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1 Introduction

Ingredients of a recipe for disaster

Drylands are regions with little precipitation1 that cover about 41% of
earth’s land surface, with a human population of over 2 billion [10] (Fig-
ure 1.1). Climate change and population growth impose increased amounts
of stress on vegetation in drylands. Human population in drylands grew by
18.5% between 1990 and 2000 [10] and is continuing to increase. Together
with increased aspirations for raised standards of living this results in, e.g.,
the proliferation of livestock [10].

The United Nations Convention to Combat Desertification (UNCCD, es-
tablished in 1994) defines desertification as land degradation in arid, semi-
arid and dry sub-humid areas resulting from various factors, including cli-
matic variation and human activities. In the absence of vegetation, nu-
trients in the soil are swept away in the event of rain: the disappearance
of vegetation triggers soil erosion processes, leaving behind an inhospitable
environment unable to offer the services to build a livelihood.

Desertification can be expressed as the ineffective use of the scarce water
resource [84], which is lost through evaporation and runoff instead of being
used by plants (through transpiration) [142]. In case vegetation has disap-
peared, all of the water is lost (none is used by plants) and the desertification
process is complete.

Clearly, the disappearance of vegetation is something to be avoided. Much
is at stake to predict and prevent the formation and expansion of bare
deserts. For this, the dynamics of the vegetation need to be understood,
at least on a qualitative level.

1A measure of aridity is defined by dividing the Precipitation by the Potential Evapo-
ration and Transpiration (P/PET). Drylands can be defined by an aridity index less
than 0.65, with a subdivision ranging from hyper-arid (< 0.05) to arid (0.05 − 0.2) to
semi-arid (0.2 − 0.5) to dry subhumid (0.5 − 0.65).
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1 Introduction

Figure 1.1: Map of the distribution of the four types of dryland over the world [10].

Desertification and climate

In drylands, water is a crucial ingredient for sustenance of vegetation and
soil quality. The 2013 report by the Intergovernmental Panel on Climate
Change (IPCC) states a “high confidence that the contrast of annual mean
precipitation between dry and wet regions (...) will increase over most of the
globe as temperatures increase” [87], meaning that wet areas become wetter
and dry areas become dryer. Under the scenario with a radiative forcing
of 7.6 Wm−2, which is an imposed net change in the energy balance of the
Earth system, in the year 2100 “many mid-latitude and subtropical arid and
semi-arid regions will likely experience less precipitation” [87]. A drop in
the annual precipitation increases environmental stress and is an important
driver of desertification. As a side note, increased levels of CO2 do lead to a
higher water use efficiency by plants through decreased transpiration [32].

Rather than only acting as input, desertification also feeds back to the
climate, which is another reason for it having attracted global attention.
Desertification changes the albedo (reflectance coefficient of sunlight), both
local through changes in plant cover [23] and nonlocal through deposition
of desert dust [13]. Additionally, desertification implies reduced carbon se-
questration within vegetation and soil [73].

2
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Figure 1.2: Catastrophic transition from a vegetated state n+ to a degraded bare state nbare,
as rainfall reaches the tipping point adegr. The intermediate vegetated state n− is
unstable. (a) The system suffers from hysteresis since the rainfall level required for
restoration arest > adegr. (b) In this system the degradation is not reversible by a
rainfall increase.

Vegetation on the verge of collapse

Vegetation improves the infiltration characteristics of the soil [150], which
increases the water supply to the vegetation itself. So the presence of veg-
etation reasserts itself. If environmental conditions deteriorate, the amount
of vegetation may become critical. Beyond the tipping point, too little veg-
etation may lead to a smaller water supply: a positive feedback loop that
initiates the total collapse of the vegetation (Figure 1.2). Restoration of the
ecosystem is difficult because of soil erosion and the infiltration feedback
loop, leading to hysteresis or irreversibility.

Brief overview of arid ecosystem models

Various low-dimensional models have been proposed to help explain deser-
tification and vegetation patterns. Early on, in 1997 a scalar (1-component)
model for the vegetation was set up [108], with kernel functions with varying
ranges built to represent long range inhibition, medium range reproduction
and short range toxic interactions. The modeling gained momentum with
the publication of the 2-component Klausmeier model [97] in 1999, where a
surface water component interacts with the vegetation component. In [202]
(2001) the second component is utilized for soil water. Multiple 3-component

3



1 Introduction

models have been studied, where both surface and soil water take part, as
in [79] (2001) or [148] (2002) and [70] (2004). In [70] (2004) long range
inhibition is present due to extended root systems and soil water diffusion.

These models can of course be further expanded, e.g. by explicitly incor-
porating herbivores [196] or distinguishing functional groups of vegetation
with different traits [69]. Incorporation of additional mechanisms makes the
analysis more challenging, which often necessitates subsequent simplifying
assumptions. In this thesis, attention is mostly restricted to extensions of the
Klausmeier model that maintain the 2-component structure of this model.
A more complete overview of arid ecosystem models is presented in [19].

Desertification scenarios with increasing complexity

Disregarding differences between plant species and temporarily disregarding
spatial heterogeneity, vegetation can be represented by a single scalar. In
this case, desertification may be understood as the tipping of a vegetated
state. In regions where water is scarce, vegetation growth is limited by water
supply and is basically modeled by

water change = rainfall− evaporation− uptake,

plant change = −plant death + uptake.

The rainfall can change seasonally and tends to be intermittent in time
[98, 179], but here we view rainfall as a climatic parameter that may slowly
change over time and is constant in the absence of climate change. The
water evaporation is modeled by a linear term. Water is regarded as surface
water, and the process of infiltration and subsequent uptake of soil water are
combined in the surface water uptake terms. Since both the infiltration and
the soil water uptake are assumed to be linear in the vegetation, the surface
water uptake terms are quadratic in the vegetation [97]. Plant death is, for
simplicity, modeled by a linear term.

After rescaling [180], representing water by w and vegetation by n and
their change in time by the derivatives wt and nt, the model is given by

wt =a− w − wn2,

nt =−mn+ wn2,
(1.1)

the nonspatial Klausmeier model [97]. For a ≥ 2m (and m < 2) it has
a stable vegetated state (w+, n+) that disappears in a fold bifurcation at

4
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Figure 1.3: Desertification diagram for nonspatial models. The transition from the desert to the
vegetated state is represented by a dashed arrow to signify irreversibility.

adegr = 2m, as in Figure 1.2(b). If rainfall drops below adegr, the system
falls down to the degraded bare desert state and recovery to (w+, n+) is
troublesome. This is graphically represented by the transition diagram in
Figure 1.3.

We will now see that allowing for spatially heterogeneous solutions adds
complexity to the desertification scenario. The aforementioned infiltration
feedback loop has a short range, since only nearby vegetation benefits from
the improved infiltration characteristics of the soil. Overall, vegetation is in
competition for water, which may flow relatively long distances over bare soil
before infiltrating at a vegetation patch. The short range facilitation and
long range competition together drive the formation of periodic vegetation
patterns [150].

The widespread appearance of these vegetation patterns in all tropical
and subtropical arid areas has been evidenced. They are ubiquitous at the
interface between arid and semi-arid regions [36]. These patterns include
gapped, labyrinthine, banded and spot patterns (Figure 1.4). The patterns
are found on flat or constant-slope terrain without spatial heterogeneities
other than those that can be attributed to the vegetation itself [156]. Field
observations of vegetation patterns necessitate the development of spatially
extended models.

To spatially extend (1.1), we need to take into account processes that dis-
place the surface water and vegetation. We start out in one space dimension
x. We allow for the possibility of the terrain having a constant slope, in the
Klausmeier model [97] the downslope advection is assumed to be dominant
and displacement is modeled by 2cwx. We extend the Klausmeier model by
adding a (possibly nonlinear) diffusion d1w

γ
xx [199]. This form with γ = 2

can be derived from the shallow water equations [70]. The dispersal of plants
is modeled by diffusion d2nxx, with d2 � d1. This gives

wt =d1w
γ
xx + 2cwx+a− w − wn2,

nt =d2nxx −mn+ wn2.
(1.2)

5



1 Introduction

Afbeeldingen ©2015 DigitalGlobe 100 m

Google Maps

Google Maps https://www.google.nl/maps/@11.5919225,27.95...

1 of 1 17/08/15 13:27

(a) (b) (c) (d)

Figure 1.4: Periodic vegetation patterns. Aerial photograph of (a) pattern of gaps, (b) labyrinth,
(c) banded pattern [149]. (d) Satellite image of a spot pattern over Sudan.

bare desert
vegetation
patterns

uniform
vegetation

Figure 1.5: Desertification diagram for the extended Klausmeier model in one space dimension.

Because vegetation patterns extend over large areas, the model domain is
taken to be unbounded, so without boundary conditions. Since the model-
ing equations are strikingly similar to the Gray-Scott model [74], this puts
vegetation patterns in the same framework as patterns in chemical reactions.

In the spatially extended model, for decreasing rainfall the fold bifurca-
tion of the spatially homogeneous solution (w+, n+) is preceded by a Turing
bifurcation [190]. At the Turing bifurcation periodic patterns form. In Chap-
ter 2 we show that a further decrease of the rainfall parameter leads to a
coarsening cascade of patterns with larger and larger wavelength (or equiva-
lently smaller and smaller wavenumber (= 2π/wavelength)). Eventually, for
sufficiently small rainfall, the bare desert state is reached (Figure 1.5).

The occurrence of vegetation patterns can thus be regarded as a rough
early warning signal for the final transition to the bare desert state, with
larger wavelengths signalling a more imminent danger of complete collapse.
This is in accordance with one of Ni’s conjectures [133], which states that
the last patterns to destabilize have large wavelengths.

We now add a second space dimension by replacing the second derivatives
to x by second derivatives to both x and y, denoted by the Laplace operator
∆ = ∂2

x+∂2
y . Restricting to the case with linear water diffusion, the extended

6
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Figure 1.6: Desertification diagram for the extended Klausmeier model in two space dimensions.

Klausmeier model becomes

wt =d1∆w + 2cwx+a− w − wn2,

nt =d2∆n −mn+ wn2.
(1.3)

The slope is assumed to be in the x-direction, so that the advection term
remains the same.

The restriction to one space dimension overestimates stability of the vege-
tation patterns, which correspond to vegetation bands (Figure 1.4(c)) when
viewed as solutions of the two-dimensional extended Klausmeier model. Sta-
bility of vegetation bands in two space dimensions implies stability of the
patterns in one space dimension but not the other way around: stable 1D
patterns may be unstable against perturbations with a nontrivial transverse
component.

In Chapter 3 we show that vegetation patterns indeed can be transversely
unstable. The extent in which this occurs depends strongly on the slope of
the terrain, which was modeled by the advective term. The smaller the slope,
the more the banded patterns tend to be transversally unstable. Banded
vegetation patterns on steeper slopes remain stable for a wider range of
values of the rainfall parameter, thus are ecologically more resilient. In
this case the desertification process only diverges from the one-dimensional
case after the coarsening cascade of banded patterns with longer and longer
wavelengths has progressed.

As a result of the breakup of banded vegetation patterns at low rainfall
values, dashed patterns are formed. This way we have identified a possi-
ble natural next step in the desertification process, as depicted in Figure
1.6. The appearance of dashed patterns could be a warning signal that the
transition to the bare desert state is imminent.

7



1 Introduction

Dramatic sudden loss of productivity or gradual decline?

The current consensus is that in the final step of the desertification process,
like in Figure 1.2(b), the ecosystem occupies a vegetated state with a rea-
sonable amount of biomass but then undergoes a critical transition where
all biomass is lost [149,163]. This is what happens in the nonspatial Klaus-
meier model (1.1). How does this relate to the desertification scenarios for
the spatially extended Klausmeier model we described?

As mentioned previously, the spatially extended Klausmeier model is in
accordance with Ni’s conjecture: the last patterns to destabilize have large
wavelengths. These patterns form out of patterns with a smaller wavelength
through a coarsening cascade. Large wavelength patterns have vegetation
patches that are few and far between, summing up to a small amount of
biomass. This means that the final transition to the bare desert state com-
prises only a minor loss of biomass. Thus, adhering to Ni’s conjecture op-
poses the popular view that desertification entails a sudden large final jump
in biomass.

In Chapter 4 we present a model refinement for capturing grazing, as
an addition to the linear local vegetation death term already present in
most arid ecosystem models. For this we employ nonlocal terms, so that
the grazing pressure at one location depends on the presence of vegetation
elsewhere. Because the grazing pressure on isolated vegetation patches may
increase since there are no alternative foraging sites, the large wavelength
patterns may become inadmissible in the presence of grazers.

We make a distinction between sustained and natural grazing. In sus-
tained grazing systems, we assume that the number of herbivores is constant.
In this case we indeed see dramatic transitions from vegetated states to the
bare desert state, since none of the states with low biomass are admissible.
Thus the situation is conceptually like Figure 1.2(b). In natural grazing
systems, herbivore numbers drop if biomass decreases. If the number of her-
bivores drops fast enough, a transition from a high productivity (with a large
herbivore number) to a low productivity (with a small herbivore number)
system state occurs. Since in principle recovery to high productivity states
is possible, the situation is similar to Figure 1.2(a).

The spatially extended Klausmeier model without nonlocal grazing ad-
heres to Ni’s conjecture and generally doesn’t show a dramatic sudden loss
of productivity. Only after introducing nonlocal grazing terms, do these dra-
matic regime shifts occur. In sustained grazing systems, Ni’s conjecture does

8



not hold. In systems with natural grazing, a dramatic loss of productivity
may lead to a low productivity state, after which Ni’s conjecture may still
hold.

Outline

In Chapter 2, which is based on [180], we numerically study the extended
Klausmeier model in one space dimension (1.2). We show model dynamics
with a slowly decreasing rainfall parameter that leads the system from a
homogeneously vegetated quasi steady equilibrium state through a Turing
instability to a periodic pattern. A further decrease of the rainfall parameter
leads to a coarsening cascade of patterns with larger and larger wavelength
(or equivalently smaller and smaller wavenumber (= 2π/wavelength)). Even-
tually, for sufficiently small rainfall, the bare desert state is reached (Figure
1.4).

An important conceptual tool is the Busse balloon, first used in fluid me-
chanics [21], which represents all stable periodic vegetation patterns of the
autonomous system (where the parameters are time independent). These
patterns are represented by (rainfall,wavenumber)-pairs. By performing
simulations with a slowly changing rainfall parameter, the system traces
out a trajectory in (parameter,wavenumber)-space when it resides in a pe-
riodic system state. For small rates of change the length of the trajectory
outside the Busse balloon is small, so destabilization can be predicted accu-
rately. For large rates of change the discrepancy can become considerable, to
the point that the system directly transitions from a state with the Turing
wavenumber to the bare desert state, omitting the coarsening cascade.

The trajectories also depend on the application of noise. A higher noise
level introduces heterogeneity in the population of vegetation patches, so
that a larger share of the patches survive destabilization, leading to a coars-
ening cascade with smaller (and thus more) jumps in wavenumber and
smaller trajectories outside the Busse balloon. Period doubling (wavenum-
ber halving) occurs often, except in the regime with high wavenumbers/high
rainfall, high noise levels and small rates of change.

Chapter 3 is based on [176]. We begin by presenting a general linear
stability analysis of homogeneous steady states of inhibitor-activator type in

9
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Figure 1.7: Sketch of real parts of curves of spectrum Re(λ) of the linearization about the homo-
geneous steady state (u∗, v∗), as a function of the linear wavenumber k. The spectrum
can only cross the imaginary axis Re(λ) = 0 in between the grey line segments.

a reaction-advection-diffusion system. These systems are of the form

ut =d1∆u+ c1ux+f(u, v),

vt =d2∆v + c2vx +g(u, v).

A homogeneous steady state (u∗, v∗) is of inhibitor-activator type if both
∂f
∂u(u∗, v∗) < 0 and a4 := ∂g

∂v (u∗, v∗) > 0. This setup allows for the simultane-
ous treatment of both a diffusion driven Turing instability and a differential
flow driven instability, and mixtures of both, with differential flow being the
difference between the advection coefficients |c1− c2|. We unravel the role of
the differential flow in the selection of striped patterns at pattern formation
in two space dimensions.

The analysis starts out in one space dimension. Here a pivotal upper
estimate on destabilizing wavenumbers (Figure 1.7) allows for the removal
of the wavenumber in the analysis. Thus all requirements can be set on the
linearization of the kinetics and the spatiality of the problem is put to the
background. This paves the way to results on the:

• monotonicity of the destabilization locus;

• direction of motion of emerging patterns.

Subsequently we employ a Squire transformation, which extends appli-
cability of the previous results to two space dimensions and shows that
destabilization of the homogeneous steady state occurs through perturba-
tions perpendicular to the advection. The Squire transformation was, like
the Busse balloon, first used in fluid mechanics [183].

10



All results are shown to apply to the extended Klausmeier model. This
means that the Turing instability monotonically moves to larger rainfall val-
ues for increasing slope (advection), destabilization occurs by perturbations
perpendicular to the slope and the emerging vegetation patterns move uphill.

Numerical analysis for the arid ecosystem model in two space dimensions
shows that vegetation bands are (ecologically) more resilient in a regime with
a steeper slope (advection). Under increasing environmental stress, banded
vegetation eventually breaks up in a dashed vegetation pattern, which iden-
tifies dashed vegetation patterns as a next step in the desertification process.
Observational studies back up that vegetation bands are rarely found at low
precipitation, at low wavenumber, and in the absence of a slope. In accor-
dance with this last finding, we prove, in an asymptotic scaling regime, that
long wavelength striped patterns are transversely unstable on flat terrain.

In Chapter 4, which contains unpublished material, we extend the Klaus-
meier model with nonlocal grazing terms. For this we use well-established
theory concerning herbivore distribution and responses to available biomass
distributions. We make a distinction between sustained grazing - where the
number of herbivores is assumed to be kept constant, and natural grazing -
where herbivores are themselves responsible for acquiring a sufficient forage
intake.

Through a linear analysis we investigate how the destabilization of the
homogeneously vegetated state is affected by the introduction of grazing
terms. The formation of vegetation patterns may be suppressed if the effec-
tive foraging potential is a superlinear function of the vegetation, meaning
that herbivores are strongly attracted to locations with much vegetation.

As already discussed, we show how sustained grazing systems do not ad-
here to Ni’s conjecture, since in this case long wavelength patterns are not
the last patterns to destabilize. Whereas natural grazing has the potential
to make a divide between high productivity and low productivity system
states.

In Chapter 5, based on [127], we change gears and study the question of
well-posedness in the context of quasilinear systems of partial differential
equations (PDEs). Quasilinear PDEs are a class of PDEs that are ‘less
linear’ than semi-linear but ‘more linear’ than fully nonlinear PDEs. A
PDE is semi-linear if its highest order derivative terms have coefficients that
are independent of the dependent variable, it is quasilinear if its highest
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1 Introduction

order derivative terms have coefficients that may depend on the dependent
variable but not on its derivatives.

In arid ecosystem modeling, the quasilinearity stems from a water-depen-
dent diffusion coefficient of the water component, that results from the mod-
eling of surface water flow through the shallow water equations [70]. This
corresponds to γ = 2 in (1.2), where w2

xx = wwxx+2wx
2, so that the coeffi-

cient of the highest order derivative wxx indeed depends on w. These types
of differential equations also arise in the modeling of flow through porous
media and are therefore often referred to as porous medium equations [200].

For illustration, let’s consider a real life example. Since everyone has (had)
a mother, it makes sense to ask “What’s the name of your mother?” to any-
one. But since not everyone has a child, it may be ill-posed to ask “What’s
the name of your child?”. Depending on the context, the question “What’s
the name of your child?” can be well-posed or ill-posed. For instance, when
posed to a man pushing a stroller this question should work well, but not
when posed to the child inside. Only after affirming that the person in
question has a child, it makes sense to ask for properties of the child.

Likewise, when analyzing a model, the most fundamental question to ask
is whether the model makes any sense: under what conditions does a solution
exist? Thus we look for functional analytic settings where the existence of
a solution can be established. Only then it makes sense to wonder if the
model makes the right sense in relation to the (natural) system that is being
modeled: does the model solution behave in accordance with observations
or experiments?

For systems of quasilinear PDEs on unbounded domains the issue of well-
posedness and stability of nonlinear waves was not straightforward to recon-
cile based on the existing quite abstract literature. We settle well-posedness
by presenting various suitable function spaces in which (unique) solutions
to systems of PDEs exist, using various results from the theory of maximal
regularity. To assess stability of a nonlinear wave, it is necessary to choose
a function space of perturbations in which the evolution problem of the per-
turbations is well-posed. In addition we prove an orbital instability result for
spectrum invading the half plane with positive real part, without assuming
a spectral gap or the existence of an unstable eigenvalue.

We apply the results to the GKGS model [199], which is a slight variation
of the extended Klausmeier model where a− w is replaced by a(1− w). In
this context the vegetation bands are the nonlinear waves.
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Chapter 6 contains a brief outlook on future research possibilities.
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2 Beyond Turing: the response of
patterned ecosystems to
environmental change.

Spatially periodic patterns can be observed in a vari-
ety of ecosystems. Model studies revealed that pat-
terned ecosystems may respond in a nonlinear way to
environmental change, meaning that gradual changes
result in rapid degradation. We analyze this response
through stability analysis of patterned states of an
arid ecosystem model. This analysis goes one step
further than the frequently applied Turing analysis,
which only considers stability of uniform states. We
found that patterned arid ecosystems systematically
respond in two ways to changes in rainfall: 1) by
changing vegetation patch biomass or 2) by adapt-
ing pattern wavelength. Minor adaptations of pat-
tern wavelength are constrained to conditions of slow
change within a high rainfall regime, and high lev-
els of stochastic variation in biomass (noise). Ma-
jor changes in pattern wavelength occur under condi-
tions of either low rainfall, rapid change or low levels
of noise. Such conditions facilitate strong interac-
tions between vegetation patches, which can trigger
a sudden loss of half the patches or a transition to
a degraded bare state. These results highlight that
ecosystem responses may critically depend on rates,
rather than magnitudes, of environmental change.
Our study shows how models can increase our un-
derstanding of these dynamics, provided that analy-
ses go beyond the conventional Turing analysis.

Appeared in Ecological Complexity in 2014 [180].
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2 Beyond Turing: the response of patterned ecosystems

2.1 Introduction

Spatially periodic patterning of sessile biota can be observed in a variety of
ecosystems including arid ecosystems [116], mussel beds [195], boreal peat-
lands [118] and tropical peatlands [11]. Such spatially periodic patterns
can typically not be explained by underlying heterogeneity in the environ-
ment, which suggests that they are self-organized. Self-organization into
periodic patterns is the result of positive feedbacks that act locally (short
range activation) in combination with distal negative feedbacks (long range
inhibition; [68]). This combination of feedbacks is also referred to as scale-
dependent feedbacks [151]. In arid ecosystems, the combination of locally re-
duced evaporation through shading and water uptake by laterally extended
roots is known to induce such scale-dependent feedbacks [70, 124]. Scale-
dependent feedbacks can also result from the fact that in arid ecosystems
plants tend to improve soil structure which allows more water to infiltrate
during rain events [150, 186]. This results in increased water availability
and increased plant growth, meaning that locally a positive feedback loop
is active. However, water availability farther away is negatively affected by
this facilitative effect: surface water accumulates on bare soils during in-
tense rain events and moves towards vegetated areas due to a gentle slope
or due to infiltration differences on flat terrain [97,148]. In arid ecosystems,
local positive feedbacks are therefore linked to a flux of resource that re-
sults in long range inhibition and consequently in pattern formation. This
type of scale-dependent feedback is referred to as the resource-concentration
mechanism [149]. The positive feedbacks that are often involved in pattern
formation [151] are associated with nonlinear ecosystem response to environ-
mental change [34,149]. This means that gradual changes in environmental
conditions may result in sudden significant losses in productivity and in
degradation of patterned ecosystems.

Reaction-(advection-)diffusion models have been developed to understand
the mechanisms responsible for pattern formation, to study the conditions
under which scale-dependent feedbacks are strong enough for patterning to
occur and to get more insight in the possible nonlinear behavior of patterned
ecosystems, e.g. [70, 97, 148, 202]. In these models, patterns typically arise
from a uniform system state that becomes unstable to heterogeneous per-
turbations. This type of instability is referred to as Turing instability (after
A.M. Turing, 1912-1954; [190]) and is thought to be involved in for exam-
ple the formation of patterns on animal coats [120], on sea shells [121] and
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2.1 Introduction

in chemical systems [74, 139]. Using linear stability analysis, it is possible
to find the parameter ranges for which a uniform system state is Turing
unstable.

At present, Turing analysis is used as a relatively simple way to study the
environmental conditions under which one would expect periodic patterns
to be observed, e.g. [61, 70, 79, 95, 97, 125]. However, since Turing analysis
only considers the stability of uniform system states, it provides very little
information about the behavior of ecosystems that are in a patterned state.
Therefore, previous studies have been exploring this behavior using numeri-
cal approaches. These studies revealed a number of interesting properties of
patterned ecosystems. Various model studies suggest that patterns can be
expected under conditions where uniform system states are still stable and
under conditions too harsh for uniform cover to be sustained, e.g. [148,202].
These findings imply that stable uniform and stable patterned states can co-
exist for a range of environmental conditions [149]. The coexistence of alter-
native stable ecosystem states can result in so-called critical transitions [162]
if environmental conditions change, which are associated with sudden losses
of productivity and ecosystem degradation [164]. Numerical studies that
looked in more detail to the dynamics of patterned ecosystem states suggest
that multiple stable patterned states, with different wavelength or spatial
configurations, can coexist and that this can result in hysteresis and more
gradual ecosystem adaptation if environmental conditions change [16,174].

Although studies with numerical approaches uncovered some interesting
characteristics of patterned ecosystems, recent studies have been explor-
ing whether the use of analytically based methods provides more detailed
insights [172, 199]. These approaches go one step further than Turing anal-
ysis as they consider the stability of patterned rather than uniform ecosys-
tem states. By combining stability analysis on patterned states with model
runs, [172] demonstrated that hysteresis can be explained by the coexis-
tence of multiple stable states. His study also suggests that the rate at
which environmental conditions change may affect system response. This
is of particular importance as current human activities induce anomalous
rates of environmental change, e.g. [89]. Although these results suggest
that information about the stability of patterned states is essential in un-
derstanding ecosystem response to changing environmental conditions, the
application of stability analysis on patterned states in the field of ecology
has been limited so far and various ecologically relevant questions remain to
be answered [198, pp. 95-100].
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2 Beyond Turing: the response of patterned ecosystems

One of the processes that are not well understood is the process of pattern
wavelength adaptation. Patterned ecosystems can respond to environmental
change by adapting pattern wavelength and the study by [172] showed that
this process is affected by the rate of environmental change. It is, however,
unknown why and how patterned ecosystems adapt and why this depends
on the rate of change. In this study we therefore aim to provide a mecha-
nistic understanding of how patterned ecosystems respond to environmental
change, considering both the magnitude of change as well as the rate of
change. By applying stability analysis on patterned system states, we first
show that the use of Turing analysis can yield false negatives and false pos-
itives with regard to predicting the existence of observable (i.e. stable) pat-
terns. Based on the mechanisms that are involved in pattern destabilization,
we then discuss possible types of pattern adaptation. Using model runs, we
demonstrate that knowledge about the stability of patterned states is cru-
cial in understanding the response of ecosystems subject to environmental
change and show how the rate of change in environmental conditions and the
level of imposed spatio-temporal noise affect system response. Finally, we
propose that competition for resources between patches of vegetation pro-
vides a possible ecological explanation for the obtained results. In this study
we use an extended version of an arid ecosystem model by [97] as introduced
by [199], which we will discuss in the next section.

2.2 Model description and analyses

2.2.1 Model description

The extended version of the Klausmeier model is a reaction-advection-dif-
fusion model in which the formation of spatial vegetation patterns is the
result of competition for surface water. The model has two state variables
that are functions of both time t and space x (x ∈ R): plant biomass n and
surface water w. Notice that we will consider only one spatial dimension (x),
following [199] and [172]. The model is given by equation (2.1) and (2.2).
We use a non-dimensional version the model in order to reduce the number
of parameters. For a dimensional version of the model and the physical
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meaning of the parameters, see appendix 2.A.

∂w

∂t
= a− w − wn2 + v

∂w

∂x
+ e

∂2wγ

∂x2
(2.1)

∂n

∂t
= wn2 −mn+

∂2n

∂x2
(2.2)

The change in surface water w (equation (2.1)) is controlled by rainfall a,
surface water losses (second term) and uptake by plants through infiltration
and transpiration (third term). As in the original model by [97], the move-
ment of surface water due to gradients in the terrain is captured with an
advection term (fourth term). We extended the model by adding diffusion of
surface water (fifth term). We did this for three reasons. First, the diffusion
term has a physical basis as it can be derived from the shallow water equa-
tions [70]. Second, it allows us to capture the movement of surface water
induced by spatial differences in infiltration rate [148]. Third, it enables us
to demonstrate that the type stability analysis we use to study the system’s
response to change can be applied to both reaction-advection-diffusion and
reaction-diffusion model (v 6= 0 and v = 0 respectively).

The dynamics in plant biomass n (equation (2.2)) are determined by plant
growth which is linearly related to water uptake (first term) and by plant
mortality (second term). As in the original model, plant dispersion is mod-
eled with a diffusion term (third term).

The non-dimensional version of the model has five parameters. We chose
parameter values that are valid for grass as reported by [97]. Plant mortality
was set to m = 0.45 and for flat and sloped terrain v = 0 and v = 182.5
respectively. As we are interested in the response of the system to changes
in rainfall, we use rainfall a as bifurcation parameter and let it vary between
a = 0 to a = 3.5. For simplicity we chose γ = 1. [199] showed that the
value of γ does not qualitatively affect the structure of stability regions.
Therefore the results presented in the following sections are not expected to
differ qualitatively for other values of γ. Finally, e was calibrated to obtain
patterns in a realistic rainfall range according to studies listed by [37], which
appeared to be for e = 500. For conversion of these dimensionless parameters
to dimensional parameters, see appendix 2.A.

The extended Klausmeier model falls in the broader class of reaction-
advection-diffusion models referred to as activator-depleted substrate sys-
tems [59] with vegetation being the activator and surface water being the
substrate. In addition, it shows strong similarities with other well studied
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2 Beyond Turing: the response of patterned ecosystems

models, depending on parameter choice. Naturally, if e = 0 we return to the
original (one dimensional) Klausmeier model [97]. With v = 0 and γ = 1 the
model is equal to the model studied by [94] and the well studied chemical
model by [74]. Finally, the model has been studied by [199] for constant
rainfall a.

It should be mentioned that apart from the model by [97] and derivations
thereof [94, 199] a large body of model studies have been published that
dedicate pattern formation in arid ecosystems to a variety of mechanisms,
including competition for surface water [57,79,148], competition through soil
water uptake by roots [125, 202], a combination of these mechanisms [70]
or plant-plant interactions only [108–111]. These models may be suitable
depending on system characteristics such as climate, soil and plant properties
and can be used to answer specific research questions. However, here we limit
our study to the analysis of the more generic extended Klausmeier model as
it captures pattern formation in a relatively parsimonious way.

2.2.2 Analyses

In order to study the response of the system to changes in rainfall a, knowl-
edge is required about the rainfall ranges for which stable spatially uniform
and patterned states of equations (2.1) and (2.2) exist. We derived the
existence of system states and assessed their stability by performing linear
stability analysis. This type of analysis, together with the obtained sta-
bility regions in parameter space, will be discussed in detail in the next
section. The boundaries of the stability regions were obtained by tracking
the marginally stable patterned system states [51,171] using AUTO contin-
uation software [41, AUTO-07p].

As the rainfall a changes stable states may lose their stability. The sta-
bility regions, as obtained using stability analysis, provide insight in when a
system state destabilizes. However, the behavior of the system after desta-
bilization (e.g. re-stabilization) is a priori unknown. To study this, we
performed runs of the model with linearly increasing and decreasing rainfall
a. The model runs were performed in MATLAB (version 2012a - 7.14.0.739;
The MathWorks, Inc.) using a vector of 1024 elements that represent a
domain with a size of 1000 (500 meters). Periodic boundary conditions
were used to diminish boundary effects and to mimic an infinite domain.
We studied the response of the system under different rates of change in
a (dadt = −10−7, −10−4 and −10−2). We added spatially and temporally
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2.3 Stability of uniform and patterned states

uncorrelated multiplicative uniformly distributed noise to both components
of the model every 1

4 year (noise amplitude = 0, 5.10−5% and 0.05%). The
noise was added to diminish numerical artifacts, such as the system residing
in unstable system states, and represents potential sources of noise that are
not captured by the deterministic equations.

The state of the system can be expressed in terms of pattern wavenumber
κ (= 2π

wavelength). To enable comparison between the model runs and the
stability regions, we assessed the wavenumber of the patterns as generated
by the model by applying discrete Fourier transformations. This is explained
in detail in appendix 2.B.

2.3 Stability of uniform and patterned states: from
Turing instability to the Busse balloon

In this section we discuss the stability of uniform and patterned states of
the extended Klausmeier model. In subsection 2.3.1 we briefly review well-
known linear stability analysis (Turing analysis) as applied to uniform system
states. We then continue by discussing the mathematically more challenging
stability analysis of patterned states in subsection 2.3.2. Finally we compare
the stability regions obtained in both subsections and discuss the ecologically
relevant results in subsection 2.3.3.

2.3.1 Existence and stability of uniform system states

Determining the stability of uniform steady states to uniform perturbations
is a fairly easy task: first one derives the steady states of the system, and
then one perturbs the steady states. The stability of the system state is then
defined by the sign of the exponential growth rate of the perturbation: the
maximum real part of eigenvalues λ. Solely negative real parts of eigenvalues
imply a (asymptotically) stable state, whereas a positive real part means that
the system state is unstable. A bifurcation occurs when due to a parameter
change the growth rate of a perturbation max(Re(λ)) becomes positive (here
max() refers to the maximum of a set values and Re() takes the real part
of a complex number). The system is marginally stable at such an onset of
instability. Marginal stability marks the boundaries of stability regions in
parameter space.

Uniform system states can be derived by setting equations (2.1) and (2.2)
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2 Beyond Turing: the response of patterned ecosystems

to zero while neglecting advection and diffusion fluxes. The extended Klaus-
meier model presented in the previous section has three uniform steady states
for a > 2m (see appendix 2.D.1 for a derivation). Two of the steady states
are vegetated (so n̄ > 0), of which one is stable to uniform perturbations
for ecologically relevant parameter values (m < 2) and one is unstable (see
appendix 2.D.2 for stability analysis). A stable bare desert state (n̄ = 0) ex-
ists for all values of a. At a = aSN := 2m a saddle-node bifurcation occurs.
Here the vegetated states cease to exist, meaning that for a < aSN only a
stable bare state exists.

Perturbations in natural systems are generally heterogeneous. To account
for this in the stability analysis, spatially heterogeneous perturbations can
be added to the uniform states [59, 190]. Heterogeneous perturbations can
be represented as sinusoids with wavenumber κ (= 2π

wavelength) of which the
amplitude grows (or decays) with a rate of max(Re(λ(κ))).

When perturbing the stable uniformly vegetated state of the extended
Klausmeier model with such sinusoids (appendix 2.D.3), a range of values for
a can be found for which the state is Turing unstable. Here the amplitude of
a perturbing sinusoid grows over time (max(Re(λ(κ, a))) > 0). Whether this
occurs does not only depend on intrinsic model parameters, such as a, but
also on the wavenumber of the sinusoid κ. The solid red line in figure 2.1a,b
borders the region in (a, κ)-space for which the uniformly vegetated state is
Turing unstable. Assuming that the amplitude of the imposed perturbations
grow while their wavenumber is preserved, one would expect patterns to
exist in this region. Therefore this can be seen as a Turing prediction region.
If rainfall decreases over time, patterns will form directly after the Turing
bifurcation T [199, or Turing-Hopf bifurcation TH if v 6= 0] as here the
uniform state becomes unstable. These patterns will have a wavenumber
close to κT (or κTH): the wavenumber of the perturbation that initializes
the Turing bifurcation. Model runs show that when randomly perturbing
uniform states that are Turing unstable, the system tends to evolve to a state
with a pattern wavenumber close to the wavenumber of the perturbation with
the largest growth rate, also referred to as most unstable mode (dashed red
line in figure 2.1a,b; [174]). As we will show in section 2.4 however, pattern
wavenumber can strongly deviate from the this wavenumber if environmental
conditions change.
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2.3 Stability of uniform and patterned states

2.3.2 Existence and stability of patterned system states

So far we have discussed the stability of uniform system states. The pat-
terned states that arise from a Turing unstable uniform state are, however,
not necessarily stable themselves. Unlike uniform steady states, it is gener-
ally not possible to find explicit expressions for patterned states by hand.
For this and subsequent determination of stability we rely on numerics.

Patterns may exist in the form of so-called wavetrains: vegetation bands
that slowly migrate in uphill direction. In fact for v = 182.5 this is the case
for all patterns. To deal with this a comoving frame ξ = x−st is introduced.
Here s is equal to the migration speed: a pattern dependent property that
is assumed to be constant in space and time. This results in additional
advection terms in both equations. A pattern (wp, np) with wavenumber κ
exists for rainfall a if and only if it is a solution to the system

0 = a− wp − wpn2
p + (v + s)

dwp
dξ

+ e
d2wγp
dξ2

(2.3)

0 = wpn
2
p −mnp + s

dnp
dξ

+
d2np
dξ2

(2.4)

on the domain [0, 2π
κ ] with periodic boundary conditions. See appendix 2.E.1

for a derivation of these equations. Notice that, besides the parameters of
the extended Klausmeier model (equations (2.1) and (2.2)), migration speed
s and wavenumber κ now appear as additional parameters. Parameters s
and κ can be used to express the state of the system.

Since the existence of unstable patterned states is not of immediate inter-
est we also require stability. To determine this we need to linearize about
(wp, np) leading to ordinary differential equations with a dependency on wp
and np (appendix 2.E.2). The perturbations are no longer represented by si-
nusoidals. Instead they are given by products of two functions: a sinusoidal
eiν (with wavenumber ν) and an a priori unknown periodic function with the
same wavenumber κ as the pattern. The eigenvalues of the corresponding
perturbations are complex and depend on ν.

Stable patterns exist in what is referred to as the Busse balloon (after F.H.
Busse; [21]): the region in (parameter,κ)-space for which at least one stable
periodic solution exists [199]. If a patterned state is stable, it is said to be
in the Busse balloon. Busse balloons for the extended Klausmeier model are
depicted in figure 2.1a,b (bordered by the black solid line). Apart from the
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2 Beyond Turing: the response of patterned ecosystems

patterned states, a stable uniform bare state (κ = 0) exists for all rainfall
values.

Stability regions are bordered by marginally stable solutions. Therefore
a Busse balloon can be constructed by finding marginally stable solutions.
If one marginally stable solution is known it is possible to track marginal
stability while changing a parameter (with the use of continuation software
AUTO; [41]). A precise description of this procedure can be found in the
article by [147]. The Busse balloon is obtained by plotting the wavenumbers
κ of the marginally stable solutions against the changing parameter. In order
to track marginal stability we also need to know exactly how the eigenvalues
obtain a positive real part: what is the destabilization mechanism?

In [199] it is rigorously proven through the derivation of amplitude equa-
tions (Ginzburg-Landau analysis) that stable patterns exist close to the
Turing(-Hopf) bifurcation: it is derived that the bifurcation is supercriti-
cal (for the scalings considered). Close to the Turing(-Hopf) bifurcation the
region in (a, κ)-space where stable patterns exist is bounded by a parabola
of marginally stable patterns [199]. Also, the destabilization mechanism is
identified as being a sideband instability or Eckhaus instability.

The sideband instability is characterized by a change in sign of the curva-
ture of the eigenvalues attached to the origin (ν = 0), as depicted in figure
2.1c. For marginally stable patterns, which separate stable from unstable
patterns, there is no curvature at ν = 0. This corresponds to a second
derivative at ν = 0 that equals zero. If, due to changing rainfall, patterns
lose their stability, perturbations with ν close (but unequal) to zero become
able to destabilize patterned states.

With the current parameter combination the sideband is the dominant
destabilization mechanism for the extended Klausmeier model [199]. Only
for very small wavenumbers κ it is superseded by intertwining Hopf insta-
bilities [51]. In this case, onset of instability occurs away from ν = 0, but
continuation with AUTO is still possible [51,147].

