the optimal timing for repetitive injections. This 

strategy is, however, very expensive given that it may also be needed to treat the 

majority of the population given the widespread occurrence of cardiovascular 

disease, although this approach is attractive for pharmaceutical companies.  

In our opinion, the strategy with the best future perspective is oral-

tolerance induction. This vaccine is relatively cheap, easy to administer and no 

adjuvants or immunomodulatory components are necessary. The risk for side 
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effects appears minimal and the patient can easily be ‘vaccinated’ by processing 

the tolerant agent in food or drinks. Nowadays, a few antigens – ox-LDL, HSP60 

and β2 glycoprotein I – have been used to induce oral tolerance in atherosclerosis. 

We expect that in the near future a great deal more possible antigens will be tested 

in oral tolerance. The best strategy would be to use a cocktail of different antigens 

as a powerful vaccine. However, a lot of research is still necessary before this 

strategy will be applicable in the clinic, and several questions remain unanswered. 

How to obtain the adequate antigens for tolerance induction? Should we use, for 

example, the ox-LDL from the patients themselves? Which concentration is optimal 

in humans? Although these results look very promising, it should be mentioned 

that all these experiments are performed in mice models for atherosclerosis. In 

order to extrapolate these data, they need to be verified in the human situation.  

Therefore, further research is required and we expect that in the next 

couple of years the first clinical trials will be performed using both antigen-based 

vaccines (oral tolerance induction) and recombinant IgGs targeting epitopes in ox-

LDL. For a lot of people, vaccination against atherosclerosis is still a myth, but it 

may become reality when one of the above described strategies turns out to be 

successful in reducing atherosclerosis without severe side effects. 
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SUMMARY AND PERSPECTIVES 

Atherosclerosis, the predominantly underlying pathology of cardiovascular events, 

is the consequence of lipid deposition in the arterial wall, mostly as consequence of 

high levels of serum cholesterol. Treatment of atherosclerosis is mainly focused at 

the reduction of cholesterol levels by lipid lowering medication, such as statins.  

Despite the use of statins and prophylactic treatments, such as a reduction 

in blood pressure and a reduction in risk factors to prevent atherosclerosis, 

cardiovascular disease is still the major cause of death in the Western world.1-3 As 

the struggle against atherosclerosis continues and its prevalence is increasing in the 

world, it is pivotal to find new targets for implementing new strategies against 

atherosclerosis.  

Inflammation is considered to be a major component in the process of 

atherosclerosis and is involved in initiation, progression and destabilization of the 

atherosclerotic lesion. Although the beneficial effects of statins on atherosclerosis 

may partly be ascribed to their anti-inflammatory properties, relatively little is 

known about the exact mechanism and contribution of different inflammatory cells 

and products in atherosclerosis. The aim of this thesis was to further elucidate the 

contribution of various components of the inflammatory response in 

atherosclerosis and thereby finding new intervention points to reduce the 

incidence and the consequences of atherosclerosis. 

 

INTERLEUKIN 15: BRIDGING THE INNATE AND ADAPTIVE IMMUNE 

SYSTEM 

Macrophages are key inflammatory cells in the process of atherosclerosis and play 

an important role in the development of the atherosclerotic lesions, by taking up 

modified LDL via pattern recognition receptors (PRRs). This results in activation of 

macrophages and subsequently in production of inflammatory mediators, such as 

cytokines.  

One of the cytokines produced by macrophages is IL-15. Expression of IL-

15 is detected in human and murine atherosclerotic lesions.4, 5 IL-15 enhances T cell 

recruitment and activation of peripheral blood T cells within the plaque.6 In 

chapter 2 the role of IL-15 in atherosclerosis is demonstrated by targeting IL-15 

overexpressing cells, using DNA vaccination, in LDL receptor deficient mice. The 

increase in number of IL-15 expressing cells in the circulation and spleen upon 

induction of hypercholesterolemia suggests that IL-15 is involved in atherosclerotic 

plaque formation. To further elucidate the role of IL-15 in atherosclerosis, LDLr-/- 

mice were vaccinated against IL-15 by using an attenuated Salmonella typhimurium 
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carrying an IL-15 encoding plasmid. In mice vaccinated against IL-15 a 75% 

reduction of the atherosclerotic plaque is observed in the carotid artery. 

Interestingly, we observed not only 75 % decrease in plaque size, but also 

an increase in relative macrophage content within the atherosclerotic plaque of 

mice vaccinated against IL-15, indicative for a less advanced state of the lesions in 

the vaccinated mice. IL-15 is, in association with IL-15Rα, also expressed in its 

biologically active form on the surface of monocytes and activated macrophages. 

This surface expressed IL-15 is approximately five times more effective than 

soluble IL-15 in the induction of T cell proliferation.7-9We speculate that the 

macrophages in the lesions of IL-15 vaccinated mice do not, or to a lesser extent, 

express IL-15. This is supported by the observation that the number of IL-15 

expressing cells in the circulation was declined to the same level as before the 

induction of hypercholesterolemia. Blocking the IL-15 pathway may result in an 

impairment of the innate switch towards an adaptive immune response thereby 

attenuating atherosclerosis.  

The vaccination strategy used in this study and described in chapter 2, 

successfully evoked a cytotoxic response targeting IL-15 expressing cells. This 

resulted in a vast reduction in atherosclerosis, thereby providing new insights in 

the process of atherosclerosis and the contribution of IL-15 in this process. These 

new insights may contribute to the future immunomodulating treatment of 

patients with cardiovascular disease.  

