

Physics and chemistry of interstellar ice Guss, K.M.R.

Citation

Guss, K. M. R. (2013, March 26). *Physics and chemistry of interstellar ice*. Retrieved from https://hdl.handle.net/1887/20666

Version:	Corrected Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/20666

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20666</u> holds various files of this Leiden University dissertation.

Author: Guss (née Isokoski), Karoliina Marja-Riita Title: Physics and chemistry of interstellar ice Issue Date: 2013-03-26

Physics and Chemistry of Interstellar Ice

Physics and Chemistry of Interstellar Ice

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. dr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 26 mars 2013 klokke 15.00 uur

door

Karoliina Marja-Riitta Guss (née Isokoski) geboren te Nivala, Finland in 1982

Promotiecommisie

Promotores:	Prof. dr. H. V. J. Linnartz	
	Prof. dr. E. F. van Dishoeck	
Overige leden:	Prof. dr. A. G. G. M. Tielens	
8	Prof. dr. H. J. A. Rottgering	
	Dr. M. R. Hogerheijde	
	Dr. G. M. Muñoz Caro	Centro
	Dr. M. E. Palumbo	Osserv
	Dr. S. Cazaux	Kaptey

Centro de Astrobiología Osservatorio Astrofisico di Catania Kapteyn Astronomical Institute

Table of Contents

1	Intr	Introduction 1					
	1.1	Formation and evolution of interstellar ice	2				
	1.2	Complex molecules in the laboratory	5				
	1.3	Morphology of interstellar ice	7				
	1.4	Composition of interstellar ice	9				
	1.5	Complex organic molecules	10				
	1.6	This thesis	11				
	1.7	Main conclusions	13				
2	Thermal collapse of porous amorphous solid water 15						
	2.1	Introduction	16				
	2.2	Experimental methods	17				
	2.3	Results	20				
		2.3.1 Interference data and infrared spectra during deposition	20				
		2.3.2 Thermal processing of different ice morphologies	21				
	2.4	Discussion	24				
	2.5	Conclusions	27				
3	Mor	phology of porous ASW and CO ₂ containing ices	29				
•	3.1		30				
	3.2	Experimental methods	32				
		3.2.1 Experimental setup	32				
		3.2.2 Optical interference	32				
		3.2.3 IR spectroscopy	35				
	3.3	Results	36				
		3.3.1 Deposition	36				
		3.3.2 Thermal annealing	41				
		3.3.3 Thickness	42				
		3.3.4 IR spectroscopy	44				
	3.4	Discussion	45				
		3.4.1 Refractive index of pure H_2O	45				
		3.4.2 Thermal annealing of pure H_2O	46				
		3.4.3 Density of pure H_2O	48				
		3.4.4 Residual porosity in annealed H_2O	48				
		3.4.5 Pure CO ₂ ice	49				
		3.4.6 H_2O-CO_2 binary ice	50				
		3.4.7 CO ₂ segregation	51				
	3.5	Summary and conclusions	53				

4	CO	CO mixed in CH ₃ OH ice: answer to the missing 2152 cm ⁻¹ band?				
	4.1	Introduction	56			
	4.2	Experimental methods	58			
	4.3	Observations of the red component	59			
	4.4	Dangling-OH blocking by CO ₂	62			
	4.5	CO mixed with CH_3OH	65			
	4.6	Conclusions and astrophysical implications	67			
5	Hig	hly resolved infrared spectra of pure CO ₂ ice	69			
	5.1	Introduction	70			
	5.2	Experimental procedure	72			
	5.3	Results	73			
		5.3.1 Corrections	75			
	5.4	Discussion	76			
	5.5	Optical Constants and Grain Shape-Corrections	80			
	5.6	Summary	83			
6	Lase	er-desorption TOF mass spectrometry of cryogenic ices	85			
	6.1	Introduction	86			
	6.2	Instrumentation	87			
		6.2.1 Substrate	89			
		6.2.2 Sample deposition	89			
		6.2.3 Processing	89			
		6.2.4 Laser desorption	89			
		6.2.5 Entrainment	90			
		6.2.6 Time-of-flight mass analysis	91			
		6.2.7 EI Ionization	91			
	6.3	Results	92			
		6.3.1 Calibration	92			
		6.3.2 Carrier gas profile	92			
		6.3.3 Laser desorption of pure ices	93			
		6.3.4 Sensitivity	96			
		6.3.5 VUV photoprocessed C_2H_6	96			
7	Che	mistry of massive young stellar objects with a disk-like structure	99			
	7.1	Introduction	00			
	7.2	Observations	.02			
		7.2.1 Observed sources	02			
		7.2.2 Observational details	.05			
	7.3	Data analysis	06			
		7.3.1 Rotation diagrams	06			
		7.3.2 Spectral modeling	07			
	7.4	Results	.09			
		7.4.1 General results and comparison between sources 1	.09			

	742	Ontical depth determinations	110
	7.4.3	Temperatures	110
	7.4.5		. 110
	1.4.4		. 112
7.5	Discus	ssion	. 116
	7.5.1	Comparison to massive YSOs without a disk structure	. 116
	7.5.2	Chemical and physical implications	. 122
7.6	Summ	ary and conclusions	. 124
7.7	Appen	ıdix	. 125
	7.7.1	Detected lines per species for all sources	. 125
	7.7.2	Rotation diagrams	. 144
	7.7.3	Weeds and CASSIS model parameters	. 150
	7.7.4	Additional detections	. 153
Literature			156
Nederlandse samenvatting			
Publications			
Curriculum vitae			
Acknowledgements			