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4 Effects of nonlocal grazing on
dryland vegetation patterns

4.1 Introduction

Environmental stress, e.g. due to climate change or increased grazing, drives
desertification. Annual mean precipitation is likely to decrease in many
arid and semi-arid regions [87]. Contrary to climate change, grazing can in
principle be managed locally and directly, which creates the opportunity to
intervene. Timely measures that decrease the grazing pressure on ecosystems
may help prevent regime shifts to a degraded bare desert state [149,163]. For
this, expanding the understanding of grazing systems would be very useful.

A complexifying property of drylands is that spatially periodic vegeta-
tion patterns may emerge, even though the abiotic environment is (approx-
imately) spatially homogeneous. The widespread occurrence of periodic
vegetation patterns has been confirmed at the interface between arid and
semi-arid regions [36]. A widely accepted pattern forming mechanism is the
increased infiltration at vegetated soil (short range facilitation), in combina-
tion with overland redistribution of water during rain showers to the vege-
tated patches, where the soil conditions favor water infiltration (long range
competition) [150]. This mechanism is present in many spatially extended
arid ecosystem models, see e.g. [70, 79,97,148,156].

Figure 4.1 shows a simulation of the desertification process in one space di-
mension x for one of these models, the extended Klausmeier model [97,180].1

For large values of the rainfall a, the system resides in a stable homoge-
neously vegetated state. As rainfall decreases to a value below a = 3, the
homogeneous state becomes Turing unstable [190]. A vegetation pattern
forms with a certain wavelength, which remains the same for a range of a.
Then a cascade of transitions to patterns with larger and larger wavelengths
follows [180]. Finally, the system transitions from a large wavelength pattern

1With [180] corresponding to Chapter 2.

103



4 Effects of nonlocal grazing on dryland vegetation patterns

0 1 2 3

a
x

0

1

2

3

4

5

6

7

8

Figure 4.1: Desertification process driven by decreasing rainfall a ( da
dt

= −10−4) in the absence
of grazing, starting with a spatially homogeneous vegetation at a = 3, showing the
evolution of the distribution of vegetation in a single space dimension x. The simulation
is based on the extended Klausmeier model, see Section 4.5 for further details.

to the bare desert state and the desertification process is completed. This
final transition is in accordance with (an extension of) one of Ni’s conjec-
tures [133]: the last patterns to destabilize have large wavelengths.

We aim to study the influence of grazing on this desertification process:
on the pattern formation, pattern adaptation and the final transition to a
bare desert state.

The most common way of incorporating senescence of vegetation n, in
reaction-diffusion type arid ecosystem modeling, is by including a linear
death term −mn, with m a constant parameter, see [70, 79, 97, 125, 135,
148, 156, 175, 202] among others. Occurrence of grazing has been viewed
as included in the term −mn [70, 125, 202], through a higher value of the
coefficient m [156]. Here we analyze a refinement to this modeling by taking
into account the nonlocal coupling grazing asserts on the vegetation [196]:
the availability of (superior) forage elsewhere decreases foraging at a given
location.

In Section 4.2 we account for the nonlocal coupling asserted by the graz-
ing by combining the concepts of ideal free distribution [65], functional and
numerical response [80,181]. For this, plant death mn is split into the usual
local linear term m0n (non-grazing related senescence) and a nonlocal cou-
pling for modeling grazing:

mn = m0n+ grazing. (4.1)
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4.1 Introduction

The grazing at any location will depend on the overall distribution of the
vegetation. For this we assume that herbivore dynamics is fast compared to
biomass evolution.

The ideal free distribution [65] is used to determine the spatial distribu-
tion of herbivores, which means that herbivores spread out such that the
suitability of all locations is the same. There have been recent studies on
(individual) herbivore foraging behavior in heterogeneous environments, see
e.g. [31,66] and the references therein, which extend this by also taking into
account finite animal movement speed and incomplete knowledge of the re-
source distribution. We note that on the population level, all individual
herbivores only need to comply with the ideal free distribution locally to
enforce an ideal free distribution globally. We introduce a parameter j that
models the preference of herbivores for the more vegetated locations.

The functional and numerical response [80,181] of herbivores on available
forage will be determined under simple assumptions both in the context of
sustained grazing and natural grazing. In a system with sustained grazing
we assume that the number of herbivores is kept constant, by always sup-
plying supplementary food if necessary. For natural grazing we assume that
supplementary food is never provided, so that herbivores need to completely
sustain themselves. These cases are two extremes.

Section 4.3 incorporates the derived grazing terms in the two-component
(surface water, plant biomass) extended Klausmeier model. This model has
been used to study the desertification process driven by decreasing rainfall
a both in one space dimension [180] and in two space dimensions [176]2, but
in the absence of nonlocal coupling caused by grazing.

We restrict attention to sustained grazing with j = 2 and natural grazing
with j = 1. These choices will allow for a direct comparison with the case
without grazing, because the dependence on grazing of the homogeneously
vegetated states themselves can in these cases be absorbed by the rainfall
parameter.

In Section 4.4 we perform a linear stability analysis about the homo-
geneous steady state from where the desertification process starts, for the
specific choices of grazing.

We show that for sufficiently severe sustained grazing with j = 2, the ho-

2With [176] corresponding to Chapter 3.
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4 Effects of nonlocal grazing on dryland vegetation patterns

mogeneous steady state is destabilized by a Hopf instability before patterns
form (at the Turing instability), which is in line with Result 1 below. In
this case complete desertification is immediate and vegetation patterns are
omitted. For natural grazing with j = 1 this is not the case: the homoge-
neous steady state generally becomes more susceptible to Turing instability
as grazing becomes more severe.

Section 4.5 presents simulations for the same specific choices of grazing
as in the previous section, all with decreasing rainfall as in Figure 4.1. For
sustained grazing with j = 2 we perform a sequence of simulations with
larger and larger numbers of herbivores, which increases the grazing pressure
on all vegetation distributions proportionally. Not only do these simulations
show that vegetation patterns can be suppressed (Result 1 below), but also
that in the desertification process the large wavelength patterns are skipped
(Result 2 below). For natural grazing with j = 1, the influence of increasing
the grazing pressure on all vegetation distributions proportionally is studied
with simulations. For this case we also vary herbivore persistence, which is
herbivore ability to survive at low levels of available forage. The simulations
show jumps from high to low forage states that become more dramatic if
natural grazing is set to be more severe (Result 3 below).

Concerning grazing in the extended Klausmeier model, we have the fol-
lowing main results:

1. A strong preference of herbivores for locations with large available for-
age (j > 1) may suppress vegetation patterns altogether (as a manifes-
tation of the tall poppy syndrome, Corollary 4.1 & Figure 4.6(d));

2. Sustained grazing impedes the existence of large wavelength patterns,
causing a violation of Ni’s conjecture (Figure 4.6, see also Section
4.6.1);

3. Natural grazing may create a dichotomy of high forage and low forage
system states, with large respectively small numbers of herbivores.
(Figure 4.8).

All these results likely hold for implementations of the derived grazing terms
in other arid ecosystem models, as we discuss at the end of Section 4.2.