The perturbations, which consist of products of eiν and functions with
the same wavenumber as the pattern κ, need not be periodic, but can be for
particular values of ν. For example, perturbations with ν = 0 are periodic
with pattern wavenumber κ, since e0 = 1. As shown in figure 2.1c, pertur-
bations with wavenumber κ (ν = 0) are not able to destabilize a patterned
state: due to translation symmetry the growth rates of these perturbations
remain zero. Perturbations with ν = π are periodic with wavenumber κ/2
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2.3 Stability of uniform and patterned states

since eπi = −1. If perturbations with wavenumber κ/2 (ν = π) become
able to destabilize a patterned state, a so-called spatial period doubling bi-
furcation occurs. Growth of these perturbations results in a halving of the
pattern wavenumber. Recall that the wavelength is inversely proportional to
the wavenumber, so the wavelength (spatial period) doubles. According to
figure 2.1c, perturbations of this kind are the last to destabilize a patterned
state as rainfall a decreases, however they do attain the largest growth rate
soon after. The black dashed line in figure 2.1a,b depicts the period doubling
instability.

In summary, we discussed that the stability of patterned states can be
assessed by tracking marginal stability. To do this, knowledge about the
destabilization mechanisms is required. For the extended Klausmeier model
the sideband instability is the dominant destabilization mechanism, meaning
the curvature (second derivative) of the curve of eigenvalues (figure 2.1c) can
be used to trace the boundary of the stable pattern region.

2.3.3 Ecological implications

We determined the stability of patterned ecosystem states and discussed
some important destabilization mechanisms, but what ecologically relevant
information can we extract from figure 2.1?

First, we observe that the Turing prediction region and the Busse balloon
only partly overlap. A large part of the patterns in the Turing predic-
tion region turn out to be unstable, and are therefore unlikely to observed.
Furthermore, stable patterns exist outside the Turing prediction region for
a < aSN and if v 6= 0, also for a > aSN . These patterns cannot form directly
from a Turing unstable uniform state. Although stable patterns do no ap-
pear at rainfall values above the Turing(-Hopf) bifurcation for the extended
Klausmeier model, this may be different for other models, e.g. [148]. The dif-
ferences between the Turing prediction region and the Busse balloon suggest
that a relatively simple Turing analysis gives very limited information about
the parameter regimes for which one can expect patterns to be observed.

Second, figure 2.1 shows that for a given rainfall value a range of stable
patterned states exists. Since the system has many stable states, it can
be considered multistable. The current state, in terms of wavenumber κ,
consequently depends on history, meaning that hysteresis can be expected.

Third, a pattern with a given wavenumber κ is stable for a range of a.
This means that the same pattern wavenumber can in theory be observed for
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Figure 2.1: Stability regions of the non-dimensional extended Klausmeier model (equations (2.1)
and (2.2)) in (a, κ)-space for flat (a; v = 0) and sloped terrain (b; v = 182.5). In (a) and
(b) a represents rainfall and κ is the wavenumber of the patterned state. The black
solid curve indicates the location of the sideband instability and borders the stable
pattern region or Busse balloon (shaded area). A period doubling bifurcation occurs
on the black dashed line. The grey curves in (b) show the contours of constant uphill
pattern migration speed s. The red solid line borders the Turing prediction region
where perturbations of the uniformly vegetated state grow in amplitude. On the right
hand border of the Turing prediction region uniform states are marginally stable to
spatial perturbations. On the left hand border of this region the Turing unstable
uniform state ceases to exist (saddle-node bifurcation SN ; a = aSN := 2m). The
wavenumber of the perturbation with the largest growth rate is indicated by the red
dashed line. The highest rainfall value at which the uniformly vegetated state is Turing
unstable is marked as the Turing bifurcation point T (or Turing-Hopf bifurcation point
TH if v 6= 0). (c) The maximum real part of eigenvalues for perturbations of patterned
states plotted against Floquet wavenumber ν. The perturbed patterned states have a
wavenumber of κ = 0.43009 (≈ κT ). Notice that the perturbed states are marked with
crosses in (a). At a ≈ 1.5521 a sideband bifurcation (SB) occurs. Here the curvature
at ν = 0 changes sign. At a ≈ 1.4099 a period doubling bifurcation (PD) occurs. Here
max(Re(λ(ν))) at ν = π ≈ 3.14 becomes positive.
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a range of external conditions. Furthermore, if external conditions change,
one would expect the wavenumber of a pattern to remain constant as long
as it is stable, i.e. as long as the external conditions remain within the range
for which the pattern is stable.

Fourth, the shape of the Busse balloon allows high wavenumbers to be
stable only at high values of a. The opposite is true for low wavenumbers.
The presence of a slope affects the shape of the Busse balloon. Pattern for-
mation occurs at higher rainfall rates and patterned states can sustain under
more arid conditions on sloped terrains. The absence of a slope allows high
wavenumber patterns to be stable, while the rainfall range for which stable
low wavenumber patterns exist is narrow. On sloped terrains in contrast
low wavenumber patterns can be expected to be observed for a wide rainfall
range.

Finally, we observe that the period doubling instability approaches the
boundary of the Busse balloon as rainfall a decreases. Meaning that at low
rainfall values, period doubling takes place almost simultaneously with the
destabilization of a pattern. In addition, the boundary of the Busse balloon
is steeper at low rainfall values. This means that at low rainfall values an
incremental decline in rainfall could result in desertification if the system is
close to the boundary of the Busse balloon.

2.4 System response to changing environmental
conditions

The obtained information about the stability and destabilization of pat-
terned states is not enough to fully understand the behavior of patterned
ecosystems when subject to changing environmental conditions. This is be-
cause the linearization we implicitly apply only enables us to describe the
behavior of the system close to the steady state. Consequently, if the system
is pushed away from a steady state (during pattern destabilization) it is a
priori unknown to which state it will evolve (restabilization). In this section
we study the behavior of the system while gradually changing the rainfall
parameter and relate this behavior to the findings presented in the previous
section. First we describe history dependence within the system resulting
from multistability in subsection 2.4.1. In subsection 2.4.2 we then study in
more detail the restabilization of the system and its dependence on the rate
with which rainfall changes and on the level of noise imposed on the system.
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2 Beyond Turing: the response of patterned ecosystems

Finally, in subsection 2.4.3 we propose an ecological mechanism that controls
system restabilization.

2.4.1 Bouncing through the Busse balloon

The non-dimensional extended Klausmeier model (equations (2.1) and (2.2))
was run with the rainfall a changing over time with a rate of da

dt = ±10−4.
This rate of change corresponds to a change in annual rainfall of about 0.1
mm year−1.

Figure 2.2 shows how the system responds to changing rainfall on flat
terrain (v = 0). When rainfall decreases, patterns in plant biomass emerge
shortly after the uniformly vegetated state becomes Turing unstable (figure
2.2a). The mean plant biomass of the patterned state does not differ much
from that of the Turing unstable uniform system state (figure 2.2d). The
wavenumber of the pattern does not change as long as the pattern is stable.
The pattern amplitude in contrast increases during pattern formation after
which it slowly decreases with declining a. At some point, the decreasing
rainfall forces the system outside the Busse balloon and the pattern destabi-
lizes (figure 2.2c). This results in a pattern with a lower wavenumber and a
larger amplitude. These transitions are not distinguishable in mean biomass
(figure 2.2d). The adaptation of the wavenumber is accompanied by the
extinction of what can be considered as vegetation patches. When a reaches
a value for which no stable patterned state exists, desertification occurs and
all remaining patches go extinct simultaneously.

If rainfall increases over time similar behavior can be observed (figure
2.2b), however now patterns destabilize at the lower border of the Busse
balloon and the wavenumber increases until eventually a uniformly vegetated
state is reached (figure 2.2c). During wavenumber adaptation vegetation
patches split up. Since the trajectories for decreasing and increasing rainfall
differ, hysteresis occurs [172].

On sloped terrain (figure 2.3), patterns emerge in the form of vegeta-
tion bands that migrate in uphill direction (traveling waves). As the Busse
balloon is wider in terms of wavenumber κ the hysteresis effect is more
pronounced when compared to flat terrain. As shown by figure 2.3, the mi-
gration speed of the vegetation bands gets lower as rainfall decreases. How-
ever, during wavenumber adaptation vegetation bands accelerate leading to
slightly elevated migration speeds directly after transition.

Although wavenumber adaptation occurs some time after patterned states
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2.4 System response to changing environmental conditions

destabilize, as discussed earlier by [172], figures 2.2 and 2.3 indicate that the
Busse balloon helps in understanding how patterned ecosystems respond to
changes: 1) as long as the system is in the Busse balloon it responds by
changing the amplitude (and migration speed) of the patterns, 2) if, due to
changing rainfall a, the system is forced outside the Busse balloon it responds
by changing its pattern wavenumber.

At first sight, the Busse balloon does not seem to provide insight in what
determines the selection of a new wavenumber after pattern destabilization.
In the next section we show how wavenumber selection is affected by the rate
at which the rainfall changes and by the amount of spatio-temporal noise to
which the system is exposed.

2.4.2 Wavenumber selection: the role of rate of change and noise

The model was run for v = 0 with different rates of change in rainfall
∣∣da
dt

∣∣
(with da

dt < 0) and different noise levels. As shown in figure 2.4, wavenumber
adaptation occurs with increasing step size (in terms of wavenumber κ) for
increasing rates of change. At high rates of change, desertification can take
place at rainfall levels for which stable patterned states still exist. For the
level of noise imposed on the system, the opposite is true: higher noise levels
result in smaller step size. At sufficiently high noise levels, patches go extinct
one-by-one and the system tends to closely follow the boundary of the Busse
balloon.

We observe that during some wavenumber adaptations period doubling
occurs, meaning that half of the vegetation patches go extinct simultane-
ously [207]. The occurrence of period doubling is related to the position of
the system in (a, κ)-space at which the wavenumber adaptation is initiated,
which is in turn determined by rate of change and noise level. If wavenumber
adaptation takes place close to the boundary of the Busse balloon, which is
the case for low rates of change or high noise levels, period doubling does not
occur. If wavenumber adaptation is initiated farther away from the bound-
ary of the Busse balloon, period doubling occurs, provided that the system
surpassed the period doubling instability PD and that period doubling re-
sults in a stable patterned solution.

At low rainfall values we find that period doubling occurs more frequently
(even at high noise levels). Here the period doubling instability PD ap-
proaches the sideband instability SB (boundary of the Busse balloon). As
a result the period doubling instability PD is surpassed even at low rates of
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Figure 2.2: Plant density n in space for runs of the non-dimensional extended Klausmeier model
with v = 0 (flat terrain), for da

dt
= −10−4 (a) and da

dt
= 10−4 (b). The former run

starts from the homogeneously vegetated steady state. The latter is initiated with
the patterned solution of the first at a = 0.45. Spatially and temporally uncorrelated
multiplicative uniformly distributed noise with an amplitude of 5.10−5% is added to
the plant density every 1

4
year. The trajectories through the Busse balloon in (c) were

obtained by applying a discrete Fourier transformation with respect to x (see appendix
2.B). In (d), the mean biomass is plotted for both runs. The solid and dashed black
lines are the uniform steady states.
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Figure 2.3: See the caption of figure 2.2, but now v = 182.5 (sloped terrain). The grey curves show
the contours of constant uphill pattern migration speed.

change.

2.4.3 Competition between and rearrangement of patches

In the previous subsections we showed that wavenumber adaptation driven
by changing environmental conditions can be a discontinuous process: many
patches can go extinct simultaneously if a pattern destabilizes. In addition,
we found that rainfall, the rate of change in rainfall and the level of noise
on the system affect the number of patches that go extinct. Here we provide
an interpretation of the observed system responses by taking a closer look
to what happens during wavenumber adaptation.

Figure 2.5 shows plant biomass and surface water for part of the modeled
domain during one of the wavenumber adaptations in a model run with de-
clining rainfall. The figure shows that the extinction of one vegetation patch
results in growth of its neighboring patches, which in turn negatively affects
their neighbors. This triggers a cascade, eventually resulting in extinction
of half of the patches.

The interaction between neighboring patches in the extended Klausmeier
model can be explained by the competition for water. Vegetation patches
harvest water from an area bordered by water divides where dw

dx = 0. The
uptake of water by patches that share a water divide, which is controlled
by patch biomass, determines the position of the water divide. An increase
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Figure 2.4: Trajectories through the Busse balloon for runs with decreasing rainfall and with dif-
ferent rates of change in a and different noise levels. The trajectories were obtained by
applying a discrete Fourier transformation with respect to x (see appendix 2.B). The
runs were initiated with a stable pattern solution at κ ≈ κT and a = 1.6 and end in
the desert state κ = 0. The solid line depicts the sideband instability SB, the dashed
line is the period doubling instability PD. The area bordered by the dotted curves
was extrapolated from the Busse balloon and depicts the area in which period doubling
would result in a stable patterned solution. The top panel plus the two panels on the

left have no noise, the rate of change in rainfall
∣∣∣ dadt ∣∣∣ changes respectively from 10−7 to

10−4 to 10−2. The two panels on the right have noise amplitude 5 ·10−5% (upper) and
0.05% (lower) while the rate of change of a is equal to that of the top panel (10−7).
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2.5 Discussion and conclusions

in patch biomass with respect to neighboring patches will widen the water
harvesting area of a patch. The opposite occurs if a patch is weaker than
its neighbors. Since the water harvesting area affects water availability, it
feeds back to patch biomass eventually resulting in growth or extinction of
a patch.

We observe (figure 2.6) that wavenumber adaptations during which less
than half of the vegetation patches goes extinct are accompanied by rapid
spatial rearrangement of patches, while no movement of patches can be
observed if half (period doubling) or all patches go extinct (desertifica-
tion). The movement of neighboring patches during rearrangement seems to
weaken the feedbacks described above: if one patch goes extinct its neigh-
boring patches fill up the created space, thereby diminishing the stress on
remaining patches.

Patch rearrangement generally occurs if wavenumber adaptation is initi-
ated between the sideband instability and the period doubling instability.
At low rainfall values, the period doubling instability approaches the side-
band instability. At these rainfall values rearrangement of patches becomes
less likely, as pattern destabilization almost coincides with the period dou-
bling instability PD. High rates of change in rainfall also do not allow for
patch rearrangement. High noise levels in contrast can trigger wavenumber
adaptation before the system crosses the period doubling instability PD,
resulting in patch rearrangement and one-by-one extinction of vegetation
patches.

2.5 Discussion and conclusions

In this study we showed that patterned ecosystems systematically respond
in two ways to changing environmental conditions: 1) by adjusting patch
biomass (pattern amplitude) or 2) by changing pattern wavelength (wave-
number). In the latter case patches go extinct or split up and may rearrange.
In arid ecosystems, gradual wavelength adaptation is constrained to condi-
tions of high rainfall, slow changes in rainfall and high levels of stochastic
spatial variation in biomass (noise). The adaptation process is less gradual
under conditions of either low rainfall, rapid change or low levels of noise.
Such conditions do not allow vegetation patches to rearrange, and facilitate
the simultaneous extinction of half the patches or even a transition to a
degraded state without any patches.
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2.5 Discussion and conclusions

We found that an overview of stable patterned states, the Busse balloon,
is a powerful tool in understanding the response of patterned ecosystems
to changing environmental conditions. If a system is in a stable patterned
state (i.e. in the Busse balloon), a pattern tends to solely adapt its am-
plitude, while if the system leaves the Busse balloon, a pattern adapts its
wavenumber. The ability of patches to rearrange is determined by the period
doubling instability. Once the system surpasses this instability, patches do
not rearrange, leading to extinction of half or all the patches.

Our findings suggest that the response of patterned ecosystems to environ-
mental change does not only depend on the magnitude of change, but also
on the rate with which conditions change: patterned ecosystems may not
be able to respond in a gradual way to rapid environmental change. Similar
behavior can be observed in a number of non-spatial models, e.g. [113,165].
Nonlinear response to rapid environmental change may as well occur in more
comprehensive models that are used for policy making. This may imply that
merely setting targets for tolerable change may not be sufficient to prevent
ecosystem degradation and that to ensure gradual ecosystem adaptation,
identification of critical rates of change is required as well.

Besides the rate of change in environmental conditions, the level of noise
to which the system is exposed seems to play an essential role in ecosystem
response. Our study shows that relatively small amplitude noise brings het-
erogeneity in the population of patches which leads to more gradual ecosys-
tem adaptation to environmental change. Larger amplitude noise, on the
other hand, is known to be a cause of critical transitions [83].

Our findings are in agreement with a recent study by [39] based on areal
images of patterned vegetation in Sudan. Like [39] we found that pattern
wavenumber declines with increasing aridity and that, when compared to
flat terrain, a wider range of pattern wavenumbers can be found on sloped
terrain. Although our stability analysis suggest that low wavenumber pat-
terns are stable (and thus can be observed in theory), [39] did not find such
patterns. This might be explained by the fact that, at least for flat ter-
rain, low wavenumber patterns are stable only for a relatively small rainfall
range (figure 2.1a). A second explanation can be found in the steepness
of the boundary of the Busse balloon. Wavenumber adaptation forced by
environmental changes generally results in increased ecosystem resilience as
it increases the distance to critical thresholds (the boundary of the Busse
balloon). However, if the boundary of the Busse balloon is steep, as is the
case for low wavenumber patterns at low rainfall values (figure 2.1a), the
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system remains close to the boundary of the Busse balloon meaning that
the increase in ecosystem resilience is relatively small. As a result patterned
arid ecosystems are relatively fragile in this parameter region. Variations in
seasonal and annual precipitation, to which all arid ecosystems are exposed,
can easily trigger desertification. Consequently, low wavenumber patterns
are less likely to be observed.

By assessing the existence and stability of patterned system states we
went one step further than Turing analysis, frequently applied in previous
studies, e.g. [61, 70, 79, 95, 97, 125]. In a wide range of ecosystems, scale-
dependent feedbacks are thought to involve local positive feedbacks [151].
Such local positive feedbacks allow stable patterned states to exist under
conditions where uniform cover can no longer be sustained. Analysis of
patterns in these parameter regions is of importance because of proximity
to critical thresholds. Using conventional Turing analysis, however, it is
fundamentally impossible to do so. The novel approach we presented in this
paper is a promising way forward in understanding the behavior of spatially
explicit ecosystem models under these conditions.

The findings presented in this paper are in accordance with previous model
studies. Analysis of the original Klausmeier model by [174] and [172] already
suggested the existence of patterned states in parameter regions where Tur-
ing unstable states are absent, see also [148], and that hysteresis can oc-
cur in pattern wavenumber and migration speed. In contrast to the study
by [172] we used wavenumber as state variable instead of migration speed.
In practice, wavenumber is a property that is easier to assess than migra-
tion speed [30, 38]. In addition, migration speed cannot be used as state
variable if all patterns are stationary. This is the case on flat terrain in the
extended Klausmeier model, but on sloped terrain patterns can be fixed as
well [58, 185]. The existence of a multitude of stable patterned states has
been demonstrated in other models as well [16, 124, 172, 208]. In this paper
we showed that transitions between stable patterned states can be forced by
changing environmental conditions. Previous studies show that such tran-
sitions can also be triggered by disturbances in the form of the uniform
biomass removal [124] or patch removal [208].

Although our findings seem to be in line with observations [39], most find-
ings remain to be tested using areal images and field data. Empirical proof
for a Busse balloon requires a constant pattern wavelength to be observed
for a range of environmental conditions or, alternatively, a range of pattern
wavelengths to be observed for a fixed set of environmental conditions. It
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would also be interesting to see if competition between neighboring patches
indeed occurs and how the competition strength depends on environmental
stress. If time series of areal images are available, it may also be possible to
observe hysteresis in pattern wavelength.

To get more insight in the behavior of real ecosystems we propose that
future studies apply stability analysis on patterned system states of other
(more realistic) models. Constructing Busse balloons for other models will
allow to relate findings to measurable parameters. Stability analysis of mod-
els in which multiple pattern forming mechanisms are captured, such as
the model by [70], would allow studying how the relative strength of these
mechanisms affects the global behavior of patterned ecosystems [96]. In
addition, future studies could consider two spatial dimensions as this may
qualitatively affect the model behavior described in this paper. Accounting
for more than one spatial dimension in stability analysis is mathematically
challenging, since more complex spatial patterns can evolve (gaps, labyrinths
and spots; [139,148]) and more destabilization mechanisms may potentially
destabilize a patterned system state [85]. Finally, as soon as bare ground
forms between patches, the movement and stability of patches can be de-
scribed by pulse interaction, see [48, 184] and references therein. This may
provide insight in the ecologically relevant process of wavenumber adaptation
forced by environmental change.

The changes in climate projected for the coming decades [86] are likely to
affect the functioning of patterned ecosystems worldwide. We showed that in
order to understand the behavior of patterned ecosystems that are subject to
change, mathematical techniques are required that go beyond conventional
Turing analysis. By assessing the stability of patterned ecosystem states and
by studying the relevant destabilization mechanisms we were able to explain
when and how arid ecosystems may adapt their pattern wavelength. Identi-
fication of the Busse balloon, together with the period doubling instability,
provides a theoretical framework for future theoretical and empirical stud-
ies. These studies may provide enhanced insights in the response of other
ecological models to change, the response of real ecosystems to change, and
the ecological mechanisms responsible for this response.
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2.A A non-dimensional extended Klausmeier model.

The extended Klausmeier model is given by equation (2.A.1) and (2.A.2). In
table 2.1, the values of the parameters are listed for both grass and trees, as
estimated by [97]. The diffusion term was calibrated to obtain patterns in a
realistic parameter range. A non-dimensional version of the model (equation
(2.A.3) and (2.A.4)) is used throughout the paper. Table 2.2 shows how the
dimensionless parameters can be obtained.

∂W

∂T
= A− LW −RWN2 + V

∂W

∂X
+ E

∂2WΓ

∂X2
(2.A.1)

∂N

∂T
= RJWN2 −MN +D

∂2N

∂X2
(2.A.2)

∂w

∂t
= a− w − wn2 + v

∂w

∂x
+ e

∂2wγ

∂x2
(2.A.3)

∂n

∂t
= wn2 −mn+

∂2n

∂x2
(2.A.4)

2.B Wavenumber plotting by fast Fourier transform

In this appendix we explain how we compute the trajectories through (para-
meter,κ)-space, as depicted in the main text, by using the discrete or fast
Fourier transform.

In the model runs the plant biomass n(x) is represented by a vector n(j),
j = 1, 2, ..., N , of N = 1024 elements and the spatial domain size is L = 1000.

The vector can be expressed as a linear combination of vectors vl(j) = e
2πil
N
j ,

where l = 0, 1, 2, ..., N − 1. The vl represent sinusoidals with wavenumber
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Table 2.1: Values and units for the variables and parameters of the extended Klausmeier model
(equation (2.A.1) and (2.A.2)). Values adopted from [97]. E was calibrated to obtain
patterns in a realistic parameter range, according to [37].

Parameter/Variable Value (grass) Value (tree) Unit

W kg m−2(=mm)
N kg m−2

X m
T year
A 0 - 950 0 - 950 kg m−2 year−1

(= mm year−1)
L 4 4 year−1

R 100 1.5 kg m−2 year−1 kg−2

(=mm year−1 kg−2)
V 0 or 365 0 or 365 m year−1

E 500 500 m2 year−1 mm1−Γ

Γ 1 1 -
J 0.003 0.002 kg kg−1

(=kg L−1)
M 1.8 0.18 year−1

D 1 1 m2 year−1

Table 2.2: Physical meaning and values for the variables and parameters of the non-dimensional
extended Klausmeier model (equation (2.A.3) and (2.A.4))

Parameter/Variable Physical meaning Value (grass) Value (tree)

w WR1/2L−1/2J 0.015W 0.0012W

n NR1/2L−1/2 5N 0.61N

x XL1/2D−1/2 2X 2X
t TL 4T 4T

a AR1/2L−3/2J 0.00375A 0.0003062A
m ML−1 0.25M 0.25M

v V L−1/2D−1/2 0.5V 0.5V
e ED−1 E E
γ Γ Γ Γ
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Figure 2.7: Plant biomass n against space x before, during and after wavenumber adaptation in
the model run with declining rainfall of figure 2.2 and the Fourier transform of the
corresponding vectors.

κ = 2πl
L . The weight of vl in n can be computed by the discrete Fourier

transform

Y (κ) =
N∑

j=1

n(j)vl(−j). (2.B.1)

The absolute value of Y (κ) is a measure of how much n resembles a si-
nusoidal with wavenumber κ. If a single Y (κ) has a large absolute value
compared to all other Y (κ 6= 0), then the state is (nearly) periodic with
wavenumber κ.

The trajectories through (parameter,κ)-space, as depicted in the main
text, were obtained by picking the wavenumber where |Y | attained its maxi-
mum, κ = 0 excluded. The wavenumber is only plotted when the maximum
is relatively large, which suppresses plotting during transient dynamics.

Figure 2.7 shows that during wavenumber adaptation the spread in κ
increases. After wavenumber adaptation the spread decreases slowly. As
the pattern settles, the maximum wavenumber can still change. As l is
an integer, κ can only attain certain values. Therefore the settling of the
pattern can result in small jumps in pattern wavenumber.
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2.C General equations for perturbations.

2.C General equations for perturbations.

We derive equations for perturbations of a general system state in the ex-
tended Klausmeier model. These equations will be of use in appendix 2.D.2,
2.D.3 and 2.E.2. For ease of the computations we restrict to the linear dif-
fusion case γ = 1. Let (w, n) be a system state that is perturbed by (w′, n′).
We obtain an expression for the governing equations of the perturbation by
the following calculations:

∂w′

∂t
=
∂(w + w′)

∂t
− ∂w

∂t

=e
∂2(w + w′)

∂x2
+ v

∂(w + w′)
∂x

+ a− (w + w′)− (w + w′)(n+ n′)2

−
(
e
∂2w

∂x2
+ v

∂w

∂x
+ a− w − wn2

)

=e
∂2w′

∂x2
+ v

∂w′

∂x
− w′(1 + n2)− 2n′wn− 2w′n′n− n′2w − w′n′2

≈e∂
2w′

∂x2
+ v

∂w′

∂x
− w′(1 + n2)− 2n′wn (2.C.1)

∂n′

∂t
=
∂(n+ n′)

∂t
− ∂n

∂t

=
∂2(n+ n′)

∂x2
+ (w + w′)(n+ n′)2 −m(n+ n′)

−
(
∂2n

∂x2
+ wn2 −mn

)

=
∂2n′

∂x2
+ w′n2 + n′(2wn−m) + 2w′n′n+ n′2w + w′n′2

≈∂
2n′

∂x2
+ w′n2 + n′(2wn−m) (2.C.2)

The final approximate equalities are equalities in a linear approximation: for
small perturbations (w′, n′) the products w′n′ and n′2 are negligible.

In an abstract formulation equations (2.C.1) and (2.C.2) can be rewritten
as:

∂

∂t

(
w′

n′

)
= A

(
w′

n′

)
(2.C.3)

where the so-called spectrum, a generalization of the concept of eigenvalues,
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2 Beyond Turing: the response of patterned ecosystems

of the differential operator

A =

(
e ∂

2

∂x2 + v ∂
∂x − 1− n2 −2wn

n2 ∂2

∂x2 + 2wn−m

)
(2.C.4)

determines the stability of (w, n).

2.D Analysis of the homogeneous steady states.

For completeness we will give a thorough analysis of the homogeneous steady
states of the extended Klausmeier model. This also serves the purpose of
showing how easily results can be obtained by hand in this case, compared
to the restricted possibilities for the analysis of patterns in appendix 2.E.
The results of section 2.D.1 and 2.D.2 also hold for γ = 2.

2.D.1 Existence of spatially homogeneous steady states

If w and n are spatially homogeneous, gradients in w and n are absent,
and the advection-diffusion terms of (2.1) and (2.2) vanish. Since only a
single type of derivative remains, the partial differential equations become
ordinary differential equations. The steady uniform states can then be found
by solving (2.D.1) and (2.D.2).

dw

dt
= a− w − wn2 = 0 (2.D.1)

dn

dt
= wn2 −mn = (wn−m)n = 0 (2.D.2)

Clearly n̄B = 0 solves (2.D.2) and consequently w̄B = a. This is a bare
desert state, as plant biomass equals zero. Alternatively (2.D.2) is solved if
n = m

w . Substituting this in (2.D.1) and multiplying with −w we obtain the
quadratic equation w2−aw+m2 = 0. This quadratic equation can be solved
to obtain two solutions for w and from n = m

w the corresponding solution
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Figure 2.8: Homogeneous steady states of the (extended) Klausmeier model expressed in plant
biomass n as function of rainfall a for m = 0.45.

for n can be computed. The outcome is given by:

w̄S =
2m2

a−
√
a2 − 4m2

(2.D.3)

n̄S =
a−
√
a2 − 4m2

2m
(2.D.4)

w̄N =
2m2

a+
√
a2 − 4m2

(2.D.5)

n̄N =
a+
√
a2 − 4m2

2m
(2.D.6)

Here the argument of the square root needs to be positive, so these states
only exist for a ≥ 2m. Note that the two states coincide at a = 2m, in
fact here a so-called saddle-node bifurcation takes place. In the following
subsection we will show that (w̄S , n̄S) has a stable and an unstable direction
(saddle, unstable) and (w̄N , n̄N ) either has two stable or unstable directions
(node). Note that we have covered all possible cases of (2.D.2) and thus no
other homogeneous steady states can exist. Moreover, all the steady states
are non-negative. We will continue by studying their stability.
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2 Beyond Turing: the response of patterned ecosystems

2.D.2 Stability of the homogeneous steady states against
homogeneous perturbations

By perturbing the steady states obtained in appendix 2.D, their stability
can be determined. If a perturbation grows over time, the steady state is
unstable. The steady state is stable, if all perturbations decay. In this
appendix, we show how linear stability analysis can be used to assess the
stability of uniform system states to homogeneous perturbations. We will
do this by using the equations derived for perturbations in appendix 2.C.

Since perturbations are assumed to be homogeneous (2.C.1) and (2.C.2)
simplify to:

∂w′

∂t
=− w′(1 + n̄2)− 2n̄′wn̄ (2.D.7)

∂n′

∂t
=w′n̄2 + n′(2w̄n̄−m) (2.D.8)

This can be compactly written as:
(

dw′
dt
dn′
dt

)
=

(
−1− n̄2 −2w̄n̄
n̄2 2w̄n̄−m

)(
w′

n′

)
(2.D.9)

where the matrix is readily identified as the Jacobian matrix J of the reaction
terms. As is well-known, the stability can be determined by looking at the
real parts of the eigenvalues of the Jacobian.

For the bare state plugging in n̄B = 0 in the Jacobian matrix yields

J =

(
−1 0
0 −m

)
. (2.D.10)

The eigenvalues can now be read of from the diagonal (λ1 = −1, λ2 = −m)
so the bare state is always stable (for m > 0).

In case of the saddle-node states we recall that nw = m (appendix 2.D.1).
So the Jacobian matrix becomes

J =

( −1− n̄2
S,N −2m

n̄2
S,N m

)
. (2.D.11)

The eigenvalues can be computed directly by solving the characteristic equa-
tion involving the determinant det:

det(J − λI) =det

(
−1− n̄2 − λ −2m

n̄2 m− λ

)

=λ2 + λ(1 + n̄2 −m)−m+mn̄2 = 0 (2.D.12)
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2.D Analysis of the homogeneous steady states.

Solving this we obtain:

λ± = −1

2

(
1 + n̄2 −m

)
±
√
m (1− n̄2) +

1

4
(1 + n̄2 −m)2 (2.D.13)

Which has the form:

λ± = α±
√
β + α2 (2.D.14)

For this general form it holds:

β > 0 β < 0

α > 0 Re(λ+) > 0 Re(λ+) > 0
Re(λ−) < 0 Re(λ−) > 0

α < 0 Re(λ+) > 0 Re(λ+) < 0
Re(λ−) < 0 Re(λ−) < 0

(2.D.15)

We first show that (w̄S , n̄S) has both a stable and an unstable direction
(saddle, unstable), as was claimed in appendix 2.D.1. For this it suffices to
show that β = m(1− n̄2

S) > 0. Since a > 2m (appendix 2.D.1)

w̄S =
2m2

a−
√
a2 − 4m2

=
2m2

(
a+
√
a2 − 4m2

)

a2 − a2 + 4m2
=
a

2
+

1

2

√
a2 − 4m2 > m

(2.D.16)

Now n̄S = m
w̄S

< 1 so β > 0.

Second we show that (w̄N , n̄N ) is a node (i.e. is either stable or unstable in
both directions), as was claimed in appendix 2.D.1, but we will not directly
determine the stability. This is equivalent to β = m(1 − n̄2

N ) < 0. Since
a > 2m we have

n̄N =
a+
√
a2 − 4m2

2m
=

a

2m
+

1

2m

√
a2 − 4m2 > 1 (2.D.17)

So indeed β < 0.

Finally the eigenvalues belonging to the node can have positive (unstable)
or negative (stable) real parts. Both eigenvalues are negative if and only if
α = −1

2(1 + n̄2
N − m) < 0, this is automatically satisfied if m < 1, so in

particular if m = 0.45. For general m it can be calculated that the stability
boundary is given by pairs (m, a) that satisfy:

a =
m2

√
m− 1

and m ≥2 (2.D.18)

This boundary is plotted in figure 2.9.
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Figure 2.9: Region in parameter space where (w̄N , n̄N ) is stable, unstable or does not exist.
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a. Perturbations are assumed to be spatially homogeneous and m = 0.45.

46



2.D Analysis of the homogeneous steady states.

2.D.3 Turing analysis of the steady states

In the full model the steady states are also subject to heterogeneous pertur-
bations. States that were thought of as being stable against homogeneous
perturbation may be unstable against a wider class of perturbations. For
simplicity we restrict to γ = 1.

The usual approach is to assume that the spatial dependence of the pertur-
bation has the form of a sinusoid: we represent it by a complex exponential
eiκx.1 This is convenient because d

dxe
iκx = iκeiκx and d2

dx2 e
iκx = −κ2eiκx.

Substituting (
w′(t, x)
n′(t, x)

)
= eiκx

(
w̃(t)
ñ(t)

)
(2.D.19)

in (2.C.1) and (2.C.2) and dividing by eiκx yields:

∂w̃

∂t
=− κ2ew̃ + iκvw̃ − w̃(1 + n2)− 2ñwn (2.D.20)

∂ñ

∂t
=− κ2ñ+ w̃n2 + ñ(2wn−m) (2.D.21)

This can be written in a single matrix equation:
(

dw̃
dt
dñ
dt

)
=

(
−κ2e+ iκv − 1− n̄2 −2w̄n̄

n̄2 −κ2 + 2w̄n̄−m

)(
w̃
ñ

)
(2.D.22)

The justification of the assumption that the perturbation is sinusoidal is
given by the Fourier transform, which links the spectrum of the operator A
in the abstract formulation (2.C.3) to the eigenvalues of the above matrix.

For the bare state n̄B = 0, so the matrix simplifies to
(
−κ2e+ iκv − 1 0

0 −κ2 −m

)
(2.D.23)

so λ1 = −κ2e + iκv − 1 and λ2 = −κ2 −m. Since the real parts Re(λ1) =
−κ2e − 1 and Re(λ2) = −κ2 −m both remain negative for any κ, the bare
state is also stable against heterogeneous perturbations. Because the saddle
is already unstable against homogeneous perturbations we focus our atten-
tion on the node. Since w̄N n̄N = m the matrix becomes

(
−κ2e+ iκv − 1− n̄2

N −2m
n̄2
N −κ2 +mi

)
, (2.D.24)

1If there are only second order spatial derivatives present, assuming the form cos(κx) or
sin(κx) is equivalent.
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Figure 2.11: The maximum real part of λ for heterogeneous perturbations of (w̄N , s̄N ), plotted as
function of κ, for different values of a and for v = 0 (solid lines) and v = 182.5 (dotted
lines), m = 0.45. The boundary of the Turing prediction region depicted in figure 2.1
is located at the intersection points of the curves with the x-axis. The maxima of the
curves correspond to the most unstable wavenumber.

from which we can obtain the eigenvalues by solving the dispersion relation:

det

(
−κ2e+ iκv − 1− n̄2

N − λ −2m
n̄2
N −κ2 +m− λ

)
= 0 (2.D.25)

This again yields a quadratic equation in λ, which can be solved for λ.
The eigenvalues λ are now not only a function of model parameters, but also
a function of wavenumber κ. Figure 2.11 shows solutions of (2.D.25) (which
depends on a through n̄N ) for several values of a for m = 0.45. The curves
pass through the real axis between a = 4 and a = 2.5 in both the case v = 0
and v = 182.5, the node becomes Turing unstable somewhere in between
(precise values are given in the caption of figure 2.1).

2.E Analysis of patterns

In the previous appendix all of the analysis could be done by hand. This is
very much in contrast to the analysis of patterns. Here we give some results
that can be obtained analytically for the extended Klausmeier model.
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2.E Analysis of patterns

2.E.1 Existence of patterns

Here we derive that patterns are solutions of the equations (2.3) and (2.4).
These equations are solved numerically.

In general, patterned states may migrate uphill (if v 6= 0). We will de-
note the migration speed (in the direction of increasing x) of these so-called
wavetrains by s. Allowing for s = 0, any pattern can be written in the form
(w(t, x), n(t, x)) = (wp(x− st), np(x− st)) = (wp(ξ), np(ξ)), where wp and
np are periodic functions describing the wave profile and ξ = x − st is a
comoving frame coordinate. By using the chain rule, e.g.

∂w(x, t)

∂t
=
dwp(ξ)

dξ

∂ξ

∂t
= −sdwp

dξ
(2.E.1)

after substituting the forms in (2.1) and (2.2) we obtain

0 =a− wp − wpn2
p + (v + s)

dwp
dξ

+ e
d2wγp
dξ2

(2.E.2)

0 =wpn
2
p −mnp + s

dnp
dξ

+
d2np
dξ2

(2.E.3)

which are the equations we set out to find.

2.E.2 Stability of patterns

We will study the stability of a pattern (w(t, x), n(t, x)) in the case γ = 1, so
the equations for the perturbation (2.C.1) and (2.C.2) hold. We show these
equations again, now with explicit dependence on the coordinates:

∂w′(t, x)

∂t
=e

∂2w′(t, x)

∂x2
+ v

∂w′(t, x)

∂x
− w′(t, x)

(
1 + n(t, x)2

)

− 2n′(t, x)w(t, x)n(t, x) (2.E.4)

∂n′(t, x)

∂t
=
∂2n′(t, x)

∂x2
+ w′(t, x)n(t, x)2

+ n′(t, x) (2w(t, x)n(t, x)−m) (2.E.5)

Here w and n are not constant, which prevents us from applying a sinusoidal
substitution as in Turing analysis (appendix 2.D.3). As in appendix 2.E.1 we
write (w(t, x), n(t, x)) = (wp(ξ), np(ξ)) with ξ = x−st. To make optimal use
of this form we apply a change of coordinates (t, x) 7→ (t, ξ). Simultaneously
we substitute (w′, n′) = eλt (w̃(ξ), ñ(ξ)) and after division by eλt we obtain:
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2 Beyond Turing: the response of patterned ecosystems

λw̃ =e
d2w̃

dξ2
+ (v + s)

dw̃

dξ
− w̃(1 + n2

p)− 2ñwpnp (2.E.6)

λñ =
d2ñ

dξ2
+ s

dñ

dξ
+ w̃n2

p + ñ(2wpnp −m) (2.E.7)

This is a system of two second order ordinary differential equations. After

defining q̃ =
dw̃

dξ
and r̃ =

dñ

dξ
it can be rewritten as a first order system of

four ordinary differential equations:

d

dξ




w̃
q̃
ñ
r̃


 =




0 1 0 0
λ+1+n2

p

e
−v−s
e

2wpnp
e 0

0 0 0 1
−n2

p 0 m− wpnp −s







w̃
q̃
ñ
r̃


 (2.E.8)

Since the matrix of coefficients is periodic, we are ready to use Floquet
theory. Through Floquet theory it is possible to express the spectrum as the
union of curves of eigenvalues of a related problem. The spatial part of the
perturbations that act as eigenfunctions satisfy:

w̃

(
ξ +

2π

κ
; ν

)
=eiνw̃(ξ; ν) (2.E.9)

ñ

(
ξ +

2π

κ
; ν

)
=eiν ñ(ξ; ν) (2.E.10)

where κ is now the pattern wavenumber and ν ∈ (−π, π]. Note that 2π
κ

is the wavelength of the pattern. A corresponding curve of eigenvalues was
exhibited as a function of ν in figure 2.1c, for different values of a. Regarding
the stability we will not go into more details but note that the procedure for
assessing stability is explained further in [147].

