Universiteit

w4 Leiden
The Netherlands

Regulators of growth plate maturation
Emons, J.A.M.

Citation
Emons, J. A. M. (2010, April 14). Regulators of growth plate maturation.
Retrieved from https://hdl.handle.net/1887/15225

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/15225

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/15225




Genome wide screening in human
growth plates at early and progressed
stage puberty of a single patient
suggests a role of Elk1, Stat5b and
RunX2 in growth plate maturation.

Joyce Emons?, Bas E. Dutilh?, Eva Decker3, Heide Pirzer3, Carsten Sticht*, Norbert
Gretz*, Gudrun Rappold?, Jan Maarten Wit!, Marcel Karperien®®.

'Dept of Paediatrics, Leiden University Medical Center, Leiden, the Netherlands;

% Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Center, Nijmegen,
the Netherlands;

3Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany;

*Medical Research Center, Medical Faculty Mannheim, Mannheim, Germany;

SDept of Tissue Regeneration, University of Twente, 7522 NB Enschede, the Netherlands;

‘Dept of Endocrinology and Metabolism, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands.






Abstract

In late puberty, estrogen is responsible for the deceleration of growth by stimulating growth
plate maturation. The mechanism of action is largely unknown. We obtained pubertal growth
plate specimens of the same girl at Tanner stage B2 and B3, which allowed us to address this
issue in more detail. Histological analysis showed that progression of puberty coincided with
characteristic morphological changes associated with growth plate maturation, such as decreases
in total growth plate height (p=0.002), height of the individual zones (p<0.001) and an increase
in intercolumnar space (p<0.001). Microarray analysis identified 394 genes (72% upregulated,
28% downregulated) changing with progression of puberty. Overall changes in gene expression
were small (average 1.38-fold upregulated and 1.36-fold downregulated genes). The 394 genes
mapped to 13 significantly changing pathways (p<0.05) in majority belonging to extracellular
matrix, cell cycle and cell death, all related to growth plate maturation. We next scanned the
upstream promoter regions of the 394 genes for the presence of evolutionarily conserved binding
sites for transcription factors implemented in growth plate maturation such as Estrogen Receptor,
Androgen Receptor, Elk1, Stat5b, CREBP and Runx2. High quality motif sites for Runx2 (87 genes),
Elk1 (43 genes) and Stat5b (31 genes), but not estrogen receptor, were evolutionarily conserved,
indicating their functional relevance across primates.

In conclusion, our data suggest a role for Runx2, Elk1 and Stat5b in growth plate maturation
and provides suggestive evidence that the effect of estrogen on growth plate maturation is not
mediated by activating genomic estrogen signalling in growth plate chondrocytes.

Introduction

Longitudinal growth occurs at the epiphyseal growth plate, a thin layer of cartilage entrapped
between epiphyseal and metaphyseal bone at the distal ends of the long bones. In the normal
growth plate, immature cells are located towards the epiphysis, called the resting zone, with
mature chondrocytes in the proliferating zone, which hypertrophy in the hypertrophic zone
adjacent to this (1). At the beginning of puberty longitudinal growth rate first increases, but with
progression of puberty, growth rate is decelerating due to growth plate maturation, and at the
end of puberty the growth plate eventually disappears due to epiphyseal fusion. The molecular
mechanisms underlying these distinct phases of growth plate activity during puberty are largely
unknown but a role for estrogen has been suggested (2;3).

Endocrinological observations suggest that at the beginning of puberty relatively low levels of
estrogen initiate the growth spurt. With progression of puberty, estrogen levels further increase
which drives growth plate maturation and finally growth plate fusion. The most compelling
evidence for a role of estrogen is provided by clinical observations in a patient with an inactivating
mutation in the estrogen receptor alpha and in patients with a mutation in the aromatase gene
resulting in lack of estrogen. These patients did not experience a growth spurt, and lack growth
plate maturation and fusion (4;5). Furthermore, from clinical observations it is known that high
levels of estrogen inhibit longitudinal bone growth (6).

The mechanism by which estrogens exert these effects on growth plate activity is not fully
understood. It has been postulated that estrogen accelerates the senescent decline of the growth
plate (7). Senescence is a term for the structural and functional changes over time in the growth
plate, such as a gradual decline in the overall growth plate height, proliferative zone height,
hypertrophic zone height, size of hypertrophic chondrocytes, proliferation rate and column
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density (7). It is believed that the growth plate fuses when senescence reaches a critical point in
the growth plate. Recent evidence indicates that senescence might occur because stem-like cells
in the resting zone have a finite proliferative capacity, which is exhausted gradually. This process
is accelerated by estrogen (8;9).