Result 1 has profound consequences for the desertification process, since
in this case vegetation patterning will not always precede the transition to
the bare desert state, so vegetation patterns are not an early warning signal
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4.2 Modeling of grazing

for complete land degradation. Result 2 means that, in case of a coarsening
cascade of vegetation patterns, the penultimate state in the desertification
process need not have a long wavelength; together with Result 3 it implies
that

4. both sustained and natural grazing open up the possibility of a dra-
matic sudden regime shift [149,163].

For sustained grazing the shift will be towards the bare desert state [196].
For natural grazing the regime shift will result in a low forage state.

We conclude that the proposed grazing model refinements dramatically
alter the desertification process, but this alteration depends strongly on what
model refinement is implemented.

Remark 4.1. In this chapter we use as a domain a one-dimensional bounded
interval with length L, though all ideas can be transported to two-dimensional
or unbounded domains (by using an integration kernel for the grazing terms).
As patterns in one space dimension correspond to banded vegetation in two
space dimensions, we will refer to parts of the domain as areas.

4.2 Modeling of grazing

In this section we develop nonlocal terms to model grazing. Modeling as-
sumptions lead to Holling type II (sustained) and type III (natural) grazing
response functions [80]. We model grazing by dissecting it in three parts and
determining each part separately, as follows:

grazing = spatial distribution× functional response× numerical response
(4.2)

where we distinguish

• spatial distribution: spatial probability distribution of a single herbi-
vore as a function of the distribution of the vegetation, assuming an
ideal free distribution [65],

• functional response [80,181]: consumption rate of a single herbivore as
a function of available forage,

• numerical response [80, 181]: number of herbivores as a function of
available forage.

Combining these concepts in this way is, as far as we know, a novel approach.
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4.2.1 Ideal free distribution

An inhomogeneous distribution of biomass n(x) leads to an inhomogeneous
distribution of herbivores. Assuming that the system is in a steady state,
we want to determine an ideal free distribution [65] of herbivores, which we
express as the probability distribution of the location of a single herbivore.
For this we need to make assumptions on the suitability S of a location.
As the suitability is set to decrease with the density of herbivores, the ideal
free distribution is attained if the suitability of all (occupied) locations is
equal [65].

We set the suitability S of a location x to be solely determined by the
effective foraging potential which we assume to be of the form nj(x) (j > 0)
divided by the herbivore density φ(x) among whom this forage is shared:
S(n, φ) := nj/φ. The ideal free distribution is attained if S is constant, so
that the density of herbivores φ is proportional to nj and the probability
distribution of a single herbivore is given by

nj(x)
∫ L

0 nj(x) dx
, (4.3)

where the denominator takes care of the normalization.

If j = 1, S is proportional to the local biomass. If only the amount of
vegetation and not its spatial distribution affect total herbivory, then this is
the natural choice for j.

Locations with large amounts of forage provide herbivores the opportu-
nity to graze more efficiently, since it allows for a significant overlap of the
searching and handling of forage [182]. Thus the attractivity of a vegetation
patch may be superlinear in n, resulting in a suitability with j > 1. In this
case a distribution of vegetation concentrated in patches can be grazed more
than the same amount of biomass being smeared out equally over the whole
domain.

If plants become less susceptible to herbivory as they grow [165], e.g.
because of decreased palatability, then attractiveness of large vegetation
patches may be less than proportional to the amount of biomass. This
corresponds to a suitability with 0 < j < 1. In this case a homogeneous
distribution of vegetation will provide the most forage.

The effective forage potential of a vegetation distribution should reflect
the (un)attractiveness of patches of vegetation, through the parameter j.
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4.2 Modeling of grazing

We define as measures of forage per unit area

Ij(n) :=
1

L

∫ L

0
nj(x) dx, (4.4)

with j > 0. Which measure of forage is relevant relates to the utilization and
foraging behavior of the herbivores. From the subsequent derivation it will
follow that the grazing rate (= grazing

n ) is constant (‘flat rate’) if j = 1, so
equal for densely and scarcely vegetated locations. A value j > 1 will make
for a grazing rate that itself grows with increasing n (‘progressive rate’).

Substituting definition (4.4) into (4.3), the probability distribution of a
single herbivore can be written as

nj

LIj(n)
. (4.5)

4.2.2 Sustained grazing

Although (for steady vegetation distributions) the spatial distribution of
herbivores is constant on the population level, individual herbivores will still
move around, so that the functional response of herbivores is affected by time
spend moving and searching [64] (without handling [182]). Assuming that
herbivores spend a fixed amount of time on foraging, the total individual
forage of herbivores can be described by a Holling functional response type
II [80]. For a system with sustained grazing, a constant effective herbivore
number has been regarded as a good approximation of reality [134,196], any
grazing deficiency will be compensated by supplementary food. We denote
the imposed number of herbivores per unit area by himp.

From the previous discussion on sustained grazing we deduce two assump-
tions:

• the functional response is of type II;

• the numerical response is constant and equals himpL.

The functional response depends on the available forage, which is measured
by Ij(n) (4.4). For large Ij(n), intake of the herbivores satiates at a maximal
consumption rate cmax. The type II functional response is given by

cmaxIj(n)

Ih + Ij(n)
,

where Ih is the value of Ij(n) where half of the maximum consumption rate
is lost through searching.
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Applying equation (4.2) with (4.5) in the setting with sustained grazing
yields

grazing =
nj

LIj(n)
× cmaxIj(n)

Ih + Ij(n)
× himpL =

msus

Ih + Ij(n)
nj (4.6)

with msus := cmaxhimp the maximum rate of intake on the population level,
per unit area.

The total amount of grazing for sustained grazing is given by

Gj,sus(n) :=

∫ L

0

msus

Ih + Ij(n)
njdx =

msusLIj(n)

Ih + Ij(n)
. (4.7)

The grazing pressure, defined as total intake Gj,sus(n) divided by the total
forage mass LIj(n) [2], is given by

gj,sus(n) :=
Gj,sus(n)

LIj(n)
=

msus

Ih + Ij(n)
, (4.8)

so that (4.6) can be concisely written as

grazing = gj,sus(n) · nj . (4.9)

4.2.3 Natural grazing

In a natural setting, given an amount of forage Ij(n) (4.4), part of the her-
bivores will be able to sustain themselves by acquiring sufficient grazing
intake for maintenance, e.g. by increasing foraging time. Other herbivores
will disappear from the domain, e.g. due to death or emigration, relieving
the remaining herbivores of high competition for suitable forage. Thus in
this case the consumption of the remaining individuals is approximately con-
stant at a sufficient sustenance level csuf , but at the expense of a numerical
response. As the available forage Ij(n) decreases it may hardly be able to
support any wildlife, even before all biomass has disappeared. At the other
side of the spectrum where forage is abundant, the number of herbivores is
assumed to be delimited by other factors, e.g. due to top-down control by
predation.

We summarize this discussion on natural systems by listing two assump-
tions:

• the functional response is constant and equals csuf ;

110



4.2 Modeling of grazing

• the numerical response is sigmoid (corresponding to type III).

