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5 Quasilinear parabolic
reaction-diffusion systems: user’s
guide to well-posedness, spectra
and stability of travelling waves

This paper is concerned with quasilinear parabolic
reaction-diffusion-advection systems on extended do-
mains. Frameworks for well-posedness in Hilbert
spaces and spaces of continuous functions are pre-
sented, based on known results using maximal reg-
ularity. It is shown that spectra of travelling waves
on the line are meaningfully given by the familiar
tools for semilinear equations, such as dispersion re-
lations, and basic connections of spectra to stability
and instability are considered. In particular, a prin-
ciple of linearized orbital instability for manifolds of
equilibria is proven. Our goal is to provide easy ac-
cess for practitioners to these rigorous aspects. As
a guiding example the Gray-Scott-Klausmeier model
for vegetation-water interaction is considered in de-
tail, which is a rescaling of the extended Klausmeier
model considered in earlier chapters.

Appeared in SIAM Journal on Applied Dynamical Systems in 2014 [127].
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5 Quasilinear parabolic reaction-diffusion systems

5.1 Introduction

In this paper we present rigorous frameworks for well-posedness, spec-
tra and nonlinear stability of travelling wave solutions (pulses, fronts and
wavetrains) of quasilinear parabolic reaction-diffusion systems of the form

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R, (5.1.1)

with unknown u(t, x) ∈ RN . The nonlinearities a, f are smooth and a(u) ∈
RN×N is strongly elliptic in the domain of interest, but does not have to be
symmetric. We further consider a variant of (5.1.1) in higher space dimen-
sions x ∈ Rn up to n = 3. The nonlinearities may also depend explicitly on
x in an appropriate way.

Quasilinear reaction-diffusion systems arise as models in various contexts
due to nonlinear fluxes, density dependent diffusion, self or cross diffusion,
see e.g. [3,152,153]. For pattern formation problems it is natural to consider
an extended domain and to neglect the influence of boundary conditions.
Travelling waves, i.e., solutions of (5.1.1) constant in a co-moving frame
ξ = x − ct with speed c ∈ R having constant or periodic asymptotic
states, are among the simplest interesting reaction-diffusion patterns and
are observed for different types of quasilinear systems, see, e.g., [82,104,117,
126,131,169,205].

For semilinear parabolic problems on the line it is well-known that e.g.
H1 or BUC1 are suitable phase spaces for well-posedness in a perturbative
setting [27, 78]. The corresponding spectrum of the linearization is charac-
terized in terms of the dispersion relation and the Evans function [63, 157].
In some situations, in particular when the essential spectrum does not touch
the imaginary axis, nonlinear (orbital) stability of a wave can directly be de-
duced by a principle of linearized stability [78, 166]. An excellent reference
for the spectrum and stability of nonlinear waves in the semilinear context
is [90]. We also mention the abstract solution theory in Sobolev spaces [112],
which can be used for fluid problems in unbounded domains, e.g., [14, 191].

For quasilinear models an analogous unified framework for well-posedness,
spectra and stability of waves seems less known. It seems that the major-
ity of concrete well-posedness results in the literature concerns bounded
domains. Moreover, when the general results are formulated abstractly or
under abstract conditions, a user needs to search for suitable function spaces
and verify hypotheses that lead astray (even though some examples provide
guidelines).
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5.1 Introduction

However, the spectrum of the linearization in a travelling wave can only be
meaningfully determined based on a well-posedness setting. For instance, a
Turing-instability determined via the usual dispersion relation lacks a basis
without a consistent phase space. Conveniently, the pattern forming nature
of a Turing-instability can be identified ad hoc since the existence of travel-
ling wave patterns is an ODE problem. Well-posedness is, however, required
to prove that a spectrally unstable solution indeed is unstable under the
nonlinear evolution. Such a result then justifies the computation of stability
boundaries by the spectrum as in [147,199] (see also §5.5).

The purpose of this paper is to present rigorous settings for quasilinear
parabolic problems in the travelling wave context as described above. We
aim for a presentation accessible to practitioners, in the spirit of [27,78,157]
for semilinear problems. To this end we bring together and apply to (5.1.1)
mostly abstract results from the different fields involved in well-posedness,
spectra and stability. This puts the naively expected analogy to the semilin-
ear case on firm grounds. For quasi-linear systems, new difficulties mainly
arise on a technical level concerning well-posedness and nonlinear stability.
Most importantly, a variation-of-constants formula is not available. Further,
when dealing with quasi-linear problems one has to take into account all
available regularity as prescribed by sharp trace results such that in general
one cannot take fractional power domains as a phase space for the solution
semiflow. Instead one has to work with real interpolations spaces (see sec-
tion 5.2.1) or the domain of the linearized operator itself. However, in the
end it turns out that the familiar spaces H2 and BUC2 are possible phase
spaces and that the spectral theory and the sufficient conditions for non-
linear stability are analogous to the semilinear case, at least in noncritical
cases.

There are several abstract settings for well-posedness of general quasilinear
parabolic problems available in the literature (see [3,6,29,75,91,99,114,143,
206], and [5] as well as §5.2.3 for a selective overview). These have advan-
tages and disadvantages depending on the present context, and the geomet-
ric (qualitative) theory is more or less developed in each case. On the other
hand, solutions may be constructed by fixed point arguments tailor-made for
the issues under investigation (e.g. [210]). The (real) viscous conservation
laws are an important and well studied class of quasilinear problems, where
well-posedness results exploit the additional structure [93]. We refer to the
survey [211] and the references therein.

Our focus lies on the approach of [28,99,143] based on maximal Lp - regu-
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5 Quasilinear parabolic reaction-diffusion systems

larity, but we also highlight the approach of [114] based on maximal Hölder
regularity. Besides reaction-diffusion problems, the approach of [28, 99, 143]
and its extensions apply successfully to the local theory of free boundary
problems and to general parabolic problems with nonlinear boundary condi-
tions. Here the geometric theory is well-developed and still advances, espe-
cially for the needs in the context of free boundary problems. The approach
of [114] also applies to fully nonlinear problems.

Recently, in [144, 145] the principle of linearized orbital stability with
asymptotic phase for manifolds of equilibria has been established in the
quasilinear case, for any sufficiently strong well-posedness setting (see e.g.
[78, Section 5.1] for the semilinear case). It in particular applies to the or-
bital stability of pulses and fronts for (5.1.1) in both approaches mentioned
before. The conclusion from arbitrary unstable spectrum to nonlinear or-
bital instability of a manifold of equilibria does not seem to exist in the
literature. Refining arguments from [78, Theorem 5.1.5] and [168] for single
equilibria, we close this gap in the present paper. This might be of interest
also in other contexts, where families of equilibria occur.

In more detail, our considerations may be summarized as follows.

• In one space dimension, x ∈ R, a possible phase space for the evolution
under (5.1.1) of localized perturbations from travelling wave and other
pattern type solutions is the Sobolev spaceH2 (Theorem 5.4). For non-
localized perturbations BUC2 (C2–functions, bounded and uniformly
continuous with all derivatives) is a possible phase space (Theorem
5.7).

• For space dimensions x ∈ Rn with n ≤ 3 other possible phase spaces are
certain Besov spaces, (real) interpolating between L2 and the Sobolev
space H2 (Theorem 5.5). Here the linearization can directly be con-
sidered on L2.

• The ‘spatial dynamics’ spectral theory developed for semilinear para-
bolic systems on the line applies also in the quasilinear case, which
allows to compute the spectrum of travelling waves in a familiar way
(see §5.3.3). In particular, the spectrum is independent of the chosen
setting (Proposition 1).

• The well-known nonlinear stability result with asymptotic phase for
travelling waves with simple zero eigenvalue applies in these settings
(Proposition 2, as a direct consequence of [144,145]).

• Without assuming a spectral gap or an unstable eigenvalue, it is shown
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5.1 Introduction

that an unstable spectrum implies orbital instability of pulses and
fronts (Theorem 5.8) and instability of wavetrains (Proposition 3).
Here we rely on a general result on orbital instability of manifolds of
equilibria (Lemma 5.1).

We emphasize that the divergence form (5.1.1) is only assumed in view of
applications. In a smooth setting, the equation ut = a(u)uxx + f(u, ux) can
be cast into divergence form by a suitable redefinition of a and f .

We believe that also the more general results in [158] on spectra of modu-
lated travelling waves carry over to the quasilinear case, but we do not enter
into details here. Also the nonlinear stability of wavetrains is not consid-
ered. This is a delicate issue since zero always lies in the essential spectrum.
Hence, the best one can hope for is heat-equation-like decay. Under certain
assumptions this has been established for the semilinear reaction-diffusion
case in [52, 166]. A special quasilinear case, more precisely the quasilin-
ear IBL model, is considered in [77]. Also for viscous shocks the spectrum
touches the origin and stability in weighted spaces can be established. We
refer to [212], the survey [211] and the references therein, as well as to [15]
for more recent results.

In §5.5 we illustrate our general considerations by means of the Gray-
Scott-Klausmeier vegetation-water interaction model [97], for x ∈ R given
by

wt =(w2)xx + Cwx +A(1− w)− wv2,

vt =Dvxx −Bv + wv2,
(5.1.2)

with constants A,B ≥ 0, C ∈ R and D > 0. This system is the original
motivation for the present study. It is quasilinear due to the porous medium
term (w2)xx = 2(wwxx+(wx)2) and is therefore parabolic only in the regime
w > 0, in which (5.1.2) supports a large family of travelling waves (see [199]
and §5.5).

