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1 Introduction

Ingredients of a recipe for disaster

Drylands are regions with little precipitation1 that cover about 41% of
earth’s land surface, with a human population of over 2 billion [10] (Fig-
ure 1.1). Climate change and population growth impose increased amounts
of stress on vegetation in drylands. Human population in drylands grew by
18.5% between 1990 and 2000 [10] and is continuing to increase. Together
with increased aspirations for raised standards of living this results in, e.g.,
the proliferation of livestock [10].

The United Nations Convention to Combat Desertification (UNCCD, es-
tablished in 1994) defines desertification as land degradation in arid, semi-
arid and dry sub-humid areas resulting from various factors, including cli-
matic variation and human activities. In the absence of vegetation, nu-
trients in the soil are swept away in the event of rain: the disappearance
of vegetation triggers soil erosion processes, leaving behind an inhospitable
environment unable to offer the services to build a livelihood.

Desertification can be expressed as the ineffective use of the scarce water
resource [84], which is lost through evaporation and runoff instead of being
used by plants (through transpiration) [142]. In case vegetation has disap-
peared, all of the water is lost (none is used by plants) and the desertification
process is complete.

Clearly, the disappearance of vegetation is something to be avoided. Much
is at stake to predict and prevent the formation and expansion of bare
deserts. For this, the dynamics of the vegetation need to be understood,
at least on a qualitative level.

1A measure of aridity is defined by dividing the Precipitation by the Potential Evapo-
ration and Transpiration (P/PET). Drylands can be defined by an aridity index less
than 0.65, with a subdivision ranging from hyper-arid (< 0.05) to arid (0.05 − 0.2) to
semi-arid (0.2 − 0.5) to dry subhumid (0.5 − 0.65).
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1 Introduction

Figure 1.1: Map of the distribution of the four types of dryland over the world [10].

Desertification and climate

In drylands, water is a crucial ingredient for sustenance of vegetation and
soil quality. The 2013 report by the Intergovernmental Panel on Climate
Change (IPCC) states a “high confidence that the contrast of annual mean
precipitation between dry and wet regions (...) will increase over most of the
globe as temperatures increase” [87], meaning that wet areas become wetter
and dry areas become dryer. Under the scenario with a radiative forcing
of 7.6 Wm−2, which is an imposed net change in the energy balance of the
Earth system, in the year 2100 “many mid-latitude and subtropical arid and
semi-arid regions will likely experience less precipitation” [87]. A drop in
the annual precipitation increases environmental stress and is an important
driver of desertification. As a side note, increased levels of CO2 do lead to a
higher water use efficiency by plants through decreased transpiration [32].

Rather than only acting as input, desertification also feeds back to the
climate, which is another reason for it having attracted global attention.
Desertification changes the albedo (reflectance coefficient of sunlight), both
local through changes in plant cover [23] and nonlocal through deposition
of desert dust [13]. Additionally, desertification implies reduced carbon se-
questration within vegetation and soil [73].

2



adegr arest

ve
ge
ta
ti
on

b
io
m
as
s

rainfall a

n+

n−
nbare

1

adegr

ve
ge
ta
ti
on

b
io
m
as
s

rainfall a

n+

n−
nbare

1

(a) (b)

Figure 1.2: Catastrophic transition from a vegetated state n+ to a degraded bare state nbare,
as rainfall reaches the tipping point adegr. The intermediate vegetated state n− is
unstable. (a) The system suffers from hysteresis since the rainfall level required for
restoration arest > adegr. (b) In this system the degradation is not reversible by a
rainfall increase.

Vegetation on the verge of collapse

Vegetation improves the infiltration characteristics of the soil [150], which
increases the water supply to the vegetation itself. So the presence of veg-
etation reasserts itself. If environmental conditions deteriorate, the amount
of vegetation may become critical. Beyond the tipping point, too little veg-
etation may lead to a smaller water supply: a positive feedback loop that
initiates the total collapse of the vegetation (Figure 1.2). Restoration of the
ecosystem is difficult because of soil erosion and the infiltration feedback
loop, leading to hysteresis or irreversibility.