We model the numerical response by the sigmoid function

hmaxLIj(n)2

Ih
2 + Ij(n)2 ,

where Ih in this case represents the value of Ij(n) where half of the maximal
number of herbivores hmaxL remain.

Applying equation (4.2) with (4.5) in the natural setting now yields

grazing =
nj

LIj(n)
× csuf ×

hmaxLIj(n)2

Ih
2 + Ij(n)2 =

mnatIj(n)

Ih
2 + Ij(n)2n

j (4.10)

with mnat := csufhmax the maximum rate of intake on the population level,
per unit area.

The total grazing is given by

Gj,nat :=

∫ L

0

mnatIj(n)

Ih
2 + Ij(n)2n

jdx =
mnatLIj(n)2

Ih
2 + Ij(n)2 (4.11)

so that we identify the grazing pressure being

gj,nat(n) :=
Gj,nat

LIj(n)
=

mnatIj(n)

Ih
2 + Ij(n)2 (4.12)

and (4.10) becomes
grazing = gj,nat(n) · nj . (4.13)

4.2.4 Comparison of sustained and natural grazing

We make a comparison of the total grazing (4.7), (4.11) and grazing pressure
(4.9), (4.13) functions in the sustained and natural setting. In (4.14) the
asymptotic behavior of the grazing functions is shown and we see that at
Ij(n) = Ih for both types of grazing intake is precisely half of the maximum
intake on the population level.

Gj,sus Gj,nat gj,sus gj,nat

Ij(n)→ 0 Gj,sus → 0 Gj,nat → 0 gj,sus → msus
Ih

gj,nat → 0

Ij(n) = Ih Gj,sus = msusL
2 Gj,nat = mnatL

2 gj,sus = msus
2Ih

gj,nat = mnat
2Ih

Ij(n)→∞ Gj,sus → msusL Gj,nat → mnatL gj,sus → 0 gj,nat → 0
(4.14)
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4 Effects of nonlocal grazing on dryland vegetation patterns

Regardless the setting, in a regime of abundant vegetation total grazing
converges to the maximal overall intake rate mL and grazing pressure di-
minishes. Also, as available forage Ij(n) becomes smaller but Ij(n) > Ih, the
grazing pressure monotonically increases. The main difference between the
sustained and natural setting occurs when Ij(n) decreases below Ih, since
then in the sustained setting grazing pressure increases more and more (due
to constant herbivore numbers, with a type II functional response) whereas
in the natural setting herbivore numbers start reducing so fast (sigmoid re-
sponse) that the grazing pressure starts to become smaller again from Ij(n)
below Ih onward. This is reflected by the sigmoid form of the total grazing
Gj,nat, see Figure 4.2.

Remark 4.2. Since the sustained and natural grazing functions (with msus =
mnat and the same value of j) are almost equal for Ij(n)� Ih, in this regime
the same dynamics are likely to occur for sustained and natural grazing.

With the proposed grazing functions set, we return to the main results of
the introduction to see how they fit.

1. The grazing rate (= grazing
n = gjn

j−1) is an increasing function of n for
j > 1 (‘progressive’), so that locations with relatively large biomass
bear a large grazing rate and locations with small biomass bear a small
grazing rate. If this difference is large enough, this may lead to levelling
out of vegetation distributions resulting in a spatially homogeneous
vegetation.

2. For sustained grazing, periodic vegetation patterns with large wave-
length have low available forage Ij(n) and thus are subjected to a
large grazing pressure, see Figure 4.2(b).

3. For natural grazing, states with intermediate amounts of forage Ij(n) =
Ih experience the heighest levels of grazing pressure, Figure 4.2(b). A
small Ih corresponds to persistent herbivores, so the available forage
Ij(n) of possibly inadmissible states is influenced by herbivore persis-
tence, creating a dichotomy of higher forage and lower forage states.

4.3 Incorporation of grazing in the extended
Klausmeier model

As announced in the introduction, we analyze the proposed nonlocal grazing
terms within an extended Klausmeier model [176, 180]. On flat ground, in
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Figure 4.2: Grazing as a function of available forage Ij(n). Here Ih designates the amount of forage
where the total grazing is half the maximum value and m = msus or mnat respectively.
Note that the graphs do not depend on j. Top panel: in both cases the total grazing
G converges to mL as forage becomes more and more abundant and diminishes if
vegetation becomes scarce. Bottom panel: in both cases the grazing pressure g is
(approximately) inversely proportional to available forage in case of abundant forage.
The function gj,sus monotonically increases to m/Ih as all vegetation disappears; in
contrast gj,nat initially increases to a maximum at Ij(n) = Ih but then converges to
zero for ever smaller forage amount.
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4 Effects of nonlocal grazing on dryland vegetation patterns

dimensionless form, it is given by

wt =d1wxx + f(w, n),

nt =d2nxx + g(w, n)
(4.15)

where the reaction terms are given by

f(w, n) =a− w − wn2,

g(w, n) =−mn+ wn2.
(4.16)

As mentioned in the introduction, we choose a finite but large domain [0, L],
with Neumann or periodic boundary conditions. The second order deriva-
tives wxx and nxx model water diffusion and plant dispersal, with water diffu-
sion being faster so d1 � d2 (although in the original Klaumeier model [97],
extensively analyzed in [173] and references therein, it holds that d1 = 0).
The parameter a ≥ 0 models rainfall and may change as a function of time
due to a changing climate; −w models evaporation, m is an effective death
rate and the terms ±wn2 model water uptake by the vegetation.

Remark 4.3. When having to fix parameters, we do so in accordance with
those employed in previous studies [97, 176, 180]: d1 = 500, d2 = 1 and
m0 = 0.45.

As discussed in the introduction we now restrict to certain types of grazing
that allow for a straightforward comparison with the case without grazing.
Specifically, we choose Ih = 1 and sustained grazing with j = 2 or natural
grazing with j = 1. It is of notational convenience that we now treat both
types of grazing at once, we assume that either one has been set to zero.
The realization of (4.1) with (4.9) and (4.13) is

mn =m0n+ g2,sus(n) · n2 + g1,nat(n) · n

=m0n+
msus

1 + I2(n)
n2 +

mnatI1(n)

1 + (I1(n))2n
(4.17)

where m0 > 0, msus,mnat ≥ 0 (and msusmnat = 0). By substituting (4.17)
in (4.16), grazing is incorporated in the extended Klausmeier model.

4.4 Linear analysis of pattern formation with grazing

The grazing terms can alter both the homogeneous steady state solutions
and their stability. In Section 4.3 we have restricted our attention to choices
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4.4 Linear analysis of pattern formation with grazing

for which the effect on the homogeneous steady states can be absorbed in
the rainfall parameter, as we show in Section 4.4.1.

Next we focus on stability of the homogeneous steady states. Through
a linear stability analysis, we identify possible scenarios for destabilization
of a homogeneously vegetated state in the presence of grazing, which could
result in vegetation pattern formation but could also lead to immediate
desertification.

4.4.1 Homogeneous steady states

As in previous papers [176,180], when looking for homogeneous steady states
we set f(w, n) = g(w, n) = 0 (see (4.16)) and obtain:

a− w − wn2 = 0,

−mn+ wn2 = 0.