This paper is organized as follows. In §5.2 different well-posedness set-
ting results for (5.1.1) are treated, §5.3 is devoted to the spectrum of the
linearization in travelling waves. The connection to nonlinear stability and
instability is considered in §5.4. In §5.5 we expand the discussion of (5.1.2)
and illustrate the application of the general results. For the sake of self-
containedness we prove some technical results in the appendix.

Notation. All Banach spaces are real, and we consider complexifica-
tions if necessary. We write L (X1, X0) for the bounded linear operators
between Banach spaces X0, X1, and L (X0) = L (X0, X0). The usual
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5 Quasilinear parabolic reaction-diffusion systems

Sobolev spaces based on Lp(Rn) are denoted by Hk,p, and Hk = Hk,2.
By BCk = BCk(Rn) and BUCk = BUCk(Rn) we denote the Banach space of
bounded Ck-functions and of bounded Ck-functions such that all derivatives
up to order k are uniformly continuous, respectively.

Acknowledgments. M.M. and E.S. thank the CWI for its kind hospital-
ity. The authors thank Johannes Höwing for his comments and are grateful
to the reviewers for their valuable hints and for pointing out additional ref-
erences.

5.2 Frameworks for well-posedness

We formulate the abstract well-posedness results based on maximal regular-
ity and present three concrete frameworks for quasilinear reaction-diffusion
systems. In one space dimension we obtain well-posedness in H2 and in
BUC2, and in space dimensions less than or equal to three we have well-
posedness in certain Besov spaces. More general problems and further set-
tings are briefly discussed at the end of this section.

5.2.1 Well-posedness based on maximal Lp-regularity

We formulate the results of [99,143] for abstract quasilinear parabolic prob-
lems of the form

∂tu = A(u)u+ F (u), t > 0, u(0) = u0, (5.2.1)

in a Hilbert space setting. Let X0, X1 be Hilbert spaces with X1 continuously
and densely embedded into X0. Roughly speaking, X0 is the base space for
(5.2.1) and A(u(t)) is an unbounded linear operator on X0 with domain
X1. It turns out that on this abstract level the phase space of the solution
semiflow for (5.2.1) acts is a real interpolation space,

X = (X0, X1)1−1/p,p, p ∈ (1,∞),

between X0 and X1. For a definition and the properties of these spaces
we refer to the textbooks [18, 115, 188]. At this point we only note that
X1 ⊂ X ⊂ X0 and that X is in general not a Hilbert space, with exceptions
for p = 2. Fortunately, explicit characterizations of X are possible in the
concrete settings that we shall use later, e.g., H1 = (L2, H2)1/2,2. The real
interpolation spaces are the analogue to the fractional power domains in the
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5.2 Frameworks for well-posedness

semilinear theory [27, 78]. These two types of intermediate spaces between
X0 and X1 differ, in general (again with exceptions for p = 2), but are closely
related (see, e.g., [115, Proposition 4.1.7]).

Recall from [60,114] that a densely defined operator B on X0 generates a
strongly continuous analytic semigroup if and only if ‖λ(λ−B)−1‖L (X0) is
uniformly bounded for λ in a left open sector in C.

As a consequence of the results in [99,143] we have

Theorem 5.1. Let p ∈ (1,∞) and X1 ⊂ X ⊂ X0 be as above. Assume there
is an open set V ⊆ X such that

• F : V → X0 and A : V → L (X1, X0) are Lipschitz on bounded sets;

• for each w0 ∈ V, the operator A(w0) with domain X1 generates a
strongly continuous analytic semigroup on X0.

Then (5.2.1) is locally well-posed in V, with solutions in a strong Lp-sense.

More precisely, the theorem yields solvability of (5.2.1) as follows. For
each initial value u0 ∈ V there is a maximal existence time t+(u0) >
0 and a unique solution u = u(·;u0) ∈ C([0, t+(u0)),V) of (5.2.1), such
that u ∈ H1,p(J,X0) ∩ Lp(J,X1) for time intervals J = (0, T ) with
T < t+(u0). Here H1,p(J,X0) denotes a vector-valued Sobolev space,
which is defined as in the scalar case. Furthermore, t+(u0) is finite only
if either dist(u(t;u0), ∂V) → 0 or ‖u(t;u0)‖X → ∞ as t → t+(u0). The
map t+ : V → (0,∞] is lower semicontinuous, and the local solution semi-
flow, (t, u0) 7→ u(t;u0), is continuous with values in V ⊆ X . If F and A
are smooth, then the semiflow enjoys smoothness properties as well. We
demonstrate this in Proposition 4 in the appendix for a neighbourhood of a
steady state.

Note that if A(w0) generates an analytic semigroup for w0 ∈ X , then
the Lipschitz property of A as in the theorem combined with well-known
perturbation results for semigroups (see [114, Proposition 2.4.2]) imply that
this is true for any A(w̃0) with w̃0 in a small neighbourhood of w0. This
gives a candidate for V.

To verify the assumptions in [99, Section 2], [143, Theorem 3.1] and prove
Theorem 5.1 we only need to know that −A(w0) has for each w0 ∈ V the
property of maximal Lp-regularity on finite time intervals J . But in Hilbert
spaces this already follows from the assumed generator property of A(w0).
Indeed, by [55, Theorems 3.3, 7.1] it suffices to consider the case p = 2,
J = R+ and that the semigroup generated by A(w0) is exponentially
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5 Quasilinear parabolic reaction-diffusion systems

decaying. In this situation maximal L2-regularity follows from [33] (see
also [143, Theorem 1.6] for the short proof using Plancherel’s theorem).

One space dimension: well-posedness in H2

For u(t, x) ∈ RN we apply the abstract result Theorem 5.1 to the reaction-
diffusion system

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R. (5.2.2)

To obtain a simple setting with familiar function spaces which is at the same
time directly linked to L2-spectral theory, we work with X0 = H1 = H1(R)N

as a base space. In one space dimension (and only there) this is possible since
H1 is an algebra, i.e., uw ∈ H1 and ‖uv‖H1 ≤ C‖u‖H1‖v‖H1 for u,w ∈ H1.

We start with the case when the nonlinearities in (5.2.2) are everywhere
defined. We emphasize that a does not have to be symmetric, and that a, f
may be less regular than actually stated.

Theorem 5.2. Assume a : RN → RN×N is C4 such that a(ζ) ∈ RN×N is
positive definite for each ζ ∈ RN , and that f : RN × RN → RN is C3 with
f(0, 0) = 0.

Then (5.2.2) is locally well-posed in the phase space X = H2. The solu-
tions belong to H1(J,H1(R))∩L2(J,H3(R))∩C(J,H2(R)) on time intervals
J = (0, T ) away from the maximal existence time.

Proof. We choose X0 = H1, X1 = H3 and p = 2. Then X = (H1, H3)1/2,2 =
H2, see [188, Remark 2.4.2/2]. Define the superposition (Nemytskii) opera-
tors A and F by A(u)v = (a(u)vx)x and F (u) = f(u, ux). Then F : H2 →
H1 and A : H2 → L (H3, H1) are Lipschitz on bounded sets by Lemma
5.2. For the generator property, let w0 ∈ H2 be arbitrary. Denote by AL2

the realization of A(w0) on L2, with domain H2. Since w0, a(w0) ∈ BC1

by Sobolev’s embedding H1 ⊂ BC, it follows from [7, Corollary 9.5] that
the operator AL2 generates an analytic C0-semigroup on L2. Next, let AH1

be the realization of A(w0) on H1, i.e., the restriction of AL2 to H1. Since
H1 = (L2, H2)1/2,2 (see again [188]), it follows from [115, Theorem 5.2.1]
that AH1 with domain D(AH1) = {u ∈ H2 : AL2u ∈ H1} generates an
analytic C0-semigroup as well. Using the algebra property of H1, it is el-
ementary to check that D(AH1) = H3 (see the proof of Lemma 5.4 in the
appendix). Thus Theorem 5.1 applies.
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5.2 Frameworks for well-posedness

Remark 5.3. Employing, e.g., Angenent’s parameter trick (see [143, Theo-
rem 5.1] and [62]), one can show that for smooth nonlinearities the solutions
of (5.2.2) are smooth in space and time.

When investigating the stability of a non-localized travelling wave with
respect to localized perturbations, one is lead to a variant of (5.2.2) with x-
dependent nonlinearities. Furthermore, in many situations the nonlinearities
are not everywhere defined on RN , or the leading coefficient a is positive
definite only in a subset of RN . For instance, this is the case for the Gray-
Scott-Klausmeier model (5.1.2), where the focus lies on perturbations of
travelling wave solutions in the parabolic regime w > 0.

For a general formulation, let u ∈ BC2(R,RN ) be a steady state of (5.2.2),
i.e.,

(a(u)ux)x + f(u, ux) = 0. (5.2.3)

Then u+ u solves (5.2.2) for a perturbation u if and only if u solves

ut = (a(u+ u)ux)x + (a(u+ u)ux)x + f(u+ u, ux + ux). (5.2.4)

For this perturbative setting we have the following variant of Theorem
5.2. Here and in the following, the image of u is meant to be the set
{u(x) : x ∈ R}.
Theorem 5.4. Let u ∈ BC2(R,RN ) satisfy (5.2.3), and let U1, U2 ⊆ RN
be open neighbourhoods of the closure of the images of u resp. ux. Assume
a : U1 → RN×N is C4 such that a(ζ) is positive definite for any ζ ∈ U1, and
f : U1 × U2 → RN is C3.

Then there is an open neighbourhood V of the zero function in H2 such
that (5.2.4) is locally well-posed in V. If U1 = U2 = RN , then one can take
V = H2.