Brief overview of arid ecosystem models

Various low-dimensional models have been proposed to help explain deser-
tification and vegetation patterns. Early on, in 1997 a scalar (1-component)
model for the vegetation was set up [108], with kernel functions with varying
ranges built to represent long range inhibition, medium range reproduction
and short range toxic interactions. The modeling gained momentum with
the publication of the 2-component Klausmeier model [97] in 1999, where a
surface water component interacts with the vegetation component. In [202]
(2001) the second component is utilized for soil water. Multiple 3-component
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models have been studied, where both surface and soil water take part, as
in [79] (2001) or [148] (2002) and [70] (2004). In [70] (2004) long range
inhibition is present due to extended root systems and soil water diffusion.

These models can of course be further expanded, e.g. by explicitly incor-
porating herbivores [196] or distinguishing functional groups of vegetation
with different traits [69]. Incorporation of additional mechanisms makes the
analysis more challenging, which often necessitates subsequent simplifying
assumptions. In this thesis, attention is mostly restricted to extensions of the
Klausmeier model that maintain the 2-component structure of this model.
A more complete overview of arid ecosystem models is presented in [19].

Desertification scenarios with increasing complexity

Disregarding differences between plant species and temporarily disregarding
spatial heterogeneity, vegetation can be represented by a single scalar. In
this case, desertification may be understood as the tipping of a vegetated
state. In regions where water is scarce, vegetation growth is limited by water
supply and is basically modeled by

water change = rainfall− evaporation− uptake,

plant change = −plant death + uptake.

The rainfall can change seasonally and tends to be intermittent in time
[98, 179], but here we view rainfall as a climatic parameter that may slowly
change over time and is constant in the absence of climate change. The
water evaporation is modeled by a linear term. Water is regarded as surface
water, and the process of infiltration and subsequent uptake of soil water are
combined in the surface water uptake terms. Since both the infiltration and
the soil water uptake are assumed to be linear in the vegetation, the surface
water uptake terms are quadratic in the vegetation [97]. Plant death is, for
simplicity, modeled by a linear term.

After rescaling [180], representing water by w and vegetation by n and
their change in time by the derivatives wt and nt, the model is given by

wt =a− w − wn2,

nt =−mn+ wn2,
(1.1)

the nonspatial Klausmeier model [97]. For a ≥ 2m (and m < 2) it has
a stable vegetated state (w+, n+) that disappears in a fold bifurcation at
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Figure 1.3: Desertification diagram for nonspatial models. The transition from the desert to the
vegetated state is represented by a dashed arrow to signify irreversibility.

adegr = 2m, as in Figure 1.2(b). If rainfall drops below adegr, the system
falls down to the degraded bare desert state and recovery to (w+, n+) is
troublesome. This is graphically represented by the transition diagram in
Figure 1.3.

We will now see that allowing for spatially heterogeneous solutions adds
complexity to the desertification scenario. The aforementioned infiltration
feedback loop has a short range, since only nearby vegetation benefits from
the improved infiltration characteristics of the soil. Overall, vegetation is in
competition for water, which may flow relatively long distances over bare soil
before infiltrating at a vegetation patch. The short range facilitation and
long range competition together drive the formation of periodic vegetation
patterns [150].

The widespread appearance of these vegetation patterns in all tropical
and subtropical arid areas has been evidenced. They are ubiquitous at the
interface between arid and semi-arid regions [36]. These patterns include
gapped, labyrinthine, banded and spot patterns (Figure 1.4). The patterns
are found on flat or constant-slope terrain without spatial heterogeneities
other than those that can be attributed to the vegetation itself [156]. Field
observations of vegetation patterns necessitate the development of spatially
extended models.

To spatially extend (1.1), we need to take into account processes that dis-
place the surface water and vegetation. We start out in one space dimension
x. We allow for the possibility of the terrain having a constant slope, in the
Klausmeier model [97] the downslope advection is assumed to be dominant
and displacement is modeled by 2cwx. We extend the Klausmeier model by
adding a (possibly nonlinear) diffusion d1w

γ
xx [199]. This form with γ = 2

can be derived from the shallow water equations [70]. The dispersal of plants
is modeled by diffusion d2nxx, with d2 � d1. This gives

wt =d1w
γ
xx + 2cwx+a− w − wn2,

nt =d2nxx −mn+ wn2.
(1.2)
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Figure 1.4: Periodic vegetation patterns. Aerial photograph of (a) pattern of gaps, (b) labyrinth,
(c) banded pattern [149]. (d) Satellite image of a spot pattern over Sudan.
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Figure 1.5: Desertification diagram for the extended Klausmeier model in one space dimension.