One solution is given by nbare = 0 and consequently wbare = a, which corre-
sponds to the bare desert state.

Otherwise
m =wn,

w =
a

1 + n2

(4.18)

so that
m =

an

1 + n2
. (4.19)

Because I1(n) = n and I2(n) = n2, (4.17) simplifies to

m = m0 +
msus +mnat

1 + n2
n. (4.20)

Substituting this into (4.19) we obtain

m0 =
(a−msus −mnat)n

1 + n2
.

Setting ā := a−msus −mnat this leads to

m0(1 + n2) = ān (4.21)

which is a quadratic equation in n having solutions

n±(ā,m0) =
ā±

√
ā2 − 4m2

0

2m0
(ā ≥ 2m0). (4.22)
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4 Effects of nonlocal grazing on dryland vegetation patterns

0

1

0 2m0

ā

n+

n−
nbare

1

Figure 4.3: Homogeneous steady states of the extended Klausmeier model. For sustained grazing
with j = 2 or natural grazing with j = 1, the grazing is absorbed into the rainfall
a, together ā. In this case, the homogeneous steady states depend on ā identically as
they depend on a in the case without grazing ( [180], Figure 2.8).

This shows that a fold or saddle-node bifurcation occurs at

ā = 2m0, (4.23)

or a = 2m0 +msus +mnat. The other component w± can be computed from
(4.22) and any of the equations (4.18).

Remark 4.4. We started out with independent parameters a,m0,msus,mnat

and introduced ā as a dependent parameter. Since n± only directly depends
on ā and m0, for the continuation of this section it will be easier to view ā
as an independent parameter and have a depend on ā,msus,mnat.

Remark 4.5. The choice of Ih = 1 and the restriction to sustained grazing
with j = 2 and natural grazing with j = 1 means that when I2(n) respectively
I1(n) has decreased to 1, the total sustained grazing G2,sus respectively total
natural grazing G1,nat have decreased to half the maximum total grazing.
If destabilization of (w+, n+) for sustained grazing with j = 2 occurs for
n2

+ = I2(n+)� 1, then this likely also occurs for natural grazing, see Remark
4.2. Vice versa if (w+, n+) destabilizes for natural grazing with j = 1 when
n+ = I1(n+)� 1, then this likely also occurs for sustained grazing.
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4.4 Linear analysis of pattern formation with grazing

4.4.2 Linearization of kinetics about (w±, n±)

We compute the linearization of the reaction terms about the homogeneous
steady states (w±, n±). To reduce notational burden, we abbreviate (w±, n±)
by (w, n) since we now only focus on these system states. As notation for
the derivatives we introduce

a1 :=
∂f

∂w
(w, n) = −1− n2,

a2 :=
∂f

∂n
(w, n) = −2wn,

a3 :=
∂g

∂w
(w, n) = n2,

a4 :=
∂g

∂n
(w, n) = −∂(m(n)n)

∂n
+ 2wn.

(4.24)

We note that a1 and a3 only depend on n. We view n±(ā,m0) as independent
of msus and mnat, see Remark 4.4. This also makes a1 and a3 independent of
these parameters. The function a2 does depend on msus and mnat through
w. By (4.16) and (4.17), g(w, n) = −m0n−g2,sus(n) ·n2−g1,nat(n) ·n+wn2,
so

a4 =−m0 −
∂g2,sus(n)

∂n
n2 − 2msusn

1 + n2
− ∂g1,nat(n)

∂n
n− mnatn

1 + n2
+ 2wn

=m0 −
∂g2,sus(n)

∂n
n2 − ∂g1,nat(n)

∂n
n+

mnatn

1 + n2
(4.25)

where we used (4.18) and (4.20). Since g2,sus and g1,nat contain integrals,
their differentation requires a bit more attention, for this we rely on outcomes
of the more general linearization computations in Appendix 4.A.

Given a perturbation (w̃(x), ñ(x)) we may split it in a homogeneous and
inhomogeneous part:

(w̃, ñ)hom:=

(∫ L

0
w̃ dx,

∫ L

0
ñ dx

)
,

(w̃, ñ)inh :=(w̃, ñ)− (w̃, ñ)hom.

For the inhomogeneous part it follows from (4.25), (4.A.5) and (4.A.6), since
β0 = 0, that

a4,inh = m0 +
mnatn

1 + n2
, (4.26)
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4 Effects of nonlocal grazing on dryland vegetation patterns

which does not depend on msus. For spatially homogeneous perturbations,
it follows that

a4,hom =m0 −
−msus

(1 + n2)2 · 2n · n2 −mnat
1− n2

(1 + n2)2n+
mnatn

1 + n2

=m0 +
2(msus +mnat)n

3

(1 + n2)2 .

For the stability against homogeneous perturbations,

Ahom :=
( a1 a2
a3 a4,hom

)
=

(
−1−n2 −2m0− 2(msus+mnat)n

1+n2

n2 m0+
2(msus+mnat)n3

(1+n2)2

)

is relevant. We calculate the determinant

det(Ahom) =a1a4,hom − a2a3

=(−1− n2)

(
m0 +

2(msus +mnat)n
3

(1 + n2)2

)

+

(
2m0 +

2(msus +mnat)n

1 + n2

)
n2

=m0(n2 − 1)

which does not depend on msus and mnat (since n only depends on ā and m0,
Remark 4.4). We note that n− < 1 so then det(Ahom) < 0, so (w−, n−) is
unstable. On the other hand n+ > 1 implies det(Ahom) > 0, so that stability
of (w+, n+) against homogeneous perturbations depends on the sign of the
trace, where a change in sign signals a Hopf instability. From now on we
focus on (w+, n+).

4.4.3 Hopf instability of (w+, n+)

Here (w, n) denotes (w+, n+). It holds that

tr(Ahom) =a1 + a4,hom

=− (1 + n2) +m0 +
2(msus +mnat)n

3

(1 + n2)2
(4.27)

which by equation (4.21) becomes

tr(Ahom) =− ān

m0
+m0 +

2(msus +mnat)m
2
0n

ā2
. (4.28)
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4.4 Linear analysis of pattern formation with grazing

At the Hopf instability threshold it holds that tr(Ahom) = 0, so

(
ā3 − 2m3

0(msus +mnat)
)
n = m2

0ā
2. (4.29)

We compute tr(Ahom) on the fold bifurcation, where ā = 2m0 (by (4.23))
and n = 1. Inserting this in (4.28) yields

tr(Ahom) =− 2 +m0 +
1

2
(msus +mnat)

{
< 0 if m0 < 2− 1

2(msus +mnat) (Hopf stable)
> 0 if m0 > 2− 1

2(msus +mnat) (Hopf unstable)

(4.30)

so the Hopf instability locus on the fold moves to smaller values of m0 for
increasing msus or mnat, and exists only for msus +mnat < 4 (since m0 > 0).