Proof. Let again X0 = H1, X1 = H3 and p = 2, such that X = H2. Define

A(u)v = (a(u+ u)vx)x, F (u) = (a(u+ u)ux)x + f(u+ u, ux + ux). (5.2.5)

Using F (0) = 0, Lemma 5.2 yields V ⊆ H2 such that F : V → H1 and
A : V → L (H3, H1) are Lipschitz on bounded sets. If V is sufficiently
small, then for each w0 ∈ V the leading coefficient a(u + w0) of A(w0) is
positive definite, uniformly in x ∈ R. Thus as in the proof of Theorem
5.2 it follows from [7, Corollary 9.5] and an interpolation argument that
A(w0) with domain H3 has the required generator property on H1 to apply
Theorem 5.1.
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5 Quasilinear parabolic reaction-diffusion systems

Well-posedness in space dimensions n ≤ 3

For simplicity, on Rn we consider quasilinear reaction-diffusion-advection
problems (using sum convention)

ut = ∂i(aij(u)∂ju) + ci∂iu+ f(u), x ∈ Rn. (5.2.6)

Here, essentially, aij : RN → RN×N , ci ∈ RN×N for i, j = 1, ..., n and
f : RN → RN . The approach of the previous subsection works in any
dimension if one takes X0 = Hk(Rn) with k > n

2 as a base space, since then
Hk is an algebra and the superposition operators are Lipschitz as before.

We present another functional analytic setting with X0 = L2 as a base
space, for which Theorem 5.1 applies to (5.2.6) in space dimensions n ≤ 3.
The price one has to pay in the maximal Lp-regularity approach is that
the phase space X = (L2, H2)1−1/p,p becomes slightly more complicated to
describe. It is the N -fold product Bs

2,p of a Besov space Bs
2,p(Rn), with

s > 0 and p ∈ (1,∞). For s /∈ N, it follows from [189, Theorem 2.6.1] that
an equivalent norm for this space is given by

‖u‖Bs2,p = ‖u‖Hk +
∑

|α|≤k

(∫

|h|≤1
|h|−(s−k)p−n‖Dαu(·+h)−Dαu(·)‖p

L2 dh
)1/p

,

where k is the largest integer smaller than s. The Besov spaces are closely
related to the more common Bessel-potential spaces Hs. For any ε > 0 we
have the dense inclusions Hs+ε ⊂ Bs

2,p ⊂ Hs−ε. However, Bs
2,p = Hs if

and only if p = 2, and furthermore Bs
2,p is a Hilbert space only for p = 2.

Essential for the applications are the Sobolev embeddings

Bs
2,p(Rn) ⊂ BC(Rn) for s >

n

2
, Bs

2,p(Rn) ⊂ Lq(Rn) for s ≥ n

2
− n

q
> 0.

(5.2.7)
These are a consequence of Bs

2,p ⊂ Hs−ε and the corresponding embeddings
for the H-spaces. For these and many more properties of B-spaces we refer
to [188].

As above we consider a perturbative setting. Analogous to (5.2.4), for
perturbations u of a steady state u ∈ BC2(Rn,RN ) of (5.2.6), one is lead to

∂tu = ∂i(aij(u+u)∂ju) +∂i(aij(u+u)∂ju) + ci∂i(u+u) + f(u+u). (5.2.8)

Note that the following well-posedness result in particular applies to (5.2.6)
when setting u = 0 and assuming f(0) = 0. Again no symmetry properties
of the diffusion coefficients (aij) are required.
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5.2 Frameworks for well-posedness

Theorem 5.5. Let n = 1, 2, 3. Let u ∈ BC2(Rn,RN ) be a steady state
of (5.2.6), and let U ⊆ RN be an open neighbourhood of the closure of its
image. For all i, j = 1, ..., n, assume that ci ∈ RN×N is constant, that
aij : U → RN×N and f : U → RN are C2, and that aij(ζ) is positive definite
for any ζ ∈ U .

Then for all sufficiently large p ∈ (2,∞) there is an open neighbourhood

V of the zero function in B
2−2/p
2,p = B

2−2/p
2,p (Rn)N such that (5.2.8) is locally

well-posed in V. The solutions belong to H1,p(J, L2) ∩ Lp(J,H2) ∩ C(J,V)
on time intervals J away from the maximal existence time. If U = RN , then

one can take V = B
2−2/p
2,p .

Proof. The choice X0 = L2 and X1 = H2 leads to

B
2−2/p
2,p = X = (X0, X1)1−1/p,p for p ∈ (1,∞),

see [188, Remark 2.4.2/4]. Let A(u)v = ∂i(aij(u + u)∂jv), and denote by
F (u) the remaining terms on the right-hand side of (5.2.8). The Lipschitz
properties of A and F on a neighbourhood V of zero follow from Lemma
5.3. For w0 ∈ V the operator A(w0) is elliptic, the coefficients are bounded

and the leading coefficient is uniformly Hölder continuous, since B
2−2/p
2,p even

embeds into BCσ for some σ > 0 if n ≤ 3 and p is large, see [188, Theorem
2.8.1]. Now the generator property on L2 follows again from [7, Corollary
9.5].

5.2.2 Well-posedness based on maximal Hölder regularity

We formulate the well-posedness result of [114, Chapter 8] for abstract quasi-
linear parabolic problems

∂tu = A(u)u+ F (u), t > 0, u(0) = u0. (5.2.9)

The approach of [114] is based on maximal Hölder regularity (see also [4,
Chapter III.2] for the general linear theory). It also covers fully nonlinear
problems and does not take into account the quasilinear structure of (5.2.9).
It has the big advantage to be applicable in arbitrary Banach spaces X0,
while in applications maximal Lp-regularity is usually restricted to reflexive
Banach spaces, excluding spaces of continuous functions. Moreover, the
phase space equals the domain of the linearized operator, which is usually
easier to describe than an interpolation space.
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5 Quasilinear parabolic reaction-diffusion systems

The following well-posedness result for (5.2.9) is a consequence of [114,
Theorem 8.1.1, Proposition 8.2.3, Corollary 8.3.3].

Theorem 5.6. Let X0, X1 be arbitrary Banach spaces such that X1 is con-
tinuously and densely embedded in X0. Let V ⊆ X := X1 be open, define
F(u) = A(u)u+ F (u) and suppose that

• F ∈ C1(V, X0) with locally Lipschitz derivative;

• for each w0 ∈ V, the operator F ′(w0) with domain X1 generates a
strongly continuous analytic semigroup on X0 and ‖u‖X0+‖F ′(w0)u‖X0

defines an equivalent norm on X1.

Then (5.2.9) is locally well-posed in V, and solutions are classical in time.

As already mentioned, the phase space X is now a subset of X1 and not of
an intermediate space between X0 and X1. Well-posedness is similar as for
Theorem 5.1. The maximal existence time is lower semicontinuous and the
solution semiflow is continuous with values in V. For each α ∈ (0, 1) and an
initial value u0 ∈ V, one obtains a unique maximal solution u of (5.2.9) such
that u ∈ BUC1+α

α ([0, T ], X0)∩BUCα
α([0, T ], X1) for T < t+(u0). Here BUCα

α

is a weighted Hölder space, see [4, Chapter III.2] and [145, Example 3]. (It
is slightly confusing that these spaces differ from the ones in [114] denoted
by Cαα , but BUCα

α is indeed the regularity obtained in [114, Theorem 8.1.1]).

Theorem 5.6 applies to (5.2.2), (5.2.4) and (5.2.8) under similar assump-
tions as in the Theorems 5.2, 5.4 and 5.5, with different phase spaces. In
particular, instead of a Besov space one obtains H2 as a phase space in the
setting of Theorem 5.5. We do not formulate the precise results and rather
consider a setting for reaction-diffusion systems which is not covered by the
approach of Theorem 5.1.

One space dimension: well-posedness in BUC2

We reconsider the case of one space dimension, i.e., for u(t, x) ∈ RN the
problem

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R. (5.2.10)

We present a setting in which non-localized perturbations of steady states
can be treated. For k ∈ N0, denote by BUCk = BUCk(R,RN ) the Banach
space of bounded uniformly continuous functions, endowed with the usual
Ck-norm. It is shown in [114] that a scalar second order elliptic operator on
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5.2 Frameworks for well-posedness

BUC = BUC0 behaves well and generates an analytic semigroup. This is the
main ingredient to apply Theorem 5.6 as follows. The triangular structure
of a is assumed for simplicity.

Theorem 5.7. Let u ∈ BUC2(R,RN ) be a steady state of (5.2.10) and let
U1, U2 ⊆ RN be open neighbourhoods of the closure of image of u resp. ux.
Assume a : U1 → RN×N and f : U1 × U2 → RN are C2, such that

• for each ζ ∈ U1 the matrix a(ζ) is triangular, and the diagonal entries
of a are positive and bounded away from zero uniformly.

Then there is an open neighbourhood V of u in BUC2 such that (5.2.10) is
locally well-posed in V. One can take V = BUC2 if U1 = U2 = RN .

Proof. Choose an open set V ⊂ RN that contains the image of u and sat-
isfies V ⊂ U . Define V as the set of all w0 ∈ BUC2 with image contained
in V . Then F(u) = (a(u)ux)x + f(u, ux) defines a superposition operator
F : V → BUC. It is straightforward to check that F ∈ C1(V,BUC). At
w0 ∈ V we have

F ′(w0)v = (a(w0)vx)x + (a′(w0)[(w0)x, v])x + cvx + f ′(w0)v, v ∈ BUC2,

and F ′ : V → L (BUC2,BUC) is locally Lipschitz. For the generator prop-
erty, let w0 ∈ V be given. By [114, Corollary 3.1.9], each of the scalar-valued
operators v 7→ aii(w0)vxx with domain BUC2 generates an analytic C0- semi-
group on BUC, where aii are for i = 1, ..., N the diagonal entries of a. Using
the matrix generator result [132, Corollary 3.3] and the triangular structure
of a, we conclude that the principle part v 7→ a(w0)vxx of F ′(w0) is a genera-
tor on BUC(R,RN ), with domain BUC2(R,RN ). The remaining lower order
terms preserve this property. The equivalence of the graph norm of F ′(w0)
and the C2-norm follows from the boundedness of the coefficients and the
open mapping theorem. Therefore Theorem 5.6 applies to (5.2.10).