Estrogen induces cell responses by activating the so-called genomic signaling pathway involving
the nuclear estrogen receptor alpha (ERa) and beta (ERb) or of a non-genomic signaling pathway
involving membrane bound receptors like GPR30 resulting in activation of adenylyl cyclase and
MAPKs (10-13). ERa, ERb and GPR30 are all expressed in human growth plate chondrocytes
(14;15). Their expression is not limited to the stem-like cells of the resting zone, which are the
main target cells of estrogen action based on the senescence hypothesis, but is more broadly
distributed in the growth plate. It is still largely unknown whether the pubertal phenomena in
relation to growth rate are caused by direct effects of estrogen on chondrocytes or by indirect
effects via, for example, activation of the Growth Hormone/IGF-I axis.

During puberty both sex steroids, growth hormone (GH) and IGF-1 levels increase (16). It is well
known that GH and IGF-1 can increase growth velocity as well as accelerate bone maturation
measured by a decrease in growth plate height in children (17;18). Also receptors for GH and IGF-
1 are present on human chondrocytes (19), indicating that both hormones can have direct effects
on the growth plate. Stimulation of the GH-receptor activates an intracellular signal transduction
cascade eventually converging to the transcription factor Stat5b (20). Likewise, IGF-1 signalling
results in the activation of signalling routes involving for example the transcription factor Elk1
(21). The exact contributions of these hormones in growth plate maturation and epiphyseal fusion
still need to be clarified.

Alternatively, estrogen may regulate, either directly or indirectly, the expression of paracrine
regulators of growth plate activity such as Parathyroid hormone-related peptide (PTHrP) and
Indian hedgehog (Ihh). These secreted growth factors coordinate endochondral ossification by
regulating chondrocyte proliferation and differentiation as well as osteoblast differentiation
(22;23). PTHrP signals, amongst others, via activation of the cyclic AMP response element binding
protein (24). Both factors have been identified in the postnatal growth plate and have been
postulated to play a role in growth plate fusion (25).

In the growth plate, the transcription factor Runx2 plays an important role in the regulation
of chondrocyte hypertrophy and the associated changes in the extracellular matrix (26). The
expression and activation of this transcription factor is in part regulated by PTHrP and Ihh (27).
Studies on the regulation of growth plate activity during puberty are hampered by the lack of easy
accessible and representative animal models. For example, rodents do not fuse their growth plates
at the end of sexual maturation and discrepancies exist between human and mouse models with
respect of the role of ERa in growth plate regulation (28-30). In addition, human growth plate
specimens are very difficult to obtain.

We were fortunate to obtain growth plate samples of a single patient at two different stages of
puberty. The growth plate tissues are genetically identical and from the same anatomical location.
In this study we have performed a morphological analysis of these growth plate specimens
complemented with a detailed microarray and bioinformatic analysis and identified 394
differentially expressed genes which were representative for processes that occur during growth
plate maturation. We subsequently searched the promoter regions of these genes for evidence
of involvement of hormones and paracrine factors in their expression regulation during growth
plate maturation. Assuming that the regulation of processes such as growth plate maturation is
conserved across primates, we identified functional transcription factor binding sites as those
motif sites with a better evolutionary conservation than sites occurring by chance, related to
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phylogenetic footprinting (31). More specifically, we searched the promoter regions of genes that
were differentially expressed in the two growth plate specimens for evidence of direct effects of
estrogen, androgen, GH, IGF-I, PTHrP and Runx2 on their expression.

Material and Methods

The study was approved by the local medical ethical committee and informed consent was
obtained. Two epiphyseal growth plate samples, from the left and right proximal femur were
obtained from the same girl with a 1 year interval. In this period the girl progressed from early
(Tanner B2) to a progressed stage of puberty (Tanner B3). The patient suffered from cerebral palsy
and underwent resection of her femur head twice because of painful luxations. She did not use
any long-term medication. Both epiphyseal samples were longitudinally cut with a bone saw and
pieces were covered by Tissue-Tek (Sakura Finetek Europe B.V., Zoeterwoude, the Netherlands),
directly frozen in liquid isopentane and stored at -802C or fixed in 10% formalin, decalcified with
EDTA and embedded in paraffin.

Histological analysis

Paraffin embedded samples were cut into longitudinal 5 mm thick sections using a Reichert Jung
2055 microtome (Leica, Rijswijk, The Netherlands). The sections were mounted on glass slides and
stained with Haematoxylin. Total height was measured at three points parallel to the chondrocyte
columns, height of each zone was measured at 10 different places for each zone and results were
averaged. The space between columns in the proliferative and hypertrophic zone was measured
at 20 different places.