Since limā→∞ n = ∞ but n < ā
m0

, it holds that for fixed m0 > 0 and
msus,mnat ≥ 0

lim
ā→∞

tr(Ahom) = −∞. (4.31)

Lemma 4.1 (Hopf curve monotonicity). No Hopf instabilities exist for
triplets (m0,msus,mnat) with m0 < 2 − 1

2(msus + mnat). For triplets with
m0 ≥ max

{
0, 2− 1

2(msus +mnat)
}

, there exists a unique Hopf instability; it
moves to higher values of ā for increasing m0, msus or mnat.

Proof. Dividing (4.29) by ā2 we obtain

ā3 − 2m3
0(msus +mnat)

ā2
n = m2

0. (4.32)

Define

D− :=
{

(ā,m0,msus,mnat) : ā2 − 2m3
0(msus +mnat) ≤ 0

}
,

D+ :=
{

(ā,m0,msus,mnat) : ā2 − 2m3
0(msus +mnat) > 0

}
.

Since the right-hand side of (4.32) is positive, it can’t have solutions on D−,
so we restrict attention to D+.

On D+ the left-hand side is a monotonically increasing function of ā and
the right-hand side is independent of ā, so that for each combination m0 > 0,
msus,mnat ≥ 0 there can be at most one Hopf instability. By (4.30) and
(4.31) a unique Hopf instability exists only for m0 > 2 − 1

2(msus + mnat)
(and m0 > 0).
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4 Effects of nonlocal grazing on dryland vegetation patterns

On D+, for each fixed ā, the left-hand side is a decreasing function of m0,
msus and mnat, since n is a decreasing function of m0 for each fixed ā. The
right-hand side is a non-decreasing function of m0, msus and mnat. So the
Hopf instability moves to a higher value of ā for larger m0, msus or mnat.

Since msus and mnat are interchangeable in (4.28), (w, n) becomes equally
more susceptible to Hopf instability in case of increased sustained grazing
with j = 2 or increased natural grazing with j = 1. The Hopf instabilities for
various values of msus,mnat for a realistic choice of parameters are plotted
in Figure 4.4, illustrating that the Hopf instability curve moves to larger ā
for increasing msus or mnat.

4.4.4 Turing instability of (w+, n+)

We again denote (w+, n+) by (w, n). Regarding a possible Turing instability
we look at spatially inhomogeneous perturbations, with linearization given
by

Ainh(ā,m0,msus,mnat) :=

(
a1 a2

a3 a4,inh

)

=

(
−1− n2 −2m0 − 2(msus+mnat)n

1+n2

n2 m0 + mnatn
1+n2

)
,

(4.33)

see (4.24) and (4.26). We compute

det(Ainh) =a1a4,inh − a2a3

=(−1− n2)

(
m0 +

mnatn

1 + n2

)
+

(
2m0 + 2n

msus +mnat

1 + n2

)
n2

=(n2 − 1)m0 +
−mnatn−mnatn

3 + 2n3(msus +mnat)

1 + n2

=(n2 − 1)m0 +
2msusn

3 +mnatn(n2 − 1)

1 + n2
> 0

and define

Tur(ā,m0,msus,mnat) := Γ− 2
√
d1d2det(Ainh), (4.34)

where Γ := d1a4,inh + d2a1, with d1 and d2 the diffusion constants.
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4.4 Linear analysis of pattern formation with grazing

The homogeneous steady state is Turing unstable if Tur > 0 and Turing
stable if Tur < 0, see [176]. Note that these results follow from analysis of
the continuous spectrum that relates to unbounded domains, in case of a
(large) finite domain the instability is delayed (by a negligible amount).

Like for the Hopf instability we investigate Turing (in)stability on the fold
bifurcation, where ā = 2m0 (4.23) and n = 1. Substitution in (4.34) yields

Tur =d1

(
m0 +

mnat

2

)
− 2d2 − 2

√
d1d2msus





< 0 if m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 (Turing stable)

> 0 if m0 > 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 (Turing unstable).

(4.35)

Lemma 4.2 (Turing curve monotonicity). No Turing instabilities exist for

triplets (m0,msus,mnat) with m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 . For triplets

(m0,msus,mnat) with m0 ≥ max
{

2d2
d1

+ 2
√

d2
d1
msus − mnat

2

}
there exists a

unique Turing instability; it moves to higher values of ā for increasing m0.

Proof. This monotonicity was already shown in [176] in the absence of nonlo-
cal grazing terms (msus = mnat = 0), we will apply the framework provided
there to also apply it to the cases with grazing. It is sufficient to show that

sgn
∂a1

∂ā
= sgn

∂a4,inh

∂ā
= sgn

(
−∂det(Ainh)

∂ā

)
= −1

which means that increasing ā acts stabilizing and

sgn
∂a1

∂m0
= sgn

∂a4,inh

∂m0
= sgn

(
−∂det(Ainh)

∂m0

)
= 1

which means that increasing m0 acts destabilizing.
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4 Effects of nonlocal grazing on dryland vegetation patterns

Since a1 is unaffected by the grazing terms, we only compute

∂a4,inh

∂ā
=mnat

1− n2

(1 + n2)2

∂n

∂ā
< 0

∂a4,inh

∂m0
=1 +mnat

1− n2

(1 + n2)2

∂n

∂m0
> 0

∂det(Ainh)

∂ā
=2m0n

∂n

∂ā
+
msus

(
n4 + 6n2

)
+mnat

(
n4 + 3n2 − 1

)

(1 + n2)2

∂n

∂ā
> 0

∂det(Ainh)

∂m0
=2m0n

∂n

∂m0
+ n2 − 1

+
msus

(
n4 + 6n2

)
+mnat

(
n4 + 3n2 − 1

)

(1 + n2)2

∂n

∂m0
< 0

where the final estimate follows from the estimate ∂n
∂m0
≤ − a

m2
0

as in [176].

Since for m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 , (w, n) was already Turing stable

on the fold ā = 2m0, it remains stable for all ā > 2m0. The linear results on
pattern formation from [176] apply, in particular that for fixedmsus,mnat ≥ 0

and m0 ≥ 2d2
d1

+2
√

d2
d1
msus−mnat

2 , the unique ā-value of the Turing instability

locus monotonically increases as m0 increases.

Sustained grazing with j = 2

The previous result Lemma 4.2 automatically leads to the simple conse-
quence that a desertification process without Turing patterns is promoted
by increasing msus.

Corollary 4.1. Let mnat = 0 and msus be fixed. If

m0 < 2
d2

d1
+ 2

√
d2

d1
msus,

then (w, n) doesn’t become Turing unstable as ā decreases.

We now study further how sustained grazing with j = 2 affects the Turing
instability. We do some preparatory work. First we compute the component-
wise derivative of Ainh (4.33) with respect to msus:

∂Ainh

∂msus
=
(

0 −2n

1+n2

0 0

)
(4.36)
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4.4 Linear analysis of pattern formation with grazing

Now the first and second derivatives of Tur against any m•, be it msus or
mnat, are given by

∂Tur

∂m•
=
∂Γ

∂m•
−
√

d1d2

det(Ainh)

∂det(Ainh)

∂m•
, (4.37)

∂2Tur

∂m•2
=
∂2Γ

∂m•2
+

√
d1d2

2 (det(Ainh))
3
2

∂det(Ainh)

∂m•
−
√

d1d2

det(Ainh)

∂2det(Ainh)

∂m•2
.