A special case is when ν = π. Then eiν = −1. It follows that w̃(ξ+ 4π
κ ;π) =

−w̃(ξ + 2π
κ ;π) = w̃(ξ;π), and similarly for ñ, so the perturbation has twice

the wavelength of the pattern. When the real part of the corresponding
eigenvalue becomes positive, the pattern can be destabilized by such a per-
turbation and the period will be doubled (period doubling instability).
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3 Striped pattern selection by
advective reaction-diffusion
systems: Resilience of banded
vegetation on slopes

For water-limited arid ecosystems, where wa-
ter distribution and infiltration play a vital
role, various models have been set up to ex-
plain vegetation patterning. On sloped terrains,
vegetation aligned in bands has been observed
ubiquitously. In this paper, we consider the
appearance, stability, and bifurcations of 2D
striped or banded patterns in an arid ecosys-
tem model. We numerically show that the re-
silience of the vegetation bands is larger on
steeper slopes by computing the stability re-
gions (Busse balloons) of striped patterns with
respect to 1D and transverse 2D perturbations.
This is corroborated by numerical simulations
with a slowly decreasing water input param-
eter. Here, long wavelength striped patterns
are unstable against transverse perturbations,
which we also rigorously prove on flat ground
through an Evans function approach. In ad-
dition, we prove a Squire theorem for a class
of two-component reaction-advection-diffusion
systems that includes our model, showing that
the onset of pattern formation in 2D is due to
1D instabilities in the direction of advection,
which naturally leads to striped patterns.

Appeared in Chaos in 2015 [176].
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3 Striped pattern selection by advective reaction-diffusion systems

This paper has been motivated by studies in one space dimen-
sion of a scaled phenomenological model for vegetation on possi-
bly sloped planes in arid ecosystems [180, 199].1 One-dimensional
patterns ideally represent striped patterns in two space dimen-
sions by trivially extending them into a transversal direction. Such
patterns are referred to as banded vegetation and have received
considerable attention after reports of widespread observations
[38,193]. Understanding the appearance and disappearance of veg-
etation bands may ultimately help prevent land degradation. The
restriction to one space dimension may overestimate stability: pat-
terns that are stable against 1D perturbations are not necessarily
stable against all 2D perturbations. Natural questions to pose are:

• Which of the 1D stable patterns extend to 2D stable striped
patterns?

• In case of destabilization by 2D perturbations, which mecha-
nisms are responsible?

In this paper we answer these questions for the arid ecosystem
model and determine the impact of slope induced advection of
water. The influence of advection on striped pattern formation
is studied in a more general setting. This approach provides a
clear argumentation that is unobscured by model-specific details.
Equally important, the results will be applicable to a wide range
of models. Applicability to the arid ecosystem model is carefully
checked though, assuring that the abstract requirements can in
fact be met in practice.

3.1 Introduction

The original Klausmeier model [97] is an ecohydrological model for modeling
vegetation patterns on sloped terrain in arid ecosystems, with a (surface)
water component w and a plant biomass or vegetation component n. The
flow of water is modeled by downhill advection only. By adding a water
diffusion term to the model we arrive at the extended Klausmeier model [180]

1With [180] corresponding to Chapter 2.
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studied in this article. In dimensionless form it is given by

wt =d∆w + 2cwx + a− w − wn2

nt =∆n−mn+ wn2
(3.1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 , posed on the plane. Generally the diffusion coefficient
d � 1, since water diffuses much faster than vegetation. The parameter c
measures the advection of water down a hillslope, a ≥ 0 models precipitation
and m > 0 an effective death rate. The terms ±wn2 model water uptake by
the vegetation and −w evaporation.

The model (3.1) with c = 0 and a−w replaced by the term a(1−w) is called
the Gray-Scott model, introduced in [74]. The generalized form of (3.1) with
the term a(1−w) has been referred to as the generalized Klausmeier-Gray-
Scott model, in [127,199]2 also the impact of nonlinear diffusion of the water
component has been studied.

Both the Klausmeier model and the Gray-Scott model exhibit patterns
[97,139]. We will study the influence of the advection parameter c on striped
patterns. For fixed c we view the rainfall parameter a as the primary pa-
rameter to vary, as done in previous studies [180,199].

The choice of parameter values in (3.1) will correspond to choices in [180]
which are themselves based on [97]. Since we are considering a scaled model,
some of the parameters are a mix of parameters from the original Klausmeier
model [97]. For instance, what we refer to as slope driven advection c in (3.1)
is influenced by the evaporation rate from the original model, which has been
scaled to 1 in (3.1), see [180]. So determining which values of c are realistic
is non-trivial. This is resolved by choosing c over a wide range, giving an
overview of the different possibilities. Unless stated otherwise, m = 0.45 and
d = 500.

The Busse balloon [21] is a representation of spatially periodic stable pat-
terns that exist in a system, each pattern is represented by its wavenumber
κ := 2π/wavelength. Uniting the stable patterns for a range of parameter
values creates a planar region. For (3.1) on flat ground (no advection, c = 0),
the Busse balloon of 1D stable patterns is illustrated by the union of the two
colored regions in Figure 3.1, as already presented in [180]. The extensions
of these 1D patterns to 2D striped patterns, which are represented by the
same single wavenumber, are only 2D stable in the dark-green (teal) region
near the Turing bifurcation T . In Section 3.3.3 the nature and construction

2With [127] corresponding to Chapter 5.
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Figure 3.1: Busse balloon representation of striped patterns on flat ground (c = 0) for the extended
Klausmeier model (3.1) (with d = 500, m = 0.45). Here each pattern is represented by
a point in (a, κ)-space, where κ = 2π/wavelength is the wavenumber. A Turing bifur-
cation occurs at T . The union of the two colored regions consists of one-dimensional
(spatially periodic) patterns that are 1D stable [180]. The dark-green (teal) colored
region consists of those patterns that extend to 2D stable striped patterns, patterns in
grey extend to 2D unstable patterns.

of these two types of Busse balloons will be considered. Moreover, we will
study the influence of slope induced advection of water c and compare the
stability results with simulations with a slowly decreasing rainfall parameter
a.

In 1D, in simulations with decreasing rainfall a, the dynamics (after pat-
tern formation) is essentially restricted to transitions from one pattern to
another, before reaching the bare desert state [180]. In 2D these transitions
correspond to stripe-to-stripe pattern transitions. Regarding striped pat-
terns in 2D, the additional instabilities we find always induce an amplitude
modulation in the transverse direction along the stripes so that the bifur-
cating solutions decompose into spots, in analogy to findings focussing on a
single (homoclinic) stripe [53,100,103]. We find that destabilizing modes re-
late neighboring stripes either synchronously, leading to a stripe-to-rectangle
pattern transition, or phase shifted by half a period, leading to a stripe-to-
rhomb pattern transition. For this reason, and as a convenient terminology,
we refer to these as (transverse) stripe-rectangle and stripe-rhomb breakup,
respectively. Details are given in Section 3.3.1, where we will moreover trace
the 2D patterns that bifurcate from the striped patterns numerically, using
software from [54,192].

The main numerical result for (3.1), framed in the terminology that is ap-
propriate in this context, concerns the influence of the slope (advection, c) on
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banded (or striped) vegetation resilience. Ecological resilience is measured
by the magnitude of disturbance that can be absorbed before the system
redefines its structure [76,81]. For (3.1) it holds that

1. Increased resilience: the ecological resilience of banded vegetation is
larger on steep slopes than on gentle slopes (Section 3.3.3).

Figure 3.1 shows numerically that for c = 0 and small wavenumbers κ,
none of the 1D patterns extend to 2D stable striped patterns. In accordance
we prove through the use of geometric singular perturbation theory and an
Evans function approach, that

2. Transverse instability: in absence of advection (no slope, c = 0) long
wavelength striped patterns of (3.1) are unstable w.r.t. transverse
instabilities (Corollary 3.2, Section 3.3.2).

Next to striped pattern (in)stability it is also relevant to study the onset
of striped pattern formation, and the influence of the advection c. The
analytical results of Section 3.2.1 and 3.2.2 are obtained in the setting of
general two-component reaction-advection-diffusion systems. Specifically,
we study systems posed on the plane,

ut =d1∆u+ c1ux + f(p, u, v)

vt =d2∆v + c2vx + g(p, u, v),
(3.2)

where p is an abstract parameter and u(t, x, y), v(t, x, y) ∈ R. The advection
coefficients c1, c2 ∈ R are arbitrary, and we assume that d1 ≥ 0 and d2 > 0;
compare Lemma 3.4 (Appendix 3.A). We refer to the difference between the
coefficients of the advection terms, |c1 − c2|, as differential flow [154].

We consider the linear stability of a homogeneous steady state (u∗, v∗) of
inhibitor-activator type that is stable against homogeneous perturbations.
We define

a1 :=
∂f

∂u
(u∗, v∗), a2 :=

∂f

∂v
(u∗, v∗), a3 :=

∂g

∂u
(u∗, v∗), a4 =

∂g

∂v
(u∗, v∗)

(3.3)
and A := ( a1 a2

a3 a4 ), then these assumptions are abbreviated by

A1 : tr(A) < 0 and det(A) > 0

A2 : a1 < 0 and a4 > 0,
(3.4)

the latter meaning that u acts as inhibitor (or depleted substrate) and v acts
as activator.
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3 Striped pattern selection by advective reaction-diffusion systems

In Section 3.2 we perform a thorough linear stability analysis near critical-
ity. In case of no differential flow, c1 = c2, destabilization of the homogeneous
steady state occurs through a Turing instability leading to the emergence of
stationary periodic patterns. In case of nonzero differential flow, c1 6= c2,
the instability is referred to as Turing-Hopf (or oscillatory Turing) since the
patterns that emerge are moving. The initial steps are as in [141], which
starts out from the same setting. We derive the following novel results:

3. Direction of motion: if c1 > c2 and c2 ≤ 0, then patterns emerg-
ing from the Turing-Hopf bifurcation move in the positive x-direction
(Section 3.2.1).

4. Locus monotonicity: the parameter location of the instability mono-
tonically changes if the differential flow increases, assuming sign con-
ditions on ∂A/∂p (Theorem 3.1, Section 3.2.1).

5. Range monotonicity: the range of destabilizing perturbations of the
homogeneous steady state monotonically increases as the differential
flow increases (Lemma 3.3, Section 3.2.2).

6. Stripe formation dominance: for nonzero differential flow, perturba-
tions independent of y are responsible for the primary destabilization:
at the Turing-Hopf bifurcation striped patterns perpendicular to the
direction of the advection appear (Section 3.2.2).

These general results are applicable to the arid ecosystem model (3.1),
where the parameter a takes on the role of the abstract parameter p. In-
terpreting the results in this context we conclude that (within the model)
small amplitude vegetation patterns move uphill. Secondly, under decreas-
ing rainfall a pattern formation first occurs on steeper slopes (Corollary 3.1,
Section 3.2.3). As soon as the homogeneously vegetated state has become
unstable against a specific perturbation, this will remain the case if the rain-
fall a decreases more. And finally, banded vegetation perpendicular to the
slope naturally forms on slopes. The paper ends with a discussion on eco-
logical implications of the results regarding (3.1), links to observations and
comparison with other model studies in Section 3.4.

Remark 3.1. In [19] a listing of ecohydrological models with and without
differential flow is given. The general results can be applied to various other
disciplines, in particular to differential flow models where the reactants have
different advection coefficients. In chemical reactions between differently
charged particle species, differential flow can be created by applying an ex-
terior electric field [22, 122, 187, 201]. Similarly, a differential flow induced
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3.2 Striped pattern formation

chemical instability (‘DIFICI’) may be produced within a differential flow
reactor with one particle species immobilized, see [123, 154, 155, 161]. Fi-
nally, also mussels that feed on algae where (only) the algae flow with tidal
currents [203], fit the abstract framework (3.2).

Remark 3.2. The present insights induce (novel) connections with fluid
mechanics. The representation of stable patterns by Busse balloons origi-
nates from this field [21]. Although fundamentally different, similar patterns
exist e.g. in this context striped patterns are commonly called roll-waves and
the transverse instabilities of striped patterns we find correspond to certain
‘oblique-roll’ instabilities [85]. In both fields the onset of pattern formation
can be studied by weakly nonlinear stability theory, for instance on preim-
posed lattices [71, 72]. The transformation presented in the proof of Lemma
3.3 that lifts the 1D results from Section 3.2.1 to 2D, has a counterpart
in fluid mechanics: the ‘Squire’s transformation’. It leads to the ‘Squire’s
theorem’ [56, 183] which is still an active topic of research [88]. Originally
it refers to the fact that for shear flow instability of the Orr-Sommerfeld
equation the critical Rayleigh number for a three-dimensional parallel flow is
determined by two-dimensional perturbations, which links to the restriction
to y-independent perturbations in our striped pattern formation dominance
result in Section 3.2.2.

3.2 Striped pattern formation

We choose to first avoid model specific considerations and study pattern for-
mation in the setting of the general system (3.2). We present a comprehen-
sive linear analysis about a homogeneous steady state of inhibitor-activator
type near onset of pattern formation. We start our analysis in one spatial
dimension in Section 3.2.1 but lift the results to two spatial dimensions in
Section 3.2.2.

In Section 3.2.1 we establish the direction of motion of emerging patterns
of (3.2) depending on the advection coefficients c1, c2. In Section 3.2.1 we
prove a result on the monotonic change of the parameter locus of the Turing-
Hopf instability as the differential flow 2c = |c1− c2| increases, Theorem 3.1.
One of the results leading up to this monotonicity result, Lemma 3.1 on the
destabilizing impact of increasing c, plays an important role in carrying over
the results from 1D to 2D.

In Section 3.2.2 we show that for c > 0 destabilization in 2D can be
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3 Striped pattern selection by advective reaction-diffusion systems

reduced to destabilization in 1D in the advection direction. We prove that
the destabilization locus in 2D coincides with the locus in 1D and we show
that the set of destabilizing perturbations is strictly monotonically increasing
with the advection c. It is shown that striped patterns naturally arise from
a Turing-Hopf instability in 2D.

We subsequently apply the general insights to the extended Klausmeier
model (3.1) in Section 3.2.3. The abstract results in this context imply that
on slopes vegetation bands form that migrate uphill.

3.2.1 Linear analysis of pattern formation for the general system
in 1D

The reduction of (3.2) to one dimension in the direction of the advection is

ut =d1uxx + c1ux + f(p, u, v)

vt =d2vxx + c2vx + g(p, u, v).
(3.5)

The linear stability of a homogeneous steady state of (3.5) can be determined
by computing the linearization. Subsequently applying a Fourier transform
yields the matrix

M =

(
−d1k

2 + ic1k + a1 a2

a3 −d2k
2 + ic2k + a4

)

where k is the wavenumber of the perturbation and the aj are the derivatives
relevant for determining stability against homogeneous perturbations (see
(3.3)). The linear dispersion relation is given by

d(λ, k, p, c) := det(M − λI) = λ2 + α1λ1 + α0 = 0, (3.6)

where α1 = −tr(M) and α0 = det(M). The eigenvalues λ of M , which are
solutions to (3.6), determine (in)stability.

We are free to choose a suitable frame of reference, as the (in)stability of
the homogeneous steady state does not depend on it. By changing the ref-
erence frame we can manipulate the coefficients α1 and α0 in the dispersion
relation. When changing to a moving reference frame with speed c̃, i.e. by
the substitution x 7→ x− c̃t, only the time derivative in (3.5) transforms, e.g.
ut 7→ ut − c̃ux. When reflecting space x 7→ −x, only the single derivatives
to space are affected, e.g. ux 7→ −ux. So the equations can be transformed
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3.2 Striped pattern formation

into the equivalent

ut =d1uxx ± (c1 + c̃)ux + f(p, u, v)

vt =d2vxx ± (c2 + c̃)vx + g(p, u, v)
(3.7)

where the negative sign applies in case of reflection.

A reference frame that will show to be suitable for stability analysis is
obtained by choosing c̃ = −(c1 + c2)/2, so that both advection coefficients
have equal absolute value c = |c1 − c2|/2 but opposite sign. By means
of spatial reflection, we can arrange that the first component (inhibitor)
advection coefficient has positive sign. So we arrive at the form

ut =d1∆u+ cux + f(p, u, v)

vt =d2∆v − cvx + g(p, u, v)
(3.8)

with a larger c meaning a larger differential flow.

In this reference frame α1 and α0 are given by

α1 = (d1 + d2) k2 − a1 − a4

α0 =
(
−d1k

2 + ick + a1

) (
−d2k

2 − ick + a4

)
− a2a3.

(3.9)

Under assumption A1, tr(A) < 0 which implies α1 > 0. The real and
imaginary part of α0 are given by:

Re (α0) =
(
−d1k

2 + a1

) (
−d2k

2 + a4

)
+ c2k2 − a2a3

=d1d2k
4 − Γk2 + c2k2 + det(A)

Im (α0) =ck
(
(d1 − d2) k2 + a4 − a1

)
(3.10)

where we introduced Γ := d1a4 + d2a1.

For the purpose of self-containment we briefly treat the well-known Turing
instability (c = 0) first. In this case the dispersion relation (3.6) reduces to

λ2 +
(
(d1 + d2)k2 − tr(A)

)
λ+ d1d2k

4 − Γk2 + det(A) = 0

and implicit differentiation with respect to k yields

2λ

(
∂λ

∂k
+ (d1 + d2)k

)
+
(
(d1 + d2)k2 − tr(A)

) ∂λ
∂k

+ 4d1d2k
3 − 2Γk = 0.
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3 Striped pattern selection by advective reaction-diffusion systems

Imposing stationary criticality (λ = 0) and that the spectrum is tangential
(∂λ∂k = 0) gives

d1d2k
4 − Γk2 + det(A) = 0

4d1d2k
3 − 2Γk = 0.

It follows from the last equation that Γ = 2d1d2k
2 > 0 and insertion into the

former equation gives Γ2 = 4d1d2det(A), thus a Turing instability occurs if
and only if

Γ = 2
√
d1d2det(A). (3.11)

Concerning general c, we now develop some useful reference material for
critical cases where Re(λ) = 0. Here the dispersion relation (3.6) reduces to
an expression that will prove to be insightful.

Isolating the imaginary part of (3.6) and imposing Re(λ) = 0 yields

Re(α1) Im(λ) + Im(α0) = 0. (3.12)

In the reference frame of (3.8) it holds that Im(α1) = 0 so that Im(λ) =

− Im(α0)
α1

. If we now combine this with the real part of (3.6) we obtain:

α2
1 Re(α0)− Im(α0)2 = 0. (3.13)

Upon substituting equalities from (3.9), (3.10) into (3.13) and some rewrit-
ing, we obtain the following polynomial equation in k2:

(
(d1 + d2)k2 − tr(A)

)2 ((
d1d2k

2 − Γ
)
k2 + det(A)

)

+4c2
((
d1d2k

2 − Γ
)
k2 + a1a4

)
k2 = 0

(3.14)

First note that all terms in (3.14) are positive except a1a4 < 0 and pos-
sibly d1d2k

2 − Γ which appears twice. For c = 0 this confirms the well-
known fact that Γ > 0 is a necessary condition for a Turing instability,
see (3.11). On the other hand this shows that the instability can also be
purely driven by ramping up the advection c since the only c-dependent
term 4c2

((
d1d2k

2 − Γ
)
k2 + a1a4

)
is negative for k2 small, relating to differ-

ential flow instabilities mentioned in the introduction.

We continue with some useful estimates that can be derived from (3.14).
We first note an upper bound for the wavenumbers that can become critical
given by

k2 <
a4

d2
. (3.15)
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Suppose on the contrary that k2 ≥ a4
d2

, then d1d2k
2 − Γ ≥ −d2a1 > 0. Thus

also (
d1d2k

2 − Γ
)
k2 + a1a4 ≥ −d2a1k

2 + a1a4 ≥ 0.

Now all terms of (3.14) are positive for k2 ∈ [a4
d2
,∞), so these wavenumbers

cannot be critical.

Hence there exists an upper bound on the wavenumber of destabilizing
perturbations, independent of c [141], determined by the activator only. For
future reference we note that as a consequence of (3.15) it holds that

Im(α0)

ck
± α1 ≥

Im(α0)

ck
− α1

= (d1 − d2)k2 + a4 − a1 −
(
(d1 + d2)k2 − a1 − a4

)

= 2(a4 − d2k
2) > 0.

(3.16)

Motion of emerging patterns

Here we determine the direction of motion of patterns emerging from a
destabilized homogeneous state, for advection coefficients c1 > c2 and c2 ≤ 0,
by applying the reference frame independent result (3.15). We first do this
for the limiting case c2 = 0 < c1, as in (3.1). In this reference frame the
coefficients of the dispersion relation (3.6) are

α′1 = (d1 + d2) k2 − a1 − a4 − ic1k

α′0 =
(
−d1k

2 + ic1k + a1

) (
−d2k

2 + a4

)
− a2a3.

The real part of α′1 and the imaginary part of α′0 are given by

Re
(
α′1
)

=α1 > 0

Im
(
α′0
)

=c1k
(
−d2k

2 + a4

)
.

Now the speed s′ at onset is given by

s′ =
Im(λ)

k
=

Im(α′0)

kRe(α′1)
=
c1(−d2k

2 + a4)

α1
> 0

by (3.12), (3.15) and since c1 > 0. The positive speed means that the
direction of movement at criticality is in the positive x-direction, we further
note that the speed increases linearly with c1.
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3 Striped pattern selection by advective reaction-diffusion systems

Let s denote the speed of emerging patterns in a system with c2 < 0 but
still c2 < c1. This system can be brought into the form of the limiting case
c2 = 0 by substituting x 7→ x + c2t, so that s = s′ − c2 > 0, since s′ > 0
and c2 < 0. So movement is again in the positive x-direction. By reflection
symmetry it is clear that if c1 < c2 and c2 ≥ 0, then emerging patterns move
in the negative x-direction.

Additionally, if we fix c and p we can determine the influence of an in-
cremental change of the wavenumber k on the speed at criticality. This
influence is independent of the reference frame, we compute

∂s′

∂k2
=
−2c

(
d2α1 + (−d2k

2 + a4)(d1 + d2)
)

α2
1

< 0 (3.17)

(see (3.9)) so that at criticality an increase of k leads to a decrease of the
speed.

Both the positivity of the speed s′ and the influence of the wavenumber
k are in accordance with what was found previously in the context of (3.1),
where water advection is downslope but vegetation bands move uphill [180].

Destabilization by c and monotonicity of the destabilization locus

The following lemma shows that for critical eigenvalues an increase of differ-
ential flow, c, will make the corresponding perturbation destabilizing. We
recall the assumption (3.4) on stability against homogeneous perturbations
A1 of a homogeneous steady state of inhibitor-activator type A2.

Lemma 3.1. Suppose that we have a solution to the dispersion relation (3.6)
with Re(λ) = 0, c > 0, k 6= 0, A1 and A2 hold, then sgn Re

(
∂λ
∂c

)
> 0.

Proof. We implicitly differentiate (3.6) to c while keeping k and p fixed:

2λ
∂λ

∂c
+
∂α1

∂c
λ+ α1

∂λ

∂c
+
∂α0

∂c
= 0 (3.18)

which leads to

∂λ

∂c
= −

∂α1
∂c λ+ ∂α0

∂c

2λ+ α1
= − 2λ+ α1

|2λ+ α1|2
∂α0

∂c
(3.19)
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since by (3.9) α1 is independent of c (the bar denotes complex conjugation).
Now by (3.12)

|2λ+ α1|2 Re

(
∂λ

∂c

)
=− α1 Re

(
∂α0

∂c

)
+ 2

Im(α0)

α1
Im

(
∂α0

∂c

)

=− 2α1ck
2 + 2

Im(α0)2

α1c
.

Thus it follows that

α1

2ck2
|2λ+ α1|2 Re

(
∂λ

∂c

)
=

Im(α0)2

c2k2
− α2

1

=

(
Im(α0)

ck
+ α1

)(
Im(α0)

ck
− α1

)
> 0

by (3.16). Since α1, c > 0 it holds that Re
(
∂λ
∂c

)
> 0.

We now include the parameter dependence of (3.8) in our treatment and
assume that the homogeneous steady state persists as a function of the
parameter p. Thus the linearization A = ( a1 a2

a3 a4 ) also becomes a function of
p. We will now show that given sign conditions on ∂A/∂p, an increase of p
will be either stabilizing or destabilizing.

Lemma 3.2. Suppose that we have a solution to the dispersion relation (3.6)
with Re(λ) = 0, A1 and A2 hold and

sgn
∂a1

∂p
= sgn

∂a4

∂p
= sgn

∂Γ

∂p
= sgn

(
−∂det(A)

∂p

)
(3.20)

then Re
(
∂λ
∂p

)
carries the same sign.3

Proof. Now implicit differentiation of (3.6) to p while keeping k and c fixed
gives

2λ
∂λ

∂p
+
∂α1

∂p
λ+ α1

∂λ

∂p
+
∂α0

∂p
= 0 (3.21)

which leads to

∂λ

∂p
=−

∂α1
∂p λ+ ∂α0

∂p

2λ+ α1
= −

(
∂α1
∂p λ+ ∂α0

∂p

)
2λ+ α1

|2λ+ α1|2
. (3.22)

3Actually, if sgn ∂a1
∂p

= sgn ∂a4
∂p

then ∂Γ
∂p

carries the same sign automatically.
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Since 0 < α1 ∈ R it holds that

|2λ+ α1|2 Re

(
∂λ

∂p

)
= −2λ2 Re

(
∂α1

∂p

)
− Re

(
∂α0

∂p

)
α1 − 2λ Im

(
∂α0

∂p

)

= 2

(
Im(α0)

α1

)2(∂a1

∂p
+
∂a4

∂p

)
−
(
−∂Γ

∂p
k2 +

∂det(A)

∂p

)
α1

− 2
Im(α0)

α1
ck

(
∂a4

∂p
− ∂a1

∂p

)
.

Thus α2
1 |2λ+ α1|2 Re

(
∂λ
∂p

)
equals

2 Im(α0)2

(
∂a1

∂p
+
∂a4

∂p

)
−
(
−∂Γ

∂p
k2 +

∂det(A)

∂p

)
α3

1

+ 2ckα1 Im(α0)

(
∂a1

∂p
− ∂a4

∂p

)

=c2k2

(
Im(α0)

ck
+ α1 +

Im(α0)

ck
− α1

)

×
((

Im(α0)

ck
+ α1

)
∂a1

∂p
+

(
Im(α0)

ck
− α1

)
∂a4

∂p

)

+

(
∂Γ

∂p
k2 − ∂det(A)

∂p

)
α3

1.

The factors in front of ∂a1
∂p and ∂a4

∂p are all positive by (3.16). Therefore
the signs of the terms in the final expression are determined by the signs in
(3.20).

We now combine the results at criticality of Lemma 3.1 and 3.2 together
with some insights on the global influence of both the advection c and the
parameter p on the stability of the homogeneous steady state. In the re-
sult below ‘const’ denotes a positive constant that may be different at any
instance.

Theorem 3.1. We make a distinction between two cases.

Case 1. Let I = [p1,∞) and assume that for p ∈ I assumptions A1,
A2 hold and equation (3.20) holds with sign −1. Assume that at p = p1

the homogeneous steady state is linearly stable for some value of c. Then
on I the location of the instability pT is a strictly monotonically increasing
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function of c. If moreover there exists a q ∈ I such that p ≥ q implies both
Γ(p) ≤ 0 and

−2
∂a1

∂p

(
det(A)(d1 + d2)− 2c2a4

)
≥ const, (3.23)

then limc→∞ pT =∞.

Case 2. Let I = (0, p2] and assume that for p ∈ I assumptions A1,
A2 hold and equation (3.20) holds with sign +1. Assume that at p = p2

the homogeneous steady state is linearly stable for some value of c. Then
on I the location of the instability pT is a strictly monotonically decreasing
function of c. If moreover there exists a q ∈ I such that p ≤ q implies both
Γ(p) ≤ 0 and

−2
∂a1

∂p

(
det(A)(d1 + d2)− 2c2a4

)
≤ −const

p
, (3.24)

then limc→∞ pT = 0.

Proof. Before making a case distinction, we do some preparatory work. As
noted before, from the expression (3.14) it can be seen that the stability of
the homogeneous steady state can be manipulated by increasing c. Namely,
there is only one term that depends on c and for k2 small this term is
approximated by 4c2a1a4 < 0. By choosing the right value of c it can be
inferred that Re(λ) = 0 for some k2 but nowhere Re(λ) > 0. Starting at
this criticality the following approximation can be made:

∆ Re(λ) ≈ ∂ Re(λ)

∂c
∆c+

∂ Re(λ)

∂p
∆p (3.25)

where ∆ indicates an incremental change in the succeeding quantity. Thus
if we locally wish to trace criticality, then we should prescribe that

∂p

∂c
= −

∂ Re(λ)
∂c

∂ Re(λ)
∂p

(3.26)

How fast pT moves is now determined by the maximum/minimum of (3.26)
over all critical λ, a maximum/minimum that certainly exists since the dis-
persion relation is continuous and the evaluation is on a compact set (k2 < a4

d2

by (3.15)).
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On the other hand we want to incorporate that a sufficient change in the
parameter value may stabilize the homogeneous steady state. We pick the
term −2tr(A)det(A)(d1 + d2)k2 from (3.14) to counteract the negative term
4c2a1a4k

2, thus we are interested in the sign of:

4c2a1a4 − 2tr(A)det(A)(d1 + d2) (3.27)

As a final preparatory step we compute its derivative:

∂

∂p

(
4c2a1a4 − 2tr(A)det(A)(d1 + d2)

)

=− 2
∂a1

∂p

(
det(A)(d1 + d2)− 2c2a4

)
+ 4c2a1

∂a4

∂p
− 2

∂a4

∂p
det(A)(d1 + d2)

− 2tr(A)
∂det(A)

∂p
(d1 + d2) (3.28)

We start making a distinction between the two cases.

Case 1. From Lemmas 3.1 and 3.2 and equation (3.26) it follows that
pT is a monotonically increasing function. The only thing left to prove is
that limc→∞ pT is unbounded. For this it is sufficient to show that for any
fixed c, the homogeneous steady state can always be stabilized by a sufficient
increase of p. By choosing p ≥ q, the only negative coefficient in (3.14) is
c2a1a4k

2. In this case the last three terms of (3.28) are positive so:

∂

∂p

(
4c2a1a4 − 2tr(A)det(A)(d1 + d2)

)

≥ −2
∂a1

∂p

(
det(A)(d1 + d2)− 2c2a4

)
≥ const

for p ≥ q by assumption. So for p large enough the sign of (3.27) will
be positive and (3.14) will have no solutions. Together with Lemma 3.4
(Appendix 3.A) this implies stability of the homogeneous steady state.

Case 2. From Lemmas 3.1 and 3.2 and equation (3.26) it follows that pT
is a monotonically decreasing function. The only thing left to prove is that
limc→∞ pT = 0. For this it is sufficient to show that for any fixed c, the
homogeneous steady state can always be stabilized by a sufficient decrease
of p. By choosing p ≤ q, the only negative coefficient in (3.14) is c2a1a4k

2.
In this case the last three terms of (3.28) are negative so:

∂

∂p

(
4c2a1a4 − 2tr(A)det(A)(d1 + d2)

)

≤ −2
∂a1

∂p

(
det(A)(d1 + d2)− 2c2a4

)
≤ −const

p
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for p ≤ q by assumption. Because
∫ p′

0
1
pdp diverges, for p small enough the

sign of (3.27) will again be positive and equation (3.14) has no solutions,
again implying stability by Lemma 3.4 (Appendix 3.A).

Uniqueness of the destabilization locus on I for fixed p or fixed c is an
immediate consequence of the strict monotonicity. We further note that in
the previous theorem case 2 can be reduced to case 1 by taking the parameter
1/p, so a more concise version without case distinction is possible. We
refrain from implementing this because the present treatise fits better with
the application to (3.1) that comes next.

3.2.2 Linear analysis of pattern formation for the general system
in 2D

In this section we study the destabilization of a homogeneous steady state of
the general system (3.2) in two space dimensions, under assumption A1 that
the homogeneous steady state is stable against homogeneous perturbations
and A2 that the steady state is of the type inhibitor-activator (3.4).

We use the same reference frame (3.8) with advection coefficients c1 = c
and c2 = −c as employed in deriving Theorem 3.1 in Section 3.2.1, where
c is a measure of differential flow, but we recall that (in)stability does not
depend on the reference frame and results hold for general c1, c2. The dis-
persion relation (3.6) introduced in Section 3.2.1, whose solutions determine
(in)stability, in 2D depends on two wavenumbers. The wavenumber in the
direction of advection x is again denoted k, the additional wavenumber for
the y-direction is denoted `. Here the dispersion relation is given by

d(λ, k, `, c) := det(M − λI) = 0 (3.29)

with M given by

M =

(
−d1(k2 + `2) + ick + a1 a2

a3 −d2(k2 + `2)− ick + a4

)
. (3.30)

We can conveniently connect the results developed in Section 3.2.1 to the
stability in 2D through the following lemma.

Lemma 3.3. In the presence of differential flow, c > 0, the primary desta-
bilization of a homogeneous steady state of (3.2) satisfying A1 and A2 at
criticality occurs through perturbations with ` = 0. The range of wavenumber

67



3 Striped pattern selection by advective reaction-diffusion systems

pairs (k, `) corresponding to destabilizing perturbations is strictly monotoni-
cally increasing with c, but bounded above by

k2 + `2 <
a4

d2
. (3.31)

Proof. We start with the important equivalence

(λ, k, `, c) solves (3.29)⇔
(
λ,
√
k2 + `2, 0,

kc√
k2 + `2

)
solves (3.29),

(3.32)

which follows directly from the equality of the matrices M , see (3.30). Now
suppose that the homogeneous steady state is marginally stable for some
value of c. By the identity (3.32), the instability with respect to a perturba-
tion with ` 6= 0 is the same as the instability with respect to a perturbation
with ` = 0 and smaller c since k/

√
k2 + `2 < 1. Due to the destabilizing im-

pact of c at criticality (see Lemma 3.1), 1D perturbations with smaller c have
Re(λ) < 0. Hence, the primary destabilization occurs through perturbations
with ` = 0.

Strict monotonicity for pairs (k, 0) is already due to Lemma 3.1. Be-
cause (in)stability against (k, `) is linked to (in)stability against (

√
k2 + `2, 0)

through (3.32), this automatically extends to monotonicity for all (k, `). The
bound (3.15) extends likewise to (3.31).

Note that for c = 0, symmetry implies that instability in any direction
occurs simultaneously. As mentioned in the introduction, the transforma-
tion in (3.32) is known in fluid mechanics as ‘Squire’s transformation’. For
a supercritical Turing(-Hopf) bifurcation (stable) small amplitude patterns
emerge for parameter values just beyond the bifurcation. In the subcritical
case the small amplitude patterns exist for parameter values just before the
bifurcation. The previous lemma immediately leads to the following result.

Theorem 3.2. The 2D destabilization locus coincides with the 1D destabi-
lization locus, so the monotonicity result Theorem 3.1 also holds in 2D. In
case of a supercritical Turing-Hopf bifurcation, the primary patterns to form
are striped patterns perpendicular to the advection.

3.2.3 Application to the extended Klausmeier model

In this section we check applicability of the general results to the extended
Klausmeier model (3.1). The spatially homogeneous steady states of (3.1)
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3.2 Striped pattern formation

are given by wbare = a, nbare = 0 and

w± =
2m2

a±
√
a2 − 4m2

n± =
a±
√
a2 − 4m2

2m

(3.33)

for a ≥ 2m [180]. Since (w−, n−) is unstable against spatially homogeneous
perturbations [180], we focus on the other vegetated state (w+, n+).

We provide some more elementary facts about (3.1), details can be found
in [180]. The linearization about (w+, n+) is given by the Jacobian ma-

trix A = ( a1 a2
a3 a4 ) =

(−1−n2
+ −2m

n2
+ m

)
. Thus clearly a1 < 0 and a4 > 0, so

(w+, n+) is of inhibitor-activator type (assumption A2, see (3.4)). It holds
that det(A) = m(n2

+ − 1) > 0 for a > 2m, but tr(A) < 0 if and only if

m ≤ 2 or a >
m2

√
m− 1

. (3.34)

For these choices of parameters (w+, n+) is stable against homogeneous per-
turbations (assumption A1, see (3.4)). So for a nonzero slope c > 0, the
uphill motion of patterns considered in Section 3.2.1 indeed applies. More-
over Lemma 3.3 holds, so destabilization occurs through perturbations that
are constant in the y-direction perpendicular to the direction of advection.
After destabilization the set of destabilizing perturbations becomes larger
and larger.

For (3.1) the bound (3.31) on destabilizing perturbations is reduced to
k2 + `2 < m. In this paper we work with the estimate m = 0.45 for grass,
for trees m = 0.045 holds (see [97]) and the bound is more restrictive. If
k = 0 then c does not play a role and destabilization in the y-direction thus
occurs independent of c, at a ≈ 2.883. We will refer to this point as the
anchor point Ty. The results from Lemma 3.3 are illustrated in Figure 3.2.

Checking the supercriticality condition of Theorem 3.2 analytically, re-
quires the computation of Landau coefficients, which is beyond the scope of
this paper. Supercriticality has been proven in an asymptotic scaling of (3.1)
in one space dimension in [199] and numerically it is found that this holds
in a broad range of parameter space. Through Theorem 3.2, for advection
c > 0 the Turing-Hopf bifurcation is a natural mechanism for the forma-
tion of striped or banded vegetation patterns. We will see this formation of
banded vegetation in simulations in Section 3.3.3.
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Figure 3.2: The extended Klausmeier model (3.1) for m = 0.45 (d = 500) at a ≈ 2.883 (onset of
the Turing instability for c = 0). (a) Real part of λ(k, `, c) solving the homogeneous
steady state dispersion relation (3.29) for 2c = 182.5 . Notably, Re(λ) is maximal for
` = 0. (b) Contour plots of Re(λ(k, `, c)) = 0 for c = 0 (red, continuous), 2c = 182.5
(red, dashed) and 2c = 1000 (red, dotted). For c = 0 destabilization occurs in any
direction simultaneously. For c > 0 the range between the curves corresponding to
destabilizing perturbations is increasing, but not beyond the black curve k2 + `2 < m.
The anchor point Ty appears at k = 0, ` ≈ 0.430.

To apply the monotonicity result Theorem 3.1 we need to check some more
conditions. In the corollary below it will be shown that, when the parameter
a assumes the role of the abstract parameter p, the parameter locus of its
destabilization aT is a strictly monotonically increasing function of c and
limc→∞ aT = ∞. Although within the scope of this paper the parameters
c and a are most important, the theory developed here is also utilized to
show that (when m assumes the role of p) mT is a monotonically decreasing
function of c and limc→∞mT = 0.

In preparation we make note of some rough estimates for n+:

n+ ≤
a

m
,

∂n+

∂m
≤ ∂

∂m

a

2m
= − a

m2
,

∂n2
+

∂a
≥ ∂

∂a

a2

4m2
=

a

2m2
,

∂n2
+

∂m
≤ ∂

∂m

a2

4m2
=
−a2

2m3
.

(3.35)

We recall that (3.1) is not precisely of the form (3.8) but can be brought
into this form by changing the frame of reference, as detailed at the start of
Section 3.2.1, and we apply Theorem 3.1 as if we have done so.

Corollary 3.1. Assume that (3.34) holds for a = p1 and m = p2 and that
here the homogeneous steady state (w+, n+) is linearly stable for some value
of c.
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3.2 Striped pattern formation

Then for a on [p1,∞) (with m = p2) the location of the instability aT is a
strictly monotonically increasing function of c. Moreover limc→∞ aT =∞.

For m on (0, p2] (with a = p1) the location of the instability mT is a
strictly monotonically decreasing function of c. Moreover limc→∞mT = 0.

Proof. The assumptions (3.4) of stability against homogeneous perturba-
tions A1 and being of inhibitor-activator type A2 must now be checked for
an interval of parameter values. The shape of the set of points (a,m) satis-
fying A1 given by (3.34) implies that if we pick a = p1 and m = p2 for which
(w+, n+) is stable against homogeneous perturbations then this remains true
if a is increased or m is decreased, see Figure 3.4. The inhibitor-activator
assumption was already found to hold everywhere. So assumptions A1 and
A2 hold for all a ∈ [p1,∞) and m ∈ (0, p2].

