

### Molecular markers in renal transplant biopsies

Groningen, M.C. van

#### Citation

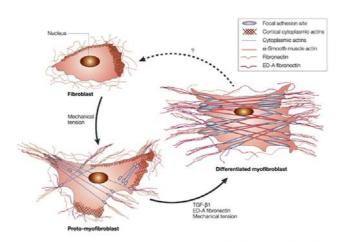
Groningen, M. C. van. (2008, October 30). *Molecular markers in renal transplant biopsies*. Retrieved from https://hdl.handle.net/1887/13209

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

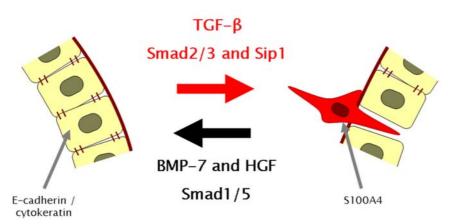
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13209


**Note:** To cite this publication please use the final published version (if applicable).

## Appendix

## **Colour figures**





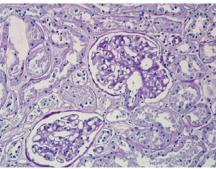


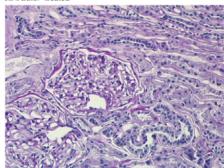

Nature Reviews | Molecular Cell Biology

**Chapter 1: Figure 2.** A two-stage model of myofibroblast differentiation. Fibroblasts evolve into proto-myofibroblasts due to changes in the microenvironment. Later, in the presence of growth factors and ECM molecules, the proto-myofibroblast differentiates into a myofibroblast. Printed with permission from Macmillan Publishers Ltd: Nat Rev Mol Cell Biol. Tomasek JJ, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3(5):349-363, copyright 2002.

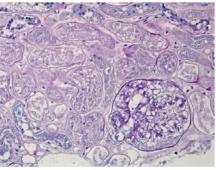


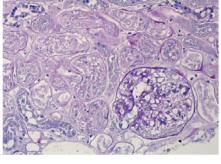
**Chapter 1: Figure 3.** Schematic drawing of epithelial to mesenchymal transition (EMT). During EMT the characteristic epithelial phenotype is lost and a mesenchymal phenotype is acquired. The mesenchymal phenotype is identified by S100A4 expression. TGF- $\beta$  is the prime inducer of EMT through a Smad 2/3 and Sip1 pathway. This process can be reversed by BMP-7 through a Smad 1/5 dependent pathway and HGF.