 

A NEW PLAYER IN THE FIELD, THE TH17 CELL 

Macrophages exert an important bridge function between the innate and adaptive 

immune response. Activated macrophages are also able to present antigens in 

association with MHC class-II molecules to T cells. Depending on the 

microenvironment, T cells can develop in different subsets and T cells are able to 

either aggravate or attenuate atherosclerosis. Already in 1986 Mosmann et al. 

described two distinct Th subsets, Th1 and Th2 cells, with their own specific 

production of cytokines.10 An imbalance between these cells is often related to 

autoimmune diseases, such as atherosclerosis. An exaggerated pro-inflammatory 

response due to an overexpression of Th1 associated cytokines, like IL-12 and IFN-

γ, enhances atherosclerosis.11 It was speculated that the restoration of the Th1/Th2 

balance may attenuate atherosclerosis. However, a deficiency in IL-4, a typical Th2 

interleukin, reduced atherosclerosis.12 Moreover, IL-4 is associated with increasing 

MMP-1 production by macrophages and may therefore have negative effects on 

plaque stability.13 These data indicate that the Th1/Th2 balance does not 

appropriately describe the immune responses in atherosclerosis. Therefore 

researchers looked for different inflammatory and regulatory pathways. 
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One of these pathways is related to the recently identified T cell subset, the 

Th17 cell. These cells provide more complexity and may provide a better 

understanding in the process of atherosclerosis. Th17 mainly produce IL-17, 

although IL-22 and IL-21 are also produced in large quantities.14,15 Recently, newly 

obtained data and insights resulted in a more complex model where TGF-β and IL-

6 initiate Th17 development.16 This is interesting as TGF-β is also required for Treg 

cell differentiation and partly mediates the suppressive function of Treg cells.17,18 

Furthermore, Tregs and TGF-β are associated with reduced atherosclerosis.19-22 

The role of Th17 cells and its hallmark, IL-17, is not known in the context of 

atherosclerosis. Therefore we studied the role of IL-17 in atherosclerosis as 

described in chapter 3. In this study we observed that IL-17 expression within the 

spleen of LDLr-/- mice does increase under hypercholesterolemic conditions. This 

indicates that IL-17 may be involved in the initiation of atherosclerosis. To unravel 

the role of IL-17 in atherosclerosis we used DNA vaccination to block IL-17. The 

DNA vaccine used, encodes the IL-17 coding sequence, preceded by a specific part 

of the HEL sequence, which binds with high affinity to MHC class II and is able to 

activate T cells, thereby breaking tolerance.23,24 Vaccination against IL-17 results in 

a 90.2% decrease in atherosclerotic lesion formation in the carotid artery, indicates 

that IL-17 has  profound pro-atherosclerotic properties. 

Since IL-17 has also pleiotropic effects on several cell types within the 

atherosclerotic lesion, IL-17 may stimulate a pro-inflammatory environment 

resulting in aggravation of atherosclerosis.25,26 An important matrix 

metalloproteinase (MMP) in atherosclerosis is MMP-9,27 which is upregulated in 

macrophages upon IL-17 stimulation. However, the plaques of the HEL-IL-17 

vaccinated mice were too small to accurately determine plaque stability and MMP-

9 expression. Therefore more research has to be performed to study the effect of IL-

17 on more advanced atherosclerotic lesions. 

We set out to investigate the role of the IL-17 receptor in atherosclerosis, by 

performing a bone marrow transplantation (BMT) with IL-17 receptor deficient (IL-

17R-/-) bone marrow (BM) in LDLr-/- recipient mice. In this study (described in 

chapter 4) we further establish the pro-atherosclerotic role of IL-17, since IL-17R-/- 

BM recipients demonstrated a 46% reduction in plaque size. The reduced lesion 

size relates to a reduced number of IL-17R expressing cells in blood after IL-17R-/- 

BMT. Furthermore, spleen cells from IL-17R-/- BM recipient mice demonstrate a 

decreased IL-6 and an increased IL-10 production. This indicates a shift towards a 

more anti-inflammatory response, which favors a beneficial outcome for 

atherosclerosis. Interestingly, we detected a decrease in IgG auto antibodies against 

modified LDL. This is likely due to an impaired B cell regulation in the germ line 

centre (GC) as a consequence of the disturbed IL-17 pathway.28 
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Based on the obtained results described in chapter 3 and 4, we continued to 

study whether Th17 cells, the prominent IL-17 producing T cell, are involved in 

atherosclerosis. An important interleukin in the development of Th17 cells is IL-23. 

IL-23 is a heterodimeric interleukin consisting of a p40 and a p19 subunit and is 

closely related to its family member IL-12 by both sharing the p40 subunit (Figure 

10.1).29 In our laboratory, we already demonstrated that vaccination against p40 

(IL-12/IL-23) results in a reduction of almost 70% in atherosclerotic lesion 

formation.30 However, p40 is shared by both IL-12 and IL-23 and consequently it 

does not elucidate the individual contribution of IL-12 and IL-23 on atherosclerosis 

(Figure 10.1). 

To unravel the role of IL-23, we performed a BMT using p19-/- mice, which 

do not express functional IL-23 (chapter 5). Although the BMT was successful, 

there was no change in lesion size detected between p19-/- BM recipients and mice 

receiving control BM. Furthermore, BMT with p19-/- BM does not result in a 

decrease of Th17 cells. These results may partially be explained by data form other 

research groups, which state that IL-23 acts more as a stabilizing factor for Th17 

cells in stead of initiating Th17 cells.14 Another possibility is the observation that 

CD3+ T cells are able to express the p19 subunit (Lubberts et al., personal 

communication). Whether p40 is also expressed by these T cells to form functional 

IL-23, remains to be elucidated.  

Interestingly, unpublished reports of S. Pflanz & R.A. Kastelein mention a 

heterodimeric interleukin consisting of p19 and EBI3 in vitro.31 Whether these 

heterodimers may be formed in vivo and what function this new interleukin exerts, 

remains to be elucidated (Figure 10.1).  

Another question which remains is, whether the p19-/- BMT results in an 

increased formation of p40 homodimers (12p80). 12p80 can act as an IL-12 and an 

IL-23 antagonist by binding to the IL-12Rβ1 but it can not mediate a biological 

response.32-34 However, other reports illustrate an agonistic function of 12p80 by 

stimulating the differentiation of CD8+ cytotoxic cells and CD4+ IFN-γ producing 

cells.35 The connection of these new insights with our data has to be elucidated in 

future research. 