For the parameter a we apply (3.35) and readily compute that ∂a1
∂a =

−∂n2
+

∂a ≤ −a
2m2 ≤ −p1

2m2 , ∂a4
∂a = 0, ∂Γ

∂a = ∂a1
∂a and ∂det(A)

∂a = ∂a1
∂a m + 2m∂a3

∂a =

m
∂n2

+

∂a ≥ a
2m ≥

p1

2m . This shows that (3.20) holds with sign −1, except that
∂a4
∂a = 0 which is no problem as can be seen from the proof of Lemma 3.2.

Since ∂Γ
∂a ≤

−p1

2m2 , Γ is negative for a large enough. With the help of the
previous computations we can make the following estimate to check (3.23):

−2
∂a1

∂a

(
det(A)(d1 + d2)− 2c2a4

)

≥ p1

m2

((
det(A(p1)) + (a− p1)

p1

2m

)
(d1 + d2)− 2c2m

)

and the term on the right will become bigger then any constant if a is taken
large enough. So case 1 of Theorem 3.1 applies to the parameter a.

For the parameter m, using (3.35), we compute that ∂a1
∂m = −∂n2

+

∂m ≥ a2

2m3 ,
∂a4
∂m = 1, ∂Γ

∂m = d+ ∂a1
∂m and

∂det(A)

∂m
=
∂a1

∂m
m+ a1 + 2a3 + 2m

∂a3

∂m
= m

∂n2
+

∂m
− 1 + n2

+

≤
(

2m
∂n+

∂m
+ n+

)
n+ ≤

(
2m
−a
m2

+
a

m

)
a

m
=
−a
m2

,

(3.36)

so (3.20) holds with sign +1. Clearly, Γ = dm − 1 − n2 is negative for
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Figure 3.3: The dots represent the location of the instability aT of (3.1) (with d = 500, m = 0.45)
for several values of 2c. The result from [199] is illustrated by the graph of 0.231

√
2c,

with the factor chosen to fit the value at 2c = 1000.

sufficiently small m. By solving (3.36) we obtain:

−2
∂a1

∂m

(
det(A)(d1 + d2)− 2c2a4

)

≤ − a
2

m3

((
det(A(p2))− a

2p2
+

a

2m

)
(d1 + d2)− 2c2

)

The sign of the term on the right will become negative for m small enough,
also 1

m3 > 1
m for m < 1. Hence, case 2 of Theorem 3.1 applies to the

parameter m.

Within the model (3.1), any choice of parameters that allows for a stable
uniform vegetated state, will behave as described by the previous corollary.
Thus the locus of destabilization aT of the homogeneous steady state moves
to higher a as c increases. This is consistent with what we find numerically.
In Figure 3.3 we plot the values of aT for 2c = 0, 182.5, 365, 500 and 1000,
together with a square root function since aT grows as

√
c for large c, in a

certain scaling regime [199].

Now that we understand the influence of both parameters a and m, we
can also fix c and infer the dependence aT = aT (m) for free. The following
approximation complementary to (3.25) can be made:

∆ Re(λ) ≈ ∂ Re(λ)

∂a
∆a+

∂ Re(λ)

∂m
∆m
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Figure 3.4: Regions of stability of (w+, n+) for the extended Klausmeier model (3.1) for c = 0.
In the white region a < 2m and (w+, n+) does not exist. In the dark grey region

where 2m < a < m2
√
m−1

, tr(A) > 0. Elsewhere, (w+, n+) is stable against homoge-

neous perturbations. The red curves depict the solution set of Γ = 2
√
ddet(A) for

d = 50, 500, 5000, see (3.11). At each of these curves (w+, n+) undergoes a Turing
instability for the corresponding value of d. The relative placement of the curves as a
function of d is a consequence of Γ/

√
d being an increasing function of d. By (3.37),

aT = aT (m) is a strictly monotonically increasing function of m, for every value of d.
For d = 500, in the light grey area the homogeneous steady state is Turing unstable
and in the purple area it is Turing stable. For m = 0.45 the Turing instability occurs
at a ≈ 2.883, this point is labeled T in the figure.

with ∆ again indicating an incremental change. Now if we locally wish to
trace criticality, we should prescribe that

∂a

∂m
= −

∂ Re(λ)
∂m

∂ Re(λ)
∂a

> 0 (3.37)

since we have already seen that ∂ Re(λ)
∂m > 0 and ∂ Re(λ)

∂a < 0 at criticality. To
trace criticality a and m should be simultaneously increased or simultane-
ously decreased.

Figure 3.4 illustrates the different (in)stability regions of (w+, n+) for
c = 0. From Corollary 3.1 we know that, by increasing the advection c,
a homogeneous steady state in the purple region (d = 500) can be made
unstable. But for any finite c, (w+, n+) is stable for a large or m small
enough.
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3 Striped pattern selection by advective reaction-diffusion systems

3.3 Striped pattern stability in 2D

In this section we restrict our attention to the extended Klausmeier model
(3.1), where the differential flow equals the water advection.

Perturbations of the homogeneous state in 2D were represented by two
wavenumbers k, ` ∈ R for the x, y-directions respectively in Section 3.2.2. In
Section 3.3.1 we will first explain that perturbations of a pattern of stripes
perpendicular to the direction of advection x can be represented by ` ∈ R
and γ on the unit circle S1 ⊂ C, so that log(γ) ∈ (−πi, πi]. The restriction
to perturbations with ` = 0 corresponds to perturbations that were already
considered in 1D in [180]. Perturbations with ` 6= 0 are not constant in the
transverse y-direction along the stripes and may cause them to break up.

In Section 3.3.2 we analytically derive an instability result for localized
striped patterns on flat ground (c = 0, no advection) through an Evans
function approach, proving that in this case a range of 1D stable patterns
extends to 2D unstable striped patterns. These patterns will be unstable
against perturbations for a range of values ` > 0, independent of γ.

We continue by numerically determining the collection of striped patterns
that withstand the additional transverse destabilization mechanisms in Sec-
tion 3.3.3. Here perturbations with γ = ±1 play a special role, as stability
against transverse perturbations for γ = ±1 seems to imply stability against
all transverse perturbations. We show that the fraction of 2D stable striped
patterns within the enveloping 1D Busse balloon increases as the advection
c increases, which is relevant for determining ecological resilience.

These results are complemented by simulations of (3.1) with the rainfall a
as a slowly decreasing parameter. Similar to [180], we trace the wavenumber
of the solution if it is in a striped pattern state. The simulations show that
the continuation method employed to determine striped pattern stability
successfully predicts the occurrence of stripe breakup; depending on the
advection c, the initial stages in the pattern selection process are determined
by 1D effects (` = 0).

3.3.1 Transverse instabilities: breakup of stripes into rectangles
or rhombs

In Section 3.2, we computed the linearization about a constant homoge-
neous state by representing perturbations by complex exponentials using
the Fourier transform. Analogously, linearization about a periodic state
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with wavelength 2π/κ is possible through a so-called Floquet-Bloch trans-
form (see Appendix 3.B). Now perturbations are represented by functions
ñγ satisfying a ‘γ-twisted’ (terminology from [20]) periodicity property

ñγ

(
x+

2π

κ

)
= γñγ(x) (3.38)

where γ is on the unit circle (and similarly for the water component w). Note
that γ = 1 implies that the perturbation has exactly the same wavelength as
the underlying pattern. The striped patterns we study are periodic in the x-
direction and constant in the y-direction. Perturbations are thus represented
by the combination ñ(x, y) = nγ(x)ei`y.

As already noted transverse perturbations with γ = ±1 turn out to be
primary destabilization mechanisms, in Section 3.3.3. In this section we will
use numerical continuation in two spatial dimensions, introduced in [54,192],
to visualize the destabilizing perturbations and the bifurcating 2D patterns
for the cases γ = ±1, for the extended Klausmeier model (3.1). With these
techniques it becomes possible to map existence and stability of patterns
periodic in 2D, as we will illustrate, but an extensive search is outside the
scope of this paper.

At the Turing-Hopf point where a = aT , the homogeneous steady state
is marginally stable against a perturbation with a distinct wavenumber kT .
Beyond the instability a set of stable striped patterns exists (in the super-
critical case), whose wavenumbers form an interval including κ = kT . In
Table 3.1 we show at which value of arect, arhomb this striped pattern be-
comes unstable against transverse breakup for γ = 1 respectively γ = −1
and at what distinct value of `rect, `rhomb of the transverse wavenumber, for
several values of 2c (with d = 500, m = 0.45). The table is obtained by
continuation methods for one spatial dimension, as will be used in Section
3.3.3

Table 3.1 can be used as input to study striped pattern breakup, e.g.
for c = 0 in Figure 3.5. In order to find the 2D pattern that bifurcates
from the striped pattern with κ = kT for γ = 1, we start out from the
homogeneous steady state (w+, n+) and choose [0, 4π/kT ]× [0, 2π/`rect] as a
domain. At the Turing(-Hopf) point, a two-stripe pattern (Figure 3.5 (b))
bifurcates from (w+, n+) as the domain size in x was prepared like this.
If by continuation a is decreased to arect, the two-stripe pattern becomes
unstable against a transverse perturbation (Figure 3.5 (c)) and a pattern
periodic in both dimensions (Figure 3.5 (d)) bifurcates. By (3.38), for γ = 1
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2c aT kT arect `rect arhomb `rhomb

0 2.883 0.430 2.232 0.433 2.297 0.410
182.5 3.456 0.398 2.107 0.417 2.197 0.394
365 4.460 0.384 2.011 0.418 2.197 0.365
500 5.161 0.385 2.037 0.422 2.349 0.348
1000 7.301 0.398 2.206 0.443 3.074 0.343

Table 3.1: Table of Turing-Hopf loci (aT ) of (3.1) (for d = 500, m = 0.45), the critical wavenumber
at its onset (kT ) and for the striped patterns with κ = kT the critical a-values and
wavenumbers ` of perturbation along the striped pattern at breakup for γ = 1 (arect

and `rect) and γ = −1 (arhomb and `rhomb).

perturbations are in phase at neighboring stripes (at distance 2π/κ) since
ñ
(
x+ 2π

κ , y
)
≡ ñ1

(
x+ 2π

κ

)
ei`y = ñ1(x)ei`y = ñ(x, y). Periodically extend-

ing the pattern in Figure 3.5 (d) in both dimensions gives a rectangular
pattern on the plane.

Likewise for γ = −1, if we choose [0, 4π/kT ] × [0, 2π/`rhomb] the two-
stripe pattern emerging at aT becomes unstable against a different transverse
perturbation (Figure 3.6 (c), where 2c = 182.5) when a is decreased to arhomb

and again a pattern periodic in both dimensions (Figure 3.6 (d)) bifurcates.
For γ = −1, perturbations are in opposite phase at neighboring stripes
(2π/κ apart) since by (3.38) it holds that ñ

(
x+ 2π

κ , y
)
≡ ñ−1

(
x+ 2π

κ

)
ei`y =

−ñ−1(x)ei`y ≡ −ñ(x, y). Periodic extension of the pattern in Figure 3.6
(d) yields a rhombic pattern. In this case the bifurcating rhombic pattern
deviates only little from a regular hexagonal pattern.

We note that the inset of Figure 3.5(a) shows that the branch of striped
patterns becomes unstable before the stripe-rectangle bifurcation point is
reached. This is because the stripe-rhomb bifurcation precedes the stripe-
rectangle bifurcation, indeed arhomb > arect and `rhomb ≈ `rect for c = 0, so
the stripe-rhomb bifurcation is only slightly delayed because it does not im-
mediately satisfy the boundary conditions. In Figure 3.6 the striped pattern
does remain stable up to the bifurcation shown.

The stripe-rectangle and stripe-rhomb bifurcations are found to be always
subcritical, but relatively quickly the branch folds back, so that it appears
supercritical on the larger parameter scale. The methods are not restricted
to κ = kT , the computations presented in Figure 3.7 show a rhombic pattern
with both acute and obtuse angles for long x-wavelengths, which occur for
larger c-values.
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(a) (b)

(c) (d)

Figure 3.5: (a) Stripe-rectangle bifurcation diagram of (3.1) for c = 0 (d = 500, m = 0.45) with
branch of homogeneous equilibrium (red), bifurcating striped patterns with wavenum-
ber κ = kT (blue), subcritically bifurcating rectangular pattern with ` = `rect (black)
and inset magnifying this subcritical bifurcation. For efficiency, the computations
where done under zero flux Neumann boundary conditions, and thick lines indicate
stability with respect to perturbations that fit the domain. Other panels show striped
pattern (b) and destabilizing perturbation (c) at stripe-rectangle bifurcation point,
rectangular pattern (d) at a ≈ 1. Note that the solution plots extend periodically in
both space directions.
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(a) (b)

(c) (d)

Figure 3.6: Analogue of Figure 3.5 for stripe-rhomb bifurcation for 2c = 182.5 under cylinder
geometry. Periodic extension in both dimensions of (c)-(d) yields a rhombic pattern.
Here (d) is the solution on the black branch in (a) at the instability a ≈ 1.2.
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(a)

i

(b)

Figure 3.7: (a) Stripe-rhomb bifurcation diagram of (3.1) for 2c = 365 (d = 500, m = 0.45) on a
domain with periodic boundary conditions: striped patterns with wavenumber κ = 0.1
(blue), stripe-rhomb patterns (black). Note that most of the solutions on the rhomb
branch are unstable (even on this small domain), as their locus is plotted with a thin
line. (b) Rhomb patterns (when periodically extended in both directions); upper panel:
at the stability change for a ≈ 0.8 on the lower part of the black branch, lower panel:
in the unstable regime for a ≈ 0.65.

3.3.2 No advection: transverse instability of long wavelength
striped patterns

In this mathematically more technical section we consider long wavelength
striped patterns of the extended Klausmeier model (3.1) in absence of ad-
vection (c = 0) and establish instability with respect to perturbations along
the stripes (` > 0) in the spirit of results on solitary homoclinic stripes
[53,100,103].

By scaling (3.1) into the form of the Gray-Scott model we may use results
that have already been derived for this model. Without advection and in a
single space dimension, (3.1) is given by

wt =dwxx + a− w − wn2

nt =nxx −mn+ wn2

and can be scaled into the standard form of the Gray-Scott equation,

uT =uXX +A(1− u)− uv2

nT =DvXX −Bv + uv2,
(3.39)

by setting

u(X,T ) =
1

a
w(x, t), v(X,T ) =

1

a
n(x, t),
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with

T = a2t, X =
a√
d
x,

so that

A =
1

a2
, B =

m

a2
, D =

1

d
. (3.40)

The dynamics of the Gray-Scott model are largely determined by the
interplay between two small parameters [43, 44,101,102]. Following [43,44],
we therefore introduce,

U(ξ, τ) =

√
A

B
√
BD

u(X,T ), V (ξ, τ) =

√
BD√
A

v(X,T ) (3.41)

with

τ = BT, ξ =

√
B√
D
X, (3.42)

which transforms (3.39) into

DUτ =Uξξ − ε2[UV 2 − εδ(1− δ

ε
U)]

Vτ =Vξξ + UV 2 − V,
(3.43)

with

ε =

√
A

B
, δ =

√
BD. (3.44)

An existence result on patterns (Uµ(ξ), Vµ(ξ)) with a long wavelength
T (µ), with µ > 1 an amplitude parameter chosen for the parametrization,
based on literature on the Gray-Scott model, is presented in Appendix 3.C
(Theorem 3.4). Here geometric singular perturbation theory is used, the
small parameter exploited is given by ε = a/m. Note that in the long
wavelength limit considered here, the Vµ(ξ)-component associated to plant
biomass is strongly localized, while Wµ(ξ) varies on a larger scale. The
existence of 1D patterns is equivalent to the existence of striped patterns in
2D. Below, η is a scaled version of the second spatial dimension y the same
way as ξ relates to x, see (3.42).

To investigate the spectral stability of the striped pattern (Uµ(ξ), Vµ(ξ))
on the full plane, so (ξ, η) ∈ R2, we set

(U(ξ, η, τ), V (ξ, η, τ)) = (Uµ(ξ) + u(ξ)ei`η+λτ , Vµ(ξ) + v(ξ)ei`η+λτ ),
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3.3 Striped pattern stability in 2D

with ` ∈ R and λ = λ(µ, `) ∈ C. The linearized stability problem for (3.43)
reads

Dλu = uξξ − `2u − ε2[V 2
µ u + 2UµVµv − δ2u]

λv = vξξ − `2v + V 2
µ u + 2UµVµv − v.

(3.45)

We introduce ˆ̀ by
` =
√
D ˆ̀ (3.46)

and write (3.45) as a coupled system of Sturm-Liouville-type equations

uξξ − D[ˆ̀2 + λ− ε2δ2

D ]u = ε2[V 2
µ u+ 2UµVµv]

vξξ + [2UµVµ − (1 + λ+D ˆ̀2)]v = −V 2
µ u.

(3.47)

This system can equivalently be written as a 4-dimensional linear system for
φ(ξ) = (u(ξ), p(ξ), v(ξ), q(ξ)) with p = 1

ε u̇ and q = v̇,

φ̇ = Aµ(ξ;λ, ˆ̀)φ, (3.48)

where the dot denotes differentiation with respect to ξ and Aµ(ξ;λ, ˆ̀) is a
ξ-periodic matrix,

Aµ(ξ;λ, ˆ̀) =




0 ε 0 0

ε[V 2
µ (ξ)+ D

ε2
(ˆ̀2+λ)−δ2] 0 2εUµ(ξ)Vµ(ξ) 0

0 0 0 1

−V 2
µ (ξ) 0 −2Uµ(ξ)Vµ(ξ)+(1+λ+D ˆ̀2) 0


 (3.49)

with period T (µ) (see Theorem 3.4, Appendix 3.C). For any µ > 1 and
ˆ̀ ∈ R, system (3.48) determines a spectral problem for λ = λµ(ˆ̀) ∈ C
(e.g. in the space of complex-valued bounded uniformly continuous functions
BUC(R2,C4)).

Following [67], and in the approach of [197], similar to (3.38) the eigenvalue
problem (3.48) is considered on the fundamental interval [−1

2T (µ), 1
2T (µ)]

with γ-twisted periodic boundary condition,

φ

(
1

2
T (µ)

)
= γφ

(
−1

2
T (µ)

)
(3.50)

for γ ∈ S1 ⊂ C on the unit circle.

The stability problem (3.47) that is equivalent to (3.48) has a structure
that is very similar to that of the existence problem. In fact, it can be
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3 Striped pattern selection by advective reaction-diffusion systems

shown by directly applying the approach of [46, 197] that the v-component
of φ is strongly localized and exponentially small outside a fast interval If ,
completely similar to Vµ(ξ) (Theorem 3.4). As a consequence, the slow
reduced limit problem for the u component of φ – that is defined in the
regions [−1

2T (µ), 1
2T (µ)]\If – is given by

uξξ −D
[

ˆ̀2 + λ− ε2δ2

D

]
u = 0 (3.51)

up to exponentially small corrections. Hence, outside If , u(ξ) is given by
a combination of exponential functions in the spatial variable

√
Dξ – under

the assumption that ε2δ2

D is small enough, or more formally, that εδ �
√
D.

However, the length of the fundamental interval [−1
2T (µ), 1

2T (µ)] is of order
1
εδ (see (3.C.1)): if εδ �

√
D, then an asymptotically bounded solution

of (3.51) will be exponentially small at the boundaries of [−1
2T (µ), 1

2T (µ)].
As a consequence, the entire family λ(γ), γ ∈ S1 of γ-eigenvalues will be
asymptotically close to the positive eigenvalue λ that one can obtain (at
leading order) by just considering solutions of (3.51) that decay exponentially
as ξ � 1√

D
. Since the rigorous validation of this statement requires an

extensive analysis along the lines of [197], we refrain from going further into
the details here.

Theorem 3.3. Assume that the assumptions formulated in Theorem 3.4
hold and consider a spatially periodic striped pattern (Uµ(ξ), Vµ(ξ)) as given

by Theorem 3.4. There are constants D0,1, D0,2 > 0 and 0 < ˆ̀
1 < ˆ̀

2 such
that for all 0 < D < D0,1, 0 < εδ < D0,2

√
D, and µ ≥ 1, eigenvalue problem

(3.48) has a family of γ-eigenvalues, γ ∈ S1, exponentially close to a critical
eigenvalue λpole(µ, ˆ̀) that is at leading order given by,

λpole(µ, ˆ̀) =
5

4
for all ˆ̀∈ (ˆ̀

1, ˆ̀
2).

The lengthy proof of Theorem 3.3 is given in Appendix 3.D. Note that the
extension of (Uµ(ξ), Vµ(ξ)) in the η-direction is crucial for this instability re-
sult: for certain parameter combinations, one-dimensional spatially periodic
patterns (Uµ(ξ), Vµ(ξ)) can certainly be stable [45]. In these cases, λpole(µ, ˆ̀)

typically merges with another eigenvalue as ˆ̀> 0 decreases and forms a pair
of complex conjugate eigenvalues that cross through the imaginary axis as ˆ̀

decreases further – see [103] for a much more detailed analysis of the spectral
curves λ(1, `) associated to the stability of a homoclinic stripe – i.e. the limit
µ ↓ 1.
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3.3 Striped pattern stability in 2D

The instability result Theorem 3.3 establishes that all spatially periodic
striped patterns in a certain region of the 1D Busse balloon near κ = 0
are unstable with respect to transverse perturbations that are spatially pe-
riodic in the y-direction (and provides an asymptotic approximation of the
destabilizing wavenumbers). This is presented in the following corollary.

Corollary 3.2. There are constants D0,1, D0,2 > 0 such that for all 0 <
D < D0,1, 0 < εδ < D0,2

√
D striped patterns (Uµ(ξ), Vµ(ξ)) as established by

Theorem 3.4 – either as solutions of (3.39) or (3.1) – are spectrally unstable.

This result holds for c = 0, but by continuity of the spectrum the same
holds for c close to 0. In the case c 6= 0 without reflection symmetry, the
existence of spatially periodic stripes does not directly follow from the lit-
erature and requires a new approach. Both this issue and the associated
stability question is considered in [167]. The instability result Theorem 3.3
will be influenced by the advection term c: we will see in Section 3.3.3 that
for large c, 2D stable long wavelength striped patterns for (3.1) are found
numerically.

3.3.3 Stability of striped patterns

We first briefly explain how numerical continuation is implemented to trace
marginal stability of striped patterns of the extended Klausmeier model
(3.1) against the various destabilization mechanisms. We recall that in 1D
perturbations about a periodic solution are represented by functions with a
γ-twisted periodicity property, where γ ∈ S1 ⊂ C is on the unit circle.

By translation invariance of (3.1), for γ = 1 there is always a neutrally sta-
ble eigenvalue λ(1) = 0. Since Re(λ(γ)) is invariant with respect to complex
conjugation of γ, this leads to genericity of an instability where the curve of
Re(λ) at λ = 0 changes from concave to convex. This destabilization mech-
anism is known as the Eckhaus or sideband instability, which is known to
be the primary destabilization mechanism near supercritical Turing(-Hopf)
bifurcations.

The sideband instability can be traced numerically using numerical con-
tinuation [42] by implementing the constraint ∂2

∂γ2 Re(λ(γ)) = 0 at γ = 1

[147,199]. It has been found that the sideband instability forms the stability
boundary far beyond onset of the Turing(-Hopf) instability [180,199].

The continuation of breakup instabilities of striped patterns against per-
turbations with γ ∈ S1 and ` ∈ R can be similarly implemented by imposing
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3 Striped pattern selection by advective reaction-diffusion systems

constraints on λ(γ, `). That is, Re(λ(γ, `)) = 0 and ∂
∂` Re(λ(γ, `)) = 0 where

` is variable and γ = 1 (stripe-rectangle breakup) or γ = −1 (stripe-rhomb
breakup). Here this is done for 2c = 0, 182.5, 365, 500, 1000 (with d = 500,
m = 0.45) to study the dependence of striped pattern stability on the ad-
vection c.

In addition, simulations with a slowly decreasing a are done for 2c =
0, 182.5, 365, 500 (again with d = 500, m = 0.45) and a comparison is made.
The small growth rates associated with the sideband instability can cause a
significant delay in its onset [180]. Unpredictability in the outcome of the
sideband instability stems from the fact that the growth rate of the perturba-
tions that are among the first to destabilize remain small after destabilization
compared to perturbations that destabilize later. In [180] it has been shown
via simulations that for (3.1) in 1D with a slowly changing parameter, pat-
tern adaptation depends on the rate of change and the application of noise.
In this article we fix the rate of change to da/dt = −10−5 and apply no
noise. The simulations are done on a 250×250 square domain with periodic
boundary conditions.

In Figure 3.8 the Busse balloon of stable striped patterns of (3.1) is plotted
together with the sideband and transverse (breakup) instability curves, for
c = 0 and 2c = 182.5. Frame (a) is a more detailed version of Figure 3.1.
The representation of a pattern by a wavenumber is not guaranteed to be
1:1. On the contrary, for 2c = 182.5 a brown fold curve emerges from the
lower red small amplitude curve, so that between this red curve and the fold
curve a wavenumber corresponds to two patterns. But the solutions beyond
the fold are all unstable, so that on the level of the Busse balloon of stable
patterns the representation is 1:1. As soon as a curve crosses the fold the
plotting style in the Figures 3.8, 3.12 and 3.13 changes to dashed to indicate
that it has become less relevant.

For the case 2c = 182.5 the primary destabilization mode for breakup
changes from stripe-rhomb (γ = −1) to stripe-rectangle (γ = 1) at a ≈ 1.96
(and back again near a = 2.9). A detailed study at a ≈ 1.96 shows that
γ 6= ±1 do not become the primary destabilization mechanism, see Figure
3.8(d). Checks elsewhere led to the same conclusion, which is the basis for
tracing breakup only for γ = ±1.

For c = 0 striped patterns are seen in the simulation, but a single orienta-
tion is not always attained. In Figure 3.9 we show a simulation where this
eventually is the case, because only then the breakup curves give a predic-
tion for destabilization. In this case the stripes are expected to break up
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Figure 3.8: Stability of striped patterns of (3.1) with transverse destabilization mechanisms for
d = 500, m = 0.45 and (a) c = 0 and (b) 2c = 182.5, with Turing(-Hopf) bifurcation
indicated by T (H). The union of all colored regions bounded by the black sideband
curve represents striped patterns that are 1D stable. The blue and green curve indi-
cate marginal stability against stripe-rectangle and stripe-rhomb breakup respectively.
Points that represent 1D stable patterns that are stable w.r.t. stripe-rectangle or
stripe-rhomb breakup are colored blue resp. green. Full 2D stability is indicated by
the dark-green (teal) combination of these colorings. Both ends of the blue curve
connect to the anchor point Ty (T = Ty for c = 0), see Section 3.2.2. (c) Part of
the Busse balloon for 2c = 182.5 showing that at a ≈ 1.96 the stripe-rectangle and
the stripe-rhomb instabilities interchange roles as primary destabilization mechanism.
(d) Upper panel: magnification of region in (c) marked by the black rectangle. For
selected values of κ, line segments show range of values of a at marginal stability for
log(γ) ∈ [0, πi]. Lower panel: γ-dependence of the line segments in the upper panel;
values of γ other then γ = ±1 do not act as primary destabilization mechanism.
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3 Striped pattern selection by advective reaction-diffusion systems

(a) a = 2.9 (b) a = 2.8 (c) a = 2.75 (d) a = 2.74 (e) a = 2.69

Figure 3.9: Frames from the simulation of (3.1) with slowly decreasing parameter a, da/dt =
−10−5, for c = 0 (with d = 500 and m = 0.45), gradient ranging from n = 0 (sandy-
brown) to n = 9.4 (dark-green). (a) Initial condition, before Turing. (b) Pattern of
gaps. (c)-(d) Gaps connect to form bare stripes, but orientation is space dependent.
(e) Globally oriented striped pattern.

(a) a = 2.15 (b) a = 2.14 (c) a = 2.1 (d) a = 2.09 (e) a = 2.06

Figure 3.10: Frames from the simulation of (3.1) with slowly decreasing parameter a, da/dt =
−10−5, for 2c = 182.5 (with d = 500 and m = 0.45), gradient ranging from n = 0
(sandy-brown) to n = 17.8 (dark-green). Striped pattern (a) breaks up into rhombs
(b), but the spots reconnect (c) and form a striped pattern with defects (d) that
disappear (e).

before hitting the sideband curve, see Figure 3.8(a).

When sideband and breakup curves get close, as is the case for the tran-
sition shown in Figure 3.10, interaction between the destabilization mech-
anisms is possible. As mentioned above the transition from one striped
pattern to another through the sideband mechanism may suffer a significant
delay. The modulations that arise from the sideband instability may trigger
breakup before the stripe-to-stripe pattern transition has occurred [140]. On
the other hand, even after the breakup of a striped pattern the system may
still return to striped patterns later on, as illustrated by Figure 3.10. We
note that the apparent instability of the rhombic pattern of spots in Figure
3.10(b) does not contradict the stability that was indicated in Figure 3.6,
since there only perturbations that fit the small domain are included.

For 2c > 0, striped patterns aligning perpendicular to the advection start
to form just below the Turing-Hopf instability. During the decrease of a
the system may encounter a sideband a few times first, before transverse
instabilities take hold (Figure 3.11).
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3.3 Striped pattern stability in 2D

(a) a = 4.5 (b) a = 4.4 (c) a = 3.5 (d) a = 2.5 (e) a = 1.5

(f) a = 1 (g) a = 0.72 (h) a = 0.71 (i) a = 0.7 (j) a = 0.65

(k) a = 0.55 (l) a = 0.3 (m) a = 0.18 (n) a = 0.13 (o) a = 0.12

Figure 3.11: Frames from the simulation of (3.1) with slowly decreasing parameter a, da/dt =
−10−5, for 2c = 365 (with d = 500 and m = 0.45), gradient ranging from n = 0
(sandy-brown) to n = 21.45 (dark-green). Initial condition just before the Turing-
Hopf bifurcation (a) and striped pattern right after (b). (c)-(f) Consecutive striped
patterns after destabilization by sideband. (g)-(i) Breakup, transient dynamics and
return to striped pattern. (j)-(m) Breakup, dynamics in 2D, return to dashed stripe.
(n) Transverse spatial period doubling. (o) Bare desert state.
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(c) 2c = 365 (d) 2c = 500

Figure 3.12: Stability of striped patterns of (3.1), see Figure 3.8 (a)-(b) for the meaning of the
various colored curves and regions. Connection of the blue breakup curve to the
upper anchor point Ty occurs outside the plotting range of κ. Simulations with
slowly decreasing parameter a included, da/dt = −10−5, the initial condition is a
perturbation of the homogeneous state (w+, n+) at values of a just before the Tu-
ring(-Hopf) bifurcation. During the simulation the wavenumber is indicated with
pink if the system resides in a striped pattern state, purple arrows in between indicate
transient dynamics or residence in 2D states before returning to a striped pattern (or
the bare desert state κ = 0).

When during a simulation the system resides in a striped pattern it can
be represented by a single wavenumber. The plots of the wavenumbers
are compared with knowledge of striped pattern stability for each of the
values 2c = 0, 182.5, 365 and 500 in Figure 3.12. The striped pattern desta-
bilizations as observed in the simulations are in good agreement with the
continuation results.

We see that in 2D, Hopf-type destabilization mechanisms that become pri-
mary destabilization mechanism in 1D for κ→ 0 (see [51]) are not relevant as
long as c becomes not too large. Figure 3.12(d) shows that around 2c = 500
the first long wavelength (small κ) striped patterns become 2D stable. By
increasing c more and more, the transverse instabilities can be suppressed
and the stability of striped patterns seems to reduce to the 1D stability of
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Figure 3.13: Analogue of Figure 3.8 (a)-(b) for 2c = 1000.

patterns, see Figure 3.13 for the case 2c = 1000. Simulations for such large
values of c seem to require more sophisticated numerical techniques such as
an operator splitting approach [209].

The above results show that by increasing the advection c, a larger portion
of the 1D Busse balloon becomes 2D stable. We thus observe that for fixed
κ, as c increases, the range in a where striped patterns are stable generally
increases. So the magnitude of disturbance – measured in the amount of
variance in a – that is allowed before a striped pattern wavenumber becomes
unstable, increases as c increases. This confirms the result mentioned in the
introduction that the ecological resilience of banded vegetation is larger on
steeper slopes.

Within the choices of c made in this paper the case studied in Figure 3.8
(c)-(d) is the only instance where, within the 1D Busse balloon, stripe-
rectangle destabilization occurs before stripe-rhomb destabilization. For
larger values of c, represented by Figure 3.12 (c)-(d) and 3.13, the distance
between the stripe-rectangle breakup and stripe-rhomb breakup curves be-
comes so small that they can (almost) no longer be distinguished. This can
be formally understood by the observation that for large c, the destabiliza-
tion occurs for relatively small values of the wavenumber κ. This implies that
the spatially periodic patterns can be interpreted as being built from inter-
acting localized patterns, which we expect to be of semi-strong type [48] by
the singularly perturbed nature of the governing equations: here the inter-
action is to leading order restricted to the fastly diffusive water component.
By arguments similar to those in Section 3.3.2 it can be expected that each
family of γ-eigenvalues contracts to an asymptotically small region, so that
indeed the γ = 1 stripe-rectangle destabilization and the γ = −1 stripe-
rhomb destabilization curves become almost indistinguishable. Neverthe-
less, since pulses and spots in semi-strong interaction typically are repuls-
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ing [25, 48, 184] one also expects the rhombic patterns to be eventually the
most favorable, which suggests that stripe-rhomb breakup should precede
stripe-rectangle breakup, even if both curves are very close to each other.

3.4 Ecological implications

The extended Klausmeier model (3.1) studied in this paper is a relatively
simple scaled phenomenological model, we now turn abstract results into
qualitative predictions for arid ecosystems that could be tested empirically.
The results may also help in the understanding of more complex models. In
this section we refer to striped patterns as banded vegetation. We refer to
spots aligned in stripes, such as the rectangular and rhombic patterns, as
dashed vegetation patterns [193,202].

We recall from the introduction (result (1)) and the previous section the
main numerical result: the ecological resilience of banded vegetation is larger
on steep slopes, with large advection rates, than on gentle slopes. We supple-
ment this by discussing some other implications for arid ecosystem dynamics.

Positive feedback in water-limited systems, as generated by the uptake
mechanism of (3.1), is a key ingredient for self-organized vegetation pat-
tern formation [97, 148, 202]. Here the state with uniform vegetation cover
becomes unstable, because competition for water and a positive feedback be-
tween vegetation density and water harvesting capacity will create densely
vegetated and more sparsely vegetated patches. Under influence of the slope
the resulting patterns are vegetation bands aligned to contours [38, 193]
as the Turing-Hopf instability is a natural mechanism for the formation
of banded vegetation perpendicular to the slope (Theorem 3.2).

The competition for water and the uptake mechanism continue to play an
important role in pattern adaptation as environmental stress due to decreas-
ing rainfall a increases further. Competition for water between vegetation
bands leads to stripe-to-stripe pattern transitions where some vegetation
bands disappear and the wavenumber decreases, due to the sideband insta-
bility [180].

Competition for water within each vegetation band leads to breakup by
transverse instabilities. Thus in some sense the same mechanisms that
give rise to banded vegetation patterns are eventually responsible for their
breakup. The selection of a rectangular or rhombic structure at breakup de-
pends on the interaction between vegetation bands, as sketched at the end
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of Section 3.3.3.

In Section 3.2.1 it was shown for models like (3.1) that vegetation bands
move in uphill direction at onset. This movement is hard to establish or
refute from observations, due to the small speeds that are involved. In [38],
at three sites unequivocal photographical evidence of upslope migration has
been presented, but in other cases it remains unclear. Soil characteristics not
contained in (3.1), may be pivotal for the migration capability of vegetation
patterns [58,156].

In (3.1) we do not take into account possible mechanical action of (fast)
flowing water on the strength and structure of the soil either. Particularly in
case of dashed vegetation patterns – when downslope flowpaths become long
– this could be an important factor, by creating erosion (e.g. gully formation)
but also possibly deposition of soil. The validity of (3.1) may decrease if the
slope parameter c increases, because these processes undermine the sheet
flow of water that underpins (3.1). The problem of finding the correct value
of c can be rather complicated, as mentioned in the introduction.

From Corollary 3.1 we know that the Turing-Hopf bifurcation locus moves
to higher rainfall a as the slope c increases. Since at the Turing-Hopf bi-
furcation banded vegetation patterns form, it would be interesting to see if
observations of banded vegetation under high rainfall regimes are linked to
topographies that consist of relatively steep slopes. Observations reported
in [12,193] suggest that this may be the case.

We now turn to the numerics done in Section 3.3.3. In the simulations
in the case of no slope (c = 0), vegetation bands still form although the
orientation may (initially) be space-dependent, as in labyrinths. For gentle
slopes labyrinths are observed instead of banded vegetation [12, 39]. For
still relatively gentle slopes c, i.e. 2c ≤ 182.5 (original estimate by [97] for
(3.1)), only a small portion of the 1D Busse balloon is 2D stable. In this
case no banded vegetation is expected for either small wavenumber κ or
small rainfall a, see Figure 3.8. This is in accordance with what is reported
in [39]. Here at low rainfall, vegetation is mostly found not to be organized
in a periodic pattern, or organized in a periodic pattern of spots. The kernel
density that links to how frequent a banded vegetation pattern is observed
as a function of the wavenumber κ, converges to zero well before κ = 0.

In the extended Klausmeier model (3.1) for d > 0, when decreasing the
rainfall a, banded vegetation eventually breaks up into dashed patterns.
This was suggested by [193] and was also found in [202]. The numerics we
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performed show that only on very steep slopes the breakup of vegetation
bands is avoided. The original Klausmeier model, where d = 0, has been ex-
tensively studied in [173] and the references therein. Here breakup does not
occur [170]. This is due to the fact that competition is now restricted within
upslope segments of constant y, as no water is flowing in the direction of
the contour. Observations of dashed patterns support incorporating a more
realistic mechanism for water flow, as is done in (3.1). Banded vegetation
breakup was not reported in [207] either.

We showed that the shape of the Busse balloon strongly depends on land-
scape topography. Hence, linking real vegetation patterns to desertification
thresholds requires inclusion of the particular landscape setting (i.e. the
slope) in which the patterns are observed.

In this paper we refer to vegetation stripes as banded vegetation and sep-
arately identify dashed patterns. Dashed patterns are currently not treated
as a separate class of patterns in observational studies and may be classi-
fied as banded vegetation instead [12, 35, 193]. We have shown that dashed
vegetation patterns naturally arise from the breakup of vegetation stripes
and signify a next step in the desertification process. Therefore a distinc-
tion between vegetation stripes and dashed patterns in the classification of
vegetation patterns in observations could be considered valuable. Through
observations it may be possible to see if dashed vegetation patterns are gen-
erally found at smaller rainfall a than banded vegetation. If this is the case,
a restoration strategy based on dashed patterns instead of banded vegeta-
tion could in some cases be more successful, or equally successful but more
economic [119]. These prediction could be tested empirically.
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3.A Stability against large wavenumber perturbations

3.A Stability against large wavenumber perturbations

Lemma 3.4. For large k, solutions to the dispersion relation (3.6) of (3.8)
have Re(λ) < 0.

Proof. In the introduction, we prescribed after (3.2) that d1 ≥ 0 and d2 > 0.
If d1, d2 > 0 then the system (3.8) is characterized as being parabolic, which
is well-known to imply stability against perturbations with large wavenum-
bers. Thus we only need to check for the case d1 = 0. We first only use that
either d1 = 0 or d2 = 0, so that d1d2 = 0.

The dispersion relation (3.6) reads d(λ, k, p, c) = λ2 +α1λ+α0 = 0 where
still α1 = (d1+d2)k2+O(1) but α0 = ic(d1−d2)k3+(c2−d1a4−d2a1)k2+O(k)
since d1d2 = 0, see (3.9). In order to find the solution branches for large k,
we substitute an expansion λ = k2λ2 + kλ1 + λ0 +O(1/k) with λj = O(1).

In case λ2 6= 0 we find, by comparing terms of order k4, that λ2 =
−(d1 + d2) < 0, which yields a parabolic asymptotically stable branch.