RNA isolation

Bone was removed from both epiphyseal growth plate samples and 40 um thick sections were
cut with a cryostat. Every fifth section was followed by a 5 pm thick section which was studied
with Hematoxylin staining to ensure lack of bone contamination. Total RNA isolation was
performed with an optimized method for RNA extraction from cartilage as described by Heinrichs
et al. (32) except that the protocol was started by homogenizing the sections in 1 ml guanidine
thiocyanate solution. RNA extraction was followed by purification with a RNeasy kit according to
the manufacturers protocol (Qiagen) and quality and integrity of each sample were checked with
the Agilent 2100 Bioanalyzer.

Microarray

RNA was tested by capillary electrophoresis on an Agilent 2100 bioanalyzer (Agilent) and high
quality was confirmed. 100 ng of total RNA was then amplified and labeled using the GeneChip
Two-Cycle cDNA Synthesis Kit (Affimetrix) and the MEGAscript T7 Kit (Ambion). The labeled
cRNA was further used for the hybridization to Affymetrix Human Genome U133 PLUS 2.0 Array
Genechips and hybridized according to Affymetrix manufacturer’s protocol. RNA was extracted
from two different sections of each growth plate. A Custom CDF Version 11 with Entrez based
gene definitions was used to annotate the arrays (33). The Raw fluorescence intensity values
were normalized applying quantile normalization using a commercial software package SAS JMP7
Genomics, version 3.1, from SAS (SAS Institute, Cary, NC, USA). Gene annotation was obtained
through the Affymetrix NetAffx website (http://www.affymetrix.com/analysis/index.affx). The
quality control, normalisation and statistical modelling were performed by array group correlation,
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mixed model normalisation and mixed model analysis respectively. For the presence/absence
analysis for a single-array, GeneChip® Operating Software version 1.4 (GCOS) from Affymetrix
was used. Analysis of differential gene expression was based on loglinear mixed model of perfect
matches (34). A false discovery rate of a=0.05 with FDR-correction for multiple testing was used
to make a selection of most differentially expressed genes. These affected genes were further
investigated to identify pathways that are likely to be affected by differential expression. Pathways
were generated either from the KEGG database (Kyoto Encyclopedia of Genes and Genomes, http://
www.genome.ad.jp/kegg/pathway.html) or from manual annotation. The selection of affected
genes were also analysed with a genome wide analysis of gene sets defined by the Gene Ontology
(GO) Consortium and classified as GO-terms (35). In this analysis, an enrichment of affected
genes within a GO-term suggests that this GO-term is affected by maturation of the growth plates.
Analyses were done with the Gene Ontology Tree Machine program (http://bioinfo.vanderbilt.
edu/gotm). The raw and normalized data are deposited in the Gene Expression Omnibus database
(http://www.ncbi.nlm.nih.gov/geo/; accession No. GSE-18338).

Reverse transcription- Polymerase Chain Reaction (RT-PCR)

RNA was reverse transcribed into cDNA using First Strand cDNA Synthesis kit for gPCR (Roche
Diagnostics Gmbh, Mannheim, Germany) according to the manufacturer’s instructions. Expression
of collagen 3A1 (COL3A), CDKN1B (p27Kip1), dolichyl-phosphate mannosyltransferase
polypeptide 1 (DPM1), Thrombospondin 4 (THBS4), and ribosomal protein L15 (RPL15) mRNA
was quantified by real-time PCR using the Bio-Rad iCycler with SYBR Green. QuantiTect Primer
Assays for each of these genes were purchased from Qiagen (Qiagen Benelux B.V, Venlo, the
Netherlands) and used according to the manufacturer’s protocol. Threshold cycles were estimated
and averaged for the triplicates. Relative amounts of mRNA were normalized to 3,-microglobulin
expression in the same sample to account for variability in the initial concentration, quality of
total RNA and in the efficiency of the reverse transcription reaction. Delta Ct was calculated by
extracting the threshold cycle for ,-microglobulin from the threshold cycle for the gene of interest
followed by calculation of the change in delta Ct with progression of puberty.