5.2.3 More general problems and other frameworks

The above results also hold for smooth x-dependent nonlinearities, provided
the principal term a is positive definite uniformly in x. Also non-autonomous
and nonlocal problems can be treated, see [5,6,114,143]. Only the mapping
properties of the superposition operators and the generator properties of
the linearization are relevant. Both frameworks cover general quasilinear
systems in any dimension if one works with X0 = Lq for large q as a base
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5 Quasilinear parabolic reaction-diffusion systems

space, since then the superposition operators are well-defined by Sobolev
embeddings. Theorem 5.6 also allows to work in spaces of Hölder continuous
functions, L∞ or subspaces of BUC like C0 or C(R), based on the analytic
generator results of [114] and [60, Section VI.4].

A framework with spatial weights might also be of interest, for instance,
to force some decay of solutions [210] or to treat singular terms [126]. Here
in particular weights with exponential growth are straightforward to treat,
as the generator results can be obtained from the unweighted case by a
simple similarity transformation. Concerning weights, we also mention that
the approach of [112] has proven useful for quasi-linear parabolic problems
in weighted spaces; see [14, 77, 191]. Invariant manifolds for quasi-linear
parabolic systems with nonlinear boundary conditions on bounded or exte-
rior domains are constructed, e.g., in [106, 107, 177]; see also the references
given there.

Besides the above approaches based on maximal Lp- and Hölder regularity
there is a similar abstract approach based on continuous regularity [8, 29].
Completely different frameworks for problems in weaker settings on bounded
domains with boundary conditions are presented in [3, 75]. They should
also be applicable to problems on Rn. Finally, the pioneering work of [105]
should be mentioned. For a comprehensive overview of possible settings for
quasilinear parabolic problems we refer to [5].

5.3 Stability and spectra of travelling waves

While travelling waves also occur in higher space dimensions, we restrict
here to x ∈ R.

Throughout, let u∗(t, x) = u(x− ct) be a travelling wave solution of

ut = (a(u)ux)x + f(u, ux), x ∈ R,

with speed c ∈ R and profile u ∈ BC∞(R,RN ) solving the ordinary differen-
tial equation (5.2.3). We assume that a, f are C∞ and that a is uniformly
positively definite in a vicinity of the image of u. Suitable finite regularity
of u, a, f suffices for each of the following results and we assume infinite
smoothness only for the sake of a simple exposition. We further assume that
u is constant or periodic at infinity and that the asymptotic states are ap-
proached exponentially. A travelling wave is called a pulse or a front if the
asymptotic states are equal or different homogeneous equilibria, respectively.
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5.3 Stability and spectra of travelling waves

A wavetrain is a periodic travelling wave, and we refer to travelling waves
with at least one periodic asymptotic state as generalized fronts or pulses.

5.3.1 Stability in a perturbative setting

The evolution of perturbations u of u∗ is governed by

ut = (a(u+u)ux)x + (a(u+u)ux)x + c(ux +ux) + f(u+u, ux +ux), (5.3.1)

where the co-moving frame x − ct is again denoted by x. By translation
invariance of the underlying equation, stability must be considered with
respect to the family of translates

S = {u(·+ τ)− u : τ ∈ R}.

The Theorems 5.4, 5.5 and 5.7 guarantee local well-posedness of (5.3.1) for

initial data from X = H2, X = B
2−2/p
2,p or X = BUC2 sufficiently close to

S (note that in Theorem 5.5 it is actually assumed that f is independent of

ux). Even though H2 ⊂ B2−2/p
2,p we distinguish between these cases, because

of the different corresponding base spaces H1 and L2, and to highlight that
a pure Sobolev space setting suffices for (5.3.1). For X = BUC2, or in case
of a pulse, one could equivalently consider (5.3.1) with u replaced by zero,
in a neighbourhood of {u(·+ τ) : τ ∈ R}.

If u∗ is a pulse or a front, then S is in each setting a family of equilibria
of (5.3.1).

Definition 5.1. A pulse or front solution u∗ is called orbitally stable, if
for ε > 0 there is δ > 0 such that for u0 ∈ X with distX (u0, S) ≤ δ
the corresponding solution u of (5.3.1) exists globally in time and satisfies
distX (u(t), S) ≤ ε for all t > 0. u∗ is called orbitally stable with asymptotic
phase, if it is orbitally stable and if for each u0 ∈ X sufficiently close to
S there is τ∞ such that the corresponding solution of (5.3.1) converges to
u(·+ τ∞)− u as t→∞. u∗ is orbitally unstable if it is not orbitally stable.

For a wavetrain, translates of the profile cannot be realized by localized
perturbations. Thus only for X = BUC2 orbital stability as above can

be considered. For localized perturbations, i.e., X = H2 or X = B
2−2/p
2,p ,

stability of a wavetrain is understood with respect to stability of the zero
solution of (5.3.1).
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5.3.2 The spectrum of the linearization

The linearization L of the right-hand side of (5.3.1) in u = 0 is

Lϕ = αϕxx + βϕx + γϕ, (5.3.2)

with smooth coefficients α(x), β(x), γ(x) ∈ RN×N given by

α = a(u), β = a′(u)[ux, ·] + a′(u)[·, ux] + c+ ∂2f(u, ux),

γ = a′′(u)[ux, ·, ux] + a′(u)[·, uxx] + ∂1f(u, ux).

Depending on the chosen well-posedness framework, the operator L is con-
sidered on X0 = H1, L2 or BUC, with domain H3, H2 or BUC2, where we
write LX0 for a realization. The spectrum of LX0 is the set of λ ∈ C, where
LX0 − λ is not boundedly invertible. It is denoted by specLX0 .

As in the approach surveyed in [157], we distinguish between the point
spectrum, i.e., λ ∈ specLX0 such that LX0 − λ is a Fredholm operator of
index zero, and its complement within the spectrum, called the essential
spectrum. We will see that point and essential spectrum are independent
of the chosen framework and that the familiar spectral theory for ordinary
differential operators based on exponential dichotomies, as described in [157],
applies to L.

Usually, the set of eigenvalues of LX,0 is called the point spectrum. Note
that, with the above definition, eigenvalues can be contained in the essen-
tial spectrum. Moreover, eigenvalues are not independent of the setting.
For instance, the operator ∂x − i has a zero eigenvalue with eigenfunction
φ(x) = eix on BUC, but it is injective on L2 and H1. Of course this does
not contradict Proposition 1 on kernel dimensions below since the operator
is not Fredholm.

Since it is assumed that a is positive definite in a neighbourhood of the
image of u, the multiplication by α−1 is an isomorphism in each setting.
Thus the invertibility and Fredholm properties of L− λ are the same as for

L̃(λ) = α−1(L − λ) = ∂xx + α−1β∂x + α−1(γ − λ),

which has constant leading order coefficients. As before we write L̃X0(λ)
for a realization of L̃(λ). The key to the spectral properties of L̃(λ) is the
corresponding first order operator

T̃ (λ) = ∂x −A(·, λ), A(x, λ) =

(
0 −1

α−1(x)(γ(x)− λ) α−1(x)β(x)

)
,
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5.3 Stability and spectra of travelling waves

which is obtained from rewriting L̃(λ) = 0 into a first order ODE. Hence
A(x, λ) is a (2N × 2N)-matrix. We write T̃L2(λ) and T̃BUC(λ) for the re-
alization of T̃ (λ) on L2(R,C2N ) and BUC(R,C2N ) with natural domains,
respectively.

The following result is rather folklore, but does not seem to be explic-
itly stated in the literature. The equality of spectra for realizations on Lp,
1 ≤ p < ∞ and the space C0 of continuous functions vanishing at infinity
follows from [146, Corollary 4.6]. For the more general theory of dichotomies
and spectral mapping results on these spaces we refer to the monograph [26].

Proposition 1. The following assertions are true, where λ ∈ C.

• The spectrum, the point spectrum and the essential spectrum of LH1,
LL2 and LBUC all coincide, respectively.

• The operator LL2 − λ is invertible if and only if T̃L2(λ) is invertible.

• The operator LL2 − λ is Fredholm if and only if T̃L2(λ) is Fredholm.
In this case the Fredholm indices coincide, as well as the dimension of
the kernels.

Proof. Lemma 5.4 provides an isomorphism T from H1 to L2 and from H3

to H2 such that LH1 = T−1LL2T . Thus LH1 − λ and LL2 − λ have for
each λ ∈ C the same invertibility and Fredholm properties. It remains to
compare LL2 − λ and LBUC − λ. Since α is boundedly invertible, these op-
erators have the same invertibility and Fredholm properties as L̃L2(λ) and
L̃BUC(λ), respectively. It follows from [160, Theorem A.1] that their Fred-
holm properties are the same as those of T̃L2(λ) and T̃BUC(λ), respectively.
It is further clear that the dimensions of the kernels coincide in both settings.
Now in [17, Theorem 1.2] it is shown that the Fredholm properties of T̃L2(λ)
are characterized by exponential dichotomies of the ODE v′ = A(·, λ)v on
both half-lines, and that in this case the dimension of the kernel of T̃L2(λ)
only depends on the image of the dichotomies. This characterization is also
true for T̃BUC(λ) with the same formula for the dimension of the kernel,
see [137, Lemma 4.2] and [138]. Hence the invertibility and Fredholm prop-
erties of T̃L2(λ) and T̃BUC(λ) coincide, and if the operators are Fredholm,
then the dimensions of the kernels coincide. This carries over to LL2−λ and
LBUC − λ by the above considerations and shows the assertions.