Because vegetation patterns extend over large areas, the model domain is
taken to be unbounded, so without boundary conditions. Since the model-
ing equations are strikingly similar to the Gray-Scott model [74], this puts
vegetation patterns in the same framework as patterns in chemical reactions.

In the spatially extended model, for decreasing rainfall the fold bifurca-
tion of the spatially homogeneous solution (w+, n+) is preceded by a Turing
bifurcation [190]. At the Turing bifurcation periodic patterns form. In Chap-
ter 2 we show that a further decrease of the rainfall parameter leads to a
coarsening cascade of patterns with larger and larger wavelength (or equiva-
lently smaller and smaller wavenumber (= 2π/wavelength)). Eventually, for
sufficiently small rainfall, the bare desert state is reached (Figure 1.5).

The occurrence of vegetation patterns can thus be regarded as a rough
early warning signal for the final transition to the bare desert state, with
larger wavelengths signalling a more imminent danger of complete collapse.
This is in accordance with one of Ni’s conjectures [133], which states that
the last patterns to destabilize have large wavelengths.

We now add a second space dimension by replacing the second derivatives
to x by second derivatives to both x and y, denoted by the Laplace operator
∆ = ∂2

x+∂2
y . Restricting to the case with linear water diffusion, the extended
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Figure 1.6: Desertification diagram for the extended Klausmeier model in two space dimensions.

Klausmeier model becomes

wt =d1∆w + 2cwx+a− w − wn2,

nt =d2∆n −mn+ wn2.
(1.3)

The slope is assumed to be in the x-direction, so that the advection term
remains the same.

The restriction to one space dimension overestimates stability of the vege-
tation patterns, which correspond to vegetation bands (Figure 1.4(c)) when
viewed as solutions of the two-dimensional extended Klausmeier model. Sta-
bility of vegetation bands in two space dimensions implies stability of the
patterns in one space dimension but not the other way around: stable 1D
patterns may be unstable against perturbations with a nontrivial transverse
component.

In Chapter 3 we show that vegetation patterns indeed can be transversely
unstable. The extent in which this occurs depends strongly on the slope of
the terrain, which was modeled by the advective term. The smaller the slope,
the more the banded patterns tend to be transversally unstable. Banded
vegetation patterns on steeper slopes remain stable for a wider range of
values of the rainfall parameter, thus are ecologically more resilient. In
this case the desertification process only diverges from the one-dimensional
case after the coarsening cascade of banded patterns with longer and longer
wavelengths has progressed.

As a result of the breakup of banded vegetation patterns at low rainfall
values, dashed patterns are formed. This way we have identified a possi-
ble natural next step in the desertification process, as depicted in Figure
1.6. The appearance of dashed patterns could be a warning signal that the
transition to the bare desert state is imminent.
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Dramatic sudden loss of productivity or gradual decline?

The current consensus is that in the final step of the desertification process,
like in Figure 1.2(b), the ecosystem occupies a vegetated state with a rea-
sonable amount of biomass but then undergoes a critical transition where
all biomass is lost [149,163]. This is what happens in the nonspatial Klaus-
meier model (1.1). How does this relate to the desertification scenarios for
the spatially extended Klausmeier model we described?

As mentioned previously, the spatially extended Klausmeier model is in
accordance with Ni’s conjecture: the last patterns to destabilize have large
wavelengths. These patterns form out of patterns with a smaller wavelength
through a coarsening cascade. Large wavelength patterns have vegetation
patches that are few and far between, summing up to a small amount of
biomass. This means that the final transition to the bare desert state com-
prises only a minor loss of biomass. Thus, adhering to Ni’s conjecture op-
poses the popular view that desertification entails a sudden large final jump
in biomass.

In Chapter 4 we present a model refinement for capturing grazing, as
an addition to the linear local vegetation death term already present in
most arid ecosystem models. For this we employ nonlocal terms, so that
the grazing pressure at one location depends on the presence of vegetation
elsewhere. Because the grazing pressure on isolated vegetation patches may
increase since there are no alternative foraging sites, the large wavelength
patterns may become inadmissible in the presence of grazers.