Transcription factor binding sites

Upstream regions of 5000nt were downloaded from the 394 genes that changed with progression
of puberty. The promoter regions were scanned for six transcription factor binding motifs selected
from Jaspar 3.0 (36) and Transfac 7.0 (http://www.gene-regulation.com). The motifs were (see
supplemental table 1): estrogen receptor (Jaspar MA0112), androgen receptor (Jaspar MA0007),
Elk-1 (Transfac M00025), CREB (Jaspar MA0018), Runx2 (Jaspar MA0002) and STAT5B (Transfac
MO00459). A selection was made of the fraction of the highest scoring positions as potential
regulatory sites. Two types of randomization controls were included. Firstly, we scanned the
5,000nt upstream regions of 100 sets of 394 randomly chosen genes for the six motifs mentioned
above (random genes). Secondly, we scanned the 5,000nt upstream regions of the 394 differentially
expressed genes for 100 versions of the six motifs with randomized columns (random motifs).
Because we expected that meaningful binding sites may be distinguished from spurious high
scoring hits by their evolutionary conservation, we assessed the conservation of each of the
binding sites across nine primate genomes. For this purpose the phastCons (37) primates
conservation track was downloaded from the UCSC Genome Browser download page (38) and the
average conservation score for all positions aligned with the motif were calculated.
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Results

Quantitative Histology

Histology of the samples showed a clear decrease in overall height of the growth plate at the
more progressed stage of puberty (figure 1). This was confirmed by quantitative measurements
showing a significant decrease in the average height of the growth plate, and a significant decrease
in the height of the resting, proliferative and hypertrophic zone at Tanner stage 3. The mean space
between columns was increased in the more matured growth plate. These data are summarized
in table 1.

Gene expression microarray analysis

RNA of both growth plate samples was amplified, labelled and subjected to Affymetrix microarray
analysis (HG-U133 Plus 2) in duplicate. The technical and biological reproducibility was good,
with correlations above 0.97. The raw and normalized data are deposited in the Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/; accession no. GSE-XXXX). Presence and
Absence analysis for each probe set was employed by using the GeneChip® Operating Software
version 1.4 (GCOS) from Affymetrix. On average 5043 genes were present; with progression of
puberty the number of genes present in the growth plate increased slightly (5069 vs 5016) (table 2).
The microarray data was validated by quantitative PCR for 5 randomly chosen genes. Similar
trends in gene expression (up- or downregulation) were found in qPCR and microarray analysis for
all genes (Figure 2). THSB4 showed a more pronounced increase in expression in the microarray
results compared to the qPCR results.

Analysis with a loglinear mixed model of perfect matches and a false discovery rate of a=0.05
and a Bonferroni-correction for multiple testing revealed 460 affymetrix probe IDs changing
in expression, of which 330 were upregulated and 130 were downregulated. Using BioMart 0.7
(39) these probes were mapped to 394 genes changing with maturation of the growth plate (see
table 2 supplemental data). The overall changes in gene expression were small; on average 1.38-
fold increase for upregulated and 1.36-fold decrease for down regulated genes. Cytokine-like 1
was the most upregulated gene showing a 6.48 fold increase in expression and the most affected
downregulated gene, pannexin 3, showed a 2.02 fold decrease in expression level.

The 394 differentially expressed genes were further investigated with Fisher’s exact tests using SAS
and the KEGG database. 111 of the 394 genes could be mapped to 13 enriched pathways (p<0.05)
(Table 3). Several of the differentially expressed genes were present in more than one of the above
pathways. These pathways were mostly related to the extracellular matrix, cell communication
and metabolism. We studied these genes independently for their up or down regulation (see
table 3 supplemental data). Most genes, 89 out of 111, were upregulated in the growth plate with
progression of puberty. In addition, differentially expressed genes were further investigated with
the Gene Ontology Tree Machine. This revealed 49 different Gene Ontology terms (GO terms)
relatively enriched (p<0.01). Enriched GO terms were related to the extracellular matrix, cell cycle,
cell growth and ligase activity (see figure 1 supplemental data).
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Figure 1: Histology of growth plate Tanner 2 and Tanner 3.

Panel A and B; pictures of growth plate of patient in Tanner stage 2 in respectively 40x and 100x
magnification. Panel C and D; pictures of growth plate of patient in Tanner stage 3 in respectively 40x and
100x magnification. The more mature growth plate (Tanner stage 3) shows a decrease in total growth plate
height, a decrease in height of each separate zone and an increase in the mean space between columns. RZ
means resting zone, PZ means proliferative zone and HZ means hypertrophic zone. Bars indicate 200um.

Table 1: Quantitative Histology growth plate Tanner stage 2 and 3.

Tanner stage 2 Tanner stage 3 P-value
Total height (mm) 0.16 £0.01 0.097 +0.012 0.002
Height resting zone (mm) 0.073 £ 0.003 0.037 £ 0.009 <0.001
Height proliferative zone (mm) 0.047 £0.003 0.033 mm + 0.004 <0.001
Height hypertrophic zone (mm)  0.024 + 0.003 0.016 + 0.003 <0.001
Intercolumn space (mm) 4.87*10-4 + 0.34*10-* 7.52*%10-4 + 0.45%10-* <0.001

Table showing measurements of total height, height of each individual zone and intercolumn space of the
growth plate in Tanner stage 2 and the more progressed growth plate in Tanner stage 3.
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Figure 2: RT-PCR validation of microarray data.