We finally remark that also for the realization of T̃ (λ) on Lq with any
1 < q < ∞ the Fredholm properties are characterized by exponential di-
chotomies (see [17, p. 94]). Together with the arguments for [160, The-

155



5 Quasilinear parabolic reaction-diffusion systems

orem A.1], an appropriate generalization of Lemma 5.4 and interpolation.
This shows that the spectrum of L is independent of its realization on any
of the spaces Hs,q and Bs

q,r, where s ≥ 0 and 1 ≤ r ≤ ∞.

5.3.3 Computation of the spectrum

The invertibility and Fredholm properties of T̃ (λ), and thus the charac-
terization of point and essential spectrum of L, are described in terms of
exponential dichotomies in [157, Section 3.4]. This is independent of the
variable leading order coefficients of L due to its quasilinear origin, and thus
the same as for semilinear reaction-diffusion systems. We briefly describe
the main points for each type of wave. A detailed discussion can also be
found in [90, Chapter 3].

For a homogeneous steady state the point spectrum of the constant coef-
ficient operator L is empty. Since the Fourier transform is an isomorphism
on L2, the (essential) spectrum can be determined by transforming L to

L̂(κ) = −ακ2 + iβκ+ γ ∈ CN×N , κ ∈ R.

Now we have λ ∈ specL if and only if

d(λ, κ) := det(L̂(κ)− λ) = det(A(λ)− iκ) = 0

for some κ, which is called the dispersion relation for L. The latter also
means that A(λ) is a non-hyperbolic matrix. Thus here it is straightforward
to determine the spectrum, at least for N not too large.

For pulses and fronts, replacing the variable coefficients of L by their
values at ±∞ leads to constant coefficient operators L± whose spectrum
is determined as just described. For pulses the essential spectrum of L
already coincides with specL±. For fronts, specL± equals the boundary of
the essential spectrum of L, which is usually already sufficient to know for
stability issues. This is related to the fact that the replacement by the values
at infinity is a relatively compact perturbation of L, which leaves Fredholm
properties invariant (see [92, Theorem IV.5.26]). The point spectrum of a
pulse or a front is determined by detecting intersections of the stable and
unstable subspaces of v′ = A(·, λ)v. Here the Evans function [1, 63] is a
powerful tool and we refer to the survey [157, Section 4] and the references
therein.

For a wavetrain, i.e., when u is periodic with wavelength (period) L > 0,
the coefficients of L are periodic. The point spectrum is empty. Instead of
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5.3 Stability and spectra of travelling waves

the Fourier transform, here the Floquet-Bloch transform applies and yields
(see [128, Theorem A.4], also for higher space dimensions)

specL = ∪κ∈[0,2π/L)spec B̂(κ). (5.3.3)

For κ ∈ [0, 2π/L) the operator B̂(κ) : H2
per(0, L) ⊂ L2,per(0, L)→ L2,per(0, L)

with periodic boundary conditions is given by

B̂(κ)U = e−iκxL[eiκxU ] = L̂(iκ+ ∂x)U,

where L̂(·) is the formal operator symbol of L. Since spec B̂(κ) only consists
of eigenvalues, its spectrum is fully determined by the solvability of the
family of boundary value problems

L̂(iκ+ ∂x)U = λU , U(0) = U(L).

In fact, also multiplicity of eigenvalues is determined via Jordan chains as
in [1, 157]. Notably, the spectrum again comes in curves; now an infinite
countable union since the eigenvalue problem for each κ still concerns an
unbounded operator (rather than a matrix in case of a homogeneous steady
state).

Via V = eiκxU , the boundary value problem formulation is equivalent to

L̂(∂x)V = λV , V (0) = e−iκLV (L).

By Floquet theory, this precisely means that the period map Π(λ) of the
evolution operator for the ODE L̂(∂x)U = λU possesses an eigenvalue (a
Floquet multiplier) eiκL. Hence, also here a (linear) dispersion relation can
be defined by

d(λ, κ) = det
(
Π(λ)− eiκL

)
= 0,

which precisely characterizes the spectrum. An important difference to the
case of homogeneous steady states is that λ = 0 always lies in the essential
spectrum: x-independent coefficients of (5.3.1) yield a trivial zero Floquet
exponent, which implies that d(0, 0) = 0. Indeed, B̂(0)ux = 0 in this trans-
lation symmetric case.

Finally, in case of a generalized wave train, the boundary of the essential
spectrum of L is as above obtained by replacing the coefficients of L with its
periodic limits at ±∞, and considering the dispersion relation. The point
spectrum is also given by an Evans-function, see [159, Section 4] (here also
the more general case of time periodic solutions, so-called defects, is treated).
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5.4 Nonlinear stability and instability

For the nonlinearities a, f and a travelling wave solution u∗(t, x) = u(x− ct)
of (5.1.1) we make the same assumptions as in the previous section. We
consider (5.3.1)

ut = (a(u+ u)ux)x + (a(u+ u)ux)x + c(ux + ux) + f(u+ u, ux + ux)

in any of the well-posedness settings in a neighbourhood of

S = {u(·+ τ)− u : τ ∈ R}.

5.4.1 Stability of pulses and fronts

Recall the precise notion of orbital stability from Definition 5.1. An applica-
tion of [144,145] gives the following conditional result. For more information
on semisimple eigenvalues in Banach spaces we refer to [114, Appendix A.2].

Proposition 2. Let u have constant asymptotic states. Assume λ = 0 is
a semisimple eigenvalue of L with eigenfunction u′, i.e., kerL = span{u′}
and X0 = kerL ⊕ imL. Assume further that the remaining part of specL
is strictly contained in {Reλ < 0}. Then the travelling wave u∗ is orbitally
stable with asymptotic phase, and limit translates u(·+ τ∞) are approached
exponentially.

Proof. By translation invariance it suffices to consider S in a neighbourhood
of τ = 0. The framework of Theorem 5.1 is the one of [144, Theorem 2.1],
provided that, in addition, A and F belong to C1, which is guaranteed
by the assumption on a and f . The setting of Theorem 5.6 is the one
of [145, Example 3]. To apply [144, Theorem 2.1] and [145, Theorem 3.1] it
remains to verify that zero is normally stable, in the sense of [144,145]. We
have that S is a one-dimensional C1-manifold, with tangent space at τ = 0
spanned by u′. By assumption, the tangent space coincides with the kernel
of L and zero is a semisimple eigenvalue. Hence normal stability follows.

For a quasilinear variant of the Huxley equation, the above conditions
have been verified in [144, Section 5] by elementary arguments.

An abstract and more general variant of Proposition 2 and applications
to semilinear problems can be found in [90, Chapter 4].
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5.4.2 Instability of generalized pulses and fronts under localized
perturbations

For localized perturbations, i.e., for X = H2 or B
2−2/p
2,p , a generalized pulse

or front u∗ is nonlinearly stable or unstable if the zero solution of (5.3.1) is
stable or unstable, as a single equilibrium in the sense of Lyapunov. Non-
linear stability is a delicate issue (see the discussion in the introduction). In
case of an unstable spectral value we have the following.

Proposition 3. If u has a periodic asymptotic state and

specL ∩ {Reλ > 0} 6= ∅,
then the generalized front or pulse u∗ is nonlinearly unstable with respect to

localized perturbations from X = H2 or X = B
2−2/p
2,p .

Proof. The Lemmas 5.2 and 5.3 together with Proposition 4 imply that the
time-one solution map Φ1 for (5.3.1) obtained in Theorems 5.4 and 5.5 from
Theorem 5.1 is C2 around zero, with Φ′1(0) = eL ∈ L (X ). Considered on
L (X0), this operator has spectral radius larger than one by [114, Corollary
2.3.7]. Using L−ω with sufficiently large ω > 0 as a conjugate, this property
carries over to eL considered on L (X1). Now it follows from interpolation
that the realization of eL on L (X ) has spectral radius greater than one.
Thus the zero solution of (5.3.1) is unstable by [78, Theorem 5.1.5].

5.4.3 Orbital instability

Without assuming a spectral gap or the existence of an unstable eigenvalue
we show that an unstable spectrum implies orbital instability.

Theorem 5.8. The following assertions are true.

• Let u have constant asymptotic states. Assume

specL ∩ {Reλ > 0} 6= ∅.
Then u∗ is orbitally unstable with respect to localized and non-localized

perturbations from X = H2, B
2−2/p
2,p or X = BUC2.

• Let u have a periodic asymptotic state. Assume

specL ∩ {Reλ > 0} 6= ∅.
Then u∗ is orbitally unstable with respect to non-localized perturbations
from X = BUC2.
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This result is a direct consequence of the general orbital instability result
Theorem 5.9 below for manifolds of equilibria: u′ ∈ X1 in the settings under
consideration and Lu′ = 0 by the exponential convergence of u′ at infinity
and translation invariance of the equation.

The following lemma and its proof are generalizations of [78, Theorem
5.1.5] and [168]. Similar to that result, the proof establishes that pertur-
bations of suitable approximate unstable eigenfunctions deviate from the
manifold of equilibria.