(4.38)

Lemma 4.3. The Turing unstable region in (m0, ā)-space becomes smaller
as msus increases.

Proof. From (4.36) we see that

∂det(Ainh)

∂msus
=− ∂a2

∂msus
a3 =

2n

1 + n2
n2 =

2n3

1 + n2
> 0,

∂Γ

∂msus
=0,

which together with (4.37) leads to ∂Tur
∂msus

< 0, so that the Turing unstable
region becomes smaller as msus increases.

The range in m0 for which the Turing instability is not the primary desta-
bilization mechanism may be larger than the lower bound presented in Corol-
lary 4.1, since the increase of msus pushes the Turing instability to the back-
ground (Lemma 4.3) but promotes the Hopf instability (Lemma 4.1). So
after the Turing instability emerges from the fold it may still need to over-
take the Hopf instability as primary destabilization mechanism, see Figure
4.4.

Natural grazing with j = 1

For linear (j = 1) natural grazing, it is not as clear how the Turing instability
is affected. The component-wise derivative

∂Ainh

∂mnat
=

(
0 −2n

1+n2

0 n
1+n2

)
. (4.39)
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4 Effects of nonlocal grazing on dryland vegetation patterns

of (4.33) yields

∂det(Ainh)

∂mnat
=a1

∂a4

∂mnat
− ∂a2

∂mnat
a3 = (−1− n2)

n

1 + n2
+

2n

1 + n2
n2

=
n3 − n
1 + n2

> 0, (4.40)

∂Γ

∂mnat
=d1

∂a4,inh

∂mnat
=

d1n

1 + n2
> 0,

and with (4.37) it follows that

∂Tur

∂mnat
=

d1n

1 + n2
−
√

d1d2

det(Ainh)

n3 − n
1 + n2

=

√
d1d2n

1 + n2

(√
d1

d2
− n2 − 1√

det(Ainh)

)
,

and when assuming that msus = 0,

∂Tur

∂mnat
=

√
d1d2n

1 + n2

(√
d1

d2
−
√

n2 − 1

m0 + mnat
1+n2

)
.

This implies that the derivative tends to be positive for n ' 1 but becomes
negative for n � 1. Indeed, it can only be negative if n2 > d1

d2
m0, which

for d1 = 500, d2 = 1 and m0 = 0.45 (Remark 4.3) leads to n > 15 so that
through (4.22), ā > 6 is necessary. Thus we conclude that, in this case, for
ā ≤ 6 the Turing unstable region becomes larger, which is in agreement with
Figure 4.4. Together with the monotonicity result Lemma 4.2, this does
restrict the Turing instability location for ā > 6.

It is possible to prove a more general result based on the second derivative
of Tur with respect to mnat.

Lemma 4.4. Any region in (m0, ā)-space that becomes Turing unstable due
to an increase of mnat will remain unstable as mnat increases further.

Proof. It holds that

∂2det(Ainh)

∂mnat
2

=0,

∂2Γ

∂mnat
2

=0.

which after substitution together with (4.40) into (4.38) yields ∂2Tur
∂m2

nat
> 0.
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4.5 Simulations with grazing and decreasing rainfall

4.5 Simulations with grazing and decreasing rainfall

In this section we show the results of simulations of the extended Klausmeier
model (4.15) with grazing incorporated (Section 4.3) to see how the pres-
ence of grazing terms changes the desertification process under decreasing
rainfall. For this we fix parameters to the values d1 = 500, d2 = 1 and
m0 = 0.45 (Remark 4.3). Application of noise tends to decrease the delay
in destabilization and the jump in wavenumber at transition [180], in all
simulations we apply white multiplicative noise of small amplitude 0.05%
(on both the water and the biomass component) at every integer t. Also the
rate of change of rainfall a has an influence [180], here we fix ∂a

∂t = −10−4.
As initial condition we take the homogeneously vegetated state at a rainfall
level where it is still stable. The spatial domain size is 1000, with periodic
boundary conditions.

4.5.1 Varying maximum sustained intake

For the simulations presented in this subsection we vary the maximum sus-
tained intake msus while fixing Ih = 1 and j = 2. This corresponds to the
grazing pressures plotted in Figure 4.5(a). From these plots it is visible
that especially for small I2(n), which encompass patterns with a (very) long
wavelength, the grazing pressure becomes exceedingly large. On the other
end, from the linear analysis performed in Section 4.4.4 we know that the
Turing instability may be delayed (in ā), or even suppressed, by increasing
msus with j = 2.

Together with Figure 4.1, the panels in Figure 4.6 show the influence of
increasing the maximal intake on the population level (per unit area) msus on
the desertification process driven by decreasing rainfall. We see that the Tur-
ing instability occurs at higher values of a, but lower values of ā = a− msus,
for larger msus. This is consistent with Lemma 4.3. For the highest value
msus = 8, no Turing patterns form, which is consistent with Figure 4.4 from
which it can be read of that, at m0 = 0.45, the Hopf instability occurs at
a higher value of ā (thus also a) than the Turing instability. This is in
accordance with main Result 1 of Section 4.1.R

From the simulations it is also visible that for msus ≥ 2, the final transition
of the system from a vegetated state to the bare desert state occurs at a
relatively small wavelength (large wavenumber) compared to the simulation
without grazing (Figure 4.1). This is in supports of main Result 3. In terms
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ā

m0

TTTTTTTTTTTTTTTTTTTTTTTT

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6

ā
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ā

m0

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6

ā
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Figure 4.4: The bottom panel is a zoom of the top panel, both showing the influence of grazing
on Turing and Hopf instability curves for d1 = 500 and d2 = 1 (Remark 4.3). The
red curve is the Turing instability locus without grazing and the purple region is
the corresponding Turing stable region. The black line ā = 2m0, on the boundary
of the white region where (w±, n±) does not exist, is the fold bifurcation. Green
curves represent Turing instabilities for natural grazing with j = 1, Ih = 1, L-R:
mnat = 8, 6, 4, 2. Brown curves are Turing instabilities for sustained grazing with
j = 2, Ih = 1, L-R: msus = 2, 4, 6, 8. Black curves show Hopf instability curves, T-B:
m• = 8, 6, 4, 2, 0, with m• = msus or mnat. Dark-grey region corresponds to Hopf
unstable region in absence of grazing, m• = 0. The point with label T is the locus of
the Turing instability for m0 = 0.45, msus = mnat = 0.
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4.5 Simulations with grazing and decreasing rainfall
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Figure 4.5: Grazing pressures as a function of available forage Ij(n) for the simulations shown in
this section. In all cases the grazing pressure monotonically changes for all values of
forage. Top panel: sustained grazing with j = 2 for Ih = 1, varying msus. Middle
panel: natural grazing with j = 1 for Ih = 1, varying mnat. Bottom panel: natural
grazing with j = 1 for mnat = 2, varying Ih.
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4 Effects of nonlocal grazing on dryland vegetation patterns
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Figure 4.6: Influence of the maximum rate of intake msus = 2, 4, 6, 8 of sustained grazing with

superlinear grazing j = 2 on the evolution of vegetation with a slowly decreasing
rainfall parameter a, ∂a

∂t
= −10−4, and Ih = 1. The colorbar besides panel (d) holds

for all simulations in this figure. Panel (e) shows the evolution of forage per unit area
I2(n) in the final stages, with very fast jumps to the bare desert state.
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4.5 Simulations with grazing and decreasing rainfall

of loss of available forage, the final transition to the bare desert state becomes
more dramatic as msus increases, as depicted in Figure 4.6(e) (Result 4,
Section 4.1).