 

NEW T CELL SUBSETS, NEW BALANCES 

IL-27 is a recently discovered interleukin that structurally resembles IL-12 and IL-

23. IL-27 is a heterodimeric cytokine composed of Epstein-Barr virus induced gene 

3 (EBI3) and p28 and it is important in the regulation of T cell function and 

cytokine production (Figure 10.1).36 Interestingly, IL-27 was firstly described as a 

pro-inflammatory interleukin by Goldberg et al. in EAE and RA, both autoimmune 
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diseases.37, 38 More recently, IL-27 has been associated with suppression of Th17 cell 

and may thereby attenuate diseases such as EAE.39  

Little is known about IL-27 and to our knowledge the role of IL-27 in 

atherosclerosis is not studied yet. Therefore, we studied the role of IL-27 in relation 

to atherosclerosis, which is described in chapter 6. The expression of both IL-27 

subunits (EBI3 and p28) was upregulated in the atherosclerotic plaques of LDLr-/- 

mice. The fact that both subunits are upregulated suggests the production of 

functional IL-27, since p28 alone cannot be excreted without EBI3.40 After 

vaccination against p28, the lesion size in the vaccinated mice increased, which 

indicates that IL-27 has a protective role in atherogenesis.  

Additionally, we demonstrate that blocking IL-27 was associated with a 

reduced number of Treg cells and with an augmented number of Th17 cells within 

the spleen. These observations are of great interest as they demonstrate a shift in 

the balance between the pro-inflammatory Th17 cells and the anti-inflammatory 

Treg cells, thereby aggravating atherosclerosis. Furthermore, is has been shown by 

other groups that there is a balance between Th17 and Treg cells, thereby adding 

another layer of regulation  in the inflammatory response.16, 41-44  

The results described in chapter 6 demonstrate that blocking IL-27 results 

in aggravated atherosclerosis. Therefore is would be interesting to over-express IL-

27 in LDLr-/- mice to study whether this reduces Th17 cells and induces Treg cells, 

resulting in attenuated atherosclerosis. 

 

ROLE OF TREG CELLS IN ATHEROSCLEROSIS  

Treg cells are important in maintaining immune homeostasis and preventing 

autoimmunity.45 Based on the observations that a disturbed balance between Th17 

and Treg cells aggravates atherosclerosis, further research was performed to 

establish the role of Treg cells in atherosclerosis. Mallat et al. hypothesized that 

there is a balance between pathogenic T cells and Treg cells. Furthermore, 

Puijvelde et al. demonstrated that oral administration of an atherosclerosis 

associated antigen, oxLDL, leads to the induction of Treg cells and subsequently 

ameliorates atherosclerosis.21 Along this line we studied another atherosclerotic 

associated antigen, HSP60, to induce tolerance, which is described in chapter 7.  

Tolerance against HSP60 and a small conserved sequence of HSP60(253-

268) was induced by oral administration with a low dose of the antigen. The 

induction of tolerance upon oral administration of either HSP60 or a HSP60 

derived peptide results in a significant reduction of 80.7 -83.3% in lesion size. 

Furthermore, tolerance induction results in an increased Foxp3+ Treg cell 

population, indicating a systemic effect of the tolerance induction. Upon 

stimulation of spleen cells with HSP60, the production of IL-10 and TGF-β 



  Chapter 10    

 

    192 

increased in HSP60-treated mice. Moreover, we observed a decreased proliferation 

when spleen cells were stimulated with HSP60. These results indicate that 

tolerance against HSP60 evoked an immune suppression mediated by Treg cells.  

Of great interest is the increased expression of CTLA-4, Foxp3 and CD25 

within the atherosclerotic lesion, which indicates that Treg cells migrated from the 

regional lymph nodes towards the local inflamed tissue and exert their 

immunosuppressive effect, explaining the reduced atherosclerotic lesion size in 

HSP60 treated mice.46 

 
FIGURE 10.1 A SCHEMATIC OVERVIEW OF THE DIFFERENT INTERLEUKINS AND RECEPTORS DESCRIBED IN 

THIS THESIS. IL-12, consisting of p35 and p40, is already established as a pro-atherosclerotic interleukin. 
Its close family member IL-23, which consists of p19 and p40, is less defined in atherosclerosis. 
Although an aggravating role is suspected, based on the role of IL-23 in other autoimmune disease, 
more research on atherosclerosis in relation to IL-23 has to be performed. Although IL-27, consisting of 
p28 and EBI3, is already described in 2002, its pleiotropic effects are not completely understood yet. In 
this thesis we observed a protective role for IL-27 in initial atherosclerosis, however more information is 
needed to elucidate its exact role in atherosclerosis. Recently, a novel interleukin is described consisting 
of p35 (shared with IL-12) and EBI-3 (shared with IL-27). This interleukin is called IL-35 and has been 
associated with immune suppression. Interestingly, IL-35 is probably an exclusive product of Treg cells 
whereas IL-27 and IL-12 are predominantly expressed by APCs. Finally, unpublished results of S. 
Pflanz & R.A. Kastelein describe a novel heterodimeric interleukin, consisting of p19 (shared with IL-23) 
and EBI3 (shared with IL-27). Thus far, this heterodimer has been detected in vitro. Whether this 
interleukin exists in vivo and if it has a biological function, has yet to be determined (More details and 
references see text). 