In case λ2 = 0 we find the second branch (hence all solution branches of
the quadratic equation). By comparing terms of order k3, we obtain

λ1 = c
d2 − d1

d1 + d2
i

which is purely imaginary. Stability is thus determined by λ0, and comparing
terms of order k2 gives

λ0 =
(d1a4 + d2a1)− c2 − λ2

1

d1 + d2
.

Now we use that d1 = 0 so that λ2
1 = −c2 and λ0 = a1 < 0 by the

inhibitor assumption from A2 in (3.4). So the homogeneous steady state is
stable against large wavenumber perturbations.

Note that assuming d2 = 0 instead of d1 = 0 in the final step of the
proof would lead to λ0 = a4 > 0 under assumption A2 in (3.4). Hence,
the homogeneous steady state would be unstable against ‘half’ of the large
wavenumber perturbations and we therefore assume d2 > 0.
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3 Striped pattern selection by advective reaction-diffusion systems

3.B Dispersion relations for striped patterns

In this appendix we briefly outline the characterization of the spectrum
of striped patterns via Floquet-Bloch decomposition. This theory may be
viewed as a substitute for the Fourier transform when dealing with periodic
structures. Here it is equivalent to an Evans-function formulation using
spatial dynamics, which we exploit in Section 3.3.2.

Let (u∗, v∗)(t, x, y) denote a striped pattern of (3.2) that is L-periodic
in x, so wavenumber κ = 2π/L, constant in y and travels with constant
speed s. Its spectral stability is determined by the spectrum of the linear
operator arising from the linearization of (3.2) in a comoving frame ξ = x−st
evaluated in (u∗, v∗). Applying a Fourier transform in the y-direction with
wavenumber ` we obtain the differential operator with periodic coefficients

M(∂ξ, ξ) =

(
d1(∂2

ξ−`2)+(c1+s)∂ξ+a1(ξ) a2(ξ)

a3(ξ) d2(∂2
ξ−`2)+(c2+s)∂ξ+a4(ξ)

)

whose spectrum is the union of spectra of the Bloch-operators Mper(γ, ξ) :=
M(∂ξ− log(γ)/L, ξ), with γ on the unit circle so log(γ) ∈ (−πi, πi], posed on
[0, 1] with periodic boundary conditions [147, 157]. Hence, the spectrum is
determined by the family of eigenvalue problems Mper(γ, ξ)− λId = 0. The
solutions λ(γ) are referred to as γ-eigenvalues, see Section 3.3.2. Abstractly
written, in terms of the period-map Φ(λ, `) of the evolution of this ODE for
γ = 1, the expression

d(λ, γ, `) = det (Φ(λ, `)− γ) , (3.B.1)

is the dispersion relation analogous to the case of homogeneous steady states,
which is holomorphic in λ, γ and `. [147]

The cases that are traced by numerical continuation in Section 3.3.3 are
γ = ±1, the corresponding eigenfunctions (perturbations) have distinct pe-
riodicity properties. We first restrict to ` = 0, so perturbations (ũ, ṽ) that
are constant in the y-direction. Suppose that (ũ, ṽ)(ξ) solves (3.B.1), then

ũ

(
ξ +

2π

κ

)
= γũ(ξ) (3.B.2)

and similarly for ṽ.

From this it is clear that for γ = 1 the wavenumber of the perturbation
is κ̃ = κ. One of the perturbations corresponding to a solution of (3.B.1)
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3.C No advection: existence of long wavelength patterns

for γ = 1 is the translation mode with eigenvalue λ = 0. The solutions to
(3.B.1) consist of curves of spectrum, where Re(λ) is invariant with respect
to complex conjugation of γ, which leads to genericity of the aforementioned
sideband instability where the curve of Re(λ) locally changes from concave
to convex at λ = 0.

For γ = −1 it holds that κ̃ = κ/2, so the perturbation has twice the
wavelength of the underlying striped pattern. This links to spatial period
doubling relevant in [180].

Perturbations of striped patterns with non-trivial y-dependence are repre-
sented by products of a perturbation in x and a perturbation in y, as treated
in Section 3.3.1.

3.C No advection: existence of long wavelength
patterns

The existence of stationary spatially periodic patterns for the scaled Gray-
Scott model (3.43) in 1D follows directly from [45, Theorem 2.2] (which is
itself based on [49, Theorem 4.2]).

Theorem 3.4. There exist ε0, δ0 > 0 such that for every 0 < ε < ε0 and
0 < δ < εδ0, (3.43) has a family of stationary spatially periodic solutions
(Uµ(ξ), Vµ(ξ)), parameterized by µ > 1. Each periodic solution has a well-
defined wavelength T (µ) in the ξ-direction, at leading order given by

T (µ) =
2

εδ
log

µ+ 1√
µ2 − 1

. (3.C.1)

A periodic solution (Uµ(ξ), Vµ(ξ)) can be translated (in the ξ-direction)
in such a way that it is symmetric w.r.t. ξ = 0 on a fundamental ξ-
interval [−1

2T (µ), 1
2T (µ)]. For such a solution, on a fast subinterval If =

[− 1√
ε
, 1√

ε
] ⊂ [−1

2T (µ), 1
2T (µ)], Uµ(ξ) ≡ 3µ is constant while

Vµ(ξ) =
1

2µ
sech2

(
1

2
ξ

)

is the homoclinic solution of the fast reduced limit problem

Vξξ − V + 3µV 2 = 0,
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3 Striped pattern selection by advective reaction-diffusion systems

both up to corrections of O(ε). On the slow subintervals [−1
2T (µ), 1

2T (µ)]\If ,
Vµ(ξ) ≡ 0 up to exponentially small corrections, and Uµ(ξ) is at leading order
given by a hyperbolic cosine solution of the slow reduced limit problem

Uξξ − ε2δ2U + ε3δ = 0.

Note that the earlier versions of this theorem concern special cases of
the present theorem, since the choices of parameters A,B,D from (3.39)
are less general than here [45, 49]. This does however not influence the
proof of the result that can be directly copied from [49]. Note also that
the limit µ ↓ 1, i.e. T (µ) → ∞, reproduces the existence of the well-
known solitary homoclinic pulse solution of the Gray-Scott model, see [45,
49, 101–103] and the references therein. Of course the present result can
be ‘translated’ directly into an existence result for periodic patterns in the
original model (3.1), under the assumption on the parameters (a,m, d) of
(3.1) that

ε =
a

m
< ε0 and

δ

ε
=
m
√
m

a2d
< δ0 (3.C.2)

and (3.40), (3.44) hold for certain ε0, δ0 > 0. We refrain from giving a fully
detailed rewritten version of Theorem 3.4 in terms of (3.1).

Since existence result Theorem 3.4 only establishes the existence of long
wave length spatially periodic patterns, the results obtained in this section
are only valid for wave number κ small enough, i.e. in regions of the Busse
balloon sufficiently close to the homoclinic limit κ→ 0.

The quantitative aspects of Theorem 3.4 may be used to analytically derive
asymptotically accurate approximations of the right boundary of the Busse
balloon near κ = 0, see Figure 3.1. This boundary has the character of a
saddle-node bifurcation, and it is associated to the case in which ε becomes so
large that the pulse self-replication mechanism is triggered, see [45,199] and
the references therein. It is in fact quite surprising that the present theory
appears to be valid in Figure 3.1 where a ≈ 0.68 at this boundary, which
implies that ε = a

m ≈ 1.5 for m = 0.45. Note that this agrees completely
with the critical saddle-node/self-replication value of ε as can be deduced
from [45], that was obtained by careful numerical experiments on the critical
magnitude of ε for which the methods developed there – and used here – are
valid.
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3.D Proof of Theorem 3.3

We do not intend to present the proof of Theorem 3.3 (Section 3.3.2) in
its full analytical detail: we will sketch the main ideas following the Evans
function approach as developed in [46,47]. To facilitate the exposition we also
impose another (formal) conditions on the relative magnitude of parameter
D compared to the asymptotically small parameters ε and δ introduced in
(3.44): D � ε2. Thus, we assume throughout this proof that,

ε2δ2 � D � ε2 � 1. (3.D.1)

This additional condition is not essential to the validity of the instability
result.

Since Vµ(ξ) is exponentially small outside the fast region If (Theorem

3.4), it immediately follows that the matrix Aµ(ξ;λ, ˆ̀) is exponentially close
to the constant coefficient limit

A∞µ (λ, ˆ̀) = lim
ξ→±∞

Aµ(ξ;λ, ˆ̀) =




0 ε 0 0

D
ε

(ˆ̀2+λ)−εδ2 0 0 0

0 0 0 1

0 0 1+λ+D ˆ̀2 0


 (3.D.2)

outside If . Note that in a rigorous framework, the limit ξ → ±∞ should
be replaced by ξ → ±1

2T (µ) – which will not have a leading order effect on
the outcome of the analysis (as discussed briefly in Section 3.3.2). This ma-

trix has eigenvalues Re
(

Λµ,1(λ, ˆ̀)
)
> Re

(
Λµ,2(λ, ˆ̀)

)
> Re

(
Λµ,3(λ, ˆ̀)

)
>

Re
(

Λµ,4(λ, ˆ̀)
)

,

Λµ,1,4(λ, ˆ̀) = ±
√

1 + λ+D ˆ̀2 = ±
√

1 + λ+O(D),

Λµ,2,3(λ, ˆ̀) = ±
√
D
√
λ+ ˆ̀2 − ε2δ2

D = ±
√
D
√
λ+ ˆ̀2 +O( ε

2δ2

D ),

(3.D.3)
under the assumptions in (3.D.1) and for ˆ̀, |λ| = O(1), and associated eigen-
vectors

Eµ,1,4

(
λ, ˆ̀
)

=
(
0, 0, 1,±

√
1 + λ+O(D)

)

Eµ,2,3

(
λ, ˆ̀
)

=
(

1,±
√
D
√
λ+ ˆ̀2 +O

(
ε2δ2

D

)
, 0, 0

)
.

(3.D.4)

By the theory developed in [46,47], linear system (3.48) has 4 independent
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3 Striped pattern selection by advective reaction-diffusion systems

solutions φµ,j(ξ;λ, ˆ̀), such that

limξ→−∞ φµ,j
(
ξ;λ, ˆ̀

)
e−Λµ,j(λ,ˆ̀)ξ =Eµ,j

(
λ, ˆ̀
)
, j = 1, 2

limξ→∞ φµ,j
(
ξ;λ, ˆ̀

)
e−Λµ,j(λ,ˆ̀)ξ =Eµ,j

(
λ, ˆ̀
)
, j = 3, 4.

(3.D.5)

This especially implies

lim
ξ→−∞

φµ,1,2(ξ;λ, ˆ̀) = (0, 0, 0, 0) and lim
ξ→∞

φµ,3,4(ξ;λ, ˆ̀) = (0, 0, 0, 0);

(3.D.5) determines φµ,1,2(ξ;λ, ˆ̀) = 0 uniquely, and since Aµ(ξ;λ, ˆ̀) is expo-

nentially close toA∞µ (λ, ˆ̀), the fast transmission function tµ,f (λ, ˆ̀) : C×R→
C can be defined by

lim
ξ→∞

φµ,1

(
ξ;λ, ˆ̀

)
e−Λµ,1(λ,ˆ̀)ξ = tµ,f

(
λ, ˆ̀
)
Eµ,1

(
λ, ˆ̀
)
, (3.D.6)

where for any given µ > 1 and ˆ̀∈ R, tµ,f (λ, ˆ̀) is analytic as a function of
λ. [46, 47]

As a direct application of the methods of [46, 47], it can also be shown
that for λ, ˆ̀ such that tµ,f (λ, ˆ̀) 6= 0, there is a uniquely determined function

φµ,2(ξ;λ, ˆ̀) for which

lim
ξ→∞

φµ,2

(
ξ;λ, ˆ̀

)
e−Λµ,1(λ,ˆ̀)ξ = (0, 0, 0, 0), (3.D.7)

i.e. there is a unique φµ,2(ξ;λ, ˆ̀) that does not grow with the fast rate

Λµ,1(λ, ˆ̀) beyond the fast interval If . As a consequence, the slow transmis-

sion function tµ,s(λ, ˆ̀) can be defined by

lim
ξ→∞

φµ,2

(
ξ;λ, ˆ̀

)
e−Λµ,2(λ,ˆ̀)ξ = tµ,s

(
λ, ˆ̀
)
Eµ,2

(
λ, ˆ̀
)
, (3.D.8)

under the assumption that tµ,f (λ, ˆ̀) 6= 0.

For this choice of solutions φµ,j(ξ;λ, ˆ̀) of (3.48), we once again follow

[46,47] and define the Evans function Dµ(λ, ˆ̀) by

Dµ
(
λ, ˆ̀
)

= det
[
φµ,1

(
ξ;λ, ˆ̀

)
, φµ,2

(
ξ;λ, ˆ̀

)
, φµ,3

(
ξ;λ, ˆ̀

)
, φµ,4

(
ξ;λ, ˆ̀

)]
.

(3.D.9)
Note that this definition is only valid for λ not in the essential spectrum
associated to (3.48) – again seen as being defined on all of R (instead of
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on [−1
2T (µ), 1

2T (µ)]), so that the essential spectrum coincides with all λ =

λ(ˆ̀) ∈ C for which A∞µ (λ, ˆ̀) has an eigenvalue Λµ,j(λ, ˆ̀) ∈ iR. Since the

trace tr
(
Aµ(ξ;λ, ˆ̀)

)
= 0 (see (3.49)), Dµ(λ, ˆ̀) does not depend on ξ and

∑4
i=j Λµ,j(λ, ˆ̀) ≡ 0, therefore

Dµ
(
λ, ˆ̀
)

=limξ→∞ det[φµ,1(ξ;λ,ˆ̀),φµ,2(ξ;λ,ˆ̀),φµ,3(ξ;λ,ˆ̀),φµ,4(ξ;λ,ˆ̀)]

=limξ→∞ det[φµ,1(ξ)e−Λµ,1ξ,φµ,2(ξ)e−Λµ,2ξ,φµ,3(ξ)e−Λµ,3ξ,φµ,4(ξ)e−Λµ,4ξ]

=det[tµ,f (λ,ε)Eµ,1(λ,ε),tµ,s(λ,ε)Eµ,2(λ,ε),Eµ,3(λ,ε),Eµ,4(λ,ε)]

=4
√
Dtµ,f(λ,ˆ̀)tµ,s(λ,ˆ̀)

√
(1+λ)(λ+ˆ̀2), (3.D.10)

at leading order by (3.D.3), (3.D.4), (3.D.5), (3.D.6) and (3.D.8).

For any given µ > 1 and ˆ̀∈ R, the zeroes of Dµ(λ, ˆ̀) coincide (at leading
order) with the eigenvalues of (3.48), counting multiplicities [46, 47]. More-
over, under the assumptions in (3.D.1) and for ˆ̀= O(1), it follows by [46,47]
that the zeroes λµ,f,j of the fast component tµ,f (λ, ˆ̀) of the decomposition

of the Evans function Dµ(λ, ˆ̀) (see (3.D.10)) are at leading order given by
the eigenvalues

λµ,f,0 =
5

4
, λµ,f,1 = 0, λµ,f,2 = −3

4
, (3.D.11)

of the fast reduced stability problem

(Lf − λ)v = vξξ +

[
3sech2 1

2
ξ − (1 + λ)

]
v = 0, (3.D.12)

that can be obtained from the v-equation in (3.47) by using the leading order
approximations of Uµ(x) and Vµ(ξ) in If (Theorem 3.4), and setting u ≡ 0

– which is natural by (3.D.6), (3.D.4) and the fact that φµ,1(ξ;λ, ˆ̀) does not
have any leading order slow components for ξ < 0.

Since tµ,s(λ, ˆ̀) is meromorphic and has a pole at λµ,f,0 – as we will show
below – this result does not establish the instability of (Uµ(ξ), Vµ(ξ)). In
fact, this zero-pole cancellation mechanism is called ‘the resolution of the
NLEP paradox’. [46, 47]

Beyond the fast interval If , φµ,2(ξ;λ, ˆ̀) is – up to exponentially small

corrections – a solution of the constant coefficient problem φ̇ = A∞µ (λ, ˆ̀)φ

that does not have a fast growing component associated to Λµ,1(λ, ˆ̀) and

99



3 Striped pattern selection by advective reaction-diffusion systems

Eµ,1(λ, ˆ̀) – see (3.D.7). Therefore, φµ,2(ξ;λ, ˆ̀) is for ξ > 0 approximated by

φµ,2(ξ;λ, ˆ̀) = tµ,s(λ, ˆ̀)eΛµ,2(λ,ˆ̀)ξEµ,2(λ, ˆ̀) + t̃µ,s(λ, ˆ̀)eΛµ,3(λ,ˆ̀)ξEµ,3(λ, ˆ̀),
(3.D.13)

where t̃µ,s(λ, ˆ̀) is a second slow transmission function that measures the

slow decay of φµ,2(ξ;λ, ˆ̀) beyond If – see also (3.D.8). By construction,

φµ,2(ξ;λ, ˆ̀) is for ξ < 0 outside If approximated by

φµ,2(ξ;λ, ˆ̀) = eΛµ,2(λ,ˆ̀)ξEµ,2(λ, ˆ̀) (3.D.14)

by (3.D.5).

Under the assumptions (3.D.1), it follows by (3.47) that the u-component
of a solution φ(ξ) of (3.48) remains constant at leading order in the fast
region If , which implies by combining (3.D.13), (3.D.14) and (3.D.4) that

tµ,s(λ, ˆ̀) + t̃µ,s(λ, ˆ̀) = 1 (3.D.15)

at leading order. On the other hand, a similar comparison between (3.D.14)
for ξ < 0 and (3.D.13) for ξ > 0 implies that the passage of φµ,2(ξ;λ, ˆ̀) over

If must have a net effect on the p-component pµ,2(ξ;λ, ˆ̀) of φµ,2(ξ;λ, ˆ̀) at
leading order given by

∆spµ,2 = lim
ξ↓ 1√

ε

pµ,2(ξ;λ, ˆ̀)− lim
ξ↑−1√

ε

pµ,2(ξ;λ, ˆ̀)

=

√
D

ε

(
(tµ,s(λ, ˆ̀)

√
λ+ ˆ̀2 − t̃µ,s(λ, ˆ̀)

√
λ+ ˆ̀2)−

√
λ+ ˆ̀2

)

(3.D.16)

=− 2

√
D

ε

(
1− tµ,s(λ, ˆ̀)

)√
λ+ ˆ̀2

by (3.D.15).

The net effect originates from the total change over pµ,2(ξ;λ, ˆ̀) in If ,
which is by (3.48) and the explicit approximations of Theorem 3.4 given by

∆fpµ,2 =
∫ 1√

ε

− 1√
ε

p(ξ) dξ

= ε
∫∞
−∞

(
V 2
µ (ξ)u+ 2Uµ(ξ)Vµ(ξ)v

)
dξ

= ε
∫∞
−∞

(
1

4µ2 sech4 1
2ξ + 3vin,µ(ξ;λ) sech2 1

2ξ
)
dξ

(3.D.17)
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at leading order, by (3.D.1). Here we have used that the u-component of
φµ,2(ξ;λ, ˆ̀) is at leading order constant and equal to 1 in If and vin,µ(ξ;λ)
is defined as the unique, bounded (even) solution of

vξξ +

[
3sech2 1

2
ξ − (1 + λ)

]
v = − 1

4µ2
sech4 1

2
ξ, (3.D.18)

i.e.

vin,µ(ξ;λ) = (Lf − λ)−1

(
− 1

4µ2
sech4 1

2
ξ

)
(3.D.19)

by (3.D.12), the leading order approximation of the fast v-equation of (3.47)
– that at leading order decouples from the system.

Combining (3.D.16) and (3.D.17) yields an explicit expression for the
slow component of the decomposition of the Evans function Dµ(λ, ˆ̀) (see
(3.D.10))

tµ,s(λ, ˆ̀) = 1+
ε2

2
√
D
√
λ+ ˆ̀2

[
2

3µ2
+ 3

∫ ∞

−∞
vin,µ(ξ;λ) sech2 1

2
ξ dξ

]
(3.D.20)

at leading order. Note that it immediately follows from the definition (3.D.19)
of vin,µ(ξ;λ) that tµ,s(λ, ˆ̀) has (simple) poles at the zeroes λµ,f,0 and λµ,f,2
of tµ,f (λ, ˆ̀), i.e. at the even eigenvalues (3.D.11) of Lf . Hence these eigen-

values do not correspond to zeroes of Dµ(λ, ˆ̀) and thus not to spectrum as-
sociated to the stability of Uµ(ξ), Vµ(ξ). (Since the eigenfunction of (3.D.12)
associated to λµ,f,1 = 0 is odd and the right-hand side of (3.D.18) even as
function of ξ, λµ,f,1 = 0 does persist as eigenvalue of (3.48), see [46,47]). An

(eigenvalue, eigenfunction) pair of (3.48) is obtained by setting tµ,s(λ, ˆ̀) = 0

– in which case φµ,2(ξ;λ, ˆ̀) decays in both limits ξ → ±∞ (see (3.D.13) and
(3.D.14)) – i.e. by solving,

−2

√
λ+ ˆ̀2 =

ε2

2
√
D

[
2

3µ2
+ 3

∫ ∞

−∞
vin,µ(ξ;λ) sech2 1

2
ξ dξ

]
, (3.D.21)

Since the right-hand side has a simple pole near λµ,f,0 = 5
4 it immediately

follows that there must be a solution of (3.D.21) near λ = 5
4 if ε2√

D
is small

enough compared to the left-hand side of (3.D.21). Note that, this expands
and confirms the arguments in [45] about the instability of spatially periodic
patterns by setting ˆ̀= 0 (in the more special scaling there).

In the one-dimensional ˆ̀ = 0 setting, the patterns (Uµ(ξ), Vµ(ξ)) may

become stable as ε2√
D

grows in magnitude, i.e. becomes O(1) – as is shown
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in [45]. This mechanism is counteracted in the present two-dimensional
setting by the appearance of ˆ̀2 in the left-hand side of (3.D.21): if ˆ̀ is such

that
√
λ+ ˆ̀2 is large enough compared to ε2√

D
, the above argument can still

be applied, leading to the zeroes λpole(µ, ˆ̀) as in Theorem 3.3 for ˆ̀ large
enough and not too close to 0 – as in the statement of Theorem 3.3.

In the above derivation procedure it is assumed that D ˆ̀2 is small enough:
it has been neglected as a higher order effect in the reduction of the fast
v-equation of (3.47) to (3.D.18). This implies that the left-hand side of
(3.D.21) may grow to size L√

D
for L small enough (but a priori not beyond

that). Comparing this to the magnitude of the right-hand side – that is of

order ε2√
D

– implies that the instability argument can be applied as long as

ε is small enough – which also is the assumption under which the existence
of the spatially periodic stripes has been established in Theorem 3.4. 2
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4 Effects of nonlocal grazing on
dryland vegetation patterns

4.1 Introduction

Environmental stress, e.g. due to climate change or increased grazing, drives
desertification. Annual mean precipitation is likely to decrease in many
arid and semi-arid regions [87]. Contrary to climate change, grazing can in
principle be managed locally and directly, which creates the opportunity to
intervene. Timely measures that decrease the grazing pressure on ecosystems
may help prevent regime shifts to a degraded bare desert state [149,163]. For
this, expanding the understanding of grazing systems would be very useful.

A complexifying property of drylands is that spatially periodic vegeta-
tion patterns may emerge, even though the abiotic environment is (approx-
imately) spatially homogeneous. The widespread occurrence of periodic
vegetation patterns has been confirmed at the interface between arid and
semi-arid regions [36]. A widely accepted pattern forming mechanism is the
increased infiltration at vegetated soil (short range facilitation), in combina-
tion with overland redistribution of water during rain showers to the vege-
tated patches, where the soil conditions favor water infiltration (long range
competition) [150]. This mechanism is present in many spatially extended
arid ecosystem models, see e.g. [70, 79,97,148,156].

Figure 4.1 shows a simulation of the desertification process in one space di-
mension x for one of these models, the extended Klausmeier model [97,180].1

For large values of the rainfall a, the system resides in a stable homoge-
neously vegetated state. As rainfall decreases to a value below a = 3, the
homogeneous state becomes Turing unstable [190]. A vegetation pattern
forms with a certain wavelength, which remains the same for a range of a.
Then a cascade of transitions to patterns with larger and larger wavelengths
follows [180]. Finally, the system transitions from a large wavelength pattern

1With [180] corresponding to Chapter 2.
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Figure 4.1: Desertification process driven by decreasing rainfall a ( da
dt

= −10−4) in the absence
of grazing, starting with a spatially homogeneous vegetation at a = 3, showing the
evolution of the distribution of vegetation in a single space dimension x. The simulation
is based on the extended Klausmeier model, see Section 4.5 for further details.

to the bare desert state and the desertification process is completed. This
final transition is in accordance with (an extension of) one of Ni’s conjec-
tures [133]: the last patterns to destabilize have large wavelengths.

We aim to study the influence of grazing on this desertification process:
on the pattern formation, pattern adaptation and the final transition to a
bare desert state.

The most common way of incorporating senescence of vegetation n, in
reaction-diffusion type arid ecosystem modeling, is by including a linear
death term −mn, with m a constant parameter, see [70, 79, 97, 125, 135,
148, 156, 175, 202] among others. Occurrence of grazing has been viewed
as included in the term −mn [70, 125, 202], through a higher value of the
coefficient m [156]. Here we analyze a refinement to this modeling by taking
into account the nonlocal coupling grazing asserts on the vegetation [196]:
the availability of (superior) forage elsewhere decreases foraging at a given
location.

In Section 4.2 we account for the nonlocal coupling asserted by the graz-
ing by combining the concepts of ideal free distribution [65], functional and
numerical response [80,181]. For this, plant death mn is split into the usual
local linear term m0n (non-grazing related senescence) and a nonlocal cou-
pling for modeling grazing:

mn = m0n+ grazing. (4.1)
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4.1 Introduction

The grazing at any location will depend on the overall distribution of the
vegetation. For this we assume that herbivore dynamics is fast compared to
biomass evolution.

The ideal free distribution [65] is used to determine the spatial distribu-
tion of herbivores, which means that herbivores spread out such that the
suitability of all locations is the same. There have been recent studies on
(individual) herbivore foraging behavior in heterogeneous environments, see
e.g. [31,66] and the references therein, which extend this by also taking into
account finite animal movement speed and incomplete knowledge of the re-
source distribution. We note that on the population level, all individual
herbivores only need to comply with the ideal free distribution locally to
enforce an ideal free distribution globally. We introduce a parameter j that
models the preference of herbivores for the more vegetated locations.

The functional and numerical response [80,181] of herbivores on available
forage will be determined under simple assumptions both in the context of
sustained grazing and natural grazing. In a system with sustained grazing
we assume that the number of herbivores is kept constant, by always sup-
plying supplementary food if necessary. For natural grazing we assume that
supplementary food is never provided, so that herbivores need to completely
sustain themselves. These cases are two extremes.

Section 4.3 incorporates the derived grazing terms in the two-component
(surface water, plant biomass) extended Klausmeier model. This model has
been used to study the desertification process driven by decreasing rainfall
a both in one space dimension [180] and in two space dimensions [176]2, but
in the absence of nonlocal coupling caused by grazing.

We restrict attention to sustained grazing with j = 2 and natural grazing
with j = 1. These choices will allow for a direct comparison with the case
without grazing, because the dependence on grazing of the homogeneously
vegetated states themselves can in these cases be absorbed by the rainfall
parameter.

In Section 4.4 we perform a linear stability analysis about the homo-
geneous steady state from where the desertification process starts, for the
specific choices of grazing.

We show that for sufficiently severe sustained grazing with j = 2, the ho-

2With [176] corresponding to Chapter 3.
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4 Effects of nonlocal grazing on dryland vegetation patterns

mogeneous steady state is destabilized by a Hopf instability before patterns
form (at the Turing instability), which is in line with Result 1 below. In
this case complete desertification is immediate and vegetation patterns are
omitted. For natural grazing with j = 1 this is not the case: the homoge-
neous steady state generally becomes more susceptible to Turing instability
as grazing becomes more severe.

Section 4.5 presents simulations for the same specific choices of grazing
as in the previous section, all with decreasing rainfall as in Figure 4.1. For
sustained grazing with j = 2 we perform a sequence of simulations with
larger and larger numbers of herbivores, which increases the grazing pressure
on all vegetation distributions proportionally. Not only do these simulations
show that vegetation patterns can be suppressed (Result 1 below), but also
that in the desertification process the large wavelength patterns are skipped
(Result 2 below). For natural grazing with j = 1, the influence of increasing
the grazing pressure on all vegetation distributions proportionally is studied
with simulations. For this case we also vary herbivore persistence, which is
herbivore ability to survive at low levels of available forage. The simulations
show jumps from high to low forage states that become more dramatic if
natural grazing is set to be more severe (Result 3 below).

Concerning grazing in the extended Klausmeier model, we have the fol-
lowing main results:

1. A strong preference of herbivores for locations with large available for-
age (j > 1) may suppress vegetation patterns altogether (as a manifes-
tation of the tall poppy syndrome, Corollary 4.1 & Figure 4.6(d));

2. Sustained grazing impedes the existence of large wavelength patterns,
causing a violation of Ni’s conjecture (Figure 4.6, see also Section
4.6.1);

3. Natural grazing may create a dichotomy of high forage and low forage
system states, with large respectively small numbers of herbivores.
(Figure 4.8).

All these results likely hold for implementations of the derived grazing terms
in other arid ecosystem models, as we discuss at the end of Section 4.2.

Result 1 has profound consequences for the desertification process, since
in this case vegetation patterning will not always precede the transition to
the bare desert state, so vegetation patterns are not an early warning signal
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4.2 Modeling of grazing

for complete land degradation. Result 2 means that, in case of a coarsening
cascade of vegetation patterns, the penultimate state in the desertification
process need not have a long wavelength; together with Result 3 it implies
that

4. both sustained and natural grazing open up the possibility of a dra-
matic sudden regime shift [149,163].

For sustained grazing the shift will be towards the bare desert state [196].
For natural grazing the regime shift will result in a low forage state.

We conclude that the proposed grazing model refinements dramatically
alter the desertification process, but this alteration depends strongly on what
model refinement is implemented.

Remark 4.1. In this chapter we use as a domain a one-dimensional bounded
interval with length L, though all ideas can be transported to two-dimensional
or unbounded domains (by using an integration kernel for the grazing terms).
As patterns in one space dimension correspond to banded vegetation in two
space dimensions, we will refer to parts of the domain as areas.

4.2 Modeling of grazing

In this section we develop nonlocal terms to model grazing. Modeling as-
sumptions lead to Holling type II (sustained) and type III (natural) grazing
response functions [80]. We model grazing by dissecting it in three parts and
determining each part separately, as follows:

grazing = spatial distribution× functional response× numerical response
(4.2)

where we distinguish

• spatial distribution: spatial probability distribution of a single herbi-
vore as a function of the distribution of the vegetation, assuming an
ideal free distribution [65],

• functional response [80,181]: consumption rate of a single herbivore as
a function of available forage,

• numerical response [80, 181]: number of herbivores as a function of
available forage.

Combining these concepts in this way is, as far as we know, a novel approach.
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4.2.1 Ideal free distribution

An inhomogeneous distribution of biomass n(x) leads to an inhomogeneous
distribution of herbivores. Assuming that the system is in a steady state,
we want to determine an ideal free distribution [65] of herbivores, which we
express as the probability distribution of the location of a single herbivore.
For this we need to make assumptions on the suitability S of a location.
As the suitability is set to decrease with the density of herbivores, the ideal
free distribution is attained if the suitability of all (occupied) locations is
equal [65].

We set the suitability S of a location x to be solely determined by the
effective foraging potential which we assume to be of the form nj(x) (j > 0)
divided by the herbivore density φ(x) among whom this forage is shared:
S(n, φ) := nj/φ. The ideal free distribution is attained if S is constant, so
that the density of herbivores φ is proportional to nj and the probability
distribution of a single herbivore is given by

nj(x)
∫ L

0 nj(x) dx
, (4.3)

where the denominator takes care of the normalization.

If j = 1, S is proportional to the local biomass. If only the amount of
vegetation and not its spatial distribution affect total herbivory, then this is
the natural choice for j.

Locations with large amounts of forage provide herbivores the opportu-
nity to graze more efficiently, since it allows for a significant overlap of the
searching and handling of forage [182]. Thus the attractivity of a vegetation
patch may be superlinear in n, resulting in a suitability with j > 1. In this
case a distribution of vegetation concentrated in patches can be grazed more
than the same amount of biomass being smeared out equally over the whole
domain.

If plants become less susceptible to herbivory as they grow [165], e.g.
because of decreased palatability, then attractiveness of large vegetation
patches may be less than proportional to the amount of biomass. This
corresponds to a suitability with 0 < j < 1. In this case a homogeneous
distribution of vegetation will provide the most forage.

The effective forage potential of a vegetation distribution should reflect
the (un)attractiveness of patches of vegetation, through the parameter j.
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4.2 Modeling of grazing

We define as measures of forage per unit area

Ij(n) :=
1

L

∫ L

0
nj(x) dx, (4.4)

with j > 0. Which measure of forage is relevant relates to the utilization and
foraging behavior of the herbivores. From the subsequent derivation it will
follow that the grazing rate (= grazing

n ) is constant (‘flat rate’) if j = 1, so
equal for densely and scarcely vegetated locations. A value j > 1 will make
for a grazing rate that itself grows with increasing n (‘progressive rate’).

Substituting definition (4.4) into (4.3), the probability distribution of a
single herbivore can be written as

nj

LIj(n)
. (4.5)

4.2.2 Sustained grazing

Although (for steady vegetation distributions) the spatial distribution of
herbivores is constant on the population level, individual herbivores will still
move around, so that the functional response of herbivores is affected by time
spend moving and searching [64] (without handling [182]). Assuming that
herbivores spend a fixed amount of time on foraging, the total individual
forage of herbivores can be described by a Holling functional response type
II [80]. For a system with sustained grazing, a constant effective herbivore
number has been regarded as a good approximation of reality [134,196], any
grazing deficiency will be compensated by supplementary food. We denote
the imposed number of herbivores per unit area by himp.

From the previous discussion on sustained grazing we deduce two assump-
tions:

• the functional response is of type II;

• the numerical response is constant and equals himpL.

The functional response depends on the available forage, which is measured
by Ij(n) (4.4). For large Ij(n), intake of the herbivores satiates at a maximal
consumption rate cmax. The type II functional response is given by

cmaxIj(n)

Ih + Ij(n)
,

where Ih is the value of Ij(n) where half of the maximum consumption rate
is lost through searching.
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4 Effects of nonlocal grazing on dryland vegetation patterns

Applying equation (4.2) with (4.5) in the setting with sustained grazing
yields

grazing =
nj

LIj(n)
× cmaxIj(n)

Ih + Ij(n)
× himpL =

msus

Ih + Ij(n)
nj (4.6)

with msus := cmaxhimp the maximum rate of intake on the population level,
per unit area.

The total amount of grazing for sustained grazing is given by

Gj,sus(n) :=

∫ L

0

msus

Ih + Ij(n)
njdx =

msusLIj(n)

Ih + Ij(n)
. (4.7)

The grazing pressure, defined as total intake Gj,sus(n) divided by the total
forage mass LIj(n) [2], is given by

gj,sus(n) :=
Gj,sus(n)

LIj(n)
=

msus

Ih + Ij(n)
, (4.8)

so that (4.6) can be concisely written as

grazing = gj,sus(n) · nj . (4.9)

4.2.3 Natural grazing

In a natural setting, given an amount of forage Ij(n) (4.4), part of the her-
bivores will be able to sustain themselves by acquiring sufficient grazing
intake for maintenance, e.g. by increasing foraging time. Other herbivores
will disappear from the domain, e.g. due to death or emigration, relieving
the remaining herbivores of high competition for suitable forage. Thus in
this case the consumption of the remaining individuals is approximately con-
stant at a sufficient sustenance level csuf , but at the expense of a numerical
response. As the available forage Ij(n) decreases it may hardly be able to
support any wildlife, even before all biomass has disappeared. At the other
side of the spectrum where forage is abundant, the number of herbivores is
assumed to be delimited by other factors, e.g. due to top-down control by
predation.

We summarize this discussion on natural systems by listing two assump-
tions:

• the functional response is constant and equals csuf ;
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4.2 Modeling of grazing

• the numerical response is sigmoid (corresponding to type III).

We model the numerical response by the sigmoid function

hmaxLIj(n)2

Ih
2 + Ij(n)2 ,

where Ih in this case represents the value of Ij(n) where half of the maximal
number of herbivores hmaxL remain.

Applying equation (4.2) with (4.5) in the natural setting now yields

grazing =
nj

LIj(n)
× csuf ×

hmaxLIj(n)2

Ih
2 + Ij(n)2 =

mnatIj(n)

Ih
2 + Ij(n)2n

j (4.10)

with mnat := csufhmax the maximum rate of intake on the population level,
per unit area.

The total grazing is given by

Gj,nat :=

∫ L

0

mnatIj(n)

Ih
2 + Ij(n)2n

jdx =
mnatLIj(n)2

Ih
2 + Ij(n)2 (4.11)

so that we identify the grazing pressure being

gj,nat(n) :=
Gj,nat

LIj(n)
=

mnatIj(n)

Ih
2 + Ij(n)2 (4.12)

and (4.10) becomes
grazing = gj,nat(n) · nj . (4.13)

4.2.4 Comparison of sustained and natural grazing

We make a comparison of the total grazing (4.7), (4.11) and grazing pressure
(4.9), (4.13) functions in the sustained and natural setting. In (4.14) the
asymptotic behavior of the grazing functions is shown and we see that at
Ij(n) = Ih for both types of grazing intake is precisely half of the maximum
intake on the population level.

Gj,sus Gj,nat gj,sus gj,nat

Ij(n)→ 0 Gj,sus → 0 Gj,nat → 0 gj,sus → msus
Ih

gj,nat → 0

Ij(n) = Ih Gj,sus = msusL
2 Gj,nat = mnatL

2 gj,sus = msus
2Ih

gj,nat = mnat
2Ih

Ij(n)→∞ Gj,sus → msusL Gj,nat → mnatL gj,sus → 0 gj,nat → 0
(4.14)
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4 Effects of nonlocal grazing on dryland vegetation patterns

Regardless the setting, in a regime of abundant vegetation total grazing
converges to the maximal overall intake rate mL and grazing pressure di-
minishes. Also, as available forage Ij(n) becomes smaller but Ij(n) > Ih, the
grazing pressure monotonically increases. The main difference between the
sustained and natural setting occurs when Ij(n) decreases below Ih, since
then in the sustained setting grazing pressure increases more and more (due
to constant herbivore numbers, with a type II functional response) whereas
in the natural setting herbivore numbers start reducing so fast (sigmoid re-
sponse) that the grazing pressure starts to become smaller again from Ij(n)
below Ih onward. This is reflected by the sigmoid form of the total grazing
Gj,nat, see Figure 4.2.

Remark 4.2. Since the sustained and natural grazing functions (with msus =
mnat and the same value of j) are almost equal for Ij(n)� Ih, in this regime
the same dynamics are likely to occur for sustained and natural grazing.

With the proposed grazing functions set, we return to the main results of
the introduction to see how they fit.

1. The grazing rate (= grazing
n = gjn

j−1) is an increasing function of n for
j > 1 (‘progressive’), so that locations with relatively large biomass
bear a large grazing rate and locations with small biomass bear a small
grazing rate. If this difference is large enough, this may lead to levelling
out of vegetation distributions resulting in a spatially homogeneous
vegetation.

2. For sustained grazing, periodic vegetation patterns with large wave-
length have low available forage Ij(n) and thus are subjected to a
large grazing pressure, see Figure 4.2(b).

3. For natural grazing, states with intermediate amounts of forage Ij(n) =
Ih experience the heighest levels of grazing pressure, Figure 4.2(b). A
small Ih corresponds to persistent herbivores, so the available forage
Ij(n) of possibly inadmissible states is influenced by herbivore persis-
tence, creating a dichotomy of higher forage and lower forage states.