Correlation between RT-PCR and microarray results for (A) collagen 3A1 (COL3A), (B) Thrombospondin
4 (THBS4), (C) CDKN1B (p27Kip1), (D) ribosomal protein L15 (RPL15), (E) dolichyl-phosphate
mannosyltransferase polypeptide 1 (DPM1). Results are expressed as changes with progression of puberty
(value Tanner B3- Tanner B4) for both the RT-PCR (delta Ct = Ct
results (least square means). Similar trends in gene expression (up- or downregulation) were found in qPCR
and microarray analysis for all genes, however THSB4 showed a more pronounced increase in expression in
the microarray results compared to the qPCR results.

Ct ) and microarray

gene of interest  “B2-microglobulin

Table 2: Number of expressed and non-expressed genes.

Absent Present Unknown
Growth plate Tanner 2 10255 5016 5555
Growth plate Tanner 3 10118 5069 5639

Table showing the number of genes absent or present in each of the growth plate. In the column defined as
unknown is the number of genes not consistent in the present/absent analysis.
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Table 3: Pathways significantly changing with progression of puberty.

pathway genes found total genes % p.
pathway

1 Proteasome 9 23 39 ok
2 Cholera_Infection 10 30 33 *okok
3 Oxidative_phosphorylation 20 89 22 ok
4 N_Glycan_biosynthesis 9 27 33 *x
5 ATP_synthesis 9 28 32 x
6 Adherens_junction 14 60 23 *k
7 Aminosugars_metabolism 6 17 35 *k
8 Regulation_of_autophagy 6 17 35 ok
9 Ribosome 9 35 26 ok
10 ECM_receptor_interaction 14 67 21 *k
11 Cell_cycle 15 84 18 *
12 Cell_Communication 13 74 18 *
13 Ubiquitin_mediated_proteolysis 7 32 22 *

*= p < 0.05, **= p < 0,01, ***= p < 0,001

Table showing the 13 significant pathways associated with pubertal maturation of the growth plate.

Table 4: Top 0.001% genes with a transcription factor binding site for 6 motifs; Estrogen receptor,
Elk-1, STAT5B, RunX2, Androgen receptor and CREB.

Motif no.genes % of394 p-value average conservation % genesup % genes
genes score down

Estrogen 49 13 0,25 0,19 73 27

receptor

Elk-1 43 9 <0,01 0,33 70 30

STATSB 31 8 0,04 0,25 81 19

RunX2 87 22 <0,01 0,23 76 24

Androgen 46 12 0,07 0,22 80 20

receptor

CREB 44 11 0,16 0,20 75 25

Number and percentage of genes plus the average conservation score containing an transcription factor
binding site for each of the 6 motifs. Results are presented for the top 0.0001% of sites and 0.001% of sites.
For each motif is the percentage given of genes going up and down in expression.
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Transcription factor binding sites

We next scanned the promoter regions of the 394 differentially expressed genes for the presence of
conserved transcription factor binding sites. We limited our search to transcription factor binding
sites which are activated by hormones and paracrine factors that have previously been implicated
in growth plate maturation: Estrogen response elements (EREs) and androgen response elements
(ARE) for activity of sex-steroids, Stat5b for GH (20), Elk-1 for IGF-I (21), Cyclic AMP response
element (CREB) for PTHrP (24) and Runx2 for growth plate hypertrophy (40). We limited
our analysis to the top 0.001% of the highest scoring motifs and determined the evolutionary
conservation score of these sites. We found 215 genes with one or more transcription factor binding
motif using the cut off of 0.001% of the top scoring motifs. The motifs and genes are listed in table
4 of the supplemental data. As a control, a similar analysis was performed using 100 sets of 394
randomly chosen genes. In addition, the promoter regions of the 394 genes were screened with
randomized motifs for each transcription factor binding site and their evolutionary conservation
score was also determined. These randomizations were used to calculate the statistical confidence
score (p-value). The data are summarized in table 4.