 

Treg cells which originate from the thymus constitutively express Foxp3 

and Tregs may also acquire foxp3 after oral tolerance. Treg cells play an essential 

role in immune homeostasis.21,22,47-50. To study the effect of the elimination of 

Foxp3+ Tregs in atherosclerosis, we used a novel vaccination strategy directed 

against Foxp3 expressing cells. The effect of Foxp3 elimination on the initial 

atherosclerosis and on advanced atherosclerosis is described in chapter 8. A 

dendritic cell (DC) based vaccine was used to provoke a cytotoxic T cell response 

against Foxp3 expressing cells.  
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During the time course of the experiment we observed significant less 

Foxp3+ Treg cells in the circulation of Foxp3 vaccinated mice. Also within the 

lymphoid tissues the Foxp3+ cells are significantly reduced. Furthermore, 

vaccination against Foxp3 results in an increase of atherosclerotic plaque formation 

in both initial and advanced atherosclerosis and the lesions have an increased 

cellularity. This may suggest that an impaired inhibition of pathogenic T cells 

within the plaque upon depletion of Treg cells. However, more research has to be 

performed to investigate which cells are responsible (e.g. Th1, Th2 or Th17 cells) 

for the increased cellularity and plaque size. The results from this study further 

established the role of Foxp3+ Treg cells in atherosclerosis and are in line with the 

results of Ait-Oufella et al. 51  

 

TH17/TREG BALANCE, A NEW INTERVENTION POINT 

In this thesis, we demonstrate in chapter 6 that blocking of IL-27 results in an 

increased population of Th17 cells and in a decreased number of Treg cells. The 

shift in Treg/Th17 balance favoring Th17 cells, results in an increased lesion size. 

This observation indicates that manipulating the balance between these cells may 

provide a potential therapeutic intervention point. This is further supported by the 

observation that vaccination against Foxp3 aggravates atherosclerosis, which is 

described in chapter 8. On the other hand, when Treg cells are induced via oral 

administration of atherosclerotic specific antigens, this results in ameliorated 

atherosclerosis as is described in chapter 7.  

Therefore, therapeutic approaches must be aimed at inducing Treg cell 

specific for atherosclerosis specific antigens. This possibility is discussed in more 

detail in chapter 9, were vaccination is evaluated as a potential therapy against 

atherosclerosis. Furthermore, based on the results in chapter 6, overexpressing IL-

27 or administration of recombinant IL-27 may also prove to be a new approach to 

shift the balance towards Treg cells favoring a beneficial outcome for 

atherosclerosis.  

 

VACCINATION AGAINST INFLAMMATORY MEDIATORS 

Besides interfering in the T cell balance, vaccination against interleukins involved 

in atherosclerosis may also provide an interesting strategy for therapeutic 

intervention. IL-17, described in chapter 4, and IL-15, described in chapter 2, are 

potential candidates that can be blocked via vaccination. In chapter 9 DNA 

vaccination as a therapeutic approach is discussed. Although vaccination against 

self-antigens may provide a potential therapy to redirect the inflammatory 

response, additional studies have to be performed to establish the long-term effect 
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of these vaccination strategies. Independent of the therapeutical implications, DNA 

vaccination strategy provides an excellent research tool to block endogenous 

proteins with relatively low costs. This can be used to study, for example the role 

of interleukins in different stages of atherosclerotic disease.  

 

CONSIDERATIONS 

Most studies on atherosclerosis in mice are performed on the initial phase of 

atherosclerosis and are thus not necessarily relevant to advanced and complicated 

lesions. Most patients with clinical symptoms do however already posses large and 

complicated atherosclerotic lesions. Therefore treatment should also be focused at 

stabilizing existing plaques, reducing progression of plaques or inducing plaque 

regression. Intervention at Treg cell level, by inducing Treg cells, may fulfill this 

promise. Puijvelde et al. demonstrated that mice, which are tolerized against 

oxLDL display attenuated lesion progression.21 The role of Treg cell depletion in 

advanced atherosclerosis was further demonstrated in chapter 8 of this thesis.  

These data suggests that regulation of the Treg cells may be an attractive 

clinically relevant target to further develop an immunotherapy to treat 

atherosclerosis in the near future.  

To add one final remark, recently a new interleukin is discovered, which 

consists of two subunits and both subunits are, direct or indirect, studied in this 

thesis. This novel interleukin is named IL-35 and consist of p35 (subunit of IL-12) 

and EBI3 (subunit of IL-27) and is thereby another member of the IL-12 family 

(Figure 10.1). In contrast to other known IL-12 family members, IL-35 has anti-

inflammatory properties instead of immunostimulatory or proinflammatory 

features.52-54 IL-35 is produced by Treg cells and contributes to the suppressive 

activity of these cells.52-54 Therefore IL-35 may represents a novel potential future 

target for the therapeutic intervention in atherosclerosis.  
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ADERVERKALKING  

Hart- en vaatziekten zijn de voornaamste doodsoorzaak in de Westerse wereld. 

Het overtreft de aan kanker gerelateerde doodsoorzaken. Patiënten met hart- en 

vaatziekten ervaren pas op latere leeftijd de klinische symptomen zoals angina 

pectoris (drukkend/pijnlijk gevoel op de borst) of een infarct (hartaanval, 

beroerte). Deze symptomen zijn gerelateerd aan een vernauwd of geblokkeerd 

bloedvat, waardoor de bloedtoevoer naar distaal gelegen weefsel geblokkeerd of 

gelimiteerd wordt. De vernauwingen zijn het gevolg van een chronische 

ontsteking in het bloedvat wat resulteert in het ontstaan van een laesie. Deze laesie 

bestaat uit ontstekingscellen en cholesterol deposito’s. Dit proces staat bekend als 

aderverkalking, ook wel atherosclerose genoemd.  

Atherosclerose begint al vroeg in het leven doordat er cholesterol wordt 

afgezet in de vaatwand en dit vormt de zogenoemde “fatty streak”. Dit leidt echter 

niet tot klinische symptomen, omdat deze fatty streaks nog niet tot een obstructie 

van de doorbloeding leidt. Gedurende het leven worden deze laesies groter en dit 

kan uiteindelijk leiden tot klinische symptomen. De leeftijd waarop de symptomen 

optreden is in grote mate afhankelijk van de blootstelling aan risicofactoren. 