4.3 Incorporation of grazing in the extended
Klausmeier model

As announced in the introduction, we analyze the proposed nonlocal grazing
terms within an extended Klausmeier model [176, 180]. On flat ground, in
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Figure 4.2: Grazing as a function of available forage Ij(n). Here Ih designates the amount of forage
where the total grazing is half the maximum value and m = msus or mnat respectively.
Note that the graphs do not depend on j. Top panel: in both cases the total grazing
G converges to mL as forage becomes more and more abundant and diminishes if
vegetation becomes scarce. Bottom panel: in both cases the grazing pressure g is
(approximately) inversely proportional to available forage in case of abundant forage.
The function gj,sus monotonically increases to m/Ih as all vegetation disappears; in
contrast gj,nat initially increases to a maximum at Ij(n) = Ih but then converges to
zero for ever smaller forage amount.
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dimensionless form, it is given by

wt =d1wxx + f(w, n),

nt =d2nxx + g(w, n)
(4.15)

where the reaction terms are given by

f(w, n) =a− w − wn2,

g(w, n) =−mn+ wn2.
(4.16)

As mentioned in the introduction, we choose a finite but large domain [0, L],
with Neumann or periodic boundary conditions. The second order deriva-
tives wxx and nxx model water diffusion and plant dispersal, with water diffu-
sion being faster so d1 � d2 (although in the original Klaumeier model [97],
extensively analyzed in [173] and references therein, it holds that d1 = 0).
The parameter a ≥ 0 models rainfall and may change as a function of time
due to a changing climate; −w models evaporation, m is an effective death
rate and the terms ±wn2 model water uptake by the vegetation.

Remark 4.3. When having to fix parameters, we do so in accordance with
those employed in previous studies [97, 176, 180]: d1 = 500, d2 = 1 and
m0 = 0.45.

As discussed in the introduction we now restrict to certain types of grazing
that allow for a straightforward comparison with the case without grazing.
Specifically, we choose Ih = 1 and sustained grazing with j = 2 or natural
grazing with j = 1. It is of notational convenience that we now treat both
types of grazing at once, we assume that either one has been set to zero.
The realization of (4.1) with (4.9) and (4.13) is

mn =m0n+ g2,sus(n) · n2 + g1,nat(n) · n

=m0n+
msus

1 + I2(n)
n2 +

mnatI1(n)

1 + (I1(n))2n
(4.17)

where m0 > 0, msus,mnat ≥ 0 (and msusmnat = 0). By substituting (4.17)
in (4.16), grazing is incorporated in the extended Klausmeier model.

4.4 Linear analysis of pattern formation with grazing

The grazing terms can alter both the homogeneous steady state solutions
and their stability. In Section 4.3 we have restricted our attention to choices
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for which the effect on the homogeneous steady states can be absorbed in
the rainfall parameter, as we show in Section 4.4.1.

Next we focus on stability of the homogeneous steady states. Through
a linear stability analysis, we identify possible scenarios for destabilization
of a homogeneously vegetated state in the presence of grazing, which could
result in vegetation pattern formation but could also lead to immediate
desertification.

4.4.1 Homogeneous steady states

As in previous papers [176,180], when looking for homogeneous steady states
we set f(w, n) = g(w, n) = 0 (see (4.16)) and obtain:

a− w − wn2 = 0,

−mn+ wn2 = 0.

One solution is given by nbare = 0 and consequently wbare = a, which corre-
sponds to the bare desert state.

Otherwise
m =wn,

w =
a

1 + n2

(4.18)

so that
m =

an

1 + n2
. (4.19)

Because I1(n) = n and I2(n) = n2, (4.17) simplifies to

m = m0 +
msus +mnat

1 + n2
n. (4.20)

Substituting this into (4.19) we obtain

m0 =
(a−msus −mnat)n

1 + n2
.

Setting ā := a−msus −mnat this leads to

m0(1 + n2) = ān (4.21)

which is a quadratic equation in n having solutions

n±(ā,m0) =
ā±

√
ā2 − 4m2

0

2m0
(ā ≥ 2m0). (4.22)

115



4 Effects of nonlocal grazing on dryland vegetation patterns
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Figure 4.3: Homogeneous steady states of the extended Klausmeier model. For sustained grazing
with j = 2 or natural grazing with j = 1, the grazing is absorbed into the rainfall
a, together ā. In this case, the homogeneous steady states depend on ā identically as
they depend on a in the case without grazing ( [180], Figure 2.8).

This shows that a fold or saddle-node bifurcation occurs at

ā = 2m0, (4.23)

or a = 2m0 +msus +mnat. The other component w± can be computed from
(4.22) and any of the equations (4.18).

Remark 4.4. We started out with independent parameters a,m0,msus,mnat

and introduced ā as a dependent parameter. Since n± only directly depends
on ā and m0, for the continuation of this section it will be easier to view ā
as an independent parameter and have a depend on ā,msus,mnat.

Remark 4.5. The choice of Ih = 1 and the restriction to sustained grazing
with j = 2 and natural grazing with j = 1 means that when I2(n) respectively
I1(n) has decreased to 1, the total sustained grazing G2,sus respectively total
natural grazing G1,nat have decreased to half the maximum total grazing.
If destabilization of (w+, n+) for sustained grazing with j = 2 occurs for
n2

+ = I2(n+)� 1, then this likely also occurs for natural grazing, see Remark
4.2. Vice versa if (w+, n+) destabilizes for natural grazing with j = 1 when
n+ = I1(n+)� 1, then this likely also occurs for sustained grazing.
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4.4.2 Linearization of kinetics about (w±, n±)

We compute the linearization of the reaction terms about the homogeneous
steady states (w±, n±). To reduce notational burden, we abbreviate (w±, n±)
by (w, n) since we now only focus on these system states. As notation for
the derivatives we introduce

a1 :=
∂f

∂w
(w, n) = −1− n2,

a2 :=
∂f

∂n
(w, n) = −2wn,

a3 :=
∂g

∂w
(w, n) = n2,

a4 :=
∂g

∂n
(w, n) = −∂(m(n)n)

∂n
+ 2wn.

(4.24)

We note that a1 and a3 only depend on n. We view n±(ā,m0) as independent
of msus and mnat, see Remark 4.4. This also makes a1 and a3 independent of
these parameters. The function a2 does depend on msus and mnat through
w. By (4.16) and (4.17), g(w, n) = −m0n−g2,sus(n) ·n2−g1,nat(n) ·n+wn2,
so

a4 =−m0 −
∂g2,sus(n)

∂n
n2 − 2msusn

1 + n2
− ∂g1,nat(n)

∂n
n− mnatn

1 + n2
+ 2wn

=m0 −
∂g2,sus(n)

∂n
n2 − ∂g1,nat(n)

∂n
n+

mnatn

1 + n2
(4.25)

where we used (4.18) and (4.20). Since g2,sus and g1,nat contain integrals,
their differentation requires a bit more attention, for this we rely on outcomes
of the more general linearization computations in Appendix 4.A.

Given a perturbation (w̃(x), ñ(x)) we may split it in a homogeneous and
inhomogeneous part:

(w̃, ñ)hom:=

(∫ L

0
w̃ dx,

∫ L

0
ñ dx

)
,

(w̃, ñ)inh :=(w̃, ñ)− (w̃, ñ)hom.

For the inhomogeneous part it follows from (4.25), (4.A.5) and (4.A.6), since
β0 = 0, that

a4,inh = m0 +
mnatn

1 + n2
, (4.26)
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which does not depend on msus. For spatially homogeneous perturbations,
it follows that

a4,hom =m0 −
−msus

(1 + n2)2 · 2n · n2 −mnat
1− n2

(1 + n2)2n+
mnatn

1 + n2

=m0 +
2(msus +mnat)n

3

(1 + n2)2 .

For the stability against homogeneous perturbations,

Ahom :=
( a1 a2
a3 a4,hom

)
=

(
−1−n2 −2m0− 2(msus+mnat)n

1+n2

n2 m0+
2(msus+mnat)n3

(1+n2)2

)

is relevant. We calculate the determinant

det(Ahom) =a1a4,hom − a2a3

=(−1− n2)

(
m0 +

2(msus +mnat)n
3

(1 + n2)2

)

+

(
2m0 +

2(msus +mnat)n

1 + n2

)
n2

=m0(n2 − 1)

which does not depend on msus and mnat (since n only depends on ā and m0,
Remark 4.4). We note that n− < 1 so then det(Ahom) < 0, so (w−, n−) is
unstable. On the other hand n+ > 1 implies det(Ahom) > 0, so that stability
of (w+, n+) against homogeneous perturbations depends on the sign of the
trace, where a change in sign signals a Hopf instability. From now on we
focus on (w+, n+).

4.4.3 Hopf instability of (w+, n+)

Here (w, n) denotes (w+, n+). It holds that

tr(Ahom) =a1 + a4,hom

=− (1 + n2) +m0 +
2(msus +mnat)n

3

(1 + n2)2
(4.27)

which by equation (4.21) becomes

tr(Ahom) =− ān

m0
+m0 +

2(msus +mnat)m
2
0n

ā2
. (4.28)
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4.4 Linear analysis of pattern formation with grazing

At the Hopf instability threshold it holds that tr(Ahom) = 0, so

(
ā3 − 2m3

0(msus +mnat)
)
n = m2

0ā
2. (4.29)

We compute tr(Ahom) on the fold bifurcation, where ā = 2m0 (by (4.23))
and n = 1. Inserting this in (4.28) yields

tr(Ahom) =− 2 +m0 +
1

2
(msus +mnat)

{
< 0 if m0 < 2− 1

2(msus +mnat) (Hopf stable)
> 0 if m0 > 2− 1

2(msus +mnat) (Hopf unstable)

(4.30)

so the Hopf instability locus on the fold moves to smaller values of m0 for
increasing msus or mnat, and exists only for msus +mnat < 4 (since m0 > 0).

Since limā→∞ n = ∞ but n < ā
m0

, it holds that for fixed m0 > 0 and
msus,mnat ≥ 0

lim
ā→∞

tr(Ahom) = −∞. (4.31)

Lemma 4.1 (Hopf curve monotonicity). No Hopf instabilities exist for
triplets (m0,msus,mnat) with m0 < 2 − 1

2(msus + mnat). For triplets with
m0 ≥ max

{
0, 2− 1

2(msus +mnat)
}

, there exists a unique Hopf instability; it
moves to higher values of ā for increasing m0, msus or mnat.

Proof. Dividing (4.29) by ā2 we obtain

ā3 − 2m3
0(msus +mnat)

ā2
n = m2

0. (4.32)

Define

D− :=
{

(ā,m0,msus,mnat) : ā2 − 2m3
0(msus +mnat) ≤ 0

}
,

D+ :=
{

(ā,m0,msus,mnat) : ā2 − 2m3
0(msus +mnat) > 0

}
.

Since the right-hand side of (4.32) is positive, it can’t have solutions on D−,
so we restrict attention to D+.

On D+ the left-hand side is a monotonically increasing function of ā and
the right-hand side is independent of ā, so that for each combination m0 > 0,
msus,mnat ≥ 0 there can be at most one Hopf instability. By (4.30) and
(4.31) a unique Hopf instability exists only for m0 > 2 − 1

2(msus + mnat)
(and m0 > 0).
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4 Effects of nonlocal grazing on dryland vegetation patterns

On D+, for each fixed ā, the left-hand side is a decreasing function of m0,
msus and mnat, since n is a decreasing function of m0 for each fixed ā. The
right-hand side is a non-decreasing function of m0, msus and mnat. So the
Hopf instability moves to a higher value of ā for larger m0, msus or mnat.

Since msus and mnat are interchangeable in (4.28), (w, n) becomes equally
more susceptible to Hopf instability in case of increased sustained grazing
with j = 2 or increased natural grazing with j = 1. The Hopf instabilities for
various values of msus,mnat for a realistic choice of parameters are plotted
in Figure 4.4, illustrating that the Hopf instability curve moves to larger ā
for increasing msus or mnat.

4.4.4 Turing instability of (w+, n+)

We again denote (w+, n+) by (w, n). Regarding a possible Turing instability
we look at spatially inhomogeneous perturbations, with linearization given
by

Ainh(ā,m0,msus,mnat) :=

(
a1 a2

a3 a4,inh

)

=

(
−1− n2 −2m0 − 2(msus+mnat)n

1+n2

n2 m0 + mnatn
1+n2

)
,

(4.33)

see (4.24) and (4.26). We compute

det(Ainh) =a1a4,inh − a2a3

=(−1− n2)

(
m0 +

mnatn

1 + n2

)
+

(
2m0 + 2n

msus +mnat

1 + n2

)
n2

=(n2 − 1)m0 +
−mnatn−mnatn

3 + 2n3(msus +mnat)

1 + n2

=(n2 − 1)m0 +
2msusn

3 +mnatn(n2 − 1)

1 + n2
> 0

and define

Tur(ā,m0,msus,mnat) := Γ− 2
√
d1d2det(Ainh), (4.34)

where Γ := d1a4,inh + d2a1, with d1 and d2 the diffusion constants.
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4.4 Linear analysis of pattern formation with grazing

The homogeneous steady state is Turing unstable if Tur > 0 and Turing
stable if Tur < 0, see [176]. Note that these results follow from analysis of
the continuous spectrum that relates to unbounded domains, in case of a
(large) finite domain the instability is delayed (by a negligible amount).

Like for the Hopf instability we investigate Turing (in)stability on the fold
bifurcation, where ā = 2m0 (4.23) and n = 1. Substitution in (4.34) yields

Tur =d1

(
m0 +

mnat

2

)
− 2d2 − 2

√
d1d2msus





< 0 if m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 (Turing stable)

> 0 if m0 > 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 (Turing unstable).

(4.35)

Lemma 4.2 (Turing curve monotonicity). No Turing instabilities exist for

triplets (m0,msus,mnat) with m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 . For triplets

(m0,msus,mnat) with m0 ≥ max
{

2d2
d1

+ 2
√

d2
d1
msus − mnat

2

}
there exists a

unique Turing instability; it moves to higher values of ā for increasing m0.

Proof. This monotonicity was already shown in [176] in the absence of nonlo-
cal grazing terms (msus = mnat = 0), we will apply the framework provided
there to also apply it to the cases with grazing. It is sufficient to show that

sgn
∂a1

∂ā
= sgn

∂a4,inh

∂ā
= sgn

(
−∂det(Ainh)

∂ā

)
= −1

which means that increasing ā acts stabilizing and

sgn
∂a1

∂m0
= sgn

∂a4,inh

∂m0
= sgn

(
−∂det(Ainh)

∂m0

)
= 1

which means that increasing m0 acts destabilizing.
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4 Effects of nonlocal grazing on dryland vegetation patterns

Since a1 is unaffected by the grazing terms, we only compute

∂a4,inh

∂ā
=mnat

1− n2

(1 + n2)2

∂n

∂ā
< 0

∂a4,inh

∂m0
=1 +mnat

1− n2

(1 + n2)2

∂n

∂m0
> 0

∂det(Ainh)

∂ā
=2m0n

∂n

∂ā
+
msus

(
n4 + 6n2

)
+mnat

(
n4 + 3n2 − 1

)

(1 + n2)2

∂n

∂ā
> 0

∂det(Ainh)

∂m0
=2m0n

∂n

∂m0
+ n2 − 1

+
msus

(
n4 + 6n2

)
+mnat

(
n4 + 3n2 − 1

)

(1 + n2)2

∂n

∂m0
< 0

where the final estimate follows from the estimate ∂n
∂m0
≤ − a

m2
0

as in [176].

Since for m0 < 2d2
d1

+ 2
√

d2
d1
msus − mnat

2 , (w, n) was already Turing stable

on the fold ā = 2m0, it remains stable for all ā > 2m0. The linear results on
pattern formation from [176] apply, in particular that for fixedmsus,mnat ≥ 0

and m0 ≥ 2d2
d1

+2
√

d2
d1
msus−mnat

2 , the unique ā-value of the Turing instability

locus monotonically increases as m0 increases.

Sustained grazing with j = 2

The previous result Lemma 4.2 automatically leads to the simple conse-
quence that a desertification process without Turing patterns is promoted
by increasing msus.

Corollary 4.1. Let mnat = 0 and msus be fixed. If

m0 < 2
d2

d1
+ 2

√
d2

d1
msus,

then (w, n) doesn’t become Turing unstable as ā decreases.

We now study further how sustained grazing with j = 2 affects the Turing
instability. We do some preparatory work. First we compute the component-
wise derivative of Ainh (4.33) with respect to msus:

∂Ainh

∂msus
=
(

0 −2n

1+n2

0 0

)
(4.36)
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4.4 Linear analysis of pattern formation with grazing

Now the first and second derivatives of Tur against any m•, be it msus or
mnat, are given by

∂Tur

∂m•
=
∂Γ

∂m•
−
√

d1d2

det(Ainh)

∂det(Ainh)

∂m•
, (4.37)

∂2Tur

∂m•2
=
∂2Γ

∂m•2
+

√
d1d2

2 (det(Ainh))
3
2

∂det(Ainh)

∂m•
−
√

d1d2

det(Ainh)

∂2det(Ainh)

∂m•2
.

(4.38)

Lemma 4.3. The Turing unstable region in (m0, ā)-space becomes smaller
as msus increases.

Proof. From (4.36) we see that

∂det(Ainh)

∂msus
=− ∂a2

∂msus
a3 =

2n

1 + n2
n2 =

2n3

1 + n2
> 0,

∂Γ

∂msus
=0,

which together with (4.37) leads to ∂Tur
∂msus

< 0, so that the Turing unstable
region becomes smaller as msus increases.

The range in m0 for which the Turing instability is not the primary desta-
bilization mechanism may be larger than the lower bound presented in Corol-
lary 4.1, since the increase of msus pushes the Turing instability to the back-
ground (Lemma 4.3) but promotes the Hopf instability (Lemma 4.1). So
after the Turing instability emerges from the fold it may still need to over-
take the Hopf instability as primary destabilization mechanism, see Figure
4.4.

Natural grazing with j = 1

For linear (j = 1) natural grazing, it is not as clear how the Turing instability
is affected. The component-wise derivative

∂Ainh

∂mnat
=

(
0 −2n

1+n2

0 n
1+n2

)
. (4.39)
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4 Effects of nonlocal grazing on dryland vegetation patterns

of (4.33) yields

∂det(Ainh)

∂mnat
=a1

∂a4

∂mnat
− ∂a2

∂mnat
a3 = (−1− n2)

n

1 + n2
+

2n

1 + n2
n2

=
n3 − n
1 + n2

> 0, (4.40)

∂Γ

∂mnat
=d1

∂a4,inh

∂mnat
=

d1n

1 + n2
> 0,

and with (4.37) it follows that

∂Tur

∂mnat
=

d1n

1 + n2
−
√

d1d2

det(Ainh)

n3 − n
1 + n2

=

√
d1d2n

1 + n2

(√
d1

d2
− n2 − 1√

det(Ainh)

)
,

and when assuming that msus = 0,

∂Tur

∂mnat
=

√
d1d2n

1 + n2

(√
d1

d2
−
√

n2 − 1

m0 + mnat
1+n2

)
.

This implies that the derivative tends to be positive for n ' 1 but becomes
negative for n � 1. Indeed, it can only be negative if n2 > d1

d2
m0, which

for d1 = 500, d2 = 1 and m0 = 0.45 (Remark 4.3) leads to n > 15 so that
through (4.22), ā > 6 is necessary. Thus we conclude that, in this case, for
ā ≤ 6 the Turing unstable region becomes larger, which is in agreement with
Figure 4.4. Together with the monotonicity result Lemma 4.2, this does
restrict the Turing instability location for ā > 6.

It is possible to prove a more general result based on the second derivative
of Tur with respect to mnat.

Lemma 4.4. Any region in (m0, ā)-space that becomes Turing unstable due
to an increase of mnat will remain unstable as mnat increases further.

Proof. It holds that

∂2det(Ainh)

∂mnat
2

=0,

∂2Γ

∂mnat
2

=0.

which after substitution together with (4.40) into (4.38) yields ∂2Tur
∂m2

nat
> 0.

124



4.5 Simulations with grazing and decreasing rainfall

4.5 Simulations with grazing and decreasing rainfall

In this section we show the results of simulations of the extended Klausmeier
model (4.15) with grazing incorporated (Section 4.3) to see how the pres-
ence of grazing terms changes the desertification process under decreasing
rainfall. For this we fix parameters to the values d1 = 500, d2 = 1 and
m0 = 0.45 (Remark 4.3). Application of noise tends to decrease the delay
in destabilization and the jump in wavenumber at transition [180], in all
simulations we apply white multiplicative noise of small amplitude 0.05%
(on both the water and the biomass component) at every integer t. Also the
rate of change of rainfall a has an influence [180], here we fix ∂a

∂t = −10−4.
As initial condition we take the homogeneously vegetated state at a rainfall
level where it is still stable. The spatial domain size is 1000, with periodic
boundary conditions.

4.5.1 Varying maximum sustained intake

For the simulations presented in this subsection we vary the maximum sus-
tained intake msus while fixing Ih = 1 and j = 2. This corresponds to the
grazing pressures plotted in Figure 4.5(a). From these plots it is visible
that especially for small I2(n), which encompass patterns with a (very) long
wavelength, the grazing pressure becomes exceedingly large. On the other
end, from the linear analysis performed in Section 4.4.4 we know that the
Turing instability may be delayed (in ā), or even suppressed, by increasing
msus with j = 2.

Together with Figure 4.1, the panels in Figure 4.6 show the influence of
increasing the maximal intake on the population level (per unit area) msus on
the desertification process driven by decreasing rainfall. We see that the Tur-
ing instability occurs at higher values of a, but lower values of ā = a− msus,
for larger msus. This is consistent with Lemma 4.3. For the highest value
msus = 8, no Turing patterns form, which is consistent with Figure 4.4 from
which it can be read of that, at m0 = 0.45, the Hopf instability occurs at
a higher value of ā (thus also a) than the Turing instability. This is in
accordance with main Result 1 of Section 4.1.R

From the simulations it is also visible that for msus ≥ 2, the final transition
of the system from a vegetated state to the bare desert state occurs at a
relatively small wavelength (large wavenumber) compared to the simulation
without grazing (Figure 4.1). This is in supports of main Result 3. In terms
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ā

m0

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

ā
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ā

m0

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6

ā
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Figure 4.4: The bottom panel is a zoom of the top panel, both showing the influence of grazing
on Turing and Hopf instability curves for d1 = 500 and d2 = 1 (Remark 4.3). The
red curve is the Turing instability locus without grazing and the purple region is
the corresponding Turing stable region. The black line ā = 2m0, on the boundary
of the white region where (w±, n±) does not exist, is the fold bifurcation. Green
curves represent Turing instabilities for natural grazing with j = 1, Ih = 1, L-R:
mnat = 8, 6, 4, 2. Brown curves are Turing instabilities for sustained grazing with
j = 2, Ih = 1, L-R: msus = 2, 4, 6, 8. Black curves show Hopf instability curves, T-B:
m• = 8, 6, 4, 2, 0, with m• = msus or mnat. Dark-grey region corresponds to Hopf
unstable region in absence of grazing, m• = 0. The point with label T is the locus of
the Turing instability for m0 = 0.45, msus = mnat = 0.
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4.5 Simulations with grazing and decreasing rainfall
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Figure 4.5: Grazing pressures as a function of available forage Ij(n) for the simulations shown in
this section. In all cases the grazing pressure monotonically changes for all values of
forage. Top panel: sustained grazing with j = 2 for Ih = 1, varying msus. Middle
panel: natural grazing with j = 1 for Ih = 1, varying mnat. Bottom panel: natural
grazing with j = 1 for mnat = 2, varying Ih.
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4 Effects of nonlocal grazing on dryland vegetation patterns
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Figure 4.6: Influence of the maximum rate of intake msus = 2, 4, 6, 8 of sustained grazing with

superlinear grazing j = 2 on the evolution of vegetation with a slowly decreasing
rainfall parameter a, ∂a

∂t
= −10−4, and Ih = 1. The colorbar besides panel (d) holds

for all simulations in this figure. Panel (e) shows the evolution of forage per unit area
I2(n) in the final stages, with very fast jumps to the bare desert state.
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4.5 Simulations with grazing and decreasing rainfall

of loss of available forage, the final transition to the bare desert state becomes
more dramatic as msus increases, as depicted in Figure 4.6(e) (Result 4,
Section 4.1).

4.5.2 Varying maximum natural intake

For the following simulations we vary mnat, while Ih = 1 and j = 1. Figure
4.5(b) shows that for the simulations shown in this subsection, distributions
with I1(n) = Ih = 1 are penalized the most compared to the simulation
without grazing in Figure 4.1. This feeds the expectation that transitions
from vegetation pattern with large I1(n) to small I1(n) occur and the jumps
in available forage at these transitions becomes larger as mnat increases.
Since in general gj,nat → 0 as Ij(n)→ 0, the destabilization of patterns with
low I1(n) will not occur significantly earlier in a. As a result, the system
spends more time residing in vegetation patterns with long wavelength (low
wavenumber) as mnat increases, which is confirmed by the simulations in
Figure 4.7.

The value of a at the Turing instability, where pattern formation oc-
curs, increases faster than mnat increases. This corresponds to an increasing
ā = a−mnat, which is in line but goes beyond what was shown in Section
4.4.4.

4.5.3 Varying natural herbivore persistence

In the final simulations we vary the herbivore peristence Ih in a natural
grazing setting where mnat = 2 and j = 1. In Figure 4.5(c) we see that
increasing the persistence of herbivores, by decreasing Ih, has a dramatic
effect on the grazing pressure on vegetation with small I1(n) and barely any
effect on vegetation with large I1(n). The panels in Figure 4.8 together with
Figure 4.7(a) show how persistence affects the desertification process under
decreasing rainfall.

Because we already saw in Figure 4.7(a) that pattern formation at the
Turing instability occurs for n � 1, and persistence does not really affect
grazing pressure at this level of available forage Ij(n), it comes as no surprise
that the location of the Turing instability in a is not different for different
values of Ih (Figure 4.8).

From Figure 4.2(b) we recall that Ih determines at what intermediate
value of available forage the grazing pressure is maximal. The smaller Ih,
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Figure 4.7: Influence of the maximum natural intake of natural grazing mnat = 2, 4, 6, 8 with linear

foraging potential (j = 1) on vegetation evolution with slowly decreasing rainfall a,
da
dt

= −10−4, and Ih = 1. The colorbar besides panel (d) holds for all the simulations
in this figure. Panel (e) shows the evolution of forage per unit area I1(n) in the final
stages.
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4.6 Discussion and outlook

the more dramatic the regime shift from high to low forage is. In Figure
4.8(d), near a = 3 a large majority of the vegetation patches disappears,
which is also visible as a very fast jump in available forage (Results 3 and 4
of Section 4.1).

Hysteresis is expected to occur when returning from a vegetation pattern
with small available forage to a vegetation pattern with large available for-
age, since intermediate patterns - that the system would reside in on its
journey otherwise - are inadmissible. This hysteresis will therefore probably
be stronger then reported for systems without explicit grazing [172,180].

4.6 Discussion and outlook

The effects of grazing on system stability has already been studied for a
nonspatial model in [134]. In another nonspatial model [194], soil degrada-
tion together with a vegetation dependent herbivore population allows for
the possibility of irreversible vegetation change; analysis suggests this is less
likely to occur for a natural herbivore population than for human controlled
populations. In [196] it is shown that reduced plant cover results in focusing
of herbivore grazing on the remaining vegetation, which may lead to the
collapse of the entire vegetation [149].

The results in this chapter are in line with these previous model studies. In
the simulations (Section 4.5), critical transitions have been shown to occur
for both sustained and natural grazing (Result 4). The human controlled
case in [196] corresponds to sustained grazing, where the vegetation change
leads to the bare desert state, a transition that is irreversible. The prediction
of these regime shifts by finding early-warning signals is of great interest
[163], e.g. for conservation and management purposes.

We assumed throughout that herbivore dynamics is fast compared to
biomass evolution. This assumption may not hold at the very fast transitions
in the simulations of Figure 4.8(c) and (d); in that case herbivore population
decrease may not keep up with forage decrease, which is expected to lead to
an even more dramatic downfall of biomass [178].

We continue by putting forward some promising directions for future anal-
ysis and briefly discuss some possible model extensions.
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Figure 4.8: Influence of the persistence of natural grazing Ih = 0.5, 0.25, 0.1, 0.05 with linear for-

aging potential (j = 1) on vegetation evolution with slowly decreasing rainfall a,
da
dt

= −10−4, and mnat = 2. The colorbar besides panel (d) holds for all the sim-
ulations in this figure. Panel (e) shows the evolution of forage per unit area I1(n) in
the final stages, with very fast jumps in the regimes with larger persistence.
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4.6 Discussion and outlook

4.6.1 Analysis

Construction of Busse balloons

Ultimately, the computation of overviews of stable periodic vegetation pat-
terns, called Busse balloons [21,176,180,199], would provide further insight
in the influence of grazing on desertification scenarios. A Busse balloon is a
representation of stable periodic patterns by a parameter-wavenumber pair.
The computation requires the implementation of the linearizations of the
grazing terms computed in Appendix 4.A in continuation software.

In this context, we translate the main results from the introduction into
the following hypotheses on the Busse balloon.

1. Progressive rate grazing, where j > 1, leads to deflation of the Busse
balloon.

2. Sustained grazing leads to Busse balloon lift-off. Without grazing the
Busse balloon is connected to the x-axis through the existence of stable
large wavelength patterns.

3. Natural grazing may split the Busse balloon in two disjoint parts. This
may occur if states with intermediate available forage, which become
inadmissible due to large grazing pressure, form a connected region in
(rainfall,wavenumber)-space.

Concerning hypothesis 1, it would be interesting to see what destabiliza-
tion mechanism is responsible for the deflation of the Busse balloon. The
boundary of the Busse balloon has been found to be given primarily by a
sideband instability [180,199], although for small wavenumbers (large wave-
lengths) the boundary is given by a Hopf instabilities [51, 199]. Since the
destabilization of the homogeneous steady state (w+, n+) can become dom-
inated by Hopf instabilities (Section 4.4.4), the same could hold for periodic
patterns and a larger part of the boundary of the Busse balloon may consist
of Hopf instabilities. In case of a supercritical Hopf instability, the emergence
of a limit cycle could act as an early warning signal.

Singular perturbation theory for sustained grazing: obstruction of
existence of large wavelength patterns

We briefly sketch how sustained grazing may obstruct the existence of a large
wavelength (small wavenumber) patterns, namely that of a single patch,
within the extended Klausmeier model (4.15). We start out with the case
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4 Effects of nonlocal grazing on dryland vegetation patterns

j = 2.

We view the limit L → ∞, in which the single patch converges to a
homoclinic state. In this limit the measure of forage per unit area of the
pulse n, I2(n) (4.4), converges to 0. Thus the grazing pressure g2,sus (4.8)
converges to msus

Ih
. If the loss in vegetation through grazing is larger than

the growth through the water uptake,

g2,susn
2 =

msus

Ih
n2 > wn2,

then the homoclinic pulse can’t be a steady state. Since w ≤ a uniformly, it
follows that for a < msus

Ih
the homoclinic pulse does not exist.

For j = 1, the nonlocal grazing contributes on the level of the linear death
−m0n. By moving to the homoclinic limit the effective linear death rate
becomes m0 + msus

Ih
.

Much more sophisticated results should be available for both the case
j = 1 and j = 2 by making use of the singular perturbed nature of (4.15),
which originates from the fact that d1 � d2. Large wavelength vegetation
patterns consist of localized pulses. These pulses can be constructed by using
geometric singular perturbation theory [45,50].

4.6.2 Modeling

Slope and two space dimensions

The analysis here has been restricted to a finite domain in one space di-
mension without a slope. Future research in two dimensions with downslope
water advection could show how grazing affects the stability of vegetation
bands [176].

Combination of functional and numerical response

The division between sustained and natural grazing is a division between
two extremes. Most populations of herbivores will exhibit both a functional
and a numerical response. This may result in a response (4.2) that is the
product of a Holling type II functional response and a type III numerical
response, again yielding a sigmoid total grazing curve (albeit not of type
III).
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4.A General linearization of nonlocal grazing terms

Palatability

Grazing resistance mechanisms of vegetation include grazing tolerance (large
regrowth rates) and grazing avoidance (accessibility and palatability) [40].
In semi-arid rangelands, deterioration of rangelands is shown by replacement
of palatable by unpalatable grasses [9]. Experiments confer that selective de-
foliation of palatable species could lead to their replacement by unpalatable
species in grasslands [129]. On a Mongolia study location it was found that
sites with a large grazing pressure developed a periodic pattern of unpalat-
able plants, whereas sites with less grazing pressure have a homogeneous
vegetation cover and are dominated by palatable plants [136].

In arid ecosystem modeling it is rather common to make no distinction
between plant species with different functional traits, e.g. palatability. It
is thus assumed that all the present vegetation is equally available for con-
sumption [134], a notable exception being [69]. A future distinction between
palatable and unpalatable vegetation may retrieve the transition from spa-
tially homogeneous predominantly palatable vegetation to an unpalatable
periodic vegetation pattern in Mongolia [136]. Also the Holling functional
response may change from type II to type III [80], as herbivores may need
to learn to distinguish palatable plants in between unpalatable plants.

An increasing percentage of unpalatable vegetation may be an early warn-
ing signal for desertification, specific for increased environmental stress due
to an increased grazing pressure. Reduced grazing pressure does not prompt-
ly lead to the palatable species recovering dominance [204]. The replacement
of palatable by unpalatable species is not visible as a collapse in ecosystem
biomass, although the economic service provided by the ecosystem does drop
dramatically.

4.A General linearization of nonlocal grazing terms

For reference, we compute the linearization of the grazing terms (4.9) and
(4.13). These are of use when determining the stability of system states. We
start out by linearizing about arbitrary system states and end by simplifying
to spatially homogeneous states.
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4 Effects of nonlocal grazing on dryland vegetation patterns

It holds that, for general j ≥ 1, the Gâteaux differential of Ij is given by

dIj(n, ñ) = lim
h→0

Ij(n+ hñ)− Ij(n)

h

= lim
h→0

∫ L
0

∫ 1
0

d
ds(n+ hsñ)jdsdx

Lh

= lim
h→0

1

L

∫ L

0

∫ 1

0
j(n+ hsñ)j−1ñ dsdx

=
j

L

∫ L

0
nj−1ñ dx (4.A.1)

where we have ignored technical details for interchanging limit and integral.

Now we differentiate gj,sus and gj,nat:

dgj,sus(n, ñ) = lim
h→0

gj,sus(n+ hñ)− gj,sus(n)

h

= lim
h→0

msus
Ih+Ij(n+hñ) − msus

Ih+Ij(n)

h

=
−msus

Ih + Ij(n)
lim
h→0

1

Ih + Ij(n+ hñ)

Ij(n+ hñ)− Ij(n)

h

=
−msus

(Ih + Ij(n))2dIj(n, ñ), (4.A.2)

dgj,nat(n, ñ) = lim
h→0

gj,nat(n+ hñ)− gj,nat(n)

h

= lim
h→0

mnatIj(n+hñ)

Ih
2+Ij(n+hñ)2 − mnatIj(n)

Ih
2+Ij(n)2

h

=
mnat

Ih
2 + Ij(n)2 lim

h→0

Ih
2 − Ij(n)Ij(n+ hñ)

Ih
2 + Ij(n+ hñ)2

Ij(n+ hñ)− Ij(n)

h

=mnat
Ih

2 − Ij(n)2

(
Ih

2 + Ij(n)2
)2dIj(n, ñ). (4.A.3)
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4.A General linearization of nonlocal grazing terms

4.A.1 Spatially homogeneous states

Restricting to spatially homogeneous states, denoted by n±, the Gâteaux
differential of Ij (4.A.1) simplifies to

dIj(n±, ñ) =
jnj−1
±
L

∫ L

0
ñ dx. (4.A.4)

Depending on the boundary conditions we can choose an appropriate basis
for the perturbations.

Neumann boundary conditions

A basis of L2[0, L] with Neumann boundary conditions is given by the func-
tions ñk(x) = cos(kx) with k an integer multiple of π

L . Substitution in
(4.A.4) yields

dIj(n±, cos(kx)) =

{
jn±j−1 if k = 0
0 if k 6= 0

Thus the linearization acts differently on spatially homogeneous and spatially
inhomogeneous perturbations.

Any perturbation ñ can be written as a linear combination ñ =
∑∞

k=0 βkñk.
Substitution into (4.A.2) and (4.A.3) yields

dgj,sus(n±, ñ) =β0
−msus

(Ih + n±j)
2 jn±

j−1, (4.A.5)

dgj,nat(n±, ñ) =β0mnat
Ih

2 − n±2j

(Ih
2 + n±2j)

2 jn±
j−1. (4.A.6)

Periodic boundary conditions

For periodic boundary conditions a basis is given by functions cos(kx) and
sin(kx), but now k is an integer multiple of 2π

L , leading to the same results
(4.A.5) and (4.A.6) since also dIj(n±, sin(kx)) vanishes (for k an integer
multiple of 2π

L ).
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5 Quasilinear parabolic
reaction-diffusion systems: user’s
guide to well-posedness, spectra
and stability of travelling waves

This paper is concerned with quasilinear parabolic
reaction-diffusion-advection systems on extended do-
mains. Frameworks for well-posedness in Hilbert
spaces and spaces of continuous functions are pre-
sented, based on known results using maximal reg-
ularity. It is shown that spectra of travelling waves
on the line are meaningfully given by the familiar
tools for semilinear equations, such as dispersion re-
lations, and basic connections of spectra to stability
and instability are considered. In particular, a prin-
ciple of linearized orbital instability for manifolds of
equilibria is proven. Our goal is to provide easy ac-
cess for practitioners to these rigorous aspects. As
a guiding example the Gray-Scott-Klausmeier model
for vegetation-water interaction is considered in de-
tail, which is a rescaling of the extended Klausmeier
model considered in earlier chapters.

Appeared in SIAM Journal on Applied Dynamical Systems in 2014 [127].
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5 Quasilinear parabolic reaction-diffusion systems

5.1 Introduction

In this paper we present rigorous frameworks for well-posedness, spec-
tra and nonlinear stability of travelling wave solutions (pulses, fronts and
wavetrains) of quasilinear parabolic reaction-diffusion systems of the form

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R, (5.1.1)

with unknown u(t, x) ∈ RN . The nonlinearities a, f are smooth and a(u) ∈
RN×N is strongly elliptic in the domain of interest, but does not have to be
symmetric. We further consider a variant of (5.1.1) in higher space dimen-
sions x ∈ Rn up to n = 3. The nonlinearities may also depend explicitly on
x in an appropriate way.

Quasilinear reaction-diffusion systems arise as models in various contexts
due to nonlinear fluxes, density dependent diffusion, self or cross diffusion,
see e.g. [3,152,153]. For pattern formation problems it is natural to consider
an extended domain and to neglect the influence of boundary conditions.
Travelling waves, i.e., solutions of (5.1.1) constant in a co-moving frame
ξ = x − ct with speed c ∈ R having constant or periodic asymptotic
states, are among the simplest interesting reaction-diffusion patterns and
are observed for different types of quasilinear systems, see, e.g., [82,104,117,
126,131,169,205].

For semilinear parabolic problems on the line it is well-known that e.g.
H1 or BUC1 are suitable phase spaces for well-posedness in a perturbative
setting [27, 78]. The corresponding spectrum of the linearization is charac-
terized in terms of the dispersion relation and the Evans function [63, 157].
In some situations, in particular when the essential spectrum does not touch
the imaginary axis, nonlinear (orbital) stability of a wave can directly be de-
duced by a principle of linearized stability [78, 166]. An excellent reference
for the spectrum and stability of nonlinear waves in the semilinear context
is [90]. We also mention the abstract solution theory in Sobolev spaces [112],
which can be used for fluid problems in unbounded domains, e.g., [14, 191].

For quasilinear models an analogous unified framework for well-posedness,
spectra and stability of waves seems less known. It seems that the major-
ity of concrete well-posedness results in the literature concerns bounded
domains. Moreover, when the general results are formulated abstractly or
under abstract conditions, a user needs to search for suitable function spaces
and verify hypotheses that lead astray (even though some examples provide
guidelines).

140
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However, the spectrum of the linearization in a travelling wave can only be
meaningfully determined based on a well-posedness setting. For instance, a
Turing-instability determined via the usual dispersion relation lacks a basis
without a consistent phase space. Conveniently, the pattern forming nature
of a Turing-instability can be identified ad hoc since the existence of travel-
ling wave patterns is an ODE problem. Well-posedness is, however, required
to prove that a spectrally unstable solution indeed is unstable under the
nonlinear evolution. Such a result then justifies the computation of stability
boundaries by the spectrum as in [147,199] (see also §5.5).