We found 87 genes with a transcription factor binding site for RUNX2, 76% of genes going up
and 24% going down in expression. The average evolutionary conservation score of the motif
was significantly higher (p<0.01) compared to the findings in randomly chosen genes. Likewise,
evolutionary conservation of the ELK-1 (49 genes) and STAT5B (31 genes) binding sites in the
panel of 394 genes associated with growth plate maturation was significantly higher than random.
We subsequently repeated the statistical analysis of the conservation score by including the top
0.01, top 0.1, top 1 and top 10% of the highest scoring sites in the analysis. By including up to
10% of the highest scoring sites of ELK-1 and STAT5B, the evolutionary conservation score was
still significantly higher than for the controls. Significance for RUNX2 was lost by increasing the
number of motif sites from the top 0.001 to the top 0.01 % (data not shown).

In marked contrast, the average evolutionary conservation scores of EREs (49 genes), AREs (46
genes) and CREB (44 genes) in the set of 394 genes were not significantly higher than in the
randomly chosen controls.

In summary, the highest scoring motif sites for RUNX2, Elk-1 and STAT5B were also the most
conserved across primates, suggesting that the presence of these motifs may play a functional role
in the regulation of expression of the genes related to growth plate maturation. Conversely, high
scoring ER, AR and CREBP motif sites were not better conserved than those in random gene sets,
suggesting that their presence is coincidental.
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Discussion

In the present study we compared gene expression levels in two epiphyseal growth plate samples
obtained from one girl at early and mid puberty (Tanner stage 2 and 3) with a 1 year interval.
Maturation of the epiphyseal growth plate in mid puberty is associated with a multitude of
changes in morphology and expression levels of genes associated with the extracellular matrix,
cell death, cell communication and metabolism. In the panel of 394 genes changing with growth
plate maturation we found evidence, based on the evolutionary conservation of the highest scoring
transcription factor binding sites, for regulation of expression by the transcription factors RUNX2,
ELK-1 and STAT5B.

Histological experiments and measurements showed a clear decrease in total growth plate height
with maturation. This is in line with the observations in rabbits, where growth plate height
gradually declines with age and even more rapidly under the influence of estrogen (7). In humans
itis known and widely used for assessing skeletal maturation that radiographically the epiphyseal
width varies in different stages and declines in its progress toward maturity. In the more mature
growth plate, columns were more widely spaced with more intervening extracellular matrix. These
changes are described as senescence of the growth plate and confirm earlier results in rabbits
and rats (7;41). Histological observations and measurements were in line with the microarray
results, showing significant changes in the extracellular matrix compartment with maturation
of the growth plate.The ECM receptor interaction pathway changed significantly with 14 out of
67 genes affected in this pathway. Associated with the extracellular matrix are the aminosugars
metabolism pathway and the N-Glycan biosynthesis pathway, both changing significantly
with maturation. The ECM is composed of a variety of macromolecules like proteoglycans and
polysaccharides (glycosaminoglycans) that are secreted locally and assembled into an organized
network (42;43). Most genes in these three pathways are upregulated with maturation suggesting
an increase in pathway activity and extracellular matrix production. In addition to the pathway
and morphology data, the GO term analyses also showed many enriched GO categories that are
involved and associated to the extracellular matrix, which strengthens our findings. Blanchard
et al demonstrated previously that estrogens and testosterone stimulate proteoglycan synthesis
in vitro in male and female human epiphyseal chondrocytes, consistent with our results (44).
Besides extracellular matrix pathways, also cell death pathways were enriched in the differentially
expressed gene sets, e.g. proapoptotic and anti-apoptotic genes, but also genes involved in the
regulation of autophagy. Apoptosis and autophagy are closely related and there is an overlap
in signaling proteins (45;46). Previously, we found no signs of classical apoptosis in the human
growth plate with pubertal maturation and epiphyseal fusion (47). The results of this study are in
line with this and suggestive for a non-classical and perhaps intermediate mechanism of different
types of cell death.

The overall change in gene expression levels in growth plate chondrocytes with progression of
puberty was unexpectedly small, particularly since puberty is associated with dramatic changes
in growth velocity and hormone levels like sex steroids, Growth Hormone and IGF-I (48-50). Our
microarray data is in line with the histological changes observed with growth plate maturation
providing support that the differentially expressed gene set is representative for the changes that
occur during growth plate maturation. We hypothesized that analysis of the promoter regions of
these genes may provide clues for transcription factors and signaling pathways that are involved
in growth plate maturation. More specifically the promoter regions were analyzed for the presence
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of evolutionarily conserved binding sites for Estrogen and Androgen Receptors, ELK-1 for IGF-],
STAT5b for GH, CREB for PTHrP and RUNX2 for growth plate hypertrophy.