Bekende risicofactoren zijn overgewicht, een hoog bloed cholesterolgehalte, roken, 

hoge bloeddruk en te weinig lichaamsbeweging. Daarnaast dragen ziektes zoals 

diabetes en reuma ook bij aan een verhoogd risico voor hart- en vaatziekten. Het is 

dan ook niet verwonderlijk dat hart- en vaatziekten voornamelijk in de “Westerse 

wereld” voorkomen.  

Op dit moment is behandeling van atherosclerose voornamelijk gericht op 

het verminderen van risicofactoren. Een veel voorgeschreven behandeling is de 

toediening van statines. Statines zijn in staat om het cholesterol gehalte te doen 

verlagen en in combinatie met aanbevolen lichaamsbeweging resulteert dit in een 

verbeterde klinische uitkomst. Ondanks deze behandeling blijft het sterftecijfer, dat 

gerelateerd is aan hart- en vaatziekten, erg hoog. Daarom is er ook een grote 

noodzaak om nieuwe behandelmethodes te ontwikkelen.  

 

ONTSTEKING EN ADERVERKALKING 

Recentelijk is geconstateerd dat het immuunsysteem (de cellen en organen die 

betrokken zijn bij een ontstekingsreactie) ook een grote bijdrage levert aan 

atherosclerose. Aangezien statines naast een cholesterol verlagende werking ook 

een ontstekingsremmend effect hebben, zou dit dus deels hun gunstige effect op 

atherosclerose verklaren.  

De ontstekingsreactie tijdens atherosclerose begint wanneer de vaatwand 

beschadigd raakt. Beschadiging gebeurt voornamelijk op plaatsen in het bloedvat 
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waar een turbulente bloedstroom is, bijvoorbeeld bij een aftakking van een 

bloedvat. Door deze beschadiging raakt de vaatwand geactiveerd en wordt deze 

meer doorlaatbaar voor cholesterol vervoerende componenten, ook wel 

lipoproteïnes genoemd. De lipoproteïnes worden in de vaatwand gemodificeerd 

waardoor deze immunogeen worden en dus in staat zijn het immuunsysteem te 

activeren. Vervolgens worden macrofagen aangetrokken door de geactiveerde 

vaatwandcellen (endotheelcellen) en de gemodificeerde lipoproteïnes. Macrofagen 

zijn ontstekingscellen die in staat zijn om ongewenste deeltjes zoals de 

gemodificeerde lipoproteïnes op te nemen, waarna deze geactiveerd raken en 

allerlei signaaleiwitten produceren (cytokines). De cytokines op hun beurt 

rekruteren andere immuuncellen en activeren deze cellen, zodat zij hulp kunnen 

bieden om de ongewenste deeltjes te verwijderen. In de vaatwand nemen de 

macrofagen de lipoproteïnes op en hierdoor veranderen de macrofagen langzaam 

in opgezwollen cellen die gevuld zijn met cholesterol, de “schuimcellen”. Deze 

schuimcellen produceren veel ontstekingsstimulerende cytokines.  

Een belangrijk celtype dat gerekruteerd wordt is de T-cel. Na activatie, 

kunnen T-cellen zich ontwikkelen in verschillende subklassen T-cellen. De 

verschillende typen T-cellen kunnen het immuunsysteem verder activeren of juist 

remmen. Een belangrijke functie van macrofagen is het “presenteren” van de 

opgenomen deeltje (antigenen) aan T-cellen. T-cellen die het antigeen herkennen 

worden geactiveerd en maken vervolgens allerlei cytokines om het 

ontstekingsproces in goede banen te leiden. In het geval van atherosclerose zijn er 

te veel ontstekingstimulerende T-cellen, waardoor er een buitenproportionele 

ontstekingsreactie plaatsvindt. Dit leidt tot het aantrekken van een nieuwe golf 

ontstekingscellen. De laesie zal hierdoor groeien en uiteindelijk kunnen 

“scheuren”. Hierdoor komen de verschillende componenten van de laesie in 

contact met het bloed, waardoor er een bloedstolsel ontstaat. Dit stolsel kan 

terplekke het bloedvat afsluiten, maar als het stolsel los raakt, kan het ook worden 

meegevoerd door de bloedstroom en kan het stolsel verder gelegen bloedvaten 

afsluiten. Door de afsluiting van een bloedvat krijgt het onderliggende weefsel te 

weinig voeding en zuurstof, wat leidt tot het afsterven en functieverlies van het 

weefsel/orgaan. Dit leidt tot de klinische symptomen zoals een hartaanval of een 

beroerte.  

In dit proefschrift is onderzocht hoe verschillende ontstekingscellen 

betrokken zijn bij atherosclerose. Verder is er bestudeerd welke cytokines deze 

cellen maken en welke functie deze cytokines hebben in relatie tot atherosclerose. 

In hoofdstuk 1 is gedetailleerd weergegeven wat er tot nu toe bekend is over de 

ontstekingscellen die zijn betrokken bij atherosclerose. Verder is daar ook ingegaan 

op verschillende belangrijke cytokines. Om ontstekingscellen en cytokines in 

atherosclerose te kunnen bestuderen hebben we gebruik gemaakt van proefdieren. 
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In de studies die zijn beschreven in dit proefschrift wordt gebruik gemaakt van 

muizen die genetisch zijn veranderd zodat ze atherosclerose ontwikkelen. Als deze 

muizen worden gevoed met een vetrijk dieet (Western-type dieet), krijgen ze een 

verhoogde concentratie cholesterol in het bloed, waardoor atherosclerose ontstaat.  