We make a distinction between sustained and natural grazing. In sus-
tained grazing systems, we assume that the number of herbivores is constant.
In this case we indeed see dramatic transitions from vegetated states to the
bare desert state, since none of the states with low biomass are admissible.
Thus the situation is conceptually like Figure 1.2(b). In natural grazing
systems, herbivore numbers drop if biomass decreases. If the number of her-
bivores drops fast enough, a transition from a high productivity (with a large
herbivore number) to a low productivity (with a small herbivore number)
system state occurs. Since in principle recovery to high productivity states
is possible, the situation is similar to Figure 1.2(a).

The spatially extended Klausmeier model without nonlocal grazing ad-
heres to Ni’s conjecture and generally doesn’t show a dramatic sudden loss
of productivity. Only after introducing nonlocal grazing terms, do these dra-
matic regime shifts occur. In sustained grazing systems, Ni’s conjecture does
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not hold. In systems with natural grazing, a dramatic loss of productivity
may lead to a low productivity state, after which Ni’s conjecture may still
hold.

Outline

In Chapter 2, which is based on [180], we numerically study the extended
Klausmeier model in one space dimension (1.2). We show model dynamics
with a slowly decreasing rainfall parameter that leads the system from a
homogeneously vegetated quasi steady equilibrium state through a Turing
instability to a periodic pattern. A further decrease of the rainfall parameter
leads to a coarsening cascade of patterns with larger and larger wavelength
(or equivalently smaller and smaller wavenumber (= 2π/wavelength)). Even-
tually, for sufficiently small rainfall, the bare desert state is reached (Figure
1.4).

An important conceptual tool is the Busse balloon, first used in fluid me-
chanics [21], which represents all stable periodic vegetation patterns of the
autonomous system (where the parameters are time independent). These
patterns are represented by (rainfall,wavenumber)-pairs. By performing
simulations with a slowly changing rainfall parameter, the system traces
out a trajectory in (parameter,wavenumber)-space when it resides in a pe-
riodic system state. For small rates of change the length of the trajectory
outside the Busse balloon is small, so destabilization can be predicted accu-
rately. For large rates of change the discrepancy can become considerable, to
the point that the system directly transitions from a state with the Turing
wavenumber to the bare desert state, omitting the coarsening cascade.

The trajectories also depend on the application of noise. A higher noise
level introduces heterogeneity in the population of vegetation patches, so
that a larger share of the patches survive destabilization, leading to a coars-
ening cascade with smaller (and thus more) jumps in wavenumber and
smaller trajectories outside the Busse balloon. Period doubling (wavenum-
ber halving) occurs often, except in the regime with high wavenumbers/high
rainfall, high noise levels and small rates of change.

Chapter 3 is based on [176]. We begin by presenting a general linear
stability analysis of homogeneous steady states of inhibitor-activator type in
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Figure 1.7: Sketch of real parts of curves of spectrum Re(λ) of the linearization about the homo-
geneous steady state (u∗, v∗), as a function of the linear wavenumber k. The spectrum
can only cross the imaginary axis Re(λ) = 0 in between the grey line segments.

a reaction-advection-diffusion system. These systems are of the form

ut =d1∆u+ c1ux+f(u, v),

vt =d2∆v + c2vx +g(u, v).

A homogeneous steady state (u∗, v∗) is of inhibitor-activator type if both
∂f
∂u(u∗, v∗) < 0 and a4 := ∂g

∂v (u∗, v∗) > 0. This setup allows for the simultane-
ous treatment of both a diffusion driven Turing instability and a differential
flow driven instability, and mixtures of both, with differential flow being the
difference between the advection coefficients |c1− c2|. We unravel the role of
the differential flow in the selection of striped patterns at pattern formation
in two space dimensions.

The analysis starts out in one space dimension. Here a pivotal upper
estimate on destabilizing wavenumbers (Figure 1.7) allows for the removal
of the wavenumber in the analysis. Thus all requirements can be set on the
linearization of the kinetics and the spatiality of the problem is put to the
background. This paves the way to results on the:

• monotonicity of the destabilization locus;

• direction of motion of emerging patterns.

Subsequently we employ a Squire transformation, which extends appli-
cability of the previous results to two space dimensions and shows that
destabilization of the homogeneous steady state occurs through perturba-
tions perpendicular to the advection. The Squire transformation was, like
the Busse balloon, first used in fluid mechanics [183].
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All results are shown to apply to the extended Klausmeier model. This
means that the Turing instability monotonically moves to larger rainfall val-
ues for increasing slope (advection), destabilization occurs by perturbations
perpendicular to the slope and the emerging vegetation patterns move uphill.