Despite strong clinical and experimental evidence for the role of sex steroids and in particular
estrogen in growth plate maturation, the potential EREs and also AREs in the promoter regions of
the 394 genes were not conserved in other primate species. Although these motif sites may still be
functional in human, the fact that they are uniquely human makes this less likely since sequences
conserved along species are more likely to have functional roles (37). Thus, estrogen may not
have a direct genomic effect in pubertal growth plate maturation. This contrasts with findings of
Windahl et al., who previously detected an ERE-mediated response in the hypertrophic zone of
mice (51). This discrepancy might be explained by a species difference, as illustrated before by the
divergent phenotypes of the ERa knockout mice and man with respect to growth plate regulation.
Our data does not exclude a role for non-genomic estrogen signalling in growth plate maturation
nor for an indirect effect of estrogen. Likewise, no enrichment was found for CREB binding sites
which are activated by intracellular cAMP levels via for example PTHrP.

Interestingly, the high scoring ELK-1, STAT5b and RUNX2 motif sites were conserved across
primates. ELK-1 and STAT5b are activated by, amongst others, IGF-I and GH for which receptors
are present in growth plate chondrocytes. In animal models local effects of GH and IGF-1 on growth
plate chondrocytes have been established (52;53). Besides the increase in levels of estrogen, also
thelevels of GH and IGF-I increase significantly with the progression of puberty. In addition, itis well
known that GH-treatment accelerates growth as well as growth plate maturation, either directly
or indirectly via IGF-1. Our conservation analysis of the transcription factor binding motifs in the
promoters of differentially expressed genes supports a direct role for GH and IGF-I in growth plate
maturation, resulting in activation of STAT5b and ELK-1 mediated gene transcription, respectively.
The effect of estrogen on the activity of the GH/IGF-I axis is well appreciated, demonstrated by
increasing GH levels in patients with oral estrogen treatment (54;55). This may suggest that effects
of estrogen on growth plate maturation might be mediated, at least in part, by GH and/or IGF-L.
Runx2 plays an important role in chondrocyte maturation and is involved in the production of
bone matrix proteins (56). Our results are in line with this hypothesis, since we found many genes
changing with maturation of the growth plate in puberty that contained evolutionarily conserved
transcription factor binding site for Runx2. Previous studies have shown that Runx2 can mediate
actions of estrogen in an osteoblastic cell line and that selective estrogen receptor modulators
like tamoxifene and raloxifene can increase Runx2 promotor activity in an osteosarcoma cell
line (57;58). This provides an additional mechanism by which estrogen can indirectly influence
growth plate maturation.

While the changes in growth plate morphology are in line with the senescence hypothesis, our
data do not allow testing the proposed effect of estrogen on the depletion of stem-like cells in the
growth plate with progression of puberty.

The major limitation of our study is the small sample number. However these growth plate samples
are unique and enable a longitudinal analysis within one patient, therefore excluding genetic
confounders. Adultheightis determined for 80-90% by genetic factors (58;59). Including additional
patients would therefore result in increasing variability, which would complicate all subsequent
analysis. To the best of our knowledge, no other microarray studies have been performed on human
growth plate tissues. The observed changes in gene expression and subsequent pathway analysis
were fully in line with morphological changes that were characteristic for growth plate maturation
in animal studies. In addition, microarray data were confirmed by qPCR. This strengthens our
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confidence that the set of 394 genes is representative for changes in growth plate maturation and
that our findings are biologically relevant. However, additional studies have to be done in a larger
number of samples and with more pubertal stages to confirm our findings.

In conclusion, maturation of the epiphyseal growth plate in mid-puberty is associated with
morphological changes in line with the senescence theory. This was corroborated by a multitude
of changes in gene expression. Thirteen pathways were affected with maturation, several related
to the extracellular matrix, the cell cycle, and programmed cell death. Evolutionary conservation
of binding sites provides evidence for a direct role for GH, IGF-I and RUNX2 in growth plate
maturation. We did not find support for direct genomic effects of estrogen, suggesting that the well
appreciated role of estrogen in growth plate maturation might perhaps be indirect by modulating
GH, IGF-1 and RUNX2 activity.
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LDB2
LEPREL1
LIX1

LIX1L
LPAR1
LPL

LRP4
LRRFIP2
LRRTM4
LTA4H
LYPLA1
LYRM5
LYSMD3
MAP4K3
MARK3
MBNL1
MCCC1
MccC
MED28
MED30
MED4
METTL3
MGAT2
MNDA
MOXD1
MPO
MRPL47
MRPS22
MRPS35
MTMR6
MYCBP2
NCOA4
NCUBE1
NDFIP2
NDP