Lemma 5.1. Let X be a real Banach space, let V ⊆ X be an open neigh-
bourhood of zero and let E ⊂ V be an m-dimensional C2-manifold containing
zero. Let E be parametrized by an injective map ψ : U ⊂ Rm → E with
ψ(0) = 0, where ψ′(0) has full rank m. Assume T : V → X is continuous,
that T (u) = 0 for u ∈ E and that there is M ∈ L (X) with spectral radius
greater than one such that, for some σ > 1,

‖T (u)−Mu‖ = O(‖u‖σ) as u→ 0. (5.4.1)

Suppose further that ∂1ψ(0), ..., ∂mψ(0) ∈ ker(M − id). Then u∗ = 0 is
orbitally unstable with respect to E under iterations of T . More precisely,
there is ε0 > 0 such that for each δ > 0 there are uδ ∈ V with ‖uδ‖ ≤ δ and
N ∈ N such that Tn(uδ) ∈ V for n = 1, ..., N and dist(TN (uδ), E) ≥ ε0.

Proof. Step 1. Let α0, β > 0 such that B5α0(0) ⊂ V and

‖T (u0)−Mu0‖ ≤ β‖u0‖σ, ‖u0‖ ≤ 5α0. (5.4.2)

There is an approximate eigenvalue λ = reiθ with r > 1 and θ ∈ R in
the spectrum of M . Furthermore, there are η,K > 0 with r + η < rσ and
‖Mn‖ ≤ K(r+η)n for all n ≥ 0. In the sequel we choose α ∈ (0, α0) stepwise
possibly smaller and smaller, only depending on K, r, η, β, ψ.

Step 2. Let δ ∈ (0, α) be given. As in the proof of [78, Lemma 5.1.4] we
find N ∈ N such that

α

rN
≤ δ, | sin(Nθ)| ≤ α, (5.4.3)

and u, v ∈ X with ‖u‖ = 1 and ‖v‖ ≤ 1 such that

‖Mn(u+ iv)− λn(u+ iv)‖ ≤ α. n = 1, ..., N. (5.4.4)

Here the norm is actually the complexified one, i.e., ‖w1+iw2‖ = ‖w1‖+‖w2‖
for w1, w2 ∈ X.
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Define uδ := α
rN
u ∈ X, such that ‖uδ‖ = α

rN
≤ δ. Let n = 1, ..., N be

given. Assume inductively that ‖T k(uδ)‖ ≤ 5αrk−N for k = 0, ..., n − 1.
Then Tn(uδ) is well-defined and as in the proof of [78, Theorem 5.1.5] we
write

Tn(uδ)− λnuδ =
(
Mnuδ − λnuδ

)
+

n−1∑

k=0

Mn−k−1
(
T k+1(uδ)−MT k(uδ)

)
.

(5.4.5)
Denote the right-hand side by Gn +Hn. We claim that

‖Gn‖ ≤ α2r−N + 2α| sin(θn)|rn−N , ‖Hn‖ ≤ CMασrn−N , (5.4.6)

where CM = 5σKβ
rσ−r−η is independent of n. To see this, we use (5.4.4) to

obtain

‖Gn‖ ≤
α

rN
(
‖Mnu− (Reλn)u+ (Imλn) v‖+ ‖(Imλn) v‖+ ‖(Imλn)u‖

)

≤ α

rN
(
‖Re((Mn − λn)(u+ iv))‖+ 2rn| sin(θn)|

)
(5.4.7)

≤ α2r−N + 2α| sin(θn)|rn−N .

For the sum Hn we use (5.4.2), that ‖T k(uδ)‖ ≤ 5αrk−N ≤ 5α0 for k ≤ n−1
and that r + η < rσ to obtain

‖Hn‖ ≤
n−1∑

k=0

K(r + η)n−k−1β(5αrk−N )σ

≤ ασ5σKβrσ(n−1−N)
n−1∑

k=0

(r + η

rσ

)n−k−1
≤ CMασrn−N .

This shows the claim (5.4.6).

Now it follows from (5.4.5), (5.4.6) and σ > 1 that ‖Tn(uδ)‖ ≤ 5αrn−N ,
provided α ≤ 1 is such that CMα

σ−1 ≤ 1. By induction, for all n = 0, ..., N
we obtain that Tn(uδ) is well-defined and the estimates ‖Tn(uδ)‖ ≤ 5αrn−N

and (5.4.6) hold true.

Step 3. As a consequence, for dist(TN (uδ), E) we only have to con-
sider ζ ∈ U such that ‖ψ(ζ)‖ ≤ 10α. Indeed, for ‖ψ(ζ)‖ > 10α we have
‖TN (uδ)− ψ(ζ)‖ > 5α, but ‖TN (uδ)− ψ(0)‖ = ‖TN (uδ))‖ ≤ 5α. There is
small τ0 > 0 such that

ψ(ζ) = ψ′(0)ζ + ρ(ζ), |ζ| ≤ τ0, (5.4.8)
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where ‖ρ(ζ)‖ ≤ Cρ|ζ|2 for a constant Cρ independent of ζ ∈ Bτ0(0). Since
ψ′(0) has full rank m, we have Cψ′ = min|ξ|=1 ‖ψ′(0)ξ‖ > 0 and we can
choose τ0 such that Cρτ0 ≤ Cψ′/2. Hence, with ϑ = 20/Cψ′ and small α, we
obtain

‖ψ(ζ)‖ ≥ ‖ψ′(0)ζ‖ − Cρ|ζ|2 > 10α for τ0 ≥ |ζ| > ϑα.

Then, with these choices,

dist(TN (uδ), E) = inf
|ζ|≤ϑα

‖TN (uδ)− ψ(ζ)‖.

Step 4. Now let |ζ| ≤ ϑα. Then (5.4.5), (5.4.8) and the estimates (5.4.6)
and | sin(Nθ)| ≤ α yield

‖TN (uδ)− ψ(ζ)‖ ≥ ‖λNuδ − ψ′(0)ζ‖ − ‖GN‖ − ‖HN‖ − ‖ρ(ζ)‖
≥ ‖αeiNθu− ψ′(0)ζ‖ − 3α2 − CMασ − ϑ2Cψ′′α

2. (5.4.9)

The vectors u and ψ′(0)ζ are linearly independent if α is sufficiently small.
In fact, otherwise our assumption ψ′(0)ζ ∈ ker (M − id) would imply that
Mu = u. But as in (5.4.7), the estimate (5.4.4) then yields |λ − 1| =
‖λu−Mu‖ ≤ α2 + 2α, which is impossible for small α.

We conclude that ‖eiNθu− 1
αψ
′(0)ζ‖ is bounded away from zero, uniformly

for |ζ| ≤ ϑα. Hence, decreasing α once more if necessary, we obtain from
(5.4.9) and σ > 1 that dist(TN (uδ), E) ≥ ε0, where ε0 > 0 is a multiple of α
independent of δ.

Let us now apply the lemma to abstract quasilinear problems

∂tu = A(u)u+ F (u), t > 0, u(0) = u0. (5.4.10)

We denote by L(u∗) = A(u∗) +A′(u∗)[·, u∗] +F ′(u∗) the linearization of the
right-hand side at u∗.

Theorem 5.9. Assume the setting of either Theorem 5.1 or Theorem 5.6,
and in addition that A and F are C2. Let E ⊂ V ∩X1 be an m-dimensional
C2-manifold of equilibria of (5.4.10), parametrized by ψ : U ⊂ Rm → E, and
let u∗ ∈ E satisfy

• specL(u∗) ∩ {Reλ > 0} 6= ∅,
• ∂1ψ(ζ∗), ..., ∂mψ(ζ∗) ∈ kerL(u∗) for u∗ = ψ(ζ∗).

Then u∗ is orbitally unstable in V ⊆ X with respect to E.
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Proof. Shrink V around u∗ if necessary such that t+(u0) ≥ 1 for each u0 ∈
V. Let Φ1 : V → X be the time-one solution map for (5.4.10). Define
T (u0) = Φ1(u∗ + u0)− (u∗ + u0) for u0 close to u∗. Then T is continuous,
T (u) = 0 for u ∈ E ∩ V, and T satisfies (5.4.1) with M = eL(u∗) ∈ L (X ),
as a consequence of Proposition 4 for the setting of Theorem 5.1 and of
[126, Proposition 6.2] for the setting of Theorem 5.6. Moreover, M has
spectral radius larger than one by [114, Corollary 2.3.7] and interpolation,
and ∂jψ(ζ∗) ∈ ker(M − id) follows from the assumption. Thus Lemma 5.1
applies.

Of course, Lemma 5.1 applies in any well-posedness setting for nonlinear
parabolic problems.

5.5 A generalized Gray-Scott-Klausmeier model

For illustration of the previous results, let us consider the model (5.1.2) for
water-vegetation interaction in semi-arid landscapes

wt =(w2)xx + Cwx +A(1− w)− wv2,

vt =Dvxx −Bv + wv2.
(5.5.1)

Here A is roughly a measure of the rainfall. On the one hand, (5.5.1) is
(a rescaling of) the Klausmeier model for banded vegetation patterns on a
sloped terrain from [97], when removing the porous medium term (w2)xx.
On the other hand, upon replacing (w2)xx by wxx and setting C = 0, (5.5.1)
is precisely the semilinear Gray-Scott model, which has been extensively
studied in the past decades, see, e.g., [24,49,130] and the references therein.
The relations between these different models in terms of periodic patterns
have been studied in [199]. From an application point of view it is important
to know in which patterned state these model systems may reside, and thus
to establish well-posedness as well as existence, stability and instability of
patterns.

In order to illustrate the straightforward applicability of the frameworks of
the previous sections, we show well-posedness around travelling waves with
first component bounded away from zero. We then consider homogeneous
steady states and wavetrains, and derive the dispersion relations. These are
illustrated by numerical computations of spectra when passing a Turing-Hopf
bifurcation and a sideband instability.
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5.5.1 Well-posedness for perturbations of travelling waves

To cast (5.5.1) into the form (5.1.1) we set u = (w, v) and define the smooth
nonlinearities a : R2 → R2×2 and f : R2 → R2 by

a(u) =

(
2w 0
0 D

)
, f(u,ux) =

(
Cwx +A(1− w)− wv2

−Bv + wv2

)
.