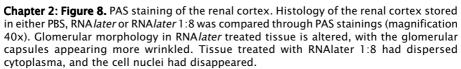



Colour figures.p65

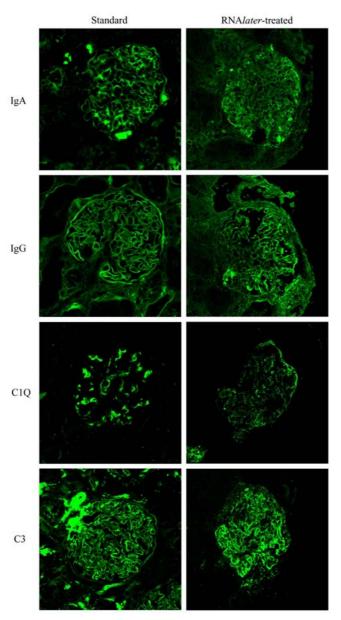

# Standard


#### RNAlater-treated





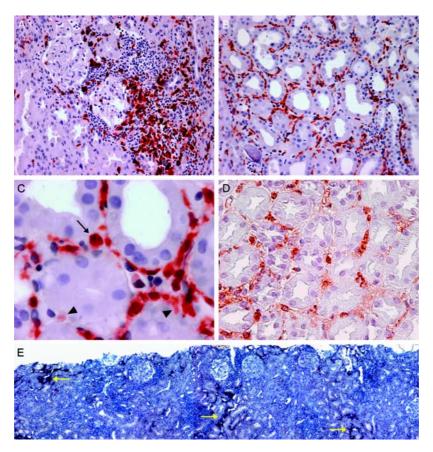

NAlater 1:8-treated





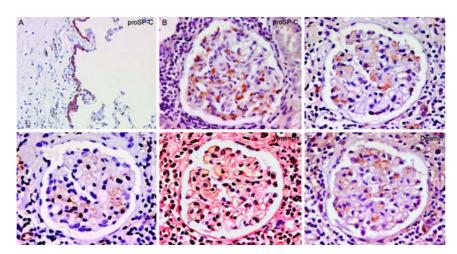




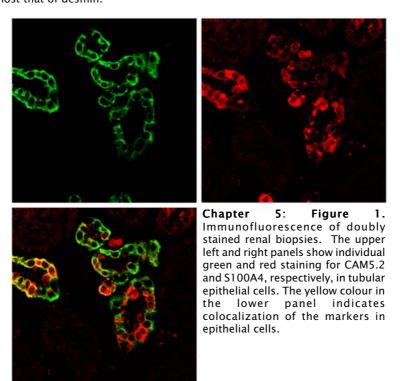






**Chapter 2: Figure 9.** Immunofluorescence stainings for IgA, IgG, C1Q, and C3. The left panels represent stainings on renal cortex from a patient with lupus nephritis. Stainings were performed according to standard diagnostic practice. The renal cortex from a patient with lupus nephritis, which was stored in RNA/ater (right panels), displayed a dispersed staining pattern and a decreased intensity of the fluorescent signal.

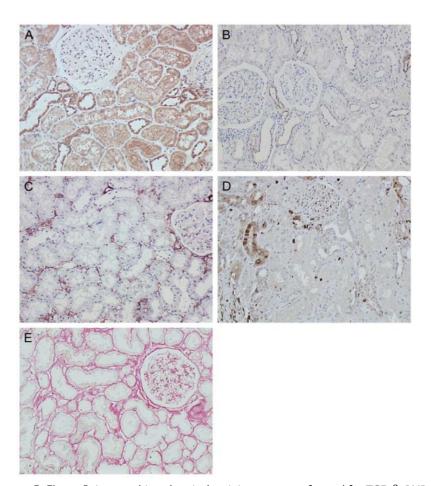

Ψ



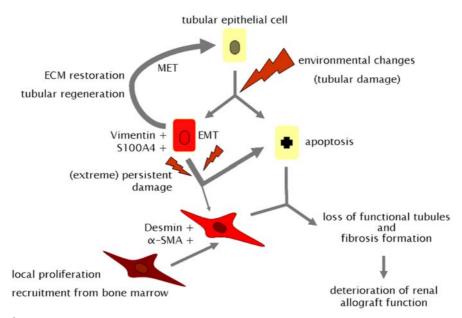



**Chapter 3: Figure 4.** Pattern of staining for S100A8 and S100A9 in patient biopsies with acute rejection. Staining for (A,B) the S100A8/A9 heterodimeric complex (Antibody 27E10) and (D) S100A9 was seen in focal infiltrates and in infiltrating cells between tubules. (C) Enlarged recording of tubulointerstitium showing positive signal for S100A8/A9 heterodimers. Arrow indicates a neutrophil granulocyte that is positive in the staining. S100A8/A9-dimeric protein complexes are presumably also deposited extracellularly (arrowheads). (E) Typical result for RNA *in situ* hybridization for S100A8 mRNA in a biopsy with acute rejection. Yellow arrows indicate positivity for S100A8 mRNA.






Chapter 3: Figure 7. Localization of proSP-C protein in acute rejection biopsies. (A) A typical beads-on-a-string staining pattern for proSP-C was observed in peripheral lung sections, which were used as positive controls. (B,C) ProSP-C protein was detected in glomeruli of sections from renal transplants with acute rejection. Sequential sections were stained for (C) proSP-C protein, (D) the endothelial marker CD31, and (E,F) the mesenchymal markers vimentin and desmin. The proSP-C staining pattern resembled the most that of desmin.




A

9/17/2008, 11:07 AM



Chapter 5: Figure 2. Immunohistochemical stainings were performed for TGF- $\beta$ , BMP-7,  $\alpha$ -SMA and S100A4. Representative slides of immunohistochemical stains performed on renal transplant protocol biopsies. A: TGF- $\beta$  staining was positive in tubular epithelial cells. B: BMP-7 staining was predominantly positive in distal tubules. C:  $\alpha$ -SMA staining was mainly observed in the interstitial compartment and within arteries. D: S100A4 staining was positive in individual tubular epithelial cells. In addition, monocytes stained positively. E: Sirius red stained both collagen I and III and was predominantly positive in the interstitial compartment.



**Chapter 7: Figure 1.** Speculative schematic illustration of a possible role for EMT in the renal allograft.

ECM: extracellular matrix, EMT: epithelial to mesenchymal transition, MET: mesenchymal to epithelial transition, S100A4: human homologue to fibroblast specific protein-1,  $\alpha-$  SMA:  $\alpha-$ smooth muscle actin.







Notes



Notes

-

A