Numerical analysis for the arid ecosystem model in two space dimensions
shows that vegetation bands are (ecologically) more resilient in a regime with
a steeper slope (advection). Under increasing environmental stress, banded
vegetation eventually breaks up in a dashed vegetation pattern, which iden-
tifies dashed vegetation patterns as a next step in the desertification process.
Observational studies back up that vegetation bands are rarely found at low
precipitation, at low wavenumber, and in the absence of a slope. In accor-
dance with this last finding, we prove, in an asymptotic scaling regime, that
long wavelength striped patterns are transversely unstable on flat terrain.

In Chapter 4, which contains unpublished material, we extend the Klaus-
meier model with nonlocal grazing terms. For this we use well-established
theory concerning herbivore distribution and responses to available biomass
distributions. We make a distinction between sustained grazing - where the
number of herbivores is assumed to be kept constant, and natural grazing -
where herbivores are themselves responsible for acquiring a sufficient forage
intake.

Through a linear analysis we investigate how the destabilization of the
homogeneously vegetated state is affected by the introduction of grazing
terms. The formation of vegetation patterns may be suppressed if the effec-
tive foraging potential is a superlinear function of the vegetation, meaning
that herbivores are strongly attracted to locations with much vegetation.

As already discussed, we show how sustained grazing systems do not ad-
here to Ni’s conjecture, since in this case long wavelength patterns are not
the last patterns to destabilize. Whereas natural grazing has the potential
to make a divide between high productivity and low productivity system
states.

In Chapter 5, based on [127], we change gears and study the question of
well-posedness in the context of quasilinear systems of partial differential
equations (PDEs). Quasilinear PDEs are a class of PDEs that are ‘less
linear’ than semi-linear but ‘more linear’ than fully nonlinear PDEs. A
PDE is semi-linear if its highest order derivative terms have coefficients that
are independent of the dependent variable, it is quasilinear if its highest
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order derivative terms have coefficients that may depend on the dependent
variable but not on its derivatives.

In arid ecosystem modeling, the quasilinearity stems from a water-depen-
dent diffusion coefficient of the water component, that results from the mod-
eling of surface water flow through the shallow water equations [70]. This
corresponds to γ = 2 in (1.2), where w2

xx = wwxx+2wx
2, so that the coeffi-

cient of the highest order derivative wxx indeed depends on w. These types
of differential equations also arise in the modeling of flow through porous
media and are therefore often referred to as porous medium equations [200].

For illustration, let’s consider a real life example. Since everyone has (had)
a mother, it makes sense to ask “What’s the name of your mother?” to any-
one. But since not everyone has a child, it may be ill-posed to ask “What’s
the name of your child?”. Depending on the context, the question “What’s
the name of your child?” can be well-posed or ill-posed. For instance, when
posed to a man pushing a stroller this question should work well, but not
when posed to the child inside. Only after affirming that the person in
question has a child, it makes sense to ask for properties of the child.

Likewise, when analyzing a model, the most fundamental question to ask
is whether the model makes any sense: under what conditions does a solution
exist? Thus we look for functional analytic settings where the existence of
a solution can be established. Only then it makes sense to wonder if the
model makes the right sense in relation to the (natural) system that is being
modeled: does the model solution behave in accordance with observations
or experiments?

For systems of quasilinear PDEs on unbounded domains the issue of well-
posedness and stability of nonlinear waves was not straightforward to recon-
cile based on the existing quite abstract literature. We settle well-posedness
by presenting various suitable function spaces in which (unique) solutions
to systems of PDEs exist, using various results from the theory of maximal
regularity. To assess stability of a nonlinear wave, it is necessary to choose
a function space of perturbations in which the evolution problem of the per-
turbations is well-posed. In addition we prove an orbital instability result for
spectrum invading the half plane with positive real part, without assuming
a spectral gap or the existence of an unstable eigenvalue.

We apply the results to the GKGS model [199], which is a slight variation
of the extended Klausmeier model where a− w is replaced by a(1− w). In
this context the vegetation bands are the nonlinear waves.
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Chapter 6 contains a brief outlook on future research possibilities.
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