 

“NIEUWE” CELLEN EN CYTOKINES IN ATHEROSCLEROSE 

INTERLEUKINE 15 

In hoofdstuk 2 is een belangrijk ontstekingstimulerend cytokine bestudeerd, 

interleukine-15 (IL-15). IL-15 is een cytokine dat voornamelijk gemaakt wordt door 

macrofagen en vooral effect heeft op T-cellen. Aangezien zowel macrofagen als T-

cellen belangrijk zijn in atherosclerose is het interessant om de rol van IL-15 in 

atherosclerose te bepalen. In dit hoofdstuk demonstreren wij dat het aantal cellen 

dat IL-15 tot expressie brengt sterk toeneemt door de muizen te voeden met een 

vetrijk dieet. Dit kan betekenen dat IL-15 is betrokken bij het ontstaan van 

atherosclerose. 

Om de functie van IL-15 te bestuderen gebruikten we een 

vaccinatietechniek die gebruik maakt van een levende, maar wel verzwakte, 

bacterie. In deze bacterie, de Salmonella typhimurium, hebben we DNA ingebracht 

dat codeert voor IL-15. Wanneer we deze bacterie toedienen wordt er een 

immuunrespons opgewekt die uiteindelijk zorgt voor het doden van cellen die IL-

15 hoog tot expressie brengen. We zien in de tegen IL-15 gevaccineerde muizen een 

sterke afname van atherosclerose. Verder zien we ook dat het aantal cellen dat IL-

15 tot expressie brengt wordt verminderd tot hetzelfde niveau voordat 

atherosclerose werd geïnduceerd. We zien echter wel meer macrofagen in de 

laesie, maar die brengen waarschijnlijk minder of geen IL-15 tot expressie en 

daardoor zal de laesie niet toenemen in grootte. 

 

INTERLEUKINE 17 EN DE TH17 CEL 

Zoals hierboven vermeld zijn er verschillende soorten T-cellen, waaronder de T-

helper 1 (Th1) en T-helper 2 (Th2) cellen. De algemene gedachte is dat tijdens 

atherosclerose  voornamelijk de Th1-cel verantwoordelijk is voor het verergeren 

van atherosclerose en de Th2-cel juist voor het verminderen van atherosclerose. 

Een balans tussen deze twee types T-cellen is van cruciaal belang voor een goede 

uitkomst van de ontsteking. In verschillende auto-immuun ziekten is een 

verstoorde balans richting Th1 verantwoordelijk voor de verergering van de ziekte. 

Echter niet alle resultaten kunnen hiermee verklaard worden. Dit leidde tot de 
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ontdekking van nieuwe T-cellen, de T-helper 17 (Th17) cel en de regulatoire T 

(Treg)-cel.  

De Th17-cel is een T-cel die voornamelijk het ontsteking-stimulerende 

cytokine IL-17 produceert en zijn rol is geïdentificeerd in verschillende ziekte 

modellen, maar de rol van deze nieuwe Th17-cel is nog niet beschreven in 

atherosclerose.  

In hoofdstuk 3 bestuderen we dan ook het effect IL-17, het prominent 

geproduceerde cytokine door Th17-cellen, doormiddel van het blokkeren van de 

functie van IL-17. Als eerste hebben we bestudeerd of de productie van IL-17 

omhoog gaat na het voeden van de muizen met een vetrijk dieet. We hebben 

geconstateerd dat in de milt (een belangrijk orgaan betrokken bij het 

immuunsysteem) een verhoogde productie van IL-17 plaatsvindt, wat inhoudt dat 

IL-17 waarschijnlijk een rol speelt bij atherosclerose. Om dit verder te bevestigen 

vaccineren we de muizen tegen IL-17 door middel van een DNA vaccin, coderend 

voor IL-17. Dit resulteerde in een grote vermindering van 90% in atherosclerose in 

de tegen IL-17 gevaccineerde muizen. 

In hoofdstuk 4 bestuderen we het effect van de receptor voor IL-17, door 

gebruik te maken van een beenmergtransplantatie. We hebben een 

beenmergtransplantatie uitgevoerd met het beenmerg van muizen waarvan de 

receptor van IL-17 (IL-17R) is verwijderd. Deze cellen kunnen dus niet meer 

reageren op IL-17. Op deze manier kunnen we de rol van IL-17 in atherosclerose 

bestuderen in het muismodel. We zien in muizen die het IL-17R deficiënte 

beenmerg hebben gekregen een sterke vermindering van atherosclerose. Verder 

zagen we een afname van IL-6 (dat betrokken is bij een verergering van 

atherosclerose) en een toename van IL-10 (een interleukine dat atherosclerose 

vermindert). Een interessante bevinding is de vermindering van antilichamen 

tegen gemodificeerde lipoproteïnes, welke in sommige gevallen atherosclerose 

kunnen verergeren en dus ook een verklaring kunnen vormen voor verminderde 

atherosclerose.  

De resultaten uit hoofdstuk 3 en 4 bevestigen een rol voor IL-17 in de 

ontwikkeling van atherosclerose. Nu we hebben aangetoond dat IL-17 een 

belangrijke rol speelt in atherosclerose is het waarschijnlijk dat de Th17-cel ook een 

rol speelt in het ziekteproces. 

Onlangs is een nieuw cytokine ontdekt, IL-23, die betrokken is bij het 

ontstaan van Th17-cellen. IL-23 is een interleukine dat uit twee subunits bestaat, 

p40 en p19. Het p40 deel is ook een onderdeel van een ander cytokine, het IL-12. 

IL-12 is een sterk ontstekingstimulerend interleukine en in een eerdere studie is 

gebleken dat na vaccinatie tegen p40 atherosclerose sterk verminderd wordt. 

Omdat p40 zowel een deel van IL-23 als IL-12 is, is het achteraf niet mogelijk vast 

te stellen welk interleukine exact voor de remming van in atherosclerose heeft 
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gezorgd. Om dit verder uit te zoeken hebben we de functie van IL-23 in 

atherosclerose bestudeerd door middel van een beenmergtransplantatie met 

beenmerg waarin het p19 deel van IL-23 is uitgeschakeld. De cellen zonder het p19 

gen kunnen geen functioneel IL-23 meer maken en zodoende kan de rol van dit 

interleukine worden bestudeerd in atherosclerose, zoals is beschreven in  

hoofdstuk 5.  