Then (5.5.1) is equivalent to

ut = (a(u)ux)x + f(u,ux).

We see that a(u) is positive definite only for w > 0, and thus (5.5.1) fails
to be parabolic for w ≤ 0. We therefore restrict to w > 0. From the quasi-
positive structure of f for A > 0 and the smoothness of solutions given by
the well-posedness, it readily follows that (5.5.1) preserves w > 0 on the
maximal existence interval.

Assume that u∗(t, x) = u(x − ct) is a travelling wave solution of (5.5.1)
with profile

u = (w, v) ∈ BC∞(R,R2)

satisfying w ≥ δ > 0, and speed c ∈ R. Note that this includes homogeneous
steady states. Denote the co-moving frame x− ct again by x. As for (5.3.1),
the evolution of perturbations u of u under (5.5.1) is governed by

ut = (a(u+u)ux)x+(a(u+u)ux)x+c(ux+ux)+f(u+u,ux+ux). (5.5.2)

Choose V as any open subset of X = H2, X = B
2−2/p
2,p with p > 2 sufficiently

large or X = BUC, such that w+w is positive and bounded away from zero
for all u = (w, v) ∈ V. This is possible in view of the Sobolev embeddings
H2 ⊂ BUC and (5.2.7). The Theorems 5.4, 5.5 or 5.7 apply and yield local
well-posedness of (5.5.2) in V, respectively, in a sense as for the Theorems
5.1 and 5.7. Solutions are in fact smooth in space and time (see Remark
5.3).

The eigenvalue problem for the linearization of the right-hand side of
(5.5.2) in u = 0 is for λ ∈ C given by

λw = 2wwxx + 4wxwx + 2wxxw + (C + c)wx −Aw − v2w − 2w vv,

λv = Dvxx + cvx −Bv + v2w + 2w vv.
(5.5.3)
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Figure 5.1: Spectra of the homogeneous steady state (w+, v+) of (5.5.1) for B = C = 0.2,
D = 0.001 before the Turing-Hopf instability, A = 0.63 (stable), near to it, A = 0.53,
and after it, A = 0.43 (unstable). (a) Real part of spectrum vs. linear wavenumber,
(b) Imaginary part of spectrum vs. real part.

By Proposition 1, the spectrum of the linearization is independent of the
above functional analytical frameworks. A brief account for the computation
of the spectrum is given in §5.3.3, and we refer to [157] for a survey. Nonlinear
stability or instability of u∗ can be deduced from the results in §5.4 in some
situations, as pointed out below.

5.5.2 Homogeneous steady states

These are solutions w(t, x) = w∗, v(t, x) = v∗ ∈ R to (5.5.1) that are time
and space independent, and thus solve the algebraic equations arising from
vanishing space and time derivatives. We readily compute that the possibil-
ities are (w0, v0) = (1, 0) and, in case A ≥ 4B2,

w± =
1

2A

(
A∓

√
A2 − 4AB2

)
, v± =

1

2B

(
A±

√
A2 − 4AB2

)
.

The state (w0, v0), with zero vegetation, represents the desert (even though
there is non-zero ‘water’), while the equilibria (w+, v+) and (w−, v−) repre-
sent co-existing homogeneously vegetated states. At A = Asn = 4B2, the
latter two collapse in a saddle-node bifurcation. The spectrum of the lin-
earization in (w∗, v∗) can be computed from the usual dispersion relation
d(λ, κ) = 0, where

d(λ, κ) = det

(
−2w∗κ

2 + iκ(C + c) −A− v2
∗ − λ −2w∗v∗

v2
∗ −Dκ2 + iκc−B + 2w∗v∗ − λ

)

is obtained from Fourier transform, see §5.3.3.
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Figure 5.2: (a) Sample bifurcation diagram of wavetrains for A = 0.02, B = C = 0.2, D = 0.001.
At L ≈ 3.45 a fold occurs, and both branches appear to terminate in a homoclinic
bifurcation as L→∞. The inset shows profiles of solutions at the fold (w ≈ 0.5) and
near L = 80 on upper and lower (w ≈ 1) branch. (b) Magnification of the bifurcation
diagram with bullet marking the location of the sideband instability at L ≈ 5.98.
Solutions on the branch for increasing period are spectrally stable.

An origin of patterns is a (supercritical) Turing-Hopf bifurcation of the
steady state (w+, v+) that occurs as A decreases from larger values, as shown
in [199]. It is in fact straightforward to study bifurcations of spatially pe-
riodic travelling waves as this only involves ODE analysis. As a side note
on Turing-Hopf bifurcations, we mention that the dynamics of (5.5.1) near
onset is formally approximated by a complex Ginzburg-Landau equation
(see [199]), but the rigorous justification has not been established for quasi-
linear problems, to our knowledge.

In order to locate the Turing-Hopf bifurcation, we need to study the spec-
trum of the linearization in (w+, v+). For illustration, in Figure 5.1 we plot
the spectrum obtained numerically (using Auto [42]) from the dispersion
relation as the parameter A passes through the aforementioned Turing-Hopf
bifurcation. Since the spectrum is unstable after passing the Turing-Hopf
instability (e.g. A = 0.43 in Figure 5.1), the steady state is expected to be
unstable under the nonlinear evolution. Indeed, this is the case thanks to
Theorem 5.8.

5.5.3 Wavetrains

The patterns emerging at the Turing-Hopf bifurcation are periodic wave-
trains, which are solutions to (5.5.1) of the form

(w∗, v∗)(t, x) = (w̃, ṽ)(kx− ωt),
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Figure 5.3: Spectra of the wavetrains for B = C = 0.2, D = 0.001, A = 0.02 before the sideband
instability, L = 5.9 (stable), near to it, L ≈ 5.98, and after it, L = 6.1 (unstable). (a)
Real part vs. linear wavenumber, (b) Imaginary part vs. real part.

with a 2π-periodic profile (w̃, ṽ). Here ω is called the frequency and k the
wavenumber. As noted in [199], the existence region of wavetrains to (5.5.1)
in parameter space extends far from the Turing-Hopf bifurcation and even
beyond the saddle-node bifurcation A = Asn of homogeneous equilibria with
vegetation. In Figure 5.2 we plot a branch of wavetrain solutions for A < Asn

that appears to terminate in another type of travelling waves: pulses, which
are spatially homoclinic orbits.

In order to link to the formulations for travelling waves, let us cast wave-
trains as equilibria (w∗, v∗)(t, x) = (w, v)(x − ct) in the co-moving frame
x − ct with speed c = ω

k . The eigenvalue problem of the linearization of
(5.5.1) in a wavetrain is then given by (5.5.3), with coefficients of period
L = 2π/k stemming from (w, v).

The approach via Fourier transform is less useful, because the lineariza-
tion is not diagonal in Fourier space due to the x-dependent coefficients.
As a substitute, one uses the Floquet-Bloch transform, which replaces the
eigenvalue problem on R by a family of eigenvalue problems on the wave-
length interval [0, L] (see §5.3.3). Specifically, this can be cast as the family
of boundary value problems for κ ∈ [0, 2π) given by (5.5.3) with ∂x replaced
by ∂x + iκ/L and L-periodic boundary conditions.

With a curve of spectrum of a wavetrain connected to the origin λ = 0
(due to translation symmetry), a change in its curvature is a typical desta-
bilization upon parameter variation. This so-called sideband instability is
illustrated in Figure 5.3, where we plot spectra of wavetrains in (5.5.1) pass-
ing through a sideband instability as the wavelength L changes. For these
computations, we implemented the first order formulation of the dispersion
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relation numerically in Auto based on the algorithm from [147].

As for the homogeneous steady state, the wavetrains with unstable spec-
trum (e.g., L = 6.1 in Figure 5.3) are expected to be (orbitally) unstable
under the nonlinear evolution of (5.5.1), see Proposition 3 and Theorem 5.8.

5.A Auxiliary results

5.A.1 Superposition operators

We give some details for the properties of the nonlinear maps employed in
the well-posedness results.

Lemma 5.2. Let U1, U2 ⊂ RN be open neighbourhoods of zero, let

a : R× U1 → RN be Ck+3 and let f : R× U1 × U2 → RN be Ck+2,

with f(·, 0, 0) ∈ H1. Define the superposition operators

A(u)v = (a(·, u)vx)x, F (u) = f(·, u, ux).

Then there is an open subset V of H2 such that A ∈ Ck(V,L (H3, H1)) and
F ∈ Ck(V, H1), and both maps are Lipschitz on bounded subsets of V. One
can take V = H2 if U1 = U2 = RN . At u ∈ V, the derivatives are for u ∈ H2

and v ∈ H3 given by

A′(u)[u, v] = (∂2a(·, u)[u, vx])x, F ′(u0)v = ∂2f(·, u, ux)v + ∂3f(·, u, ux)vx.

Proof. Choose V ⊆ H2 such that for u ∈ V the closure of the images of
u, ux ∈ H1 ⊂ BC are uniformly contained in U1 and U2, respectively. Let
u ∈ V. For h ∈ H2 we use ‖uh‖L2 ≤ ‖u‖BC‖h‖L2 and ‖u‖BC ≤ C‖u‖H1 to
estimate

‖∂2f(·, u, ux)h‖H1 ≤ ‖∂2f(·, u, ux)‖BC(‖h‖L2 + ‖hx‖L2)

+‖f ′′(·, u, ux)‖BC(‖h‖L2 + ‖ux‖L2‖h‖BC + ‖uxx‖L2‖h‖BC)

≤ C(‖f ′(·, u, ux)‖BC + ‖f ′′(·, u, ux)‖BC‖u‖H2)‖h‖H1 .