4.5.2 Varying maximum natural intake

For the following simulations we vary mnat, while Ih = 1 and j = 1. Figure
4.5(b) shows that for the simulations shown in this subsection, distributions
with I1(n) = Ih = 1 are penalized the most compared to the simulation
without grazing in Figure 4.1. This feeds the expectation that transitions
from vegetation pattern with large I1(n) to small I1(n) occur and the jumps
in available forage at these transitions becomes larger as mnat increases.
Since in general gj,nat → 0 as Ij(n)→ 0, the destabilization of patterns with
low I1(n) will not occur significantly earlier in a. As a result, the system
spends more time residing in vegetation patterns with long wavelength (low
wavenumber) as mnat increases, which is confirmed by the simulations in
Figure 4.7.

The value of a at the Turing instability, where pattern formation oc-
curs, increases faster than mnat increases. This corresponds to an increasing
ā = a−mnat, which is in line but goes beyond what was shown in Section
4.4.4.

4.5.3 Varying natural herbivore persistence

In the final simulations we vary the herbivore peristence Ih in a natural
grazing setting where mnat = 2 and j = 1. In Figure 4.5(c) we see that
increasing the persistence of herbivores, by decreasing Ih, has a dramatic
effect on the grazing pressure on vegetation with small I1(n) and barely any
effect on vegetation with large I1(n). The panels in Figure 4.8 together with
Figure 4.7(a) show how persistence affects the desertification process under
decreasing rainfall.

Because we already saw in Figure 4.7(a) that pattern formation at the
Turing instability occurs for n � 1, and persistence does not really affect
grazing pressure at this level of available forage Ij(n), it comes as no surprise
that the location of the Turing instability in a is not different for different
values of Ih (Figure 4.8).

From Figure 4.2(b) we recall that Ih determines at what intermediate
value of available forage the grazing pressure is maximal. The smaller Ih,
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Figure 4.7: Influence of the maximum natural intake of natural grazing mnat = 2, 4, 6, 8 with linear

foraging potential (j = 1) on vegetation evolution with slowly decreasing rainfall a,
da
dt

= −10−4, and Ih = 1. The colorbar besides panel (d) holds for all the simulations
in this figure. Panel (e) shows the evolution of forage per unit area I1(n) in the final
stages.
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4.6 Discussion and outlook

the more dramatic the regime shift from high to low forage is. In Figure
4.8(d), near a = 3 a large majority of the vegetation patches disappears,
which is also visible as a very fast jump in available forage (Results 3 and 4
of Section 4.1).

Hysteresis is expected to occur when returning from a vegetation pattern
with small available forage to a vegetation pattern with large available for-
age, since intermediate patterns - that the system would reside in on its
journey otherwise - are inadmissible. This hysteresis will therefore probably
be stronger then reported for systems without explicit grazing [172,180].

4.6 Discussion and outlook

The effects of grazing on system stability has already been studied for a
nonspatial model in [134]. In another nonspatial model [194], soil degrada-
tion together with a vegetation dependent herbivore population allows for
the possibility of irreversible vegetation change; analysis suggests this is less
likely to occur for a natural herbivore population than for human controlled
populations. In [196] it is shown that reduced plant cover results in focusing
of herbivore grazing on the remaining vegetation, which may lead to the
collapse of the entire vegetation [149].

The results in this chapter are in line with these previous model studies. In
the simulations (Section 4.5), critical transitions have been shown to occur
for both sustained and natural grazing (Result 4). The human controlled
case in [196] corresponds to sustained grazing, where the vegetation change
leads to the bare desert state, a transition that is irreversible. The prediction
of these regime shifts by finding early-warning signals is of great interest
[163], e.g. for conservation and management purposes.

We assumed throughout that herbivore dynamics is fast compared to
biomass evolution. This assumption may not hold at the very fast transitions
in the simulations of Figure 4.8(c) and (d); in that case herbivore population
decrease may not keep up with forage decrease, which is expected to lead to
an even more dramatic downfall of biomass [178].

We continue by putting forward some promising directions for future anal-
ysis and briefly discuss some possible model extensions.

131



4 Effects of nonlocal grazing on dryland vegetation patterns

0 1 2 3 4 5 6

a

x

(a) Ih = 0.5

0 1 2 3 4 5 6

a

x

(b) Ih = 0.25

0 1 2 3 4 5 6

a

x

(c) Ih = 0.1

0 1 2 3 4 5 6

a

x

0

2

4

6

8

10

12

(d) Ih = 0.05

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

I 1
(n
)

a

Ih = 1

Ih = 0.5

Ih = 0.25

Ih = 0.1

Ih = 0.05

1

(e)
Figure 4.8: Influence of the persistence of natural grazing Ih = 0.5, 0.25, 0.1, 0.05 with linear for-

aging potential (j = 1) on vegetation evolution with slowly decreasing rainfall a,
da
dt

= −10−4, and mnat = 2. The colorbar besides panel (d) holds for all the sim-
ulations in this figure. Panel (e) shows the evolution of forage per unit area I1(n) in
the final stages, with very fast jumps in the regimes with larger persistence.
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4.6 Discussion and outlook

4.6.1 Analysis

Construction of Busse balloons

Ultimately, the computation of overviews of stable periodic vegetation pat-
terns, called Busse balloons [21,176,180,199], would provide further insight
in the influence of grazing on desertification scenarios. A Busse balloon is a
representation of stable periodic patterns by a parameter-wavenumber pair.
The computation requires the implementation of the linearizations of the
grazing terms computed in Appendix 4.A in continuation software.

In this context, we translate the main results from the introduction into
the following hypotheses on the Busse balloon.

1. Progressive rate grazing, where j > 1, leads to deflation of the Busse
balloon.

2. Sustained grazing leads to Busse balloon lift-off. Without grazing the
Busse balloon is connected to the x-axis through the existence of stable
large wavelength patterns.

3. Natural grazing may split the Busse balloon in two disjoint parts. This
may occur if states with intermediate available forage, which become
inadmissible due to large grazing pressure, form a connected region in
(rainfall,wavenumber)-space.

Concerning hypothesis 1, it would be interesting to see what destabiliza-
tion mechanism is responsible for the deflation of the Busse balloon. The
boundary of the Busse balloon has been found to be given primarily by a
sideband instability [180,199], although for small wavenumbers (large wave-
lengths) the boundary is given by a Hopf instabilities [51, 199]. Since the
destabilization of the homogeneous steady state (w+, n+) can become dom-
inated by Hopf instabilities (Section 4.4.4), the same could hold for periodic
patterns and a larger part of the boundary of the Busse balloon may consist
of Hopf instabilities. In case of a supercritical Hopf instability, the emergence
of a limit cycle could act as an early warning signal.