The purpose of this paper is to present rigorous settings for quasilinear
parabolic problems in the travelling wave context as described above. We
aim for a presentation accessible to practitioners, in the spirit of [27,78,157]
for semilinear problems. To this end we bring together and apply to (5.1.1)
mostly abstract results from the different fields involved in well-posedness,
spectra and stability. This puts the naively expected analogy to the semilin-
ear case on firm grounds. For quasi-linear systems, new difficulties mainly
arise on a technical level concerning well-posedness and nonlinear stability.
Most importantly, a variation-of-constants formula is not available. Further,
when dealing with quasi-linear problems one has to take into account all
available regularity as prescribed by sharp trace results such that in general
one cannot take fractional power domains as a phase space for the solution
semiflow. Instead one has to work with real interpolations spaces (see sec-
tion 5.2.1) or the domain of the linearized operator itself. However, in the
end it turns out that the familiar spaces H2 and BUC2 are possible phase
spaces and that the spectral theory and the sufficient conditions for non-
linear stability are analogous to the semilinear case, at least in noncritical
cases.

There are several abstract settings for well-posedness of general quasilinear
parabolic problems available in the literature (see [3,6,29,75,91,99,114,143,
206], and [5] as well as §5.2.3 for a selective overview). These have advan-
tages and disadvantages depending on the present context, and the geomet-
ric (qualitative) theory is more or less developed in each case. On the other
hand, solutions may be constructed by fixed point arguments tailor-made for
the issues under investigation (e.g. [210]). The (real) viscous conservation
laws are an important and well studied class of quasilinear problems, where
well-posedness results exploit the additional structure [93]. We refer to the
survey [211] and the references therein.

Our focus lies on the approach of [28,99,143] based on maximal Lp - regu-
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5 Quasilinear parabolic reaction-diffusion systems

larity, but we also highlight the approach of [114] based on maximal Hölder
regularity. Besides reaction-diffusion problems, the approach of [28, 99, 143]
and its extensions apply successfully to the local theory of free boundary
problems and to general parabolic problems with nonlinear boundary condi-
tions. Here the geometric theory is well-developed and still advances, espe-
cially for the needs in the context of free boundary problems. The approach
of [114] also applies to fully nonlinear problems.

Recently, in [144, 145] the principle of linearized orbital stability with
asymptotic phase for manifolds of equilibria has been established in the
quasilinear case, for any sufficiently strong well-posedness setting (see e.g.
[78, Section 5.1] for the semilinear case). It in particular applies to the or-
bital stability of pulses and fronts for (5.1.1) in both approaches mentioned
before. The conclusion from arbitrary unstable spectrum to nonlinear or-
bital instability of a manifold of equilibria does not seem to exist in the
literature. Refining arguments from [78, Theorem 5.1.5] and [168] for single
equilibria, we close this gap in the present paper. This might be of interest
also in other contexts, where families of equilibria occur.

In more detail, our considerations may be summarized as follows.

• In one space dimension, x ∈ R, a possible phase space for the evolution
under (5.1.1) of localized perturbations from travelling wave and other
pattern type solutions is the Sobolev spaceH2 (Theorem 5.4). For non-
localized perturbations BUC2 (C2–functions, bounded and uniformly
continuous with all derivatives) is a possible phase space (Theorem
5.7).

• For space dimensions x ∈ Rn with n ≤ 3 other possible phase spaces are
certain Besov spaces, (real) interpolating between L2 and the Sobolev
space H2 (Theorem 5.5). Here the linearization can directly be con-
sidered on L2.

• The ‘spatial dynamics’ spectral theory developed for semilinear para-
bolic systems on the line applies also in the quasilinear case, which
allows to compute the spectrum of travelling waves in a familiar way
(see §5.3.3). In particular, the spectrum is independent of the chosen
setting (Proposition 1).

• The well-known nonlinear stability result with asymptotic phase for
travelling waves with simple zero eigenvalue applies in these settings
(Proposition 2, as a direct consequence of [144,145]).

• Without assuming a spectral gap or an unstable eigenvalue, it is shown
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that an unstable spectrum implies orbital instability of pulses and
fronts (Theorem 5.8) and instability of wavetrains (Proposition 3).
Here we rely on a general result on orbital instability of manifolds of
equilibria (Lemma 5.1).

We emphasize that the divergence form (5.1.1) is only assumed in view of
applications. In a smooth setting, the equation ut = a(u)uxx + f(u, ux) can
be cast into divergence form by a suitable redefinition of a and f .

We believe that also the more general results in [158] on spectra of modu-
lated travelling waves carry over to the quasilinear case, but we do not enter
into details here. Also the nonlinear stability of wavetrains is not consid-
ered. This is a delicate issue since zero always lies in the essential spectrum.
Hence, the best one can hope for is heat-equation-like decay. Under certain
assumptions this has been established for the semilinear reaction-diffusion
case in [52, 166]. A special quasilinear case, more precisely the quasilin-
ear IBL model, is considered in [77]. Also for viscous shocks the spectrum
touches the origin and stability in weighted spaces can be established. We
refer to [212], the survey [211] and the references therein, as well as to [15]
for more recent results.

In §5.5 we illustrate our general considerations by means of the Gray-
Scott-Klausmeier vegetation-water interaction model [97], for x ∈ R given
by

wt =(w2)xx + Cwx +A(1− w)− wv2,

vt =Dvxx −Bv + wv2,
(5.1.2)

with constants A,B ≥ 0, C ∈ R and D > 0. This system is the original
motivation for the present study. It is quasilinear due to the porous medium
term (w2)xx = 2(wwxx+(wx)2) and is therefore parabolic only in the regime
w > 0, in which (5.1.2) supports a large family of travelling waves (see [199]
and §5.5).

This paper is organized as follows. In §5.2 different well-posedness set-
ting results for (5.1.1) are treated, §5.3 is devoted to the spectrum of the
linearization in travelling waves. The connection to nonlinear stability and
instability is considered in §5.4. In §5.5 we expand the discussion of (5.1.2)
and illustrate the application of the general results. For the sake of self-
containedness we prove some technical results in the appendix.

Notation. All Banach spaces are real, and we consider complexifica-
tions if necessary. We write L (X1, X0) for the bounded linear operators
between Banach spaces X0, X1, and L (X0) = L (X0, X0). The usual
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Sobolev spaces based on Lp(Rn) are denoted by Hk,p, and Hk = Hk,2.
By BCk = BCk(Rn) and BUCk = BUCk(Rn) we denote the Banach space of
bounded Ck-functions and of bounded Ck-functions such that all derivatives
up to order k are uniformly continuous, respectively.

Acknowledgments. M.M. and E.S. thank the CWI for its kind hospital-
ity. The authors thank Johannes Höwing for his comments and are grateful
to the reviewers for their valuable hints and for pointing out additional ref-
erences.

5.2 Frameworks for well-posedness

We formulate the abstract well-posedness results based on maximal regular-
ity and present three concrete frameworks for quasilinear reaction-diffusion
systems. In one space dimension we obtain well-posedness in H2 and in
BUC2, and in space dimensions less than or equal to three we have well-
posedness in certain Besov spaces. More general problems and further set-
tings are briefly discussed at the end of this section.

5.2.1 Well-posedness based on maximal Lp-regularity

We formulate the results of [99,143] for abstract quasilinear parabolic prob-
lems of the form

∂tu = A(u)u+ F (u), t > 0, u(0) = u0, (5.2.1)

in a Hilbert space setting. Let X0, X1 be Hilbert spaces with X1 continuously
and densely embedded into X0. Roughly speaking, X0 is the base space for
(5.2.1) and A(u(t)) is an unbounded linear operator on X0 with domain
X1. It turns out that on this abstract level the phase space of the solution
semiflow for (5.2.1) acts is a real interpolation space,

X = (X0, X1)1−1/p,p, p ∈ (1,∞),

between X0 and X1. For a definition and the properties of these spaces
we refer to the textbooks [18, 115, 188]. At this point we only note that
X1 ⊂ X ⊂ X0 and that X is in general not a Hilbert space, with exceptions
for p = 2. Fortunately, explicit characterizations of X are possible in the
concrete settings that we shall use later, e.g., H1 = (L2, H2)1/2,2. The real
interpolation spaces are the analogue to the fractional power domains in the

144



5.2 Frameworks for well-posedness

semilinear theory [27, 78]. These two types of intermediate spaces between
X0 and X1 differ, in general (again with exceptions for p = 2), but are closely
related (see, e.g., [115, Proposition 4.1.7]).

Recall from [60,114] that a densely defined operator B on X0 generates a
strongly continuous analytic semigroup if and only if ‖λ(λ−B)−1‖L (X0) is
uniformly bounded for λ in a left open sector in C.

As a consequence of the results in [99,143] we have

Theorem 5.1. Let p ∈ (1,∞) and X1 ⊂ X ⊂ X0 be as above. Assume there
is an open set V ⊆ X such that

• F : V → X0 and A : V → L (X1, X0) are Lipschitz on bounded sets;

• for each w0 ∈ V, the operator A(w0) with domain X1 generates a
strongly continuous analytic semigroup on X0.

Then (5.2.1) is locally well-posed in V, with solutions in a strong Lp-sense.

More precisely, the theorem yields solvability of (5.2.1) as follows. For
each initial value u0 ∈ V there is a maximal existence time t+(u0) >
0 and a unique solution u = u(·;u0) ∈ C([0, t+(u0)),V) of (5.2.1), such
that u ∈ H1,p(J,X0) ∩ Lp(J,X1) for time intervals J = (0, T ) with
T < t+(u0). Here H1,p(J,X0) denotes a vector-valued Sobolev space,
which is defined as in the scalar case. Furthermore, t+(u0) is finite only
if either dist(u(t;u0), ∂V) → 0 or ‖u(t;u0)‖X → ∞ as t → t+(u0). The
map t+ : V → (0,∞] is lower semicontinuous, and the local solution semi-
flow, (t, u0) 7→ u(t;u0), is continuous with values in V ⊆ X . If F and A
are smooth, then the semiflow enjoys smoothness properties as well. We
demonstrate this in Proposition 4 in the appendix for a neighbourhood of a
steady state.

Note that if A(w0) generates an analytic semigroup for w0 ∈ X , then
the Lipschitz property of A as in the theorem combined with well-known
perturbation results for semigroups (see [114, Proposition 2.4.2]) imply that
this is true for any A(w̃0) with w̃0 in a small neighbourhood of w0. This
gives a candidate for V.

To verify the assumptions in [99, Section 2], [143, Theorem 3.1] and prove
Theorem 5.1 we only need to know that −A(w0) has for each w0 ∈ V the
property of maximal Lp-regularity on finite time intervals J . But in Hilbert
spaces this already follows from the assumed generator property of A(w0).
Indeed, by [55, Theorems 3.3, 7.1] it suffices to consider the case p = 2,
J = R+ and that the semigroup generated by A(w0) is exponentially
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decaying. In this situation maximal L2-regularity follows from [33] (see
also [143, Theorem 1.6] for the short proof using Plancherel’s theorem).

One space dimension: well-posedness in H2

For u(t, x) ∈ RN we apply the abstract result Theorem 5.1 to the reaction-
diffusion system

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R. (5.2.2)

To obtain a simple setting with familiar function spaces which is at the same
time directly linked to L2-spectral theory, we work with X0 = H1 = H1(R)N

as a base space. In one space dimension (and only there) this is possible since
H1 is an algebra, i.e., uw ∈ H1 and ‖uv‖H1 ≤ C‖u‖H1‖v‖H1 for u,w ∈ H1.

We start with the case when the nonlinearities in (5.2.2) are everywhere
defined. We emphasize that a does not have to be symmetric, and that a, f
may be less regular than actually stated.

Theorem 5.2. Assume a : RN → RN×N is C4 such that a(ζ) ∈ RN×N is
positive definite for each ζ ∈ RN , and that f : RN × RN → RN is C3 with
f(0, 0) = 0.

Then (5.2.2) is locally well-posed in the phase space X = H2. The solu-
tions belong to H1(J,H1(R))∩L2(J,H3(R))∩C(J,H2(R)) on time intervals
J = (0, T ) away from the maximal existence time.

Proof. We choose X0 = H1, X1 = H3 and p = 2. Then X = (H1, H3)1/2,2 =
H2, see [188, Remark 2.4.2/2]. Define the superposition (Nemytskii) opera-
tors A and F by A(u)v = (a(u)vx)x and F (u) = f(u, ux). Then F : H2 →
H1 and A : H2 → L (H3, H1) are Lipschitz on bounded sets by Lemma
5.2. For the generator property, let w0 ∈ H2 be arbitrary. Denote by AL2

the realization of A(w0) on L2, with domain H2. Since w0, a(w0) ∈ BC1

by Sobolev’s embedding H1 ⊂ BC, it follows from [7, Corollary 9.5] that
the operator AL2 generates an analytic C0-semigroup on L2. Next, let AH1

be the realization of A(w0) on H1, i.e., the restriction of AL2 to H1. Since
H1 = (L2, H2)1/2,2 (see again [188]), it follows from [115, Theorem 5.2.1]
that AH1 with domain D(AH1) = {u ∈ H2 : AL2u ∈ H1} generates an
analytic C0-semigroup as well. Using the algebra property of H1, it is el-
ementary to check that D(AH1) = H3 (see the proof of Lemma 5.4 in the
appendix). Thus Theorem 5.1 applies.
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Remark 5.3. Employing, e.g., Angenent’s parameter trick (see [143, Theo-
rem 5.1] and [62]), one can show that for smooth nonlinearities the solutions
of (5.2.2) are smooth in space and time.

When investigating the stability of a non-localized travelling wave with
respect to localized perturbations, one is lead to a variant of (5.2.2) with x-
dependent nonlinearities. Furthermore, in many situations the nonlinearities
are not everywhere defined on RN , or the leading coefficient a is positive
definite only in a subset of RN . For instance, this is the case for the Gray-
Scott-Klausmeier model (5.1.2), where the focus lies on perturbations of
travelling wave solutions in the parabolic regime w > 0.

For a general formulation, let u ∈ BC2(R,RN ) be a steady state of (5.2.2),
i.e.,

(a(u)ux)x + f(u, ux) = 0. (5.2.3)

Then u+ u solves (5.2.2) for a perturbation u if and only if u solves

ut = (a(u+ u)ux)x + (a(u+ u)ux)x + f(u+ u, ux + ux). (5.2.4)

For this perturbative setting we have the following variant of Theorem
5.2. Here and in the following, the image of u is meant to be the set
{u(x) : x ∈ R}.
Theorem 5.4. Let u ∈ BC2(R,RN ) satisfy (5.2.3), and let U1, U2 ⊆ RN
be open neighbourhoods of the closure of the images of u resp. ux. Assume
a : U1 → RN×N is C4 such that a(ζ) is positive definite for any ζ ∈ U1, and
f : U1 × U2 → RN is C3.

Then there is an open neighbourhood V of the zero function in H2 such
that (5.2.4) is locally well-posed in V. If U1 = U2 = RN , then one can take
V = H2.

Proof. Let again X0 = H1, X1 = H3 and p = 2, such that X = H2. Define

A(u)v = (a(u+ u)vx)x, F (u) = (a(u+ u)ux)x + f(u+ u, ux + ux). (5.2.5)

Using F (0) = 0, Lemma 5.2 yields V ⊆ H2 such that F : V → H1 and
A : V → L (H3, H1) are Lipschitz on bounded sets. If V is sufficiently
small, then for each w0 ∈ V the leading coefficient a(u + w0) of A(w0) is
positive definite, uniformly in x ∈ R. Thus as in the proof of Theorem
5.2 it follows from [7, Corollary 9.5] and an interpolation argument that
A(w0) with domain H3 has the required generator property on H1 to apply
Theorem 5.1.
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Well-posedness in space dimensions n ≤ 3

For simplicity, on Rn we consider quasilinear reaction-diffusion-advection
problems (using sum convention)

ut = ∂i(aij(u)∂ju) + ci∂iu+ f(u), x ∈ Rn. (5.2.6)

Here, essentially, aij : RN → RN×N , ci ∈ RN×N for i, j = 1, ..., n and
f : RN → RN . The approach of the previous subsection works in any
dimension if one takes X0 = Hk(Rn) with k > n

2 as a base space, since then
Hk is an algebra and the superposition operators are Lipschitz as before.

We present another functional analytic setting with X0 = L2 as a base
space, for which Theorem 5.1 applies to (5.2.6) in space dimensions n ≤ 3.
The price one has to pay in the maximal Lp-regularity approach is that
the phase space X = (L2, H2)1−1/p,p becomes slightly more complicated to
describe. It is the N -fold product Bs

2,p of a Besov space Bs
2,p(Rn), with

s > 0 and p ∈ (1,∞). For s /∈ N, it follows from [189, Theorem 2.6.1] that
an equivalent norm for this space is given by

‖u‖Bs2,p = ‖u‖Hk +
∑

|α|≤k

(∫

|h|≤1
|h|−(s−k)p−n‖Dαu(·+h)−Dαu(·)‖p

L2 dh
)1/p

,

where k is the largest integer smaller than s. The Besov spaces are closely
related to the more common Bessel-potential spaces Hs. For any ε > 0 we
have the dense inclusions Hs+ε ⊂ Bs

2,p ⊂ Hs−ε. However, Bs
2,p = Hs if

and only if p = 2, and furthermore Bs
2,p is a Hilbert space only for p = 2.

Essential for the applications are the Sobolev embeddings

Bs
2,p(Rn) ⊂ BC(Rn) for s >

n

2
, Bs

2,p(Rn) ⊂ Lq(Rn) for s ≥ n

2
− n

q
> 0.

(5.2.7)
These are a consequence of Bs

2,p ⊂ Hs−ε and the corresponding embeddings
for the H-spaces. For these and many more properties of B-spaces we refer
to [188].

As above we consider a perturbative setting. Analogous to (5.2.4), for
perturbations u of a steady state u ∈ BC2(Rn,RN ) of (5.2.6), one is lead to

∂tu = ∂i(aij(u+u)∂ju) +∂i(aij(u+u)∂ju) + ci∂i(u+u) + f(u+u). (5.2.8)

Note that the following well-posedness result in particular applies to (5.2.6)
when setting u = 0 and assuming f(0) = 0. Again no symmetry properties
of the diffusion coefficients (aij) are required.
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Theorem 5.5. Let n = 1, 2, 3. Let u ∈ BC2(Rn,RN ) be a steady state
of (5.2.6), and let U ⊆ RN be an open neighbourhood of the closure of its
image. For all i, j = 1, ..., n, assume that ci ∈ RN×N is constant, that
aij : U → RN×N and f : U → RN are C2, and that aij(ζ) is positive definite
for any ζ ∈ U .

Then for all sufficiently large p ∈ (2,∞) there is an open neighbourhood

V of the zero function in B
2−2/p
2,p = B

2−2/p
2,p (Rn)N such that (5.2.8) is locally

well-posed in V. The solutions belong to H1,p(J, L2) ∩ Lp(J,H2) ∩ C(J,V)
on time intervals J away from the maximal existence time. If U = RN , then

one can take V = B
2−2/p
2,p .

Proof. The choice X0 = L2 and X1 = H2 leads to

B
2−2/p
2,p = X = (X0, X1)1−1/p,p for p ∈ (1,∞),

see [188, Remark 2.4.2/4]. Let A(u)v = ∂i(aij(u + u)∂jv), and denote by
F (u) the remaining terms on the right-hand side of (5.2.8). The Lipschitz
properties of A and F on a neighbourhood V of zero follow from Lemma
5.3. For w0 ∈ V the operator A(w0) is elliptic, the coefficients are bounded

and the leading coefficient is uniformly Hölder continuous, since B
2−2/p
2,p even

embeds into BCσ for some σ > 0 if n ≤ 3 and p is large, see [188, Theorem
2.8.1]. Now the generator property on L2 follows again from [7, Corollary
9.5].

5.2.2 Well-posedness based on maximal Hölder regularity

We formulate the well-posedness result of [114, Chapter 8] for abstract quasi-
linear parabolic problems

∂tu = A(u)u+ F (u), t > 0, u(0) = u0. (5.2.9)

The approach of [114] is based on maximal Hölder regularity (see also [4,
Chapter III.2] for the general linear theory). It also covers fully nonlinear
problems and does not take into account the quasilinear structure of (5.2.9).
It has the big advantage to be applicable in arbitrary Banach spaces X0,
while in applications maximal Lp-regularity is usually restricted to reflexive
Banach spaces, excluding spaces of continuous functions. Moreover, the
phase space equals the domain of the linearized operator, which is usually
easier to describe than an interpolation space.
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The following well-posedness result for (5.2.9) is a consequence of [114,
Theorem 8.1.1, Proposition 8.2.3, Corollary 8.3.3].

Theorem 5.6. Let X0, X1 be arbitrary Banach spaces such that X1 is con-
tinuously and densely embedded in X0. Let V ⊆ X := X1 be open, define
F(u) = A(u)u+ F (u) and suppose that

• F ∈ C1(V, X0) with locally Lipschitz derivative;

• for each w0 ∈ V, the operator F ′(w0) with domain X1 generates a
strongly continuous analytic semigroup on X0 and ‖u‖X0+‖F ′(w0)u‖X0

defines an equivalent norm on X1.

Then (5.2.9) is locally well-posed in V, and solutions are classical in time.

As already mentioned, the phase space X is now a subset of X1 and not of
an intermediate space between X0 and X1. Well-posedness is similar as for
Theorem 5.1. The maximal existence time is lower semicontinuous and the
solution semiflow is continuous with values in V. For each α ∈ (0, 1) and an
initial value u0 ∈ V, one obtains a unique maximal solution u of (5.2.9) such
that u ∈ BUC1+α

α ([0, T ], X0)∩BUCα
α([0, T ], X1) for T < t+(u0). Here BUCα

α

is a weighted Hölder space, see [4, Chapter III.2] and [145, Example 3]. (It
is slightly confusing that these spaces differ from the ones in [114] denoted
by Cαα , but BUCα

α is indeed the regularity obtained in [114, Theorem 8.1.1]).

Theorem 5.6 applies to (5.2.2), (5.2.4) and (5.2.8) under similar assump-
tions as in the Theorems 5.2, 5.4 and 5.5, with different phase spaces. In
particular, instead of a Besov space one obtains H2 as a phase space in the
setting of Theorem 5.5. We do not formulate the precise results and rather
consider a setting for reaction-diffusion systems which is not covered by the
approach of Theorem 5.1.

One space dimension: well-posedness in BUC2

We reconsider the case of one space dimension, i.e., for u(t, x) ∈ RN the
problem

ut = (a(u)ux)x + f(u, ux), t > 0, x ∈ R. (5.2.10)

We present a setting in which non-localized perturbations of steady states
can be treated. For k ∈ N0, denote by BUCk = BUCk(R,RN ) the Banach
space of bounded uniformly continuous functions, endowed with the usual
Ck-norm. It is shown in [114] that a scalar second order elliptic operator on
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BUC = BUC0 behaves well and generates an analytic semigroup. This is the
main ingredient to apply Theorem 5.6 as follows. The triangular structure
of a is assumed for simplicity.

Theorem 5.7. Let u ∈ BUC2(R,RN ) be a steady state of (5.2.10) and let
U1, U2 ⊆ RN be open neighbourhoods of the closure of image of u resp. ux.
Assume a : U1 → RN×N and f : U1 × U2 → RN are C2, such that

• for each ζ ∈ U1 the matrix a(ζ) is triangular, and the diagonal entries
of a are positive and bounded away from zero uniformly.

Then there is an open neighbourhood V of u in BUC2 such that (5.2.10) is
locally well-posed in V. One can take V = BUC2 if U1 = U2 = RN .

Proof. Choose an open set V ⊂ RN that contains the image of u and sat-
isfies V ⊂ U . Define V as the set of all w0 ∈ BUC2 with image contained
in V . Then F(u) = (a(u)ux)x + f(u, ux) defines a superposition operator
F : V → BUC. It is straightforward to check that F ∈ C1(V,BUC). At
w0 ∈ V we have

F ′(w0)v = (a(w0)vx)x + (a′(w0)[(w0)x, v])x + cvx + f ′(w0)v, v ∈ BUC2,

and F ′ : V → L (BUC2,BUC) is locally Lipschitz. For the generator prop-
erty, let w0 ∈ V be given. By [114, Corollary 3.1.9], each of the scalar-valued
operators v 7→ aii(w0)vxx with domain BUC2 generates an analytic C0- semi-
group on BUC, where aii are for i = 1, ..., N the diagonal entries of a. Using
the matrix generator result [132, Corollary 3.3] and the triangular structure
of a, we conclude that the principle part v 7→ a(w0)vxx of F ′(w0) is a genera-
tor on BUC(R,RN ), with domain BUC2(R,RN ). The remaining lower order
terms preserve this property. The equivalence of the graph norm of F ′(w0)
and the C2-norm follows from the boundedness of the coefficients and the
open mapping theorem. Therefore Theorem 5.6 applies to (5.2.10).

5.2.3 More general problems and other frameworks

The above results also hold for smooth x-dependent nonlinearities, provided
the principal term a is positive definite uniformly in x. Also non-autonomous
and nonlocal problems can be treated, see [5,6,114,143]. Only the mapping
properties of the superposition operators and the generator properties of
the linearization are relevant. Both frameworks cover general quasilinear
systems in any dimension if one works with X0 = Lq for large q as a base
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5 Quasilinear parabolic reaction-diffusion systems

space, since then the superposition operators are well-defined by Sobolev
embeddings. Theorem 5.6 also allows to work in spaces of Hölder continuous
functions, L∞ or subspaces of BUC like C0 or C(R), based on the analytic
generator results of [114] and [60, Section VI.4].

A framework with spatial weights might also be of interest, for instance,
to force some decay of solutions [210] or to treat singular terms [126]. Here
in particular weights with exponential growth are straightforward to treat,
as the generator results can be obtained from the unweighted case by a
simple similarity transformation. Concerning weights, we also mention that
the approach of [112] has proven useful for quasi-linear parabolic problems
in weighted spaces; see [14, 77, 191]. Invariant manifolds for quasi-linear
parabolic systems with nonlinear boundary conditions on bounded or exte-
rior domains are constructed, e.g., in [106, 107, 177]; see also the references
given there.

Besides the above approaches based on maximal Lp- and Hölder regularity
there is a similar abstract approach based on continuous regularity [8, 29].
Completely different frameworks for problems in weaker settings on bounded
domains with boundary conditions are presented in [3, 75]. They should
also be applicable to problems on Rn. Finally, the pioneering work of [105]
should be mentioned. For a comprehensive overview of possible settings for
quasilinear parabolic problems we refer to [5].

5.3 Stability and spectra of travelling waves

While travelling waves also occur in higher space dimensions, we restrict
here to x ∈ R.

Throughout, let u∗(t, x) = u(x− ct) be a travelling wave solution of

ut = (a(u)ux)x + f(u, ux), x ∈ R,

with speed c ∈ R and profile u ∈ BC∞(R,RN ) solving the ordinary differen-
tial equation (5.2.3). We assume that a, f are C∞ and that a is uniformly
positively definite in a vicinity of the image of u. Suitable finite regularity
of u, a, f suffices for each of the following results and we assume infinite
smoothness only for the sake of a simple exposition. We further assume that
u is constant or periodic at infinity and that the asymptotic states are ap-
proached exponentially. A travelling wave is called a pulse or a front if the
asymptotic states are equal or different homogeneous equilibria, respectively.
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5.3 Stability and spectra of travelling waves

A wavetrain is a periodic travelling wave, and we refer to travelling waves
with at least one periodic asymptotic state as generalized fronts or pulses.

5.3.1 Stability in a perturbative setting

The evolution of perturbations u of u∗ is governed by

ut = (a(u+u)ux)x + (a(u+u)ux)x + c(ux +ux) + f(u+u, ux +ux), (5.3.1)

where the co-moving frame x − ct is again denoted by x. By translation
invariance of the underlying equation, stability must be considered with
respect to the family of translates

S = {u(·+ τ)− u : τ ∈ R}.

The Theorems 5.4, 5.5 and 5.7 guarantee local well-posedness of (5.3.1) for

initial data from X = H2, X = B
2−2/p
2,p or X = BUC2 sufficiently close to

S (note that in Theorem 5.5 it is actually assumed that f is independent of

ux). Even though H2 ⊂ B2−2/p
2,p we distinguish between these cases, because

of the different corresponding base spaces H1 and L2, and to highlight that
a pure Sobolev space setting suffices for (5.3.1). For X = BUC2, or in case
of a pulse, one could equivalently consider (5.3.1) with u replaced by zero,
in a neighbourhood of {u(·+ τ) : τ ∈ R}.

If u∗ is a pulse or a front, then S is in each setting a family of equilibria
of (5.3.1).

Definition 5.1. A pulse or front solution u∗ is called orbitally stable, if
for ε > 0 there is δ > 0 such that for u0 ∈ X with distX (u0, S) ≤ δ
the corresponding solution u of (5.3.1) exists globally in time and satisfies
distX (u(t), S) ≤ ε for all t > 0. u∗ is called orbitally stable with asymptotic
phase, if it is orbitally stable and if for each u0 ∈ X sufficiently close to
S there is τ∞ such that the corresponding solution of (5.3.1) converges to
u(·+ τ∞)− u as t→∞. u∗ is orbitally unstable if it is not orbitally stable.

For a wavetrain, translates of the profile cannot be realized by localized
perturbations. Thus only for X = BUC2 orbital stability as above can

be considered. For localized perturbations, i.e., X = H2 or X = B
2−2/p
2,p ,

stability of a wavetrain is understood with respect to stability of the zero
solution of (5.3.1).
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5.3.2 The spectrum of the linearization

The linearization L of the right-hand side of (5.3.1) in u = 0 is

Lϕ = αϕxx + βϕx + γϕ, (5.3.2)

with smooth coefficients α(x), β(x), γ(x) ∈ RN×N given by

α = a(u), β = a′(u)[ux, ·] + a′(u)[·, ux] + c+ ∂2f(u, ux),

γ = a′′(u)[ux, ·, ux] + a′(u)[·, uxx] + ∂1f(u, ux).

Depending on the chosen well-posedness framework, the operator L is con-
sidered on X0 = H1, L2 or BUC, with domain H3, H2 or BUC2, where we
write LX0 for a realization. The spectrum of LX0 is the set of λ ∈ C, where
LX0 − λ is not boundedly invertible. It is denoted by specLX0 .

As in the approach surveyed in [157], we distinguish between the point
spectrum, i.e., λ ∈ specLX0 such that LX0 − λ is a Fredholm operator of
index zero, and its complement within the spectrum, called the essential
spectrum. We will see that point and essential spectrum are independent
of the chosen framework and that the familiar spectral theory for ordinary
differential operators based on exponential dichotomies, as described in [157],
applies to L.

Usually, the set of eigenvalues of LX,0 is called the point spectrum. Note
that, with the above definition, eigenvalues can be contained in the essen-
tial spectrum. Moreover, eigenvalues are not independent of the setting.
For instance, the operator ∂x − i has a zero eigenvalue with eigenfunction
φ(x) = eix on BUC, but it is injective on L2 and H1. Of course this does
not contradict Proposition 1 on kernel dimensions below since the operator
is not Fredholm.

Since it is assumed that a is positive definite in a neighbourhood of the
image of u, the multiplication by α−1 is an isomorphism in each setting.
Thus the invertibility and Fredholm properties of L− λ are the same as for

L̃(λ) = α−1(L − λ) = ∂xx + α−1β∂x + α−1(γ − λ),

which has constant leading order coefficients. As before we write L̃X0(λ)
for a realization of L̃(λ). The key to the spectral properties of L̃(λ) is the
corresponding first order operator

T̃ (λ) = ∂x −A(·, λ), A(x, λ) =

(
0 −1

α−1(x)(γ(x)− λ) α−1(x)β(x)

)
,
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which is obtained from rewriting L̃(λ) = 0 into a first order ODE. Hence
A(x, λ) is a (2N × 2N)-matrix. We write T̃L2(λ) and T̃BUC(λ) for the re-
alization of T̃ (λ) on L2(R,C2N ) and BUC(R,C2N ) with natural domains,
respectively.

The following result is rather folklore, but does not seem to be explic-
itly stated in the literature. The equality of spectra for realizations on Lp,
1 ≤ p < ∞ and the space C0 of continuous functions vanishing at infinity
follows from [146, Corollary 4.6]. For the more general theory of dichotomies
and spectral mapping results on these spaces we refer to the monograph [26].

Proposition 1. The following assertions are true, where λ ∈ C.

• The spectrum, the point spectrum and the essential spectrum of LH1,
LL2 and LBUC all coincide, respectively.

• The operator LL2 − λ is invertible if and only if T̃L2(λ) is invertible.

• The operator LL2 − λ is Fredholm if and only if T̃L2(λ) is Fredholm.
In this case the Fredholm indices coincide, as well as the dimension of
the kernels.

Proof. Lemma 5.4 provides an isomorphism T from H1 to L2 and from H3

to H2 such that LH1 = T−1LL2T . Thus LH1 − λ and LL2 − λ have for
each λ ∈ C the same invertibility and Fredholm properties. It remains to
compare LL2 − λ and LBUC − λ. Since α is boundedly invertible, these op-
erators have the same invertibility and Fredholm properties as L̃L2(λ) and
L̃BUC(λ), respectively. It follows from [160, Theorem A.1] that their Fred-
holm properties are the same as those of T̃L2(λ) and T̃BUC(λ), respectively.
It is further clear that the dimensions of the kernels coincide in both settings.
Now in [17, Theorem 1.2] it is shown that the Fredholm properties of T̃L2(λ)
are characterized by exponential dichotomies of the ODE v′ = A(·, λ)v on
both half-lines, and that in this case the dimension of the kernel of T̃L2(λ)
only depends on the image of the dichotomies. This characterization is also
true for T̃BUC(λ) with the same formula for the dimension of the kernel,
see [137, Lemma 4.2] and [138]. Hence the invertibility and Fredholm prop-
erties of T̃L2(λ) and T̃BUC(λ) coincide, and if the operators are Fredholm,
then the dimensions of the kernels coincide. This carries over to LL2−λ and
LBUC − λ by the above considerations and shows the assertions.

We finally remark that also for the realization of T̃ (λ) on Lq with any
1 < q < ∞ the Fredholm properties are characterized by exponential di-
chotomies (see [17, p. 94]). Together with the arguments for [160, The-
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orem A.1], an appropriate generalization of Lemma 5.4 and interpolation.
This shows that the spectrum of L is independent of its realization on any
of the spaces Hs,q and Bs

q,r, where s ≥ 0 and 1 ≤ r ≤ ∞.

5.3.3 Computation of the spectrum

The invertibility and Fredholm properties of T̃ (λ), and thus the charac-
terization of point and essential spectrum of L, are described in terms of
exponential dichotomies in [157, Section 3.4]. This is independent of the
variable leading order coefficients of L due to its quasilinear origin, and thus
the same as for semilinear reaction-diffusion systems. We briefly describe
the main points for each type of wave. A detailed discussion can also be
found in [90, Chapter 3].

For a homogeneous steady state the point spectrum of the constant coef-
ficient operator L is empty. Since the Fourier transform is an isomorphism
on L2, the (essential) spectrum can be determined by transforming L to

L̂(κ) = −ακ2 + iβκ+ γ ∈ CN×N , κ ∈ R.

Now we have λ ∈ specL if and only if

d(λ, κ) := det(L̂(κ)− λ) = det(A(λ)− iκ) = 0

for some κ, which is called the dispersion relation for L. The latter also
means that A(λ) is a non-hyperbolic matrix. Thus here it is straightforward
to determine the spectrum, at least for N not too large.

For pulses and fronts, replacing the variable coefficients of L by their
values at ±∞ leads to constant coefficient operators L± whose spectrum
is determined as just described. For pulses the essential spectrum of L
already coincides with specL±. For fronts, specL± equals the boundary of
the essential spectrum of L, which is usually already sufficient to know for
stability issues. This is related to the fact that the replacement by the values
at infinity is a relatively compact perturbation of L, which leaves Fredholm
properties invariant (see [92, Theorem IV.5.26]). The point spectrum of a
pulse or a front is determined by detecting intersections of the stable and
unstable subspaces of v′ = A(·, λ)v. Here the Evans function [1, 63] is a
powerful tool and we refer to the survey [157, Section 4] and the references
therein.

For a wavetrain, i.e., when u is periodic with wavelength (period) L > 0,
the coefficients of L are periodic. The point spectrum is empty. Instead of
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the Fourier transform, here the Floquet-Bloch transform applies and yields
(see [128, Theorem A.4], also for higher space dimensions)

specL = ∪κ∈[0,2π/L)spec B̂(κ). (5.3.3)

For κ ∈ [0, 2π/L) the operator B̂(κ) : H2
per(0, L) ⊂ L2,per(0, L)→ L2,per(0, L)

with periodic boundary conditions is given by

B̂(κ)U = e−iκxL[eiκxU ] = L̂(iκ+ ∂x)U,

where L̂(·) is the formal operator symbol of L. Since spec B̂(κ) only consists
of eigenvalues, its spectrum is fully determined by the solvability of the
family of boundary value problems

L̂(iκ+ ∂x)U = λU , U(0) = U(L).

In fact, also multiplicity of eigenvalues is determined via Jordan chains as
in [1, 157]. Notably, the spectrum again comes in curves; now an infinite
countable union since the eigenvalue problem for each κ still concerns an
unbounded operator (rather than a matrix in case of a homogeneous steady
state).

Via V = eiκxU , the boundary value problem formulation is equivalent to

L̂(∂x)V = λV , V (0) = e−iκLV (L).

By Floquet theory, this precisely means that the period map Π(λ) of the
evolution operator for the ODE L̂(∂x)U = λU possesses an eigenvalue (a
Floquet multiplier) eiκL. Hence, also here a (linear) dispersion relation can
be defined by

d(λ, κ) = det
(
Π(λ)− eiκL

)
= 0,

which precisely characterizes the spectrum. An important difference to the
case of homogeneous steady states is that λ = 0 always lies in the essential
spectrum: x-independent coefficients of (5.3.1) yield a trivial zero Floquet
exponent, which implies that d(0, 0) = 0. Indeed, B̂(0)ux = 0 in this trans-
lation symmetric case.

Finally, in case of a generalized wave train, the boundary of the essential
spectrum of L is as above obtained by replacing the coefficients of L with its
periodic limits at ±∞, and considering the dispersion relation. The point
spectrum is also given by an Evans-function, see [159, Section 4] (here also
the more general case of time periodic solutions, so-called defects, is treated).
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5.4 Nonlinear stability and instability

For the nonlinearities a, f and a travelling wave solution u∗(t, x) = u(x− ct)
of (5.1.1) we make the same assumptions as in the previous section. We
consider (5.3.1)

ut = (a(u+ u)ux)x + (a(u+ u)ux)x + c(ux + ux) + f(u+ u, ux + ux)

in any of the well-posedness settings in a neighbourhood of

S = {u(·+ τ)− u : τ ∈ R}.

5.4.1 Stability of pulses and fronts

Recall the precise notion of orbital stability from Definition 5.1. An applica-
tion of [144,145] gives the following conditional result. For more information
on semisimple eigenvalues in Banach spaces we refer to [114, Appendix A.2].

Proposition 2. Let u have constant asymptotic states. Assume λ = 0 is
a semisimple eigenvalue of L with eigenfunction u′, i.e., kerL = span{u′}
and X0 = kerL ⊕ imL. Assume further that the remaining part of specL
is strictly contained in {Reλ < 0}. Then the travelling wave u∗ is orbitally
stable with asymptotic phase, and limit translates u(·+ τ∞) are approached
exponentially.

Proof. By translation invariance it suffices to consider S in a neighbourhood
of τ = 0. The framework of Theorem 5.1 is the one of [144, Theorem 2.1],
provided that, in addition, A and F belong to C1, which is guaranteed
by the assumption on a and f . The setting of Theorem 5.6 is the one
of [145, Example 3]. To apply [144, Theorem 2.1] and [145, Theorem 3.1] it
remains to verify that zero is normally stable, in the sense of [144,145]. We
have that S is a one-dimensional C1-manifold, with tangent space at τ = 0
spanned by u′. By assumption, the tangent space coincides with the kernel
of L and zero is a semisimple eigenvalue. Hence normal stability follows.

For a quasilinear variant of the Huxley equation, the above conditions
have been verified in [144, Section 5] by elementary arguments.

An abstract and more general variant of Proposition 2 and applications
to semilinear problems can be found in [90, Chapter 4].
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5.4.2 Instability of generalized pulses and fronts under localized
perturbations

For localized perturbations, i.e., for X = H2 or B
2−2/p
2,p , a generalized pulse

or front u∗ is nonlinearly stable or unstable if the zero solution of (5.3.1) is
stable or unstable, as a single equilibrium in the sense of Lyapunov. Non-
linear stability is a delicate issue (see the discussion in the introduction). In
case of an unstable spectral value we have the following.