We vinden echter geen effect van p19 deficiëntie op atherosclerose in het 

beenmerg transplantatie model. We zien ook geen verschil in de Th17-cellen. 

Echter recent onderzoek heeft uitgewezen dat IL-23 waarschijnlijk niet betrokken is 

in de initiatie van de Th17, maar meer betrokken is bij de instandhouding van deze 

cellen. Mogelijk kan dit een verklaring bieden voor het feit dat we geen verschil in 

atherosclerose zien. Er dient echter nog meer onderzoek verricht te worden om de 

rol van IL-23 en p19 te begrijpen. 

 

INTERLEUKINE 27 

Een ander recentelijk ontdekt interleukine is IL-27, dat ook uit 2 subunits bestaat, 

een p28 subunit en een EBI3 deel. Dit interleukine werd in beginsel beschreven als 

ontstekingsstimulerend en betrokken bij een verergering van auto-immuunziekten. 

Door de jaren heen is echter meer onderzoek gedaan en is de aan IL-27 

toegeschreven ontstekingsstimulerende rol herzien. Zo is er aan het licht gekomen 

dat IL-27 de potentie heeft om de Th17-cel te remmen en dit zou kunnen resulteren 

in een verminderd ziektebeeld.  

IL-27 is echter nog niet bestudeerd in atherosclerose en gezien de rol van 

IL-17 en waarschijnlijk ook de Th17 cel in atherosclerose, is IL-27 een interessant 

interleukine om te bestuderen in de context van atherosclerose. In hoofdstuk 6 

wordt een studie beschreven waarin muizen gevaccineerd worden tegen p28. Uit 

dit onderzoek blijkt dat de 2 delen van IL-27 (p28 en EBI3) sterk tot expressie 

komen in de atherosclerotische laesie, wat aangeeft dat IL-27 mogelijk betrokken is 

bij atherosclerose. Vervolgens zijn enkele muizen gevaccineerd met DNA, 

coderend voor het interleukine p28, en is atherosclerose geïnduceerd.  

Uit de resultaten van dit onderzoek blijkt dat atherosclerose was verergerd 

in de muizen die gevaccineerd waren tegen p28. Dit betekent dat IL-27 

beschermend werkt in atherosclerose. De verergering van atherosclerose zou 

verklaard kunnen worden door de gevonden toename van Th17-cellen. Daarnaast 

hadden de gevaccineerde muizen ook minder Treg-cellen. Treg-cellen zijn 

betrokken bij vermindering van atherosclerose. Het lijkt er dus op dat de balans 

tussen de Th17-cellen en Treg-cellen is omgeslagen naar Th17-cellen in de 

gevaccineerde muizen tegen p28, met verergerde atherosclerose tot gevolg. 
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REGULATOIRE T-CELLEN  

Treg-cellen verminderen ontsteking en kunnen daardoor beschermend zijn in auto-

immuunziekten, wellicht ook in atherosclerose. Een manier om Treg cellen te 

stimuleren is door een antigeen oraal toe te dienen. Door dit via het 

spijsverteringskanaal toe te dienen, ontstaat er in de darmen een immuunreactie 

die ervoor zorgt dat er tolerantie ontstaat tegen dit antigeen. Bij het ontstaan van 

tolerantie wordt het antigeen herkend en vindt er activering van Treg-cellen plaats. 

Hierdoor wordt vervolgens de immuunrespons afgeremd. Dit is bijvoorbeeld van 

belang bij tolerantie opwekking tegen voedingsmiddelen. Deze methode is al 

eerder uitgeprobeerd tegen gemodificeerde lipoproteïnes, wat resulteerde in meer 

Treg-cellen en minder atherosclerose.  

In hoofdstuk 7 zijn door middel van orale toediening van HSP60 Treg 

cellen geïnduceerd. HSP60 is een antigeen dat is geïdentificeerd in atherosclerose. 

In atherosclerose is er een immuunreactie tegen HSP60 die niet wenselijk is. Door 

Treg-cellen te induceren kunnen we deze immuunreactie remmen om 

atherosclerose te verminderen. We zien in deze studie dat atherosclerose 

inderdaad afneemt en dat dit komt door meer Treg cellen. 

Vervolgens willen wij ook het effect bestuderen van de blokkering van 

Treg cellen om de rol van Treg cellen in atherosclerose verder te bevestigen. Dit is 

beschreven in hoofdstuk 8. In dit hoofdstuk wordt een vaccinatiemethode 

beschreven waarbij dendritische cellen de “opdracht” hebben gekregen om een 

immuunrespons op te wekken tegen een antigeen. Dendritische cellen zijn speciale 

cellen van het immuunsysteem die zeer goed in staat zijn een bepaald antigeen te 

presenteren aan andere immuuncellen om zo een imuunrespons op te wekken. In 

deze studie hebben we de dendritische cellen speciaal gericht tegen cellen die 

Foxp3 tot expressie brengen. Foxp3 is een eiwit dat voornamelijk gemaakt wordt 

door Treg cellen. Door cellen die Foxp3 tot expressie brengen te vernietigen kan de 

bijdrage van Treg cellen in atherosclerose bestudeerd worden. We zien in deze 

studie dat de vaccinatie leidt tot minder Treg cellen in de muis. Dit heeft tot gevolg 

dat door de Foxp3 vaccinatie, de atherosclerotische laesie toeneemt in grootte. 