Singular perturbation theory for sustained grazing: obstruction of
existence of large wavelength patterns

We briefly sketch how sustained grazing may obstruct the existence of a large
wavelength (small wavenumber) patterns, namely that of a single patch,
within the extended Klausmeier model (4.15). We start out with the case
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4 Effects of nonlocal grazing on dryland vegetation patterns

j = 2.

We view the limit L → ∞, in which the single patch converges to a
homoclinic state. In this limit the measure of forage per unit area of the
pulse n, I2(n) (4.4), converges to 0. Thus the grazing pressure g2,sus (4.8)
converges to msus

Ih
. If the loss in vegetation through grazing is larger than

the growth through the water uptake,

g2,susn
2 =

msus

Ih
n2 > wn2,

then the homoclinic pulse can’t be a steady state. Since w ≤ a uniformly, it
follows that for a < msus

Ih
the homoclinic pulse does not exist.

For j = 1, the nonlocal grazing contributes on the level of the linear death
−m0n. By moving to the homoclinic limit the effective linear death rate
becomes m0 + msus

Ih
.

Much more sophisticated results should be available for both the case
j = 1 and j = 2 by making use of the singular perturbed nature of (4.15),
which originates from the fact that d1 � d2. Large wavelength vegetation
patterns consist of localized pulses. These pulses can be constructed by using
geometric singular perturbation theory [45,50].

4.6.2 Modeling

Slope and two space dimensions

The analysis here has been restricted to a finite domain in one space di-
mension without a slope. Future research in two dimensions with downslope
water advection could show how grazing affects the stability of vegetation
bands [176].

Combination of functional and numerical response

The division between sustained and natural grazing is a division between
two extremes. Most populations of herbivores will exhibit both a functional
and a numerical response. This may result in a response (4.2) that is the
product of a Holling type II functional response and a type III numerical
response, again yielding a sigmoid total grazing curve (albeit not of type
III).
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4.A General linearization of nonlocal grazing terms

Palatability

Grazing resistance mechanisms of vegetation include grazing tolerance (large
regrowth rates) and grazing avoidance (accessibility and palatability) [40].
In semi-arid rangelands, deterioration of rangelands is shown by replacement
of palatable by unpalatable grasses [9]. Experiments confer that selective de-
foliation of palatable species could lead to their replacement by unpalatable
species in grasslands [129]. On a Mongolia study location it was found that
sites with a large grazing pressure developed a periodic pattern of unpalat-
able plants, whereas sites with less grazing pressure have a homogeneous
vegetation cover and are dominated by palatable plants [136].

In arid ecosystem modeling it is rather common to make no distinction
between plant species with different functional traits, e.g. palatability. It
is thus assumed that all the present vegetation is equally available for con-
sumption [134], a notable exception being [69]. A future distinction between
palatable and unpalatable vegetation may retrieve the transition from spa-
tially homogeneous predominantly palatable vegetation to an unpalatable
periodic vegetation pattern in Mongolia [136]. Also the Holling functional
response may change from type II to type III [80], as herbivores may need
to learn to distinguish palatable plants in between unpalatable plants.

An increasing percentage of unpalatable vegetation may be an early warn-
ing signal for desertification, specific for increased environmental stress due
to an increased grazing pressure. Reduced grazing pressure does not prompt-
ly lead to the palatable species recovering dominance [204]. The replacement
of palatable by unpalatable species is not visible as a collapse in ecosystem
biomass, although the economic service provided by the ecosystem does drop
dramatically.

4.A General linearization of nonlocal grazing terms

For reference, we compute the linearization of the grazing terms (4.9) and
(4.13). These are of use when determining the stability of system states. We
start out by linearizing about arbitrary system states and end by simplifying
to spatially homogeneous states.
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4 Effects of nonlocal grazing on dryland vegetation patterns

It holds that, for general j ≥ 1, the Gâteaux differential of Ij is given by

dIj(n, ñ) = lim
h→0

Ij(n+ hñ)− Ij(n)

h

= lim
h→0

∫ L
0

∫ 1
0

d
ds(n+ hsñ)jdsdx

Lh

= lim
h→0

1

L

∫ L

0

∫ 1

0
j(n+ hsñ)j−1ñ dsdx

=
j

L

∫ L

0
nj−1ñ dx (4.A.1)

where we have ignored technical details for interchanging limit and integral.

Now we differentiate gj,sus and gj,nat:

dgj,sus(n, ñ) = lim
h→0

gj,sus(n+ hñ)− gj,sus(n)

h

= lim
h→0

msus
Ih+Ij(n+hñ) − msus

Ih+Ij(n)

h

=
−msus

Ih + Ij(n)
lim
h→0

1

Ih + Ij(n+ hñ)

Ij(n+ hñ)− Ij(n)

h

=
−msus

(Ih + Ij(n))2dIj(n, ñ), (4.A.2)

dgj,nat(n, ñ) = lim
h→0

gj,nat(n+ hñ)− gj,nat(n)

h

= lim
h→0

mnatIj(n+hñ)

Ih
2+Ij(n+hñ)2 − mnatIj(n)

Ih
2+Ij(n)2

h

=
mnat

Ih
2 + Ij(n)2 lim

h→0

Ih
2 − Ij(n)Ij(n+ hñ)

Ih
2 + Ij(n+ hñ)2

Ij(n+ hñ)− Ij(n)

h

=mnat
Ih

2 − Ij(n)2

(
Ih

2 + Ij(n)2
)2dIj(n, ñ). (4.A.3)
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4.A General linearization of nonlocal grazing terms

4.A.1 Spatially homogeneous states

Restricting to spatially homogeneous states, denoted by n±, the Gâteaux
differential of Ij (4.A.1) simplifies to

dIj(n±, ñ) =
jnj−1
±
L

∫ L

0
ñ dx. (4.A.4)

Depending on the boundary conditions we can choose an appropriate basis
for the perturbations.

Neumann boundary conditions

A basis of L2[0, L] with Neumann boundary conditions is given by the func-
tions ñk(x) = cos(kx) with k an integer multiple of π

L . Substitution in
(4.A.4) yields

dIj(n±, cos(kx)) =

{
jn±j−1 if k = 0
0 if k 6= 0

Thus the linearization acts differently on spatially homogeneous and spatially
inhomogeneous perturbations.

Any perturbation ñ can be written as a linear combination ñ =
∑∞

k=0 βkñk.
Substitution into (4.A.2) and (4.A.3) yields

dgj,sus(n±, ñ) =β0
−msus

(Ih + n±j)
2 jn±

j−1, (4.A.5)

dgj,nat(n±, ñ) =β0mnat
Ih

2 − n±2j

(Ih
2 + n±2j)

2 jn±
j−1. (4.A.6)

Periodic boundary conditions

For periodic boundary conditions a basis is given by functions cos(kx) and
sin(kx), but now k is an integer multiple of 2π

L , leading to the same results
(4.A.5) and (4.A.6) since also dIj(n±, sin(kx)) vanishes (for k an integer
multiple of 2π

L ).
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