Proposition 3. If u has a periodic asymptotic state and

specL ∩ {Reλ > 0} 6= ∅,
then the generalized front or pulse u∗ is nonlinearly unstable with respect to

localized perturbations from X = H2 or X = B
2−2/p
2,p .

Proof. The Lemmas 5.2 and 5.3 together with Proposition 4 imply that the
time-one solution map Φ1 for (5.3.1) obtained in Theorems 5.4 and 5.5 from
Theorem 5.1 is C2 around zero, with Φ′1(0) = eL ∈ L (X ). Considered on
L (X0), this operator has spectral radius larger than one by [114, Corollary
2.3.7]. Using L−ω with sufficiently large ω > 0 as a conjugate, this property
carries over to eL considered on L (X1). Now it follows from interpolation
that the realization of eL on L (X ) has spectral radius greater than one.
Thus the zero solution of (5.3.1) is unstable by [78, Theorem 5.1.5].

5.4.3 Orbital instability

Without assuming a spectral gap or the existence of an unstable eigenvalue
we show that an unstable spectrum implies orbital instability.

Theorem 5.8. The following assertions are true.

• Let u have constant asymptotic states. Assume

specL ∩ {Reλ > 0} 6= ∅.
Then u∗ is orbitally unstable with respect to localized and non-localized

perturbations from X = H2, B
2−2/p
2,p or X = BUC2.

• Let u have a periodic asymptotic state. Assume

specL ∩ {Reλ > 0} 6= ∅.
Then u∗ is orbitally unstable with respect to non-localized perturbations
from X = BUC2.
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This result is a direct consequence of the general orbital instability result
Theorem 5.9 below for manifolds of equilibria: u′ ∈ X1 in the settings under
consideration and Lu′ = 0 by the exponential convergence of u′ at infinity
and translation invariance of the equation.

The following lemma and its proof are generalizations of [78, Theorem
5.1.5] and [168]. Similar to that result, the proof establishes that pertur-
bations of suitable approximate unstable eigenfunctions deviate from the
manifold of equilibria.

Lemma 5.1. Let X be a real Banach space, let V ⊆ X be an open neigh-
bourhood of zero and let E ⊂ V be an m-dimensional C2-manifold containing
zero. Let E be parametrized by an injective map ψ : U ⊂ Rm → E with
ψ(0) = 0, where ψ′(0) has full rank m. Assume T : V → X is continuous,
that T (u) = 0 for u ∈ E and that there is M ∈ L (X) with spectral radius
greater than one such that, for some σ > 1,

‖T (u)−Mu‖ = O(‖u‖σ) as u→ 0. (5.4.1)

Suppose further that ∂1ψ(0), ..., ∂mψ(0) ∈ ker(M − id). Then u∗ = 0 is
orbitally unstable with respect to E under iterations of T . More precisely,
there is ε0 > 0 such that for each δ > 0 there are uδ ∈ V with ‖uδ‖ ≤ δ and
N ∈ N such that Tn(uδ) ∈ V for n = 1, ..., N and dist(TN (uδ), E) ≥ ε0.

Proof. Step 1. Let α0, β > 0 such that B5α0(0) ⊂ V and

‖T (u0)−Mu0‖ ≤ β‖u0‖σ, ‖u0‖ ≤ 5α0. (5.4.2)

There is an approximate eigenvalue λ = reiθ with r > 1 and θ ∈ R in
the spectrum of M . Furthermore, there are η,K > 0 with r + η < rσ and
‖Mn‖ ≤ K(r+η)n for all n ≥ 0. In the sequel we choose α ∈ (0, α0) stepwise
possibly smaller and smaller, only depending on K, r, η, β, ψ.

Step 2. Let δ ∈ (0, α) be given. As in the proof of [78, Lemma 5.1.4] we
find N ∈ N such that

α

rN
≤ δ, | sin(Nθ)| ≤ α, (5.4.3)

and u, v ∈ X with ‖u‖ = 1 and ‖v‖ ≤ 1 such that

‖Mn(u+ iv)− λn(u+ iv)‖ ≤ α. n = 1, ..., N. (5.4.4)

Here the norm is actually the complexified one, i.e., ‖w1+iw2‖ = ‖w1‖+‖w2‖
for w1, w2 ∈ X.
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Define uδ := α
rN
u ∈ X, such that ‖uδ‖ = α

rN
≤ δ. Let n = 1, ..., N be

given. Assume inductively that ‖T k(uδ)‖ ≤ 5αrk−N for k = 0, ..., n − 1.
Then Tn(uδ) is well-defined and as in the proof of [78, Theorem 5.1.5] we
write

Tn(uδ)− λnuδ =
(
Mnuδ − λnuδ

)
+

n−1∑

k=0

Mn−k−1
(
T k+1(uδ)−MT k(uδ)

)
.

(5.4.5)
Denote the right-hand side by Gn +Hn. We claim that

‖Gn‖ ≤ α2r−N + 2α| sin(θn)|rn−N , ‖Hn‖ ≤ CMασrn−N , (5.4.6)

where CM = 5σKβ
rσ−r−η is independent of n. To see this, we use (5.4.4) to

obtain

‖Gn‖ ≤
α

rN
(
‖Mnu− (Reλn)u+ (Imλn) v‖+ ‖(Imλn) v‖+ ‖(Imλn)u‖

)

≤ α

rN
(
‖Re((Mn − λn)(u+ iv))‖+ 2rn| sin(θn)|

)
(5.4.7)

≤ α2r−N + 2α| sin(θn)|rn−N .

For the sum Hn we use (5.4.2), that ‖T k(uδ)‖ ≤ 5αrk−N ≤ 5α0 for k ≤ n−1
and that r + η < rσ to obtain

‖Hn‖ ≤
n−1∑

k=0

K(r + η)n−k−1β(5αrk−N )σ

≤ ασ5σKβrσ(n−1−N)
n−1∑

k=0

(r + η

rσ

)n−k−1
≤ CMασrn−N .

This shows the claim (5.4.6).

Now it follows from (5.4.5), (5.4.6) and σ > 1 that ‖Tn(uδ)‖ ≤ 5αrn−N ,
provided α ≤ 1 is such that CMα

σ−1 ≤ 1. By induction, for all n = 0, ..., N
we obtain that Tn(uδ) is well-defined and the estimates ‖Tn(uδ)‖ ≤ 5αrn−N

and (5.4.6) hold true.

Step 3. As a consequence, for dist(TN (uδ), E) we only have to con-
sider ζ ∈ U such that ‖ψ(ζ)‖ ≤ 10α. Indeed, for ‖ψ(ζ)‖ > 10α we have
‖TN (uδ)− ψ(ζ)‖ > 5α, but ‖TN (uδ)− ψ(0)‖ = ‖TN (uδ))‖ ≤ 5α. There is
small τ0 > 0 such that

ψ(ζ) = ψ′(0)ζ + ρ(ζ), |ζ| ≤ τ0, (5.4.8)
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where ‖ρ(ζ)‖ ≤ Cρ|ζ|2 for a constant Cρ independent of ζ ∈ Bτ0(0). Since
ψ′(0) has full rank m, we have Cψ′ = min|ξ|=1 ‖ψ′(0)ξ‖ > 0 and we can
choose τ0 such that Cρτ0 ≤ Cψ′/2. Hence, with ϑ = 20/Cψ′ and small α, we
obtain

‖ψ(ζ)‖ ≥ ‖ψ′(0)ζ‖ − Cρ|ζ|2 > 10α for τ0 ≥ |ζ| > ϑα.

Then, with these choices,

dist(TN (uδ), E) = inf
|ζ|≤ϑα

‖TN (uδ)− ψ(ζ)‖.

Step 4. Now let |ζ| ≤ ϑα. Then (5.4.5), (5.4.8) and the estimates (5.4.6)
and | sin(Nθ)| ≤ α yield

‖TN (uδ)− ψ(ζ)‖ ≥ ‖λNuδ − ψ′(0)ζ‖ − ‖GN‖ − ‖HN‖ − ‖ρ(ζ)‖
≥ ‖αeiNθu− ψ′(0)ζ‖ − 3α2 − CMασ − ϑ2Cψ′′α

2. (5.4.9)

The vectors u and ψ′(0)ζ are linearly independent if α is sufficiently small.
In fact, otherwise our assumption ψ′(0)ζ ∈ ker (M − id) would imply that
Mu = u. But as in (5.4.7), the estimate (5.4.4) then yields |λ − 1| =
‖λu−Mu‖ ≤ α2 + 2α, which is impossible for small α.

We conclude that ‖eiNθu− 1
αψ
′(0)ζ‖ is bounded away from zero, uniformly

for |ζ| ≤ ϑα. Hence, decreasing α once more if necessary, we obtain from
(5.4.9) and σ > 1 that dist(TN (uδ), E) ≥ ε0, where ε0 > 0 is a multiple of α
independent of δ.

Let us now apply the lemma to abstract quasilinear problems

∂tu = A(u)u+ F (u), t > 0, u(0) = u0. (5.4.10)

We denote by L(u∗) = A(u∗) +A′(u∗)[·, u∗] +F ′(u∗) the linearization of the
right-hand side at u∗.

Theorem 5.9. Assume the setting of either Theorem 5.1 or Theorem 5.6,
and in addition that A and F are C2. Let E ⊂ V ∩X1 be an m-dimensional
C2-manifold of equilibria of (5.4.10), parametrized by ψ : U ⊂ Rm → E, and
let u∗ ∈ E satisfy

• specL(u∗) ∩ {Reλ > 0} 6= ∅,
• ∂1ψ(ζ∗), ..., ∂mψ(ζ∗) ∈ kerL(u∗) for u∗ = ψ(ζ∗).

Then u∗ is orbitally unstable in V ⊆ X with respect to E.
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Proof. Shrink V around u∗ if necessary such that t+(u0) ≥ 1 for each u0 ∈
V. Let Φ1 : V → X be the time-one solution map for (5.4.10). Define
T (u0) = Φ1(u∗ + u0)− (u∗ + u0) for u0 close to u∗. Then T is continuous,
T (u) = 0 for u ∈ E ∩ V, and T satisfies (5.4.1) with M = eL(u∗) ∈ L (X ),
as a consequence of Proposition 4 for the setting of Theorem 5.1 and of
[126, Proposition 6.2] for the setting of Theorem 5.6. Moreover, M has
spectral radius larger than one by [114, Corollary 2.3.7] and interpolation,
and ∂jψ(ζ∗) ∈ ker(M − id) follows from the assumption. Thus Lemma 5.1
applies.

Of course, Lemma 5.1 applies in any well-posedness setting for nonlinear
parabolic problems.

5.5 A generalized Gray-Scott-Klausmeier model

For illustration of the previous results, let us consider the model (5.1.2) for
water-vegetation interaction in semi-arid landscapes

wt =(w2)xx + Cwx +A(1− w)− wv2,

vt =Dvxx −Bv + wv2.
(5.5.1)

Here A is roughly a measure of the rainfall. On the one hand, (5.5.1) is
(a rescaling of) the Klausmeier model for banded vegetation patterns on a
sloped terrain from [97], when removing the porous medium term (w2)xx.
On the other hand, upon replacing (w2)xx by wxx and setting C = 0, (5.5.1)
is precisely the semilinear Gray-Scott model, which has been extensively
studied in the past decades, see, e.g., [24,49,130] and the references therein.
The relations between these different models in terms of periodic patterns
have been studied in [199]. From an application point of view it is important
to know in which patterned state these model systems may reside, and thus
to establish well-posedness as well as existence, stability and instability of
patterns.

In order to illustrate the straightforward applicability of the frameworks of
the previous sections, we show well-posedness around travelling waves with
first component bounded away from zero. We then consider homogeneous
steady states and wavetrains, and derive the dispersion relations. These are
illustrated by numerical computations of spectra when passing a Turing-Hopf
bifurcation and a sideband instability.
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5.5.1 Well-posedness for perturbations of travelling waves

To cast (5.5.1) into the form (5.1.1) we set u = (w, v) and define the smooth
nonlinearities a : R2 → R2×2 and f : R2 → R2 by

a(u) =

(
2w 0
0 D

)
, f(u,ux) =

(
Cwx +A(1− w)− wv2

−Bv + wv2

)
.

Then (5.5.1) is equivalent to

ut = (a(u)ux)x + f(u,ux).

We see that a(u) is positive definite only for w > 0, and thus (5.5.1) fails
to be parabolic for w ≤ 0. We therefore restrict to w > 0. From the quasi-
positive structure of f for A > 0 and the smoothness of solutions given by
the well-posedness, it readily follows that (5.5.1) preserves w > 0 on the
maximal existence interval.

Assume that u∗(t, x) = u(x − ct) is a travelling wave solution of (5.5.1)
with profile

u = (w, v) ∈ BC∞(R,R2)

satisfying w ≥ δ > 0, and speed c ∈ R. Note that this includes homogeneous
steady states. Denote the co-moving frame x− ct again by x. As for (5.3.1),
the evolution of perturbations u of u under (5.5.1) is governed by

ut = (a(u+u)ux)x+(a(u+u)ux)x+c(ux+ux)+f(u+u,ux+ux). (5.5.2)

Choose V as any open subset of X = H2, X = B
2−2/p
2,p with p > 2 sufficiently

large or X = BUC, such that w+w is positive and bounded away from zero
for all u = (w, v) ∈ V. This is possible in view of the Sobolev embeddings
H2 ⊂ BUC and (5.2.7). The Theorems 5.4, 5.5 or 5.7 apply and yield local
well-posedness of (5.5.2) in V, respectively, in a sense as for the Theorems
5.1 and 5.7. Solutions are in fact smooth in space and time (see Remark
5.3).

The eigenvalue problem for the linearization of the right-hand side of
(5.5.2) in u = 0 is for λ ∈ C given by

λw = 2wwxx + 4wxwx + 2wxxw + (C + c)wx −Aw − v2w − 2w vv,

λv = Dvxx + cvx −Bv + v2w + 2w vv.
(5.5.3)
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Figure 5.1: Spectra of the homogeneous steady state (w+, v+) of (5.5.1) for B = C = 0.2,
D = 0.001 before the Turing-Hopf instability, A = 0.63 (stable), near to it, A = 0.53,
and after it, A = 0.43 (unstable). (a) Real part of spectrum vs. linear wavenumber,
(b) Imaginary part of spectrum vs. real part.

By Proposition 1, the spectrum of the linearization is independent of the
above functional analytical frameworks. A brief account for the computation
of the spectrum is given in §5.3.3, and we refer to [157] for a survey. Nonlinear
stability or instability of u∗ can be deduced from the results in §5.4 in some
situations, as pointed out below.

5.5.2 Homogeneous steady states

These are solutions w(t, x) = w∗, v(t, x) = v∗ ∈ R to (5.5.1) that are time
and space independent, and thus solve the algebraic equations arising from
vanishing space and time derivatives. We readily compute that the possibil-
ities are (w0, v0) = (1, 0) and, in case A ≥ 4B2,

w± =
1

2A

(
A∓

√
A2 − 4AB2

)
, v± =

1

2B

(
A±

√
A2 − 4AB2

)
.

The state (w0, v0), with zero vegetation, represents the desert (even though
there is non-zero ‘water’), while the equilibria (w+, v+) and (w−, v−) repre-
sent co-existing homogeneously vegetated states. At A = Asn = 4B2, the
latter two collapse in a saddle-node bifurcation. The spectrum of the lin-
earization in (w∗, v∗) can be computed from the usual dispersion relation
d(λ, κ) = 0, where

d(λ, κ) = det

(
−2w∗κ

2 + iκ(C + c) −A− v2
∗ − λ −2w∗v∗

v2
∗ −Dκ2 + iκc−B + 2w∗v∗ − λ

)

is obtained from Fourier transform, see §5.3.3.
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Figure 5.2: (a) Sample bifurcation diagram of wavetrains for A = 0.02, B = C = 0.2, D = 0.001.
At L ≈ 3.45 a fold occurs, and both branches appear to terminate in a homoclinic
bifurcation as L→∞. The inset shows profiles of solutions at the fold (w ≈ 0.5) and
near L = 80 on upper and lower (w ≈ 1) branch. (b) Magnification of the bifurcation
diagram with bullet marking the location of the sideband instability at L ≈ 5.98.
Solutions on the branch for increasing period are spectrally stable.

An origin of patterns is a (supercritical) Turing-Hopf bifurcation of the
steady state (w+, v+) that occurs as A decreases from larger values, as shown
in [199]. It is in fact straightforward to study bifurcations of spatially pe-
riodic travelling waves as this only involves ODE analysis. As a side note
on Turing-Hopf bifurcations, we mention that the dynamics of (5.5.1) near
onset is formally approximated by a complex Ginzburg-Landau equation
(see [199]), but the rigorous justification has not been established for quasi-
linear problems, to our knowledge.

In order to locate the Turing-Hopf bifurcation, we need to study the spec-
trum of the linearization in (w+, v+). For illustration, in Figure 5.1 we plot
the spectrum obtained numerically (using Auto [42]) from the dispersion
relation as the parameter A passes through the aforementioned Turing-Hopf
bifurcation. Since the spectrum is unstable after passing the Turing-Hopf
instability (e.g. A = 0.43 in Figure 5.1), the steady state is expected to be
unstable under the nonlinear evolution. Indeed, this is the case thanks to
Theorem 5.8.

5.5.3 Wavetrains

The patterns emerging at the Turing-Hopf bifurcation are periodic wave-
trains, which are solutions to (5.5.1) of the form

(w∗, v∗)(t, x) = (w̃, ṽ)(kx− ωt),
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Figure 5.3: Spectra of the wavetrains for B = C = 0.2, D = 0.001, A = 0.02 before the sideband
instability, L = 5.9 (stable), near to it, L ≈ 5.98, and after it, L = 6.1 (unstable). (a)
Real part vs. linear wavenumber, (b) Imaginary part vs. real part.

with a 2π-periodic profile (w̃, ṽ). Here ω is called the frequency and k the
wavenumber. As noted in [199], the existence region of wavetrains to (5.5.1)
in parameter space extends far from the Turing-Hopf bifurcation and even
beyond the saddle-node bifurcation A = Asn of homogeneous equilibria with
vegetation. In Figure 5.2 we plot a branch of wavetrain solutions for A < Asn

that appears to terminate in another type of travelling waves: pulses, which
are spatially homoclinic orbits.

In order to link to the formulations for travelling waves, let us cast wave-
trains as equilibria (w∗, v∗)(t, x) = (w, v)(x − ct) in the co-moving frame
x − ct with speed c = ω

k . The eigenvalue problem of the linearization of
(5.5.1) in a wavetrain is then given by (5.5.3), with coefficients of period
L = 2π/k stemming from (w, v).

The approach via Fourier transform is less useful, because the lineariza-
tion is not diagonal in Fourier space due to the x-dependent coefficients.
As a substitute, one uses the Floquet-Bloch transform, which replaces the
eigenvalue problem on R by a family of eigenvalue problems on the wave-
length interval [0, L] (see §5.3.3). Specifically, this can be cast as the family
of boundary value problems for κ ∈ [0, 2π) given by (5.5.3) with ∂x replaced
by ∂x + iκ/L and L-periodic boundary conditions.

With a curve of spectrum of a wavetrain connected to the origin λ = 0
(due to translation symmetry), a change in its curvature is a typical desta-
bilization upon parameter variation. This so-called sideband instability is
illustrated in Figure 5.3, where we plot spectra of wavetrains in (5.5.1) pass-
ing through a sideband instability as the wavelength L changes. For these
computations, we implemented the first order formulation of the dispersion
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relation numerically in Auto based on the algorithm from [147].

As for the homogeneous steady state, the wavetrains with unstable spec-
trum (e.g., L = 6.1 in Figure 5.3) are expected to be (orbitally) unstable
under the nonlinear evolution of (5.5.1), see Proposition 3 and Theorem 5.8.

5.A Auxiliary results

5.A.1 Superposition operators

We give some details for the properties of the nonlinear maps employed in
the well-posedness results.

Lemma 5.2. Let U1, U2 ⊂ RN be open neighbourhoods of zero, let

a : R× U1 → RN be Ck+3 and let f : R× U1 × U2 → RN be Ck+2,

with f(·, 0, 0) ∈ H1. Define the superposition operators

A(u)v = (a(·, u)vx)x, F (u) = f(·, u, ux).

Then there is an open subset V of H2 such that A ∈ Ck(V,L (H3, H1)) and
F ∈ Ck(V, H1), and both maps are Lipschitz on bounded subsets of V. One
can take V = H2 if U1 = U2 = RN . At u ∈ V, the derivatives are for u ∈ H2

and v ∈ H3 given by

A′(u)[u, v] = (∂2a(·, u)[u, vx])x, F ′(u0)v = ∂2f(·, u, ux)v + ∂3f(·, u, ux)vx.

Proof. Choose V ⊆ H2 such that for u ∈ V the closure of the images of
u, ux ∈ H1 ⊂ BC are uniformly contained in U1 and U2, respectively. Let
u ∈ V. For h ∈ H2 we use ‖uh‖L2 ≤ ‖u‖BC‖h‖L2 and ‖u‖BC ≤ C‖u‖H1 to
estimate

‖∂2f(·, u, ux)h‖H1 ≤ ‖∂2f(·, u, ux)‖BC(‖h‖L2 + ‖hx‖L2)

+‖f ′′(·, u, ux)‖BC(‖h‖L2 + ‖ux‖L2‖h‖BC + ‖uxx‖L2‖h‖BC)

≤ C(‖f ′(·, u, ux)‖BC + ‖f ′′(·, u, ux)‖BC‖u‖H2)‖h‖H1 .

In the same way we obtain

‖∂3f(·, u, ux)hx‖H1 ≤ C(‖f ′(·, u, ux)‖BC + ‖f ′′(·, u, ux)‖BC‖u‖H2)‖h‖H2 .
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Defining F ′(u)h = ∂2f(·, u, ux)h + ∂3f(·, u, ux)hx we thus have F ′(u) ∈
L (H2, H1), and that u 7→ F ′(u) is bounded on bounded subsets of V. If h
is small, then the pointwise identity

F (u+ h)− F (u)− F ′(u)h =

∫ 1

0

∫ 1

0

(
∂22f(·, u+ τsh, ux)[h, τh]

+ ∂33f(·, u, ux + τshx)[hx, τhx]
)
dτds

and the same types of estimates as above yield

‖F (u+ h)− F (u)− F ′(u)h‖H1 ≤ C(f, h)‖h‖2H2 ,

where C(f, h) is bounded as h → 0. These arguments and f(·, 0, 0) ∈ H1

yield F (u) ∈ H1 for u ∈ V and the differentiability of F in V. The Lipschitz
property follows from the boundedness of F ′. Iteration for higher derivatives
gives F ∈ Ck. The arguments apply to u 7→ a(u) on H2 as well, which yields
the assertion on A.

Note that if f is independent of ux, then the arguments from the proof
above show that f : H1 → H1 is smooth.

Lemma 5.3. In the situation of Theorem 5.5, assume in addition that a
and f are Ck+2 for some k ≥ 0. Let A and F be defined by

A(u)v = ∂i(aij(u+u)∂jv), F (u) = ∂i(aij(u+u)∂ju)+ci∂i(ū+u)+f(u+u).

Then for all sufficiently large p > 2 there is is an open neighbourhood

V ⊂ B2−2/p
2,p

of the zero function such that F ∈ Ck(V, L2) and A ∈ Ck(V,L (H2, L2)),

and both maps are Lipschitz on bounded sets. One can take V = B
2−2/p
2,p if

U = RN .

Proof. Since n ≤ 3, from Sobolev’s embedding (5.2.7) we find p > 2 such

that B
2−2/p
2,p ⊂ H1,4∩BC. Then V can be chosen such that the image of u+u

is strictly contained in U , uniformly in u ∈ V. The regularity of A and F can

be derived as in Lemma 5.2, using F (0) = 0. The need for B
2−2/p
2,p ⊂ H1,4

and thus also H2 ⊂ H1,4 comes from the nonlinear gradient terms. Indeed,
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assume for simplicity that u = 0. Then for u1, u2 ∈ B2−2/p
2,p and v ∈ H2 we

can estimate

‖a′ij(u1)∂iu1∂jv − a′ij(u2)∂iu2∂jv‖L2

≤ ‖a′ij(u1)∂iu1 − a′ij(u2)∂iu2‖L4‖∂jv‖L4

≤
(
‖a′ij(u1)‖BC‖u1 − u2‖H1,4 + ‖u2‖H1,4‖‖a′ij(u1)− a′ij(u2)‖BC

)
‖v‖H1,4 ,

employing Hölder’s inequality L4 · L4 ⊂ L2 in the first equation.

5.A.2 A commuting isomorphism for elliptic operators

The following auxiliary result for second order differential operators allows
to transfer spectral properties from L2 to H1 by conjugation.

Lemma 5.4. Let α, β, γ ∈ BC1(R,RN×N ), and assume that α(x) is pos-
itive definite, uniformly in x. Then there is a continuous isomorphism
T : H1 → L2, which also maps T : H3 → H2 isomorphically, that commutes
on H3 with the operator ϕ 7→ Lϕ := αϕxx + βϕx + γϕ.

Proof. The isomorphism T will be the square root of a shift of L. The main
point is to show that its domain for the realization on H2 is H3.

Denote by LL2 the realization of L on L2, with domain H2. The prop-
erties of α together with [7, Theorem 9.6] imply that there is ω > 0 such
that B = ω − LL2 is a (negative) sectorial operator and has a bounded
holomorphic functional calculus of angle strictly smaller than π

2 . In partic-

ular, T := B1/2 is a well-defined continuous isomorphism D(B1/2) → L2,
see [188, Theorem 1.15.2]. The boundedness of the holomorphic calculus of
B implies that it has the property of bounded imaginary powers. Therefore,
combining [115, Lemma 4.1.11] with [188, Theorem 1.15.3] (or [115, Theo-
rem 4.2.6]), we have D(B1/2) = [L2, H2]1/2, where [·, ·]1/2 denotes complex
interpolation (see [18, 115, 188]). Since [L2, H2]1/2 = H1 by [188, Remark
2.4.2/2], it follows that T : H1 → L2 is an isomorphism.

Next, we show that T : H3 → H2 is an isomorphism. Again by [188, The-
orem 1.15.2], T also maps isomorphically D(B3/2)→ D(B) = H2. We show
that D(B3/2) = H3 as Banach spaces. By [115, Lemma 4.1.16, Theorem
4.1.11] and the previous considerations we have

D(B3/2) = {u ∈ D(B) : Bu ∈ D(B1/2)} = {u ∈ H2 : Lu ∈ H1}.
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For u ∈ H3 we clearly have Lu ∈ H1, hence H3 ⊆ D(B3/2). Conversely,
let u ∈ H2 such that Lu ∈ H1. Then αuxx = ψ := −βux − γu + Lu ∈
H3. By assumption, the coefficient α is pointwise invertible, with α−1 ∈
BC1. Therefore uxx = α−1ψ ∈ H1, and so u ∈ H3. We conclude that
D(B3/2) = H3 as sets. Arguing as before, we get

‖u‖D(B3/2) = ‖u‖H2 + ‖Lu‖H1 ≤ C‖u‖H3 ,

for a constant independent C of u. Since we already know that H3 is com-
plete with respect to ‖ · ‖D(B3/2) and ‖ · ‖H3 , the converse estimate follows
from the open mapping theorem.

Finally, it follows from [115, Theorem 4.1.6] that ω − LL2 and its square
root T commute on H3. This implies that also LL2 commutes with T .

The assertion of the above lemma remains valid, with literally the same
proof, if one replaces the L2-setting by an Lq-setting, where q ∈ (1,∞).

5.A.3 The time-one solution map

We use the implicit function theorem to prove that in the neighbourhood of
an equilibrium the solution semiflow obtained from Theorem 5.1 for (5.2.1) is
as smooth as the right-hand side. See [78, Theorem 3.4.4] for the semilinear
case, as well as [114, Theorem 8.3.4] and [6, Theorem 4.1] for quasilinear
frameworks.

Proposition 4. In the situation of Theorem 5.1, assume additionally that

A ∈ Ck(V,L (X1, X0)), F ∈ Ck(V, X0), for some k ∈ N.

Let u∗ ∈ V∩X1 be an equilibrium of (5.2.1), i.e., A(u∗)u∗+F (u∗) = 0. Then
for any τ > 0 there is a neighbourhood U ⊆ V of u∗ such that the time-τ map
u0 7→ Φτ (u0) = u(τ ;u0) for the solution semiflow for (5.2.1) is well-defined
and belongs to Ck(U ,X ). Moreover, let L∗ = A(u∗) +A′(u∗)[·, u∗] + F ′(u∗).
Then Φ′τ (u∗) = eτL∗ .

Proof. We assume V = X . Set E1 = H1,p(0, τ ;X0) ∩ Lp(0, τ ;X1) and
E0 = Lp(0, τ ;X0), and consider

Ψ : E1 ×X → E0 ×X , Ψ(u, u0) = (∂tu−A(u)u− F (u), u(0)− u0).
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Note that u ∈ E1 solves (5.2.1) on (0, τ) with initial value u0 ∈ X if and
only if Ψ(u, u0) = (0, 0). Consider u∗ as an element of E1. Then Ψ(u∗, u∗) =
(0, 0). The assumptions on A and F imply Ψ ∈ Ck(E1 ×X ,E0 ×X ) and

D1Ψ(u∗, u∗)v = (∂tv − L∗v, v(0)), v ∈ E1.

From the proof of Theorem 5.1 we know that −A(u∗) enjoys maximal Lp-
regularity. The linear operator A′(u∗)[·, u∗] + F ′(u∗) is continuous from
X = (X0, X1)1−1/p,p to X0, i.e., it is of lower order. Thus −L∗ has maximal
Lp-regularity as well, see [55, Theorem 6.2]. In other words, D1Ψ(u∗, u∗) ∈
L(E1,E0 ×X ) is an isomorphism. This gives a neighbourhood U of u∗ in X
such that u0 7→ u(·;u0) belongs to Ck(U ,E1), where u(·;u0) is the solution
of (5.2.1) on (0, τ). Moreover, for v0 ∈ X we differentiate Ψ(u(·;u0), u0) = 0
in u∗ to get that

Du0u(·;u∗)v0 = −D1Ψ(u∗, u∗)−1D2Ψ(u∗, u∗)v0 = −D1Ψ(u∗, u∗)−1(0,−v0)

is the unique solution v ∈ E1 of ∂tv − L∗v = 0 on (0, τ) with v(0) = v0, i.e.,
Du0u(·;u∗) = e·L∗ . Finally, the trace at time τ is linear and continuous as a
map E1 → X , see [188, Theorem 1.14.5]. Applying this to u(·;u0) gives the
assertion for Φτ .
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6 Outlook

We briefly outline future research topics, motivated by the results presented
in this thesis.

Stability of 2D patterns

In Chapter 2 and 3, following [147,199] we have extended the stability anal-
ysis from spatially homogeneous vegetation to banded vegetation patterns.
Banded patterns are periodic in one space dimension and constant in the
other. For assessing the stability of these patterns against perturbations we
have applied a Floquet-Bloch decomposition in the dimension of periodicity
and Fourier analysis in the other.

Spotted patterns are periodic in two space dimensions. A next important
step is to determine stability of spotted patterns, which requires the applica-
tion of Floquet-Bloch decomposition in two space dimensions. The stability
of these patterns is crucial for the understanding of the final steps in the
desertification process.

Observability of dashed vegetation patterns

In Chapter 3 we have seen that under increasing environmental stress banded
vegetation tends to break up in dashed vegetation: spots aligned in stripes.
The power spectrum (or periodogram, obtained after Fourier transforma-
tion) of dashed vegetation shows similarity both to striped patterns and
more hexagonal distributions of spots.

In existing observational studies dashed patterns could have both been
identified as banded or spotted patterns [12,35,193]. An observational frame-
work in which dashed patterns can be identified separately would help in the
validation or falsification of the banded vegetation breakup process.
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6 Outlook

Gapped patterns in advective reaction-diffusion
systems

In Chapter 3 we have shown that for a very general two-component reaction-
advection-diffusion system, the spatially homogeneous state is first destabi-
lized by perturbations in the direction of advection. Although this doesn’t
exclude the possibility of observable gapped patterns on slopes, their obser-
vation for a wide range of rainfall parameter values for all relevant slopes [12]
is interesting. Analytical analysis near the onset of pattern formation for
reaction-advection-diffusion systems in two space dimensions may shed light
on the origins of gapped vegetation patterns.

Field data input for the modeling of grazing

In Chapter 4 a framework has been introduced to include nonlocal grazing
in arid ecosystem modeling. Based on the extended Klausmeier model, sev-
eral qualitatively distinct changes in vegetation pattern stability have been
presented, depending on which modeling choices are made.

Because the framework allows for different implementation possibilities,
extraction of foraging responses (distributional, numerical and functional)
from field data is desired to make an informed decision about the modeling
choice.
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[190] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 237:37–72, 1952.

[191] H. Uecker. Self-similar decay of spatially localized perturbations of the nusselt solution for
the inclined film problem. Arch. Rational Mech. Anal., 184:401–447, 2007.

[192] H. Uecker, D. Wetzel, and J.D.M. Rademacher. pde2path - A Matlab package for contin-
uation and bifurcation in 2D elliptic systems. Num. Math.: Th. Meth. Appl., 7:58–106,
2014.

[193] C. Valentin, J.M. d’Herbès, and J. Poesen. Soil and water components of banded vegetation
patterns. CATENA, 37:1–24, 1999.

[194] J. van de Koppel and M. Rietkerk. Herbivore regulation and irreversible vegetation change
in semi-arid grazing systems. OIKOS, 90:253–260, 2000.

[195] J. van de Koppel, M. Rietkerk, N. Dankers, and P.M.J. Herman. Scale-dependent feedback
and regular spatial patterns in young mussel beds. The American naturalist, 165(3):E66–77,
2005.

[196] J. van de Koppel, M. Rietkerk, F. van Langevelde, L. Kumar, C.A. Klausmeier, J.M. Fryxell,
J.W. Hearne, J. van Andel, N. de Ridder, A. Skidmore, L. Stroosnijder, and H.H.T. Prins.
Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. The

183



Bibliography

American Naturalist, 159(2):209–218, 2002.

[197] H. van der Ploeg and A. Doelman. Stability of spatially periodic pulse patterns in a class
of singularly perturbed reaction-diffusion equations. Indiana Univ. Math. J., 54:1219–1302,
2005.

[198] S. van der Stelt. Rise and Fall of Periodic Patterns in a Generalized Klausmeier-Gray-Scott
Model. PhD thesis, Universiteit Leiden, 2012.

[199] S. van der Stelt, A. Doelman, G. Hek, and J.D.M. Rademacher. Rise and fall of periodic
patterns for a Generalized Klausmeier-Gray-Scott model. J. Nonl. Sc., 23:39–95, 2013.

[200] J.L. Vàzquez. The Porous Medium Equation. Oxford University Press, 2007.

[201] B.Z. Virany, A. Szommer, A. Toth, and D. Horvath. Lateral instability controlled by con-
stant electric field in an acid-catalyzed reaction. Phys. Chem. Chem. Phys., 6:3396–3401,
2004.

[202] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi. Diversity of Vegetation Patterns
and Desertification. Physical Review Letters, 87:3–6, 2001.

[203] R.-H. Wang, Q.-X. Liu, G.-Q. Sun, Z. Jin, and J. van de Koppel. Nonlinear dynamic
and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc.
Interface, 6:705–718, 2009.

[204] M. Westoby, B. Walker, and I. Noy-Meir. Opportunistic management for rangelands not at
equilibrium. Journal of Range Management, 42:266–274, 1989.

[205] X. Zhao Y. Wu. The existence and stability of travelling waves with transition layers for
some singular cross-diffusion systems. Physica D, 200:325–358, 2005.

[206] A. Yagi. Abstract Parabolic Evolution Equations and their Applications. Springer, 2010.

[207] H. Yizhaq, E. Gilad, and E. Meron. Banded vegetation: biological productivity and re-
silience. Physica A: Statistical Mechanics and its Applications, 356:139–144, 2005.

[208] Y.R. Zelnik, S. Kinast, H. Yizhaq, G. Bel, and E. Meron. Regime shifts in models of dryland
vegetation. Philosophical Transactions of the Royal Society A, 371, 2013.

[209] S. Zhao, J. Ovadia, X. Liu, Y.-T. Zhang, and Q. Nie. Operator splitting implicit integration
factor methods for stiff reaction-diffusion-advection systems. J Comput Phys., 230(15):5996–
6009, 2011.

[210] K. Zumbrun. Center stable manifolds for quasilinear parabolic pde and conditional stability
of nonclassical viscous shock waves. Preprint, available as arXiv:0811.2788.

[211] K. Zumbrun. Planar stability criteria for viscous shock waves of systems with real viscosity.
In Hyperbolic systems of balance laws. Springer, 2007.

[212] K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock
waves. Indiana Univ. Math. J., 47:741–872, 1998.

184



Nederlandse samenvatting

Een woestijn als toetje

Ecosystemen in droge gebieden staan onder toenemende druk door klimaat-
verandering en een groeiende bevolking. Het is mogelijk dat de druk toe-
neemt tot voorbij een kritiek punt, waarna in een snelle transitie alle vege-
tatie verdwijnt. Het is belangrijk om dit verwoestijningsproces te begrijpen
om het vervolgens tegen te kunnen gaan.

In dit proefschrift bestuderen we een fenomenologisch model - het ex-
tended Klausmeier model - waarin de opname van het zeldzame water door
de vegetatie een cruciale rol speelt. In dit model gaat ruimtelijk homogene
vegetatie onder toenemende druk over in ruimtelijk periodieke vegetatiepa-
tronen. Deze patronen ontstaan door competitie voor water op de lange
lengteschaal maar (in aanwezigheid van vegetatie) een betere bodeminfil-
tratie op de korte lengteschaal. Hierdoor heeft vegetatie nabij een positieve
invloed op de plantengroei (facilitatie) terwijl vegetatie verder weg juist een
negatief effect heeft.

We bekijken de verschillende scenario’s van opeenvolgende vegetatiepatro-
nen onder afnemende regenval, met als eindresultaat een kale woestijn - als
toetje.

Op hellingen spelen vegetatiebanden of -strepen langs hoogtecontouren
een centrale rol. Onder afnemende regenval komen deze patronen tevoor-
schijn uit een ruimtelijk homogeen begroeide toestand. Onder verder afne-
mende regenval neemt de golflengte van het patroon stapsgewijs toe. De
grote van deze sprongen in golflengte hangt af van de snelheid waarmee de
regenval afneemt en de mate waarin het proces door ruis verstoord wordt.
Dit wordt beschreven in Hoofdstuk 2.

In Hoofdstuk 3 nemen we mee dat op een gegeven moment vegetatiebanden
opbreken in spots. Hoe steiler de helling hoe langer dit moment op zich
laat wachten. Hiermee vormen de spots een volgende stap in het verwoes-
tijningsproces. Daarnaast laten we op basis van een lineaire analyse zien dat
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op het moment van patroonvorming de homogene toestand overgaat in een
streeppatroon, voor een ruime klasse van stelsels van partiële differentiaal-
vergelijkingen die het extended Klausmeier model omvat.

Nieuwe expliciete termen voor het modelleren van begrazing worden gëın-
troduceerd in Hoofdstuk 4. Begrazing op één locatie hangt af van het bestaan
van alternatieve voedselbronnen elders, waardoor de nieuwe termen een niet-
lokaal karakter hebben. Afhankelijk van hoe we de begrazing modelleren,
kan het woestijnvormingsproces op verschillende manieren kwalitatief veran-
deren.

In het laatste hoofdstuk presenteren we voor zogenaamde quasi-lineaire
stelsel van partiële differentiaalvergelijkingen, functieruimten waarbinnen
oplossingen bestaan. Modellen voor vegetatie in droge ecosystemen kunnen
quasi-lineair zijn, bijvoorbeeld als de stroming van water wordt beschreven
door een shallow water equation. De bestudering van een model binnen
een functieruimte waarin geen oplossingen bestaan moet vermeden worden.
Door vergelijkingen op te stellen voor de verstoringen en daarvoor te laten
zien dat oplossingen bestaan (binnen een geschikte functieruimte), kunnen
we op een zinvolle manier stabiliteit bestuderen.
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