In the same way we obtain

‖∂3f(·, u, ux)hx‖H1 ≤ C(‖f ′(·, u, ux)‖BC + ‖f ′′(·, u, ux)‖BC‖u‖H2)‖h‖H2 .
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Defining F ′(u)h = ∂2f(·, u, ux)h + ∂3f(·, u, ux)hx we thus have F ′(u) ∈
L (H2, H1), and that u 7→ F ′(u) is bounded on bounded subsets of V. If h
is small, then the pointwise identity

F (u+ h)− F (u)− F ′(u)h =

∫ 1

0

∫ 1

0

(
∂22f(·, u+ τsh, ux)[h, τh]

+ ∂33f(·, u, ux + τshx)[hx, τhx]
)
dτds

and the same types of estimates as above yield

‖F (u+ h)− F (u)− F ′(u)h‖H1 ≤ C(f, h)‖h‖2H2 ,

where C(f, h) is bounded as h → 0. These arguments and f(·, 0, 0) ∈ H1

yield F (u) ∈ H1 for u ∈ V and the differentiability of F in V. The Lipschitz
property follows from the boundedness of F ′. Iteration for higher derivatives
gives F ∈ Ck. The arguments apply to u 7→ a(u) on H2 as well, which yields
the assertion on A.

Note that if f is independent of ux, then the arguments from the proof
above show that f : H1 → H1 is smooth.

Lemma 5.3. In the situation of Theorem 5.5, assume in addition that a
and f are Ck+2 for some k ≥ 0. Let A and F be defined by

A(u)v = ∂i(aij(u+u)∂jv), F (u) = ∂i(aij(u+u)∂ju)+ci∂i(ū+u)+f(u+u).

Then for all sufficiently large p > 2 there is is an open neighbourhood

V ⊂ B2−2/p
2,p

of the zero function such that F ∈ Ck(V, L2) and A ∈ Ck(V,L (H2, L2)),

and both maps are Lipschitz on bounded sets. One can take V = B
2−2/p
2,p if

U = RN .

Proof. Since n ≤ 3, from Sobolev’s embedding (5.2.7) we find p > 2 such

that B
2−2/p
2,p ⊂ H1,4∩BC. Then V can be chosen such that the image of u+u

is strictly contained in U , uniformly in u ∈ V. The regularity of A and F can

be derived as in Lemma 5.2, using F (0) = 0. The need for B
2−2/p
2,p ⊂ H1,4

and thus also H2 ⊂ H1,4 comes from the nonlinear gradient terms. Indeed,
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assume for simplicity that u = 0. Then for u1, u2 ∈ B2−2/p
2,p and v ∈ H2 we

can estimate

‖a′ij(u1)∂iu1∂jv − a′ij(u2)∂iu2∂jv‖L2

≤ ‖a′ij(u1)∂iu1 − a′ij(u2)∂iu2‖L4‖∂jv‖L4

≤
(
‖a′ij(u1)‖BC‖u1 − u2‖H1,4 + ‖u2‖H1,4‖‖a′ij(u1)− a′ij(u2)‖BC

)
‖v‖H1,4 ,

employing Hölder’s inequality L4 · L4 ⊂ L2 in the first equation.

5.A.2 A commuting isomorphism for elliptic operators

The following auxiliary result for second order differential operators allows
to transfer spectral properties from L2 to H1 by conjugation.

Lemma 5.4. Let α, β, γ ∈ BC1(R,RN×N ), and assume that α(x) is pos-
itive definite, uniformly in x. Then there is a continuous isomorphism
T : H1 → L2, which also maps T : H3 → H2 isomorphically, that commutes
on H3 with the operator ϕ 7→ Lϕ := αϕxx + βϕx + γϕ.

Proof. The isomorphism T will be the square root of a shift of L. The main
point is to show that its domain for the realization on H2 is H3.

Denote by LL2 the realization of L on L2, with domain H2. The prop-
erties of α together with [7, Theorem 9.6] imply that there is ω > 0 such
that B = ω − LL2 is a (negative) sectorial operator and has a bounded
holomorphic functional calculus of angle strictly smaller than π

2 . In partic-

ular, T := B1/2 is a well-defined continuous isomorphism D(B1/2) → L2,
see [188, Theorem 1.15.2]. The boundedness of the holomorphic calculus of
B implies that it has the property of bounded imaginary powers. Therefore,
combining [115, Lemma 4.1.11] with [188, Theorem 1.15.3] (or [115, Theo-
rem 4.2.6]), we have D(B1/2) = [L2, H2]1/2, where [·, ·]1/2 denotes complex
interpolation (see [18, 115, 188]). Since [L2, H2]1/2 = H1 by [188, Remark
2.4.2/2], it follows that T : H1 → L2 is an isomorphism.

Next, we show that T : H3 → H2 is an isomorphism. Again by [188, The-
orem 1.15.2], T also maps isomorphically D(B3/2)→ D(B) = H2. We show
that D(B3/2) = H3 as Banach spaces. By [115, Lemma 4.1.16, Theorem
4.1.11] and the previous considerations we have

D(B3/2) = {u ∈ D(B) : Bu ∈ D(B1/2)} = {u ∈ H2 : Lu ∈ H1}.
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For u ∈ H3 we clearly have Lu ∈ H1, hence H3 ⊆ D(B3/2). Conversely,
let u ∈ H2 such that Lu ∈ H1. Then αuxx = ψ := −βux − γu + Lu ∈
H3. By assumption, the coefficient α is pointwise invertible, with α−1 ∈
BC1. Therefore uxx = α−1ψ ∈ H1, and so u ∈ H3. We conclude that
D(B3/2) = H3 as sets. Arguing as before, we get

‖u‖D(B3/2) = ‖u‖H2 + ‖Lu‖H1 ≤ C‖u‖H3 ,

for a constant independent C of u. Since we already know that H3 is com-
plete with respect to ‖ · ‖D(B3/2) and ‖ · ‖H3 , the converse estimate follows
from the open mapping theorem.

Finally, it follows from [115, Theorem 4.1.6] that ω − LL2 and its square
root T commute on H3. This implies that also LL2 commutes with T .

The assertion of the above lemma remains valid, with literally the same
proof, if one replaces the L2-setting by an Lq-setting, where q ∈ (1,∞).

5.A.3 The time-one solution map

We use the implicit function theorem to prove that in the neighbourhood of
an equilibrium the solution semiflow obtained from Theorem 5.1 for (5.2.1) is
as smooth as the right-hand side. See [78, Theorem 3.4.4] for the semilinear
case, as well as [114, Theorem 8.3.4] and [6, Theorem 4.1] for quasilinear
frameworks.

Proposition 4. In the situation of Theorem 5.1, assume additionally that

A ∈ Ck(V,L (X1, X0)), F ∈ Ck(V, X0), for some k ∈ N.

Let u∗ ∈ V∩X1 be an equilibrium of (5.2.1), i.e., A(u∗)u∗+F (u∗) = 0. Then
for any τ > 0 there is a neighbourhood U ⊆ V of u∗ such that the time-τ map
u0 7→ Φτ (u0) = u(τ ;u0) for the solution semiflow for (5.2.1) is well-defined
and belongs to Ck(U ,X ). Moreover, let L∗ = A(u∗) +A′(u∗)[·, u∗] + F ′(u∗).
Then Φ′τ (u∗) = eτL∗ .

Proof. We assume V = X . Set E1 = H1,p(0, τ ;X0) ∩ Lp(0, τ ;X1) and
E0 = Lp(0, τ ;X0), and consider

Ψ : E1 ×X → E0 ×X , Ψ(u, u0) = (∂tu−A(u)u− F (u), u(0)− u0).
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Note that u ∈ E1 solves (5.2.1) on (0, τ) with initial value u0 ∈ X if and
only if Ψ(u, u0) = (0, 0). Consider u∗ as an element of E1. Then Ψ(u∗, u∗) =
(0, 0). The assumptions on A and F imply Ψ ∈ Ck(E1 ×X ,E0 ×X ) and

D1Ψ(u∗, u∗)v = (∂tv − L∗v, v(0)), v ∈ E1.

From the proof of Theorem 5.1 we know that −A(u∗) enjoys maximal Lp-
regularity. The linear operator A′(u∗)[·, u∗] + F ′(u∗) is continuous from
X = (X0, X1)1−1/p,p to X0, i.e., it is of lower order. Thus −L∗ has maximal
Lp-regularity as well, see [55, Theorem 6.2]. In other words, D1Ψ(u∗, u∗) ∈
L(E1,E0 ×X ) is an isomorphism. This gives a neighbourhood U of u∗ in X
such that u0 7→ u(·;u0) belongs to Ck(U ,E1), where u(·;u0) is the solution
of (5.2.1) on (0, τ). Moreover, for v0 ∈ X we differentiate Ψ(u(·;u0), u0) = 0
in u∗ to get that

Du0u(·;u∗)v0 = −D1Ψ(u∗, u∗)−1D2Ψ(u∗, u∗)v0 = −D1Ψ(u∗, u∗)−1(0,−v0)

is the unique solution v ∈ E1 of ∂tv − L∗v = 0 on (0, τ) with v(0) = v0, i.e.,
Du0u(·;u∗) = e·L∗ . Finally, the trace at time τ is linear and continuous as a
map E1 → X , see [188, Theorem 1.14.5]. Applying this to u(·;u0) gives the
assertion for Φτ .
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