NET1
NFAT5
NFIB

NFIX
NFKBIA
NMI
NNMT
NPC2
NPEPPS
NRK
NUP107
OAT

OMD
PAN3
PANX3
PCDH8
PCDHGA11
PCDHGA12
PCDHGA2
PCDHGA3
PCDHGA6
PCDHGAS8
PCDHGB7
PCM1
PDCD10
PENK
PFDN2
PFDN5
PIGK
PITPNB
PLAG1
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ENSG00000081853
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ENSG00000214580
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ENSG00000214570
ENSG00000078674
ENSG00000114209
ENSG00000181195
ENSG00000143256
ENSG00000123349
ENSG00000142892
ENSG00000180957
ENSG00000181690

Gene symbol
PLBD1
PLOD2
PLS1
PLSCR1
PLSCR4
PM20D2
PMEPA1
POMP
PPAP2A
PPIC
PPP1R14C
PPP1R2P4
PPP6C
PPT1
PRDX4
PSMB4
PSMD12
PSMD14
PTPLAD1
PTPN4
PXDN
RAB11A
RAB11FIP2
RAB18
RAB2
RAP2A
RCN2
RGS18
RHOB
RHOBTBH1
RNF7
RPL15
RPN1
RPN2
RPS19P3
RPS21
RSBN1
RSPO3
RYK
S100A12
S100A8
SDC1
SDC2
SDCBP
SEC22C
SEC23A
SEC23B
SEC61G
SEMA3C
SEMAGD
SERP1
SERPINH1
SERTAD4
SF3B1
SFRP1
SFRS5
SH3BGRL
SHMT2
SLC15A4
SLC2A13
SLC39A1M1
SLC41A3
SLITRK6
SMG7
SMOC1
SMOC2
SNAI2

Ensemble ID
ENSG00000121316
ENSG00000152952
ENSG00000120756
ENSG00000188313
ENSG00000114698
ENSG00000146281
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ENSG00000132963
ENSG00000067113
ENSG00000168938
ENSG00000198729
ENSG00000215471
ENSG00000119414
ENSG00000131238
ENSG00000123131
ENSG00000159377
ENSG00000197170
ENSG00000115233
ENSG00000074696
ENSG00000088179
ENSG00000130508
ENSG00000103769
ENSG00000107560
ENSG00000099246
ENSG00000104388
ENSG00000125249
ENSG00000117906
ENSG00000150681
ENSG00000143878
ENSG00000072422
ENSG00000114125
ENSG00000174748
ENSG00000163902
ENSG00000118705
ENSG00000105372
ENSG00000171858
ENSG00000081019
ENSG00000146374
ENSG00000163785
ENSG00000163221
ENSG00000143546
ENSG00000115884
ENSG00000169439
ENSG00000137575
ENSG00000093183
ENSG00000100934
ENSG00000101310
ENSG00000132432
ENSG00000075223
ENSG00000137872
ENSG00000120742
ENSG00000149257
ENSG00000082497
ENSG00000115524
ENSG00000104332
ENSG00000100650
ENSG00000131171
ENSG00000182199
ENSG00000139370
ENSG00000151229
ENSG00000133195
ENSG00000114544
ENSG00000184564
ENSG00000116698
ENSG00000198732
ENSG00000112562
ENSG00000019549

ne symbol

SNX16
SNX3
SOCs4
SORL1
SPATAG
SPRED1
SPRY2
SSFA2
STARD13
STK38L
STT3B
SUB1
SULF1
SYCP1
SYNM
TAC1
TAX1BP1
TBC1D12
TCEAL7
TCF4
TGFBI
TGFBR3
THBS2
THBS4
TIMM17A
TIMP3
TIPARP
TMCO3
TMED2
TMEM100
TMEM161B
TMEM38B
TMEMB39A
TMEM45A
TMEM46
TNFAIP6
TNFRSF11B
TNFSF11
TOMM6
TOX
TRAM1
TRAM2
TRAPPC4
TSN
TXNIP
UBE2B
UGP2
VAMP7
VCAM1
VCPIP1
VEZF1
VTA1
WAPAL
YES1
YIPF5
ZBTB10
ZDHHC6
ZNF281
ZNF652
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ENSG00000180008
ENSGO00000137642
ENSG00000132122
ENSG00000166068
ENSG00000136158
ENSG00000138434
ENSG00000133121
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ENSG00000181458
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ENSG00000123610
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ENSG00000120659
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ENSG00000198846
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ENSG00000196655
ENSG00000211460
ENSG00000117289
ENSG00000119048
ENSG00000169764
ENSG00000124333
ENSG00000162692
ENSG00000175073
ENSG00000136451
ENSG00000009844
ENSG00000062650
ENSG00000176105
ENSG00000145817
ENSG00000205189
ENSG00000023041
ENSG00000162702
ENSG00000198740
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