Hetzelfde is ook waargenomen in muizen met een vergevorderde 

atherosclerotische laesie. Dit geeft aan dat Treg cellen zowel bij beginnende als 

gevorderde atherosclerose betrokken zijn. Verder zien we dat de laesie van 

gevaccineerde muizen veel meer cellen bevat. Mogelijk duidt dit op meer 

ontsteking in de laesie, waardoor deze in grootte toeneemt. Welke cellen dit precies 

zijn moet nog worden uitgezocht in een toekomstig onderzoek. Kortom, in de 

hoofdstukken 7 en 8 hebben we aangetoond dat Treg cellen een belangrijk celtype 

is in de regulatie van atherosclerose en mogelijk kan dit leiden tot een 

therapeutische toepassing. 
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CONCLUSIE  

Het onderzoek beschreven in dit proefschrift is er op gericht meer inzicht te 

verkrijgen in de rol van ontstekingscomponenten in atherosclerose. De nieuwe 

bevindingen kunnen leiden tot nieuwe inzichten en idealiter resulteren in een 

klinische toepassing zodat patiënten met atherosclerose in de toekomst beter 

behandeld kunnen worden. In dit proefschrift wordt veel gebruik gemaakt van 

vaccinatietechnieken om de functie van bepaalde cellen en interleukines te 

bestuderen. In hoofdstuk 9 staat beschreven hoe deze inzichten, die zijn verkregen 

door onder andere een bijdrage uit dit proefschrift, kunnen leiden tot 

therapeutisch haalbare toepassingen.  

Vooralsnog is de beste remedie om atherosclerose te verminderen het 

voorkomen van blootstelling aan risico factoren. Helaas is dit niet altijd mogelijk, 

door bijvoorbeeld erfelijke factoren, en zal de zoektocht naar een behandelmethode 

tegen atherosclerose voort blijven gaan. Een veel belovende toepassing kan het 

induceren van tolerantie tegen atherosclerose gerelateerde eiwitten kunnen zijn. 

Deze non-invasieve behandeling die tolerantie opwekt tegen ziekte specifieke 

antigenen kan een uitkomst bieden in veel auto-immuunziekten en dus ook in 

atherosclerose. Echter, er dient nog veel onderzoek te worden verricht naar de 

haalbaarheid en effectiviteit in patiënten. 
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LIST OF ABBREVIATIONS 

-/-   homozygous knock out 

36B4   acidic ribosomal phosphoproteinP0 

β2GPI   β2-glycoprotein I 

Ab   antibody 

ACS   acute coronary syndromes 

APC   antigen presenting cell 

apoE/apoB   apolipoprotein E/apolipoprotein B 

BM   Bone marrow 

BMT   Bone marrow transplantation 

CC/CXC   chemokine 

CCL/CXCL   chemokine ligand 

CD    cluster of differentiation 

CETP    cholesteryl ester transfer protein 

CIA   collagen induced arthritis 

CMV    Cytomegalovirus 

conA    concanavalin A 

CTL   cytotoxic T lymphocyte 

CTLA    cytotoxic T-lymphocyte antigen 

CTX-I   cardiotoxin I 

CVD    cardiovascular disease 

DC    dendritic cell 

EAE    experimental acquired encephalomyelitis 

EBI3   Epstein-Barr virus induced gene 3 

ECM   Extracellular matrix 

ELISA   enzyme-linked immunosorbent assay 

FACS    fluorescent-activated cell sorting 

Foxp3    forkhead box p3 

GC   germinal center 

(e)GFP    (enhanced) green-fluorescent protein 

GTC   guandium isothiocyanate 

HDL    high-density lipoprotein 

HEL   hen egg-white lysozyme 

HPRT   hypoxanthine phosphoribosyl transferase 

HSP    heat shock protein 

imDC   immature dendritic cell 

i.m.   intra muscular 

i.p.    intra peritoneal 

iTreg   inducible regulatory T cell 
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i.v.    intravenous 

ICAM-1   intercellular adhesion molecule-1 

IFN    interferon 

Ig    immunoglobulin 

IL    interleukin 

IL-.R   interleukin . receptor 

imDC    immature dendritic cell 

JAM-1   junctional adhesion molecule-1 

LDL    low-density lipoprotein 

LDLr    low-density lipoprotein receptor 

LFA-1   lymphocyte function associated antigen-1 

LPS    lipopolysaccharide 

MCP-1    monocyte chemotactic protein 

M-CSF    macrophage colony stimulating factor 

MDA-LDL   malondialdehyde modified LDL 

mDC    mature dendritic cell 

MHC   major histocompatibility complex 

MMP    matrix metalloproteinase 

NF-κB    nuclear factor κB 

NK cell   natural killer cell 

NKT cell   natural killer T cell 

oxLDL    oxidized low-density lipoprotein 

PAMP   pathogen-associated molecular pattern 

PBS    phophate buffered saline 

PBMC   peripheral blood mononuclear cell 

PCR   polymerase chain reaction 

PC    phosphatidyl choline 

PE    phosphatidyl ethanolamine 

PECAM  platelet endothelial cell adhesion molecule 

PGE2   prostaglandin E2 

PRR   pattern recognition receptor 

qPCR   quantative polymerase chain reaction(also RT-PCR) 

RA   rheumatoid arthritis 

RAG   recombination activating gene 

SCID   severe combined immunodeficient 

s.i.    Stimulation index 

SMC    smooth muscle cell 

SNP   single nucleotide polymorphism 

SOCS   suppressor of cytokine signaling 

ScR    scavenger receptor 
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STAT   signal transducers and activators of transcription  

TβRII    transforming growth factor β receptor II 

TCR    T cell receptor 

TGF    transforming growth factor 

Th1/Th2/Th3/Th17  T helper 1/T helper 2/T helper 3/T helper 17  

TLR    Toll-like receptor 

TNF    tumor necrosis factor 

Tr1    regulatory T cell type 1 

Treg    regulatory T cell 

VCAM-1   vascular cell adhesion molecule-1 

VEGF (R)  vascular endothelial growth factor (receptor) 

VLA-4   very late antigen-4 

VLDL    very low-density lipoprotein 

vSMC   vascular smooth cell 
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